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Abstract 

This thesis addresses the topics of spot price modelling, risk management, and 

investment applications in the energy markets. Eight of the most important energy 

markets that trade futures contracts on NYMEX, and one Spot Energy Index (SEI) 

proposed for the first time in this thesis, are investigated. A new modelling approach 

is proposed for optimally capturing the behaviour of the energy spot prices, 

combining a mean-reverting and a spike model that incorporate two different speeds 

of mean reversion, and time-varying volatility modelled as a GARCH and an 

EGARCH process. The aforementioned modelling approach is also evaluated in terms 

of its ability to quantify energy spot price risk by accurately calculating Value-at-Risk 

(VaR) and Expected Shortfall (ES) measures. A number of commonly used VaR 

methodologies are evaluated along with various Monte Carlo (MC) simulations based 

models and a Hybrid Monte Carlo with Historical Simulation (MC-HS) approach, 

introduced in this thesis for the first time. This thesis also delves into index 

investment applications for the energy markets that have recently attracted a lot of 

attention. To that end, the index tracking problem is addressed by applying equity 

algorithmic trading using two innovative Evolutionary Algorithms (EAs), aiming to 

replicate the performance of a direct energy commodity investment which is proxied 

by the constructed spot energy index. 

The empirical evidence in this thesis shows that the proposed modelling approach can 

effectively capture the behaviour of the energy spot prices examined, and that it is the 

most reasonable, efficient, and consistent approach for calculating the VaR of spot 

energy prices and the SEI, for both long and short positions. Hence, it can be 

successfully applied for forecasting, risk management, derivatives pricing, and policy 

development and monitoring purposes. Finally, it is shown that energy commodities, 

proxied by the SEI, can have equity-like returns as they can be effectively tracked 

with stock portfolios selected by the investment methodology proposed in this thesis. 

The latter investment approach can be used by fund managers to set-up energy 

Exchange Traded Funds that would track the performance of the SEI, giving them the 

full flexibility of any investment style, long or short, that equities can provide. 
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Chapter 1. 

1. Introduction 

This chapter discusses the most recent developments in the energy markets, along with the 

theoretical framework and the respective controversies that provide the motivation for this 

thesis. The most predominant modelling methodologies alongside their risk management 

applications are discussed. In addition, emphasis is given on the development of commodity 

indexes as a means of benchmarking, hedging, and investment. Furthermore, the alternative 

of investing in equities of commodity-related companies and their superior return potential 

compared to commodity future investment strategies is investigated. Finally, the main 

empirical findings that are derived from this thesis and its contribution to the body of the 

existing literature are discussed. 

17 



1.1. Introductory notes 

In recent years, investors' interest in commodity investments has increased enormously, as a 

result of the improved risk-adjusted portfolio returns that an allocation to commodities can 

deliver. Investing in commodities has provided on average equity-like returns, while at the 

same time has offered negative correlations with traditional asset classes and protection 

against inflation. A number of papers in the literature explicitly document the inflation 

hedging properties of commodities (see amongst others Bodie and Rosansky, 1980; Jensen et 

aI., 2000; Gorton and Rouwenhorst, 2006). In addition, a number of macroeconomic factors 

that occurred simultaneously, prompted the broader investment community to consider 

commodities. First, an anticipated but sustained increase in consumption from China and 

countries like Brazil, India, and Russia (the so-called B.R.I.C. countries), is leading into 

higher future demand for commodities that will be more global in scope. Second, a rebound 

from historically weak commodity prices, partly due to supply limitations, has also occurred. 

Many commodities have experienced a prolonged period of declining or flat prices, with 

some reaching all-time inflation-adjusted lows in the late 1990s, and because of that, during 

the same time producers and natural resources' venture capitalists avoided investments in 

production and distribution. Third, the low inventory levels traditionally held by 

manufacturers because of just-in-time inventory practices, created short-term commodity 

shortages that led to extremely high prices accompanied by order limits and significant lag 

times. Fourth, further price pressure to commodities is added by the weak US dollar because, 

as most commodities are valued in US dollars, more money is needed to purchase them. 

Fifth, a change in the psychology of investors due to a prolonged commodity up-trend, made 

them more likely to consider non-traditional investments for their portfolios. Finally, fears for 

a future inflationary environment is encouraging investors to buy into commodities to take 

advantage of their potential hedging properties. 

According to the BP Statistical Review of World Energy (2010), energy consumption in the 

OECD countries during 2009 fell faster than GDP, marking the first decline since 1928 and 

the sharpest decline (in percentage terms) on record. The developing world on the other hand, 

experienced an energy consumption growth faster than GDP. Looking forward, based on the 

reference case scenario of the International Energy Outlook (2010) report, world marketed 

energy consumption, total energy demand in the non-OECD and in the OECD countries is 

expected to increase by 49, 84, and 14 percent from 2007 to 2035, respectively. The latter 
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two demand percentages pinpoint the increasingly high importance that emergi ng markets 

play in the world economy, especially during and after the global economic recession that 

started in 2007. Most of the growth in energy demand mainly stems again from the non

OECD countries that are also expected to have by far the highest growth in energy 

consumption compared to the OECD countries (see figure 1-1). Even though most of the 

developed countries seem to have exited the recession, the recovery has been mostly led by 

countries such as China and India, with Japan and the European Union member countries 

being the laggards. 

Figure 1-1: World marketed energy consumption 2007-2035 , Reference case (in quadrillion 
Btu). 
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Source: International Energy Outlook, 2010. 

In addition, even though consumption of renewable and alternative energy sources IS 

expected to increase in the future, most of the energy consumed worldwide is expected to 

come from fossil fuels, such as liquid fuels and other petroleum, natural gas and coal (see 

figure 1-2). Although energy prices collapsed in mid-2008 as a result of the worldwide 

concerns about the deepening recession, in 2009 prices bounced back and have remained 

relatively high until now. The latter concerns about sluggish economic growth, in conjunction 

with certain geopolitical and non-geological I factors that limit access to prospective 

conventional resources, allowed unconventional resources such as oil sands, shale oil , gas-to

liquids, and bio-fuels to become economically competitive. 

I Non-geological factors include conflicts and terrorist activity, environmental protection actions, labour and 
material shortages, lack of technological advances, adverse weather conditions etc. 
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Figure 1-2: World marketed energy use by fuel type 1990-2035, Reference case (i n quadrillion Btu). 
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Source: International Energy Outlook, 2010. 

Moreover, increased concerns about the environmental consequences of greenhouse gas 

emissions, has led to increased interest in alternatives to fossil fuels such as nuclear power 

and renewable sources, mostly due to higher fossil fuel prices and the receipt of major 

support by governmental incentives throughout the world (see figure 1-3). However, most 

renewable generation technologies are not economically competitive with fossil fuels , besides 

hydropower and wind power that are mainly expected to deliver most of the world ' s increase 

in renewable electricity supply in the near future . Typically, renewable electricity generated 

by sources other than wind and hydro, such as solar, biomass, waste, tidal and wave, is 

primarily supported by government incentives or policies that fund the construction of 

renewable generation facilities. 

Figure 1-3: World net electricity generation by fuel 2007-2035 , Reference case (in trillion kwh). 
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1.2. Theoretical framework and motivation 

Energy is what drives modem economic development with the source of the energy supply, 

in the past two centuries, stemming primarily from hydrocarbons. Due to the previous factors, 

and in their search for the aforementioned benefits, investors have rapidly increased their 

allocations to commodities, while at the same time most commodity prices have soared. 

Nevertheless, even with such a strong momentum, commodity investment strategies have not 

performed as expected, in many cases underperforming their respective spot indexes. This is 

because most investors invest in commodity futures and other derivatives, and not in the 

actual physical commodities or commodity equities. Chada (2010) finds an enormous 

difference between investing in spot commodities versus investing in commodities futures. 

He shows that over the past three, five and 10 years, futures investments, proxied by the Dow 

Jones-UBS Total Return Futures Index, even when including the interest earned on cash 

collateral, they have trailed spot commodities, proxied by the Dow Jones-UBS Spot 

Commodity Index, by 5.6 to 11.7 present annually. The author concludes that the differences 

in the trajectories of performance over time can be mostly attributed to the way that futures

based indexes are constructed. Long-term investors, in order to maintain a continuous 

exposure to the commodities markets, they need to "roll" the expiring futures contract to a 

contract with maturity further out in time. This process of rolling forward futures contracts 

requires active trading, that can have an adverse effect when successive-month contracts 

trade at prices higher than the current month, leading to the creation of the so-called 

"negative roll yield". 

Investing in physical commodities is generally practical only for precious metals, as for most 

commodities, and especially for energy markets, investment in the physical product requires 

many simultaneous transactions that only specialised experts and investors with economies of 

scale can handle. These complicated and expensive transactions include the purchase, 

storage, transport, and insurance of the actual commodity, which makes direct investing in 

spot commodities an impossible investment alternative for a large segment of the investing 

population. On the other hand, a major disadvantage of commodity futures returns is their 

burdensome and complicated taxation scheme applied in many countries, making an 

allocation to commodities suboptimal for taxable portfolios. For example, as Stockton (2007) 

points out, total returns of derivative based commodity portfolios can be taxed as 60% long

term capital gains and 40% short-term capital gains, whereas the returns of portfolios that 
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hold physical commodities such as gold and silver, can be taxed as profits from collectibles at 

28%. Moreover, according to Gordon (2006) another drawback of futures returns is that 

profits cannot be deferred since the futures contracts need to be marked-to-market at the end 

of each year. 

The recent run-up in oil price and other energy products between 2003 and 2008, and then 

their subsequent steep collapse within a few months, to many economists appears to be a 

huge bubble that was meant to burst (Eckaus, 2008). These developments in the price of oil 

and in other energy markets have been mainly attributed to the positions taken by financial 

investors on the futures markets, such as pension funds, hedge funds, investment banks etc. 

These peculiar dynamics of oil, and most of the energy commodities, have transformed them 

into financial assets, and as such, they are subject to speculative bubbles. As Caballero et al. 

(2008) argue, the financial collapse of 2007 led investors into a search for an alternative asset 

class that has diversification properties able to deliver positive returns during a market 

downturn, and they found it in energy commodities and more specifically in oil. According to 

them, it is this huge inflow of capital towards energy commodities that created this huge rise 

in oil prices towards the end of 2008, leading to a speculative bubble that burst only a few 

months later. As Shleifer and Summers (1990) point out, investors' reactions to common 

signals or their overreaction to recent news can cause herding behaviour. However, in the 

case of the oil futures markets, Boyd et al. (2009) and Buyuksahin and Harris (2009) 

conclude that, during recent years, herding among hedge funds did not destabilise the futures 

markets because of its countercyclical nature. Moreover, in their study on the performance of 

various hedge funds and commodity fund investment styles during periods of bullish and 

bearish stock markets, Edwards and Caglayan (2001) find that commodity funds provide 

greater downside protection than hedge funds do. 

There is also a number of researchers and economists that are more sceptic as to whether the 

oil price spike was a bubble (see Krugman, 2008; Pirrong, 2008; Smith, 2009), basing their 

argument on the missing stockpiles of oil. In their opinion, betting in higher future prices for 

oil and energy products, financial speculators would have increased stockpiling where 

possible. In the absence of stockpiling in oil and other energy products, their argument states 

that physical markets could not have been affected by speculation in the futures markets. On 

the other hand, above ground storage and the creation of stockpiles, in the case of energy 

markets is a very short-term concern as it is a very expensive solution, when it is even 
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physically applicable; only a very low level of inventories relative to total production is 

maintained at any given time. Based on the assumption of economic equilibrium, Pierru and 

Babusiaux (2010) take on the view that an increase in oil prices would reduce demand for oil, 

resulting in any quantity of the non-consumed supply being stored. Based on this economic 

viewpoint, any accumulation of stocks, even minimal, would imply that the price of oil is 

driven by speculation above the level set by market fundamentals. As Parsons (2010) states, 

during the 2003-2008 period no such stockpiling occurred. Adding to the later finding, 

Hamilton (2009b) argues that crude oil inventories in 2007 and early 2008 were significantly 

lower than historical levels. Even when investors expect that the long-term price of energy 

products will remain high, it makes no economic sense for them to increase their production 

levels in order to store any excesses in facilities above ground until the time of sale. Thus, the 

argument that the lack of stockpiling should support the belief that the recent increase in 

energy prices was not a bubble can no longer be considered valid. 

Krugman (2008) and Smith (2009) argue that the price spike of 2007-2008 can be attributed 

purely to supply and demand factors. As Hamilton (2009a, 2009b) and Kilian (2009) suggest, 

supply and demand fundamentals can explain the recent price spikes, caused by stagnant 

production and strong demand for energy products, which in tum led the short-term elasticity 

of oil to historically low levels. During the past decade, there has been a big swift in market 

fundamentals, mostly caused by strong economic growth in the developing countries like 

China, India, and Brazil, which was not only rapid but at the same times persistent for a long 

period of time, increasing demand for oil and other energy products. At the same time, supply 

of oil and other energy products has been very slow in adapting to the demand, because of 

falling supply rates from mature and depleted oil fields, and because of the big time lag 

between new investments in oil and energy production and actual delivery of the projects. 

Thus, the aforementioned imbalance between supply and demand can be attributed as the 

major factor for the sharp price increase. 

Nevertheless, as sound as the previous argument appears to be, the recent transformation of 

the paper energy markets due to increased investor appetite for alternative asset classes, 

which can be very influential, is overlooked. According to Parsons (2010), financial 

innovations made it possible for paper oil and energy contracts to be considered as a pure 

financial asset, thus making it very similar to equities in this regard, opening the way for the 

development of a speculative bubble. Based on data reported by the Bank for International 
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Settlements (BIS, 2009) the notional amounts outstanding and the gross market values of 

commodity derivative contracts traded over-the-counter, including energy contracts, in mid-

2008 were $l3 trillion and $2.2 trillion, respectively. A big portion of these funds has been 

directed into commodities' index funds or index trading, since investors can buy into a 

commodity index much as they would buy into a mutual fund. 

The latest run-up and subsequent steep fall in energy prices is also connected to investors' 

expectations related to the anticipated USD appreciation and the rising inflation, caused by 

falling interest rates and the huge liquidity injections into the banking system. In a pursuit of 

speculating on the emerging markets' economic growth, to overcome the sub-prime financial 

crisis that originated in the US in 2007, and to hedge against the two aforementioned risks, 

investors bought huge amounts of energy futures contracts, all denominated in USD. In the 

same lines, Bermudez and Cristo (2008) show a large negative correlation between oil prices 

and the USDI EUR exchange rate, standing at -93% for the 2007-2008 period. As most 

energy prices (all of those traded in NYMEX) are quoted in USD, consumers react to any 

price changes expressed in their local currency, so it is to their benefit to push for a 

depreciation of the USD against their local currency. This process, in effect, brings additional 

demand into the market pushing USD denominated prices further up. However, as the sub

prime crisis later on proved to be global, affecting most of the developed economies, 

investors were facing the risk of deflation in their home countries and a strengthening of the 

USD. Amidst the worldwide recession and the troubled economies of the euro zone, all US 

denominated assets were now being considered by investors as the safest choice. Under these 

new economic parameters, in August 2008, investors sold their positions en masse, resulting 

in a steep fall in all energy prices. 

1.2.1. Energy price modelling and risk management 

A sound understanding of the stochastic dynamics of energy prices is a prerequisite for 

making an investment into energy commodities. As it is widely stated in the literature, the 

evolution of energy prices is determined by a host of factors on both the supply and the 

demand side. Some of the factors affecting the former are global population growth, changing 

global trade patterns, changing technologies and many others. As for the latter, technological 

advances for drilling in previously inaccessible locations (e.g. deep sea drilling), and the 

realization of new resource discoveries are only some of the influential factors. In addition, 

there are plenty of political factors across the globe affecting both the demand and the supply 
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side. Because of the aforementioned specific characteristics of energy pnces, the risk 

management ideas and models developed for the financial markets are not directly applicable 

to the energy complex. 

There are a growmg number of new and innovative structure products and investment 

vehicles for energy commodities that come to market, in a continuous search for profits, 

stemming from price level increases. For example, this increasing demand by investors to 

gain simple access to direct commodities exposure has led to the development of exchange

traded commodities (ETCs) in July, 20052
; over the past five years there are more than 140 

ETCs listed in London alone. These ETCs offer long, short, forward, and leveraged exposure 

to more than 23 individual commodities and 11 indexes (Bienkowski, 2010). The 

development of the ETCs opened up commodities markets to ordinary investors, who can 

now choose which individual commodity or index they would like to invest in, without the 

requirement of daily management, as it is the case with individual futures cotracts. However, 

ETCs are still subject to roll yield in the same manner as an investment in a futures contract, 

which still makes them different than investing in the spot markets. Depending on the state of 

the futures curve, whether it is in backwardation or contango, ETCs can outperform or 

underperform spot market returns. 

In today's fast moving and at the same time risk loaded trading environments, managing risk 

effectively is a critical success factor for any trading business. The liberalization and the 

subsequent innovation in the energy markets across the world, though it comes with plenty of 

opportunities, it brings along a number of risks for its participants. A key for succeeding in 

the liberalized energy markets is the ability to manage effectively these new risks that have 

developed the need for risk transferring products, such as energy futures, options and swaps. 

Risk is embedded in any form of investment, and as in the financial markets there cannot be 

any excess returns without risk. To deliver excess returns to shareholders, risk must be taken, 

with some losses being unavoidable. However, this is also the main purpose of risk 

management, to monitor these risks and confine the losses within pre-specified levels. 

The lack of good risk management practices can often tum out to be very costly for the 

participants in the energy markets. It can lead to negative profit and loss accounts, increased 

2 ETF Securities (ETFS) in collaboration with Shell Trading created the world's first ETC in July, 2005. 
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cost of capital, liquidity cnses and increased volatility. Also, besides being subject to 

traditional financial risks such as price-, credit-, settlement-, liquidity-, and operational-risk, 

the energy markets are also subject to energy specific risks. These include, volume-, location 

basis-, cross commodity price-, or cash/futures basis-, physical-, regulatory-, and political

risk. The latter three risks, though also present in traditional financial markets, are not as 

important as in the energy markets. With increased management calls for a simple risk 

measurement that would be easy to interpret, a single number as represented by Value-at

Risk, has recently dominated as the most suitable risk management tool. 

The potential gains from effective enterprise management of risk can be large, affecting 

positively the profit and loss, reducing cost of capital and business volatility, while at the 

same time enhancing working capital management. Moreover, what makes risk management 

really important for commodity investors is the significant downside volatility that is inherent 

in individual commodities. Even during a bullish market, short-term supply/demand 

disruptions can occasionally cause dramatic downturns. Commodities prices are steeply 

cyclical and investors should expect to withstand price declines of large magnitude, as prices 

are able to reach all-time highs and subsequently new lows within a short period of time. A 

stellar example of this commodities' price behaviour is the all-time high price for spot crude 

oil that reached $145 per barrel in July 2008, and then fell to $38 per barrel by December of 

the same year, bouncing back to a level of $70-80 per barrel shortly after. 

1.2.2. Commodity indexes and their investment applications 

Historically, commodities were considered to be inappropriate investments because of their 

perceived higher risk compared to traditional investments. However this situation has 

changed with the poor performance of traditional assets and the wider availability of 

commodity data and commodity related indexes. This led to commodities emerging from 

obscurity to the front pages of both alternative and mainstream investment publications, with 

assets pilling into commodity-related indexes and investment products. This large flow of 

money into commodity indexes can be attributed to the diversification properties of 

commodities in the context of portfolio management. Georgiev (200 I) finds that when adding 

a commodity component to a diversified portfolio of assets, as proxied by the GSCI, the Dow 

Jones-UBS Commodity Index, or the S&P Commodity Index, enhanced risk-adjusted 

performance can be achieved, along with inflation hedging properties especially from the 

energy and metal sub-sectors. Buyuksahin et al. (2010), after studying the relation between 
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commodities and traditional financial investments from the perspective of a passive investor, 

as represented by the returns on investable commodity and equity indexes, conclude that 

commodities can still retain their role as a diversification tool for investors' portfolios, due to 

the lack of high return co-movement across equities and commodities. Nijman and Swinkels 

(2003) find that by adding commodities, using the GSCI as a proxy, investors can reduce the 

volatility of the funding ratio of retirement saving schemes by more than 30 percent. In the 

same lines, Huberman (1995), Froot (1995), and Satyanarayan and Varangis (1996) show that 

commodities in general help reduce the unconditional risk in investors' portfolios, while Erb 

and Harvey (2006), Gorton and Rouwenhorst (2006), and Miffre and Rallis (2007) praise the 

strategic and tactical values of commodity investments. 

What is more with commodity index trading, is that investors do not necessarily have to take 

a view of whether the price is too high or too low, but instead buy the market as a whole and 

expect any return from any future price appreciation (passive investment). However, Akey 

(2005) finds that commodities as an asset class can also provide many opportunities for 

skilful active managers to find alpha opportunities, by actively managing commodity futures 

and other derivatives, and/or commodities-related securities. While there is no official source 

reporting the total amount invested in commodity indexes, press estimates put the number for 

mid-2008 at $400 billion, of which approximately $130 billion invested in crude oil alone 

(Parsons, 2010). Buyuksahin and Harris (2009) find that traditional speculators, proxied by 

non-commercial traders as well as commodity swap dealers3
, tend to exhibit trend following 

behaviour over their full sample and all its sub-periods. Nevertheless, the authors fail to find 

any causality from the speculators' positions to prices. This increased popularity of energy 

index trading has lead to a plethora of hedge funds and investment banks creating their own 

customised index version. These indexes have different components, weights and other rules, 

which unavoidably make them different from one another in terms of both historical and 

expected performance. 

For example, the initial commodity indexes were constructed by including the most liquid 

contracts and therefore limited themselves to the shortest maturity contracts. This structure 

3 According to the eFTe report, non-commercial traders include floor brokers, traders, and managed money 
traders (hedge funds). Also, commercial swap dealers who use the futures markets to hedge their OTe positions 
are considered to be speculators because they lack direct exposure to the underlying commodity market. On the 
other hand, commercial traders are all those dealers, producers, manufacturers, and other entities that are 
directly involved with the actual commodities involved. 

27 



has benefited those indexes for most of their existence, since the shortest maturity contracts 

exhibited the highest returns, because the oil and the fuels futures curves were most of the 

time in backwardation. Thus, although spot returns may have been negative at times, the 

realized returns on the short-term factor more than compensated for that loss. However, this 

trend has lately changed, with most of the energy markets, including oil, being in contango, 

thus leading to the generation of negative returns on the short-term factor (Lautier, 2005). 

When the price of oil began to continually rise in 2003, the spot price returns became the 

most important and consistent contributor to portfolio returns, making investments in energy 

futures indexes worthwhile, even though the oil futures curve turned to a state of deep 

contango since the end of 2004, leading to loses on the short term factor. What has been 

observed lately is an upward move of the oil futures curve at all maturities, resulting to 

returns on a futures portfolio to originate solely from the rising spot price. Because of these 

changing dynamics in the energy futures markets, liquidity started to move into the longer 

maturity contracts, mostly because of the trades of financial investors. 

As Parsons (2010) argues, even with these changes in the dynamics of the energy markets, 

energy commodities are still included in investors' portfolios because of their diversification 

benefits that are sought to be high. This recent market switch into a deep and persistent 

contango, however, has significantly compromised the returns on the traditional index 

portfolio strategies that were heavily skewed towards short maturity contracts, leading to the 

creation of new indexes that use longer maturity contract to try to capture any gains. This 

trend following of the state of the energy futures markets, whether they are in backwardation 

or in contango, can tum out to be very costly for investors that bet on the wrong side of the 

trend. The proposed investment approach on the other hand eliminates such risks, giving 

investors more flexibility on their portfolio while at the same time giving them access to the 

diversification benefits of energy commodities. 

To be able to understand the various sources of returns for a long futures program, the 

concepts of backwardation, contango and roll yield need to be explained first. When a futures 

contract's price is at a discount (premium) to the spot price of the underlying, the resulting 

shape of the futures curve is in backwardation (contango). Towards the expiration of a futures 

contract, when futures markets are in backwardation, it converges or "rolls up" to the spot 

price. This price difference is the roll yield that investors can capture when commodities 

futures markets are in backwardation. However, when futures markets are in contango the 
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reverse occurs, with investors making losses from the futures contracts that converge to a 

lower price. The levels of contango and backwardation can swing drastically both in terms of 

magnitude and sign, making the term structure of commodity futures contracts the main 

driver of the return differences among commodity futures. 

As Nash (2001) concludes, the roll yield has been a key factor in long commodity futures 

investments. He shows that oil and its refined products, namely Heating Oil and Gasoline, 

which have historically been in backwardation, have also offered the highest returns; in 

contrast to Natural Gas and the agricultural commodities that have been in backwardation for 

a much shorter period. Erb and Harvey (2006) find that roll returns explain 91 % of the long

run cross-sectional variation of commodity futures excess returns over the examined period 

between December 1982 and May 2004. Till and Eagleeye (2003) point out that it does not 

serve any economic purpose for an investor to be systematically long non-backwardated 

futures contracts. According to them, the time to invest in commodities is when inventories 

are low and their futures curve is in backwardation. Nevertheless, irrespectively of whether 

the futures curve is in backwardation or contango, in order to keep a long position and roll a 

contract forward, investors need to actively trade and accept the market prices for both 

transactions, the liquidation of the current-month contract, and the purchase of the next

month contract. The methodology proposed in this thesis overcomes these types of 

constraints, since investors can go long the energy commodities, as represented by the spot 

energy index, independently of whether their futures curves are in backwardation or 

contango. 

Usually, the futures contracts that normally trade in backwardation and have persistent 

returns are the ones whose underlying commodity is difficult to store (see Kolb, 1996), as is 

the case for most energy markets examined in this thesis. For these commodities, price 

appreciations and depreciations play a key role for balancing supply and demand, thus 

leading to very volatile spot prices. With limited intervention capabilities and slow 

production responses, energy markets can only respond to short-term supply-demand 

disruptions via fluctuations in price. As it is difficult to predict the actual demand levels in 

the future, and because there is usually a long lead-time between deciding on a production 

increase and the actual production of the commodity, there will always be short-term 

imbalances between supply and demand, leading to increased price volatility. It is this 

uncertain forward risk that commodity producers and holders of inventory will have the need 
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to manage via commercial hedging activities. In turn, this increased activity to protect against 

price decreases puts more downward pressure on commodity futures prices relative to the 

respective spot prices, resulting in backwardation and thus to positive expected returns for 

long futures positions. On the contrary, when most of the hedging activity is directed towards 

protection against price increases, as it happened in 2004, commodity futures markets move 

to contango. 

One of the drawbacks of commodities futures indexes is that they cannot use a market

capitalization weighting scheme. As Black (1976) points out, all futures contracts have zero 

market capitalization. Ideally, a commodity index should be constructed in an analogous way 

as in the case of market capitalization stock indexes, i.e. based on the spot price and the 

reserves of the constituent commodities. However, in contrast to outstanding company stock 

shares, there is a lack of a proper measure of outstanding reserves for most commodities, 

resulting in a vast variety of commodities indexing rules used by different providers. As the 

relationship between backwardation and contango can change from one period to the next, 

most of the newly created commodity futures indexes have adapted to this phenomenon by 

adjusting accordingly the weighting scheme and commodity markets selection for their index 

construction. Because the Goldman Sachs Commodity Index is heavily weighted in crude oil 

and other futures contracts that were persistently in backwardation, it has experienced large 

excess returns up to 2004, with their returns being dominated by the roll yield and not by the 

performance of the actual commodities. In the beginning of 2004 when oil futures turned into 

a long-lasting state of contango, a situation blamed primarily to excess speculating activities 

by non-commercial traders, the GSCI excess returns have diminished significantly 

Buyuksahin et al. (20 I 0). For the rest of 2004 and 2005, excess returns were still positive 

because the high spot energy returns were able to offset the negative roll returns. However, in 

2006 when also spot energy returns turned negative, the index started making losses. Another 

reason for this recent change in the term structure of oil futures is the large amounts of money 

flowing into long-only commodity index-linked products. Because demand for second-month 

contracts is extremely high, in order to keep a long position and roll out of expiring nearby 

contracts, prices are pushed upwards. This process pushes prices of longer-term contracts 

above the prices of shorter-term contacts thus affecting the term structure. 
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1.2.3. Investing in energy commodity equities 

Investors that want exposure to spot commodities returns, usually cannot invest in the actual 

physical products, besides the case of precious metals, and thus seek alternative approaches 

such as commodity futures and commodity-related equities. However, although commodity 

futures provide exposure to their respective underlying commodity, as their prices converge 

to the spot prices on a monthly basis, the link between long-term commodities futures and 

spot returns is distorted because of the effect it has on the term structure the prevailing 

backwardation or contango. This effect has been more profound in recent years, since 2004, 

when contango started prevailing in the energy markets. Commodity equities on the other 

hand overcome these term structure effects, with relevant research showing a direct and 

powerful link between the returns of commodity-related equities and their business-related 

spot commodity prices. 

On that note, empirical evidence shows that commodity-market returns are very similar to 

equity-market returns in terms of magnitude, with equity-like risk (Bodie and Rosansky, 

1980; Nash, 2001). The latter finding has recently increased the interest from institutional 

investors to integrate commodities in their strategic asset allocation and to develop tactical 

asset allocation strategies. Nijman and Swinkels (2003) test a tactical switching strategy 

between commodities and stocks and they find that commodity investments can be beneficial 

to pension funds within a mean-variance framework. Vrugt et aI. (2004) use a market timing 

strategy based on a dynamic multi-factor approach, to forecast monthly commodity returns 

with a broad range of indicators related to the business cycle, the monetary environment, and 

the general market sentiment; they find that investors can have superior returns when 

following their timing asset allocation strategy. It is evident in the literature that up until the 

early 2000s, commodities and commodity funds perform well during a financial market 

downturn, while having at the same time a lower correlation to equities (Chow et aI., 1999; 

Edwards and Caglayan, 2001), with energy commodities in specific being consistently 

negatively correlated to equities. As Till and Eagleeye (2003) conclude, whenever a 

commodity investment is intended to act as a diversifier for equities it needs to be heavily 

weighted in energy markets, as it is the energy complex that exhibits a persistent negative 

correlation to equities. 
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Investors generally expect that futures indexes are a good proxy for a spot index, because of 

the high correlation between spot and futures prices. However, this is not entirely true as 

according to Chada (2010) the Spot Commodity Index used in his paper outpaces the 

respective Commodity Futures Index by over 5.6 percent per year, even though their 

correlation is exceeding 99 percent. The correlation measure is not the most important factor 

for determining which is the best investment alternative, as it only measures the degree to 

which two variables are likely to move together. It does not provide an adequate measure of 

the magnitude of the moves, and it also fails to capture the overall trend of the variables' 

returns over time, especially as those returns compound. A risk-adjusted return measure, as 

the Information Ratio, is a better and more appropriate performance measure. In addition, 

long-only futures commodity indexes have little protection against any sudden and large in 

magnitude downward price spikes, as they have no ability to sell short, they have inherent 

limitations based on the state of the futures curve (backwardation or contango), and most of 

them rebalance only once a year. Furthermore, investing in a broad commodity futures index 

does not reflect any short-term, tactical response to prices, in either the individual 

constituents or the aggregate commodity market, which can be better captured by investing in 

a specific segment of the commodities markets, such as the energy sector. 

Investing in commodity-related4 equities is considered to be the best alternative for avoiding 

some of the inefficiencies of futures returns, as they can play a crucial part in providing 

exposure to the commodity markets. Some argue that investing in commodities equities is 

primarily an investment in equities, which does not significantly help to reduce the overall 

volatility of the portfolio, or improve its risk-adjusted returns. The main concern of the 

advocates of this argument is that commodities equities ate subject to the actions of their 

company's management in the same manner as for all other equities, which implies that they 

can destroy shareholder value or break the link between these stocks and the underlying 

commodities' price movements. Although the aforementioned argument can be valid in some 

instances, it is generally accepted that commodity equities are not too far removed from the 

actual commodity, as the value of a commodities company is directly tied to the value of the 

commodities it produces/ trades. The latter could be justified by the fact that the equity 

markets of Russia, Brazil and other emerging market countries that their economies depend 

heavily on commodities, and more specific on energy commodities, and thus have a large 

4 Commodities-related equities are the securities of those companies that are mainly engaged in the production 
and distribution of commodities and commodities-related products, the so-called pure-play companies. 
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number of commodity related listed stocks, have witnessed a thriving performance during 

every recent commodities boom. Moreover, there are plenty of strategies, and their related 

opportunities, connected to energy production, distribution, and trade finance that are not 

directly available to futures investors, irrespectively of their approach, passive or active. 

These opportunities can only be available to investors via the equities markets, as part of the 

respective companies' valuation. 

In general, any increase in the underlying commodity price should result in an increase in the 

company's earnings, leading into an increase in shareholder value, which in tum is reflected 

in the share price. Chada (2010) constructs an equally-weighted portfolio of the eight largest 

energy stocks as of December 2009, and then maps the aggregated changes in revenues and 

earnings of these stocks with changes in the WTI spot oil price. He concludes that earnings of 

oil companies tend to generally relate to the spot price of oil, tracking it closely both in up 

and down markets. Building on the aforementioned, it is believed that tracking the 

performance of spot energy prices, as proxied by the proposed in this thesis Spot Energy 

Index (SEI), can be best achieved by optimally selecting portfolios of stocks, and most 

probably from energy-related stock pools. With such an investment approach, commodity 

investors can have all the means at their disposal to protect against any sudden downward 

price movements, that investing in the selected equities portfolios can deliver, and thus can 

capture all the alpha opportunities that a passive futures index would miss. 

1.2.4. Thesis motivation 

Considering the above, the motivation for this research mainly stems from the existing 

controversies in the empirical literature, as to which modelling approach is best for describing 

the behaviour of energy spot prices, capturing their risk characteristics, and replicating the 

performance of a benchmark energy index. The most important element of any investment is 

the implementation process of the portfolio construction and its risk management, in order to 

be able to achieve a smooth performance during normal times, but also manage to survive 

during dramatically turbulent times such as the recent global financial crisis. 

This thesis proposes an innovative methodology to manage spot price risk of the individual 

energy commodities and the constructed spot energy index, using VaR. In addition, it 

explores an innovative way for commodity investors to achieve returns that are comparable to 

returns available in the spot energy commodities prices, and thus help them get closer to their 
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goal. It also makes commodity investing available to a very broad range of investors, from 

small retail to large institutional investors. This research carries out a thorough empirical 

analysis of eight of the most important energy markets that also trade futures contracts on 

NYMEX, the largest exchange for energy commodities, and also proposes a unique spot 

energy index, seeking to address the following research questions: First, can a stable 

benchmark for energy spot prices be constructed so that end-users can be confident that 

historical performance data is based on a structure that resembles to the composition of the 

index both at present and in the future, immune from any regular fundamental changes in its 

structure, thus making the index suitable for institutional investment strategies? Second, what 

is the best modelling approach for describing the behaviour of the eight spot energy 

commodities and the spot energy index examined in this thesis? Third, what is the best set of 

VaR models appropriate to capture the dynamics of the energy prices and the spot energy 

index, assess their performance while quantifying energy price risk by calculating both VaR 

and ES measures, as the accurate measurement of energy risk is of outmost importance for 

the development of the fast-growing energy derivatives and ETFs markets? Finally, how can 

an effective index tracking strategy be devised, to replicate the unique price/ return behaviour 

of the spot energy index that allows investors to get closer to the underlying market price 

trends, using a basket of equities that are liquid and fully investable, and at the same time 

allow for both long and short strategies that can significantly improve the risk! return profile 

of traditional asset portfolios? 

1.3. Findings and contribution 

Chapter 2 provides a more detailed analysis of the most recent developments in the energy 

markets in terms of the recent de-regulation applied in most developed countries, the various 

modelling approaches for pricing and hedging with futures contracts, their price discovery 

properties, and the fundamental concepts of backwardation and contango. Moreover, the use 

of indexes as benchmark tools and more recently as trading vehicles is explained. A 

comprehensive discussion is made on the key differences amongst the most popular 

commodity indexes in terms of their weighting methodology, which is based on measures 

such as liquidity or production, arithmetic or geometric calculations, and also in terms of their 

rules for rolling forward their constituent futures contracts from the next-month to a more 

distant contract. Finally, the advantages and disadvantages of index-linked Exchange Traded 
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Funds (ETFs), and their applications on various investment strategies are also meticulously 

discussed. 

A thorough empirical analysis is carried out in Chapter 3 by examining the performance, in 

terms of explanatory power and goodness of fit, of models that incorporate mean-reversion 

and spikes in the stochastic behaviour of the underlying asset. Two types of models are 

considered: a mean reverting model, where prices have the tendency to revert to their long

run mean, and a spike model that incorporates two different speeds of mean reversion to 

capture the fast mean-reverting behaviour of returns after a jump occurs and the slower mean 

reversion rate of the diffusive part of the model. These models are also extended to 

incorporate time-varying volatility in their specification, modelled as a GARCH and an 

EGARCH process. The performance of each model is assessed on the basis of how well it 

can capture the trajectorial and distributional properties of the real market process. The 

energy markets examined are eight of the most important energy markets that also trade 

futures contracts on NYMEX, Heating Oil, Gasoline, Crude Oil (WTI), Natural Gas, 

Propane, Electricity (PJM), two Crack Spreads of Heating Oil and Gasoline, respectively, 

with WTI, and one constructed Spot Energy Index (hereafter named SEI). The SEI is 

constructed as an un-weighted geometric average of the individual commodity ratios of 

current prices to the base period prices, set at September 12, 2000, of the first six 

aforementioned energy markets. In order to compare the aforementioned processes and 

identify which one describes the data best, 100,000 Monte Carlo simulations are run to 

replicate the price paths, and then test the goodness of fit of the models using a variety of 

both quantitative and qualitative tests. 

The estimation results from the historical series in Chapter 3 indicate the presence of a 

"leverage effect" for WTI, Heating Oil, and Heating Oil - WTI crack spread spot log-price 

returns, whereas for the remaining energy markets and the SEI the presence of an "inverse 

leverage" effect is found. In addition, results indicate that the inclusion of Poisson jumps to 

the mean reverting model, in combination with the use of a different speed of mean reversion 

after ajump occurs for a duration equal to the half-life of the jumps' returns, improves the fit 

significantly for all energy markets and the SEI. The proposed modelling approach captures 

very well both the skewness and kurtosis of the actual series. Furthermore, the addition of the 

EGARCH (1,1) specification for the variance improves significantly the fit of the simulated 

returns to the actual distributions for most of the energy markets under investigation and the 
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SEl. This finding is validated by the reported K-S statistics, as well as by comparing visually 

the simulated to the actual price series. Hence, overall, the proposed modelling approach for 

energy pricing combined with the findings of chapter 3 is relevant for both policy makers and 

market participants as it can be applied for forecasting, risk management, derivatives pricing, 

and policy development and monitoring purposes. 

Chapter 4 investigates whether the widely used in the financial world Value-At-Risk (V AR) 

and Expected Shortfall (ES) methodologies can be successfully applied in the energy sector. 

VaR is used to identify the maximum potential loss over a chosen period oftime, whereas the 

ES measures the difference between the actual and the expected loss when a VaR violation 

occurs. A set of VaR models appropriate to capture the dynamics of energy prices and 

subsequently quantify energy price risk by calculating VaR and ES measures, is proposed. 

Amongst the competing VaR methodologies evaluated in this chapter, besides the commonly 

used benchmark models, a MC simulation approach and a Hybrid MC with Historical 

Simulation approach, both assuming various processes for the underlying spot prices, are also 

being employed. The model specifications for the MC simulations and the hybrid approach 

are the common MR and MRJD, modified to allow for GARCH and EGARCH volatility, and 

for different speeds of mean reversion after a jump is identified. All VaR models are 

empirically tested on the eight spot energy commodities and the spot energy index. A two

stage evaluation and selection process is applied, combining statistical and economic 

measures, to choose amongst the competing VaR models. Finally, both long and short trading 

positions are considered as it is extremely important for energy traders and risk managers to 

be able to capture efficiently the characteristics of both tails of the distributions. 

The results from Chapter 4 show that, at the 1 % significance level, for all commodities and 

the SEI there is at least one model that passes all three statistical tests with the ARCH type, 

the MC simulation, and the Hybrid MC-HS models prevailing more. For the entire fuels 

complex, including the WTI, HO, Gasoline, and the crack spreads with WTI, and for both 

long and short positions, the MC simulations methodology under the MRJD specifications, 

followed by the Hybrid MC-HS models, pass all three statistical criteria from the first 

evaluation stage, and at the same time deliver the lowest LF at the second evaluation stage. 

The only exceptions are the WTI and the CS-HO-WTI just for the long trading positions, 

with the ARCH-type methodologies delivering the lowest LFs, respectively. Therefore, it is 
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concluded that the two former approaches are the most reasonable, efficient, and consistent 

candidates for calculating the VaR of energy prices, for both long and short positions. 

Chapter 5 aims to replicate the unique price/ return behaviour of direct energy commodity 

investment using equities. This goal is accomplished by applying two very efficient in terms 

of tracking error strategies, the Differential Evolution algorithm (DE) and the Genetic 

Algorithm (GA), to solve the index tracking problem in the energy markets as represented by 

the constructed spot energy index. Low tracking error strategies provide several advantages 

to investors; result in better diversified portfolios, make the long-only constraint of a fund 

manager less binding, and in general tend to provide higher returns for various equity 

strategies. More specifically, the performance of the SEI is reproduced by investing in a small 

basket of stocks picked either from the stocks comprising three well known financial indexes, 

or from two pools of energy related stocks. In particular, the cases of the US, UK and 

Brazilian investors are considered who want to invest in the SEI and prefer to access only 

their local stock markets due to cost savings and/or better knowledge of the respective 

markets. They represent two developed and one developing stock markets, with the latter 

having its unique energy significance in the global scene, with the recent reforms and 

regulations resulting in increased transparency, stability, sophistication and additional 

liquidity to its financial markets. This reliability in the Brazilian stock market data is the main 

reason that it is selected for testing and implementing the proposed investment strategy, as 

the transparency and liquidity in other stock markets such as that of Russia or other emerging 

markets that have a large number of commodity related firms can be questionable, sometimes 

leading to obscure datasets. In addition, while recently many developed countries have 

sputtered amid weak economic growth, Brazil has continued to thrive, given its rich reserve 

of natural resources and growing middle class, becoming the fifth-largest economy in the 

world. The methodology implemented can track the SEI or any other benchmark index by 

investing in a basket of stocks that each of the evolutionary algorithms will determine. 

Baskets of maximum 10, 15 and 20 stocks are selected from the following stock pools: Dow 

Jones Composite Average, FTSE 100, Bovespa Composite, and two unique pools of energy 

related stocks from the US and the UK stock markets, respectively. The proposed 

methodology allows investors to be more comfortable with their investment selection since 

this is drawn out of a stock market that they are more familiar with. 
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From the results of chapter 5 it is found that energy commodities, as proxied by the SEI, can 

have equity-like returns, since they can be effectively tracked with stock portfolios selected 

by the investment methodology followed in this thesis. Overall, during the three-year period 

examined, which reflects a period before, during and towards the end of the recent global 

economic recession, an investor would realise positive returns by investing in commodities, 

as the SEI returns suggest. In fact, when following the index-tracking methodology proposed 

in this thesis, the selected equity portfolios can actually get investors very close to their goal 

of replicating spot energy commodities returns, as proxied by the SEI, and as in the case of 

the energy related stock portfolios and those selected from the Bovespa equity pool, to even 

outperform the benchmark index. In most cases there seem to be no major differences 

between the DE and GA selected portfolios, though the GA tends to select portfolios that 

have a lower tracking error. Both algorithms, in most cases, do not utilise the maximum 

number of stocks allowed to select, with the DE being more stable in the number of stocks 

picked between the various cases of the risk-return trade-off; the GA tends to select portfolios 

quite different in terms of their composition. On average, based on the reported results, 

portfolios with 15 stocks and with a risk! return trade-off value of 0.8 is the most desirable 

combination providing the best results for most tracking portfolios. It is also found that when 

rebalancing, the additional information available from the latest price data does make a 

difference on reducing the portfolios' volatility, but the small return deterioration out-weighs 

the volatility benefits resulting in smaller information ratios. However, between monthly and 

quarterly rebalancing, the differences are relatively small, but the information ratios are in all 

cases higher for the monthly rebalanced portfolios, with only one exception for the FTSE 

selected baskets. Thus, it can be concluded that greater capital efficiency can be achieved 

with rebalancing than with the buy-and-hold strategy. 

Considering the above, the main contributions of this thesis are identified as follows. In 

contrast with previous work, this thesis expands the choice of available models and the 

number of energy markets that these models are applied on. Spot prices of the eight most 

traded energy futures contracts on NYMEX and the constructed spot energy index (SEI) are 

used, covering the crude oil and all its by-product fuel markets, the soaring - due to their 

increased environmental importance - natural gas and propane markets, one of the most liquid 

electricity markets, and an index that represents the overall spot energy sector. The research 

outcome of this thesis provides a better understanding of how energy markets behave, what is 

the best modelling approach for each individual spot market and, consequently, the best 
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model for the pricing of the relevant futures and options contracts. Identifying the correct 

dynamics for the energy prices is of great relevance for hedging, forecasting, and policy 

making in the energy markets. A further contribution in the literature is the empirical testing 

of which model can sufficiently capture and describe the dynamics of the two 1-1 crack 

spreads of crude oil with fuel oil and gasoline that trade futures contracts on NYMEX. From 

the perspective of a petroleum refiner who operates between the crude oil and the refined 

products markets, modelling accurately the dynamic behaviour of the two crack spreads and 

their constituents is of utmost importance, since unexpected changes in the prices of the crude 

oil or the refined products can significantly narrow the spread and put refiners at enormous 

risk. 

Furthermore, as far as the energy markets are concerned, there has been a recent increase in 

the relevant empirical literature on testing VaR models and assessing their performance that 

however, is far from finding any consensus about the appropriate VaR model for energy price 

risk forecasting. This thesis attempts to close this gap in the existing literature by proposing a 

set of VaR models appropriate to capture the dynamics of energy prices and subsequently 

quantify energy price risk by calculating VaR and ES measures. The methodologies 

employed include standard VaR approaches like the Risk Metrics, GARCH and many other 

commonly used models, MC simulations, and a hybrid Monte Carlo with Historical 

Simulations introduced for the first time in this paper. Choosing the most suitable VaR model 

for each commodity and for the SEI is of outmost importance for all energy market players, 

traders, hedgers, regulators, and policy-makers as modelling risk is reduced, and thus faulty 

risk management caused by the selected model's inefficiencies is avoided. In addition, in 

contrast to most existing studies on VaR modelling that consider only long positions, this 

paper examines both long and short trading positions, as it is important to know whether the 

models used can capture efficiently the characteristics of both tails of the distributions. 

The accurate calculation of VaR measures in the volatile energy markets, as it is proposed in 

this thesis, is important for all market players and for the development of the fast-growing 

energy derivatives and ETFs markets. A significant contribution of this thesis is that spot 

energy price risk is quantified taking into consideration the occurrence of extreme volatility 

events, and thus at the same time allowing managers to develop efficient hedging strategies to 

protect their investments. Moreover, with the proposed VaR model selection process, the 

modelling risk is minimised, satisfying the strict risk management requirements and control 
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procedures, by reducing the probability of accepting flawed models. In addition, this thesis 

contributes to the existing literature by quantifying the risk profile of the energy markets, as 

expressed by the individual spot price series and the SEI, a process vital for many hedge fund 

managers and alternative investors that recently have been following closely and started 

expanding their presence in the energy markets. Furthermore, the proposed VaR estimates 

can be used for setting the margin requirements in the growing energy derivatives market, 

and more importantly for the energy forwards, futures, and options that are widely used for 

both hedging and speculation purposes by many industrial players, commodity and 

investment houses. 

In addition, the question whether returns of equity portfolios can be used to replicate the 

performance of physical energy price returns, aggregated in a portfolio and proxied by a spot 

index, to the best of our knowledge, has received no attention in the literature. Hence, the 

contribution of this thesis to the literature is that the index tracking problem in the energy 

commodities market is addressed and both the DE and GA are applied. What is more, 

investors are provided with the opportunity to invest in the energy spot markets by choosing 

stocks from a specific domestic equity market which could appeal more to their investing 

criteria! preferences. Furthermore, given the importance of equities in a multi-asset class 

portfolio, by choosing those stocks that can track the SEI the selected equity portfolios are 

indirectly insulated from inflation; a key consideration amongst investors and fund managers 

in an uncertain economic environment. Moreover, this thesis contributes to the existing 

literature by providing for the first time a broad energy index, incorporating in its calculation 

electricity market prices, thus reflecting the full spectrum of energy commodities and their 

by-products besides the commonly used crude oil and its refined fuels. Hence, this thesis 

sheds more light on the relatively unexplored area of index investing in the energy markets, 

by investigating three different investment strategies during the three year out-of-sample 

period, buy-and-hold, quarterly, and monthly rebalancing; accounting for transaction costs 

where necessary. Thus, with an index tracking methodology that uses baskets of stocks, able 

to closely follow a spot energy index, investors can achieve greater protection and higher 

returns especially during a market downturn. 

Although the SEI represents the economic importance of the energy group of commodities to 

the global economy, it primarily serves as a performance benchmark given the limited ability 

for a direct investment. However, the proposed approach provides investors with an option to 
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track that performance of the constructed spot energy index using a basket of equities that are 

liquid and fully investable. This allows investors to get closer to the underlying commodity 

market price trends, something they cannot achieve using a futures price index. Historically, 

futures index returns have lagged price index returns, with this decoupling of performance 

being a constant frustration for index investors. Moreover, by tracking the performance of the 

energy sector with stocks selected by two innovative evolutionary algorithms, promotes a 

cost effective implementation and true investability. While most mutual funds cannot invest 

in commodities directly, they can track the performance of the SEI by investing in the stocks 

selected by the evolutionary algorithms used in this thesis. Thus, the proposed methodology 

suggests an effective, and at the same time, least expensive way to operate such a fund, 

giving the full flexibility of any investment style, long or short, that equities can provide. This 

thesis demonstrates that by following the proposed investment strategy of tracking and trying 

to "beat" the constructed spot energy index, investors can gain superior results with reduced 

volatility and improved returns. Finally, the proposed investment strategy adds depth to the 

capacity of investors' portfolios by giving the flexibility of investing in global securities 

markets, and at the same time, extends their portfolios' span by including natural resources 

and tactical strategies that are not available via the futures markets/ indexes. 

1.4. Thesis structure 

The remainder of this thesis is organised as follows. Chapter 2 gives an overview of the 

recent trends and regulation of the global energy markets. It gives a brief explanation on the 

NYMEX exchange and its traded energy futures products, while at the same time sets out to 

organise and review the existing body of literature on the various modelling and pricing 

approaches for the energy markets. In addition, the case of the recently booming energy 

indexes is discussed, and the construction of the proposed geometric average spot energy 

index is described. 

Chapter 3 investigates the behaviour of the eight spot energy prices that trade futures 

contracts on NYMEX, and the proposed spot energy index. The relative goodness of fit of the 

different modelling variations proposed is compared using Monte Carlo simulations. Chapter 

4 proposes a set of VaR models appropriate to capture the dynamics of the energy prices and 

subsequently quantify energy price risk by calculating VaR and ES measures. All VaR 

models are empirically tested on the eight spot energy commodities and the spot energy 
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index, applying a two-stage evaluation and selection process on both long and short trading 

positions. Chapter 5 addresses the index tracking problem and its investment strategy 

applications for the energy markets, using two innovative evolutionary algorithms. It presents 

an investment methodology of reproducing the performance of the proposed spot energy 

index by investing only in a subset of stocks from the Dow Jones composite average, the 

FTSE 100 and Bovespa composite indexes, and in two pools including only stocks of the 

energy sector from the US and the UK respectively. 

Finally, Chapter 6 concludes this thesis. In particular, it summarises the main contributions 

and discusses the findings along with their application in the energy commodities markets. In 

addition, it considers the limitations of this thesis along with ideas for potential future 

research. 
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Chapter 2. 

2. Energy markets 

In this chapter the most recent developments in the energy markets are discussed. The 

opening of the energy markets in the developed world, as a result of the recent deregulation, 

and the complexity of the energy specific contracts, is discussed. In addition, the major 

energy related commodity exchanges in the world are mentioned, with emphasis given to the 

available products and the way the NYMEX operates, which is the dominant commodity 

exchange worldwide. Next, the various modelling approaches are examined, touching upon 

issues of pricing and hedging with futures contracts, their price discovery properties, and the 

fundamental concepts of backwardation and contango; all necessary for understanding the 

major features of the energy markets and their behaviour. Finally, the evolution of the 

commodity indexes as a benchmarking tool and for describing the market trends is discussed. 

The focus is mostly on the major energy indexes in existence and their recent applications on 

investment strategies, such as the creation of Exchange Traded Funds and a number of other 

similar investment vehicles. 

43 



2.1. Introductory market overview and deregulation 

Deregulation of the oil and natural gas markets in the US and Canada in the 80's, and in the 

early 90's of the power industry in the Scandinavian countries, the UK, Australia, and North 

America, has resulted in increased liquidity, efficiency, and transparency. We need to bear in 

mind though that the extent of deregulation varied with commodities and locations, as well as 

the degree of interaction among the components of the value chain that was handled through 

markets or public utilities. Choosing a side in the debate about competitive markets versus 

regulation, we believe that the advantages of competition due to the deregulation of the 

energy markets are beyond doubt and outweigh any disadvantages. 

However, the increased competition has led to more volatility in energy prices, exposing the 

market participants to greater risks. These developments increased the need for risk 

management in the energy industry, and boosted the use of derivatives as means to control 

the exposure to volatile energy prices. Although traded derivatives are fairly new in the 

energy markets, structures and contracts with derivative characteristics have existed well 

before the introduction of the standardized contracts in Exchanges. 

Energy markets are unique in a number of ways, with issues of storage, transport, weather, 

seasonality, politics, and technological advances playing a major role. In the 1970s, seven 

major oil companies (known as the "7 Sisters") owned 50% of the world's known reserves at 

the time, and produced two-thirds of its crude and products. Today, they own less than 10% 

and produce less than one-third of the products. Moreover, while OPEC used to be the major 

price-setter of oil, nowadays the marketplace is taking the lead with OPEC's role being 

somewhat less important. The members of OPEC include Saudi Arabia, Iran, Kuwait, the 

UAE, Venezuela, Indonesia, Nigeria, Algeria, Libya, Gabon, and Qatar. In addition, as 

mentioned previously, weather is a major factor for the energy markets. A profound example 

is the cold winter of 1989-1990 in the US, where heating oil was trading at 57 c per gallon in 

November of 1989, and it hit $1.10 in January 1990. Moreover, according to Kleinman 

(2005), heating oil and gasoline have some unique seasonal tendencies, with 80% of the time 

making a bottom in March and then rising into May. In addition, the American Petroleum 

Institute (API) and the Department of Energy (DOE) by releasing weekly reports with supply 

and demand figures for the major energy products like crude, natural gas, gasoline, and 

heating oil, they can even move the electronic overnight market prior to next day's open. 

44 



Finally, international politics play a crucial role in energy markets, since oil is a strategic 

commodity and an economic necessity. The Arab Oil Embargo, the Iran-Iraq War, the two 

Gulf Wars, the Russian invasion in Georgia, the recent unrest in the majority of the Arab 

World, with civil wars erupting in Egypt, Libya and Syria among others, are just a few of the 

examples that show how politics can dramatically affect oil and other energy commodity 

prices. 

What's more on energy, some of the energy derivatives contracts can be more complicated 

than those found in the financial markets, like the swing, recall, or nominational contracts. In 

addition, some of the energy derivatives are far more complex than anything else found in 

other markets, as for example the structures used to value energy assets like power plants and 

gas storage. This complexity frustrates practitioners' ability to create simple quantitative 

models able to capture all the essential characteristics of the market. Even the standard 

contracts like forwards, futures, swaps, and options are defined and settled differently due to 

their physical nature, as for example the non-storability of electricity. In addition, energy 

prices are driven both by the short-term conditions of storage (and non-storability in the case 

of electricity) and by the long-term conditions of future potential energy supply, a condition 

reflected on the energy forward prices. 

The unique characteristics and underlying price drivers of the energy markets that make them 

so different from the money markets can be summarized in the following table: 

Table 2-1: What Makes Energies Different? 
Issue 

Maturity of market 

Fundamental price drivers 

Impact of economic cycles 

Frequency of events 
Impact of storage and delivery; the 
convenience yield 
Correlation between short- and long-term 
pricing 

Seasonality 

Regulation 
Market activity ("liquidity") 

Money Markets 
Several decades 

Few, simple 

High 

Low 

None 

High 
None 

Little 

High 

Energy Markets 
Relatively new 

Many, complex 

Low 

High 

Significant 

Low, "split personality" 
Key to natural gas and electricity 

Varies from little to very high 

Low 

Market centralization Centralized Decentralized 
Majority of contracts are Majority of contracts are relatively 

Com..£lexity of derivative contracts relatively simple com~lex 

Source: "Energy Risk: Valuing and Managing Energy Derivatives", Pilipovic, D. (1998) 
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Being a relatively young competitive market, energy suffers from lack of historical spot and 

forward price information that could help establish a universal agreement of the fundamental 

price drivers and/ or the quantitative pricing methodologies. Adding to that, some of the 

energy contracts experience relatively small volumes of present-day market activity (referred 

to as "illiquidity"), which distorts the process of "price discovery" in the futures markets. 

Moreover, energy markets are highly decentralized introducing geographic "basis risk", in 

contrast to the financial markets that are centralized in terms of location, capital and 

expertise. Energy producers and end users are spread all over the world, and while many of 

them may actively use the NYMEX futures contracts to hedge their risks, these contracts 

represent prices at specific delivery points which might behave differently from the local 

markets being hedged. 

Furthermore, the evolution processes of energy prices reveal some unusual characteristics 

like the extreme volatility. For example, the volatility of natural gas and electricity prices is 

in the 50%-100% and 100%-500% range, respectively, while the volatility of exchange rates 

and the S&P500 index is in the 10%-20% and 25%-35% range, respectively. In addition to 

high volatility, energy prices exhibit some interesting properties like mean reversion, 

seasonality, spikes, regime switching, stochastic volatility, and volatility smiles, which make 

the processes describing the price evolution unique. In addition, energy derivatives usually 

involve spreads and thus it is important to take the correlation of the joint distributions into 

account, in order to capture all the structural characteristics of the price processes. 

The energy markets are a collection of commodities that are quite different in nature and 

according to Eydeland and Wolyniec (2003) can be sorted in the following three groups: 

1. Fuels: oil, gas, coal, and their derivatives and by-products. 

2. Electricity 

3. Weather, emissions, and forced outage insurance 

As mentioned previously, the fuel markets were the first ones to open for competition in the 

80's, followed by electricity in the early and mid 90's, with the late 90's introducing the 

trading of new types of commodities like weather and emissions. The main focus of this 

research will be on the fuels; oil, gas and their by-products. We are going to touch upon 

electricity; however a very deep examination of the electricity markets as well as of the third 
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group of energies (weather, emissions etc.) is out of the scope of this research. We will leave 

the later energy group for future research. 

2.2. NYMEX energy products 

Significant changes in supply, demand, and pricing have touched many of the world's energy 

markets the past few decades. Changing economic patterns, globalization, international 

politics, war, and structural changes within the world's energy industry have created 

significant uncertainty in the energy market, which leads to increased market volatility and 

the need for effective ways to hedge the risk of adverse price exposure. There are three major 

energy exchanges; the Intercontinental Exchange (ICE) (former International Petroleum 

Exchange) of London which trades actively Brent Crude Oil and refined products, natural 

gas, power and emissions, the Tokyo Commodity Exchange (TOCOM) which actively trades 

crude oil, gasoline and kerosene contracts, and lastly the predominant exchange, the New 

York Mercantile Exchange, Inc. (NYMEX). Nowadays, the most commonly used risk 

management instruments in the energy markets are the futures and options contracts listed on 

theNYMEX. 

NYMEX was founded in 1872 by a group of dairy merchants. The company's two principal 

divisions are the NYMEX and the Commodity Exchange (COMEX), once separately owned 

exchanges. Today, NYMEX is owned by the CME Group that also owns the Chicago 

Mercantile Exchange and the Chicago Board of Trade. NYMEX is the world's preeminent 

trading forum for managing price risk in the markets of energy, precious metals, and North 

American copper. The first successful energy futures market was established at NYMEX in 

1978 with the launch of the heating oil futures contract. For the last several years, NYMEX 

has been receiving an AA+ long-term counterparty credit rating from Standard & Poor's. 

Energy contracts mostly trade on the NYMEX and include physically delivered futures and 

options contracts for light sweet crude oil, gasoline, heating oil, and natural gas; propane 

futures; options contracts on the price differentials, or crack spreads, for gasoline/ crude oil, 

and heating oil/ crude oil; and the differentials between contract months, or calendar spreads 

for crude oil, gasoline, heating oil, and natural gas. The light, sweet crude oil contract, 

launched in 1983, is the most actively traded futures contract based on a physical commodity 

in the world. 

47 



The energy markets are available for trading for 23 Y4 hours a day from Sunday evenings 

through Friday afternoons. The physically delivered futures contracts are traded by open 

outcry and through the CME Globex electronic trading system, which is conducted through a 

technology services agreement with the Chicago Mercantile Exchange (CME). NYMEX also 

lists financially settled energy contracts on CME Globex. These include full-sized and 

fractional futures for NYMEX crude oil, heating oil, gasoline, and natural gas. In addition, 

NYMEX lists on the NYMEX ClearPort electronic platform from Sunday evenings to Friday 

afternoons a slate of approximately 300 energy and related contracts that replicate popular 

over-the-counter (OTC) transactions which can be traded or transacted off of the Exchange 

and submitted for clearing. These include refined products in the United States, Europe, and 

Asia; crude oil; natural gas; electricity; coal; emissions credits; and freight rates for 

petroleum shipments on principal world tanker routes. 

One important metric to consider for understanding the importance of NYMEX and the 

recent growth in its oil futures' contracts trading is the total open interest; the total number of 

both long and short positions that are open at any given point in time. Total open interest for 

the oil futures alone has risen from 350,000 contracts in mid-1998 to 1,280,000 in mid-2008. 

Considering that one futures contract represents 1,000 barrels of oil, this represents a rise 

from 350 million barrels to 1.28 billion barrels within a decade. The only other major 

exchange for energy futures is the Intercontinental Exchange (ICE) that trades a highly liquid 

futures contract on Brent crude, and a contract pegged off the NYMEX's futures contract on 

WTI, both having a combined open interest of about 15% of the NYMEX open interest. 

Other exchanges around the globe also trade oil futures contracts based on different types and 

qualities of crude, but their total open interest would only be a small fraction of that from the 

NYMEX and the ICE. 

2.3. Modelling approaches 

2.3.1. Hedging with futures and price discovery 
In the US, futures contracts have been used for more than a century in order to manage price 

risk. Hedging with futures eliminates the risk of fluctuating prices, however it also limits the 

opportunity for future profits should prices move favourably. Generally, hedging reduces 

exposure to price risk by shifting that risk to those with opposite risk profiles or to investors 

who are willing to accept the risk in exchange for a profit opportunity. In addition, it allows a 
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market participant to lock in prices and margins in advance, reducing the potential for 

unanticipated losses. A perfect hedge is one that completely eliminates the market 

participant's risk. Nonetheless, because the cash and futures markets do not have a perfect 

relationship, in the real world there is no such thing as a perfect hedge, so there will always 

be some profit or loss. However, managing a hedge strategy should be an ongoing process. 

While hedges serve to stabilize prices, risk management targets should be re-evaluated in 

future periods as market and financial circumstances change. 

When an individual or a company chooses to use futures markets to hedge a risk, the 

objective is usually to take a position that neutralizes the risk as far as possible. This can be 

achieved by using one of the two different types of hedge or a combination of them. The first 

type is the short hedge, which involves a short position in futures contracts and is more 

appropriate when the hedger already owns an asset and expects to sell it at some time in the 

future, or when the asset is not owned right now but will be owned at some point in the 

future. The other one is the long hedge, which involves taking a long position in a futures 

contract and it is more appropriate when the hedger knows that he will have to purchase a 

certain asset in the future and wants to lock in a price now. Moreover, long hedges can be 

used to manage an existing short position. 

Two basic hedging strategies can be identified. The first one is known as the "offsetting 

hedge", where the main idea is to maintain a balanced book continuously; each physical deal 

must be balanced by an opposite futures transaction in order to offset the price risk. The 

second is to use hedges to lock-in an attractive price level and thus securitize certain profits 

on anticipated business. By locking-in a good price, speculation is being removed from the 

transaction, either by fixing the sales price at a level higher than known costs in the case of 

the seller, or by fixing the purchasing price at a lower level than costs in the case of the 

buyer. 

As mentioned earlier, it is important to look at the bigger picture when hedging, because 

when using for example futures contracts it can result in a decrease or an increase in the 

hedger's profits relative to the position he would be in without hedging. A company that does 

hedge can expect its profit margins to be roughly constant when operating in an industry that 

competitive pressures make the prices of output goods, and services reflect the input costs. 

On the other hand, in such an environment, a company that does not hedge can expect its 
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profit margins to fluctuate. Thus, one should take into account all the implications of price 

changes on a company's profitability when designing its hedging strategy in order to caution 

against price changes. 

Moreover, an important concept in hedging is basis risk. The basis (b) is the difference 

between the spot price (S) of an asset and its futures price (F) [b = S - F]. The choice of the 

futures contract to be used is a key factor affecting basis risk, since in general, basis risk 

increases as the time difference between the hedge expiration and the delivery month 

increases. Overall, basis risk is created mostly due to the following reasons: 

a. the asset whose price is to be hedged may not have exactly the same specifications as 

the asset underlying the futures contract 

b. the hedger may be uncertain as to the exact date when the asset will be bought or sold 

c. the hedge may require the futures contract to be closed out before its delivery month 

Another important notion in hedging is the hedge ratio, which is the size of the position taken 

in futures contracts to the size of the exposure. In most cases, and especially when a cross 

hedging is used, a hedging that occurs when the two assets share some different 

characteristics, which is usually the norm, a hedge ratio of 1.0 is not always optimal. The 

optimal hedge ratio should be the minimum variance hedge ratio, which is the slope of the 

best-fit line obtained when changes in the spot price are regressed against changes in the 

futures price: 

(2.1) 

Where H is the minimum variance hedge ratio, (Js is the standard deviation in the change in 

the spot price, (J f is the standard deviation in the change in the futures price, and p is the 

coefficient of correlation between the change in the spot price and the change in the futures 

price. Furthermore, in the case where there are no liquid futures contracts that mature later 

than the expiration of the hedge, a strategy known as "rolling" the hedge forward is 

appropriate. It involves entering into a sequence of futures contracts and when the first 

futures contract is near expiration, it is closed out and the hedger enters into a second contract 
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with a later delivery month, and so on. This strategy results in the creation of a long-dated 

futures contract by trading a series of short-dated contracts. 

In the case of the crack spreads, whether a hedger is selling or buying the crack, it reflects 

what is done on the product side of the spread. Purchasing a crack spread is the opposite of 

the crack spread hedge. It requires a short hedge in crude oil and long hedges in products. 

Refiners are naturally long the crack spread as they buy crude and sell products, however, 

sometimes they buy products and sell crude, thus finding it useful to purchase a crack spread. 

Such a case might occur when a refiner is forced to shut down due to repairing or any other 

reason, and thus is unable to produce enough products to meet tenn supply obligations. In 

such a case the refiner must buy products at spot prices for resale to his tenn customers in 

order to honour existing supply contracts. 

Furthermore, lacking adequate storage space for incoming supplies of crude oil, the refiner 

must sell the excess on the spot market in order to honour existing purchase contracts. In the 

event that the refiner is forced to make unplanned entries into the spot market, and his supply 

and sales commitments are substantial, unfavourable market movements could eventually 

take him out of business. So, in order to protect himself from increasing product prices and 

decreasing crude oil prices, the refiner could use a short hedge against crude oil and a long 

hedge against products. 

2.3.2. Futures pricing theory 

In tenns of the methodologies used for pricing commodity derivatives contracts, the arbitrage 

pricing approach is the most commonly used one, especially when pricing a futures contract. 

Whenever it is possible to construct a dynamically adapted portfolio that will perfectly 

replicate the payoff of the derivative contract, the absence of arbitrage forces the derivative 

price to be equal to the price of the replicating portfolio. In the case where it is always 

possible to build a dynamically adapted portfolio that will perfectly replicate any payoff, the 

market is said to be complete. In a complete market there will only be a single non-arbitrage 

price for any contingent claim, and a unique probability measure called the risk-neutral 

probability measure. This risk-neutral probability measure will be equivalent to the physical 

probability measure, under which the non-arbitrage price of any contingent claim is equal to 

the expectation of its payoff discounted at the risk-free rate. 
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However, this approach is not as straight-forward in its application when it comes to pricing 

energy derivatives. Difficulties with storage may prevent us from using the non-arbitrage 

arguments for derivatives pricing because one cannot create a replicating trading strategy 

involving the spot price, and thus there may not exist a unique risk-neutral equivalent 

probability measure. The following sections will describe the various theories underpinning 

the pricing of commodities futures, which can further be applied to pricing energy 

derivatives. 

2.3.2.1 Commodity futures pricing 

The pricing theory of futures for financial assets such as bonds and stocks is different than 

that of commodities. This section will describe the various theories underpinning the pricing 

of the commodities futures in the Energy market. The main difference with the pricing of 

financial futures contracts is that they rely on pure arbitrage arguments, whereas commodities 

are more complicated due to the fact that storage is costly and that spot markets may not exist 

or there are too thin for any arbitrage opportunities. In addition, futures contracts on 

commodities can be considered as investment assets, like gold and silver, and as consumption 

assets, like the energy commodities. 

However, to be able to price any of the energy futures the following key assumptions need to 

be made, which according to Hull (1999) need to hold for at least some key market 

participants like the major investment banks: 

1) There are no transaction costs. 

2) All net trading profits are subject to the same tax rate. 

3) Market participants can borrow and lend money at the same risk-free rate of interest. 

4) Market participants take advantage of arbitrage opportunities as they occur. 

Arbitrage opportunities disappear as soon as they occur gIVen the fourth assumption. 

Therefore market prices are such as there are non-arbitrage opportunities. The first three 

assumptions are obviously not perfectly valid for commodities; however the degree of 

validity in each market is almost the same. Nevertheless, adjustments can be made to bring 

the model in line with "the real world". The main requirement is for the arbitrage assumption 

to hold. At the same time volatility is extremely high in the energy markets, which makes it 
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difficult to forecast future prices. The major Pricing theories for commodity futures are the 

following: 

2.3.2.2 Theory of storage 

Inventories play a crucial role in the price formation in markets for storable commodities, 

which are also referred to as "cash and carry markets". The possibilities of storage imply that 

excess supplies can be carried over to future periods, and another perspective on the seasonal 

patterns inherent in the energy futures prices can be gained by applying the basic ideas from 

the theory of storage by Kaldor (1939), Working (1948, 1949), Brennan (1958), and Tesler 

(1958). The theory of storage explains the difference between current spot prices and futures 

prices in terms of interest foregone in storing a commodity, warehousing costs and a 

convenience yield on inventory. The relationship between futures and spot prices, in the 

context of the physical storage cost and the interest paid to finance the commodity less the 

income earned on the commodity, is known as the "cost of carry" relationship. 

The convenience yield on a commodity can be defined as the flow of benefits which accrues 

to the owner of physical inventory but not to the owner of a contract for future delivery 

(Brennan, 1991). These benefits may include the ability to profit from temporary local 

shortages or the ability to keep a production process running. Moreover, spot prices are 

primarily driven by the fundamentals of the short-term market factors; however they still get 

influenced by the longer-term expectations of the equilibrium price levels. That is why we 

use the convenience yield (y) to explain the differences between short- and long-term price 

behaviour in the commodities markets. An example can be the fact that users are willing to 

pay a premium for near-term delivery in response to any supply shortages, especially in the 

energy markets. So in other words, the convenience yield is a measure of the balance between 

the available supply and the existing demand for the commodity. 

The convenience yield represents the net value for holding the commodity, excluding any 

financing costs, and it can be positive when the benefit of having the commodity on hand is 

greater than the cost, or negative otherwise. It can also be regarded as comparable to the 

dividend obtained from holding a company's stock which can be expressed as follows: 

(2.2) 
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Where, y is the convenience yield, St is the spot price, Lt the equilibrium price, and k a 

constant. Kaldor (1939) and Working (1948, 1949) both expected the convenience yield to 

depend inversely on the stocks of inventory of the commodity, a negative relationship known 

as the Kaldor-Working hypothesis (see Brennan, 1991). In addition, Dincerler et al. (2005), 

illustrate that there is a non-monotonic relationship between withdrawals from inventories 

and convenience yields for crude oil and natural gas. They show that increased demand 

elevates convenience yields until a threshold is reached, at which point stocks are withdrawn 

from inventory. On the other hand, if there is abundance of stocks and they eventually cross a 

critical level, again stocks will be withdrawn to discharge their storage costs. 

Assuming that the convenience yield of the commodity can be written as a function of the 

output price alone and that the interest rate is non-stochastic, then there can be a deterministic 

relation between the spot and futures price of the commodity. According to the theory of 

storage (or stockpiling), which again is based on traditional arbitrage pricing, the futures 

price ~,T of a contract expiring at period T observed at time t is given by: 

F = S (r+u-y)(T-t) 
t te (2.3) 

Where the current spot price St is being compounded by the interest rate r, the convenience 

yield y, and the storage cost as a proportion u of the spot price, for the period until expiration 

of the contract(T-t). The above formula was introduced by Brennan and Schwartz (1985) 

in their pioneering research for the valuation of commodity derivatives. The convenience 

yield measures the extent to which the spot price compounded with the interest rate plus the 

cost of storing the commodity exceeds the futures price. It mainly holds for consumption 

assets and not for investment assets, because the owner is more reluctant to sell the 

commodity and buy futures contracts which cannot be consumed. Hence it could be argued 

that the convenience yield reflects the market's expectations concerning the future 

availability of the commodity. The greater the possibility of shortages will occur during the 

life of the futures contract, the higher the convenience yield. 
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Moreover, according to Brennan and Schwartz (1985) the convenience yield will depend on 

the identity of the individual holding the inventory and on equilibrium inventories held by 

individuals for whom the marginal convenience yield net of any physical storage costs is 

highest. However, direct empirical evidence on the theory of storage has been limited due to 

the scarcity of reliable storage data. Fama and French (1987 & 1988) and Casassus and 

Collin-Dufresne (2005) study indirectly the theory of storage by testing its implications, 

without using inventory data. Only Brennan (1991), shows direct evidence in his study of a 

declining marginal convenience yield on inventory, which is however limited to agricultural 

commodities and does not explain explicitly how much of the variation in the convenience 

yield can be attributed to inventories. 

2.3.2.3CAPM and the theory of risk premium 

The Capital Asset Pricing Model (CAPM) is a set of predictions regarding equilibrium 

expected returns on risky assets, and was developed by Sharpe (1964), Lintner (1965), and 

Mossin (1966), in their subsequent articles. The CAPM is based on some simplifying 

assumptions that according to Bodie et al. (2005) can be summarized in the following list: 

1. There are many wealthy investors holding endowments that are relatively small 

compared to the total endowments (perfect competition assumption). 

2. All investors plan for one identical holding period (myopic behaviour). 

3. Investments are limited only to publicly-traded financial assets, and to risk-free 

borrowing and lending arrangements. 

4. Investors pay no taxes on returns and no transaction costs. 

5. All investors are rational mean-variance optimizers. 

6. All investors share the same economic view of the world and analyze securities in the 

same way (homogeneous expectations assumption). 

According to the CAPM, the higher the risk an investor bears for an investment, the higher 

the required return. Moreover the CAPM assumes that there are two types of risk in the 

economy: systematic and non-systematic. Non-systematic or specific is the risk that is 

common to a class of assets and hence can be eliminated in a well-diversified portfolio. 

Systematic Risk on the other hand, is the risk that cannot be diversified away and arises from 

the correlation of that asset's returns and the returns of the market as a whole. That is why 

stocks have a tendency to move together leaving investors exposed to some residual risk 
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although they might hold a diversified portfolio of stocks. Hence, an investor will demand a 

higher expected return than the risk-free rate, in order to bear the additional systematic risk. 

The CAPM implies that as individuals attempt to optimize their personal portfolios, they each 

arrive at the same portfolio, with weights on each asset equal to those of the market portfolio. 

Therefore according to the CAPM theory the expected return on the asset is the risk-free rate 

plus an expected premium for bearing that extra risk, which can be presented in a one-period 

scenario by the following formula: 

E(Rj ): Expected Return on the ith asset 

E(Rm): Expected Return on the market 

R
f

: Risk-free rate of return 

Cov(RpRm): The covariance of the returns of the ith asset and the market 

a 2 (Rm): Variance of market returns 

pj : Systematic Risk of the ith asset 

Moreover, the equation for the one-period expected return on an asset is: 

SjQ : The price of the ith asset now 

E(SjT): The expected price of the ith asset at time T 

Therefore, solving equations (2.4) and (2.5) for the price of the asset, we get: 

(2.4) 

(2.5) 

(2.6) 
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The above equation provides us with a fonnula for the futures price, which allows an investor 

to buy an asset now but defer the payment for one-period. Hence, the current price of a future 

0T will be the spot price of the asset multiplied by its future value factor: 

(2.7) 

The CAPM theory leads to an alternative way of estimating the futures pnces on 

commodities than the classical theory of storage. More specifically a scenario in continuous 

time can give the fair price of a futures contract. Consider a speculator who takes a long 

futures position in the hope that the price of the asset will be above the futures price at 

maturity. In addition, let's assume that the speculator puts an amount equivalent to the 

present value of the futures contract into a risk-free investment at time t while simultaneously 

takes a long futures position. The proceeds of the risk-free investment are used to buy the 

asset on the delivery date, at time T. The asset is then immediately sold for its current market 

price. This means that the cash flows to the speculator for time t and Tare _Fe-r(T-f) and ST 

respectively, whereST is the price of the commodity at time T. Hence, the present value of 

the investment at time tis: 

PV = -F -r(T-f) + E(S ) -k(T-t) 
f te T e (2.8) 

That is to say that the present value of the investment at time t, is the present value of the 

money that will be given to settle the futures position at T, plus the expected price of the 

commodity at time T, discounted by an appropriate rate k for the investment. That means 

that k represents the expected return required by the speculator on the investment. Assuming 

that all investment opportunities have a net present value of zero (otherwise arbitrage 

opportunities arise), the fair price of the futures in the risk neutral world is: 

F = E(ST )e(r-k)(T-t) = E(ST )e-P(T-t) (2.9) 

The value of k depends on the systematic risk of the investment that was discussed in the 

CAPM setting and hence the tenn p represents the risk premium. One way of explaining the 
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risk premium would be to look at the conditions within the specific commodity market. An 

increased demand from risk adverse producers to hedge their products in the futures market 

would probably result in futures prices being lower that the expected future spot price, hence 

p > O. The opposite relation will occur when the demand side is the most risk averse. A 

second way of explaining the risk premium is to consider the futures contract as a financial 

asset and compare it to other assets in the stock market. Hence, if the return on the futures 

contract is positively correlated to the level of the stock market, holding the contract involves 

positive systematic risk and an expected return above the risk-free rate is required leading to 

p > O. This price theory can also be applied in markets where the commodity is perishable. 

Based on all the above let's note what the major pros and cons of the theory of storage and 

the CAPM are. The non-arbitrage argument underlying the theory of storage cannot be 

applied to non-storable commodities, as there is no possibility of obtaining a risk-free 

position by buying the commodity in the spot market and selling it in the futures market. 

Thus, the market is said to be incomplete, as the number of assets traded is not equal to the 

sources of risk, hence no risk-neutral strategies are identified. Furthermore, the CAPM 

approach argues that systematic risk should be important in the pricing of futures contracts, 

but leaves out storage costs and convenience yields. On the other hand, the theory of storage 

ignores the possibility that systematic risk may affect the equilibrium prices of commodity 

futures contracts. 

2.3.2.4Expectations hypothesis, backwardation, and contango 
There are three traditional theories that explain the relationship between the futures price and 

the expected value of the spot price of a commodity at a future date; expectations hypothesis, 

normal backwardation, and contango. The expectations hypothesis states that the expected 

profit to either position of a futures contract would be equal to zero. This means that the 

futures price equals the expected value of the future spot price of the commodity: 

F= E(ST) (2.10) 

The aforementioned hypothesis relies on risk neutrality, which argues that all market 

participants should agree on a futures price that provides an expected profit of zero to all 

parties. In a risk-neutral world, investors require no compensation for risk, and the expected 

return on all assets is the risk-free rate. This hypothesis can bear a resemblance to market 
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equilibrium in a world with no uncertainty, but it ignores any risk premiums that must be 

built into the futures prices when the future spot prices are uncertain. 

On the other hand, if storage costs and convenience yields are very low or alternatively when 

there is a positive risk premium (p > 0) , then for some commodities one can predict that prior 

to delivery the futures price is below the expected future spot price: 

(2.11) 

This relationship is called normal backwardation and was proposed by Keynes (1930). The 

origin of the idea is that producers (e.g. farmers) normally wish to hedge their risk by 

shorting the commodity, and consumers on the other hand go long on the futures markets. So 

if the producers were under stronger hedging pressure, they would dominate the market and 

would be net short. In addition, since there are risks associated with being long, Keynes 

hypothesized that hedgers would have to entice the speculators by making the expected return 

from a long position greater than the risk-free interest rate. The futures price will rise (on 

average) through time until, at delivery, the futures price equals the spot price. This argument 

indicates that futures would be downward biased predictors of the corresponding future spot 

prices. Hicks (1946) later maintained a similar point of view. Yet, although this theory 

recognizes the importance of risk premiums in futures markets, it is based on total variability 

rather than on systematic risk. This comes at no surprise since Keynes developed this theory 

almost 40 years before the modem portfolio theory was developed, which refines the measure 

of risk used for the risk premiums. 

Subsequent development of this topic in the literature explained that hedgers would also 

prefer long positions to reduce their risk under certain circumstances (Cootner, 1960). If 

hedgers need to go long, or if the convenience yield (or the risk premium) is negative owing 

to oversupply, then the hedgers must pay a premium for futures contracts in order to induce 

speculators to go short. This requires the futures price to be greater than the expected spot 

price (Copeland and Weston, 1992): 

(2.12) 
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In the latter case, futures would over-predict the future spot prices and this bias would be the 

risk premium that speculators would require to provide "insurance" to the commodity traders. 

Thus, a speculator who sold short a futures contract at a price F, would expect to be able to 

buy it back on (or near) the delivery date at a lower price, E(ST). This relationship has been 

referred to as normal contango. So, based on the risk premium theory, backwardation or 

contango could occur depending on whether speculators were "net long" or "net short", a 

situation that could be attributed to seasonal phenomena (0' Brien and Schwarz, 1982). In the 

same lines, according to Anderson and Danthine (1983), normal backwardation and contango 

can arise as a result of the inequality between long and short hedging positions, a situation 

that requires the existence of speculators to restore equilibrium. That is the main concept 

behind the idea that futures contracts provide insurance to hedgers by ensuring the transfer of 

price risk to speculators. Normally, the amount that net hedgers are willing to pay as 

insurance would be equal to the premium earned by the speculators for bearing the risk. 

Figure 2-1 shows the expected price development for a futures contract under the normal 

backwardation and the normal contango hypothesis, with the price declining with maturity 

for the former, and rising with maturity for the latter. 

Figure 2-1: Illustration of Normal Contango and Backwardation situations. 
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Source: Options, Futures and other Derivatives, Hull (1999). 
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Brennan and Schwartz (1985) as well as Gibson and Schwartz (1990) argue that 

backwardation is equal to the present value of the marginal convenience yield of the 

commodity inventory. In addition, Litzenberger and Rabinowitz (1995) have presented 

evidence for the case of crude oil, that slowly increasing, and sufficiently fast decreasing 

extraction costs, can support weak and strong backwardation, respectively. They also find 
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that production at full capacity may explain backwardation as well. On the other hand, they 

find that when the price of oil is low and marginal producers are losing money, in order for 

them to maintain the option to produce in the future, the oil market could be in contango. 

2.3.2.5 Which theory is more appropriate for energy? 
Energy products have some unique characteristics that make them different than most 

commodities. For example, electricity is "non-storable", at least not in sizeable amounts in 

the case of hydro storage, and in the case of indirectly storing the raw materials for producing 

electricity (e.g. coal, oil, natural gas etc.) this approach is uneconomical due to the high 

storage costs and the technological complexity of storing some of them (e.g. natural gas). In 

addition, electricity has some unique physical requirements in order to achieve the 

instantaneous equilibrium between local demand and supply. Similar arguments apply also 

for natural gas which is currently very expensive and technologically difficult to store in large 

amounts. Hence the arbitrage across time and space, based on the storage theory and 

transportation, is limited for some of the energy products, if not completely eliminated for a 

few of them. 

After studying all the features of the various energy markets and the major research done in 

the field, it can be concluded that energy can be characterized more like a price discovery 

market, which turns in favour for the theory of risk premium. A risk premium could arise if 

either the number of participants on the supply side differs substantially by the number on the 

demand side, or if the degree of risk aversion varies considerably between the two sides. 

2.4. Commodity indexes: the case of energy 

2.4.1. The evolution of indexes 

Most market investors, and even index investors themselves, prefer to use index data to 

predict or speculate on the next market move, as the purpose of indexes since their inception 

was to track and analyse the respective market or sector. Indexes initially have been used as a 

marketing tool from publishing houses in their effort to attract more readers. One of the first 

stock indexes, the Dow Jones Industrial Average, that traces its origin back to the end of the 

19th century, was marketed and published by the Wall Street Journal. The S&P 500 started 

back in 1926 as a 90-stock index, by The Standard Statistics Bureau, a publisher of 

investment information reports, while the FTSE index began as a 3D-stock index in the 1930s 

and it was published by the Financial Times. Since then, indexes have become essential tools 
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for evaluating investments and investment managers, giving birth to index benchmarking 

since they can provide valuable information as to who is able to beat the market. Indexes 

have also been used as the core of many mutual funds investment strategies, with the most 

recent years being used for the creation of ETFs, and now ETNs, ETCs, ETVs and other 

similar investment vehicles. In general, there is a transition in the use of indexes observed 

lately, from benchmark tools to trading vehicles. ETFs that bring index funds into tradable 

units continue to expand in terms of both number and assets under management, seriously 

challenging mutual funds. 

More specifically, indexing is a very powerful tool for equity investing, as it is one of the 

least expensive ways available and is very transparent. In addition, as it is widely documented 

in the literature, index investing, in the long run, outperforms active investing. As the famous 

CAPM suggests, a broad cap-weighted market index is an efficient equity investment as 

ordinary investors cannot outperform it without exceptional skills or information. This wide 

acceptance of the importance of index investing can be verified by the increasing number of 

new indexes not only for equities, but also for alternative investment classes such as 

commodities. Nowadays, indexes can be considered as investment strategies on their own, 

with ETFs based on specialized indexes, replacing custom portfolios with active managers. 

The spectrum of indexes is so broad reflecting almost all available sectors, industries, and 

investment themes such as traditional or alternative energy. Moreover, building on the notion 

that it is very efficient and attractive to construct tradable securities and instruments on top of 

various indexes, there is a plethora of ETFs that combine various asset classes, or construct 

indexes with selective stocks or different weights on the various securities. Also, because of 

the fact that ETFs rely primarily upon indexes, they have better performance along with 

lower fees, and increased transparency. 

2.4.2. Commodity indexes 

Commodity indexes have been around for many years and as is the case with all early equity 

indexes, they were used mostly for benchmarking and to track spot commodities process. 

One of the first published commodity indexes is the Economist's Commodity-Price index that 

started in 1864. Then, in 1957 the Commodity Research Bureau (CRB) Index was 

established, tracking spot commodity processes, and after undergoing major revisions in its 

composition it is still published today. Nevertheless, it is in the past 20 years that the 

development of commodities indexes has witnessed tremendous changes. The first generation 
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of investable commodity indexes appeared only in 1991 when the S&P GSCr (originally the 

Goldman Sachs Commodity Index) is introduced. A few years later, in 1998, the Dow Jones

UBS Commodity Index (originally the Dow Jones-AIG Commodity Index), and the Rogers 

International Commodities Index (RICI) are both launched. Both the S&P GSCI and the RICI 

indexes are heavily weighted towards the energy sector, while the Dow Jones-UBS, because 

of the rule that no sector can weigh more than one-third of the index, has energy at its limit; 

in many instances this limit is over exceeded between the annual rebalancing periods. 

The common characteristic, and a major disadvantage of these early indexes is that they 

invest in commodity futures contracts that are close to expiration, thus they roll forward their 

futures positions more frequently which makes it very expensive to follow an index 

replication strategy using exchange-traded futures (Gorton et aI., 2008). In addition, as it is 

documented in Dunsby and Nelson (2010), holding a long futures position via an index that 

invests in the front of the curve is sub-optimal, especially in recent years, because many 

commodity futures curves have been experiencing steep contango at the front end of the 

curve, thus also diminishing the returns of the various investment products that are based on 

the respective index. Gordon (2006) presents a comprehensive overview of six of the most 

known first generation commodities indexes, explaining the underlying markets' selection 

process, their respective weights, and the index calculation methodology. It is shown that 

correlations between the indexes over long periods of time are quite high, even though they 

have many differences in terms of their construction methodology. 

This previous observation was the main driver for the creation of the so called second 

generation commodity indexes such as the UBS Bloomberg Constant Maturity Commodity 

Index and the JP Morgan Commodity Curve Index. Both of these indexes have a constant 

weighting scheme across commodities, but their investments allocation is spread across 

several contract expirations within individual commodities. In the same context is the 

approach of the DJ-UBSCI 3 Month Forward index, which invests in contracts farther out the 

futures curve, reducing the effect of backwardation or contango as the curve tends to be 

flatter for longer maturities. These type of indexes outperform the first generation indexes 

because when the front end of the curve is in steep contango, as it is recently the case with 

crude oil, the losses tend to even out across the longer maturity contracts. Nonetheless, the 

opposite happens when futures markets are in backwardation, since the concentration usually 

occurs at the front-end of the curve. It can be argued however that the chronology of the 
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indexes has a significant impact on their construction methodology, and hence their 

performance, as the most recent ones had the benefit of improving on the methodology used 

by previously developed indexes. 

The latest addition to the family of commodities indexes is the so called third generation 

indexes that attempt to improve the returns of the previous two by incorporating commodities 

selection; overweight or include only commodities that are expected to deliver higher returns 

in the near future, while underweighting or omitting completely commodities that are 

expected to perform poorly. The UBS Bloomberg CMCI Active Index introduced in 2007 

and the SummerHaven Dynamic Commodity Index introduced in 2009, are two examples of 

the third generation commodity indexes. The latter index includes 14 equally weighted 

commodities from a total of 27, rebalancing its futures portfolio every month using basis and 

momentum to identify the greatest possible risk premium. The former index uses a 

discretionary approach of its research analysts who, according to their view adjust the 

component weightings of the index. However, these types of indexes carry with them a major 

disadvantage since the method or the research analysts used to select the commodities and 

their respective weightings can be unsuccessful, and thus underperform passive indexes. 

As mentioned above, because there are plenty of key differences in terms of their 

construction methodology amongst the commodity indexes, it is critical for investors to be 

aware of these differences. The first one concerns the various methodologies for weighting 

the indexes, such as liquidity- or production- based weights, arithmetic or geometric 

calculations. In addition, each index has different rules for rolling forward its futures 

contracts, from the next-month to a more distant contract. 

2.4.3. Exchange Traded Funds (ETFs) 

An Exchange Traded Fund (ETF) is an investment vehicle that tracks a market index, 

typically comprised by stocks, and trades on an exchange. ETFs were initially developed in 

the US5 to accommodate institutional investors to trade a basket of securities in a single , 

transaction, and to make stock program trading available to retail investors. With the recent 

massive growth in product offerings and liquidity, ETFs today can execute almost any 

5 An ETF is an investment company registered with the US SEC in the same way as a mutual fund or any other 
open-end fund. That is because it holds a portfolio of securities and its shares are continuously issued and 
redeemed at the daily Net Asset Value (NAV). 
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investment strategy. Index-linked ETFs are a perfect fit for the core holdings in a core

satellite investment strategy, while at the same time allowing for the employment of satellite 

investments via shorter-term tactical strategies such as stock, sector, style, or country over

weights. Nowadays they have expanded outside the traditional securities spectrum into non

traditional asset classes, such as commodities; in these cases they are known as Exchange 

Traded Vehicles (ETVs). These new investment vehicles not only serve the increasing needs 

of institutional investors around the world, but most importantly allow retail investors to enter 

an institutional space, that so far they have been excluded from, in terms of competitive 

pricing and efficiencies. Moreover, market niche indexes have been increasingly popular 

lately amongst investors, thus making the spot energy index an ideal candidate for the 

construction of an ETF that will follow the energy markets. 

A commodity ETF, also called an Exchange Traded Commodity (ETC), is an investment 

vehicle that tracks the performance of an underlying commodity index, ranging from a single 

commodity or an ever-increasing number of commodities including energy, metals, softs and 

agriculture. ETCs trade and settle exactly just like normal shares, they are simple and 

efficient, have market maker support with guaranteed liquidity, and provide investors with 

exposure to commodities. Generally, ETCs are index funds tracking non-security indexes. 

The first funds that came into existence actually owned the physical commodity6 (e.g. gold 

and silver bars). However, as it is difficult or even in some cases of non-storability (e.g. 

electricity) impossible to own the commodity, most ETCs now implement either a futures 

trading strategy, which may lead to quite different performance from owning the actual 

commodity, or equities trading strategies. ETCs that follow a futures commodity index, in 

order to maintain a long position need to continuously roll forward the front-month futures 

contract on almost a monthly basis. This process makes investors subject to transaction costs 

and other risks involved with the different prices along the term structure. The latter is the 

main reason that most of the recently created ETCs, and especially the largest ones by market 

capitalization, use stocks and not futures contracts to track the commodity index under 

consideration. 

Nonetheless, ETFs have numerous advantages over traditional investments. First, style and 

sector ETFs can be applied into almost any tactical investment strategy or complete parts of 

6 The first gold ETF was the Gold Bullion Securities launched on the ASX in 2003, and the fust silver ETF was 
iShares Silver Trust launched on the NYSE in 2006. 
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an existing portfolio. Broad-based ETFs, on the other hand, can act as diversified core 

holdings, either as stand-alone tools or as part of an investment strategy. They can be bought 

along with stocks, privately managed assets, and other investment products. Second, they can 

provide international diversification while at the same time having lower internal transaction 

and processing costs, as ETFs typically have low portfolio and investor turnover. Index

linked ETFs are the least expensive amongst the available investment products, as passively 

managed funds tend to outperform their actively managed peers. Third, index-linked ETFs 

can be shorted without an uptick, which gives extra flexibility to investors for hedging and 

market-timing strategies. Fourth, they are available throughout the day to all investors at 

market prices, as they are traded on an exchange, while they can also be bought on margin or 

make use of limit and stop loss orders. Finally, indexed-linked ETFs that are passively 

managed are more tax efficient than their actively managed peers because of the smaller 

portfolio turnover and smaller realization of capital gains. During a market downfall, 

participants in open-end mutual funds usually tend to close their positions to reduce exposure 

and! or capture any gains that in tum may create capital gains' tax liabilities. These tax 

liabilities are then passed on to the remaining shareholders of the fund. On the other hand, 

ETFs can reduce such tax liabilities through an internal redemption mechanism where baskets 

of stocks, and not cash, change hands between investors. Under the US tax regime (and that 

of many other developed countries) this process is not taxable as there are no actual capital 

gains that need to be distributed to the ETFs' shareholders. 

All the above mentioned advantages of commodity ETFs and ETNs have recently led to a 

plethora of such funds, which track passive benchmarks of commodity and energy sector 

equity indexes to come to the market. Energy commodity investing could be considered as a 

new style investment, with these tracking funds making it easier for a retail investor to obtain 

exposure to commodities, having at the same time a number of advantages over traditional 

debt instruments (notes, bonds, certificates). They can be used by the energy industry market 

players to complete parts oftheir existing portfolio, to perform tactical strategies, for hedging 

energy investment risk, portfolio diversification, or as a control measure of inflation 

exposure. The investment approach proposed in this thesis, of tracking the performance of the 

energy sector with stocks selected by two innovative evolutionary algorithms, promotes a 

cost effective implementation and true inve stab ility . While many funds cannot invest in 
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commodities directly as in the case of pension funds 7, where governments in their effort to 

protect peoples' savings strictly regulate the industry by placing stringent restrictions on the 

types of assets held, they can now track the performance of a proposed Spot Energy Index 

(SEI) by investing in stock baskets selected by the evolutionary algorithms used. To that end, 

lately there are many investment houses around the globe that use evolutionary algorithms for 

tactical asset management strategies. 

Although the proposed energy index represents the economic importance of the energy group 

of commodities to the global economy, it primarily serves as a performance benchmark given 

the limited ability for a direct investment. Nevertheless, the suggested approach provides 

investors with an option to track that performance of this Spot Energy Index using a basket of 

equities that are liquid and fully investable. This new style investing into the SEI, by 

selecting an optimal portfolio of stocks, can be particularly attractive to institutional 

investors. As stated in Barberis and Sheleifer (2003), style investing is attractive because 

institutional investors act as fiduciaries and thus they must follow systematic rules of 

portfolio allocation, and because of its simplified performance evaluation process. Hence, the 

work and findings presented in this thesis can encourage asset and fund managers to 

recognise the importance of the energy sector and prompt them to set-up similar Exchange 

Traded Funds that will track the constructed Spot Energy Index. 

To that end, the proposed methodology suggests an effective, and at the same time, least 

expensive way to operate such a fund, giving the full flexibility of any investment style, long 

or short, that equities can provide. It provides with a low cost - compared to actively 

managed funds - means of accessing the energy spot markets. In particular, investors that 

cannot physically hold the energy commodities can benefit from the selected equity baskets 

that allow for both long and short position to be taken. Most commodity trading advisors and 

commodity pool operators use investment strategies that can be long-only or systematic 

long/short, using leverage to take the short positions. Hence, an effective index tracking 

strategy, as the one proposed in this thesis, should allow for both the replication of the 

performance benchmark index, and the implementation of this long/short strategy that can 

significantly improve the risk! return profile of traditional asset portfolios. 

7 Usually futures contracts and other derivative products in alternative investments such as commodities are 
excluded from their portfolios (Nijman and Swinkels, 2003). 
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Chapter 3. 

3. Modelling energy spot prices: empirical evidence from 
NYMEX 

This chapter investigates the behaviour of spot prices in eight energy markets that trade 

futures contracts on NYMEX and of a geometrically weighted Spot Energy Index, proposed 

for the first time in this thesis. Two types of models are considered, a mean reverting model, 

and a spike model with mean reversion that incorporates two different speeds of mean 

reversion; one for the fast mean-reverting behaviour of prices after a jump occurs, and 

another for the slower mean reversion rate of the diffusive part of the model. These models 

are also extended to incorporate time-varying volatility in their specification, modelled as a 

GARCH and an EGARCH process. Finally, the relative goodness of fit of the different 

modelling variations is compared using Monte Carlo simulations. 
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3.1. Introduction 

Over the past decade significant changes have taken place in the world's energy markets. 

Changing economic patterns, globalization, international politics, war, technological 

advances and structural changes within the world's energy industry, have resulted in a 

volatile market environment which also increased the need of market participants for risk 

management using derivative contracts such as futures and options. In this volatile market 

environment, it is important for market participants to use risk management models that can 

capture the most significant risks in the market. However, due to the unique features of 

energy markets, the traditional approaches for modelling prices that are used in financial 

markets are not applicable. For instance, energy prices exhibit extreme movements and 

volatility over short periods of time and may also be characterized by spikes which occur due 

to short-term supply or demand shocks. In addition, energy prices have the tendency to mean

revert to a long-run equilibrium level. Given these stylized facts, the assumption used in the 

Black-Scholes-Merton model (Black and Scholes, 1973; and Merton, 1973) that the 

underlying asset follows a log-normal random walk may not be appropriate. 

The mean-reverting process has been considered by many academics and practitioners as the 

natural choice for commodities. The reason is that, according to microeconomic theory, in the 

long run a commodity's price should be tied to its long-run marginal production cost; that is it 

tends to revert back to a "normal" long-term equilibrium level. There is a wealth of papers in 

the literature that confirm mean reversion in spot oil prices based on strong empirical 

evidence, such as Gibson and Schwartz (1990), Brennan (1991), Cortazar and Schwartz 

(1994) and Schwartz (1997). Evidence of mean reversion for energy and agricultural 

commodities comes also from the futures markets, e.g. Bessembinder et al. (1995), Baker et 

al. (1998), and Pindyck (1999). In addition, the analysis of volatility of asset prices is a 

research area that has been widely examined over the years by numerous studies, unveiling a 

number of stylized facts. According to Engle and Patton (2001), a good volatility model 

should be able to capture the most important stylized facts of an asset's volatility, which are 

mean reversion, volatility clustering, and persistence, the latter measured by calculating the 

volatility's half-life. Intuitively, it would be expected to find that the innovations of the log

price series for all energy markets exhibit volatility clustering, and also that they have an 

asymmetric impact on the price volatility, with this asymmetry attributed to a leverage or risk 

premium effect. 
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In their study, Baumeister and Peersman (2008), when examining crude oil prices they found 

that positive shocks, due to shifts in global demand, have greater impact on price volatility 

compared to negative shocks, which can be attributed to supply disruptions. This observation 

is consistent with the presence of an "inverse leverage" effect (Geman, 2005), which is also 

evident in the natural gas prices examined by Kanamura (2009), and in hourly electricity 

prices from Northern California examined by Knittel and Roberts (2005) using an EGARCH 

(1,1) model. Eydeland and Wolyniec (2003) in their study on a number of energy markets, 

also conclude that an "inverse leverage" effect should be expected. Hence, in the case of the 

energy markets examined, it is expected that positive price shocks will have a greater impact 

on volatility than negative ones, an observation known as "inverse leverage effect" (Geman, 

2005); for instance, Knittel and Roberts (2005) find the presence of an "inverse leverage 

effect" when modelling hourly electricity prices from Northern California using an EGARCH 

(1,1) model. Identifying any asymmetric tendencies in the volatility of the energy markets 

under investigation, using the EGARCH specification, can result in more efficient risk 

management applications by market practitioners and may also enhance the accuracy of 

various widely used risk management techniques, such as Value-at-Risk (VaR). Since 

volatility is an unobservable market variable, it is important to get the most accurate estimate 

in order to optimize the risk management models used and eventually determine the best 

possible hedging strategies. 

Considering the above, the motivation for this research mainly stems from the existing 

controversies in the empirical literature, as to which modelling approach is best for, 

describing the behaviour of energy spot prices and capturing their risk characteristics. As a 

sound understanding of the stochastic dynamics of energy prices is a prerequisite for making 

an investment into energy commodities, a thorough empirical analysis is carried out by 

examining the performance, in terms of explanatory power and goodness of fit, of models 

that incorporate mean-reversion and spikes in the stochastic behaviour of the underlying 

asset. Two types of models are considered: a mean reverting model, where prices have the 

tendency to revert to their long-run mean, and a spike model that incorporates two different 

speeds of mean reversion to capture the fast mean-reverting behaviour of returns after a jump 

occurs and the slower mean reversion rate of the diffusive part of the model. These models 

are also extended to incorporate time-varying volatility in their specification, modelled as a 

GARCH and an EGARCH process. 
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This chapter contributes to the existing literature on modeling energy prices (see among 

others, Dixit and Pindyck, 1994; Schwartz, 1997; Clewlow and Strickland, 2000; Lucia and 

Schwartz, 2002; Cartea and Figueroa, 2005; Geman and Roncoroni, 2006; Cartea and 

Villaplana, 2008, Askari and Krichene, 2008) by expanding the choice of available models 

and the number of energy markets that these models are applied on. Spot prices of the eight 

most traded energy futures contracts on NYMEX and the constructed spot energy index (SEI) 

are used, covering the crude oil and all its by-product fuel markets, the soaring - due to their 

increased environmental importance - natural gas and propane markets, one of the most liquid 

electricity markets, and an index that represents the overall spot energy sector. The 

performance of each model is assessed on the basis of how well it can capture the trajectorial 

and distributional properties of the real market process. To compare the aforementioned 

processes and identify which one describes the data best, Monte Carlo simulations are run to 

replicate the price paths, and then test the goodness of fit of the models using a variety of 

both quantitative and qualitative tests. Moreover, a contribution in the existing literature is 

made by providing detailed information on the jump detection process, formally testing for 

any clustering effect, correlation pattern among commodities, and seasonality in the jump 

occurrence for all eight energy markets. This way, a better understanding is provided of how 

energy markets behave, what is the best modelling approach for each individual spot market 

and, consequently, the best model for the pricing of the relevant futures and options contracts. 

Identifying the correct dynamics for the energy prices is of great relevance for hedging, 

forecasting, and policy making in the energy markets. A further contribution to the literature 

is the empirical testing of which model can sufficiently capture and describe the dynamics of 

the two 1-1 crack spreads of crude oil with fuel oil and gasoline that trade futures contracts 

on NYMEX. From the perspective of a petroleum refiner who operates between the crude oil 

and the refined products markets, modelling accurately the dynamic behaviour of the two 

crack spreads and their constituents is of utmost importance, since unexpected changes in the 

prices of the crude oil or the refined products can significantly narrow the spread and put 

refiners at enormous risk. 

The structure of this chapter is as follows. The next section presents the methodology used 

for modelling the spot energy markets under investigation and estimating the parameters for 

calibrating the models to real market prices. In section 3, the data and their properties are 

described. Section 4 offers empirical results, while section 5 evaluates the performance of 
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each model in terms of matching the actual spot price behaviour. Finally, section 6 concludes 

this chapter. 

3.2. Mean-Reverting Jump Diffusion GARCHjEGARCH Model 

As already established, mean reversion is a main feature of energy commodities' event 

behaviour. In addition, energy prices often exhibit unexpected and discontinuous changes, so 

it is more appropriate to combine mean reversion and jump diffusion into the same model. 

The inclusion of spikes in the model is also justified by the existence of fat tails in the daily 

energy prices which suggests that the probability of rare events is much higher than the one 

implied by a Gaussian distribution; see for instance Cartea and Figueroa (2005) for a 

discussion on this in the UK power markets. According to the empirical findings presented in 

the literature, the presence of both excess skewness and kurtosis in all energy price returns 

suggests that a jump-diffusion model is more appropriate for both derivatives valuation (e.g. 

options pricing) and risk management purposes (e.g. VaR applications). Askari and Krichene 

(2008) point out that when jumps are added to oil price returns in a diffusion-based stochastic 

volatility model, sufficient variability and asymmetry in the short-term returns can be 

generated to match the skewness of implied volatility from short-term options. In their model, 

Clewlow and Strickland (2000) use the same speed of mean reversion for both spikes and 

normal shocks, inducing some persistence in the jumps especially when the mean-reverting 

coefficient is small. However, because the spikes represent a transitory phenomenon, after a 

jump has occurred prices do not stay at the high level to which they jump but tend to revert to 

their long-run mean. Consequently, when modelling energy prices it is also important to 

account for the fact that the decay rate of the jumps can be much faster than the decay rate of 

the diffusive component. This feature is incorporated in the model presented in this chapter 

by using two different speeds of mean reversion, a fast one after a spike has occurred and a 

slower for the normal ( diffusive) shocks. 

Another issue that needs to be addressed in the modelling methodology is the behaviour of 

volatility, which exhibits high values and clustering. Cartea and Villaplana (2008), in all three 

electricity markets that they examine, find that prices follow a strong seasonal component and 

thus a model with seasonal or time-varying volatility is preferable than one with constant 

volatility. Thus, in accordance with the empirical evidence from various studies related to the 

energy markets, a constant, as well as GARCH (Bollerslev, 1986) and EGARCH (Nelson, 
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1991) specifications for the variance are used. The proposed mean-reversion jump diffusion 

model, that incorporates the observed stylised facts of energy prices and their volatility, is 

based on Schwartz's (1997) one-factor model. The model is extended to allow for a 

deterministic seasonality as in Lucia and Schwartz (2002) and Cartea and Figueroa (2005). 

Log-prices are assumed that can be expressed as the sum of a predictable and a stochastic 

component as follows: 

(3.1) 

with the spot price represented as: 

(3.2) 

where F (t) == ef(t) is the predictable component of the spot price St that takes into account 

the deterministic regularities in the evolution of prices, namely seasonality and trend. Also, 

~ is a stochastic process whose dynamics are given by the following equation: 

(3.3) 

where ai is the mean reversion rate, f.l is the long-term average value of In St in the absence 

of jumps, at is the volatility of the series, dZt is a Wiener process, k is the proportional jump 

size and dqt is a Poisson process. It is assumed that the Wiener and the Poisson processes are 

independent and thus not correlated, which further implies that the jump process is 

independent of the mean-reverting process. 

Using equations (3.1) and (3.3), the modelling procedure by Dixit and Pindyck (1994) is 

followed and after applying Ito's Lemma, the proposed model can be discretised in the 

following logarithmic form: 

inS: = it +( InS:-1 *e-a,f,J) +(InS - 0;2JO( 1-e-<l<) +0; 0 p-e- 'Ii +J(IlJ'CTJ)' 4,-1 
2a, 2a, 

(3.4) 

where, 
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a. = {a] = aJD , when ajump occurs; for a duration equal to jump returns' half-life 
I a2 = a, otherwise 

at = a [Constant] 

at = at = )/30 + /31 Gt
2
_] + /32 * at~1 [GARCH (1,1)] 

J; = 1/ Sill +yt . (27r(t+r)] 
t 10 252 1 

{
I when ut < <PM, i.e when ajtnnp occurs 

1 = 
(u,«Mt) ° when ut > <PM, i.e when there is no jump 

J - N(f.lJ,fIJ) with Mean: f.lJ = (KJ + fIJcJ and Standard Deviation: fIJ 

£]'£2 - N( 0, I), P(£l'£2) = ° 
u-U[O,I] 

i=1,2 

(3.4.1) 

(3.4.2) 

(3.4.3) 

(3.4.4) 

where In S is the long-term mean (Il), <I> is the average number of jumps per day (daily jump 

frequency), KJ is the mean jump size, 0) is the jump volatility, G] and G2 are two independent 

standard nonnal random variables, and u is a unifonn [0, 1] random variable. The term 

I(u,<<I>Llt) is an indicator function which takes the value of 1 if the condition is true, and ° 
otherwise. This condition leads to the generation of random direction jumps at the correct 

average frequency. When the randomly generated number is below or equal to the historical 

average jump frequency, the model simulates a jump with a random direction; no jump is 

generated when the number is above that frequency. When a jump occurs its size is the mean 

size of the historical jump returns plus a nonnally distributed random amount with standard 

deviation 0). Notice as well that the proposed modelling approach allows for the possibility of 

both positive and negative jumps to occur8
. 

8 Merton (1976) in his original jump diffusion model assumes that the jump size distribution is lognormal, and 
so jumps can occur in only one direction (positive jumps). 
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In addition, the model takes into account the fact that most energy prices exhibit a seasonal 

behaviour that follows an annual cycle. Various methods have been used in the literature for 

the deterministic seasonal component, from a simple sinusoidal (Pilipovic, 1998) or a 

constant piece-wise function (Pindyck, 1999; Knittel and Roberts, 2005), to a hybrid of both 

functions (Lucia and Schwartz, 2002; Bierbrauer et aI., 2007). This periodic behaviour is 

accounted for by fitting a sinusoidal function with a linear trend to the actual prices, as 

described by It. The estimation is done using Maximum Likelihood (ML), with the sine term 

capturing the main annual cycle, and the time trend capturing the long-run growth in prices9
• 

Moreover, the possibility for the returns to have a different mean reversion rate after a jump 

occurs is incorporated into the model. This approach is in line with Nomikos and Soldatos 

(2008) who use two different coefficients of mean reversion, one for the normal small shocks 

and another, larger, for the spikes to capture the fast decay rate of jumps observed in the 

energy markets. Geman and Roncoroni (2006) also analyse the existence of different speeds 

of mean reversion in the context of mean-reverting jump-diffusion models, by introducing a 

class of discontinuous processes exhibiting a 'jump-reversion" component to represent the 

sharp upward moves that are shortly followed by drops of the same magnitude. The proposed 

approach is flexible enough to accommodate the fact that the abnormal events that cause the 

jumps have different effect in each market and hence, prices tend to remain at the level to 

which they jump for a longer or shorter period of time, depending on the energy market under 

investigation. Therefore, prices following a jump are adjusted by using in equation (3.4) a 

different mean reversion rate, noted as a JD' for a period of time equal to the half-life of jump 

returns for each energy market; when another jump occurs within the duration of the half-life 

period used, then a JD is used again for the same number of days, counting from the day 

following the last jump [see equation (3.4.l)]. Ifno other jump occurs within that period, then 

a2 is used until a new jump occurs. The proposed model, by incorporating this half-life 

measure, allows for the model to better adapt to the duration of both short- and long-term 

shocks of a wide magnitude range, exhibited in energy prices. The latter allows for a higher 

flexibility compared to the model proposed by Nomikos and Soldatos (2008) which fits best 

mainly the highly volatile electricity markets, as the speed of mean reversion estimated after 

a spike shock is significantly higher than the normal mean reversion rate. In addition, the 

9 The approach used in Pilipovic (1998) is followed to calculate the seasonal component in the data, because this 
method is more flexible than using dummy variables. According to Lucia and Schwartz (2002) the use of 
dummy variables does not provide a smooth function for the seasonal component observed in the data, which 
can cause discontinuities when pricing forward and futures contracts. 
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model proposed in this thesis incorporates in its specification GARCH and EGARCH 

volatility, to account for volatility clustering and any asymmetries that are usually present in 

energy prices. 

Regarding the mean-reverting part of equation 3.4, an exact discretization is used for the 

simulations since the presence of jumps complicates the use of a large fl.t . This is because the 

drift of the mean-reverting process is a function of the current value of a random variable and 

in order to simulate the jumps correctly the time step fl.t must be small relative to the jump 

frequency. Because the rare large jumps are of biggest interest, if the time interval fl.t is 

sufficiently small, the probability of two jumps occurring is negligible ((¢M)2 «¢M). That 

makes it valid to assume that there can be only one jump for each time interval; in this case 

one every day since fl.t is equal to one day. Especially when fl.t is increased to one week or 

one month, as it is usually the case with real option applications that involve pricing medium

and long-term options, it is more important to use an exact discretization for the simulation 

process, because the overall error from the first-order Euler and the Milstein approximations 

will be much higher 10. The random number generation of the Monte Carlo (MC) simulations 

already introduces an error in the results, therefore using these approximations that need a 

very small fl.t and thus also introduce a discretization error, would lead to higher 

computational cost into the simulations. 

As for the two time-varying volatility model specifications of equation (3.4.2), in the case of 

the GARCH process, &:-1 represents the previous periods' return innovations and (]"I~I is the 

last period's forecast variance (GARCH term). As for the EGARCH process, /30 denotes the 

mean of the volatility equation. The coefficients /31 and /32 measure the response of 

conditional volatility to the magnitude and the sign of the lagged standardised return 

innovations, respectively; as such, these coefficients measure the asymmetric response of the 

conditional variance to the lagged return innovations. When /32 = 0, there is no asymmetric 

effect of the past shocks on the current variance, while when /32 oF 0 asymmetric effects are 

present in response to a shock; for instance, /32 > 0 indicates the presence of an "inverse 

10 Clewlow and Strickland (2000) use the first-order Euler's approximation in order to get the discrete time 

version of the Arithmetic Ornstein-Uhlenbeck:.x;=.x;-l+a*rx-.x;-l)*~+a*~*C; where the discretization is only 

correct in the limit of the time step tends to zero. 
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leverage" effect. Finally, P3 measures the degree of volatility persistence. Knittel and 

Roberts (2005) suggest that a positive shock in electricity prices represents an unexpected 

demand shock which has a greater impact on prices relative to a negative shock of the same 

size, as a result of convex marginal costs and the competitive nature of the market. Moreover, 

Kanamura (2009) suggests that this inverse leverage effect, i.e. positive correlation between 

prices and volatility, is a phenomenon often observed in energy markets, whereas evidence 

from the stock markets suggests that the opposite relationship exists between volatility and 

prices, namely the "leverage" effect11
• Hence, intuitively, the asymmetry parameter is 

expected to be positive and significant for most energy markets, implying that positive shocks 

have greater effect on the variance of the log-returns compared to negative shocks, consistent 

with the presence of an "inverse leverage" effect. 

Finally, the different models used for modelling the spot prices of the energy markets and the 

SEI are summarized in table 3-1; "GBM" stands for Geometric Brownian Motion; "MR" for 

Mean Reversion; "MRJD" for Mean Reversion Jump Diffusion; "OLS" for Ordinary Least 

Squares (constant volatility). 

3.3. Data 

Table 3-1: Empirical models of energy prices 

"GBM" stands for Geometric Brownian Motion; "MR" for 
Mean Reversion; "MRJD" for Mean Reversion Jump 
Diffusion, "OLS" for Ordinary Least Squares (constant 
volatility) 

1 

2 

3 
4 

5 

6 

7 

GBM 

MR-OLS 
MR-GARCH (1,1) 

MR-EGARCH (1,1) 

MRJD-OLS 

MRJD-GARCH (1,1) 

MRJD-EGARCH (1,1) 

Before discussing the estimation results for the various modelling specifications proposed, 

first the data used are examined to verify whether the stylized facts aiming at reproducing are 

indeed present. The behaviour of the spot prices of eight of the most important energy 

11 The "leverage effect" terminology is first used by Black (1976) who suggests that negative shocks on stock 
prices increase volatility more than positi~e ones: The intuition behind it is that a lower sto~k p~ice reduces. the 
value of equity relative to debt, thereby mcreasmg the leverage of the firm and thus makmg It a more nsky 

investment. 
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markets that trade futures contracts on NYMEX, and of the constructed spot energy index, is 

investigated, each one of them having its unique impact on the worldwide marketed energy 

supply and demand. Because centralized trading lacks for many commodities, the most 

reliable spot prices are for those that trade active and liquid futures contracts, since these are 

typically used as a pricing benchmark. In the case of the energy commodities, the NYMEX is 

the world's largest futures exchange. Spot daily prices from Thomson DataStream are 

collected, which are the official closing prices of the 1 st nearby futures contract issued by the 

NYMEX, for the period 12/09/2000 to 1/0212010 for the following contracts and the Spot 

Energy Index: 

1. Heating Oil, New York Harbour No.2 Fuel Oil, quoted in US Dollar Cents/Gallon 

(US C/Gal); hereafter named as "HO"; 

2. Crude Oil, West Texas Intermediate (WTI) Spot Cushing, quoted in US 

DollarslBarrel (US$IBBL); hereafter named as "WTI"; 

3. Gasoline, New York Harbour Reformulated Blendstock for Oxygen Blending 

(RBOB), quoted in US C/Gal; hereafter named as "Gasoline"; 

4. 1-1 Crack Spread of Gasoline with WTI, quoted in US $IBBL; hereafter named as 

"CS _Gasoline _ WTI"12; 

5. 1-1 Crack Spread of Fuel Oil with WTI, quoted in US $IBBL; hereafter named as 

"CS HO WTI'" - - , 
6. Natural Gas, Henry Hub, quoted in US DollarslMilion British Thermal Units 

(US$IMMBTU); hereafter named as "NG"; 

7. Propane, Mont Belvieu Texas, quoted in US C/Gal; hereafter named as "Propane"; 

8. PJM, Interconnection Electricity Firm On Peak Price Index, quoted in US 

DollarslMegawatt hour (US $lMwh); hereafter named as "PJM". 

9. Geometric average Spot Energy Index, quoted in index points and constituted by daily 

prices of WTI, HO, Gasoline, NG, Propane, and PJM; hereafter named as "SEI" 13. 

12 The spot series of the two 1-1 crack spreads with the WTI have been constructed after converting the Fuel Oil 
and Gasoline spot prices that are quoted in US C/gallon into US $/Barrel, taking into account that there are 42 
gallons in one barrel and 100 cents per dollar. Then, the two series are rebased to 100 so they can later be 
transfonned to logarithmic prices and apply our modelling methodology. 
13 The main reason for selecting these energy commodities that trade futures contracts on the NYMEX is that 
since most energy commodity futures markets are denominated in US dollars, the indexes constituted mostly by 
local US commodities will have a smaller currency exposure when the commodity is produced and delivered in 
the US. In the case that the marginal buyer of the underlying commodity is outside the US, then the return to 
holding that commodity has a large currency exposure. Additional reasons for the commodities' selection are 
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3.3.1. Spot energy index 

All six energy commodities that are included in the spot energy index, as a result of large 

daily volume trading of standardization qualities, serve as indicators of impeding changes in 

business activity as they are sensitive to factors affecting both current and future economic 

conditions. The SEI is constructed as an un-weighted geometric average of the individual 

commodity ratios of current prices to the base period prices, set at September 12, 2000. 

Considering that the boom in commodity index investing is a relatively new phenomenon, 

recent data are utilized to test the proposed investment strategy. The index's construction 

methodology is similar to that of the world-renowned CRB Spot Commodity Index. The SEI 

is designed to offer a timely and accurate representation of a long-only investment in energy 

commodities using a transparent and disciplined calculation. 

Geometric averaging provides a broad-based exposure to the six energy commodities, since 

no single commodity dominates the index. It also helps increase the index diversification by 

giving even to the smallest commodity within the basket a reasonably significant weight. 

Gordon (2006) finds that a geometrically weighted index is preferred to alternative weighting 

schemes, because the daily rebalancing allows the index not to become over- or, under

weighted. This avoids the risks that other types of indexes are subject to, like potential errors 

in data sources for production, consumption, liquidity, or other errors that could affect the 

component weights of the index. Furthermore, through geometric averaging the SEI is 

continuously rebalanced which means that the index constantly decreases (increases) its 

exposure to the commodity markets that gain (decline) in value, thus avoiding the domination 

of extreme price movements of individual commodities. As Erb and Harvey (2006) point out, 

the indexes that rebalance annually eventually become trend followers because commodity 

prices movements constantly change the weightings, whereas those that rebalance daily stay 

closer to the original intent of the index. In addition, Nathan (2004) shows that the indexes 

that use geometric rebalancing, and thus rebalance their weightings daily, generally exhibit 

lower volatility. 

the following: 1) Quality standardization so that unifonn price quotations can be obtained, 2) High trading 
volume in an open market, 3) Sensitivity to changing market conditions. 
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The mathematical expression used to calculate the geometric average Spot Energy Index 

(SEI) is the following: 

(3.5) 

where, SEll is the index for any given day, n represents each one of the six commodities 

comprising the index, ~n is the price of each commodity for any given day, and Po n is the 

average (geometric) price of each commodity in the base period. 

The SEI provides a stable benchmark so that end-users can be confident that historical 

performance data is based on a structure that resembles both the current and future 

composition of the index; thus making SEI suitable for institutional investment strategies. 

The stable composition of the index is an important element, because when the composition 

of an index changes over time, the average return of the index does not equal the return of the 

average index constituent, especially when indexes are equally weighted. The latter makes 

historical index performance a bad proxy to prospective index returns, thus distorting the 

information that investors seek (Erb and Harvey, 2006). Moreover, it is a better means for 

evaluating the movement in energy commodity prices because it is based on spot prices and 

not on highly volatile prices for future delivery which are subject to contango and 

backwardation. The SEI is the best indicator of the activity and the trend prevailing in the 

energy markets, and thus by default provides a gauge of world growth and any potential 

inflationary pressures. Both private and institutional investors can use the SEI to track its 

performance, or as a benchmark for actively or passively managed portfolios. In addition, 

there could be numerous other ways to invest in the SEI such as OTe swaps, structured notes 

or products offered by third-party asset managers that provide energy commodity exposure 

benchmarked on the index. 

3.3.2. Description and Properties of the Data 

The proposed modelling approach for the energy prices and the SEI, as described in the 

previous section, is a convenient tool for narrating the most important dynamics observed in 

the actual history of the respective spot prices. All the commodity prices chosen and the 
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constructed spot energy index represent a barometer of the energy market trends worldwide. 

Figure 3-1 (Panels A to I) shows the evolution of the logarithmic price series and their 

returns, over the whole period examined from 12/09/2000 to 1/02/2010. It is observed that all 

series exhibit a distinct upward trend, which is more obvious for the WTI, Gasoline, Heating 

oil, and the SEI reflecting the continuous rally in commodity prices until the end of June 

2008, when WTI reached $145/barrel. Then, a steep downward slope follows until the end of 

December of the same year, when WTI fell to $31lbarrel, with the remainder of the sample 

showing a small re-bounce with WTI prices recovering and staying at the range of $70 -

$80lbarrel. A rigid supply, in combination with an expanding global demand for crude oil and 

its by-products resulted in big demand-supply imbalances, which in tum led to the great 

variability observed in energy prices. In general, from the figure it can be inferred that all 

spot energy prices are quite volatile, with the two crack spreads with WTI, the Natural Gas 

and the PlM markets exhibiting more distinct price jumps. Furthermore, all series vary with 

time as can be observed by the log-price differences, also forming clusters, both signs that 

indicate the presence of time-varying volatility. 
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Figure 3-1: Graphs of daily log-spot energy prices and their first log-differences. 

This figure shows the daily log-spot and first log-differences for the crude oil , gasoline oil , 
and heating oil (WTI, Gasoline, HO), the two 1-1 crack spreads with the crude oil 
(CS_Gasoline_ WTI, CS_HO_ WTI), the electricity, natural gas, and propane markets (pJM, 
NG , Propane), and for the spot energy index (SEI). Data period is from 12/09/2000 to 
1/02/2010. 
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Panel C: Gasoline Oil- New York Harbour RBOB (Gasoline) 
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Panel E: 1-1 Crack Spread of Heating Oil with WTI (CS-HO-WTI) 

Daily log prices & changes 
r--------------------~5. 0 

4.9 

4 .8 

4.7 

4.6 

Panel F: Natural Gas - Henry Hub (NG) 

Daily log prices& changes ,--_______ ~.=....:_ ___ _=___ _______ __,__ 3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

-.4 

-.8 --l--,.-,--r-r...,.,...,....,r-r-...-r-,--,-.-.,.,--,....,..--,-,rr-...-r-,--,-,-,..,,....,..--,-,rr-..---r,..-,J 
9/2000 9/2001 9/2002 9/2003 9/2004 9/2005 9/2006 9/2007 9/2008 9/2009 

I - NG - DNG I 

84 



Panel G: Propane - Mont Belvieu Texas (Propane) 
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Panel I: Spot Energy Index (SEI) 
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Next, the descriptive statistics for the natural logarithm of the spot prices of all series are also 

estimated. To identify whether the series are mean reverting, a comparison procedure known 

as "confirmatory data analysis" is performed, where two tests for unit root non-stationarity, 

the Augmented Dickey-Fuller (ADF; Dickey and Fuller, 1979) and the Philips-Perron (PP; 

Phillips and Perron, 1988), and one test for stationarity, the Kwiatkowski-Phillips-Schmidt

Shin (KPSS; Kwiatkowski et aI. , 1992), are employed. For the results to be robust, all three 

tests should give the same conclusion. Table 3-2 shows the descriptive statistics of the spot 

price series in logarithmic levels (Panel A) and their first differences (Panel B). As can be 

seen in panel B, the annualized volatility (as measured by the standard deviation of log

returns) of most energy markets ranges from 16% for the Heating Oil - WTI crack spread to 

236% for PJM, which is significantly larger than the typical volatility observed in financial 

markets (e.g. the historical annualised volatility for the S&P500 is in the range of 20%-25%). 

As for the SEI, being an index, by construction its annualised volatility (48 .5%) is in the 

same range as for the remaining fuel markets , WTI (41.9%), HO (42.4%), and Gasol ine 

(50.5%), and significantly smaller than the highly volatile NG (75 .4%). Overall , the two 
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crack spreads have lower volatility than the outright series due to the high correlation 

between the prices of their constituent contracts. 

Table 3-2: Descriptive statistics of energy markets. 

Descriptive statistics and the properties of the logarithmic spot prices and their first differences (returns) are presented in Panels A and B 
respectively. *.' .. , * .. denote significance at the 10%,5% and 1% significance level, respectively. Two tests for unit root non-stationa~, the 
Augrrented Dlc~ey-Fuller (ADF; Dickey and Fuller, 1979) and the Philips-Perron (pP; Phillips and Perron, 1988), and one test for stationarity, the 
KWllltkowski-Phillips-Schrmdt-Shm (KPSS; Kwiatkowski et. a!, 1992), are employed. The Jarque-Bera (1980) test for nonnality on the logarithmic 

differences is -x: distnbuted with 2 degrees offreedom Q(k) is the Ljung-Box(1978) Q-statistic test for kth order autocorrelation. The Q2(k)

statistic is the Engle's (1982) ARm test. Both tests are -x: distnbuted with k degrees offreedom Daily data from 1219/2000 to 110212010. 

Panel A: Logarithmic lewis 

Mean Spot Level (S) 

M.a. (~) 

Mean (excl. jumps) 

Me dia D 

Maximum 

Minimum 

Standard DeviatioD 

Skewness 

Kurto s is 

Jarque-Berra 

KPSS 

ADF 

pp 

WTl 

$4726 

3.8556 

3.8557 

3.8995 

4.9813 

2.8611 

0.4782 
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2.0980 

88.5425 
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-U81 
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-1189 

HO 

$54.71 

4.0020 

4.0019 

4.0884 

5.1434 

2.9807 

0.4909 

0.0612 

2.1135 

817510 

4.789 

-1156 

(0.695) 

-1140 

(0.681) (0.702) 

Panel B: Logarithmic differences (returns) 
M.a. 0.0003 

Median 0.0000 

Maximum 02aS 

Minim um -0.1722 

Standard Deviation 0.0264 

AnDualised Volatilit),' 0.419 

Skewness 0.0056 

Kurto s is 8.1283 

Jarque-Berra 2683.6330 

KPSS 0.070 

ADF 

pp 

(0.000) 

-51354-

(0.000) 

3.038' 

40.948-

0.0003 

0.0000 

0.1758 

-0.1883 

0.0267 

0.424 

-0.1387 

6.7592 

1449.8570 

0.093 

-53.796-

(0.000) 

-53.847-

(0.000) 

17.173-

36.642-

Q(I) 

Q (20) 

Q' (1) 

Q' (20) 

38.189- 69.081-

1'05.700- 322.230-

GASOLINE CS_GASOLINE WTI CS HO WTI 

$55.86 

4.0229 

4.0231 

4.0304 

5.0167 

3.0108 

0.4489 

0.0228 

2.1056 

818749 
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-1735 
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(0.459) 

0.0003 

0.0000 
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NG 

$555 
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(0.000) 
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Looking at panel A of Table 3-2, is observed that for all energy markets, with the exception 

ofNG, Propane, and the SEI, the skewness is positive, indicating that extreme high values are 

more probable than low ones. Turning next to the log-price changes, the results regarding the 

coefficients of skewness are different since only the Heating Oil, Gasoline, and the crack 

spread of WTI with Gasoline are negatively skewed, whereas the rest of the energy markets 

are positively skewed (see panel B, table 3-2). Also looking again in Panel B of table 3-2, the 

coefficient of kurtosis which gives an indication of the probability of extreme values, is 

above three for all energy markets, implying that log-returns are leptokurtic; this suggests that 
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the probability of extremely high or low returns is much higher than that assumed by the 

normal distribution. This effect is more obvious for the PJM, NG, the two crack spreads, and 

Propane in which case the high values of the coefficient of kurtosis (between 12.07 and 

34.53) is indicative of spikes in the price series. It is also found that normality is 

overwhelmingly rejected in the first difference series for all the energy markets and the SEI, 

on the basis of the Jarque-Bera (1980) test which is significant at the 1 % level. It is obvious 

that non-normality occurs mostly due to the large price movements and spikes in all 

logarithmic price series that eventually lead to fat tails. 

Moreover, from panel A in table 3-2 it is observed that the average logarithmic price for most 

energy markets is reduced when the filtered series is examined (Le. when jumps are 

excluded) indicating that jumps have a positive impact on log-prices14
• The only exceptions 

are the WTI and Gasoline markets where jumps have a negative impact on log-prices. It can 

also be inferred that the price-levels of most energy markets are not stationary, a conclusion 

confirmed by all three tests; the only exceptions are, as expected, the two crack-spreads and 

the PJM markets where price levels appear to be stationary on the basis of the ADF and PP 

tests. On the other hand, from Panel B of table 3-2 it can be seen that the first differences of 

the spot log-price series are strongly stationary for all energy markets, indicating the presence 

of mean reversion in the series. This conclusion, although it may not have been expected due 

to the presence of jumps in most of the energy series, can be justified by the fact that these 

jumps do not seem to affect the stationarity of the series because they are short-lived and 

price levels eventually revert to their mean after a jump has occurred. Panel B also reports the 

Ljung-Box (1978) Q(k)-statistic and Engle's (1982) ARCH test (Q2(k)-statistic) to test the 

significance of autocorrelation in the returns and squared returns for lags one and 20, 

respectively. From the reported values there is evidence of serial correlation for all the log

return series, and for both time lags, at conventional significance levels; the only exception is 

for the Gasoline market for 20 lags. Finally, based on Engle's ARCH test significant serial 

correlation in the squared log-returns of all energy markets and the SEI is found, which 

indicates the presence of time-varying volatility in the return series. 

14 A detailed discussion on how the filtered series is estimated is given in the following section. 
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3.4. Empirical findings 

From the total sample of 2,450 daily observations, for the purposes of this chapter's analysis 

only the first 1,827 observations are used, representing the period 12/09/2000 to 12/09/2007. 

The input parameters for the Monte Carlo simulations are estimated from the historical spot 

price series of the different commodities. First the jump parameters are considered. 

Estimating the jump parameters, especially for energy prices, can be quite complicated 

because usually there is no indication of the exact time the jump will occur, and thus jumps 

can only be observed as part of the historical spot time series. There are two widely used 

approaches for estimating the jump parameters, the first being the Recursive Filter (R-F) 

(Clewlow and Strickland, 2000; Clewlow et al. 2000b), and the second being the Maximum 

Likelihood (M-L) (Ball and Torous, 1983). Empirical analysis suggests that the R-F 

estimation method can be superior to the M-L method when it comes to estimating jump 

parameters in energy markets; this is because the former method can pick the lower 

frequency, higher volatility jump components, instead of the higher frequency, lower 

volatility jumps that are estimated better with the latter. According to Clewlow and Strickland 

(2000), a potentially undesirable property of the M-L method is that it tends to converge on 

the smallest and most frequent jump components of the actual data. As energy price return 

series exhibit jumps that range from very high frequency and low volatility to low frequency 

and high volatility, it is important to be able to efficiently capture the latter ones. 

Therefore, given that jumps in the energy markets are relatively infrequent but of large 

magnitude, the R-F method is considered to be more appropriate. Correct identification and 

measurement of jumps is very important. For instance, Nomikos and Soldatos (2008) point 

out the importance of spikes in electricity prices especially for market suppliers because, 

although their costs depend on the variable price for electricity, their revenues are mainly 

fixed; in fact, these rare spikes are the most important motive for hedging in the energy 

markets. In addition, these rare but large returns, significantly affect the value of medium

and long-term energy real investments, as is the case for example when pricing an 

undeveloped oil field. In particular, according to Dias (2003), the two main sources of 

uncertainty in an oilfield development project are fluctuations in the oil prices (market 

uncertainty), and variations in the volume and quality of the reserves (technical uncertainty). 

A mean-reverting model with jumps can capture both the mean-reverting price evolution of 
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the underlying resources, as well as the sudden changes in prices due to unexpected news in 

the market. 

The R-F algorithm is then implemented as follows: By assuming that jumps are relatively 

infrequent and that the diffusive volatility can be estimated based on the sample standard 

deviation of returns, those "extreme" returns that are more than three standard deviations 

away from the mean are identified as jumps, consistent with most studies in the literature. 

Now, given that some of the returns have been identified as jumps, a new estimate of the 

diffusive volatility is calculated by recalculating the sample standard deviation of returns, 

after filtering out those returns previously identified as jumps. During the filtering process, 

when a jump is identified, its respective log-price is being removed from the series and then 

replaced by the average of the previous and the next log-price. Then the new returns are 

calculated based on the filtered series. The new calculation gives a lower estimate of the 

diffusive volatility and, based on that lower volatility, the same procedure is repeated in order 

to identify new jump returns. The process is continuously repeated until the estimates 

converge and no further jumps can be identified. Finally, the jump parameters necessary for 

calibrating the models are calculated, on an annual basis, from the following relationships: 

¢ = Number of jump returns/ Time period of the data 

KJ = Average jump size of returns 

CY
J 
= Standard deviation of jump returns 

Panel A of table 3-3 presents the estimated jump parameters used in the MRJD models, as 

calculated by the Recursive Filter algorithm; these parameters include the jumps' daily 

frequency (<1», daily standard deviation (O"J) and average jump size (KJ ). It can be seen that 

the average size of the jump returns is negative for the WTI, Gasoline, and PJM markets, 

whereas for the rest energy markets and the SEI it is positive. As for the daily jump 

frequencies, the highest frequency is observed for the crack spread of WTI with Gasoline, 

followed by the other volatile markets, i.e. the gas and electricity markets. Finally, in terms of 

the jumps' volatility, the highest daily standard deviation values are calculated for the 

Gasoline (10.78%), Natural Gas (16.14%) and PJM (51.94%) markets, and the SEI (11.16%) 

which are also the markets with the highest unconditional volatilities as evidenced in table 3-

2. 
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Moreover, for comparison reasons, the parameters of the jump returns for all energy markets 

were also calculated using the Maximum Likelihood Estimation method, and the results are 

presented in table 3-4. The results verify the initial intuition for using the R-F method instead 

of the M-L method for estimating the jump parameters, as the volatility of all returns 

identified as jumps is smaller under the M-L, since the R-F method is able to capture the 

larger in size jumps, which lead to a smaller standard deviation of the jump returns series in 

all cases; the only exception is in the case of the CS-Gasoline-WTI series. In addition, when 

the mean jump size between the two methods is compared in absolute terms, it is found that 

in all cases the average jump size detected by the M-L method is smaller than the average 

jump size detected with the R-F method; the only exception is for the Gasoline and PlM 

markets. Also, an opposite sign regarding the direction of the average jump returns is 

observed only in the case of the CS-Gasoline-WTI, Propane, and P JM markets. It is also 

observed that the daily frequency of the jumps detected with the M-L method in the case of 

HO, CS-HO-WTI, and PJM markets is significantly larger than the daily frequency estimated 

with the R-F method. Another case where the M-L method provides a higher daily frequency 

than the RF method is in the SEI series. The last two observations strengthen even further the 

initial decision to use the R-F method instead of the M-L, as the undesirable property of the 

latter that it tends to converge on the smallest and most frequent jump components of the 

actual data can be avoided. It is the low frequency but high volatility jumps that need to be 

efficiently captured in the case of energy price returns. As for WTI, Gasoline, NG and 

Propane, the differences between the two methods are negligible, with the R-F estimates 

being slightly higher than the M-L estimates; the only significant difference occurs in the 

case of the CS-Gasoline-WTI series. 
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Table 3-3: Estimated jump parameters, mean reversion rates, volatility, and half-lives. 

The filtered series exclude all returns that have been identified as jumps (more than three times the standard 
deviation of the smooth returns). <I> is the daily frequency of ajump occurring, (JJ is the daily standard deviation 
of jump returns, and KJ the average size of jump returns. The diffusive mean reversion rate a, is estimated using 

eq. (3.7) after running the regression of eq. (3.6). The mean reversion rate used after a jump has occurred am, 
for a period of time equal to the half-life of jump returns, is estimated using eq. (3.1O) after running the 
regression of eq. (3.9). Also, (J is the daily standard deviation of log-price differences, as estimated from eq. 
(3.8) for the un-filtered and filtered series, respectively. All estimates for the half-lives of both the smooth and 
jumpy returns are calculated using eq. (3.11). The half-lives of the jumpy returns, in days, are the respective 
durations we are using in our MRJD models for the higher mean reversion rate (am) after ajump occurs. 

Panel A: Jump parameters used in the MRJD models 

c:D dailv GJ KJ 

WTI 0.0192 0.0725 -0.0460 
HO 0.0159 0.0899 0.0086 
GASOLINE 0.0235 0.1078 -0.0089 
CS_GASOLlNE_WTI 0.1873 0.0305 0.0208 
CS_HO_WTI 0.0405 0.0277 0.0065 
NG 0.0581 0.1614 0.0627 
PROPANE 0.0476 0.0816 0.0176 
PJM 0.0728 0.5194 -0.0214 
SEI 0.0318 0.1116 0.0385 

Panel B: Mean reversion rates, daily st. deviations, and half-lives 0 smoot an lumpy returns f h d' 

Un-filtered series (MR) Filtered Series (MRJD) 
Half-lives for MRJD models, in days 

WTI 

a 0.001 0.001 998 
am - 0.019 36 

(J 0.023 0.022 

HO 

a 0.001 0.001 771 
am - 0.010 67 

(J 0.026 0.024 

GASOLINE 

a 0.002 0.002 362 

am - 0.021 34 
(J 0.030 0.027 

CS GASOLINE WTI 

a 0.023 0.012 60 

(lm - 0.026 26 
(J 0.013 0.009 

CS HO WTI 

(l 0.020 0.013 55 

(lm - 0.041 17 

(J 0.008 0.007 

NG 

a 0.007 0.004 155 

(lm - 0.010 72 

(J 0.049 0.D38 

PROPANE 

(l 0.001 0.000 2635 

(lm - 0.008 87 

(J 0.024 0.017 

PJM 

(l 0.075 0.055 13 

(lm - 0.115 6 

(J 0.158 0.132 

SEI 

a 0.003 0.003 264 

(lm - 0.007 103 

(J 0.031 0.029 
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Table 3-4: Estimation of jump parameters using the M-L method. 

The M-L method is used to estimate the jump parameters of a Mean-reverting 
Jump Diffusion process. It is based on the methodology used by Ball and Torrus 
(1983) and Weron and Misiorek (2008). It is assumed that the arrival rate for two 
jumps within one period (dt, i.e. one day) is negligible, and that the likelihood 
function is a pr?duct of the. densiti.es of a mixture of two normals. $ is the daily 
frequency of a Jump. occurnng, (JJ 1S the daily standard deviation of jump returns, 
and K

J 
the average SlZe of jump returns. 

~dailY O"J KJ 

WTI 0.0127 0.0647 -0.0309 

HO 0.1235 0.0429 0.0011 

GASOLINE 0.0090 0.0987 -0.0337 

CS_GASOLINE_WTI 0.0358 0.0420 -0.0027 

CS_HO_WTI 0.1841 0.0153 0.0017 

NG 0.0360 0.1550 0.0090 

PROPANE 0.0441 0.0752 -0.0024 

PJM 0.2355 0.2520 0.0379 

SEI 0.0356 0.0805 0.0176 

In addition, to be able to provide more information on the results of the Recursive Filtering 

process, the specific date that each jump occurs has been identified. The total number of 

jumps per quarter has been aggregated and the results are shown in figures 3-2 and 3-3. 

Looking at figure 3-2, across the three commodities of the fuels complex, i.e. the WTI, HO 

and Gasoline, there is no correlation pattern in the occurrence of jumps. For example, 

whenever there is at least one jump for WTI, in most occasions across the seven year period 

examined there is no contagion effect to the other two markets, HO and Gasoline; that is the 

case in Q3-2000, Ql-2001, Q2-2003, Q4-2003 and Ql-2006. The same applies for HO in Q2-

2002, Q3-2004, and Q2-2007, and for Gasoline in Q2-2004. On the other hand, as expected, 

high correlation of jump occurrence is identified for Gasoline and HO, and their respective 

crack spreads with WTI. This correlation effect is highly distinctive for example in Q1-2003 

where for HO there are seven jumps detected, and for the respective crack, the CS-HO-WTI, 

there are 13 jumps detected. A similar case can be depicted for Q3-2005 where there are six 

jumps detected for Gasoline and 19 jumps for the CS-Gasoline-WTI. Looking at figure 3-3, 

there is a correlation detected between the NG and Propane jumps, having a tendency to 

occur more frequently during the winter months. In almost all cases, whenever there are 

jumps occurring for any of the two markets, there are also jumps reported for the other, with 

this effect being more profound in Q4-2001, Q1-2003, Q4-2004, and Q4-2005. A similar 

correlation effect is detected between the PlM and the SEI, however with the number of 

jumps detected in each quarter being smaller compared to the NG and Propane markets. 
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Furthermore, jumps across all energy commodities and the SEI do not seem to exhibit any 

clustering behaviour15
. Looking at the quarterly aggregates of the jumps, the only clustering 

effect that can be observed is during the years 2001, 2003, and 2005, which is directly related 

to specific events that have shaken the world economy and energy markets; in the last two 

quarters of 2001 the jumps relate mostly with the September 11 terrorist attacks in the US; in 

the first two quarters of 2003 it is the US invasion to Iraq that has shaken the energy markets; 

in the last two quarters of 2005 it is the July terrorist attacks in London, and the devastating 

hurricane Katrina that in August destroyed New Orleans in the US, creating at the same time 

major disruptions in the supply of energy from the Gulf of Mexico. 

To statistically test for the existence of any clustering effect in the occurrence of jumps for 

each energy market and the SEI, a distributional comparison on the daily data series has been 

performed with the two-sample Kolmogorov-Smimov (K-S) test. The K-S test is a non

parametric test for the equality of two probability distributions 1 
6. In this case, the actual 

distribution of daily jumps, as identified by the R-F methodology, is compared to the 

distribution of a series of jumps as generated by a Poisson process, with a frequency equal to 

the frequency of jump occurrence as reported in panel A of table 3-3 for each energy market 

and the SEl. The null hypothesis of the K-S test is that the two samples are from the same 

continuous distribution, at the 5% significance level. The test-statistic numbers for the K-S 

test are reported in table 3-5, where it can be clearly seen that the null hypothesis cannot be 

rejected for any of the energy markets or the SEl. The latter finding confirms that there is no 

clustering behavior observed in the occurrence of jumps for all markets examined. 

15 Especially when looking at the daily observations, there is no apparent clustering effect for any of the energy 

markets examined and the SEI. 
16 A more detailed explanation of the K-S test is given in section 3.5. 
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Table 3-5: Distributional comparison with the Kolmogorov-Smirnov test 
of the actual daily jumps' series and a Poisson generated series. ' 

Comparis~n ~fth.e actual dist~ibutio~ of daily jumps as identified by the R-F methodology, 
and the dlstnbutlOn of a senes of Jumps as generated by a Poisson distribution with a 
frequency equal to the reported frequency of jump occurrence in panel A of table 3-3, for 
each energy m~rket and the SEI. The test-statistic numbers are reported for the 
Kolmogorov-Smlrnov (K-S) test. The null hypothesis of the K-S test is that the two 
samples are from the same continuous distribution, at the 5% significance level. 

K-S 

WTI 0.0011 

HO 0.0022 

GASOLINE 0.0005 

CS_GASOLlNE_WTI 0.0011 

CS_HO_WTI 0.0044 

NG 0.0038 

PROPANE 0.0006 

PJM 0.0033 

SEI 0.0011 

Furthennore, to test whether there is any seasonal behaviour in the occurrence of jumps, the 

quarterly data are regressed against quarterly dummies, for the whole period examined, and 

for all energy markets and the SEI. The results of the coefficients of the dummies for each 

quarter are reported in table 3-6, along with their respective p-values included in brackets. In 

case that the coefficient of a quarterly dummy is significant, at the 1 % significance level, this 

would indicate the presence of seasonality in the jump occurrence. However, as it can be seen 

from the table, none of the energy markets or the SEI exhibits any seasonality during each of 

the four quarters, for the seven year period examined. In addition, each calendar year has 

been split into two seasons, a cold season which includes the three months of the fourth 

quarter of the previous year and the first quarter of the same year, and a wann season that 

includes all months in the second and third quarters of the same year. Then, for each cold and 

wann season, the total number of jumps per season has been aggregated in order to check 

whether the jump occurrence for each energy commodity and the SEI is seasonal or not17. 

The results are presented in figure 3-4. It is observed that the jump occurrence for NG and 

Propane seems to exhibit some seasonal pattern during the cold season, with the effect being 

more profound for the latter commodity. There is a large number of jumps observed every 

17 For the same period, besides quarterly data, also six-month jumps' data, representing the cold and warm 
seasons, were regressed against a seasonal dummy, with the results confirming again that there is no seasonality 
effect in the occurrence of the jumps for any of the energy markets or the SEI. 
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cold season, whereas every warm season there seem to be either no jumps at all or very few. 

This can be attributed to the fact that during the cold season the residential and commercial 

demand for Propane and NG is higher as they are used for the generation of electricity; with 

their share continuously increasing lately due to being among the cleanest fuels that can be 

used for power generation. PJM also seems to exhibit some seasonality in the jump 

occurrence during the warm season, with the effect being more profound in the years 2001, 

2002, and 2007. This is consistent with the expectation that during the warm season demand 

for electricity is higher due to air-conditioning needs, coupled with any potential overloads of 

the system which drive prices up and down unexpectedly and at high rates, leading to the 

occurrence of jumps in the prices. 

On the other hand, the two crack spreads of Gasoline and HO with WTI seem not to exhibit 

any seasonality during the cold or warm seasons as they are volatile consistently throughout 

the seven year period examined, providing a large number of jumps during both seasons. 

Moreover, the remaining commodities from the fuels complex, i.e. WTI, HO, and Gasoline, 

seem also not to exhibit any seasonality in terms of jump occurrence either during the cold or 

warm seasons, as only a small number of jumps is depicted, which is sporadically spread 

across all seven years. It can be concluded that the occurrence of jumps for the latter three 

energy commodities is predominately affected by specific events that cause economic 

turmoil, political events, or coordinated monetary and fiscal policy changes. These events can 

mute, magnify, or even alter any seasonal cycles. For example, if overall economic 

conditions worsen (e.g. during a recession), this may suddenly reduce demand, thereby 

causing limited price gains in periods of seasonal strength. Finally, for the SEI there is also 

no indication of any seasonal cycle presence in the jump occurrence. 
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Table 3-6: Regression results of the jumps against quarterly dummies. 

The table reports the regression results of the jumps against quarterly dummies, for the whole period examined, and for all 
energy markets and the SEI. The coefficients of the dummies for each quarter are reported, along with their respective p
values included in brackets. In case that the coefficient of a quarterly dummy is significant, at the 1 % significance leve l, this 
would indicate the presence of seasonality in the jump occurrence. The regression equation IS: 

x =c+Ql+Q2 + Q3+& ; & - N(O, a,) h . . . 
I I I , were x IS the senes of Jumps for each energy market and the SEI, Q is the 

quarterly dummy, and c is a constant which captures the effect of the remaining quarter i.e. Q4. 

C Ql 02 Q3 

WTI l.14286 (0.01074) -0.14286 (0.80946) -0.71429 (0.23444) 0.39286 (0.49525) 

HO 0.85714 (0.16510) 0.42857 (0.6 1758) -0.42857 (0.61758) 0.01786 (0.98281 ) 

GASOLINE 1.28571 (0.03472) -0.85714 (0.30251) -0.42857 (0.60325) 0.71429 (0.37353) 

CS_GASOLINE_ WTI 2.00000 (0.18347) -0.42857 (0.83746) 0.28571 (0.89119) 3.12500 (0. 13108) 

CS_HO_WTI 1.71429 (0.17417) 1.57143 (0.10768) -1.57 143 (0.249 16) 0.3 2 143 (0.80520) 

NG 3.42857 (0.01636) 1.57 143 (0.10768) -1.57 143 (0.249 16) 0.32 143 (0.80520) 

PROPANE 2.71429 (0.0 11 99) 1.42857 (0.32290) -2.42857 (0.09883) 2.08929 (0.14025) 

PJM 0.71429 (0.5834 1) 0.42857 (0.8 1556) 2.00000 (0.28178) 3.03571 (0 .09696) 

SEI 0.57143 (0.42350) 0.28571 (0.77596) 0.57143 (0.57018) 1.55357 (0. 11873) 

Figure 3-2: Number of jumps detected with the R-F method per quarter, for the whole 
sample period, for the WTI, HO, Gasoline, CS-Gasoline-WTI, and CS-HO-WTI markets. 
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Figure 3-3: Number of jumps detected with the R-F method per quarter, for the whole 
sample period, for the NO, Propane, PIM markets and the SEI. 
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Figure 3-4: Number of jumps detected with the R-F method for the cold and warm seasons, 
for the whole sample period, for all energy markets and the SEI. 
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Turning next to the coefficients of mean reversion, these are estimated using a modified 

version of equation 3.3, following the methodology used by Dixit and Pindyck (1994): 

Llxt = ao + a\xt_\ + 5 t " 5 - N(O a ) t , regres. (3.6) 

where xt = In St' Because our primary goal is to estimate the diffusive risk of the model, the 

regression is applied to the filtered (i.e. without jumps) series when considering the MRJD 

models; the filtered series is the price returns series that excludes all returns that have 

previously been identified as jumps. In the case of the simple MR models, the regression of 

equation 3.6 is applied to the un-filtered (Le. with jumps) series. Then, for both cases, the 

estimates for a and a are calculated using the following equations: 

a = aregres. 
2In(1+ G\) 

(1+G\)2 -1 

(3.7) 

(3.8) 

The long-term mean (~) is calculated from the un-filtered historical time senes of each 

commodity for all models. To estimate the mean reversion rate used after a jump occurs, the 

following regression is estimated on the un-filtered series: 

~ - N(O,aregres) (3.9) 

where DUMt is a dummy variable that takes the value of one when a jump occurs and zero 

otherwise, irrespective of the jumps' direction. A linear time trend is included in the 

regressions to allow for gradual shifts in the "normal" price (Pindyck, 1999)18. The trend 

coefficient is significant, albeit small in size, in all cases except for the two crack spreads. 

The presence of a trend in those series is also confirmed visually by looking at the graphs in 

figure 3-1. Therefore, the de-trended series is used to estimate the different speeds of mean 

reversion and capture the real expected evolution of the log-price series. The mean reversion 

18 The quadratic trend model is also used in the regressions, which is another extrapolation model commonly 
used for commodities, however the regression coefficients of the additional term t2 were insignificant for all the 
energy markets considered in the study. 
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rate after a jump occurs is then calculated from the coefficients of equation (3.9) using the 

following formula: 

(3.10) 

All estimates are annualized assuming 252 trading days per year. Finally, one important 

parameter of the mean reverting process is the half-life, defined as the time required for the 

log-price to go back half way to its long-run mean from its current level, subject to no other 

shocks occurring, and is estimated using the following equation: 

In(2) 
t J =- (3.11) 

"2 ai 

a. 
__ {aJ = a JD' for returns identified as jumps 

I a2 = a, for smooth returns 
i= 1,2 

Panel B of table 3-3 presents the two mean reversion rates and the daily standard deviations 

used in the MR and MRJD models, for all energy markets and the SEI. A general observation 

is that the estimated mean reversion rate for the returns following a jump is higher for all 

markets, compared to the diffusive mean reversion rate, which indicates that when a jump 

occurs prices tend to revert back to their long-term mean faster. The high speed of mean 

reversion for the spikes is one of the significant features of this model, which also improves 

the fit of the model to the observed prices in the market. In addition, the estimated mean 

reversion rate for the un-filtered series is higher when compared to the estimates for the 

filtered series, suggesting that when spikes are extracted from the sample the coefficient of 

mean reversion decreases. The exception to that are the three fuel markets (WTI, Heating Oil 

and Gasoline), Propane and the SEI, where the daily mean reversion rate estimated for both 

the un-filtered and filtered series is similarly small for all three, in the range of 0.1 % to 0.3%. 

This observation reflects the fact that for the seven year period examined, the fuel markets 

exhibit a distinctive upward trend, with a small tendency to revert to a long-term mean. 

However, when looking at the (lID values these are in the range of 0.7% for the SEI, and 0.8% 

for Propane (the smallest rate amongst the eight energy markets), to 2.1% for Gasoline, 

indicating that after ajump occurs prices do tend to revert faster to their long-term mean. 
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It is also noted that the highest speed of mean reversion for both the un-filtered and filtered 

series occurs for the PlM market, which is also the most volatile market with estimated daily 

volatility of 15.8% and 13.2%, respectively. When the speed of mean reversion is compared 

for the spikes amongst the eight energy markets and the SEI, it is observed that PlM has the 

highest (11.5%), followed by the Heating Oil - WTI crack spread (4.1%). This means that 

following a positive (negative) jump, prices will be reduced (increased) by 11.5% and 4.1 %, 

respectively each day in order to return to their long-term mean. However, when the impact 

of the spikes has died-out, prices will revert to their mean at a much lower daily rate of 5.5% 

and 1.3%, respectively. This is consistent with the stylised fact of energy markets that, 

following a jump, prices quickly revert back to their long-run mean at a faster rate than when 

a normal shock occurs. 

The results for the calculated half-lives, in days, of the smooth and jumpy returns are also 

presented in panel B. The half-lives of the jumpy returns are calculated using equation (3.11) 

and represent the respective durations used in our MRJD models for the higher mean 

reversion rate (am) after a jump occurs. It can be seen that for all energy markets the half

lives of the jumpy returns are much shorter than the ones for the smooth returns; also, the 

smallest half-life duration for the jumpy returns is observed for the P lM market (6 days), 

followed by the crack spread of Heating Oil - WTI (17 days), reflecting the higher mean 

reversion rates observed in those markets. This is expected as the PlM is the most volatile 

market which experiences frequent and sudden positive and negative jumps, bringing smooth 

returns back to their long-term level faster, when compared to the other energy markets. The 

highest half-life duration of jumps is that of the SEI (103 days), followed by Propane (87 

days) and NG (72 days). For the fuel markets, the half-life of the jumpy returns for WTI, HO, 

GASOLINE and the Gasoline - WTI crack spread is 36, 67, 34 and 26 days, respectively. 

Finally, it is also noted that, as expected, when jumps are removed from the series the 

estimated volatility is reduced for all energy markets which means that spikes play a very 

significant role in terms of explaining the volatility in the market. 

Turning next to the volatility estimates, the coefficient estimates for the GARCH(1,l) and 

EGARCH(1,I) models, using equation (3.6) for the specification of mean, are presented in 

table 3-7. The regression is applied to both the un-filtered and filtered series, with the 

estimates used for the MR and MRJD models, respectively. Because results are qualitatively 

similar, only those estimated from the un-filtered historical series are reported in the table. 
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All GARCH coefficients are significant at the 5% level, verifying the presence of time

varying volatility in all energy markets and the SEl. In addition, it is observed that the sum of 

the coefficients PI and P2 for the GARCH models is greater than the coefficient fJ3 of the 

EGARCH model, indicating that the volatility persistence in the latter case is reduced, which 

is consistent with the literature on volatility models. Looking at the estimates for the fJ2 

coefficients of the EGARCH models, which measure the leverage effect, it is observed that 

they are significant in all cases indicating the presence of asymmetries in the way past shocks 

affect the current volatility. For the WTI, Heating Oil and Heating Oil - WTI crack spread 

returns, the coefficient estimate P2 is negative at the five percent level, indicating the presence 

of a "leverage" effect; in other words negative shocks have greater impact on volatility than 

positive shocks. One possible explanation for this finding may be that price shocks for the 

aforementioned markets are more supply- than demand-driven, due to the fact that the market 

has been operating at the steep part of the supply stack in recent years. This phenomenon can 

be attributed to the very low spare capacity in world energy production, with small supply 

disruptions causing large price increases due to difficulties of rapid replacement of any 

production shortfalls. This is in contrast to what one expects to find in commodity markets as 

well as recent empirical evidence by, among others Baumeister and Peers man (2008), who 

point out that oil price surges can almost entirely be explained by shifts in global demand 

(positive shocks), with the contribution of supply shocks (negative shocks) on crude oil price 

volatility diminishing considerably over the recent years. This inconsistency in the findings 

can be attributed to the fact that over the past few years other exogenous factors, in addition 

to the market fundamentals of supply and demand, have been driving the oil markets. As a 

result, the fuel markets in particular have become more prone to movements of a much 

broader range of financial indicators like international currencies' exchange rate movements 

relative to the US dollar, interest rates, equity markets' performance, as well as the 

widespread use of "paper" derivative products both for the purposes of risk management as 

well as for speculation. 
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Table 3-7: GARCH and EGARCH coefficient estimates from the un-filtered series. 

The regression results of equation (3.6) are presented, considering a GARCH and an EGARCH estimate for the variance 
respectively. The regression is applied to both the un-filtered and filtered series, with the estimates used for the MR and 
MRJD models, respectively. Results are qualitatively similar and only those estimated from the un-filtered historical 
series are reported in the table. P-values are in brackets. The GARCH and EGARCH volatility equations are the 
following: 

at = ~ Po + P1Et~1 + P2 * aLI [GARCH(1,I)] 

Po+f1t ·t:J+P2' EI-l +P3'ln( 0"':1) 
[EGARCH(1,l)] a = e Cl',_l Ut-l 

t 
WTI HO GASOLINE CS GASOLINE WTI CS HO WTI NG PROPANE PJM SEI 

GARCHp,l~ 

~o 
0.00003 0.00006 0.00012 0.00000 0.00000 0.00006 0.00004 0.00066 0.00006 

(0.00008) (0.00000) (0.00000) (0.00002) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

~1 
0.05992 0.09713 0.09090 0.13803 0.15535 0.13596 0.14783 0.13640 0.09791 

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

~2 
0.88950 0.81687 0.78194 0.88450 0.84440 0.86011 0.77278 0.84627 0.84029 

~0.00000) (0.00000) ~0000001 (0.00000) ~000000) (0.00000) (0.00000) (0.00000) !000000) 

EGARCH~1,11 

~O 
-0.69575 -0.71312 -0.86639 -0.31057 -1.34905 -0.32579 -1.58968 -0.30804 -0.49275 

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

~1 
0.10618 0.19570 0.19953 0.20868 0.35897 0.21273 0.36064 0.24126 0.17839 

(000000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) 

~2 
-0.10648 -0.00630 0.00658 0.06972 -0.03414 0.07314 0.02848 0.03709 0.04338 

(001404) (0.01002) (0.01179) (0.00822) (0.01211) (0.00896) (0.00887) (0.01212) (0.01366) 

~3 
0.91928 0.92322 0.89790 0.98322 0.88680 0.97227 0.82680 0.96604 0.94866 

(0.00000) (0.00000) (0000001 (000000) (0.00000) (0.00000) (0000001 (0.00000) (0.00000) 

However, for the remaining energy markets, the asymmetry parameter is positive at the 5% 

significance level, which implies that positive shocks, as described by unexpected demand 

shocks, have greater impact on volatility compared to negative shocks, which is consistent 

with the presence of an "inverse leverage" effect. It can be argued that since the beginning of 

the new millennium, worldwide economic growth gave rise to stronger than expected demand 

for energy products that are critical to the global economy. As a result, demand outpaced the 

near-term ability of the market to bring forth proportionate additional supplies; the resulting 

tightness in the global energy markets caused prices to increase, and the impact of this 

increase has been felt throughout the whole chain of production. Along the same lines, 

Kanamura (2009) finds that demand for US natural gas prices is highly inelastic in the short

term, with the energy use being independent of the price change, suggesting the presence of 

an "inverse leverage" effect. So, when an unexpected demand shock occurs, energy prices are 

expected to exhibit this "inverse leverage" effect, a conclusion that can be drawn from our 

results; this is also consistent with the findings in Eydeland and Wolyniec (2003) regarding 

the energy markets. 
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3.S. Simulation of Estimated Models 

After estimating the parameters of the model, Monte Carlo (MC) is used to simulate the 

behaviour of each market; the simulations are carried out based on equation (3.4) and the 

paths are simulated 100,000 times. The starting date of the simulations is the same as the 

initial date of the historical prices, i.e. 12/09/2000, with the horizon of the simulated 

distribution extending up to 12/09/2007; in total 1827 trading days. Since the main purpose of 

this chapter is to propose models that can capture the distributional characteristics of the 

underlying market, MC simulation is a valuable tool for helping with the selection criteria of 

the best model. Clewlow et al. (2000a; 2000b) use Monte Carlo simulations on different 

variations of the MRJD model and demonstrate how these models can be used to price energy 

options whose payouts are path-dependent, or rely on multiple energies. In addition, other 

applications of MC simulation include pricing of various energy derivatives contracts, policy 

development and risk monitoring. Hence, because the goal is to determine whether the 

proposed models can capture the major characteristics of the distribution of energy spot 

prices, in what follows, a distribution analysis is performed which will help analyze the price 

behaviour over a period of time and, at the same time, assist with testing, benchmarking, and 

selecting the most appropriate model for describing each one of the energy markets 

examined. 

The descriptive statistics of the actual log-returns' series, along with the average per time

step simulated paths for all models used in the analysis, are presented in table 3-8. The 

average of the simulated values at time t across all possible paths is calculated as: 

n SS 
S/=L~ 

OJ=1 n 
(3.11) 

where, St,ro is the simulated spot price of path ffi at time t, and n is the number of MC 

simulations. From table 3-8 it can be seen that for almost all the energy markets examined, 

the models that most closely match the skewness and kurtosis of the underlying distributions 

are the ones that incorporate jumps, namely the MRJD-OLS, the MRJD-GARCH and the 

MRJD-EGARCH. It can also be noted that in the case of WTI, the skewness produced with 

the MRJD-OLS model is identical to the actual one, whereas the kurtosis value is the highest 

among the competing models, thus also following very closely the actual one. It is only for 
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HO and Propane that the MR-GARCH(1, 1) model is able to better match the skewness and 

kurtosis of the actual price path. Therefore, it seems that the proposed approach to allow for a 

different speed of mean reversion after a jump occurs, improves the fit that the models have 

in terms of capturing the skewness and kurtosis of the actual series, for almost all energy 

markets and the SEI. 

Table 3-8: Distributional comparison of the actual spot log-price returns to the average per 
time-step simulated path. 

Distributional comparison of the actual spot logarithmic-price returns to the average per time-step simulated 

path for each model specification. Where S/ = i S,~(. is the average of the simulated values at time t across all 
a>=1 n 

possible paths, St.'" is the simulated spot price of path 0) at time t, and n is the number of Me simulations. The 
test-statistic numbers are reported for the Kolmogorov-Smirnov (K-S) test, with an asterisk (*) indicating that 
the null is accepted that the two samples are from the same continuous distribution, at the 5% significance level. 
The models with the smallest K-S test-statistic value are indicated with a (+). 

WTI 

Actual Path 
GBM 

MR-OLS 
MR-GARCH(I,I) 

MR-EGARCH (1,1) 
MRJD-OLS 

MRJD-GARCH(1,I) 

MRJD-EGARCH (1, I) 

HO 

Actual Path 
GBM 

MR-OLS 
MR-GARCH(1, I) 

MR-EGARCH (1,1) 
MRJD-OLS 

MRJD-GARCH(I,I) 

MRJD-EGARCH (l,l) 

GASOLINE 

Actual Path 
GBM 

MR-OLS 
MR-GARCH(I, I) 

MR-EGARCH (1,1) 
MRJD-OLS 

MRJD-GARCH(1,I) 

MRJD-EGARCH(1,I) 

CS GASOLINE WTI 

Actual Path 
GBM 

MR-OLS 
MR-GARCH(1,I) 

MR-EGARCH (1,1) 
MRJD-OLS 

MRJD-GARCH(1,1 ) 

MRJD-EGARCH(I,I) 

CS HO WTI 

Actual Path 
GBM 

MR-OLS 
MR-GARCH(I,I) 

MR-EGARCH (1,1) 
MRJD-OLS 

MRJD-GARCH(I ,I) 

MRJD-EGARCH (1,1) 

Mean 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
-0.01 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

Median 

000 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
000 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
000 
0.00 
0.00 
000 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

Max 

0.11 
0.08 
0.12 
0.12 
0.13 
0.13 
0.14 

0.13 

0.12 
0.09 
0.14 
0.14 
0.14 
0.20 
0.21 

0.20 

0.18 
0.10 
0.20 
0.20 
0.20 
0.24 
0.24 

0.24 

0.12 
0.05 
0.12 
2.34 
0.12 
0.11 
0.42 

0.13 

0.06 
0.03 
0.06 
0.11 
0.06 
0.08 
0.13 

0.08 

Min 

-0.17 
-0.08 
-0.17 
-0.17 
-0.17 
-0.21 
-0.21 

-0.21 

-0.19 
-0.09 
-0.19 
-0.19 
-0.20 
-0.19 
-0.19 

-0.19 

-0.18 
-0.10 
-0.20 
-0.19 
-0.20 
-0.26 
-0.26 

-0.26 

-0.16 
-0.05 
-0.16 
-2.57 
-0.16 
-0.08 
-0.43 

-0.11 

-0.05 
-0.03 
-0.06 
-0.12 
-0.06 
-0.06 
-0.13 

-0.07 

Std. Dev. 

0.02 
0.02 
0.03 
0.03 
0.03 
0.03 
0.04 

0.03 

0.03 
0.03 
0.04 
0.04 
0.04 
0.04 
0.04 

0.04 

0.03 
0.03 
0.04 
0.04 
0.04 
0.04 
0.04 

0.04 

0.01 
0.01 
0.02 
0.48 
0.02 
0.02 
0.08 

0.03 

0.01 
0.01 
0.01 
0.02 
0.01 
0.01 
0.02 

0.01 

Skewness 

-0.45 
0.00 
-0.16 
-0.17 
-0.16 
-0.45 
-0.34 

-0.42 

-0.27 
0.00 
-0.10 
-0.10 
-0.09 
0.08 
0.07 

0.08 

-0.26 
0.00 
-0.09 
-0.09 
-0.09 
-0.11 
-0.10 

-0.10 

-0.92 
0.00 
-0.32 
-0.27 
-0.29 
1.15 

-0.03 

0.44 

0.37 
000 
0.13 
0.02 
0.10 
0.45 
0.03 

0.20 

Kurtosis 

6.48 
3.00 
3.87 
3.94 
3.94 
5.39 
4.91 

5.28 

6.69 
3.00 
3.92 

4.03 
3.92 

4.97 
4.76 

4.83 

6.76 
3.00 
3.94 
4.00 
3.91 
6.04 
5.79 

5.85 

29.30 
3.00 
9.47 
8.62 
8.52 
6.69 
6.70 

4.58 

10.67 
3.00 
4.89 
8.23 
4.66 
8.28 
7.06 

6.33 

K-S 

0.501 
0.058 
0.059 
0055 
0.056 
0.055 
0.054+ 

0.491 
0.067 
0.065 
0.065 
0.060 
0.057 
0.056+ 

0.484 
0.044* 
0.045 
0.046 

0.044*+ 

0.045 

0.045 

0.463 
0.029* 
0.297 
0.025* 
0.023*+ 
0.028* 

0.024* 

0.474 
0.031* 
0.031* 
0.032* 
0.029* 
0.023' 

0.022'+ 

105 



Table cont. 

NG 

Actual Path 
GBM 

MR-OLS 
MR-GARCH(l,I) 

MR-EGARCH(I,I) 
MRJD-OLS 

MRJD-GARCH(I,I) 

MRJD-EGARCH (1,1) 

PROPANE 

Actual Path 
GBM 

MR-OLS 
MR-GARCH(I,I) 

MR-EGARCH (1,1) 
MRJD-OLS 

MRJD-GARCH(I, I) 

MRJD-EGARCH(I,I) 

PJM 
Actual Path 

GBM 

MR-OLS 

MR-GARCH(I,I) 

MR-EGARCH(I,I) 

MRJD-OLS 

MRJD-GARCH(I, I) 

MRJD-EGARCH (1,1) 

SEI 

Actual Path 

GBM 

MR-OLS 

MR-GARCH(l,l ) 

MR-EGARCH(l,I) 

MRJD-OLS 

MRJD-GARCH(I, I) 

MRJD-EGARCH (1,1) 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.62 
0.17 
0.62 
0.73 
0.63 
0.49 
0.58 

0.51 

0.36 
0.08 
0.36 
0.36 
0.36 
0.23 
0.24 

0.23 

0.96 

0.52 

1.09 

1.16 

1.14 

1.42 

1.63 

1.46 

0.17 

0.11 

0.20 

0.21 

0.21 

0.31 

0.32 

0.31 

-0.57 
-0.17 
-0.57 
-0.73 
-0.57 
-0.37 
-0.55 

-0.40 

-0.24 
-0.08 
-0.24 
-0.24 
-0.25 
-0.19 
-0.21 

-0.20 

-143 

-0.52 

-1.43 

-1.46 

-143 

-146 

-1.69 

-lSI 

-0.24 

-0.11 

-0.24 

-0.24 

-0.24 

-0.24 

-0.26 

-0.24 

0.05 
0.05 
0.07 
0.11 

0.08 
0.07 
0.11 

0.08 

0.02 
0.02 
0.03 
0.03 
0.03 
0.03 
0.04 

0.04 

0.15 

0.15 

0.22 

0.23 

0.24 

0.23 

0.31 

0.26 

0.03 

0.03 

0.04 

0.04 

0.05 

0.05 

0.05 

0.05 

0.73 
000 
0.26 
-0.06 
0.13 
0.90 
0.12 

0.43 

161 
0.00 
0.57 
0.60 
0.55 
0.55 
0.20 

0.33 

0.06 

000 

0.02 

-0.01 

-0.02 

-0.06 

-0.09 

-0.11 

0.24 

0.00 

0.09 

0.08 

0.07 

0.50 

0.32 

0.40 

32.85 
3.00 
10.42 
8.83 
7.44 
9.59 
5.66 

6.16 

45.15 
3.00 
13.52 
14.71 
13.18 
10.39 
6.34 

7.19 

12.78 

2.99 

5.34 

5.97 

4.99 

803 

6.00 

6.57 

8.21 

3.00 

4.29 

4.39 

4.19 

7.02 

6.11 

6.26 

0.453 
0.059 
0.070 
0.056 
0.049 
0.052 
0.049+ 

0.505 
0.110 
0.107 
0.108 
0.096 
0.093 
0.092+ 

0.467 

0.044* 

0.041* 
0.039*+ 

0.046 

0.041* 

0.043* 

0.480 

0.026* 

0.024* 

0.023* 

0.021* 

0.022* 
0.017*+ 

To formally compare the actual returns' distribution with the average of the simulated series 

per time-step, the two-sample Kolmogorov-Smirnov (K-S) test is calculated. The two-sample 

K-S test is a non-parametric test for the equality of two probability distributions. The test 

effectively compares the distance between the actual and the simulated distribution around 

their mean, and the reported statistic is the maximum vertical deviation between the two 

curves. One of the advantages of the K-S test is that the value of the statistic is not affected 

by scale changes like using the logarithm of prices, as is the case in the data; it is a robust test 

that only considers the relative distributions of the data. In this case, the first sample 

Xp""Xm of size m = 1826 observations, which are the actual spot log-price returns, has a 

distribution with cumulative density function (c.d.f.)F(x), and the second will be in every 

case the average per time-step simulated sample 1';, ... , Ym of the same size m = 1826, having a 

distribution with c.d.f. G (x). The null hypothesis of the K-S test is that F and G are from the 
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same continuous distribution, with the alternative hypothesis that they are from different 

continuous distributions: Ho : F = G vs. HI: F =I: G 

Results from the K-S tests are also presented in table 3-8; based on the calculated K-S test 

statistic the null hypothesis that the actual and the average per time-step simulated 

distributions are identical is accepted at the 5% significance level, for the Gasoline market, 

the two crack spreads of crude oil with heating oil and gasoline, the PIM market, and the SEI. 

This is true for most models with the exception of the GBM where the null hypothesis of 

equality of distributions is overwhelmingly rejected. Comparing the values between the 

different models it can be seen that generally the models that incorporate jumps have the 

lowest value for the K-S test indicating that, at least nominally, these provide the closest 

match to the underlying distribution. For the remaining markets, although the null hypothesis 

that the samples are drawn from an identical distribution is rejected, the value of the K-S 

statistic is lower for the models that contain jumps in their terms. Furthermore, in table 3-8, 

the models with the smallest K-S test-statistic value are indicated with a (+). It can be seen 

that the models producing the smallest K-S test-statistic values are the MRJD-EGARCH(1,I) 

for WTI, HO, CS_HO_ WTI, NG, Propane, and the SEI, the MRJD-OLS model for Gasoline 

and CS _Gasoline _ WTI markets, and finally the MR -EGARCH(1, 1) for the P IM market. 

Overall, from the distributional comparison of the actual log-price returns and the average per 

time-step simulated returns, it can be concluded that the addition of jumps in the simple mean 

reversion model - while allowing for a different speed of mean reversion after a jump occurs 

for a period of time equal to the estimated half-life of the jumpy returns - as well as the 

addition of the EGARCH (1,1) process, improves the fit of the simulated returns to the actual 

distributions, for most of the energy markets under investigation and the SEI. 

Furthermore, the relative goodness of fit for the various models is assessed by examining 

how closely each endogenous variable from the simulations tracks the actual spot logarithmic 

prices for the seven year period examined. Clewlow and Strickland (2000) use the likelihood 

ratio test and the Schwartz Bayesian Information criterion to compare their various models. 

In this case, because the simulations' goodness of fit needs to be tested, three quantitative and 

one qualitative measure is used to check how closely the individual variables track their 

corresponding data series. The three quantitative measures are the root-mean-square error 

(RMSE), the root-mean-square percent error (RMSE %), and Theil's inequality coefficient 
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known as Theil's U (Theil, 1961). The RMS error measures the deviation of the average 

simulated log-price from its actual time path, while the RMS percent error evaluates the 

magnitude of the RMS error as a percentage of the underlying spot price; finally, Theil's U 

measures the RMS error in relative terms. 

Table 3-9 presents the comparison results for the proposed models based on the RMSE, 

RMSE%, and Theil's U metrics. It can be seen that, based on all three comparative statistical 

measures, the MRJD-EGARCH (1,1) is the best model for tracking the actual time path of the 

WTI and Gasoline log-prices with the statistics for the MRJD-OLS being very similar. For 

the Heating Oil market, the best model appears to be the MRJD-OLS, which is marginally 

better than the MRJD-EGARCH (1,1) on the basis of the RMSE and RMSE% statistics. For 

all the remaining markets and the SEI, the model that best captures the price paths of the 

underlying series appears to be the MRJD-OLS, a result which is verified by all three 

statistical measures, with the MRJD-EGARCH exhibiting the second-best performance. It is 

only for the Gasoline - WTI crack spread that the MR-OLS and MR-EGARCH (1,1) models 

appear to perform better than the respective models incorporating jumps. Hence, the initial 

motivation of this chapter to use Poisson jumps and to allow for two different speeds of mean 

reversion in the modelling procedure, to explain the spikier behaviour of the energy log

prices, combined with an EGARCH specification for the variance, is validated by the above 

findings. 
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Table 3-9: Comparison of the models' goodness of fit to the actual spot log-prices. 

Simulation error statistics on the difference between actual versus average simulated price paths. RMSE, RMSE 
%, and Theil's U are respectively calculated as: 

T (S' -saJ T 2 

t(s:;s:)' / t(S:f 
T 2 :L(S: -S;) :L_I _ I 

:L(S;) 
RMSE 1-\ RMSE%= 

1.\ S; 
and u= 1=1 + 1-\ 

T T T T 

where S,' = L S:m is the average of the simulated values at time t across all possible paths, St.'" is the simulated 
(0 

spot price of path 0) at time t, OJ is the number of Me simulations, sa is the actual value on any given time-
I 

steE, and T is the number of discretised Eeriods in the simulation. 
MR- MR- MR-EGARCH MRJD- MRJD- MRJD-EGARCH 

GBM OLS GARCH{l,l~ {l,l~ OLS GARCH!l,l~ !I,l~ 
WTI 

RMSE 0.695 0.652 0.651 0.652 0.385 0.399 0.387 
RMSE% 0.188 0.169 0.168 0.168 0.099 0.103 0.100 
Theil's U 0.090 0.096 0.095 0.096 0.053 0.055 0.053 

HO 

RMSE 0.792 0.634 0.635 0.666 0.379 0.390 0.385 
RMSE% 0.207 0.158 0.159 0.167 0.096 0.099 0.098 
Theil's U 0.098 0.088 0.089 0.093 0.050 0.051 0.051 

GASOLINE 

RMSE 0.860 0.528 0.524 0.554 0.377 0.382 0.380 
RMSE% 0.218 0.131 0.130 0.138 0.095 0.096 0.096 
Theil's U 0.108 0.071 0.070 0.074 0.049 0.050 0.049 

CS_GASOLINE 
WTl 

RMSE 0.361 0.067 7.629 0.075 0.166 DA01 0.177 
RMSE% 0.077 0.014 1.620 0.016 0.D35 0.085 0.038 
Theil's U 0.039 0.007 0.668 0.008 0.017 0.043 0.019 

cs no WTl 

RMSE 0.224 0.048 0.092 0.054 0.045 0.105 0.054 

RMSE% 0.048 0.010 0.020 0.012 0.010 0.022 0.012 

Theil's U 0.024 0.005 0.010 0.006 0.005 0.Dl1 0.006 

NG 

RMSE 1.371 OA77 1.263 0.627 0.508 0.814 0.566 

RMSE% 0.857 0.301 0.781 0.392 0.376 0.539 0.397 

Theil's U 0.377 0.145 0.324 0195 0.135 0.233 0.155 

PROPANE 

RMSE 0.739 0.573 0.558 0.590 0.327 0.386 0.353 

RMSE% 0.178 0.131 0.128 0.135 0.080 0.092 0.085 

Theil's U 0.084 0072 0.070 0.074 0.D38 0.046 0.042 

PJM 

RMSE 4.051 OA97 0.565 0.593 0.546 0.930 0.641 

RMSE% 1.019 0.126 0.144 0.151 0.140 0.238 0.164 

Theil's U 0.449 0.064 0.074 0.Q78 0.071 0.124 0.084 

SEI 

RMSE 0.884 0.476 OA81 0.514 0.385 OA28 OA04 

RMSE% 0.185 0.098 0.099 0.106 0.083 0.091 0.087 

Theil's U 0.092 0.052 0.052 0.056 0.040 0.045 0.042 
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Although the statistics presented above are very helpful by giving an indication on the 

relative quality of each model, another important criterion is how well the model captures the 

turning points in the data. For that, a very useful test can be a simple visual inspection of the 

sample price processes and the associated log-return prices (Clewlow and Strickland, 2000). 

Therefore, a graphical comparison of the simulated prices with the actual data is produced, 

plotting at first a random simulated price path and the observed data, and at second the 

distribution of the daily log-returns as a histogram and the daily log-returns for the average 

per time-step simulated prices as an overlaid line. Figure 3-5 (Panels A to I) shows the plot of 

a random simulated path for the MRJD-EGARCH (1,1) model over the actual path of the log

prices, for all energy markets and the SEI. It can be seen that the MRJD-EGARCH (1,1) 

model can capture most of the major turning points in the data, tracking close enough the 

actual path. In particular, a major feature of the proposed model is the fact that following a 

jump in the prices, the price series mean-reverts to its mean at a faster rate which is consistent 

with the pattern observed in the market. In addition, Figure 3-6 (Panels A to I) shows the 

distribution of the actual spot daily log-returns as a histogram and the daily log-returns for the 

average per time-step simulated prices as an overlaid line, for all energy markets and the SEI. 

It is observed that the MRJD-EGARCH (1,1) model captures very well the kurtosis and the 

skewness of the actual log-returns for almost all energy markets and the SEI. This 

observation enhances the findings from tables 3-8 and 3-9, where the MRJD model with an 

EGARCH specification for the variance is amongst the best performing models in terms of 

approximating the actual returns' distribution. 
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Figure 3-5: Random simulated path of spot log-prices from the MRJD-EGARCH (1,1) 
model plotted against the actual path, for all energy markets. 

Panel A: Crude Oil- West Texas Intermediate (WTI) 
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Panel C: Gasoline Oil- New York Harbour RBOB (Gasoline) 
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Panel E: 1-1 Crack Spread of Heating Oil with WTI (CS-HO-WTI) 

Random Simulated Path for Log-CS-HO-WTl 
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Panel G: Propane - Mont Belvieu Texas (Propane) 
Random Simulated Path for Log-PROPANE 
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Panel I: Spot Energy Index (SEI) 
Random Simulated Path for Log-SEI 
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Figure 3-6: Histogram of the average simulated spot log-price returns per time-step for the 
MRJD-EGARCH (1 ,1) model plotted as a solid line against the actual returns, for all energy 
markets. 
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Panel B: Heating Oil- New York Harbour No.2 Fuel Oil (HO) 
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Panel D : 1-1 Crack Spread of Heating Oil with WTI (CS-HO-WTI) 
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Panel F: Propane - Mont Belvieu Texas (Propane) 
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Panel H: Interconnection Electricity Firm On Peak Price Index (P 1M) 
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3.6. Conclusions 

In this chapter the behaviour of spot prices in the eight energy markets that trade futures 

contracts on NYMEX and the constructed energy index is examined. Given the stylised 

properties of these markets, a mean-reverting spike model is proposed that incorporates two 

different speeds of mean reversion to capture the fast mean-reverting behaviour of prices 

after ajump occurs and the slower mean reversion rate of the diffusive part of the model. The 

model is also extended to incorporate time-varying volatility in its specification, modelled as 

an EGARCH process. The estimation results from the historical series indicate the presence 

of a "leverage effect" for WTI, Heating Oil, and Heating Oil - WTI crack spread spot log

price returns, whereas for Gasoline, Gasoline - WTI crack spread, NG, Propane, PlM and the 

SEI the presence of an "inverse leverage" effect is found. 

The comparison of the different models used in this chapter is done using 100,000 Monte 

Carlo simulations in each case. The results indicate that the inclusion of Poisson jumps to the 

mean reverting model, in combination with the use of a different speed of mean reversion 

after ajump occurs, for a duration equal to the half-life of the jumps' returns, improves the fit 

significantly for all energy markets and the SEI. The proposed modelling approach captures 

very well both the skewness and kurtosis of the actual series. Furthennore, the addition of the 

EGARCH (1,1) specification for the variance improves the fit of the simulated returns to the 

actual distributions, for most of the energy markets under investigation and the SEI. This 

finding is validated by the reported K -S statistics, as well as by comparing visually the 

simulated to the actual price series. Hence, overall, the proposed modelling approach for 

energy pricing combined with the findings of this chapter is relevant for both policymakers 

and market participants as it can be applied for forecasting, risk management, derivatives 

pricing, and policy development and monitoring purposes. 

A sound understanding of the stochastic dynamics of energy prices, with their umque 

characteristics which make the risk management ideas and models developed for the financial 

markets, not directly applicable to the energy complex, is a prerequisite for making an 

investment into energy commodities. In today's fast moving and at the same time risk loaded 

energy trading environments, managing risk effectively is a critical success factor for any 

trading business and of outmost importance for the development of the fast-growing energy 

derivatives and ETFs markets. The lack of good risk management practices can often tum out 
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to be very costly for the participants in the energy markets. Thus, with increased management 

calls for a simple risk measurement that would be easy to interpret, a single number as 

represented by Value-at-Risk, has recently dominated as the most suitable risk management 

tool. 

The risk management models and framework proposed in the next chapter move towards this 

direction by optimally capturing the behaviour of the energy markets under investigation, 

accounting not only for their frequency of occurrence but also for the volatility spikes and 

their clustering behaviour through time. An innovative VaR methodology to manage spot 

price risk of the individual energy commodities and the constructed spot energy index is 

proposed. Among a number of traditional and the proposed VaR models, the best set of 

models appropriate to capture the dynamics of the energy prices and the SEI is selected, 

assessing their performance while quantifying energy price risk by calculating both VaR and 

ES measures. A consistent risk management framework and improved methods are required 

for measuring and modelling tail risk, while at the same time effectively assessing the 

integrity of the models. 
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Chapter 4. 

4. Risk management in the energy markets and Value-at-Risk 
modelling: a hybrid approach 

This chapter proposes a set of VaR models appropriate to capture the dynamics of energy 

prices and subsequently quantifY energy price risk by calculating VaR and ES measures. 

Amongst the competing VaR methodologies evaluated in this paper, besides the commonly 

used benchmark models, a MC simulation approach and a Hybrid MC with Historical 

Simulation approach, both assuming various processes for the underlying spot prices, are 

also being employed. All VaR models are empirically tested on eight spot energy commodities 

that trade futures contracts on NYMEX and the Spot Energy Index. A two-stage evaluation 

and selection process is applied, combining statistical and economic measures, to choose 

amongst the competing VaR models. Finally, both long and short trading positions are 

considered as it is extremely important for energy traders and risk managers to be able to 

capture efficiently the characteristics of both tails of the distributions. 
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4.1. Introduction 

The events and especially the aftershocks of the recent financial crisis have been 

unprecedented, at least in terms of the speed and magnitude of the shock, and the potential 

long-term impact on the global real economy. As Rogoff and Reinhart (2008) point out, most 

of the 18 major banking crises and a number of more minor crises that they recorded since 

World War II, with a major market event appearing at least every 10 years, were caused by 

excess liquidity in the economy along with a general misjudgement on the benefits of a 

certain type of innovation. The recent financial crisis of 2007 was no different. Financial 

innovation in the form of sophisticated securitized instruments contributed to a false sense of 

security around systemic risk reduction, while at the same time excess liquidity was pouring 

into the developed countries' financial and housing markets, mostly by investments coming 

from the emerging markets. 

The latest economlC recession and its subsequent shock waves significantly affected 

international trade, the commodity markets and most specifically the energy markets. Oil 

markets rallied upwards for almost a year after the crisis started, peaking at $145 per barrel, 

then suddenly collapsed to $31 per barrel within a few months, quickly then recovering some 

of the lost ground, trading above $60 per barrel until now. These recent energy markets' 

dynamics can be attributed not only to the prevailing supply and demand conditions, but also 

to the growth of speculative investments by a more diverse and sophisticated body of market 

players, including investment banks, hedge funds, pension funds, Exchange Traded Funds 

(ETFs) and Exchange Traded Notes (ETNs) that follow the commodity markets. This 

increased sophistication and analytical skills that were brought in to the energy markets, 

made the use of forecasting models, hedging tools, and risk management techniques, and thus 

in extension the VaR applications, essential tools for quantifying energy price risk. In this 

newly created energy environment, precise monitoring and protection against market risk has 

become a necessity. Power utilities, refineries or any other energy market player can use 

valuable information derived from the VaR exercise applied in-house, to plan and implement 

their future risk management strategy. 

Following the amendment of the Basel Capital Accord by the Basel Committee on Banking 

Supervision in 1998, that obliged all member banks to calculate their capital reserve on the 

basis of VaR, the VaR measurement has become extremely popular both with practitioners as 
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well as academics. As a result, numerous methods have been developed for calculating VaR, 

proposing techniques that have been significantly refined from the initially adopted Risk 

Metrics (JP Morgan, 1996), with the goal of providing reliable estimates (Jorion, 2006). The 

aim of this chapter is to investigate whether the widely used in the financial world Value-At

Risk (V AR) and Expected Shortfall (ES) methodologies, along with a new set of proposed 

models, can be successfully applied in the energy sector. VaR is used to identify the 

maximum potential loss over a chosen period of time, whereas the ES measures the 

difference between the actual and the expected loss when a VaR violation occurs. 

Although a large body of the empirical literature is focused on forecasting energy prices and 

their volatilities, according to Aloui and Mabrouk (2010) they are far from finding any 

consensus about the appropriate VaR model for energy price risk forecasting. This chapter 

attempts to close this gap in the existing literature by proposing a set of models appropriate to 

capture the dynamics of energy prices and subsequently quantify energy price risk by 

calculating VaR and ES measures. The methodologies employed include standard VaR 

approaches like the Risk Metrics, GARCH and many other commonly used models, MC 

simulations, and a hybrid Monte Carlo with Historical Simulations introduced for the first 

time in this paper (to the best of the author's knowledge). The model specifications for the 

MC simulations and the hybrid approach are the MR and MRJD models, modified to allow 

for GARCH and EGARCH volatility, and for different speeds of mean reversion after a jump 

is identified, as described in chapter three. 

Simulation models are widely used in VaR applications since they help in understanding any 

potential risks in an investment decision, and in preparing for the possibility of a catastrophic 

outcome even though it might have a small probability of occurring. There are a number of 

recently proposed simulation methods for generating reliable VaR estimates due to the 

flexibility they offer. Huang (2010) proposes a Monte Carlo Simulation VaR model that 

accommodates recent market conditions in a general manner. By applying the methodology 

on the S&P 500 returns he finds that the VaR estimation via the proposed optimization 

process is reliable and consistent, producing better back-testing outcomes for all out-of

sample periods tested. By simulating the value of an asset under a variety of scenarios not 

only the possibility of falling below the desirable level can be identified, but there can also be 

measures taken to prevent this event from occurring in the future. 
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This chapter employs a two-stage evaluation and selection process, combining statistical and 

economic measures, to choose between numerous competing VaR models applied in a 

number of energy commodities and the Spot Energy Index. The proposed SEI can be closely 

monitored by the major players of the energy industry and used as the underlying asset to 

many derivatives products such as futures and forwards, options, swaps, and also as the 

underlying index of energy ETFs, ETNs, and hedge funds. Amongst the competing VaR 

methodologies evaluated in this chapter, besides the commonly used benchmark models, a 

MC simulation approach and a Hybrid MC with Historical Simulation approach, both 

assuming various processes for the underlying spot prices, are also being proposed. 

In contrast to most existing studies on VaR modelling that consider only long positions, this 

chapter examines both long and short trading positions. It is extremely important for energy 

traders and risk managers to know whether the models they are using can capture efficiently 

the characteristics of both tails of the distributions, as there are a lot of short players in the 

market alongside the long players. When taking short positions there is a risk of increasing 

prices, whereas when taking long positions the risk comes from falling prices. Thus, the focus 

should be on the left tail of the returns' distribution for the latter case, and on the right tail for 

the former case. Within the energy markets, the results of this chapter have important 

implications for the accurate risk management of energy risk and the development of the fast

growing energy derivatives and ETFs markets. 

Furthermore, although the proposed VaR model selection process reduces the numerous 

competing models to a smaller set, in some cases more than one model is identified as the 

most appropriate. It is in those cases that the modeller should view the selection process as 

being more valuable and useful than the actual VaR number obtained, and use in combination 

to the proposed evaluation process other real world considerations for his/ her final choice. 

As Poon and Granger (2003) argue in their paper, the most important aspect of any 

forecasting exercise is by itself the comparison process of competing forecasting models. 

The structure of this chapter is as follows. Sections 2 and 3 describe the VaR methodologies 

and the back-testing procedure employed, respectively. Section 4 presents the data used. 

Section 5 offers the empirical results of the study and, finally, section 6 concludes the 

chapter. 
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4.2. VaR Methodologies 

VaR is defined as the maximum expected loss in the value of an asset or a portfolio of assets 

over a target horizon, subject to a specified confidence level. Thus, VaR sums up the risk 

which an asset or a portfolio is exposed to in a single monetary (or expected return) figure. 

That makes the VaR approach directly applicable to the field of energy prices. Statistically 

speaking, the calculation of VaR requires the estimation of the quantiles of the distribution of 

returns and can be applied to both the left (long positions) and the right (short positions) tails. 

Generally, the VaR of a long position can be expressed by the following formula: 

(4.1) 

where, rt+ 1 is the return of the asset or portfolio of assets over a time horizon (in this case one 

day) from t to t+ 1, a. is the confidence level, and .at is the information set at time t. The VaR 

for a short position is computed using the same definition, with the only difference of 

substituting a. with I-a.. The ES for a long position, defined as the average loss over the VaR 

violations from the N out-of-sample violations, is also expressed mathematically as: 

(4.2) 

As far as the energy markets are concerned, there has been a recent increase in the relevant 

empirical literature on testing VaR models and assessing their performance. These papers 

include a wide range of models from the standard Variance Covariance, to Historical 

Simulation variations, Monte Carlo simulation, and a plethora of models of the ARCH-type, 

also including long memory variations, under different distributional assumptions for the 

returns' innovation (see among others, Chiu et aI., 2010; Aloui and Mabrouk, 2010; Huang et 

aI., 2008; Sadeghi and Shavvalpour, 2006; Giot and Laurent, 2003; Cabedo and Moya, 2003). 

Moreover, there have also been a few studies estimating VaR on the energy markets using an 

extreme value theory approach (see among others, Nomikos and Pouliasis, 2011; 

Marimoutou et aI., 2009; Krehbiel and Adkins, 2005). Results however, are contradictory in 

terms of the accuracy of the VaR models proposed, with plenty of discussions focusing on as 

to whether the simpler models can outperform the more complex! flexible ones. Brooks and 

Persand (2003) find that simple models achieve comparably better VaR forecasts to the more 

complex ones, while Mittnik and Paolella (2000) show that more accurate VaR forecasts can 
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be achieved with the more flexible models. In addition, Bams et al. (2005) find that amongst 

the models they examine, the simple models often lead to underestimation of the VaR, 

whereas the opposite holds for the more complex models that seem to lead to overestimation 

of the VaR. 

Furthermore, following the emerging concept in the literature of combining VaR forecasts, 

Chiu at al. (2010) propose a composite VaR model to increase forecast effectiveness. In the 

same lines, Hibon and Evgeniou (2005) suggest that by combining forecasts instead of 

selecting an individual forecasting model, modelling risk is reduced. Choosing the most 

suitable VaR model for each commodity and for the SEI is of outmost importance for all 

energy market players, traders, hedgers, regulators, and policy-makers as modelling risk is 

reduced, and thus avoiding faulty risk management caused by the selected model's 

inefficiencies. 

In principle, there are three general approaches to compute VaR, each one with numerous 

variations. The first one is to assume the return distributions for the market risks. The second 

one is to use the variances and co-variances across the market risks, and the third one is to 

run hypothetical portfolios through historical data or by using Monte Carlo simulations. 

Within these three general approaches to VaR, there are many different methodologies 

available, supported mostly by the internal model's approach that gives banks and investment 

houses the freedom to choose or develop their own methodology. 

This chapter describes various models originating from all three approaches, and compares 

their performance for accurately calculating VaR for the energy commodity markets. 

Considering that the proposed MC simulation models jointly take into account two sources of 

uncertainty, jumps and high volatility with both having some predictable component, the VaR 

estimates from the proposed specifications are compared to those obtained with more 

established methods, like the RiskMetrics or Historical Simulation methods. In addition, a 

Hybrid approach for calculating VaR is developed based on a combination of both the MC 

Simulations and the Historical Simulation methodologies. Table 4-1 (panels A to D) 

summarizes all the VaR models compared in this chapter, in total twenty two. All the models 

listed under panels A and B are variance forecasting models with their sole focus on 

forecasting tomorrow's volatility. Panels C and D list all the proposed Monte Carlo 

simulation and Hybrid Monte Carlo - Historical Simulation models. Thus, the major 
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difference between all aforementioned the models lies with the methodology used to calculate 

volatility. The methodology, the main properties and the underlying distribution used in each 

model, both the more established and the proposed ones are all explained in more detail in the 

subsequent sections. 

Table 4-1: VaR models compared. 

List of all Value-at-Risk models compared. "V &C" stands for Variance & 
Covariance; "RM" for Risk Metrics; "HS" for Historical Simulation; "F-HS" for 
Filtered Historical Simulation; "MCS" for Monte Carlo Simulation; "HMCS" for 
Hybrid Monte Carlo Simulation; "GBM" for Geometric Brownian Motion; "MR" for 
Mean Reversion; "MRJD" for Mean Reversion Jump Diffusion; "OLS" for Ordinary 
Least Squares (constant volatility); "GARCH" for Generalised Autoregressive 
Conditional Heteroscedasticity; "F-GARCH" for Filtered GARCH; "EGARCH" for 
Exponential GARCH; "F-EGARCH" for Filtered EGARCH. 

Panel A: Commonly used 

V&C 

RM 

HS 

F-HS 
Panel C: MC Simulation 

MCS-GBM 

MCS-MR-OLS 

MCS-MR-GARCH 

MCS-MR-EGARCH 

MCS-MRJD-OLS 

MCS-MRJD-GARCH 

MCS-MRJD-EGARCH 

4.2.1. Variance-Covariance Model 

Panel B: ARCH-type 

GARCH 

F-GARCH 

EGARCH 

F-EGARCH 
Panel D: Hybrid MC-HS 

HMCS-GBM 

HMCS-MR-OLS 

HMCS-MR-GARCH 

HMCS-MR-EGARCH 

HMCS-MRJD-OLS 

HMCS-MRJD-GARCH 

HMCS-MRJD-EGARCH 

The Variance-Covariance (V &C) method is a widely used method of computing VaR due to 

its simplicity and computational efficiency. However, it has a major drawback as it assumes 

that returns are normally distributed; a rather unrealistic assumption for the energy markets 

that are characterised by fat-tailed return distributions. Within the family of V &C methods 

there are several methodologies that can be used to calculate the VaR, based on the way the 

forecasted variance is calculated. For the purposes of this thesis the equally weighted Moving 

Average (MA) methodology is used, which assumes that future variance can be estimated 

from a pre-specified window of historical data, weighing equally all the historical 

observations used. The equally weighted MA model is expressed as: 
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1 H, 
(J' = I r-

t ( k _ 1) s=t-k s 

(4.3) 

where, t is the estimation date of the standard deviation of returns over a time window from 

date t-k to t-l. 

4.2.2. RiskMetrics 

RiskMetrics (RM) is an Exponentially Weighted Moving Average (EWMA) VaR measure 

assuming that the standardised returns (returns over the forecasted standard deviation) are 

normally distributed (JP Morgan, 1996). The RM methodology focuses on the size of the 

returns but only relative to their standard deviation. A large return, irrespective of the 

direction, during a period of high volatility could lead to a low standardised return, whereas 

during a low volatility period it could result to an abnormally high standardised return. This 

standardization process leads to a more accurate VaR computation as large outliers are 

considered more frequent than would be expected with a normal distribution. The 

unconditional standard deviation of the RM model is expressed as: 

(4.4) 

where A is the decay factor, reflecting how the impact of past observations decays while 

forecasting one-day ahead volatilities. The more recent the observation the largest the impact, 

with an exponential decay effect as observations move more into the past. The highest 

(lowest) the value for A is, the longer (shorter) the memory of past observations is. The value 

of 0.94 is assigned for A which is widely used in the literature. 

4.2.3. ARCH Models 

ARCH (autoregressive conditional heteroscedasticity) models of volatility, initially proposed 

by Engle (1982), are commonly used by researchers and practitioners to calculate the VaR of 

their portfolios. Amongst the most popular ARCH formulations used are the GARCH 

(Bollersev, 1986) and EGARCH (Nelson, 1991) volatility models, because of their ability to 

capture many of the typical stylised facts of both financial and commodity time series, such 

as time-varying volatility, persistence, and volatility clustering. According to Engle (2001), 

models that explicitly allow for the standard deviation to change over time, thus allowing for 
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heteroskedasticity, perform better in forecasting the variance, and thus by extension, in 

measuring the VaR. Giot and Laurent (2003) and Kuester et al. (2006) conclude that VaR can 

be captured more accurately using GARCH-type models instead of using non-parametric 

ones. A key advantage of the GARCH and EGARCH models in terms of calculating VaR is 

that, according to Christoffersen (2003), the one-day forecast of the variancecr2 I is given 
t+l t, 

directly from the model as crl+ 1 , which is the conditional volatility following respectively a 

GARCH or an EGARCH process. A more detailed explanation is given in the following 

sections. 

4.2.3.1 GARCH & Filtered GARCH 

Under the GARCH volatility specification the return series is assumed to be conditionally 

normally distributed, with the VaR measures being calculated by multiplying the conditional 

standard deviation by the appropriate percentile point on the normal distribution, following 

Sarma et al. (2003). The conditional volatility following a GARCH(1, 1) process is expressed 

as: 

(4.5) 

where, /30,/31' and /32 are positive constants, with A + /32 < 1 expressing the "non-explosivity" 

condition, &?-I representing the previous periods' return innovations, and aLI being the last 

period's forecast variance (GARCH term). Once O"t is forecasted, the VaR estimates are 

obtained using the relevant percentile points on the normal distribution for the 99% and 95% 

VaR, under both long and short positions. Daily volatility forecasts are computed using a 

rolling estimation window of 1827 daily observations each. The process is then rolled 

forward until all the data is exhausted 19. 

Next, the VaR based on the Filtered GARCH (F-GARCH) process is also calculated. The 

term filtered refers to the fact that instead of using directly the forecasted variance from the 

GARCH model, a set of shocks Zi is used, as explained below, which are returns filtered by 

the forecasted variance . The VaR is estimated from the empirical percentile, which is based 

on observed information, using the following mathematical expression: 

19 The starting coefficients for the GARCH models are ob!ai~ed.from the.Yule-Walker equations, and the log
likelihood function is maximized using the Marquardt optimizatIOn algonthm. 
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(4.6) 

where Zi = rd 8GARCHt+l are the standardised residuals and 8GARCHt+l is the forecasted 

GARCH volatility using an estimation sample window of width T = 1827 days. 

4.2.3.2 EGARCH & Filtered EGARCH 

To cope with the skewness commonly observed in commodities markets, and to capture the 

potential presence of an "inverse leverage" effect20
, the more flexible model of persistence, 

the Exponential GARCH (EGARCH) model is used, which is expressed as: 

(4.7) 

where, flo denotes the mean of the volatility equation. The coefficients /31 and /32 measure the 

response of conditional volatility to the magnitude and the sign of the lagged standardised 

return innovations, respectively; as such, these coefficients measure the asymmetric response 

of the conditional variance to the lagged return innovations. When /32 = 0, there is no 

asymmetric effect of the past shocks on the current variance, while when /32 *" 0 asymmetric 

effects are present in response to a shock; for instance, /32 > 0 indicates the presence of an 

"inverse leverage" effect. Finally, /33 measures the degree of volatility persistence. 

As in the case with the GARCH model, the Filtered EGARCH (F-EGARCH) process is also 

calculated. Again, the term filtered refers to the fact that a set of returns filtered by the 

forecasted EGARCH variance is used. The VaR is estimated using the following 

mathematical expression: 

VaR t+1 = 8EGARCHt+1Percentile{(zaf=t-TI a}; T = 1827 days (4.8) 

where Zi = rd8EGARCHt+l are the standardised residuals and 8EGARCH is the forecasted 

EGARCH volatility using as estimation sample window of width T = 1827 days. 

20 Financial markets tend to exhibit a negative correlation between volatility and price, an effect known as 
"leverage", with negative shocks having a greater impact on volatility compared to positive ones. 
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4.2.4. Monte Carlo Simulation 

Another popular method for estimating VaR is Monte Carlo simulation which is based on the 

assumption that prices follow a certain stochastic process (GBM, JD, MR-JD etc.), and thus 

by simulating these processes one can yield the distribution of the asset's value for the 

predetermined period. By simulating jointly the behaviour of all relevant market variables to 

generate possible future values, the MC simulations method allows for the incorporation of 

future events affecting the market as well as the additions of jumps or extreme events, thus 

accurately modelling the market's behaviour. In VaR applications, the required quantile for 

both the left and the right tails can be obtained directly from the random paths. MC 

simulation is a powerful tool for energy risk management that owes its increased popularity 

to its flexibility. It can incorporate in the modelling procedure all the important characteristics 

of the energy markets' behaviour such as seasonality, fat tails, skewness and kurtosis, and is 

also able to capture both local and non-local price movements. It is mostly due to this 

flexibility that Duffie and Pan (1997), and So et al. (2008) conclude that the MC approach is 

probably the best VaR methodology. The only troubling issue with the MC approach is the 

fact that it is relative complex to implement, and that it can be computationally demanding. 

With the MC simulations method the VaR of an asset or a portfolio is quantified as the 

maximum loss in the random variables distribution, associated with the appropriate 

percentile. In order to calculate the VaR, first the dynamics of the underlying processes i.e. 

prices, volatilities etc. need to be specified. Second, N sample paths need to be generated by 

sampling changes in the value of the asset or individual assets that comprise a portfolio (risk 

factors), over the desired holding period. Third, all information enclosed in the probability 

distribution needs to be incorporated. Fourth, using the N sample paths the value of each 

underlying risk factor needs to be determined, given the assumed process for each one. 

Finally, the individual values need to be used to determine the value of the asset/ portfolio at 

the end of the holding period. 

The following seven specifications are used for modelling the spot prices of the energy 

markets examined: 

1. Geometric Brownian Motion (GBM) 

2. Mean Reversion with Ordinary Least Squares (constant) volatility (MR-OLS) 

3. Mean Reversion with GARCH(l,1) volatility (MR-GARCH(l,1)) 
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4. Mean Reversion with EGARCH(1,1) volatility (MR-EGARCH(1,1)) 

5. Mean Reversion with Jump Diffusion and OLS volatility (MRJD-OLS) 

6. Mean Reversion with Jump Diffusion and GARCH(1, 1) volatility (MRJD

GARCH(1,1)) 

7. Mean Reversion with Jump Diffusion and EGARCH(1,1) volatility (MRID

EGARCH(1,1)) 

A detailed explanation of these models can be found in section 2 of chapter 3. As with other 

VaR methodologies, any modifications to the MC simulations approach focus mostly on 

using various techniques to reduce computational burden. For example, Jamshidan and Zhu 

(1997) use principal component analysis to narrow down the number of factors used into the 

simulation process, a procedure they name scenario simulations. Glasserman et al. (2000), 

guide the MC simulations sampling process using approximations from the V &C approach, 

resulting in time and resources savings without the loss of precision. The MC simulation 

along with the hybrid MC-HS methodologies proposed in this thesis for estimating the VaR 

of energy commodities and the SEI are a significant improvement of existing ones due to 

their flexibility. They allow for any stochastic process to be used for describing the 

distribution of returns, and at the same time allow for the incorporation in the model of all 

major features that define the behaviour of energy prices. Such features include seasonality, 

time varying volatility, volatility clustering, mean reversion, jumps, and most importantly a 

different speed of mean reversion after a jump occurs. 

For estimating all inputs for the MC simulations 1,827 daily observations from the in-sample 

period are used. Using each time the relevant underlying process 100,000 simulations are run, 

forecasting the spot prices 623 days ahead. Then, using the average simulated path the daily 

VaR for each one of the 623 forecasted returns is estimated. The mathematical expression for 

calculating the VaR using the MC Simulation models is the following: 

VaR t = Percentile{rf, a} (4.9) 

where r/ is the total number of simulated returns at time t. 
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4.2.5. Historical Simulation & Filtered Historical Simulation 

The historical simulation (HS) method is amongst the simplest ones for estimating the VaR 

for various assets and portfolios. HS uses the past history of returns to generate the 

distribution of possible future returns; in contrast to MC simulation which follows a certain 

stochastic process. In addition, the time series data used to run the HS are not used to 

estimate future variances and covariances, as is the case in the V &C approach; the assets 

returns over the time period examined provide all necessary information for computing the 

VaR. As with other methodologies for calculating VaR, there are various modifications of the 

HS method suggested, such as weighing the recent past more (Boudoukh et aI., 1998), 

combining the HS with various time series models (Cabedo and Moya, 2003), and updating 

historical data for shifts in volatility (Hull and White, 1998). 

Under the HS methodology, the VaR with coverage rate, a, is then calculated as the relevant 

percentile of the sequence of past returns, obtained non-parametrically from the data. The 

mathematical expression of the one-day-ahead VaR using the HS method is the following: 

(4.10) 

where T is the window width of past observations used. The window width of historical data 

used in the estimations plays a crucial role in the efficiency of the HS methodology. Having 

sufficient history of the relevant returns makes the HS method very attractive to use, mostly 

due to its simplicity, intuitive and straight forward implementation, and also its wide 

applicability to all instruments and market risk types. The HS method takes into account fat 

tails and skewness as it is based on past historical data. One of the method's drawbacks is that 

it is computationally demanding, and also the fact that the assumed returns distribution is 

based on the historical distribution over the time period selected, which can lead to 

significant variations in the VaR estimate when different time periods are used. This becomes 

even more important for the energy markets where risks are volatile and of big magnitude, 

and structural shifts occur at regular intervals. 

Following, the VaR based on the Filtered Historical Simulation (FHS) is also calculated, 

using the following mathematical expression: 
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(4.11) 

where Zi = Ii /O"i are the standardised residuals and O"i is the volatility of the 1827 historical 

observation window. The term filtered refers to the fact that the raw returns are not used to 

simulate, but instead a set of return shocks zi, which are the returns filtered by the historical 

volatility of a window width T, are used. Thus, the FHS is a combination of the non

parametric HS and a parametric model. This combination is more likely to improve the HS 

VaR estimates as it continues to accommodate the dynamics of the empirical distribution, 

such as skewness, fat tails and volatility clustering. Also, the FHS method has the advantage 

that no assumptions need to be made for the distribution of the return shocks, and offers the 

flexibility of allowing the computation of any risk measure and for any investment horizon. 

Finally, one of the disadvantages that both the HS and FHS methods share is that each 

observation in the time series used for the simulation carries an equal weight for measuring 

VaR, which can be a problem when there is a trend identified in the series. 

4.2.6. Hybrid Monte Carlo - Historical Simulation 

The Hybrid MC-HS approach developed in this thesis can be the most appropriate 

methodology for calculating the VaR in the energy markets as it combines all the advantages 

of using two of the most popular and efficient existing methods, the MC simulations and the 

Historical Simulation. The HS methodology and all the proposed variations in the literature 

are mostly designed to capture any shifts in the recent past that are usually underweighted by 

the conventional approach. All of these proposed variations fail to bring in the risks that are 

not already included in the sampled historical period or to capture any structural shifts in the 

economy and the specific market examined. In contrast, the Hybrid MC-HS approach gives 

an accurate picture of the asset's risk as it allows for the incorporation of jumps and fat-tails 

in the returns' distribution, due to the flexibility provided by the MC simulations. 

Both, the MC simulations and the Historical Simulation approaches are very popular amongst 

practitioners for calculating the VaR of their portfolios because of their flexibility, ease of 

use, and estimation performance. Perignon and Smith (2010) find that amongst the banks in 

their global sample that disclose their VaR methodology, 73% use the HS methodology or 

any of its variations, whereas the MC simulations methodology is the second most frequently 

applied VaR method, used by 22% of the banks. As mentioned previously, there have been 
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many variations proposed in the literature for the MC simulations and the HS approaches, but 

only looking at each approach separately. However, to the best of our knowledge, is the first 

time that the MC simulation approach is combined with the HS in order to produce a Hybrid 

approach for calculating the VaR of energy assets. 

Zikovic and Filer (2009) introduce a hybrid approach based on a combination of 

nonparametric bootstrapping and parametric GARCH volatility forecasting. They test the 

model using daily returns from sixteen market indexes, half from developed and the other 

half from emerging markets. The authors find that only the proposed hybrid model and the 

EVT -based VaR models can provide adequate protection in both developed and emerging 

markets. Lambadiaris et al. (2003) calculate the VaR in the Greek bond and stock markets 

using separately the HS and MC simulations approaches, and they find that for the linear 

stock portfolios the MC simulations approach performed better, as the HS approach 

overstated the VaR, whereas in the case of the non-linear bond portfolios the results are 

mixed. Vlaar (2000) investigates the Dutch interest rates term structure and applies the 

historical simulation, variance-covariance, and Monte Carlo simulation methods for 

estimating the accuracy of the VaR. He finds that the best results are obtained for a combined 

variance-covariance MC method that uses a term structure model with a normal distribution 

and a GARCH specification. Moreover, Hendricks (1996) compares the VaR estimates from 

the V &C and HS approaches, applied on foreign exchange portfolios, and concludes that both 

approaches have difficulties in capturing extreme outcomes and shifts in the underlying risks. 

Thus, it can be argued that in case of computing the VaR for non-linear assets over long time 

periods, where data are more volatile, with the non-stationarity and the normality 

assumptions being debatable, the MC simulations approach performs better than the HS 

approach. 

Using each time the relevant underlying process 100,000 simulations are run, forecasting the 

spot prices 623 days ahead21
• Then, using the average simulated path, the daily VaR is 

estimated using a 1 day ahead rolling window method as it is the case with the HS method. 

The estimation window is the first 1,827 daily forecasts, rolled one step forward for the next 

623 days. The mathematical expression for calculating the VaR using the Hybrid model is the 

following: 

21 For estimating the inputs for the Me simulations all 2,450 daily observations from the sample are used. 
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VaRt+1 = Percentile {{1n:=t-T ,a}; T=1827 days 
(4.12) 

n r S 

where J;s = L...!.!!!...- is the average per time-step simulated return at time t rt is the return of 
n ' ,0) /1)=1 

the simulated spot price of path co at time t, n is the number of MC simulations, and T is the 

estimation window of 1827 observations. 

4.3. VaR Back-testing procedure 

Having presented previously the various risk management techniques, this section sets forth a 

model selection process including all aforementioned models despite the major drawbacks 

and obvious limitations that some may have. This is done because it is expected that the tests 

of VaR models used, and the selection process proposed, will effectively reject the weakest 

models, knowing that some of them are widely used in practice. That makes the results of this 

chapter even more important as useful feedback will be provided about the models' quality 

and efficiency. 

To select the best model in terms of its VaR forecasting power, a two stage evaluation 

framework is implemented. In the first stage, three statistical criteria are used to test for 

unconditional coverage, independence, and conditional coverage, as proposed by 

Christoffersen (1998). A VaR model successfully passes the first stage evaluation only when 

it can satisfy all three statistical tests, at the 5% or higher significance level. In the second 

stage, a loss function is constructed in line with Lopez (1999) and Sarma et al. (2003) to test 

the economic accuracy of the VaR models that have passed the first evaluation stage. Then, 

the model that delivers that lowest loss function value is compared pair-wise with all 

remaining models that have passed the first evaluation stage, using the modified Diebold

Mariano (MDM) test as proposed by Harvey et al. (1997). Thus, the benchmark model is 

tested against the remaining models to choose the VaR calculation methodology which 

generates the least loss for each energy market. In general, it is worth noting that when 

choosing between VaR models the modeller should view the selection process as being more 

valuable and useful than the actual VaR number obtained. 
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To perform the proposed back-testing procedure a long period of historical data needs to be 

used. According to Alexander (2008), about 10 years of daily frequency data are needed for 

the results to be more powerful and to be able to reject any inaccurate VaR models. In this 

chapter, 2,450 daily observations are used, representing almost 10 years of history of which 

1,827 are used as the in-sample (estimation sample) and 623 as the out-of-sample period. 

Then, using the rolling window approach, the estimation sample is rolled over the entire data 

period, for a fixed length of 1 day as the risk horizon. 

4.3.1. Statistical evaluation 

Statistical tests are used to back-test risk management models and access how well they can 

capture the frequency, independence, and magnitude of exceptions, defined as losses (gains) 

that exceed the VaR estimates. Most of these tests rely on the assumption that the daily 

returns are generated by an Li.d. Bernoulli process. Thus, the "hit sequence" or "failure 

process" ofVaR violations is defined using an indicator function Ia,t as: 

{{

l'if r t 1 < VaR t 1 . +. a, + ; for long pOSItions 
I = O,otherwtse 
a,t+l 1 i r > VaR 

{ 
,f t+l a,t+l. for short positions 

0, otherwise ' 

(4.13) 

where rt+l is the realised daily return from time t, when the VaR estimate is made, to time t+ 1. 

The hit sequence returns a 1 on a day t+ 1 if the loss on that day is larger than the VaR 

number forecasted. If there is no violation then the hit sequence returns a O. In order to 

statistically back-test the VaR models, a sequence of {It+l}I=l across T needs to be 

constructed, indicating the past violations. In a sample with n observations, if the "hit" series 

Ia,t follows an i.i.d. Bernoulli process, an accurate VaR model should return a number of 

"hits" equal to n * a. 

Then, based on this hit sequence the VaR evaluation framework, as developed by 

Christoffersen (1998), is applied. Three tests for unconditional coverage, independence, and 

conditional coverage (which combines the unconditional coverage and independence into one 

test) are applied on the hit sequence, using in all cases a likelihood ratio statistic. Also, the P

values associated with the test statistic are calculated, using a 5% significance level. The two 

types of errors associated with the significance level chosen when testing a certain hypothesis 
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in statistics, are the Type I (rejecting a correct model) and Type II (failing to reject an 

incorrect model) errors. The higher the significance level is, the larger the possibility for a 

Type I error. Thus, in line with common practice in risk management applications, and 

because Type II errors can be quite costly, a high enough threshold should be imposed for 

accepting the validity on any VaR model, and as such a 5% significance level is chosen in 

this chapter22
• 

First, the unconditional coverage test, introduced by Kupiec (1995) is applied, to test whether 

the indicator function has a constant success probability equal to the VaR significance level, 

a. The null hypothesis tested with LRue is that the average number of VaR violations 

forecasted is correct. Therefore, a VaR model is rejected in either case that underestimates or 

overestimates the actual VaR. The likelihood ratio statistic LRue is given by: 

LR = -2ln -a a __ X 2 1 
[ 

(1 )TO Tl ] 

ue (l-TdT)TO(TdT)Tl ( ) 
(4.14) 

where T is the out-of-sample days, To and T1 are the number of Os and 1 s in the sample, and 

X2 is the chi-squared distribution with one degree of freedom. 

Second, the independence test is applied, to control for any clustering in the hit sequence 

which would indicate that the VaR model is not adequate in responding promptly to changing 

market conditions. The null hypothesis tested with LR ind is that the VaR violations forecasted 

are independent. To this end, the test should be able to reject a VaR model with clustered 

violations. The likelihood ratio statistic LR ind is given by: 

(4.15) 

where Tijl i,j = 0,1 is the number of observations with a j following an i. Also, n 01 and n11 

are given by the following equations: 

(4.16) 

22 The smaller the significance level for the VaR estimates, t?e f~wer the number of violation~ will ~e. 
Therefore, by choosing a 5% significance level more VaR vlOlatlOns can be observed than usmg a 1 Yo level, 

leading to a better test for the accuracy of the VaR model. 
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(4.17) 

Third, the conditional coverage test is applied, to simultaneously test whether the VaR 

violations are independent and that the average number of those violations is equal to n*a. 

The null hypothesis tested with LRcc is that both the average number of VaR violations 

forecasted is correct, and that the VaR violations are independent. It is important to test for 

conditional coverage because many financial and commodity time series exhibit volatility 

clustering. So, VaR estimates should be narrow (wide) in times of low (high) volatility, so 

that VaR violations are not clustered but spread-out over the sample period. The joint test of 

conditional coverage can be calculated as the sum of the two individual tests, so the 

likelihood ratio statistic LRcc is given by: 

LRcc = LRuc + LR ind --Xl (4.18) 

4.3.2. Economic evaluation 

In the second stage of the VaR models evaluation procedure the risk manager can work with 

fewer models, only those that pass all three statistical tests. However, because usually more 

than one model pass the first evaluation stage and the risk manager cannot choose a single 

VaR model as the most effective, an economic evaluation framework is needed to rank the 

models. Lopez (1999) and Sarma et al. (2003) set-forth such an evaluation approach by 

creating a loss function that measures the economic accuracy of the VaR models that pass the 

statistical tests. In this thesis the approach introduced in Lopez (1999) and Sarma et al. (2003) 

is used, developing a loss function based on the notion of Expected Shortfall (ES), also 

termed Conditional VaR (CVaR), which measures the difference between the actual and the 

expected losses when actually a VaR violation occurs. A similar approach is also followed by 

Angelidis and Skiadopoulos (2008). Using this loss function the statistically accurate models 

are ranked and an economic utility function able to accommodate the risk manager's needs is 

specified as follows: 

(4.19) 
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ES
a 

= {E[rtl(rt < -VaRt(a))]; for long positions 
E[rtl(rt > VaRt(a))]; for short positions (4.20) 

where the ith ES is defined as the average loss over the VaR violations from the N out-of

sample violations that occurred for the ith VaR model, under the following conditions: 

if ESi(a) < 7J .. 
if 7J < ESi(a) ; for long pOSItIOns 

if ESi(a) 2:: 7J .. 
if 7J > ESi(a) ; for short pOSItIOns 

(4.21) 

The proposed LF uses the ES and not the VaR measures to compare with the actual returns, 

as the VaR returns do not give an indication about the size of the expected loss when a 

violation occurs. The model that minimizes the total loss, hence returns the lowest LF value, 

is preferred relative to the remaining models. Evidence in the literature shows that the ES is a 

more coherent risk measure than the VaR (Acerbi, 2002; Inui and Kijima, 2005). In addition, 

Yamai and Y oshiba (2005) argue that VaR is not as reliable as the ES measure, especially 

during market turmoil, and that it can be misleading for risk managers. However, the authors 

also suggest that the two measures should be combined for better results, as the ES 

estimations need to be very accurate in order to increase efficiency in the risk management 

process. 

4.3.3. Selection process: Modified Diebold Mariano & Bootstrap Reality Check 

Amongst all VaR models that passed the first evaluation stage, the model with the lowest LF, 

calculated during the second evaluation stage, is used as the benchmark model in order to 

examine whether it statistically performs better than the competing models. First, the pair

wise model comparison methodology employed is the modified Diebold Mariano (MDM) 

test proposed by Harvey et al. (1997). This approach overcomes the limitation of the Diebold

Mariano (1995) test of frequently rejecting the null when it is true. Then, the values of the 

modified DM test are compared with the critical value of the Student's t-distribution with (T-

1) degrees of freedom. 

The null hypothesis of the MDM test is that both the benchmark and the competing models 

are equally accurate in their VaR forecasts. That IS, 
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Ho: E(dt) = 0 with dt = LFf1DM - LFf;tDM . The MDM statistic and the loss function used to 

evaluate the models under this framework are the following: 

(4.22) 

(4.23) 

h t - 1 T d d- - If=l d t were - , ... , , an - . 
T 

Second, in addition to the MDM evaluation method, to minimise the possibility that the 

performance amongst the competing VaR methodologies could be due to data snooping bias, 

the bootstrap version of White's (2000) Reality Check (RC) is implemented. According to 

Sullivan et al. (1999) and White (2000), data snooping occurs when a single data set is used 

for model selection and inference. While testing different models there is a probability of 

having a given set of results purely due to chance rather than these being truly based on the 

actual superior predictive ability of the competing models. In doing so, a relative 

performance measure is first constructed that can be defined as: 

h,n =LFn,o-L~,k; k=I, .. ,I; n=I, .. ,623 (4.24) 

where model 0 is the benchmark and k represents the kth model, n denotes the out-of-sample 

testing period, and LF is the loss function of equation (4.19) chosen in the previous section. 

Next, for each value of k and LF, pair wise comparisons are made between each portfolio and 

the remaining ones. Mathematically the null hypothesis for the reality check can be 

formulated as: 

(4.25) 

The null hypothesis states that none of the models is better than the benchmark, i.e. there is 

no predictive superiority over the benchmark itself. Hence, whenever the null hypothesis is 

accepted it means that there is no competing model that performs better in terms of its VaR 

forecasting ability than the benchmark model. Following White (2000), the null hypothesis is 
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tested by obtaining the test statistic of the reality check as TnRC = m a x(n 1/2 lk)' where 
k 

J;, = n-IL~=lh.1 and n is the number of days of the out-of-sample period. To construct the test 

statistic, the stationary bootstrap technique of Politis and Romano (1994) is employed and 

B=l,OOO random paths of VaR models' Loss Functions are generated. A similar approach is 

used by Alizadeh and Nomikos (2007) who applied the stationary bootstrap to approximate 

the empirical distribution of Sharpe ratios and test different trading rules in the sale and 

purchase market for ships. 

The stationary bootstrap re-samples blocks of random length from the original data, to 

accommodate serial dependence, where the block length follows a geometric distribution and 

its mean value equals 11 q . In this thesis, similarly to Sullivan et al. (1999i3
, q = 0.1 which 

corresponds to a mean block length of 10; for q = 1 the problem is reduced to the ordinary 

bootstrap which is suitable for series of negligible or no dependence. Finally, the bootstrap 

loss function and thus the performance measure, is constructed by using the simulated loss 

functions, whereas the Bootstrap RC p-value is obtained by comparing TnRc directly with the 

quantiles of the empirical distribution ofT nRC' using the following expression: 

RC' { 112 ( - • - )} Tn = max n fk (b)- fk (4.26) 
k 

where f
k
' (b) represents the sample mean of the relative performance measure calculated from 

the bth bootstrapped sample, with b = 1, ... ,B. 

With the proposed back-testing procedure, VaR forecasts can be more accurate, reducing the 

probability of accepting flawed models, and thus satisfying the requirements of stringent risk 

management control procedures. In addition, using the proposed economic utility function, 

the risk manager is able to rank a range of candidate VaR models and select the best 

performing one amongst them. Finally, the market players can be better informed, and thus 

well prepared to withstand any future losses, should the market moves to the opposite 

direction, by forecasting the ES measure more accurately. 

23 For more technical details on the implementation of the stationary bootstrap RC the reader is referred to 
Sullivan et aI., 1999; Appendix C, pp 1689-1690. 
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4.4. Data 

For the assessment of each VaR model examined, 2,450 daily observations in total are 

collected from DataStream for the period 12/09/2000 to 1/02/2010. The spot prices collected 

are for the eight energy markets and the Spot Energy Index analysed in the previous chapter. 

From the total sample, the first 1,827 observations are used in estimation to forecast the next 

day's VaR. Using this "rolling window" method, for a fixed length of 1 day, the estimation 

sample is rolled over the entire data period generating 623 daily out-of-sample VaR forecasts. 

The proposed modelling approach for the energy prices and the SEI, as described in chapter 

3, is a convenient tool for narrating the most important dynamics observed in the actual 

history of the respective spot prices. Furthermore, as it is evident from the graphs of the spot 

energy prices in chapter 3, occasional swings Uumps) in the price can be observed for both 

directions upwards and downwards, followed by reversals towards a central tendency (mean 

reversion). These swings can be mostly attributed to short-term disturbances to either the 

supply or demand side, or both. Moreover, it has also been established that energy 

commodity prices tend to exhibit positive skewness mostly because of the fact that when 

supplies are ample, two factors can influence and equilibrate the supply and demand 

relationship: the price of the commodity and its level of inventories. Thus theoretically, by 

increasing inventories and decreasing the price, the desirable supply-demand equilibrium can 

be achieved. However, when inventories are scarce and new supplies of the physical 

commodity cannot be found in the short-run, it is only the price that can be adjusted upwards 

to equilibrate supply and demand. The continuous monitoring of risk, with the use of the 

most efficient VaR techniques for decision support on a daily basis, is a necessity for all 

energy market players. 

4.5. Empirical analysis 

To evaluate the efficiency of all available VaR models, out-of-sample 99%24 one-day VaR 

forecasts are generated for each one of the energy commodities examined and the SEI. The 

period used to estimate the parametric VaR models is the 12/09/2000 to 12/09/2007 

consisting of 1827 observations, whereas the period used for the 623 out-of-sample forecasts 

is the 13/09/2007 to 1/0212010. This research contributes to the relevant literature by testing 

24 95% one-day VaR forecasts are also calculated but are not reported because results are very similar with the 
99% forecasts that are reported in the tables. 
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all the VaR models for both long and short trading positions undertaken by the energy market 

players. As Angelidis and Degiannakis (2005) argue, it is imperative that a risk manager is 

able to forecast accurately the VaR for both long and short trading positions. In total, twenty 

two VaR models are implemented on the energy spot price series and the Spot Energy index, 

as described previously. 

The VaR results for all applied models and for all energy commodities and the SEI are shown 

in tables 4-2 to 4-10, for the 1 % significance level. Each table reports, for both long and short 

positions, the average VaR or Expected Tail Loss in percentage points, the frequency of 

violations or number of hits in percentage points, alongside the p-values for Christoffersen's 

three statistical tests for unconditional coverage, independence, and conditional coverage. 

The models that pass each test at the 5% significance level, and thus do not reject the null 

hypothesis, are indicated in bold. A 5% significance level is chosen in this thesis as the 

acceptance threshold for the three tests, because the smaller the significance level the fewer 

the number of violations is, which leads to larger Type II errors that can be very costly for the 

risk manager. In addition, the results from the second evaluation stage, i.e. the Expected 

Shortfall, and the Loss Function that measures the economic accuracy of the models, are 

reported for both the short and long positions. The model that minimizes the total loss, hence 

returns the lowest LF value, is preferred relative to the remaining models. The numbers 

indicated in bold represent the models that have successfully passed all three statistical tests, 

whereas an asterisk indicates in each case the model that provides the smallest LF value and 

that is later used in the MDM pair-wise comparison as the benchmark model. The economic 

evaluation framework that uses the proposed LF can provide useful information for 

evaluating the VaR estimates for regulatory purposes. That is because by using the ES 

measure in the LF, the additional information on the magnitude of a loss that exceeds the 

estimated VaR is incorporated into the evaluation process. In addition, with the use of the 

proposed LF, the risk manager is able to rank all the candidate VaR models and distinguish 

the best performing one amongst them. 

From tables 4-2 to 4-10 it can be seen that for all commodities and the SEI there is always at 

least one model that passes all three statistical tests at the 1 % significance level, for both long 

and short trading positions. In the majority of cases, it is the MC simulation and the proposed 

Hybrid MC-HS models that successfully pass the first evaluation stage, thus overall 

prevailing against the more traditional ARCH type and Historical Simulation methodologies. 
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Even though in some cases the MC simulation models do not pass all three statistical tests, 

they tend to produce the lowest LF values, followed by the Hybrid MC-HS models. Due to 

the economic importance of the LF for the risk manager, it can be argued that even for those 

energy commodities that the simulation-type models do not pass the statistical tests, they can 

still be considered as good alternative methodologies for estimating VaR. When the 

frequency of hits is zero the respective models are unsuitable candidates for the application of 

both the statistical and the economic evaluation tests; these cases are indicated by a dash line 

in all tables. In addition, in those cases where the frequency of hits is too high, above 20%, 

the respective models are unsuitable candidates for the application of the two statistical tests 

for unconditional and conditional coverage; in these cases a dash is also inserted. However, 

this does not mean that these models should be immediately rejected but it should be noted 

that consistently overestimate in the former case, and underestimate in the latter case, the 

actual VaR. For the entire fuels complex, including the WTI, HO, Gasoline, and the crack 

spreads with WTI, and for both long and short positions, the MC simulations methodology 

under the MRJD specifications, is the one that manages to pass all three statistical criteria 

from the first evaluation stage, and at the same time to deliver the lowest LF at the second 

evaluation stage. The only exceptions are the WTI and the CS-HO-WTI just for the long 

trading positions, with the F-EGARCH and F-GARCH methodologies delivering the lowest 

LFs respectively. As for the PJM and the SEI, and for both the long and the short trading 

positions, it is the Hybrid MC-HS specifications that successfully pass the first evaluation 

stage and deliver the lowest LF values at the second evaluation stage. Finally, the VaR for 

both the NG and the Propane series, for the long positions, is best estimated by the F

EGARCH methodology, whereas for the short positions is best estimated with the Hybrid 

MC-HS and the GARCH methodologies respectively. 
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Table 4-2: VaR results for WTI at a=l %. 

VaR results for all applied models and for all energy commodities and the SEI, for the I % significance level, and for both long and short positions. 
The table reports the average VaR or Expected Tail Loss (ETL) in percentage points, the frequency of violations or number of hits in percentage 
points, alongside the p-values for Christoffersen's three statistical tests for unconditional coverage, independence, and conditional coverage (as 
explained in more detail in chapter 4.2). The models that pass each test at the 5% significance level, and thus they do not reject the null hypothesis, 
are indicated in bold. In addition, the results from the second evaluation stage, i.e. the Expected Shortfall, and the Loss Function that measures the 
economic accuracy of the models, are reported for both the short and long positions. The model that minimizes the total loss, hence returns the 
lowest LF value, is preferred relative to the remaining models. The numbers indicated in bold represent the models that have successfully passed all 
three statistical tests, whereas an asterisk indicates in each case the model that provides the smallest LF value and that is later used in the MOM 
pair-wise comparison as the benchmark model. In those cases where the frequency of hits is zero the respective models are unsuitable candidates for 
the application of both the statistical and the economic evaluation tests; in these cases a dash is inserted. In addition, in those cases where the 
frequency of hits is too high, above 20%, the respective models are unsuitable candidates for the application of the two statistical tests for 
unconditional and conditional coverage; in these cases a dash is also inserted. 
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MRJD-OLS 
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MRJD-EGARCH 

GBM 
MR-OLS 
MR-GARCH 
MR-EGARCH 

MRJD-OLS 

MRJD-GARCH 

MRJD-EGARCH 

Avg VaR (ETL) No Hits (%) LR", LR;nd LR." ES LF (xHY\4) 

Long Short Long Short Long Short Long Short Long Short Long Short Long 

2.30% 2.31% 31.46% 32.58% 26.40% 0.03% -3.30% 3.28% 1.373 

2.03% 3.58% 4.17% 

1.95% 3.51% 3.69% 

2.44% 376% 4.98% 

1.43% 2.45% 0.96% 

1.24% 2.70% 1.12% 

2.34% 2.52% 1.93% 

2.38% 2.38% 
2.45% 2.51% 

2.10% 3.59% 

209% 3.74% 

209% 3.59% 

2.37% 3.92% 

2.31% 3.91% 

2.53% 3.94% 

2.62% 3.64% 

2.78% 2.50% 

2.27% 2.32% 

2.45% 2.50% 

1.77% 
47.83% 

4.0% 

4.01% 

4.0% 

5.14% 

5.30% 

4.82% 

5.14% 
0.00% 
0.00% 
0.00% 

1.61% 

1.12% 

1.44% 

3.69% 0.00% 0.00% 10.30% 25.05% 0.00% 0.00% 

3.37% 0.00% 0.00% 25.05% 66.88% 0.00% 0.00% 

3.85% 0.00% 0.00% 1.60% 6.62% 0.00% 0.00% 

1.77% 92.58% 8.30% 71.20% 51.11 % 70.34% 6.38% 

1.44% 76.11 % 29.56% 66.97% 58.80% 60.04% 23.89% 

2.41% 3.93% 0.28% 47.47% 37.40% 2.92% 0.18% 

2.25% 
45.26% 

3.7% 

3.53% 

3.7% 

3.85% 

3.85% 

3.85% 

4.33% 
0.00% 
0.00% 
0.00% 

1.77% 

1.12% 

1.44% 

8.30% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

16.29% 

76.11% 

29.56% 

0.72% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

8.30% 

76.11% 

29.56% 

51.11 "I. 
10.34% 

8.31% 

8.31% 

8.31% 

0.40% 

0.57% 

1.18% 

2.14% 

54.90% 

66.97% 

58.80% 

40.61% 
20.44% 

25.05% 

71.36% 

25.05% 

6.62% 

6.62% 

6.62% 

12.59% 

51.11 % 

66.97% 

58.80% 

6.38% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

12.88% 

60.04% 

23.89% 

0.49% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

6.38% 

60.04% 

23.89% 

-8.33% 

-8.44% 

-7.98% 

-8.05% 

-8.34% 

-9.35% 

-9.50% 
-2.49% 

-8.45% 

-8.45% 

-8.45% 

-7.91% 

-7.84% 

-8.08% 

-7.92% 

-5.90% 

-6.44% 

-6.37% 

9.57% 0.090 

9.86% 0.083 

9.43% 0.115 

9.48% 0.110 

10.40% 0.089 

10.03% 0.039 

10.42% 
2.60% 

9.57% 

9.73% 

9.57% 

9.43% 

9.43% 

9.43% 

9.00% 

9.06% 

10.94% 

10.77% 

0.034' 
1.958 

0.082 

0.082 

0.082 

0.121 

0.127 

0.107 

0.120 

0.402 

0.299 

0.311 

Short 

1.963 

0.305 

0.282 

0.317 

0.312 

0.244 

0.269 

0.242 
2.438 

0.305 

0.292 

0.305 

0.317 

0.317 

0.317 

0.357 

0.351 

0.209' 

0.220 
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Table 4-3: VaR results for HO at a=l %. 

For further details, see notes in previous table. 

AvgVaR(ETL) NoHits(%) Lit", LRinu LRo, ES LF (xI0"4) 
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GBM 
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MRJD-GARCH 

MRJD-EGARCH 

Long Short Long Short Long Short Long Short Long Short Long Sho!! LOllg 

2.04% 1.93% 32.10% 32.10% 10.68% 0.30% -2.82% 2.74% 1.059 

2.10% 2A4% 2.57% 

2.02% 2.88% 2.57% 

2.11% 2.68% 2.89% 

1.62% 3.34% 1.77% 

1.56% 2.79% 1.93% 

1.44% 2.23% 2.09% 

1.61% 3.30% 1.93% 
2.19% 2.14% 46.39% 

1.96% 2.74% 

2.09% 2.73% 

1.97% 2.74% 

2.54% 2.85% 

2.56% 2.84% 

2.56% 2.86% 

2.14% 2.52% 

2.36% 2.54% 

1.93% 7.78% 

1.81% 4.19% 

2.7% 

2.57% 

2.7% 

2.89% 

2.89% 

2.89% 

2.89% 
0.00% 
0.00% 
0.00% 

1.12% 

0.80% 

1.12% 

1.61% 

1.28% 

2.09% 

0.96% 

0.96% 

1.44% 

0.80% 
45.59% 

IA% 

1.44% 

1A% 

2AI% 

2.41% 

2.41% 

2.25% 
0.00% 
0.00% 
0.00% 

0.64% 

0.16% 

0.32% 

010% 

0.10% 

0.01% 

8.30% 

3.93% 

1.74% 

3.93% 

16.29% 

49.48% 

1.74% 

92.58% 

92.58% 

29.56% 

60.80% 

34.36% 54.90% 

34.36% 62.83% 

28.74% 43.96% 

51.11 % 71.20% 

47.47% 71.20% 

43.96% 58.80% 

47.47% 75.53% 
18.92% 18.31 % 

0.04% 29.56% 31.47% 58.80% 

0.10% 29.56% 34.36% 58.80% 

0.04% 29.56% 31.47% 58.80% 

0.01% 0.28% 28.74% 37.40% 

0.01% 0.28% 28.74% 37.40% 

0.01% 0.28% 28.74% 37.40% 

0.01% 0.72% 28.74% 40.61% 

76.11 % 33.66% 66.97% 79.93% 

60.80% 0.89% 75.53% 93.61 % 

76.11% 4.70% 66.97% 88.94% 

0.06% 

0.06% 

0.01% 

6.38% 

2.92% 

1.24% 

2.92% 

0.02% 

0.06% 

0.02% 

0.01% 

0.01% 

0.01% 

0.01% 

60.04% 

54.84% 

60.04% 

12.88% 

40.26% 

1.24% 

70.34% 

70.34% 

23.89% 

54.84% 

23.89% 

23.89% 

23.89% 

0.18% 

0.18% 

0.18% 

OA9% 

32.02% 

0.89% 
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-8.30% 

-8.30% 

-8.10% 

-8.60% 

-8.31% 

-8.20% 

-8A1% 
-2.22% 

-8.21% 

-8.30% 

-8.21% 

-8.10% 

-8.10% 

-8.10% 

-8.10% 

-8.06% 

-8.61% 

-8.06% 

9.35% 

9.90% 

8.77% 

9.74% 

9.74% 

8.82% 

10.30% 
2.23% 

9.59% 

9.59% 

9.59% 

8AO% 

8AO% 

8AO% 

8.58% 

IOAO% 

17.58% 

11.69% 

0.041 

0.041 

0.048 

0.031 

0.040 

0.045 

0.037 
1.418 

0.044 

0.041 

0.044 

0.048 

0.048 

0.048 

0.048 

0.050 

0.031" 

0.050 

Short 

U46 

0.114 

0.096 

0.136 

0.101 

0.101 

0.134 

0.086 
1.451 

0.106 

0.106 

0.106 

0.152 

0.152 

0.152 

0.144 

0.083" 

0.000 

0.056 
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Table 4-4: VaR results for GASOLINE at a=l %. 

For further details, see notes in previous table. 
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Long __ Short Long Short Long Short Long Short Long Short ~ng ~ort Long Short 

2.45% 2.38% 30.50% 32.26% 1.40% 0.07% -3.47% 3.36% 1.808 2.020 

2.37% 4.78% 1.93% 1.93% 3.93% 3.93% 47.47% 47.47% 2.92% 2.92% -11.00% 12.40% 0.136 0.054 

2.20% 4.33% 

2.47% 5.12% 

2.96% 3.39% 

2.63% 3.00% 

2.86% 3.49% 

1.93% 

3.53% 

1.77% 

1.12% 

1.93% 

2.34% 3.15% 1.28% 
2.69% 2.56% 44.62% 
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2.59% 4.82% 1.77% 
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1.93% 

2.09% 
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0.96% 
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76.11°;' 
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-9.63% 
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-11.36% 

-10.41% 
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-2.73% 

-11.23% 
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-11.23% 

-9.51% 

-9.51% 

-9.51% 

-9.63% 

-10.33% 

-12.64% 

-12.64% 

12.40% 0.138 

12.40% 0.207 

11.81% 0.163 

12.25% 0.123 

11.81% 0.163 

12.25% 0.140 
2.67% 2.367 

12.40% 0.128 

12.40% 0.128 

12.40% 0.128 

10.82% 0.216 

10.82% 0.216 

11.07% 0.216 

11.35% 0.207 

10.90% 0.167 

12.19% 0.088 

12.19% 0.088" 

0.054 

0.054 
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0.059 

0.077 

0.059 
2.522 

0.054 

0.054 

0.054 

0.132 

0.132 

0.115 

0.099 

0.126 

0.061 

0.061" 
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Table 4-5: VaR results for CS GASOLINE WTI at a=l %. 

For further details, see notes in previous table. 
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1.27% 1.24% 31.30% 33.71% 7.92% 0.48% -1.80% 1.73% 1.000 1.101 

2.41% 2.86% 2.73% 

2.25% 2.66% 2.25% 

2.19% 2.44% 4.33% 

1.82% 2.30% 2.41% 

2.63% 2.04% 1.12% 

1.69% 2.34% 3.21% 

2.44% 2.05% 1.28% 
1.37% 1.39% 4623% 
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2.42% 2.87% 2.7% 

2.02% 2.52% 6.90% 
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0.D4% 0.28% 45.70% 37.40% 0.03% 0.18% 

0.72% 3.93% 30.42% 47.47% 0.40% 2.92% 

0.00% 0.00% 42.91 % 14.01 % 0.00% 0.00% 

0.28% 0.28% 37.40% 35.29% 0.18% 0.17% 

76.11 % 16.29% 66.97% 54.90% 60.04% 12.88% 

0.00% 0.01% 23.77% 51.11 % 0.00% 0.01% 

49.48% 3.93% 62.83% 47.47% 40.26% 2.92% 

0.04% 

0.04% 
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0.24% 

1.23% 

84.40% 

84.40% 
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-6.95% 
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-6.55% 

-5.60% 
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-6.72% 

-6.72% 
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-4.75% 

-5.45% 

-5.97% 

-9.83% 

7.37% 

7.95% 

6.02% 

6.16% 

6.94% 

5.93% 

6.97% 
1.42% 

7.37% 

7.60% 

7.37% 

5.39% 

5.47% 

5.31% 

5.65% 

11.25% 

11.25% 

0.146 

0.134 

0.207 

0.243 

0.155 

0.220 

0.152 
1.192 

0.146 

0.146 

0.146 

0.301 

0.301 

0.301 

0.232 

0192 

0.033' 

0.146 

0.122 

0.230 

0.220 

0.168 

0.238 
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1.248 

0.146 

0.136 

0.146 

0.287 

0.279 

0.294 

0.262 
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Table 4-6: VaR results for CS HO WTI at a=l %. 

For further details, see notes in previous table. 
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Avg VaR (ETL) No Hits (%) LR", LRind LR-., ES LF (x10A4) 

Long Short Long Short Long Short Long Short Long Short Long Short Long Short 

0.87% 0.86% 31.46% 31.46% 1.07% 7.19% -1.25% 1.20% 0.420 0.408 

1.80% 1.71% 2.73% 2.09% 0.04% 1.74% 31.47% 43.96°;' 0.02% 1.24% -4.56% 4.83% 0.064 

1.97% 1.34% 1.93% 1.93% 3.93% 3.93% 47.47% 47.47% 2.92% 2.92% -5.06% 4.90% 0.046 

1.60% 1.38% 4.01% 4.49% 0.00% 0.00% 77.46% 69.36% 0.00% 0.00% -3.85% 3.58% 0.098 

1.55% 1.40% 2.57% 2.57% 0.10% 0.10% 40.40% 34.36% 0.07% 0.06% -4.30% 3.96% 0.076 

1.85% 1.41% 1.28% 1.12% 49.48% 76.11% 62.83% 66.97% 40.26% 60.04% -5.55% 4.85% 0.033" 

1.69% 1.64% 2.73% 2.57% 0.04% 0.10% 45.70% 34.36% 0.03% 0.06% -4.26% 4.05% 0.077 

2.24% 1.90% 1.28% 1.12% 49.48% 76.11 % 62.83% 66.97% 40.26% 60.04% -5.55% 5.54% 0.033 
0.95% 0.89% 45.75% 47.83% 21.17% 4.15% -0.97% 0.92% 0.503 

1.80% 1.72% 

1.82% 1.76% 

1.79% 1.72% 

1.56% 1.42% 

1.53% 1.41% 

1.56% 1.42% 

1.57% 1.50% 

2.22% 2.36% 

1.67% 1.44% 

2.41% 2.14% 

2.7% 

2.73% 

2.7% 

5.30% 

5.46% 

5.30% 

5.14% 
0.00% 
0.00% 
0.00% 

2.57% 

0.32% 

1.44% 

2.1% 

2.09% 

2.1% 

5.46% 

5.46% 

5.46% 

5.14% 
0.00% 
0.00% 
0.00% 

1.77% 

0.48% 

1.44% 

0.04% 

0.04% 

0.04% 

0.00% 

0.00% 

0.00% 

0.00% 

0.10% 

4.70% 

29.56% 

1.74% 31.47% 43.96% 0.02% 

1.74% 31.47% 43.96% 0.02% 

1.74% 31.47% 43.96% 0.02% 

0.00% 70.15% 42.49% 0.00% 

0.00% 72.46% 42.49% 0.00% 

0.00% 70.15% 42.49% 0.00% 

0.00% 66.70% 51.24% 0.00% 

8.30% 34.36% 51.11 % 0.06% 

14.80% 88.94% 84.40% 4.65% 

29.56% 58.80% 58.80% 23.89% 

1.24% 

1.24% 

1.24% 

0.00% 

0.00% 

0.00% 

0.00% 

6.38% 

14.43% 

23.89% 

-4.56% 

-4.56% 

-4.56% 

-3.44% 

-3.39% 

-344% 

-3.49% 

-4.36% 

-7.64% 

-5.50% 

4.83% 

4.83% 

4.83% 

3.33% 

3.33% 

3.33% 

3.41% 

5.10% 

7.27% 

5.23% 

0.064 

0.064 

0.064 

0.123 

0.127 

0.123 

0.120 

0.073 

0.004 

0.034 

0.055 

0.053 

0.104 

0.086 

0.054 

0.082 

0.038 
0.494 

0.055 

0.055 

0.055 

0.120 

0.120 

0.120 

0.114 

0.048 

0.013' 

0.044 
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Table 4-7: VaR results for NG at a=l %. 

For further details, see notes in previous table. 

AVIl VaR (ETL) No Hits £%) LRuc LRiud LR,,, ES LF £xlO"4) 

Lonll Short Lonll Short Lonll Short Lonll Short Lonll Short Lonll Short Lonll Short 

RM 2.84% 2.65% 32.91% 31.62% 3.33% 11.34% -3.97% 3.94% 2.327 3.574 

HS 4.17% 5.04% 0.80% 1.44% 60.80% 29.56% 2.65% 11.07% 2.28% 5.65% -15.88% 17.08% 0.108 0.169 

F-HS 3.69% 381% 0.96% 1.93% 92.58% 3.93% 4.16% 21.58% 4.14% 1.62% -15.00% 15.58% 0.\33 0.260 

V&C 3.25% 5.76% 1.28% 1.61% 49.48% 16.29% 0.00% 14.18% 0.00% 4.27% -14.10% 16.66% 0.163 0.191 

GARCH 2.33% 3.73% 1.93% 1.28% 3.93% 49.48% 21.58% 62.83% 1.62% 40.26% -12.00% 13.64% 0.263 0.431 

F-GARCH 3.08% 4.23% 1.12% 0.96% 76.11% 92.58% 66.97% 71.20% 60.04% 70.34% -12.47% 15.04% 0.236 0.301 

EGARCH 2.51% 3.78% 177% 1.77% 8.30% 8.30% 17.69% 17.69% 2.80% 280% -12.35% 14.66% 0.242 0.334 

F-EGARCH 3.13% 3.87% 1.12% 128% 76.11% 49.48% 66.97% 62.83% 60.04% 40.26% -12.65% 13.64% 0.227· 0.431 
GBM 3.07% 3.00% 45.59% 45.75% 19.13% 3.70% -3.18% 3.12% 2.973 4.319 

00 MR-OLS 4.09% 5.11% 0.8% 1.4% 60.80% 29.56% 2.65% 11.07% 2.28% 5.65% -15.88% 17.08% 0.108 0.169 :f 
U MR-GARCH 4.11% 5.09% 0.80% 1.44% 60.80% 29.56% 2.65% 11.07% 2.28% 5.65% -15.88% 17.08% 0.108 0.169 
~ 

~ 
MR-EGARCH 4.08% 5.10% 0.8% 1.4% 60.80% 29.56% 2.65% 11.07% 2.28% 5.65% -15.88% 17.08% 0.108 0.169" 

~ 
MRJD-OLS 2.79% 5.73% 2.41% 2.09% 0.28% 1.74% 0.36% 25.84% 0.00% 0.84% -12.21% 15.17% 0.251 0.291 

MRJD-GARCH 2.81% 5.70% 2.41% 2.09% 0.28% 1.74% 0.36% 25.84% 0.00% 0.84% -12.21% 15.17% 0.251 0.291 

MRJD-EGARCH 2.84% 575% 2.41% 2.09% 0.28% 1.74% 0.36% 25.84% 0.00% 0.84% -12.21% 15.17% 0.251 0.291 

00 GBM 4.49% 5.30% 0.80% 1.61% 60.80% 16.29% 2.65% 14.18% 2.28% 4.27% -15.88% 16.66% 0.108 0.191 
Z 
9 MR-OLS 0.00% 0.00% 
f-< MR-GARCH 0.00% 0.00% ...: 

~ 
MR-EGARCH 0.00% 0.00% 

MRJD-OLS 3.11% 0.32% 0.00% 4.70% 88.94% 4.65% -18.51% 0.050 

'" u MRJD-GARCH 0.00% 0.00% 
~ MRJD-EGARCH 0.00% 0.00% 
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Table 4-8: VaR results for PROPANE at a=l %. 

For further details, see notes in Table 3. 

~ 
u 
:E 

~ 
~ 
rn 

5 ; 
rn 
U 
:E 

RM 

HS 

F-HS 

V&C 

GARCH 

F-GARCH 

EGARCH 

F-EGARCH 
GBM 

MR-OLS 

MR-GARCH 

MR-EGARCH 

MRJD-OLS 

MRJD-GARCH 

MRJD-EGARCH 

GBM 
MR-OLS 
MR-GARCH 
MR-EGARCH 

MRJD-OLS 

MRJD-GARCH 

MRJD-EGARCH 

Avg VaR (ETL) No Hits (%) LR-" LRind LR." ES LF (xI0"4) 

Long Short Long Short Long Short Long Short Long Short Long Short Long Short 

1.87% 1.51% 29.53% 34.83% 26.40% 0.03% -1.54% 1.25% 2.590 1.742 

4.13% 3.05% 1.77% 

4.27% 2.72% 1.61% 

3.78% 3.36% 2.57% 

2.42% 2.36% 2.57% 

2.54% 2.78% 1.77% 

2.65% 

2.98% 
2.00% 

4.13% 

4.13% 

4.11% 

2.94% 

2.86% 

2.86% 

3.91% 

3.72% 

3.74% 

4.94% 

2.75% 

2.53% 
1.74% 

3.06% 

3.06% 

3.08% 

2.55% 

2.54% 

2.55% 

3.14% 

5 10% 

4.46% 

5.15% 

3.21% 

1.93% 
42.22% 

1.8% 

1.77% 

1.8% 

4.33% 

4.49% 

4.49% 

2.57% 
0.00% 
0.00% 
0.00% 

1.28% 

0.48% 

0.64% 

1.77% 

1.77% 

1.77% 

2.25% 

\.61% 

2.09% 

1.93% 
47.19% 

1.8% 

1.77% 

1.8% 

3.37% 

3.37% 

3.37% 

1.93% 
0.00% 
0.00% 
0.00% 

0.48% 

0.32% 

0.32% 

0.00% 0.00% 10.30% 25.05% 0.00% 0.00% 

0.00% 0.00% 25.05% 66.88% 0.00% 0.00% 

Q~ Q~ I~ ~~ o.~ Q~ 

92.58% 8.30% 71.20% 51.11 % 70.34% 6.38% 

76.11 % 29.56% 66.97% 58.80% 60.04% 23.89% 

3.93% 

8.30% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

16.29% 

76.11'10, 

29.56% 

0.28% 

0.72% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

8.30% 

76.11% 

29.56% 

47.47% 

51.11 % 
10.34% 

8.31% 

8.31% 

8.31% 

0.40% 

0.57% 

\\8% 

2.14% 

54.90% 

66.97% 

58.80% 

37.40% 

40.61% 
20.44% 

25.050/. 

71.36% 

25.05% 

6.62% 

6.62% 

6.62% 

12.59% 

51.11% 

66.97% 

58.80% 

2.92% 

6.38% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

12.88% 

60.04% 

23.89% 

0.18% 

0.49% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

6.38% 

60.04% 

23.89% 

-4.59% 

-4.88% 

-4.25% 

-4.27% 

-3.98% 

-4.20% 

-4.43% 
-1.08% 

-4.77% 

-4.77% 

-4.77% 

-4.35% 

-4.32% 

-4.41% 

-4.27% 

-201% 

-2.13% 

-2.43% 

1.53% 

1.49"10 

1.46% 

1.84% 

\.53% 

1.82% 

1.73% 
LlI% 

1.53% 

1.73% 

1.53% 

1.46% 

1.46% 

1.46% 

1.69% 

1.03% 

0.52% 

1.08% 

1.\ 14 

1.043 

1.210 

1.204 

1.293 

1.223 

1.157· 
3.015 

1.069 

1.069 

1.069 

1180 

1.\89 

1.\64 

1.204 

2.239 

2.157 

1.971 

1.529 

1.559 

1.575 

1.327· 

1.526 

1.343 

1.396 
1.858 

1.529 

1.392 

1.529 

1.575 

1.575 

1.575 

1.423 

1.930 

4.335 

1.890 
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Table 4-9: VaR results for PJM at a=l %. 

F or further details, see notes in previous table. 

AVl! VaR (ETL) No Hits (%) LR", LR.,d LR" ES LF ~x10"4) 

Lon!! Short Lon!! Short Lon!! Short Lon!! Short Lon!! Short Lon!! Short Lon!! Short 

RM 10.44% 11.49% 25.84% 25.68% 7.15% 42.91% -13.80% 14.34% 30.366 33.349 

HS 13.42% 12.94% 0.80% 1.12% 60.80% 76.11% 75.53% 66.97% 54.84% 60.04% -58.75% 55.58% 0.739 0.360 

F-HS 10.84% 1101% 0.96% 1.28% 92.58% 49.48% 71.20% 62.83% 70.34% 40.26% -56.50% 53.84% 0.932 0.522 

V&C 14.28% 1181% 161% 2.57% 16.29% 0.10% 54:90% 40.40% 12.88% 0.07% -49.38% 46.42% 1.858 1.759 

GARCH 12.00% 12.98% 1.28% 2.57% 49.48% 0.10% 62.83% 40.40% 40.26% 0.07% -44.68% 40.92% 2.767 3.269 

F-GARCH 8.81% 12.44% 0.80% 161% 60.80% 16.29% 75.53% 14.18% 54.84% 4.27% -45.96% 45.05% 2.490 2.085 

EGARCH 13.05% 12.74% 1.77% 2.89% 8.30% 0.01% 51.11% 51.11% 6.38% 0.01% -40.24% 41.38% 3.969 3.118 

F-EGARCH 1122% 13.81% 1.12% 1.61% 76.11% 16.29% 66.97% 54.90% 60.04% 12.88% -36.71% 45.36% 5.250 2.007 

GBM 10.16% 1104% 39.97% 36.92% 2.15% 0.62% -10.47% 11.40% 39.520 41837 
CIl MR-OLS 13.43% 12.93% 0.8% 1.1% 60.80% 76.11% 75.53% 66.97% 54.84% 60.04% -58.75% 55.58% 0.739 0.360 :r: 
U MR-GARCH 16.70% 13.01% 0.64% 1.12% 33.66% 76.11% 79.93% 66.97% 32.02% 60.04% -62.06% 55.58% 0.521" 0.360 
:::;E 

~ 
MR-EGARCH 13.44% 12.82% 0.8% 1.1% 60.80% 76.11% 75.53% 66.97% 54.84% 60.04% -58.75% 55.58% 0.739 0.360· 

~ 
MRJD-OLS 15.60% 12.24% 1.61% 2.73% 16.29% 0.04% 54.90% 45.70% 12.88% 0.03% -49.38% 45.67% 1.858 1.933 

:r: MRJD-GARCH 15.80% 12.37% 1.61% 2.73% 16.29% 0.04% 54.90% 45.70% 12.88% 0.03% -49.38% 45.67% 1.858 1.933 

MRJD-EGARCH 15.65% 12.15% 161% 2.73% 16.29% 0.04% 54.90% 45.70% 12.88% 0.03% -49.38% 45.67% 1.858 1.933 

CIl GBM 14.19% 1109% 161% 2.57% 16.29% 0.10% 54.90% 40.40% 12.88% 0.07% -49.38% 46.42% 1.858 1.759 
Z 

MR-OLS 0.00% 0.00% Q 
~ MR-GARCH 0.00% 0.00% 

~ 
MR-EGARCH 0.00% 0.00% 

MRJO-OLS 0.00% 0.00% 
CIl 

u MRJD-GARCH 0.00% 0.00% 
:::;E MRJD-EGARCH 0.00% 0.00% 
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Table 4-10: VaR results for SEI at a=l %. 

For further details, see notes in previous table. 

Av~ VaR (ETL) No Hits (%) LRllc LRUu! LR." ES LF (xI0"4) 

Lon~ Short Lon~ Short Lon!! Short Lon!! Short Lon~ Short Lon!! Short Lon~ Short 

RM 2.10% 2.00% 31.94% 32.58% 3.01% 35.890/. -2.86% 2.78% 0.970 1.115 

HS 1.42% 1.05% 1.12% 1.12% 76.11% 76.11% 66.97% 66.97% 60.04% 60.04% -9.00% 9.39% 0.030 0.002 

F-HS 1.19% 1.12% 1.44% 1.12% 29.56% 76.11% 58.80% 66.97% 23.89% 60.04'/0 -8.68% 9.39% 0.035 0.002 

V&C 1.13% 1.55% 2.09% 2.41% 1.74% 0.28% 43.96% 37.40% 1.24% 0.18% -8.19% 8.54% 0.044 0.013 

GARCH 2.00% 1.78% 1.12% 2.09% 76.11% 1.74% 66.97% 43.96% 60.04% 1.24% -8.63% 8.35% 0.036 0.017 

F-GARCH 1.94% 1.73% 0.96% 1.28% 92.58% 49.48% 71.20% 62.83% 70.34% 40.26% -8.76% 8.82% 0.034 0.008 

EGARCH 2.03% 1.82% 1.28% 2.25% 49.48% 0.72% 62.83% 40.61% 40.26% 0.49% -8.63% 8.36% 0.036 0.017 

F-EGARCH 1.94% 1.60% 1.12% 1.44% 76.11% 29.56% 66.97% 58.80% 60.04% 23.89% -8.63% 9.00% 0.036 0.006 
GBM 2.18% 2.07% 47.51% 48.64% 6.33% 9.18% -2.23% 2.16% 1.360 1.510 

(/) 
MR-OLS 1.26% 1.11% 1.3% 1.1% 49.48% 76.110;., 62.83% 66.97% 40.26% 60.04% -8.83% 9.39% 0.033 0.002 ::J? 

U MR-GARCH 1.43% 1.13% 1.12% Ll2% 76.11% 76.11% 66.97% 66.97% 60.04% 60.04% -9.00% 9.39% 0.030 0.002 
~ 

~ 
MR-EGARCH 1.40% 1.15% 1.1% 1.1% 76.11% 76.11% 66.97% 66.97% 60.04% 60.04% -9.00% 9.39% 0.030- 0.002-

ill MRJD-OLS 1.32% 1.38% 1.77% 2.09% 8.30% 1.74% 51.11% 43.96% 6.38% 1.24% -8.40% 8.76% 0.040 0.009 

~ MRJD-GARCH 1.32% 1.37% 1.77% 2.09% 8.30% 1.74% 51.11% 43.96% 6.38% 1.24% -8.40% 8.76% 0.040 0.009 

MRJD-EGARCH 1.30% 1.37% 1.77% 2.09% 8.30% 1.74% 51.11% 43.96% 6.38% 1.24% -8.40% 8.76% 0.040 0.009 
(/) GBM 1.25% 1.43% 1.77% 2.25% 8.30% 0.72% 51.11 % 40.61% 6.38% 0.49% -8.40% 8.64% 0.040 0.011 
Z 

MR-OLS 0.00% 0.00% 0 
r:: MR-GARCH 0.00% 0.00% ...: 
...l MR-EGARCH 0.00% 0.00% 

~ MRJD-OLS 0.87% 0.16% 0.00% 0.89% 93.61% 0.89% -7.14% 0.077 
(/) 

u MRJD-GARCH 0.00% 0.00% 
~ MRJD-EGARCH 0.00% 0.00% 
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Next, table 4-11 reports the p-values for the pair-wise modified Diebold-Mariano (MOM) 

test, between the model that delivers the smallest LF and all those models that pass the first 

evaluation stage, for the long and the short trading positions, respectively. The null 

hypothesis of the MDM test is that both the benchmark and the competing models are equally 

accurate in their VaR forecasts. The null hypothesis is rejected whenever the reported p-value 

is less than 1 %25. An asterisk indicates that the competing models are statistically performing 

equally well for predicting VaR, whereas a double asterisk indicates that the VaR hit series 

for both competing models is identical and so there cannot be any differentiation between the 

two. In such cases the p-value is equal to 1 as the null is accepted with 100% confidence. As 

far as the long trading positions are concerned, according to the reported p-values and for 

0.=1 %, it is for the WTI and the Propane markets that the F-EGARCH is statistically superior 

as a stand-alone model relative to the competing models, and for the HO market that the 

MCS-MRJD-GARCH model stands out. For all remaining energy markets and the SEI, all 

the pair wise competing models perform statistically equally well with the model that 

delivered the lowest LF at the second evaluation stage. In some cases the two competing 

models are statistically identical, as is the case for example with PlM and the SEI where the 

benchmarks HMCS-MR-GARCH and HMCS-MR-EGARCH when compared with the HS 

and the HMCS-MR-GARCH, respectively, seem to be delivering exactly the same statistical 

accuracy. As far as the short trading positions are concerned and for all energy commodities 

and the SEI, according to the respective p-values, the null hypothesis cannot be rejected for 

all competing pairs of models. Again, there are many cases that the two competing models 

behave statistically the same. For example in the case of the SEI and for the benchmark 

HMCS-MR-EGARCH model, the null that the two competing models are the same, is 

respectively accepted with 100% confidence for the comparisons with the F-HS, HS, HMCS

MR-GARCH, and HMCS-MR-OLS models. 

25 The relevant t-stats (MDM-statistics) are also calculated but are not reported in the table because in every 

case the outcome is identical to that of the p-values. , 
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Table 4-11: Modified Diebold-Mariano test at a=l %. 

The p-values for the pair-wise modified Diebold-Mariano (MOM) test between the model that delivers the smallest LF and all th d I ha h Ii I . t d r b h . '. . ose mo est t pass t e Irst 
eva uatton s age, are reporte lor oth t e long and the short trading poslltons, respectively. The null hypothesis of the MOM test is that both the benchmark 
~d the competing models are equally accurate In theIr VaR forecasts, ie. davg = O. The null hypothesis is rejected whenever the reported p-value is less than 
I Yo. An astensk indIcates that the competing models are staltshcally performing equally well for predicting VaR, whereas a double asterisk indicates that the 
VaR hIt senes for both competing models IS Idenltcal and so there cannot be any dIfferentiation between the two. In those cases that the p-value is e ual to 1 it 
means that the hit senes IS Identical for both models, thus the null is accepted with 100% confidence. q 

Lon ositions -value Short ositions -value 

Panel A: WTl Panel A: WTI 

F-EGARCH vs F-GARCH 0.00153 MCS-MRJD-GARCH vs MCS-MRJD-OLS* 0.27143 

F-EGARCH vs GARCH 0.00106 MCS-MRJD-GARCH vs MCS-MRJD-EGARCH* 0.06714 

F-EGARCH vs MCS-MRJD-OLS 0.00001 MCS-MRJD-GARCH vs GARCH* 0.22576 

F-EGARCH vs MCS-MRJD-GARCH 0.00003 MCS-MRJD-GARCH vs F-GARCH* 0.12068 

F-EGARCH vs MCS-MRJD-EGARCH 0.00002 Panel B: HO 

Panel B: HO MCS-MRJD-OLS vs EGARCH* 0.17246 

MCS-MRJD-GARCH vS GARCH 0.00050 MCS-MRJD-OLS vs F-EGARCH* 0.04257 

MCS-MRJD-GARCH vs MCS-MRJD-EGARCH 0.00049 MCS-MRJD-OLS vs F-GARCH* 0.11082 

MCS-MRJD-GARCH vs MCS-MRJD-OLS 0.00049 MCS-MRJD-OLS vs GARCH* 0.11082 

Panel C: GASOLINE MCS-MRJD-OLS vs F-HS* 0.09640 

MCS-MRJD-EGARCH vs HMCS-MR-EGARCH* 0.07456 MCS-MRJD-OLS vs HS* 0.14003 

MCS-MRJD-EGARCH vs HMCS-MR-GARCH* 0.07456 Panel C: GASOLINE 

MCS-MRJD-EGARCH vs HMCS-MR-OLS* 0.07456 MCS-MRJD-EGARCH vs MCS-MRJD-GARCH** 1.00000 

MCS-MRJD-EGARCH vs MCS-MRJD-OLS* 0.02425 MCS-MRJD-EGARCH vs MCS-MRJD-OLS* 0.23883 

MCS-MRJD-EGARCH vs MCS-MRJD-GARCH** 1.00000 Panel D: CS_GASOLINE-WTI 

Panel D: CS_GASOLINE-WTI MCS-MRJD-EGARCH vs F-GARCH* 0.27350 

MCS-MRJD-EGARCH vs F-EGARCH* 0.04705 MCS-MRJD-EGARCH vs MCS-MRJD-OLS" 1.00000 

MCS-MRJD-EGARCH vs F-GARCH* 0.04492 Panel E: CS_HO_WTI 

Panel E: CS_HO_WTl MCS-MRJD-GARCH vS F-EGARCH' 0.14819 

F-EGARCH vs F-GARCH*' 1.00000 MCS-MRJD-GARCH vS F-GARCH* 0.19136 

F-EGARCH vs MCS-MRJD-EGARCH* 0.04541 MCS-MRJD-GARCH vs MCS-MRJD-EGARCH* 0.16611 

Panel F: NG MCS-MRJD-GARCH vs MCS-MRJD-OLS* 0.17455 

F-EGARCH vs F-GARCH* 0.02523 Panel F: NG 

Panel G: PROPANE 
HMCS-MR-EGARCH vs F-EGARCH* 0.32131 

F-EGARCH vs F-GARCH 0.00000 HMCS-MR-EGARCH vs F-GARCH* 0.24441 

F-EGARCH vs GARCH 0.00000 HMCS-MR-EGARCH vs GARCH* 0.32131 

F -EGARCH vs MCS-MRJD-EGARCH 0.00000 HMCS-MR-EGARCH vs HMCS-MR-GARCH'* 1.00000 

F-EGARCH vs MCS-MRJD-GARCH 000000 HMCS-MR-EGARCH vs HMCS-MR-OLS** 1.00000 

F-EGARCH vs MCS-MRJD-OLS 0.00000 HMCS-MR-EGARCH vs HS'* 1.00000 

PanelH: PJM 
Panel G: PROPANE 

HMCS-MR-GARCH vs EGARCH* 0.02825 GARCH vs F-GARCH* 0.44775 

HMCS-MR-GARCH vs F-EGARCH* 0.01493 GARCH vs MCS-MRJD-EGARCH* 0.68379 

HMCS-MR-GARCH vs GARCH* 0.05711 GARCH vs MCS-MRJD-GARCH* 0.98214 

HMCS-MR-GARCH vs F-GARCH* 0.06827 GARCH vs MCS-MRJD-OLS * 0.70167 

HMCS-MR-GARCH vs HS'* 1.00000 PanelH: PJM 

HMCS-MR-GARCH vs F-HS* 0.11287 HMCS-MR-EGARCH vs EGARCH* 0.61715 

HMCS-MR-GARCH vs V &C* 0.08707 HMCS-MR-EGARCH vs F-GARCH* 0.53082 

HMCS-MR-GARCH vs HMCS-MR-EGARCH* 0.16148 HMCS-MR -EGARCH vs HS ** 1.00000 

HMCS-MR-GARCH vs HMCS-MR-OLS* 0.16148 HMCS-MR-EGARCH vs F-HS* 0.22927 

HMCS-MR-GARCH vs HMCS-MRJD-EGARCH* 0.08707 HMCS-MR-EGARCH vs V&C* 0.50022 

HMCS-MR-GARCH vs HMCS-MRJD-GARCH* 0.08707 HMCS-MR-EGARCH vs HMCS-MR-GARCH*' 1.00000 

HMCS-MR-GARCH vs HMCS-MRJD-OLS* 0.08707 HMCS-MR-EGARCH vs HMCS-MR-OLS'* 1.00000 

HMCS-MR-GARCH vs MCS-GBM* 0.08707 HMCS-MR-EGARCH vs HMCS-MRJD-EGARCH' 0.51731 

Panel I: SEI 
HMCS-MR-EGARCH vs HMCS-MRJD-GARCH' 0.51731 

HMCS-MR-EGARCH vs EGARCH' 0.14987 HMCS-MR-EGARCH vs HMCS-MRJD-OLS* 0.51731 

HMCS-MR-EGARCH vs F-EGARCH* 0.14888 Panel I: SEI 

HMCS-MR-EGARCH vs F-GARCH* 0.15747 HMCS-MR-EGARCH vs F-EGARCH' 0.09881 

HMCS-MR-EGARCH vs HS'* 1.00000 HMCS-MR-EGARCH vs F-GARCH* 
0.12346 

HMCS-MR-EGARCH vs F-HS* 0.15747 HMCS-MR-EGARCH vs F-HS*' 
1.00000 

HMCS-MR-EGARCH vs GARCH* 0.14888 HMCS-MR-EGARCH vs HS'* 
1.00000 

HMCS-MR-EGARCH vs HMCS-MR-GARCH" 1.00000 HMCS-MR-EGARCH vs HMCS-MR-GARCH" 
1.00000 

HMCS-MR-EGARCH vs HMCS-MR-OLS' 0.15747 HMCS-MR-EGARCH vs HMCS-MR-OLS** 
1.00000 
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HMCS-MR-EGARCH vs HMCS-MRJD-EGARCH* 0.10276 

HMCS-MR-EGARCH vs HMCS-MRJD-GARCH* 0.10276 

HMCS-MR-£GARCH vs HMCS-MRJD-OLS* 0.10276 

HMCS-MR-EGARCH vs MCS-GBM* 0.10276 

In addition, table 4-12 reports the p-values for the White's (2000) Reality Check (RC) test, 

between the model that delivers the smallest LF (benchmark) and all those models that pass 

the first evaluation stage, for both long and short trading positions. The null hypothesis states 

that none of the models is better than the benchmark, i.e. there is no predictive superiority 

over the benchmark itself. Hence, whenever the null hypothesis is accepted it means that 

there is no competing model that performs better in terms of its VaR forecasting ability than 

the benchmark model. The null hypothesis is rejected whenever the reported p-value is less 

than the conventional level of significance of 1 %. For the long positions, the null cannot be 

accepted for Gasoline, the crack spread of HO with WTI, PJM, and the SEI as there can be at 

least one model that performs equally well or better than the benchmark model. For the WTI, 

NG, Propane, the crack spread of Gasoline with WTI, and HO markets there is strong 

evidence that the benchmark model is indeed the best in terms of its VaR performance across 

the competing models; the F-EGARCH for the former four markets and the MCS-MRJD

GARCH for the latter. As for the short positions, the null cannot be rejected in all cases but 

three. It is only for the WTI, HO and Gasoline that the benchmark model is not the best 

performing one according to the reported RC p-values. On the other hand, based on the 

reported RC p-values, for the two crack spreads of Gasoline and HO with WTI, the Propane, 

NG, PJM, and the SEI, the benchmark model is indeed the best performing one; that is the 

MCS-MRJD-EGARCH, MCS-MRJD-GARCH, GARCH, and HMCS-MR-EGARCH for the 

latter three markets respectively. The results from the RC test indicate that for the long 

trading positions there is mixed evidence as to which model performs better in terms of its 

VaR forecasting ability. However, for the short trading positions it is clearer from the results 

that the proposed MC Simulation and the Hybrid MC-HS methodologies produce a better 

VaR performance compared to the more traditional ARCH type and Historical Simulation 

methodologies. 
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Table 4-12: White's Reality Check at a=1 % 

The p-values for the White's (2000) Reality Check (RC) test, between the model that delivers 
the smallest LF (benchmark) and a!l thos~ ~odels that pass the first evaluation stage, are 
reported for both lo~g and short tradmg posItions, respectively. The null hypothesis states that 
none of the ~odels IS better than the benchmark, i.e. there is no predictive superiority over the 
bench~ark Itself. Hence, whenever the null hypothesis is rejected it means that there is no 
competmg model that performs better in terms of its VaR forecasting ability than the 
benchmark model. The null hypothesis is rejected whenever the reported p-value is less than 
the conventional level of si nificance of 1 %. 

Lon -value Short ositions -value 

PaneIA:WTI Panel A: WTI 

F-EGARCH 0.88904 MCS-MRJD-GARCH 0.00520 

Panel B: HO Panel B: HO 

MCS-MRJD-GARCH 0.17131 MCS-MRJD-OLS 0.00049 

Panel C: GASOLINE Panel C: GASOLINE 

MCS-MRJD-EGARCH 0.00169 MCS-MRJD-EGARCH 0.00005 

Panel D: CS_GASOLINE-WTI Panel D: CS_GASOLINE-WTI 

MCS-MRJD-EGARCH 0.01343 MCS-MRJD-EGARCH 0.04616 

Panel E: CS HO WTI Panel E: CS_HO_WTI 

F-EGARCH 0.00024 MCS-MRJD-GARCH 0.92270 

PanelF: NG Panel F: NG 

F-EGARCH 0.51461 HMCS-MR-EGARCH 0.04111 

Panel G: PROPANE Panel G: PROPANE 

F-EGARCH 0.99819 GARCH 0.76569 

Panel H: PJM PanelH: PJM 

HMCS-MR-GARCH 0.00178 HMCS-MR-EGARCH 0.02176 

Panel I: SEI Panel I: SEI 

HMCS-MR-EGARCH 0.00801 HMCS-MR-EGARCH 0.09610 

Finally, table 4-13 summarises the VaR models that have been shortlisted as being the best 

for predicting VaR for each energy market and the SEI, following the proposed back-testing 

methodology. Panels A and B show the results for the long and the short trading positions 

respectively. In both panels, the first two columns list all the models that have successfully 

passed all three statistical tests, i.e. the first evaluation stage. Next, the remaining columns in 

each panel report only those VaR models that deliver the lowest LF, alongside those models 

that the MDM test identifies that their hit series is identical. According to the implemented 

two stage back-testing procedure, at the 1 % significance level and for the short positions, it is 

the MC simulation and the Hybrid MC-HS methods from which the preferred models for 

estimating the VaR are short-listed; this finding is consistent with all energy markets and the 

SEI. As for the long trading positions results are mixed. On the one hand, it is again the MC 

simulation and the Hybrid MC-HS methods that are the best choices for the HO, Gasoline, 

CS-Gasoline-WTI, PJM, and the SEI. On the other hand, it is the ARCH-type models, and 

159 



more specific the F-GARCH and F-EGARCH models, that stand out as the best VaR 

modelling options for the WTI, CS-HO-WTI, NG, and Propane markets. 

Therefore, whenever a risk manager wants to choose a single approach for calculating the 

VaR for all energy commodities that he/ she holds, as it is usually the case in practice, the 

results show that the MC simulations and the Hybrid MC-HS approaches proposed in this 

thesis are the most reasonable, efficient, and consistent candidates. The findings of this 

research have important implications for regulatory and policy-making purposes as the 

decision making bodies can reconsider the commonly used VaR models and establish an 

industry-wide methodological approach for calculating and back-testing the VaR in the 

energy markets. The proposed MC simulation and the Hybrid MC-HS models, in 

combination with the proposed selection procedure, have the potential of becoming common 

practise in the energy industry. 
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Table 4-13: Summary of models that pass the back-testing methodology In each stage at 
a=l%. 

The VaR models that have been shortlisted as being the best for predicting VaR for each energy market and the Sa following the proposed back-testmg 
methodology, are surrmarised below. Panels A and B show the results for the long and the short trading positions, respectively. In both panels, the first 
two columns list all the models that have successfully passed all three statistical tests, i.e. the first evaluation stage. NeJ<!, the remaining columns in each 
panel report only those VaR models that deliver the lowest LF on the basis of the MDM tests, alongside those models that the MDM test identifies that 

Panel A: Long posltions 

lst stage 

Panel A: WTI 

F·EOARCH 

F·OARCH 

OARCH 

Panel B: no 

MCS-MRJD·OARCH 

OARCH 

Panel C: GASOLINE 

MCS-MRJD·EOARCH 

MC S-MRJD·OLS 

MCS·MRJD·OARCH 

Panel D: CS_GASOLINE-WTI 

MCS·MRJD·EOARCH 

F-EOARCH 

F-EGARCH 

F-GARCH 

PaneIF:NG 

F·EGARCH 

Panel G: PROPA~E 

F·EGARCH 

F·GARCH 

GARCH 

Panel H: PJM 

HMC S·MR·GARCH 

EGARCH 

F-EGARCH 

GARCH 

F·GARCH 

HS 

F·HS 

Panel!: SEI 

HMCS-MR·EGARCH 

EGARCH 

F·EGARCH 

F-GARCH 

HS 

F·HS 

GARCH 

MCS-MRJD-OLS 

MCS-MRJD-GARCH 

MCS-MRJD-EGARCH 

MCS·MRJD·EOARCH 

MCS-MRJD·OLS 

HMCS·MR-OLS 

HMCS·MR·EGARCH 

HMCS-MR-GARCH 

F·GARCH 

MCS·MRJ D-EGARCH 

F-GARCH 

MCS·MRJD·EGARCH 

MCS·MRJD-GARCH 

MCS·MRJD-OLS 

v&£ 

HMCS·MR·EGARCH 

HMCS-MR-OLS 

HMCS-MRJD·EGARCH 

HMCS-MRJD-GARCH 

HMCS-MRJD-OLS 

MCS-GBM 

HMC S-MR·GARCH 

HMCS·MR-OLS 

HMCS-MRJD-EGARCH 

HMCS·MRJD·GARCH 

HMCS·MRJD-OLS 

MCS-GBM 

2nd 5 tage 

F·EGARCH 

MCS·MRJD-GARCH 

MCS·MRJD·EGARCH 

MCS-MRJD-GARCH 

MCS·MRJD·EGARCH 

F·EGARCH 

F-GARCH 

F-EGARCH 

F·EGARCH 

HMCS·MR·GARCH 

HS 

HMCS·MR-EGARCH 

HS 

HMCS-MR·GARCH 

Panel Ii: Short positions 

P.neIA~WTI 

MCS-MRJD·GARCH 

MCS-MRJ D-OLS 

MCS·MRJD·EGARCH 

Panel B: HO 

MCS·MRJD·OLS 

EGARCH 

F-EGARCH 

F·GARCH 

Panel C: GASOLINE 

MCS-MRJD-EGARCH 

MCS·MRJD·GARCH 

1st stage 

Panel D: CS_GASOLINE-WTI 

MCS·MRJD-EGARCH 

F-GARCH 

MCS·MRJD-GARCH 

F·EGARCH 

F·GARCH 

PanelF:NG 

HMCS·MR·EGARCH 

F·EGARCH 

F·GARCH 

GARCH 

Panel G: PROPANE 

GARCH 

F·GARCH 

MCS-MRJD-EGARCH 

Panel H: PJ:\I 

HMCS-MR·EGARCH 

EGARCH 

F·GARCH 

HS 

F·HS 

V&£ 

PaneII:SEI 

HMCS·MR-EGARCH 

F·EGARCH 

F-GARCH 

F-HS 

GARCH 

F·GARCH 

GARCH 

F-HS 

HS 

MCS-MRJD-OLS 

MCS·MRJD-OLS 

MCS-MRJD·EGARCH 

MCS·MRJD-OLS 

HMCS-MR·GARCH 

HM C S-MR·OLS 

HS 

MC S-MRJD-GARCH 

MCS-MRJD-OLS 

HMCS·MR·GARCH 

HMCS·MR-OLS 

HMCS-MRJD-EGARCH 

HMCS·MRJD-GARCH 

HMCS-MRJD·OLS 

HS 

HMCS·MR-GARCH 

HMCS·MR-OLS 

20dstage 

MCS-MRJD-GARCH 

MCS·MRJD-OLS 

MCS·MRJD·EGARCH 

GARCH 

F-OARCH 

MCS·MRJ D-OLS 

EOARCH 

F·EGARCH 

F-OARCH 

GARCH 

F-HS 

HS 

MCS-MRJ[)..EGARCH 

MCS·MRJ[)..GARCH 

Me S-MRJD-EOARCH 

MCS-MRJ[)"oLS 

MCS-MRJD-GARCH 

HMCS-MR·EOARCH 

HMCS·MR-GARCH 

HMCS-MR·OLS 

HS 

GARCH 

HMCS·MR·EGARCH 

HS 

HMCS·MR·GARCH 

HMCS-MR-OLS 

HMCS·MR·EOARCH 

HMCS·MR-GARCH 

HMCS·MR·OLS 

F-HS 

HS 
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4.6. Conclusion 

This chapter proposes and compares a set of models for estimating the VaR of eight spot 

energy markets that trade futures contracts on NYMEX, and of the constructed Spot Energy 

Index, for both long and short trading positions, at the 1 % significance level. The two 

proposed VaR methodologies are a MC simulation approach, and a Hybrid MC with 

Historical Simulation approach, both assuming various processes for the underlying spot 

prices. Next, a two-stage evaluation and selection process is applied, combining statistical 

and economic measures, to choose amongst the competing VaR models. The results show 

that, at the 1 % significance level, for all commodities and the SEI there is at least one model 

that passes all three statistical tests with the ARCH type, the MC simulation, and the Hybrid 

MC-HS models prevailing more. For the entire fuels complex, including the WTI, HO, 

Gasoline, and the crack spreads with WTI, and for both long and short positions, the MC 

simulations methodology under the MRJD specifications, followed by the Hybrid MC-HS 

models pass all three statistical criteria from the first evaluation stage, and at the same time 

deliver the lowest LF at the second evaluation stage. The only exceptions are the WTI and the 

CS-HO-WTI just for the long trading positions, with the ARCH-type methodologies 

delivering the lowest LFs respectively. Therefore, it is concluded that the two former 

approaches are the most reasonable, efficient, and consistent candidates for calculating the 

VaR of energy prices, for both long and short positions. 

The accurate calculation of VaR measures in the volatile energy markets is important for all 

market players and for a variety of reasons. First, the spot energy price risk is quantified 

taking into consideration the occurrence of extreme volatility events and thus at the same 

time allowing managers to develop efficient hedging strategies to protect their investments. 

Second, with the proposed VaR model selection process, modelling risk can be minimised as 

it satisfies strict risk management requirements and control procedures, by reducing the 

probability of accepting flawed models. Third, quantifying the risk profile of the energy 

markets, as expressed by the individual spot price series and the SEI, is vital for many hedge 

fund managers and alternative investors that have recently been following closely and started 

expanding their presence in the energy markets. Finally, the proposed VaR estimates can be 

used for setting the margin requirements in the growing energy derivatives market, and more 

importantly for the energy forwards, futures, and options that are widely used for both 

hedging and speculation purposes by many industrial players, commodity and investment 
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houses. This can be achieved by adopting the proposed models for their derivative contracts' 

valuations which, as proved in the previous chapter, are able to describe the energy markets 

better, exhibiting better explanatory power and goodness of fit. These models incorporate 

mean-reversion and spikes in the stochastic behaviour of the underlying asset, allowing for a 

different speed of mean reversion once a jump is identified, while at the same time allowing 

for time-varying volatility in their specification modelled as a GARCH or an EGARCH 

process. While risk management clearly did not fully prevent a downside in investment 

portfolios during the recent economic recession, according to Briand and Owyong (2009) 

those organisations that had invested in risk management practices prior to the crisis, and 

acted on their findings, performed significantly better than those that did not. 

Moreover, numerous authors argue that it is impossible to constantly beat the market, 

whereas a buy-and-hold strategy of the market through a market index is the best approach 

(Andreu and Torra, 2009). Generally, financial portfolio management is implemented by 

using active or passive strategies. Under the active strategy, the portfolio manager assumes 

that markets are not perfectly efficient and there is room to exploit any disequilibrium or 

mispricing; hence, portfolio managers will attempt to pick high performing stocks and/or 

time their buy/sell decisions in order to outperform the market or other stocks (Beasley et aI., 

2003). On the other hand, a passive strategy assumes that the market is efficient and cannot 

be beaten in the long run (Maringer and Oyewumi, 2007); as a result, the main activity of a 

manager is to achieve the same or at least a very similar return as a specified market index. 

According to Beasley et al. (2003), active strategies normally have higher fixed and 

transaction costs26• On the contrary, passive strategies can have lower fixed costs and lower 

transaction costs, with the only disadvantage that if the market/index falls, unavoidably, so 

will the return obtained from the portfolio index. Taking into account the importance of 

market indices as benchmarks against which performance is compared, and as essential tools 

to prove efficiency, this thesis uses the proposed geometric average Spot Energy Index as a 

benchmark, to test the performance of an innovative tracking investment strategy, where only 

a subset of stocks from various equity pools is selected optimally with the help of two 

evolutionary algorithms. The latter strategy is examined in the next chapter. 

26 Fixed costs are mainly associated with payments to the management team. Also, frequent trading involved in 
active management leads to higher transaction costs compared to a passive strategy. 
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Chapter 5. 

5. Performance replication of the spot energy index with 
optimal equity portfolio selection 

This chapter reproduces the performance of a geometric average Spot Energy Index by 

investing only in a subset of stocks from the Dow Jones Composite Average, the FTSE 100 

and Bovespa Composite indexes, and in two pools including only stocks of the energy sector 

from the US and the UK respectively. Daily data are used and the index-tracking problem for 

passive investment is addressed with two innovative evolutionary algorithms; the differential 

evolution algorithm and the genetic algorithm, respectively. Finally, the performance of the 

suggested investment strategy is tested under three different scenarios: buy-and-hold, 

quarterly, and monthly rebalancing; accountingfor transaction costs where necessary. 
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5.1. Introduction 

Passive strategies are becoming increasingly popular. According to Konno and Hatagi 

(2005), almost half the capital in the Tokyo Exchange is subject to passive trading strategies. 

Empirical evidence seems to support the idea that the passive strategies are better than the 

active ones in the longer term. Sharpe (1991) argues that on average active managers cannot 

beat passive strategies and active trading strategies are a zero-sum game, such that some 

managers win and others lose relative to the return of the market or a particular market sector; 

consequently, after deducting the fixed and transactions costs, the average return of actively 

managed portfolios will be less than the average return on passively managed portfolios. 

Furthermore, more recent studies have shown that passive strategies outperform active 

strategies on average (Malkiel, 1995; Sorenson et aI., 1998; Frino and Gallagher, 2001). In 

addition, Barber and Odean (2000) find that in active trading strategies the presence of high 

transaction costs, and sometimes the overconfidence of investors in their predictions, reduces 

the profits substantially and potentially leads to losses. 

One of the most popular forms of passive trading strategies is index tracking. The index 

tracking method attempts to replicate/ reproduce the performance of an index, in terms of its 

returns across time. In the attempt to replicate the returns of an index! portfolio, managers can 

choose between two ways of doing that. First, with full replication all the stocks in an index 

are purchased and the index is perfectly reproduced. Nevertheless, this method has some 

practical limitations/ disadvantages. According to Beasley et ai. (2003), replicating fully an 

index would entail frequent revisions27 in order to reflect the updated weightings in the index, 

leading to high transaction costs. What is more, one-to-one replication suffers from the 

disadvantage that some stocks can be very illiquid. For these reasons, many passive strategy 

managers prefer alternatively the partial replication. In this way, managers ultimately hold 

these stocks in their portfolios which they consider to be replicating the index most 

effectively. 

It is well documented in the literature that investors can benefit by getting exposure in 

commodities as part of their long-term asset allocation plan. Over the past decade impressive 

gains have been witnessed in commodity prices, with this pattern accelerating in the last few 

years. This has attracted investors' attention and led to an impressive growth of index 

27 Revisions can occur for a number of reasons including additions or deletions, mergers, splits, and dividends. 
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investing in the commodity markets. In general there are three major ways of investing in a 

commodity index; first, by choosing an index and replicating it by following the related Rule 

Book; second, by investing in a fund that replicates the chosen index; finally, the most 

popular approach lately is by buying shares of an ETF that its strategy is to follow the 

respective commodity index. This trend has been recognised by investors and prompted them 

to set-up the first commodity Exchange Traded Fund (ETF) in November 200428• As of 

January 2010 the market capitalization of that first commodity ETF was exceeding 39 billion 

US dollars, competing with numerous other commodity-related ETFs established since then. 

Many other ETFs investing in physical commodities, futures, and commodity-related 

equities, have followed since then. 

Generally, commodities are seen as a hedge against inflation (Bodie, 1983; Gorton and 

Rouwenhorst, 2006). Though currently inflation is relatively low and stable, mounting 

worries about potential inflation pressures moving forward can be enticing more investors to 

the commodities market. In addition, since most energy commodities and especially crude oil 

are quoted in US dollars, any weakening of the USD against an international basket of major 

currencies and especially the euro, leads to an appreciation of the energy commodities in 

dollar terms. This happens on the one hand because demand is global, taking place in an 

international market scene, reflecting global currency prices, and on the other hand because 

these energy commodities are used by investors as a hedge against further US dollar 

weakness and other floating currencies. Moreover, the long lead times to bring additional 

capacity to satisfy the newly created excess demand for energy commodities, driven by the 

billions of people entering the global consumer economy, will attract even more investors to 

the energy commodity markets going forward. 

There are many papers applying vanous momentum and market timing strategies to 

commodity futures markets, with the findings in the literature suggesting that there is mixed 

evidence on their performance (see for example, Miffre and Rallis, 2007; Alizadeh et aI., 

2008; Marshall et aI., 2008; Szakmary et aI., 2010). In addition, there is a plethora of studies 

focusing on the effects of oil price changes on the economy (e.g. Hamilton, 2003), on 

whether oil price risk is priced in stock markets (e.g. Jones and Kaul, 1996), and whether oil 

prices forecast future stock market returns (e.g. Driesprong et aI., 2008). However, the 

28 The first listed commodity ETF was the streetTRACKS Gold Shares ETF, with its sole assets being gold 

bullion and from time to time cash. 
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question whether returns of equity portfolios can be used to replicate the performance of 

physical energy price returns, aggregated in a portfolio and proxied by a spot index, has 

received almost no attention in the existing literature. 

The aim of this chapter is to replicate the unique price/ return behaviour of direct energy 

commodity investment using equities. The proposed approach is based on previous research 

findings that in the case of equally weighted long-only portfolios of commodity futures, with 

a changing composition over the studied period, their statistically significant returns are 

similar to those of stocks (Bodie and Rosansky, 1980; Fama and French, 1987; Gorton and 

Rouwenhorst, 2006). In addition, it is documented in the literature that after the 2000s , 

commodities have gone through a financialization process, exposing them to the wider 

financial shocks (Tang and Xiong, 2010). The goal is accomplished by applying two very 

efficient in terms of tracking error strategies, the Differential Evolution Algorithm (DE) and 

the Genetic Algorithm (GA), to solve the index tracking problem in the energy markets as 

represented by the constructed Spot Energy Index (hereafter named SEI). Low tracking error 

strategies provide several advantages to investors; they result in better diversified portfolios, 

make the long-only constraint of a fund manager less binding, and in general tend to provide 

higher returns for various equity strategies. As of 2005, more than 50% of the trading volume 

on NYSE was performed using some form of program trading strategies (LamIe and Martell, 

2005). 

More specifically, the performance of the SEI is reproduced by investing in a small basket of 

stocks picked either from the stocks comprising three well known financial indexes, or from 

two pools of energy related stocks. In particular, the cases of the US, UK and Brazilian 

investors are considered under the assumption that they want to invest in the SEI and prefer 

to access only their local stock markets due to cost savings and/or better knowledge of the 

respective markets. They represent two developed and one developing stock market, with the 

latter having its unique energy significance in the global scene. The recent reforms and 

regulations that took place in Brazil brought transparency, sophistication and additional 

liquidity to its financial markets. It is this reliability in the Brazilian stock market data that led 

to the selection of this market for testing and implementing the proposed investment strategy. 

The lack of transparency and liquidity in other emerging stock markets, which have a large 

number of commodity related firms listed, as for example in Russia, can be questionable as it 

could lead to obscure datasets. In addition, while recently many developed countries have 
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sputtered amid weak economic growth, Brazil has continued to thrive, given its rich reserve 

of natural resources and growing middle class, becoming the fifth-largest economy in the 

world. 

In addition, it is well documented in the literature that energy pnces affect national 

economies and have a different impact on the various business sectors. As Hammoudeh et al. 

(2004) point out in their study, the oil related industries are amongst the most affected 

sectors, with higher oil prices having a positive impact on most companies. Oil, and in effect 

energy prices, affect companies' earnings and their bottom lines, thus having an immediate 

effect on their stock prices. Hence, based on intuition and previous research fmdings, the two 

pools of energy related stocks used in the analysis should perform very well in tracking the 

SEI. Moreover, the three non-energy specific stock pools are used as a relative performance 

measure, as there is a possibility that the stocks of various companies operating in other, non

energy related industries to be directly affected by the movements in energy prices, thus 

making them a good selection for constructing the portfolios that track the SEI. The 

methodology implemented can track the SEI or any other benchmark index by investing in a 

basket of stocks that each of the evolutionary algorithms will determine. Baskets of 

maximum 10, 15 and 20 stocks are selected from the following stock pools: Dow Jones 

Composite Average, FTSE 100, Bovespa Composite, and two unique pools of energy related 

stocks from the US and the UK stock markets respectively. The proposed methodology 

allows investors to be more comfortable with their investment selection since this is drawn 

out of a stock market that they are more familiar with. 

Hence, the first contribution of this chapter in the literature is that the index tracking problem 

in the energy commodities market is addressed and both the DE and GA are applied. Second, 

investors are provided with the opportunity to invest in the energy spot markets by choosing 

stocks from a specific domestic equity market which could appeal more to their investing 

criteria! preferences. Third, by tracking the performance of the energy sector with stocks 

selected by two innovative evolutionary algorithms, a cost effective implementation and true 

investability is promoted for the popular segment of energy style investors. Barberis and 

Sheleifer (2003) argue that style investing is attractive mostly because of the fact that 

institutional investors act as fiduciaries and thus they must follow systematic rules of 

portfolio allocation, and because of its simplified performance evaluation process. However, 

there are many funds that cannot invest in commodities directly as in the case of pension 
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funds, where governments in their effort to protect peoples' savings strictly regulate the 

industry by placing stringent restrictions on the types of assets held. Usually futures contracts 

and other derivative products in alternative investments such as commodities are excluded 

from their portfolios (Nijman and Swinkels, 2003). Nevertheless, by following the proposed 

investment strategy and investing in stock portfolios selected by the evolutionary algorithms 

used in this thesis, these funds could now participate in the energy markets by investing in an 

ETF that would track the performance of the SEI. Fourth, given the importance of equities in 

a multi-asset class portfolio, by choosing those stocks that can track the SEI, the selected 

equity portfolios are indirectly insulated from inflation; a key consideration among investors 

and fund managers in an uncertain economic environment. In their investigation over the 

period 1972-2001, Nijman and Swinkels (2003) find that investors with liabilities indexed to 

the interest rate and inflation, such as insurance companies and pension funds, can 

significantly increase their risk-return trade-off through commodity investment because of the 

positive relation of commodities with inflation. Fifth, it is the first time that a broad energy 

index incorporates in its calculation electricity market prices, thus reflecting the full spectrum 

of energy commodities and their by-products besides the commonly used crude oil and its 

refined fuels. Finally, this chapter contributes to the existing literature by investigating three 

different investment strategies during the three year out-of-sample period, buy-and-hold, 

quarterly, and monthly rebalancing; accounting for transaction costs where necessary. 

Although the SEI represents the economic importance of the energy group of commodities to 

the global economy, it primarily serves as a performance benchmark given the limited ability 

for a direct investment. However, the proposed approach provides investors with an option to 

track the performance of this Spot Energy Index using a basket of equities that are liquid and 

fully investable. This allows investors to get closer to the underlying commodity market price 

trends, something they cannot achieve using a futures price index. Historically, futures index 

returns have lagged price index returns, with this decoupling of performance being a constant 

frustration for index investors. For comparison reasons the performance of two well 

established energy excess return indexes is reported, namely the Dow Jones-UBS Energy 

Sub-Index and the Roger's Energy Commodity Index, against the performance of the 

constructed SEI and the selected portfolios. 

This chapter's findings have several positive implications for investors. They provide a low 

cost _ compared to actively managed funds - means of accessing the energy spot markets. In 
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particular, sector rotation investment managers can benefit from the findings of this thesis. 

By tactically shifting assets, they can over- or under-weigh specific sectors according to their 

due diligence, economic outlook or market objective. Diversification is another important 

implication. Instead of taking concentrated risks by purchasing individual stocks, the 

investors can own our proposed baskets and at the same time avoid the diligent attention that 

individual stocks require. Furthermore, investors who on the one hand want to participate in 

the performance of the volatile spot energy sector, but on the other hand do not want the high 

risk exposure of holding the individual energy commodity, can invest in the selected stock 

baskets that exhibit substantially lower volatility. Finally, investors that cannot physically 

hold the energy commodities can benefit from the selected equity baskets that allow for both 

long and short position to be taken. Most commodity trading advisors and commodity pool 

operators use investment strategies that can be long-only or systematic long/short, using 

leverage to take the short positions. The latter strategy assumes that investors take opposite 

positions than those taken by commercial hedgers (Jaeger et aI., 2002). So an effective index 

tracking strategy, as the one proposed in this chapter, should allow for both the replication of 

the performance benchmark index, and the implementation of this long/short strategy that can 

significantly improve the risk! return profile of traditional asset portfolios. 

The structure of this chapter is as follows. Section 2 presents a literature review on energy 

commodity indexes and the relation between commodities and equities. Section 3 gives an 

explanation of the constructed energy spot index and the data used in the analysis. In section 

4, the DE and GA are explained, with the problem formulation also being described. Section 

5 offers the empirical results of the study and, finally, section 6 concludes the chapter. 

5.2. Energy commodity investing 

5.2.1. Energy indexes 
There are two ways of investing in energy commodities. The first is the direct physical 

investment that includes all relevant costs for maintaining and managing the inventory. The 

second is the indirect investment via equity or debt ownership of energy companies and 

utilities, engaged in oil exploration, production, refining, marketing etc. However, in recent 

years there has been an increasing number of direct energy commodity-based products 

available to investors such as the respective energy futures contracts that require constant 

active management, and the energy commodity indexes. There is a large number of mutual 
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funds, hedge funds, Exchange Traded Funds (ETFs), Exchange Traded Notes (ETNs) and 

OTC return swaps that follow the energy sector through index investing. In fact, in the US 

alone, assets allocated to commodity index strategies via futures contracts has risen from $13 

billion in 2003 to $260 billion as of March 2008, with an estimated 70 percent of these funds 

invested in the energy sector (Hamilton, 2009b). From the total of commodity index investing 

in US exchanges alone, about 42% is conducted by institutional investors (pension and 

endowment funds), 25% by retail investors (ETFs, ETNs and similar exchange-traded 

products), 24% by index funds (a client! counterparty with a fiduciary obligation to match or 

track the performance of a commodity index), and 9% by Sovereign wealth funds (CFTC, 

2008). 

Commodity indexes attempt to replicate the returns equivalent to holding long positions in 

various commodities markets without having to actively manage the positions. Being 

uncorrelated with the returns of traditional assets such as stocks and bonds, commodity index 

investments' returns provide a significant opportunity to reduce the risk of traditional 

investment portfolios; thus explaining the economic rationale for including a commodity 

index investment in institutional portfolios such as those of pension funds and university 

endowments. Currently there are more than ten publicly available futures' indexes, with 

different risk and return profiles, offering exposure to commodity markets; each of these 

indexes also offers specific exposure to certain commodity sectors via their traded sub

indexes. The variations in commodity index performance across indexes and during different 

market conditions lie with the differences in the construction methodology of each index. The 

main differentiations relate to the index sectors' composition, constituent commodities 

selection, rolling and rebalancing strategy, which are both crucial and apply only for futures 

indexes, and the methodology used for calculating the constituents' respective weights. The 

later has been an important determinant of the indexes' performance, especially with the 

recently large weight allocations towards the energy sector across all indexes (AlA, 2008). 

This remark strengthens the approach of this chapter that focuses only on the energy sector 

which has recently drawn the most activity in index investing. Another issue that complicates 

the historical analysis of commodity futures index returns is the lack of a universal way to 

define their composition, because commodities cannot have a market capitalization-based 

portfolio weighting scheme. That is because at any time, the value of all open long futures 

contracts is offset by the value of the open short futures contracts (Black, 1976). 
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There are several risks and disadvantages associated with futures' based commodity indexes. 

In the case of a futures index, unlike a passive equity portfolio which entitles the holder to a 

continuing stake in a company, commodity futures contracts specify a certain date for the 

delivery of the physical commodity. In order to avoid the delivery process and maintain a 

long futures position, a passive futures portfolio requires regular transactions; nearby 

contracts must be sold and contracts with later deliveries must be purchased. This process is 

referred to as "rolling". The difference between the prices of the two contracts, the nearby 

and the more distant delivery one, is called the "roll yield". Even though the term structure of 

commodity prices has historically been an important driver of realised commodity futures' 

excess returns, there is no guarantee that the term structure will remain the same in the future. 

Also, there is a possibility that the futures term structure of an individual commodity be, on 

average, in backwardation, yet the particular contract that an index mechanically rolls into 

might be in contango. When commodity markets are in contango this could result in negative 

roll yields that would adversely affect the value of the futures index. These negative roll 

yields can significantly decrease the value of the futures index over time when the nearby 

contracts or spot prices of the underlying commodities are stable or increasing. Also, in the 

opposite scenario of decreasing spot prices, the value of the futures index can significantly 

decrease when some or all of the constituent commodities are in backwardation. 

Furthermore, although most of the energy commodities have liquid futures contracts with 

expiration every month, there are some that expire less frequently, thus rolling forward can be 

more costly and vulnerable to longer duration and smaller liquidity. Moreover, Gorton and 

Rouwenhorst (2006) find that commodity futures contracts become illiquid in the delivery 

month as most traders avoid delivery of the physical commodities. In addition, the explicit 

rolling procedure that needs to be used when tracking a commodity futures index is another 

major disadvantage. Any transparent commodity futures index publishes the specific rules of 

rebalancing making them available to all market participants. This means that other traders 

and speculators can take advantage of these known future transactions mandated by those 

rules. Under the prevailing trend of these index funds to constantly grow in size, they will 

only become more vulnerable to such trading exploitation. 

In addition external market and macroeconomic factors can have a major impact on a futures , 
index. The market prices of the index's components may rapidly fluctuate due to changes in 

supply and demand relationships, and due to other numerous factors such as weather, major 
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political and economic events, technological developments, fiscal and monetary programs. 

Recently, even the performance of the equities markets has become a significant factor 

affecting the performance of commodity indexes, especially when the index holds large 

positions of illiquid contracts or maturities. It has been observed that during periods of steep 

equity market movements there is a tendency of aggressive buying or selling of commodity 

indexes (Tang and Xiong, 2010). Investors tend to rebalance the mix of their portfolios 

between equities and commodities, either for hedging or speculating purposes, or because of 

their view of the market being short- or long-term. Kyle and Xiong (2001), argue that 

investors with a short term strategy trade more aggressively against noise trading than those 

with a long term strategy. All these factors can affect the spot prices of the physical 

commodities, the underlying of the futures contracts, causing the prices and the volatilities of 

the components of the index to fluctuate in inconsistent directions and at inconsistent rates. 

This could quickly lead specific trades against the investor, resulting in a loss of the initial 

deposit required before being able to close the position. 

Moreover, suspension or disruptions of market trading in the commodities futures markets 

could adversely affect the value of a futures index. Such events that disrupt the functionality 

of the futures markets, like lack of liquidity, replacement or deli sting of a futures contract, 

changes in the quality specifications of the underlying physical commodities, increased 

participation of speculators, governmental regulation and intervention, adversely affect a 

futures commodity index. In fact, the recent increase in volume on the buy side of the futures 

contracts, in its major part to support index investing, is argued that has an apparent effect on 

commodity prices drifting them away from their fundamental value and creating a speculative 

price bubble; a conclusion that can lead to increased government regulation on futures 

markets. Hamilton (2009a) suggests that speculative investing in oil futures contracts 

contributed to the oil shock of 2007-08. The steep decline in short-term interest rates in 2008 

resulted in negative real interest rates that in tum attracted a great deal of investment in 

physical commodities, and thus fuelled commodity speculation, especially for crude oil and 

other energy products (Frankel, 2008). 

One can argue that this financialization of commodities introduced a speculative bubble in 

the price of physical energy commodities, especially crude oil, which subsequently burst. 

Moreover, in the case of pension funds where governments in their effort to protect people's 

savings strictly regulate the industry, there are stringent restrictions on the types of assets 
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held by a fund. Usually, futures contracts and other derivative products in alternative 

investments such as commodities are excluded from their portfolios (Nijman and Swinkels, 

2003). Speculation in the commodities markets has been in the centre of a heated debate in 

the past few years amongst industry and policy circles, on whether it is the driver of 

excessive increases and the resulted excessive price volatility in the energy and food markets. 

Following these debates, there have been increasing calls for a more stringent supervision of 

the energy markets, and in particular for their paper markets, from both the industry's bodies 

as well as international governments. 

The abovementioned risks and disruptions can be avoided when following the investment 

strategy proposed, by using as a performance benchmark for the energy markets the SEI 

which allows investors to get closer to the underlying commodity price trends, and by 

investing in the selected equity portfolios. Using the evolutionary algorithms and the 

methodology suggested in this chapter, stock investors can optimally select their portfolios 

for tracking the SEI without spending time, effort, and money, trying to identify which stocks 

can simultaneously act as a profitable investment and a good commodity play. 

5.2.2. Commodities and their relation to equities 

Kilian (2009) finds that all major real oil price increases since the mid-1970s can be 

attributed to increases in global aggregate and/or oil-specific demand, and much less to 

disruptions of crude oil production. Even when political events affect the oil prices, like the 

Persian Gulf War, it is mostly the increased sudden demand for oil, triggered by fears for the 

future oil supply, which drives oil prices and not the actual disruptions in oil supply. In the 

same lines, Hamilton (2009a) finds that the run-up in oil prices of 2007-08 should be 

attributed to the strong demand for crude oil in combination with a stagnating world 

production. From an asset-only perspective, previous research suggests that depending on 

investors risk tolerance, commodities as proxied by cash-collateralized commodity futures, 

should be about a quarter of investors' portfolios in their strategic, long-term, asset allocation 

(Anson, 1999; Jensen et aI., 2000). 

In addition, Hong et al. (2007) argue that the returns of a number of industry stock portfolios, 

including that of petroleum, which are informative about macroeconomic fundamentals, can 

forecast the returns of the aggregate stock market with a lead of up to two months. They also 

find that high returns for some industries, including that of petroleum, mean bad news for 
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future economic activity and the aggregate stock market. In addition, Driesprong et al. (:~008) 

find that a rise in oil prices significantly lowers future stock market returns, especially for the 

markets of those countries classified as net energy importers, and the world market index. 

They also suggest that investors tend to underestimate the direct economic effect of oil price 

changes on the economy and thus act with a delay. Their conclusion is strengthened by the 

fact that this under-reaction is less pronounced in the oil-related equity sectors, where market 

players are more informed and aware of the economic consequences of oil price changes. 

Findings by Erb and Harvey (2006) suggest that portfolios of commodity futures can have 

equity-like returns if a high enough diversification return can be achieved, or if the portfolio 

exposures are skewed toward contracts that are more likely to have positive roll or spot 

returns in the future29
• Gorton and Rouwenhorst (2006) construct a fully-collateralized 

commodity futures index and conclude that historically, between 1959 and 2004, their index 

has a similar risk! return performance to equities, using the S&P500 as a proxy. They also 

find that correlation between the returns of stocks and bonds and those of the commodity 

futures is negative; a conclusion that can be attributed to the different behaviour that the 

various asset classes exhibit over the business cycle. In contrast, Schneeweis and Spurgin 

(1997) conclude that over the period January 1987 to February 1995, commodity and 

managed futures indexes have sources of risk and return that are distinct from indexes of 

traditional assets such as stocks and bonds. Nonetheless, they also find that the unique 

construction methodology of each index results in differential return correlation with 

alternative assets, making each index very useful as a performance benchmark for unique 

portfolios. 

Research evidence suggests that before the 2000s commodity indexes had negative 

correlation with equities, e.g., Greer (2000), Gorton and Rouwenhorst (2006), and Erb and 

Harvey (2006). However, after the 2000s, commodities were heavily promoted as a new asset 

class, with various instruments based on commodity indexes attracting billions of dollars 

from wealthy individuals and institutions, resulting in a financialization process that exposed 

commodities to the wider shocks of financial markets, as shown in Tang and Xiong (2010). 

The latter authors also find that this exposure gradually increased, especially after 2004, with 

29 The diversification return is defined as the synergistic benefit of combining two or more assets to reduce d 
., t f pward or downwar -variance, enhanced when the portfolio is rebalanced. Roll returns can ongma e rom an u -

sloping term structure of the individual futures prices. 
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the spill-over effects of the recent financial crisis contributing to the subsequent large 

increase of commodity price volatility. Equities and other financial assets mainly derive their 

value from future cash flows, whereas commodities, being real assets, derive their value from 

physical supply and demand conditions. Despite this fundamental difference between equities 

and commodities, the need of commodity producers and consumers to share price risk with 

the broader investment community was the main driver of the resulted integration of 

commodities and financial markets. 

Why, especially in recent years, are commodities expected to behave more like financial 

assets? This question can be answered with the following arguments: First, taking into 

consideration that commodity index investors have a big impact into commodities prices it 

can be assumed that the remaining participants, such as commercial hedgers and speculators, 

cannot fully absorb the price impact (Tang and Xiong, 2010). Second, it is known that any 

shocks affecting the market-wide risk premium, subsequently, affect all financial assets to a 

varying degree (e.g., Cambell and Cochrane, 1999). It is thus valid to argue that, as 

commodities become more and more integrated with the financial markets, they should also 

be affected. Third, when price shocks in one asset occur, by rebalancing his/ her portfolio, the 

shocks spill-over to the other assets that the marginal investor holds (Kyle and Xiong, 2001). 

Hence, commodity index investors that usually hold additionally large positions in stocks are 

exposed to stock market shocks when they reallocate their funds between commodities and 

stocks. Fourth, Barberis and Shleifer (2003) find that each asset of a certain class is exposed 

to shock spillovers from other assets in the same class. Therefore, according to Tang and 

Xiong (2010), individual commodities' prices are exposed to both the shocks to those 

commodities that participate in the indexes held by index investors, and, to a certain degree, 

the shocks to off-index commodities. Finally, all non-US commodity index investors are also 

exposed to exchange rate shocks, as all commodity indexes are denominated in US dollars. 

When making portfolio allocation decisions, most investors categorize assets into broad 

categories called styles (Barberis and Sheleifer, 2003). Stocks within a particular country, 

index or industry, value stocks or growth stocks, can all be considered as style examples. 

While some styles persist over the years, such as government bonds, financial innovation 

guarantees the appearance of new styles, as is the case for instance with mortgage-backed 

securities. Simplification and performance evaluation are the two main reasons that 
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individual and institutional investors follow style investing30
• The fonner makes the 

processing of vast amounts of information relatively easy and efficient, whereas the latter can 

help evaluate money managers relative to a perfonnance benchmark specific to their style 

(Sharpe, 1992). Energy commodity investing could be considered as a new style investment, 

with a plethora of funds and ETFs that track passive benchmarks of commodity and energy 

sector equity indexes. The work of this thesis could motivate investors, private and 

institutional, to follow the international energy industry, a sector that deserves sole attention. 

The potential benefits of commodity investments for institutions date at least back to Bodie 

(1980), and especially in the case of insurance companies and pension funds these benefits 

are recently pointed out in Nijman and Swinkels (2003). Many new energy commodity ETFs 

and ETNs31 have come to the market, making it easier for a retail investor to obtain exposure 

to commodities. There are various types of these Energy Index Funds either based on the 

construction type of the fund (single- or multi-contract, long-only or bearish32
), or based on 

the energy sector they track (broad energy or sector specific). 

These tracking funds have a number of advantages over traditional debt instruments (notes, 

bonds, certificates). They offer less expensive and less risky investment products, while at the 

same time providing protection against inflation. Also, they can provide easy access to a 

broad range of investors, a simple way to manage accounting and disclosure procedures, and 

can lead to fewer taxes since in many countries index fund returns are treated as capital gains 

and not as income. An energy ETF can be used by the energy industry market players to 

complete parts of their existing portfolio or to perform tactical strategies. They can be used 

for hedging energy investment risk, portfolio diversification, or as a control measure of 

inflation exposure. To that end, the proposed methodology offers an effective, and at the 

same time inexpensive way to operate such a fund, giving the full flexibility of any 

investment style, long or short, that equities can provide. 

30 Style investing is particularly attractive to institutional investors because acting as fiduciaries they must 
follow systematic rules of portfolio allocation (Barberis and Shleife~, 2003). .. . 
31 An ETN, although it is structured similar to an ETF, exposes the mvestor to counterparty nsk makmg It a 

much riskier investment. d . h th . or difference 
32 Bearish Energy Index Funds have the same structure as bullish (long-only) fun s Wit e rna] 
that investors are not only allowed to buy the fund, but also to put on a short position (sell the fund). 
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5.3. Benchmark energy index and equity data 

The benchmark index used for the application of the index tracking methodology proposed in 

this thesis is the Spot Energy Index (SEI), as explained in more detail in chapter 3. The SEI is 

constructed as an un-weighted geometric average of the individual ratios of current prices of 

six energy commodities to the base period prices. For the purposes of this chapter, the base 

date for the SEI is set at January 31, 2006 which is the same date that the equity data sample 

is obtained. The latter includes daily prices for stocks that are picked from the Dow Jones 

Composite Average, FTSE 100 and Bovespa Composite indexes; representing two developed 

and one developing stock market with a distinct significance in the global energy scene. The 

index is also tracked with portfolios that include stocks from a unique pool of energy related 

stocks from the US and the UK stock markets, respectively. 

The two aforementioned energy related equity pools are used because according to Scholtens 

and Wang (2008) oil related firms' earnings are more likely to be affected by changes in oil 

prices, as explained by the highly significant estimated coefficients of the earnings-to-price 

factor returns for their total oil firms' sample. After employing a multi-factor APT model, AI

Mudhaf and Goodwin (1993) find that oil price changes in a period surrounding the 1973 oil 

shock can explain the return differences in 29 US oil companies that they examine. In 

addition, Boyer and Filion (2007) with their APT model also find that stock returns of 

Canadian oil and gas companies have a significant relationship with oil price changes. The 

selection of the equities included in the two pools is being made according to the Industry 

Classification Benchmark (ICB) jointly developed by Dow Jones and FTSE (see appendix 

8.1). In the sample used, the two filtered pools include all stocks from the US and UK stock 

markets that are engaged in the various phases of energy production and processing, listed in 

the following four sectors: 1) Oil and Gas Producers, 2) Oil Equipment, Services and 

Distribution, 3) Alternative Energy, and 4) Electricity. After applying the filtering procedure 

to the US and UK stock markets, two energy-related stock pools are constructed hereafter 

named US Filter and UK Filter, respectively. 

Hence, to test the proposed heuristic approach and the efficiency of both the DE and the GA 

as index-tracking methodologies, five data sets are selected. All stock prices are closing 

prices adjusted for capital gains according to the annualised dividend yield, and they are all 

obtained on daily basis for the period January 31, 2006 to February 1,2010 from Thomson 
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Financial Datastream. All stock prices are in US dollars thus reflecting the local currency 

exchange rate against the USD at every point in time for the period examined. Should a 

company cease trading due to an event (merger, bankruptcy etc.), within the test period, it is 

dropped from the sample; that is why the total number of stocks in the FTSE 100 and 

Bovespa pools is less than the total number of stocks included in each index. Moreover, after 

adjusting for all US and UK Bank Holidays, 1,008 observations are sorted to calculate daily 

returns for each stock; in the case of the Bovespa Composite stock prices, the data are 

adjusted separately for all Brazilian holidays as there are major differences between the local 

calendar and the US and UK ones. Considering 252 trading days in a calendar year. the 

heuristic approach is tested under various assumptions by selecting the first year as the in

sample period and the last three years as the out-of-sample period. The final five data sets 

have the following number of stocks: N=41 (UK Filter), N=53 (Bovespa Composite), N=65 

(Dow Jones Composite Average), N=77 (US Filter), and N=97 (FTSE 100 Index). See 

appendix 8.2 for a detailed list of all stocks used in each pool. 

5.4. Methodology 

5.4.1. Evolutionary Algorithms 

EAs have been applied to numerous optimization problems in business, engmeenng, 

cognitive and applied sciences (Goldberg, 1989). More specifically, since the 1980s, a rapid 

expansion of their practical and theoretical financial applications has been witnessed. Some 

of the applications include portfolio optimization (Lorashi and Tettamanzi, 1996; Beasley et 

aI., 2003; Chang et aI., 2009), insurance risk assessment (Hughes, 1990), technical trading 

rules and market timing strategies (Bauer, 1994; Neely et aI., 1997; Allen and Karjalainen, 

1999), time series forecasting and econometric estimation (Marimon et aI., 1990; Dorsey and 

Mayer, 1995; Leinweber and Amott, 1995; Mahfoud et aI., 1997). Primarily, there are four 

paradigms that can be identified as different techniques that belong to the family of EAs. 

These are the Genetic Algorithms (Holland, 1962, 1975), Genetic Programming (Koza, 1992, 

1994), Evolutionary Strategies (Recheuberg, 1973), and Evolutionary Programming (Fogel et 

aI., 1996). 

Evolutionary Algorithms (EAs) are widely used in the operational research literature for 

solving multi-objective optimization problems (Coello Coello, 1999; Deb, 2001), and have 

many advantages over traditional operational research techniques (Zitzler and Thiele, 1999). 
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Issues regarding the convexity, concavity, and continuity or multiple local optima of the 

objective functions do not need to be taken into consideration. The main feature that 

differentiates an evolutionary search algorithm from other traditional search algorithms such 

as random sampling (e.g. random walk) and heuristic sampling (e.g. gradient descent), is that 

it is population based. Evolutionary algorithms use a population of points to search the space 

rather than a single point making them superior to random search. They also have the 

advantage of avoiding the hill-climbing behaviours of gradient-based search algorithms 

(Sivanandam and Deepa, 2007). Traditional optimization techniques, such as the gradient 

methods, break down due to their inability to handle the constraint that restricts the number of 

assets included in the tracking portfolio. 

In general, an EA generates a population of potential solutions and evaluates the quality of 

each one based on a problem-specific fitness function that defines the evolution environment. 

Because it is this cost function that guides the search, no supplementary knowledge is needed. 

In addition EAs use probabilistic transition rules rather than deterministic ones, and an 

encoding of the search space rather than a single point (Kingdon and Feldman, 1995). Using 

various operators, new solutions are generated by selecting the relatively fit population 

members and then these are recombined, performing an efficient direct search and thus 

reducing the uncertainty about the search space. However, EAs do have some limitations like 

the fact that the user cannot easily incorporate problem-specific information, making them 

less efficient than special purpose algorithms in well understood domains. Another weakness 

is that in differentiable problems an EA could prematurely converge, or converge to a non

zero gradient point if there is limited genetic variation left in the population. 

Nevertheless, for most real world financial problems, a number of unknown factors affect the 

multi-objective target functions of large search spaces. These are complex problems 

characterized by irregular features such as multiple optima, nonlinearities, and discontinuities 

of the objective function. Many option pricing, trading rules and constrained portfolio 

optimization problems for which a closed form solution is not available, serve as examples. 

The ability of the EAs to handle the solutions of these types of problems, and to find the 

global optimum relatively fast, strengthens the conclusion that they are a powerful and robust 

optimization technique. 
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5.4.2. Genetic Algorithm (GA) and Differential Evolution Algorithm (DE) 

The most popular technique in evolutionary computation research is the Genetic Algorithm 

(GA). One of the most important steps of the GA is the selection of the individuals used to 

produce the successive generations. Any single individual in the population has a chance of 

being selected at least once in order to be reproduced into the next generation. There are 

many different schemes and their variations that can be used for the selection process such as 

the roulette wheel selection, which was the first scheme introduced, the tournament and 

ranking selection, scaling techniques and elitist models (Goldberg, 1989; Michalewicz, 

1994). The genetic algorithm used in this chapter applies the tournament selection scheme 

that requires only the evaluation function to map the solutions to a partially ordered set, 

allowing for minimization and negativity. It is used in this thesis, because unlike other more 

conventional schemes, it does not assign any probabilities. Under this scheme, k individuals 

are randomly selected from the population, with replacement, with the best individual being 

selected to participate in the new population; each individual represents a vector of prices. 

This process is repeated until N individuals are selected. 

The next most important step in the GA is to select the scheme of the genetic operators used 

to provide the building block of the search mechanism. The two basic operators are the 

mutation and the crossover. In the GA variation applied in this chapter, real valued 

representations are used for both operators as developed by Michalewicz (1994), the uniform 

mutation and the arithmetic crossover. Let for every variable j, aj and hj be the lower and 

upper bounds, respectively. Next, the uniform mutation selects a random variable f which is 

set equal to a uniform random number, Le.: 

(5.1) 

Under the arithmetic crossover scheme, two complimentary linear combinations of the 

d b d firom a uniform distribution parents are generated based on the ran om num er r rawn 

Vi - unif (0,1). The two new individuals X' and Y' are created based on the following 

equations: 
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X' = r X + (1 - r) Y 

Y'=(l-r)X+rY 
(5.3) 

For each new solution to be reproduced, a pair of "parent" solutions, X' and Y' is selected , 

from breeding from the pool selected previously. Hence, by producing a "child" solution 

using the abovementioned methods of crossover and mutation, a new solution is created 

which generally shares many of the characteristics of its "parents". Finally, the GA moves 

from one generation to the next, selecting and reproducing parent solutions until a 

termination criterion is met. For the purposes of this thesis the process is repeated until either 

the population converges to the global optimum (i.e. the optimum solution that satisfies the 

criteria set) or the pre-specified maximum number of generations is reached. A more 

extensive discussion on the genetic algorithms' functionalities, extensions and applications, 

can be found in Holland (1975), Goldberg (1989), Davis (1991) and Michalewicz (1994). 

DE, on the other hand, is one of the latest heuristic approaches which also belongs to the 

family of Evolutionary Algorithms (EAs) and has been developed by Stom and Price (1995) 

for solving nonlinear and non-differentiable continuous space functions. DE is a stochastic 

optimization method which can minimize a function capable for modelling the problem's 

objectives, while at the same time incorporate all necessary solution constraints. More 

specifically, DE has the following advantages over rival approaches; fast convergence, use of 

few control parameters, ability to find the true global minimum irrespective of the initial 

parameter values, robustness, and ease of use (Stom and Price, 1997). What is more, DE's 

claimed advantages are apparent when applied to the index tracking problem. Maringer and 

Oyewumi (2007) show evidence for the latter from the Dow Jones Industrial Average by 

analysing the financial implication of cardinality constraints for tracking portfolios when 

using a subset of its components. DE does not use binary encoding or a probability density 

function to self-adapt its parameters as a simple EA. However, there are modified GAs that 

use real number representation, similar to the one used in this thesis. 

Furthermore the main difference between the GA and the DE lies on the schemes used for , 

the selection process, the mutation and the crossover operators. In the GA, two parents are 

selected for crossover and the child is a recombination of the parents, whereas in DE three 

parents are selected for crossover and the child is a perturbation of one of them (Sarker and 
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Abbass, 2004). The DE is a self adaptive algorithm, with all possible solutions having the 

same chance of being selected as parents with no dependence on their fitness value, and at the 

same time it is also a "greedy" algorithm, whereas only the best new solution and its parent 

are kept. Comparisons on various benchmark problems show that DE performs better when 

compared to other evolutionary algorithms (Sarker et. al. 2002, Sarker and Abbass, 2004). 

DE's proven past performance is the reason why it is used to solve the index tracking 

problem in this thesis, serving as a comparison methodology next to the modified GA. 

There are various approaches with respect to the way mutation is computed and to the type of 

the recombination operator used to solve the global optimization problem. The general 

notation, for the variant schemes/ strategies for the DE algorithm as introduced by Storn and 

Price (1997), is the following: DE/X/y/z where, "DE" stands for Differential Evolution, "x" 

specifies the methodology used to choose the population vector to be mutated, "y" is the total 

number of vector differences that contributes to the differential, and "z" indicates the 

crossover scheme used. In the optimization problem presented in this thesis the following 

notation is used, with x = rand-to-best, y = 1 and z = exp, identifying the "DE/rand-to

best/1/exp" variant as the most suitable. "Rand-to-best" indicates that the population vectors 

are selected to compute the mutation values that lie on the line defined by the randomly 

generated and the best-so-far vectors; "1" is the number of pairs of solutions chosen (how 

many vector differences contribute to the differential); and finally, "exp" means that an 

exponential crossover scheme is used. Compared to the basic version of the DE, the 

aforementioned scheme is used in this thesis because it enhances the greediness of the 

algorithm by incorporating the current best vector into the scheme. 

Definition 1: Let U ji,G+1 be the trial vector, v ji,G+1 the mutant vector, x ji,G the parent solution 

from the current generation G, xjfj,G' xh,G and x jr3 ,G three randomly chosen integer indexes 

which are mutually different and also different from the running index i. Define, 

Mutation: V ji ,G+1 = xjfj,G + F(Xjbest,G - Xjrt,G) + F( x jr2 ,G - x jr3 ,G) (5.4) 

{

V"G+1; u, s CR orj = jrand 
C 

JI, J 
rossover: U ji G+1 = h' 

, x" G; ot erwlse 
JI, 

(5.5) 

S I 
'. _{Ui ,G+1; f(u i,G+1)sf(xi,G) 

e ectlOn. Xi G+1 - • 
, xi,G; otherWIse 

(5.6) 
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i=1,2, ... NP; 'i,r2 ,r3 E{1,2, ... NP} 

1j :/: r2 :/: r3 :/: i; NP ~ 4 

j = 1,2, .. . D; u j - unif [ 0,1] 

G = 1,2, .. Gmax 

CR E [0,1] 
FE [0,2] 

where NP IS the total number of D-dimensional parameter vectors that represent the 

population of the available decision variables for each generation, which also remains 

constant during the minimization process. Also, X jbest,G is the best solution of the population, 

CR is the crossover probability that controls the fraction of parameter values that are copied 

from the mutant, and F is a real and constant factor that controls for the magnitude of the 

differential variations (Xjob t G - X 0 G) and (x 0 G - X 0 G)' respectively. es, jlj, jr2' jr3' 

The steps of the DE that describe Definition 1 are the following: The first step is the 

population structure where a random sample of solution vectors is generated, after both the 

upper and lower bounds for each parameter are specified. A uniform probability distribution 

for all random solutions is assumed. Then, for every target vector xi,G a mutant vector V i,G+l 

is generated (eq. 4), which combines other randomly selected population vectors. Compared 

to the basic version of the DE, the control variable F is introduced twice to enhance the 

greediness of the algorithm by incorporating the current best vector xbest,G into the scheme. 

This step is known as "mutation". 

Then as a third step, an index j that contains randomly chosen numbers U j from the uniform 

distribution [0,1]' ensures that U
i
,G+l gets at least one parameter from v i,G+l . If U j is less than 

or equal to the crossover probability CR, then the mutant vector v ji,G+i is being mixed with 

the parameters of another predetermined vector, the solution-parent x ji,G' to produce the so

called trial vector U ji,G+i (eq. 5); otherwise, the parameter is copied from the target vector x ji,G • 

Moreover, the trial parameter with the randomly chosen index, jrand' is taken from the mutant 

vector to ensure that the trial vector does not duplicate x ji,G' This step is known as 

"crossover". Finally, during the selection process, to decide whether or not to keep the trial 
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vector Ui,G+I as a member of the generation G + I, its cost function is compared with the target 

vector xt,G using the greedy criterion. If the objective function value of the trial vector U is 
I,G+l 

less or equal to that of the target vector xt,G' then it replaces the target vector in the 

subsequent generation (eq. 6); otherwise, the parent solution xt,G is retained. This final step is 

known as "selection". 

As mentioned earlier, in order to use the DE algorithm, it needs to be fine-tuned using just 

three control parameters; the crossover constant (CR); the weighting factor (F); and the 

number of parents (NP). The CR parameter is responsible for controlling the influence of the 

parent on the generation of the offspring, with higher values having a reduced effect. The F 

parameter controls the influence of the pair of solutions that calculate the mutation value (for 

the variant specification used in this thesis that includes only one pair33
). For most 

optimization problems, as a rule of thumb, F and CR should both be set in the range of [0.5, 

I], while NP should be between 5*D and 10*D, where D equals the number of decision 

variables (in the present case this is the number of available stocks) (Price et aI., 2005; Stom 

and Price, 1997). Based on the aforementioned, the combination of F, CR and NP that is used 

for the optimization problem solved in this thesis is 0.7, 0.5 and 10*D, respectively. The 

following table summarizes the parameters used as inputs for both the GA and the DE. 

. f 1 f . order to compute the mutation 
33 Increasing either the population size ~r the number of pairs 0 so u lon~ I~d b k t to make the algorithm 
values, will increase the diversity of posslble movements; hence a balance s ou e ep 
more efficient (Feoktistov and Janaqi, 2004). 
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Table 5-1: Parameters used as inputs in the algorithms. 

Solution representation 

Selection 

Crossover 

Crossover probability 

Mutation 

Mutation probability 

Population size 

Number of generations 

Solution representation 

Crossover 

Crossover probability 

Mutation 

Mutation constant 

Population size 

Number of generations 

Genetic Algorithm (GA) 

Binary with 10 digits 

Tournament - stochastic with replacement 

Arithmetic - 2 individuals 

0.8 

Uniform 

0.001 

lOON 

200 

Differential Evolution Algorithm (DE) 

Space vector RN 

Exponential 

0.5 

DE/rand-to-bestll 

0.7 

ION 

100 

5.4.3. Formulating the objective function and its constraints 

To test the performance of the proposed heuristic three different scenarios are examined. In 

the first one, both algorithms are tested without rebalancing the tracking portfolios for the 

out-of-sample period; in the second scenario the portfolios are rebalanced quarterly; and 

finally, in the third scenario, the portfolios are rebalanced on a monthly basis. In both cases of 

rebalancing, transaction costs are taken into consideration. The main purpose of testing the 

algorithms under these three scenarios is to examine whether by including additional 

information in the index-tracking algorithm - by regular rebalancing of the portfolio - is more 

rewarding than buying the initial selected portfolio and holding it throughout the test period. 

For each case examined, N number of stocks are held within the in-sample time period 

[1,2 .. ,T] and the price of the index tracked. The goal is to create tracking portfolios consisting 

of maximum K stocks (K <N), and replicate the tracked index during the out-of-sample period 

[T, T+Llt]. The tracking portfolios are created based on the stocks that the algorithms choose, 

using every time the available data from the in-sample period. To decide which stocks will 

form the tracking portfolio two main objectives are employed: the tracking error and the 

excess return. 

The tracking error (TE) is defined by the p-norm as: 
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(5.7) 

where t; and Rt are the returns for the tracking portfolio and the index respectively. 

Portfolios' returns are adjusted for transaction costs when rebalancing occurs; 0.5% per 

transaction. For p = 2, the p-norm is equal to the Euclidean norm which represents the Root 

Mean Squared Error (RMSE) as expressed by the following equation: 

T 2 

TE=RMSE= I(t; -Rt ) IT. (5.8) 
t=1 

The tracking error is measured with the RMSE criterion, which according to Beasley et al. 

(2003) is one of the most effective measurements for addressing this type of index tracking 

problems. Using only the variance of {(t; - RJlt = 1, ... ,T} as a tracking error measure (see 

Franks, 1992; Pope and Yadav, 1994; Connor and Leland, 1995; Buckley and Kom, 1998; 

Larsen and Resnick, 1998; Rohweder, 1998; Wang, 1999), could potentially lead to 

erroneous results, as the tracking portfolios would constantly underperform the index because 

they would ignore the bias proportion (t; - Rt ). For example, let M > 0 be a constant, when 

t; = Rt - M \:It the tracking portfolio has a zero tracking error, but will always underperform 

the benchmark index. 

The mean Excess Return (ER) over that of the benchmark index is given by the following 

equation: 

T 

ER = I (t; - R, ) IT. (5.9) 

'=1 

Excess return gives a competitive advantage to any index fund that can historically show 

returns over and above the index, even at the cost of a higher degree of tracking error. It can 

be a measurement for distinguishing between competing funds besides the amount they 

charge for participation. The complete formulation of the objectives and constraints used to 

solve the index tracking problem is the following: 
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Minimize: AxRMSE-(I-A)xER 

N 

Under the constraints: L P;TXi = C 
i=l 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

where A (0 ~ A ~ 1) is the generalised minimization objective for the index tracking problem; 

a metric controlling for the trade-off between tracking error and excess return. In case A = 1, 

the tracking portfolio has as its main objective to minimize the tracking error (pure index 

tracking), whereas when A = 0, the portfolio's main goal is to maximize the excess return. 

The first constraint ensures that the value of the portfolio at the end of the in-sample period 

will be equal to the available capital to the investor, C. Using the rolling window method, the 

same rule applies for every rebalancing period. In addition, P;T is the price of stock i at time 

T, whereas Xi is the weight of each stock that participates in the tracking portfolio. The last 

two constraints relate to the weights and total number of each participating stock in the 

portfolio; variable £ represents the minimum weight of each stock set at 5% of the available 

capital, and variable z is a decision variable which takes the value one (zero) when a stock is 

(is not) included in the basket. Finally it is assumed that all portfolios are long-only and also 

fully invested. 

5.5. Empirical results 

5.5.1. Tracking the Spot Energy Index 

After developing an investable model for seeking returns comparable to the Spot Energy 

Index, the performance characteristics of the proposed strategy are examined. This section 

presents the empirical evidence on index tracking in the energy commodity markets using 

equity portfolios. The size of the five test problems ranges from N = 41 (UK Filter) to N = 97 
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(FTSE 100 Index); in the case of the Bovespa Composite N = 53, for the Dow Jones 

Composite Average N = 65, and for the US Filter N = 77. The stocks picked by both the DE 

and the GA from the aforementioned stock pools are used to track the performance of the 

SEI
34

• The initial capital of the investment portfolio is set equal to C = $100,000. Figures 5-1 

and 5-2 show the convergence of both the DE and the GA during the in-sample period, of the 

Spot Energy Index with the Bovespa, DJIA, FTSE 100, UK Filter and US Filter baskets 

respectively. The case considered in the two graphs is for monthly rebalancing, with A=0.6 

and portfolios of maximum 15 stocks. In the empirical analysis, tracking portfolios consisting 

of maximum K stocks are used with K = 10, 15, and 20. This aligns with the findings of 

Chang et al. (2009) that investors should include in their tracking portfolios about one third of 

the total assets included in the search space, since those tracking portfolios that included 

more assets constantly underperformed. In another study, Maringer and Oyewumi (2007) 

show that including roughly 50% of the available assets is satisfactory enough to get the 

desirable properties in the tracking portfolios. Different attitudes corresponding to three 

different trade-offs between tracking error and excess return are also considered, with A = 0.6, 

0.8, and 1; thus, moving from maximising excess return to minimising tracking error. Then, 

the heuristic is repeated ten times with the same set of parameters per run, from which the 

best solution is chosen. 

. I' h . plemented with the Matlab 7.8.0 
34 All tracking portfolio strategies ran for both evolutIOnary a gont ms were 1m f fi r the completion of the 
software on a PC with a processor T2600 at 2.16GHz and 2GB Ram. The av~rag~ Ime 0 t of the out-of-sample 
training of the algorithm in-sample, along with the time needed. for pr.oducmg e o~:~lar with a variation of 
performance of each strategy is about 50 minutes. The computatIOnal hme was very Sl , 

±10%, not only across the different pools of stocks, but also between the DE and the GA. 
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Figure 5-1: DE convergence, dur~ng the in-sample period, of the Spot Energy Index with the 
Bov~sPa, DJIA, FTS~ 100, UK FIlter and US Filter baskets, respectively; 1.=0.6, with 
maximum 15 stocks 10 the basket, rebalanced monthly. 
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Figure 5-2: GA convergence, during the in-sample period, of the Spot Energy Index with the 
Bovespa, DJIA, FTSE 100, UK Filter and US Filter baskets, respectively; 1.=0.6, with 
maximum 15 stocks in the basket, rebalanced monthly . 
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Figure 5-3 presents the performance of a $100K portfolio fully invested in three energy 

commodity indexes; the SEI, the Dow Jones-UBS Energy Index, and the Rogers Energy 

Commodity Index. The former represents the return available to the holder of the basket of 

the physical energy commodities comprising the SEes, and the latter total return indexes 

reflect the return on fully collateralized futures positions. The Dow Jones-UBS Energy Sub

Index and the Roger' s Energy Commodity Index are selected for comparison reasons against 

the constructed SEI and the selected portfolios, as they are two of the most established 

indexes in the market; besides, the correlation between the energy sub-indexes of other well

known commodity indexes, such as the S&P GSCI, is extremely high. From figure 5-3 it is 

also observed that for most of the out-of-sample period, the SEI and Rogers Energy have 

performed better than the OJ UBS-Energy. However, especially during the last year, SEI has 

outperformed both futures based indexes. This confirms the fact that futures ' based indexes 

underestimate the underlying commodity market price trends in relation to a spot index. 

Figure 5-3: Three-year out-of-sample performance comparison of long-only portfol ios 
invested in the SEI, Rogers Energy and OJ UBS Energy Indexes. 
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Figure 5-4 shows the relative performance over the out-of-sample period of the three 

aforementioned commodity indexes next to four financial indexes, the S&P 500 Composite, 

the Dow Jones Composite Average, FTSE 100, and Bovespa Composite. When global 

markets entered the recent global economic recession towards the end of 2007, a big price 

correction in both equities and commodities markets followed. It is observed that energy 

commodities delivered higher returns for about one year, until the end of 2008, proving to be 

a better investment during the recession period. This finding aligns with Weiser (2003) who 

concludes that commodity futures, during the period of 1970-2003, perform well in the early 

stages of a recession when usually stocks tend to disappoint. Gorton and Rouwenhorst 

(2006), as well as Vrugt et al. (2004) also find that during late expansion and early recession 

periods of the business cycle, commodity returns are generally above their average, 

outperforming stocks and bonds that generally are below their average. The aforementioned 

prove that there is huge potential for various timing and index tracking strategies, as the one 

proposed in this thesis, to be applied to energy commodities markets and deliver superior 

returns to investors. From figure 5-4 it can also be seen that the indexes from the US and UK 

equity markets are not capable to follow the upward trend of energy commodities, except the 

Bovespa index that follows rather closely the high commodities' returns during the recession 

period, having a faster rebounding during the last year, outperforming all other equity and 

commodity indexes. This reflects the unique energy significance of Brazil to the global scene, 

and thus justifies the inclusion in this thesis of stocks from the Bovespa pool to track the 

performance of the SEI. 
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Next, figures 5-5 and 5-6 display the SEI against quarterly rebalanced portfolios selected 

from the DE and GA respectively. The portfolios consist of maximum 15 stocks and these are 

the FTSE 100, DJIA, Bovespa, UK Filter and US Filter, respectively; results are shown for A 

= 1. Looking at the figures it is observed that during and towards the end of the recession 

period, the benchmark index can be better tracked with the Bovespa baskets followed by the 

UK Filter baskets; whereas during the last year it is the US Fi lter and DJIA baskets that 

perform better. The portfolios comprising of optimally selected energy related stocks can 

successfully track the SEI, generating similar returns for most of the out-of-sample period. 

This is in line with Hammoudeh et al. (2004) who conclude that WTI spot prices and their 

respective NYMEX future prices explain the stock price movement of oil related firms , with 

the spot and futures prices volatility having a volatility-echoing effect on the respective stock 

prices. However, there are contradictory views in the literature as Schneeweis and Spurgin 

(1997) conclude that direct stock and bond investment cannot provide consistent risk! return 

attributes similar to various commodity and managed futures indexes. In this study, the US 

Filter and UK Filter results verify that when energy related stocks are selected, they can 

better replicate the risk and return trade-off of the SEI. The same applies for the Bovespa 
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baskets since the Brazilian stock exchange has a large number of energy and commodi ty 

related listed companies that would closely follow any developments in the international 

energy markets. In addition, between the DE and GA selected portfolios, from the graphs it 

seems that the latter ones can follow more closely the performance of the SEI, achieving 

highest excess returns for the final out-of-sample year. 

Figure 5-5: Out-of-sample tracking of the Spot Energy Index with the Bovespa, DJIA, FTSE 
100, UK Filter and US Filter baskets, respectively; ),=0.8, with maximum 15 stocks in the 
basket, rebalanced quarterly using the DE. 
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Figure 5-6: Out-of-sampl~ tracking of the Spot Energy lndex with the Bovespa, DJIA, FTSE 
100, UK FIlter and US FIlter ?askets, respectively; ;"=0.8, with maximum 15 stocks in the 
basket, rebalanced quarterly usmg the GA. 
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Table 5-2 presents the root mean squared errors and the mean excess returns of both the 

Genetic and Differential Evolution algorithms employed, under all three rebalancing 

strategies; buy-and-hold, monthly, and quarterly rebalancing. Using formal statistical 

evaluation criteria, the better tracking performance of the UK Filter and US Filter baskets is 

also confirmed. In terms of the competing portfolios' RMSEs, the DE is more consistent 

across the various portfolios, whereas the GA selects portfolios that exhibit larger differences 

between the worst and best performing ones. Additionally, in general GA tends to select 

portfolios that have a lower tracking error and thus track better the benchmark index when 

compared to the ones selected from the DE. Another interesting observation is that, although 

the RMSEs are improved when rebalancing occurs, increasing the frequency from quarterly 

to monthly has only a marginal effect. These results are more profound for the portfolios 

selected by the DE and align with Dunis and Ho (2005) who find that when comparing 

alternative rebalancing frequencies , a quarterly portfolio update is preferable to monthly, 

semi-annual or annual reallocations. In terms of their excess returns, in most cases, the 

portfolios selected by the GA tend to outperform the ones selected by the DE. The UK Filter 

and US Filter baskets, that also have the lowest tracking errors (see panels D and E), have 
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excess returns that in some cases are positive, indicating that the selected portfolios, on 

average, over the out-of-sample period, over-perform the SEI. In the case of the US Filter 

baskets selected by the GA, the index is constantly outperformed in terms of excess returns 

(8.10% for K=20 and 1..=0.6 under monthly rebalancing, and 6.14% for K=15 and 1..=0.6 

under quarterly rebalancing); there is only one exception for both rebalancing frequencies 

when 1..=1 and K=10 where the portfolios under-perform the index. This is an indication that 

the trade-off criterion does work, and leads to portfolios that compromise any excess return 

over a better tracking performance as expressed by the smaller RMSEs. Thus, taking into 

account the fact that commodity indexes performed better compared to the financial indexes 

over the three-year out-of-sample period (except the Bovespa Composite, see figure 5-4), 

with the methodology employed the performance of the SEI is closely replicated, and in the 

case of the energy related stock portfolios the benchmark index is even outperformed. 

Table 5-2: Index tracking performance of selected portfolios. 

Our sample spans from February 15, 2006 to February 18, 2009. The first two years are used as the estimation period 
whereas the last year is our test period. The tracking portfolios are created based on the stocks that the Differential Evolution 
and Genetic Algorithms choose. To decide which stocks wil1 be included in the tracking portfolio, we use two main 
objectives, the tracking error and the excess return. K is the maximum number of stocks al10wed to be included in the 
selected baskets. A. is the generalised minimization objective for the index tracking problem; in the case that A. takes the value 
of 1, the tracking portfolio has as its main objective to minimize the tracking error, whereas, when A. equals 0 the portfolio's 
main goal is to maximize the excess return. Our tracking portfolios include stocks picked each time from the Dow, FTSE 
100, Bovespa, UK Filter and US Filter stock pools which contain N = 65, 97, 53, 41, and 77 stocks, respectively. Panels A, 
B, C, D and E report the out-of-sample daily Root Mean Squared Errors (RMSE) and mean daily percentage (%) Excess 
Returns, as defined in equations (5.8) and (5.9), respectively. We also report the results for monthly and quarterly 
rebalancing. Under both rebalancing strategies the weights of the tracking portfolios are estimated based on the available 
data in the rolling window in-sample period (one year), every month and quarter, respectively. Portfolios' returns are 
adjusted for transaction costs of 0.5% for each transaction. 

No Rebalance Monthly Rebalance Quarterly Rebalance 

RMSE Mean ER(%) RMSE Mean ER (%) RMSE Mean ER (%) 

(K) (A.) DE GA DE GA DE GA DE GA DE GA DE GA 

Panel A: Bovespa 

10 0.6 0.0346 0.0344 0.0136 0.0324 0.0331 0.0329 -0.0432 -0.0104 0.0333 0.0332 -0.0389 0.0134 

15 

0.8 0.0343 0.0359 0.0176 0.0347 0.0330 0.0326 -0.0480 -0.0471 0.0332 0.0329 -0.0438 -0.0416 

0.0343 

0.6 0.0345 

0.8 0.0343 

0.0362 

0.0359 

0.0361 

0.0189 

0.0161 

0.0181 

0.0133 

0.0239 

0.0334 

0.0330 0.0327 

0.0331 0.0327 

0.0330 0.0327 

-0.0545 -0.0689 

-0.0427 -0.0063 

-0.0487 -0.0298 

0.0333 0.0332 

0.0333 0.0332 

0.0332 0.0331 

-0.0472 -0.0236 

-0.0411 -0.0148 

-0.0431 -0.0280 

0.0343 0.0356 0.0180 0.0238 0.0330 0.0327 -0.0533 -0.0418 0.0332 0.0333 -0.0442 -0.0312 

20 0.6 0.0345 0.0354 0.0148 0.0233 0.0331 0.0331 -0.0436 0.0094 0.0333 0.0335 -0.0417 0.0209 

0.8 0.0343 0.Q358 0.0186 0.0329 0.0330 0.0327 -0.0488 -0.0052 0.0332 0.0333 -0.0427 0.0000 

0.0343 0.0357 0.0164 0.0284 0.0330 0.0328 -0.0541 -0.0346 0.0333 0.0334 -00461 -0.0210 

Panel B: DJIA 

10 0.6 0.0319 0.0328 -0.0232 -0.0257 0.0318 0.0315 -0.0479 -0.0115 0.0319 0.0319 -0.0302 -0.0243 

0.8 0.0319 0.0330 -0.0238 -0.0210 0.0318 0.0316 -0.0511 -0.0312 0.0318 0.0318 -0.0323 -0.0273 

0.0319 0.0330 -0.0249 -0.0218 0.0318 0.0313 -0.0522 -0.0274 0.0319 0.0317 -0.0314 -0.0172 

15 0.6 0.0320 0.0329 -0.0244 -0.0200 0.0319 0.0315 -0.0503 -0.0332 0.0319 0.0318 -0.0297 -0.0172 
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0.8 0.0319 0.0330 -0.0240 -0.0250 0.0318 0.0314 -0.0515 0 - .0244 0.0319 0.0319 -0.0311 -0.0192 

0.0319 0.0328 -0.0246 -0.0239 0.0318 0.0313 -0.0515 -0.0410 0.0319 0.0319 -00314 -0.0283 
20 0.6 0.0319 0.0328 -0.0228 

0.8 0.0319 0.0329 -0.0235 

0.0319 0.0328 -0.0253 

-0.0251 0.0319 0.0315 

-0.0289 0.0318 0.0315 

-0.0323 0.0318 0.0313 

-0.0514 -0.0239 0.0319 0.0319 -0.0313 -0.0005 

-0.0529 -0.0300 0.0319 0.0318 -0.0301 -0.0332 

-0.0505 -0.0344 0.0319 0.0317 -0.0308 -0.0051 

Panel C: FTSE 100 

10 0.6 

0.8 

15 0.6 

0.8 

20 0.6 

0.8 

0.0315 

0.0317 

0.0316 

0.0315 

0.0316 

0.0316 

0.0315 

0.0316 

0.0316 

Panel D: UK Filter 

0.0318 

0.0316 

0.0314 

0.0318 

0.0313 

0.0312 

0.0317 

0.0313 

0.0313 

10 0.6 0.0318 0.0309 

0.8 0.0315 0.0312 

15 0.6 

0.8 

20 0.6 

0.8 

0.0317 

0.0312 

0.0313 

0.0313 

0.0311 

0.0311 

0.0311 

Panel E: US Filter 

10 0.6 0.0307 

0.8 0.0308 

0.0309 

15 0.6 0.0307 

0.8 0.0308 

0.0308 

20 0.6 0.0307 

0.8 0.0308 

0.0307 

0.0307 

0.0309 

0.0309 

0.0308 

0.0305 

0.0303 

0.0304 

0.0329 

0.0321 

0.0318 

0.0321 

0.0327 

0.0322 

0.0327 

0.0319 

0.0311 

-0.0450 -0.0359 0.0309 

-0.0469 -0.0246 0.0309 

-0.0495 -0.0193 0.0310 

-0.0512 -0.0253 0.0309 

-0.0477 -0.0220 0.0309 

-0.0490 -0.0175 0.0310 

-0.0507 -0.0271 0.0309 

-0.0484 -0.0297 0.0310 

-0.0492 -0.0245 0.0310 

-0.0900 -0.0834 0.0299 

-0.0818 -0.0834 0.0300 

-0.0809 -0.0751 0.0300 

-0.0825 -0.0519 0.0299 

-0.0847 -0.0408 0.0300 

-0.0846 -0.0531 0.0300 

-0.0796 -0.0586 0.0299 

-0.0858 -0.0451 0.0299 

-0.0763 -0.0516 0.0300 

-0.0258 -00442 0.0306 

-0.0265 -0.0780 0.0309 

-0.0234 -0.0314 0.0310 

-0.0246 -0.0581 0.0309 

-0.0244 -0.0511 0.0309 

-0.0254 -0.0566 0.0309 

-0.0261 -0.0668 0.0309 

-0.0251 -0.0320 0.0309 

-0.0226 -0.0649 0.0309 

0.0299 -0.0597 -0.0260 0.0308 

0.0302 -0.0701 -0.0416 0.0309 

0.0300 -0.0735 -0.0635 0.0310 

0.0303 -0.0674 -0.0327 0.0308 

0.0302 -0.0634 -0.0449 0.0309 

0.0303 -0.0699 -0.0682 0.0310 

0.0303 -0.0705 -0.0311 0.0308 

0.0303 -0.0681 -0.0656 0.0309 

0.0301 -0.0679 -0.0600 0.0310 

0.0294 -0.0712 0.0019 

0.0290 -0.0680 -0.0725 

0.0300 

0.0301 

0.0292 -0.0713 -0.1371 0.0301 

0.0294 -0.0782 -0.0427 0.0300 

0.0293 -0.0720 -0.0501 0.0300 

0.0293 -0.0782 -0.1083 0.0301 

0.0297 -0.0764 -0.0508 0.0300 

0.0294 -0.0752 -0.0790 0.0300 

0.0295 -0.0747 -00794 0.0301 

0.0297 -0.0449 0.0710 0.0309 

0.0295 -0.0603 0.0607 0.0310 

0.0294 -0.0688 -0.0278 0.0310 

0.0306 -0.0497 0.1241 0.0310 

0.0296 -0.0575 0.0212 0.0310 

0.0295 -0.0648 -0.0027 0.0310 

0.0301 -0.0510 0.0810 0.0310 

0.0296 -0.0603 0.0210 0.0310 

0.0294 -0.0662 0.0071 0.0310 

0.0303 -0.0438 0.0106 

0.0305 -0.0475 -0.0255 

0.0307 -0.0461 -0.0334 

0.0303 -0.0468 -0.0180 

0.0306 -0.0416 -0.0127 

0.0306 -0.0456 -0.0349 

0.0305 -0.0442 -0.0092 

0.0305 -0.0445 -0.0145 

0.0306 -0.0449 -0.0208 

0.0296 -0.0681 -0.0032 

0.0296 -0.0611 -0.0412 

0.0297 -00632 -0.1049 

0.0298 -007 \I -0.0341 

0.0296 -0.0707 -0.0410 

0.0297 -0.0601 -0.0459 

0.0299 -0.0717 -00446 

0.0298 -0.0697 -0.0391 

0.0296 -0.0676 -0.0494 

0.0307 -0.0364 0.0249 

0.0300 -0.0345 0.0240 

0.0298 -0.0367 -0.0172 

0.0308 -0.0322 0.0614 

0.0301 -0.0336 0.0016 

0.0302 -0.0342 0.0204 

0.0308 -0.0274 0.0345 

0.0303 -0.0329 0.0369 

0.0301 -0.0352 0.0126 

Now in terms of the risk! return trade-off (A.), it is observed that results are very similar 

between portfolios where A.=O.8 and 1. In most cases, the risk! return trade-off criterion tends 

to perform well, selecting portfolios with higher returns and also relatively higher RMSEs. 

Moreover, the portfolios selected by the GA tend to be more consistent when the risk! return 

trade-off rule is applied, compared to the ones selected by the DE. Overall, when considering 

both the tracking performance and the excess returns of the various portfolios, those with 

A.=O.8 should be preferred. As far as the maximum number of stocks criterion is concerned, in 

all three rebalancing scenarios, portfolios with K=10 tend to perform worst in terms of 

RMSEs but they do slightly better in terms of excess returns, for both the DE and GA 
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selected portfolios. This is also an indication that the more stocks are included in the 

portfolio, the higher the transaction costs when a rebalancing occurs. Overall, it is suggested 

that portfolios with a maximum of 15 stocks should be selected, as there still seems to be a 

valuable compensation for the additional information and diversification when rebalancing. 

against the extra rebalancing costs. 

According to the results, for both algorithms, monthly rebalancing is overall the best option 

in terms of RMSEs, closely followed by quarterly rebalancing; whereas when looking at 

excess returns, quarterly rebalancing appears to improve portfolio performance. This last 

observation can be confirmed by figures 5-8 and 5-10 where the UK Filter baskets selected 

by the DE and GA, respectively, are plotted, with K=20 and 1.=1, for all three rebalancing 

frequencies. Also, from figures 5-7 and 5-9 it is clearly seen that for the Bovespa baskets, the 

buy-and-hold strategy performs better than both the quarterly and monthly rebalancing. The 

return of a buy and hold portfolio may be higher than that of a rebalanced portfolio when 

transaction costs are considered, but it is important to determine the source of the higher 

return; whether it is greater capital efficiency as expressed by a higher Sharp or Information 

ratio, or greater risk. Plaxco and Amott (2002) showed that rebalanced portfolios typically 

have higher Sharpe ratios than buy-and-hold portfolios; a finding that suggests that the 

possible outperformance of a buy-and-hold portfolio may be the result of greater risk. Results 

are more apparent for the GA portfolios, as for the DE portfolios the difference between 

monthly and quarterly rebalancing is only marginal. In the case of the UK Filter basket, 

picked by the GA, there is an obvious difference in performance when rebalancing quarterly, 

against a monthly rebalancing. A more in depth analysis comparing the portfolios' 

information ratios is presented in the following section. On average, based on the results from 

table 5-2, K=15 and 1.=0.8 is the most desirable combination providing the best results for 

most tracking portfolios. Although it is up to the investors' risk! return appetite to decide 

whether rebalancing their portfolio quarterly, which comes with an extra cost, it is better than 

no rebalancing at all. The same applies and as to whether 1.=0.8 should be used compared to a 

more risky trade-off when 1.=0.6. 
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Figure 5-7: Out-of-sample performance of the Bovespa portfolio; 1..= 1, with maximum 20 
stocks in the basket, under the three rebalancing frequencies as selected by the DE. 
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Figure 5-8: Out-of-sample performance of the UK Filter portfolio; 1..=1, with maximum 20 
stocks in the basket, under the three rebalancing frequencies as selected by the DE. 
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Figure 5-9: Out-of-sample performance of the Bovespa portfolio; A=l , with maximum 20 
stocks in the basket, under the three rebalancing frequencies as selected by the GA. 
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Figure 5-10: Out-of-sample performance of the UK Filter portfolio; A=l , with maximum 20 
stocks in the basket, under the three rebalancing frequencies as selected by the GA. 
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5.5.2. Statistical properties of selected portfolios 

Tables 5-3, 5-4 and 5-5 present some distributional statistics of the selected portfolios' 

returns under the buy-and-hold, monthly and quarterly rebalancing respectively. Also, in 

panel F of each aforementioned table, the statistics and relevant performance measures for the 

following indexes are reported for comparison reasons: two Total Return Energy Commodity 

Indexes, the DJ UBS-Energy and Rogers Energy Commodity, the three stock indexes used to 

draw stocks from to construct the tracking portfolios, Bovespa, DJIA and FTSE 100, and 

finally the most commonly used benchmark in the finance industry, the S&P 500. According 

to the historical annualised volatilities for the out-of-sample period, the SEI is more volatile 

than the DJ UBS-Energy and Rogers Energy Commodity Indexes; 48.40% as compared to 

36.21 % and 41.11 % respectively. The respective volatility of the equity indexes is in the 

range of 27% to 38%. However, when comparing the information ratios, only the Bovespa 

index is able to generate a better risk-return performance compared to the SEI. 

Table 5-3: Distributional statistics of portfolios' daily returns. 

This table presents the annualised returns and volatilities of the tracking portfolios, the skewness and kurtosis, the correlation 
coefficient between the returns of the benchmark index and the portfolio that is used each time to replicate this benchmark, 
and the Information Ratio, under the No Rebalancing strategy. The Information Ratio (IR) is the ratio of each portfolio's 
return above the return of the benchmark index to the volatility of those returns. It measures the ability of the portfolio to 
generate excess returns relative to the benchmark index, and at the same time suggests consistency of performance. The IR 
can be expressed as the following ratio: IR = (Mean Excess Return of the Portfolio) / (Excess Returns' Volatility). Panels A, 
B, C, D and E represent the portfolios that include stocks picked each time from the Dow, FTSE 100, Bovespa, UK Filter 
and US Filter stock pools. Panel F presents, for comparison reasons, the relevant performance measures for two Total Return 
Energy Commodity Indexes, the OJ UBS-Energy and Rogers Energy Commodity, for the three stock indexes used to draw 
stocks from in order to construct the tracking portfolios, Bovespa, DJIA and FTSE 100, and finally the most commonly used 
benchmark in the finance industry, the S&P 500. 

No Rebalancing 

An. Ret{%~ An. Vol. {%~ Skewness Ex. Kurtosis Correl. {%} Info Ratio 

{K) p.) DE GA DE GA DE GA DE GA DE GA DE GA 

Panel A: BovesEa 

10 0.6 6.44 11.16 40.16 41.03 -0.282 -0.389 7.582 6.609 24.19 26.22 0.062 0.149 

0.8 7.44 1l.76 39.22 45.37 -0.316 -0.325 7.8l3 5.933 24.01 26.19 0.081 0.153 

7.76 6.37 39.34 47.10 -0.320 -0.304 7.658 4.825 24.17 27.68 0.087 0.059 

15 0.6 7.06 9.03 39.85 44.92 -0.272 -0.299 7.748 6.313 23.89 25.48 0.074 0.106 

0.8 7.56 11.42 39.27 47.02 -0.311 -0.359 7.732 4.550 23.95 27.63 0.083 0.147 

7.55 9.00 39.46 45.61 -0.327 -0.374 7.560 5.105 24.25 27.70 0.083 0.106 

20 0.6 6.73 8.86 39.96 44.26 -0.275 -0.260 7.633 5.512 24.10 26.69 0.068 0.104 

0.8 7.68 11.29 39.54 45.01 -0.307 -0.350 7.608 5.942 24.40 26.04 0.086 0.146 

7.14 10.16 39.72 45.09 -0.324 -0.337 7.389 5.609 24.74 26.69 0.076 0.126 

Panel B: DJIA 

10 0.6 -2.85 -3.46 22.18 31.14 0.571 0.406 11.674 11.823 12.33 19.84 -0.116 -0.124 

0.8 -2.98 -2.28 21.50 32.93 0.490 0.390 11.175 11.229 11.55 21.07 -0.118 -0.101 

-3.28 -2.48 21.44 31.48 0.366 0.547 10.852 12.525 11.10 19.31 -0.124 -0.105 

15 0.6 -3.14 -2.03 22.69 31.68 0.563 0.546 12.006 12.512 12.66 19.97 -0.121 -0.096 
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20 

0.8 

1 

0.6 

-3.05 

-3.20 

-2.73 

0.8 -2.91 

1 -3.38 

Panel C: FTSE 100 

10 

15 

20 

0.6 

0.8 

0.6 

0.8 

0.6 

0.8 

-8.34 

-8.82 

-9.47 

-9.90 

-9.01 

-9.33 

-9.76 

-9.20 

-9.38 

Panel D: UK Filter 

10 

15 

20 

0.6 -19.68 

0.8 -17.60 

-17.37 

0.6 -17.78 

0.8 -18.35 

-18.31 

0.6 -17.05 

0.8 -18.61 

-16.23 

Panel E: US Filter 

10 0.6 -3.49 

15 

20 

0.8 -3.68 

-2.89 

0.6 -3.21 

0.8 -3.14 

0.6 

0.8 

-3.39 

-3.56 

-3.32 

-2.69 

Panel F: Indexes 

SEI 

Bovespa 

DJIA 

FfSE 100 

S&P500 

DJ UBS Energy-TR 

-3.31 

-3.01 

-3.33 

-4.27 

-5.13 

-6.04 

-3.18 

-1.87 

-3.37 

-2.54 

-1.41 

-3.83 

-4.48 

-3.18 

-18.Q2 

-18.01 

-15.93 

-10.08 

-7.27 

-10.37 

-11.75 

-8.36 

-9.99 

-8.14 

-16.65 

-4.91 

-11.63 

-9.86 

-11.26 

-13.83 

-5.06 

-13.35 

Rogers Energy Commodity-TR 

22.02 

21.86 

22.55 

22.18 

21.65 

28.22 

28.84 

29.44 

28.64 

28.99 

29.16 

28.49 

28.84 

29.11 

30.55 

29.29 

29.84 

29.25 

29.06 

29.00 

28.76 

28.68 

28.20 

18.71 

18.87 

18.82 

18.93 

18.98 

18.96 

19.05 

19.06 

18.98 

32.20 

32.17 

32.03 

32.85 

31.66 

31.64 

30.89 

30.66 

30.53 

30.12 

30.44 

30.41 

32.12 

32.57 

29.32 

30.23 

29.62 

31.89 

31.87 

30.59 

30.28 

28.51 

28.48 

36.75 

30.59 

31.54 

32.85 

35.24 

34.46 

33.98 

33.69 

26.94 

An.Ret. (%) 

3.01 

13.21 

-7.07 

-6.01 

-9.46 

-18.94 

-6.15 

0.489 

0.426 

0.240 

0.394 

11.446 

10.942 

10.909 12.04 20.23 -0.119 -0.120 

11.654 11.76 21.26 -0.122 -0.115 

0.515 

0.463 

0.403 

0.220 

0.130 

0.250 

11.418 10.750 12.83 20.96 -0.113 -0.\22 

10.919 10.488 12.18 21.96 -0.117 -0.139 

10.538 10.939 11.57 20.61 -0.126 -0.156 

-0.059 

-0.080 

-0.104 

-0.110 

-0.077 

-0.080 

-0.091 

-0.063 

-0.080 

-0.006 

-0.109 

0.020 

-0.336 

-0.241 

-0.235 

-0.361 

-0.323 

-0.362 

0.378 

0.487 

0.344 

-0.231 

0.013 

0.021 

-0.108 

-0.044 

0.041 

-0.183 

0.021 

-0.001 

6.344 

6.418 

5.995 

6.347 

6.360 

6.207 

6.393 

6.499 

6.133 

-0.250 10.129 

-0.114 9.151 

-0.404 10.024 

-0.712 7.537 

-0.628 8.014 

-0.658 8.539 

-0.703 7.774 

-0.723 7.597 

-0.808 7.526 

-0.125 16.744 

-0.031 19.319 

0.182 19.821 

6.944 23.50 

7.273 23.06 

7.300 23.98 

6.971 24.03 

7.176 23.51 

6.916 23.71 

6.922 23.82 

6.589 23.75 

6.136 23.78 

5.788 

5.918 

4.821 

4.866 

5.012 

4.740 

4.804 

4.314 

5.115 

7.485 

6.308 

11.993 

24.55 

24.65 

24.47 

26.08 

25.46 

25.51 

26.08 

26.13 

25.88 

17.50 

16.69 

16.14 

25.81 

25.95 

27.03 

24.67 

26.91 

27.35 

24.94 

29.06 

29.67 

28.13 

27.38 

29.50 

30.75 

30.85 

29.82 

30.94 

30.49 

29.77 

27.28 

22.75 

25.83 

-0.227 -0.179 

-0.235 -0.\23 

-0.248 -0.098 

-0.258 -0.126 

-0.239 -0.112 

-0.246 -0.089 

-0.256 -0.136 

-0.244 -0.151 

-02-l7 -0.125 

-0.449 -0.429 

-0.412 -0.424 

-0.405 -0.389 

-0.419 -0.266 

-0.430 -0.209 

-0.429 -0.273 

-0.406 -0304 

-0.438 -0.236 

-0.390 -0.269 

-0.133 -0.213 

-0.137 -0.385 

-0.120 -0.157 

0.531 0.528 18.389 16.749 17.68 

16.81 

17.00 

25.64 -0.127 -0.287 

0.467 0.240 20.067 12.534 26.05 -0.126 -0.248 

0.617 -0.104 21.177 8.574 27.26 -0.131 -0.279 

0.526 

0.611 

0.474 

0.374 17.797 15.279 

7.872 

9.317 

17.95 

16.95 

17.35 

24.28 

27.94 

24.35 

-0.091 20.461 

-0.361 21.563 

An.Vol. (%) 

48.40 

38.Q4 

28.03 

27.42 

30.07 

36.21 

41.11 

Skewn. Ex. Kurt. Correl. (%) 

0.094 2.283 

0.026 4.875 20.09 

-0.053 4.636 12.90 

-0.009 5.374 

-0.162 5.999 

-0.166 1.1 02 

-0.189 2.099 

2434 

14.51 

43.83 

44.02 

-0.135 -0.324 

-0.129 -0.159 

-0.117 -0.332 

Info Ratio 

0.185 

-0.191 

-0.182 

-0.235 

-0.477 

-0.192 
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Table 5-4: Distributional statistics of portfolios' daily returns. 

For further details, see notes in previous table. 

An. Ret(%) 

(K) (A) DE GA 

Panel A: Bovespa 

10 0.6 -7.88 

0.8 

1 

-9.09 

-10.74 

15 0.6 -7.77 

0.8 -9.27 

-10.42 

20 0.6 -7.99 

0.8 -9.30 

-10.62 

Panel B: DJIA 

10 

15 

20 

0.6 

0.8 

0.6 

0.8 

0.6 

0.8 

-9.06 

-9.88 

-10.14 

-9.68 

-9.98 

-9.96 

-9.96 

-10.32 

-9.73 

Panel C: FTSE 100 

10 

15 

20 

0.6 

0.8 

0.6 

0.8 

1 

0.6 

0.8 

-12.05 

-14.67 

-15.51 

-13.99 

-12.96 

-14.61 

-14.77 

-14.16 

-14.10 

Panel D: UK Filter 

10 0.6 -14.94 

0.8 -14.14 

-14.97 

15 0.6 -16.70 

0.8 -15.13 

-16.69 

20 0.6 -16.25 

0.8 -15.94 

-15.83 

Panel E: US Filter 

10 0.6 -8.31 

0.8 -12.19 

-14.33 

0.39 

-8.87 

-14.35 

1.41 

-4.51 

-7.52 

5.39 

1.69 

-5.71 

0.10 

-4.85 

-3.89 

-5.37 

-3.15 

-7.32 

-3.02 

-4.56 

-5.66 

-3.54 

-7.47 

-13.00 

-5.23 

-8.31 

-14.17 

-4.84 

-13.54 

-12.11 

3.47 

-15.26 

-31.53 

-7.75 

-9.62 

-24.28 

-9.78 

-16.90 

-16.99 

20.89 

18.31 

-4.00 

Monthly Rebalancing 

An. Vol. (%) Skewness Ex. Kurtosis Correl. lofo Ratio 

DE GA DE GA DE GA DE GA DE GA 

35.05 

34.67 

34.77 

35.05 

34.81 

34.78 

35.04 

34.81 

37.73 

36.78 

36.32 

37.50 

36.94 

36.19 

37.63 

36.13 

-0.685 

-0.670 

-0.651 

-0.693 

-0.667 

-0.634 

-0.689 

-0.657 

-0.618 

-0.653 

-0.648 

-0.384 

-0.571 

-0.405 

-0.646 

-0.598 

7.390 

7.242 

7.485 

7.545 

7.549 

7.463 

7.536 

7.467 

5.738 

6.686 

6.393 

6.491 

7.385 

7.580 

6.739 

5.913 

23.75 

23.79 

23.86 

23.76 

23.80 

23.87 

23.71 

23.79 

28.52 

28.43 

27.61 

29.05 

28.40 

27.44 

27.51 

27.05 

-0.207 

-0.231 

-0.262 

-0.205 

-0.234 

-0.256 

-0.209 

-0.235 

-0.050 

-0.229 

-0.335 

-0.031 

-0.145 

-0.203 

0.045 

-0.025 

34.77 36.57 -0.647 -0.520 7.503 7.536 23.77 27.23 -0.260 -0.167 

19.45 

19.62 

19.63 

19.63 

19.61 

22.79 

22.96 

23.24 

21.72 

22.41 

0.572 

0.554 

0.562 

0.546 

0.573 

19.61 23.45 0.576 

19.57 23.26 0.577 

19.63 22.81 0.567 

19.51 22.86 0.577 

26.26 28.79 0.005 

0.165 

0.422 

0.424 

0.304 

0.270 

12.589 7.598 

13.159 10.442 

13.418 10.173 

12.686 7.835 

13.150 8.099 

8.91 

9.21 

9.08 

8.80 

9.17 

0.571 13.430 12.986 9.11 

0.386 12.735 9.342 8.75 

0.174 13.190 8.242 8.93 

0.358 13.330 9.564 9.01 

16.14 -0.239 -0.058 

15.63 -0.255 -0.156 

18.05 -0.260 -0.139 

15.10 -0.251 -0.168 

16.58 -0.257 -0.123 

18.53 -0.257 -0.208 

16.62 -0.256 -0.120 

16.41 -0.264 -0.151 

17.53 -0.252 -0.174 

0.008 8.298 24.46 32.96 -0.307 -0.138 

26.39 29.71 -0.016 0.097 

6.062 

5.871 

5.730 

6.692 24.45 32.29 -0.360 -0.219 

26.15 

26.23 

26.04 

26.38 

26.26 

26.35 

26.43 

17.80 

17.61 

17.68 

17.72 

17.72 

17.69 

17.71 

17.67 

17.64 

19.22 

20.26 

20.48 

29.76 

29.08 

29.65 

29.44 

29.22 

29.42 

29.22 

23.13 

22.86 

23.42 

23.56 

23.55 

23.71 

24.10 

24.16 

24.40 

26.62 

25.75 

24.96 

-0.029 

-0.002 

-0.080 

-0.058 

0.002 

-0.011 

0.019 

-1.134 

-1.060 

-1.050 

-1.175 

-1.145 

-1.112 

-1.167 

-1.140 

-1.105 

-0.755 

-0.742 

-0.954 

0.100 

-0.179 

0.059 

-0.223 

-0.311 

-0.002 

O.oI5 

-0.707 

-1.535 

-0.925 

-0.839 

-0.929 

-1.054 

-0.912 

-0.819 

-0.867 

-0.140 

-0.373 

-0.260 

6.251 

6.050 

6.116 

6.298 

6.168 

6.227 

6.977 

6.811 

6.879 

7.074 

7.070 

6.971 

6.890 

8.650 

6.001 

8.000 

6.708 

6.610 

7.674 

6.851 

4.513 

9.672 

5.862 

4.375 

5.514 

6.130 

4.482 

24.13 

24.45 

24.08 

23.85 

24.27 

24.05 

23.96 

23.12 

22.44 

22.50 

23.16 

22.89 

22.79 

23.02 

6.983 4.836 22.99 

6.832 5.252 22.65 

19.511 10.044 18.65 

24.991 11.898 17.41 

26.671 11.698 16.91 

33.24 

30.85 

32.12 

31.60 

31.24 

31.29 

32.02 

-0.377 

-0.346 

-0.325 

-0.357 

-0.362 

-0.349 

-0.347 

-0.336 

-0.171 

-0.236 

-0.357 

-0.163 

-0.344 

-0.316 

31.42 -0.377 0.010 

33.72 -0.360 -0.397 

33.09 -0.377 -0.746 

31.61 -0.415 -0.231 

32.41 -0.381 -0.272 

32.60 -0.414 -0.587 

30.10 -0.405 -0.271 

32.15 -0.398 -0.427 

31.68 -0.395 -0.427 

31.80 -0.233 0.379 

32.28 -0.309 0.326 

32.58 -0.352 -0.150 

203 



15 0.6 -9.52 34.28 20.19 27.25 -0.831 0.012 25.504 10.244 17.46 2774 -0.255 0.64) 

0.8 -11.48 8.34 20.25 26.54 -0.773 -0.118 24.625 16.027 17.59 32.31 -0.295 0.113 

-13.33 2.33 20.17 26.56 -0.870 -0.170 25.108 12.796 17.60 33.33 -0.333 -0.014 

20 0.6 -9.84 23.41 20.28 27.26 -0.859 -0.280 25.937 7.271 17.37 30.34 -0.262 0.427 

0.8 -12.20 8.29 20.19 25.34 -0.853 0.180 24.818 9.723 17.25 31.49 -0.310 0.112 

-13.67 4.81 20.32 25.50 -0.836 -0.367 26.336 12.638 17.48 32.73 -0.340 0.039 

Panel F: Ex. 
Indexes An.Ret. ~%~ An.Vol. ~%~ Skewn. Kurt. Correl. ~%~ Info Ratio 

SEI 3.01 48.40 0.094 2.283 

Bovespa 13.21 38.04 0.026 4.875 20.09 0.185 

OJIA -7.07 28.03 -0.053 4.636 12.90 -0.191 

FTSE 100 -6.01 27.42 -0.009 5.374 24.34 -0.182 

S&P500 -9.46 30.07 -0.162 5.999 14.51 -0.235 

OJ UBS Energy-TR -18.94 36.21 -0.166 1.102 43.83 -0.477 

Rogers Energy Commodity-TR -6.15 41.11 -0.189 2.099 44.02 -0.192 
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Table 5-5: Distributional statistics of portfolios' daily returns. 

For further details, see notes in previous table. 

An. Ret (%) 

(K) (I.) DE GA 

Panel A: Bovespa 

10 0.6 -6.79 

0.8 -8.04 

-8.88 

15 0.6 -7.36 

20 

0.8 

0.6 

0.8 

-7.86 

-8.14 

-7.49 

-7.77 

-8.62 

Panel B: DJIA 

10 

15 

20 

0.6 

0.8 

0.6 

0.8 

0.6 

-4.61 

-5.14 

-4.90 

-4.48 

-4.83 

-4.91 

-4.87 

0.8 -4.58 

1 -4.75 

Panel C: FTSE 100 

10 

15 

20 

0.6 

0.8 

1 

0.6 

0.8 

1 

0.6 

0.8 

-8.03 

-8.96 

-8.62 

-8.78 

-7.49 

-8.47 

-8.12 

-8.22 

-8.32 

Panel D: UK Filter 

10 0.6 -14.16 

0.8 -12.40 

-12.91 

15 0.6 -14.91 

20 

0.8 -14.81 

-12.13 

0.6 -15.06 

0.8 -14.55 

-14.03 

Panel E: US Filter 

10 0.6 -6.16 

0.8 -5.70 

-6.23 

6.38 

-7.48 

-2.94 

-0.73 

-4.05 

-4.87 

8.27 

3.01 

-2.29 

-3.13 

-3.87 

-1.33 

-1.33 

-1.83 

-4.12 

2.88 

-5.36 

1.72 

5.68 

-3.41 

-5.42 

-1.54 

-0.19 

-5.78 

0.68 

-0.64 

-2.24 

2.21 

-7.37 

-23.42 

-5.58 

-7.32 

-8.57 

-8.22 

-6.86 

-9.44 

9.29 

9.06 

-1.33 

Quarterly Rebalancing 

An. Vol. (%) Skewness Ex. Kurtosis CorreI. Info Ratio 
DE GA DE GA DE GA DE GA DE GA 

35.68 

35.39 

35.49 

35.72 

35.49 

35.45 

35.73 

35.42 

35.50 

19.76 

19.79 

19.76 

19.85 

19.80 

38.32 

36.15 

37.28 

38.38 

37.33 

36.76 

38.45 

37.53 

37.69 

22.72 

22.40 

22.87 

22.44 

23.63 

-0.572 

-0.541 

-0.537 

-0.578 

-0.548 

-0.532 

-0.570 

-0.544 

-0.534 

0.543 

0.563 

0.630 

0.536 

0.563 

-0.588 

-0.499 

-0.565 

-0.516 

-0.620 

-0.461 

-0.494 

-0.481 

-0.485 

0.329 

0.444 

0.437 

0.405 

0.210 

7.688 

7.696 

7.846 

7.699 

7.910 

7.734 

7.661 

7.675 

7.801 

12.944 

13.201 

13.884 

12.659 

13.169 

7.146 

7.198 

7.791 

7.113 

7.932 

7.889 

7.896 

7.498 

8.467 

9.405 

9.707 

10.343 

10.195 

8.742 

23.76 

23.72 

23.62 

23.84 

23.79 

23.65 

23.95 

23.57 

23.64 

8.96 

9.13 

8.97 

27.67 

26.04 

26.46 

2806 

26.89 

25.36 

26.36 

26.21 

25.94 

-0.185 

-0.209 

-0.225 

-0.196 

-0.206 

0.064 

-0.200 

-0.113 

-0.071 

-0.134 

-0.211 -0.149 

-0.199 0.099 

-0.204 0.000 

-0.220 -0.100 

13.36 -0.151 -0.121 

13.44 -0.161 -0.136 

14.63 -0.156 -0086 

13.63 -0.148 -0.086 

14.64 -0.155 -0.095 

19.87 24.36 0.600 0.475 13.712 12.793 

9.01 

9.04 

8.97 15.65 -0.156 -0.141 

19.84 22.41 0.543 0.335 12.801 7.553 9.00 

9.07 

8.93 

12.49 -0.156 -0.002 

19.83 24.40 0.542 0.355 13.054 9.969 16.10 -0.150 -0.165 

19.86 23.42 0.587 0.526 13.684 10.842 15.57 -0.153 -0.026 

25.87 

25.82 

26.14 

26.18 

26.03 

26.26 

26.12 

26.12 

26.17 

18.43 

18.40 

18.47 

18.45 

18.57 

18.59 

18.38 

18.38 

18.48 

20.51 

20.64 

20.68 

28.61 0.040 -0.010 5.981 6.623 

8.084 

8.876 

24.57 30.30 -0.225 0.056 

29.42 -0.019 0.082 5.743 24.11 30.01 -0.244 -0.132 

28.74 0.039 O.ol8 6.319 24.07 28.52 -0.236 -0.173 

29.32 0.006 0.060 6.170 7.373 

7.309 

7.594 

25.07 31.08 -0.241 -0.094 

28.89 0.004 -0.026 6.140 24.12 29.36 -0.214 -0.066 

30.48 -0.016 -0.106 6.310 2401 30.57 -0.233 -0.180 

29.30 0.033 0.091 6.108 7.646 

7.321 

7.613 

25.00 29.88 -0.228 -0.048 

29.07 -0.023 

29.43 -0.037 

23.56 -1.545 

23.53 -1.540 

22.11 -1.506 

23.98 -1.556 

23.19 -1.602 

24.84 -1.560 

24.71 

24.85 

23.93 

26.77 

24.56 

24.22 

-1.595 

-1.600 

-1.611 

-0.303 

-0.246 

-0.289 

0.076 

0.068 

6.140 

6.138 

24.23 30.02 -0.229 -0.075 

23.62 29.92 -0.230 -0.108 

-0.908 11.532 5.806 22.81 

-1.322 11.741 8.974 22.59 

-1.353 11.692 9.453 22.38 

-0.908 11.403 4.967 23.06 

-1.126 12.077 6.813 22.93 

-0.947 11.759 5.099 22.40 

-1.115 

-0.995 

-1.037 

0.650 

0.018 

-0.217 

11.618 6.180 

11.910 5.192 

11.846 6.240 

22.97 

22.74 

22.36 

28.721 16.322 17.51 

27.642 6.268 16.95 

29.105 7.641 17.55 

29.94 -0.360 -0.017 

30.14 -0.323 -0.221 

28.14 -0.333 -0.560 

28.91 -0.376 -0.181 

30.08 -0.373 -0.220 

30.45 -0.317 -0.245 

29.35 -0.379 -0.237 

30.23 -0.368 -0.209 

30.48 -0.357 -0.265 

26.39 -0.187 0.129 

28.30 -0.177 0.127 

2906 -0.188 -0091 
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15 0.6 -5.12 18.48 20.57 26.87 -0.252 -0.104 28.952 5.516 17.48 25.97 -0.165 0.317 

0.8 -5.47 3.41 20.63 25.42 -0.200 -0.165 28.577 8.188 1738 28.33 -0.172 0.008 

-5.62 8.15 20.73 24.86 -0.194 0.000 28.466 6.699 17.42 27.10 -0.175 0.107 

20 0.6 -3.91 11.69 20.58 27.18 -0.289 -0.154 28.874 5.360 17.46 26.41 -0.141 0.178 

0.8 -5.27 12.30 20.65 26.32 -0.206 0.287 28.549 7.590 17.31 27.99 -0.168 0.193 

-5.87 6.19 20.84 26.44 -0.235 0.371 28.229 11.545 17.32 29.28 -0.180 0.067 

Panel F: Ex. 
Indexes An.Ret. (%) An.Vol. (%) Skewn. Kurt. Correl. (%) Info Ratio 

SEI 3.01 48.40 0.094 2.283 

Bovespa 13.21 38.04 0.026 4.875 20.09 0.185 

DJIA -7.07 28.03 -0.053 4.636 12.90 -0.191 

FfSE 100 -6.01 27.42 -0.009 5.374 24.34 -0.182 

S&P500 -9.46 30.07 -0.162 5.999 14.51 -0.235 

DJ UBS Energy-TR -18.94 36.21 -0.166 1.102 43.83 -0.477 

Rogers Energy Commodity-TR -6.15 41.11 -0.189 2.099 44.02 -0.192 

Furthermore, moving from no rebalancing to monthly rebalancing, the information ratios tend 

to go down in all cases, except in the case of the us Filter baskets for GA, and that of the UK 

Filter baskets for both DE and GA. This can be explained by the higher transaction costs 

which have a greater impact on the portfolios' returns, especially during falling markets. It 

can be argued that when rebalancing, the additional information available from the latest 

price data does make a difference on reducing the portfolios' volatility, but the small return 

improvement coupled with the rebalancing costs out-weighs the volatility benefits. Results 

are consistent for all cases for the risk-return trade-off A. Among monthly and quarterly 

rebalancing the differences are relatively small, but the information ratios are in all cases 

higher for the monthly rebalanced portfolios, with only one exception for the FTSE selected 

baskets. This is an indication that greater capital efficiency can be achieved with the more 

frequent rebalancing. Under the buy-and-hold scenario, the best performance in terms of 

information ratios is reported for the Bovespa portfolios, and under both monthly and 

quarterly rebalancing it is reported for the US Filter portfolios. In most cases, negative 

information ratios are reported, indicating that these portfolios over the out-of-sample period 

under-perform the benchmark as they are associated with the lowest excess returns
36

• This 

observation can be explained by the fact that energy markets, as represented by the SEI, have 

been resistant to the recent economic recession, even though they have experienced one of 

their most severe up- and down-trends in their history. 

36 Note that investors who would have taken short positions on these baskets would realise the highest excess 

returns. 
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Historically it has been shown that commodities have had an equity-like risk! return profile. 

while at the same time being negatively correlated with stocks. Moreover, financial activity 

in commodity markets during the past decade has grown too much in size relative to physical 

production, leading to non-commercial net long positions to be less influenced by the 

commodities' diversification benefits observed in the past (Domanski and Heath, 2007). 

Looking at tables 5-3, 5-4, and 5-5, it can be seen that when switching from quarterly to 

monthly rebalancing, correlations tend to marginally improve, with results being more 

profound for the baskets selected by the GA. The relatively low correlations of the selected 

equity portfolios with the SEI (between 9% and 33%) suggest that investors who want to 

participate in the energy sector can still benefit from the addition of the selected baskets to a 

well diversified portfolio of assets. This observation aligns with the findings of Buyuksahin et 

al. (2010) that the correlation between equity and commodity returns is not often greater than 

30%, besides some noticeable fluctuation that occurs over time. Also, correlation is not the 

most appropriate performance measure, as it only measures the degree to which the selected 

equity baskets and the SEI move in tandem, and does not capture the magnitude of the returns 

and their trajectories over time. Moreover, as it is well documented in the literature and also 

verified in the results presented in this chapter, equity returns, represented by the financial 

indexes and the selected portfolios, deviate from a normal distribution displaying skewness 

and fat tails. The same is true for the returns of the SEI which exhibit positive skewness and 

relatively high excess kurtosis. Both futures commodity indexes have excess kurtosis similar 

to the SEI, with their skewness however being negative. Most equity portfolios selected by 

both the DE and GA exhibit negative skewness, indicating that the equity portfolios have 

more weight in the left tail of the distribution in contrast with the SEI that has more weight in 

the right tail. 

Moreover, looking at table 5-6 it can be concluded that the strategy and methodology used in 

this thesis is much more efficient than a "naIve" strategy of randomly selected stocks, 

forming equally weighted portfolios constituted of 10, 15, and 20 stocks respectively. The 

evidence concur that this happens for both, achieving a good tracking performance (low 

RMSEs), and good returns relative to the SEI (positive or very small negative ERs). Under 

the "naIve" strategy there is a large dispersion of outcomes and no consistency, e.g. for the 

UK Filter portfolios with 10, 15 and 20 randomly selected socks, the respective information 

ratios are -0.62%, 0.09% and -0.12%. 
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Table 5-6: Performance of randomly selected portfolios. 

This table presents a "Naive" investment strategy of randomly selected stocks formin 1\. . .. 
m each case by lO, 15 and 20 stocks, respectively. The stocks are selected from the g equ~ y wel?hted portfohos conslstmg 
from a uniform distribution, thus ~ivin~ egual Erobabili~ for all stocks to be chosen. same Ive eqUIty pools used by the EAs, 

No Stocks RMSE ER ~%} An. Ret ~%} An. Vol. ~%} Skewness Ex. Kurtosis Correl. ~%l Info Ratio 

10 0.04 -0.01 1.32 45.20 -0.20 6.10 21.44 -0.03 

Bovespa 15 0.04 0.03 9.73 45.31 -0.41 6.41 22.37 0.12 

20 0.04 0.02 7.80 42.79 -0.30 6.64 21.35 0.08 
10 0.04 -0.06 -12.05 35.64 -0.07 2.84 5.62 -0.26 

DJIA 15 0.03 -0.02 -2.80 28.90 -0.19 4.03 12.56 -0.11 

20 0.03 -0.03 -3.62 30.57 -0.14 3.14 10.69 -0.12 

10 0.03 -0.04 -6.30 28.22 0.30 7.78 23.98 -0.19 

FTSE 100 IS 0.04 -0.09 -19.96 43.62 -0.02 4.35 25.15 -0.41 

20 0.03 -0.03 -5.80 41.27 -0.20 3.73 29.49 -0.16 

10 0.04 -0.14 -31.62 39.15 -2.00 20.65 18.78 -0.62 

UK FILTER 15 0.03 0.02 7.90 35.80 -0.54 4.71 26.38 0.09 

20 0.03 -0.02 -3.00 26.57 -0.48 3.52 24.72 -0.12 

10 0.03 -0.06 -10.97 38.48 -0.76 7.52 23.03 -0.26 

US FILTER 15 0.03 -0.04 -6.00 33.87 0.10 lO.88 27.64 -0.18 

20 0.03 -0.04 -7.97 40.37 -0.44 7.40 29.29 -0.21 

In addition, looking at the no rebalancing strategy in table 5-7 it can be observed that both 

algorithms in most cases do not utilise the maximum number of stocks allowed to select. The 

case is stronger for the GA selected portfolios. For instance, for all A scenarios and for K=20, 

the maximum number of stocks selected in the case of the Bovespa, DJIA, and FTSE 100 

stock pools is 8, 7, and 10 respectively. A general observation that can be made is that the 

algorithms tend to utilise almost the maximum number of available stocks when choosing 

from the UK Filter and US Filter pools. This can be justified by the fact that because only 

energy related stocks are included in the pools, there can be more stock combinations 

identified for inclusion in the selected portfolios, capable of tracking the performance of the 

SEI. Moreover, between the two evolutionary algorithms, the DE tends to use more stocks in 

the various selected portfolios, reaching the maximum number allowed most of the times. 

Finally, the DE is more stable in the number of stocks picked between the various cases of 

the risk! return trade-off, whereas the GA tends to select portfolios quite different in terms of 

their composition. This can be confirmed by the much higher total number of stocks selected 

during all rebalancing frequencies, for both quarterly and monthly rebalancing strategies. For 

example, under monthly rebalancing and K=15, irrespectively of A, the maximum total 

number of stocks that the DE selects is 49 and 45 for the FTSE 100 and US Filter baskets, 

while the GA selects 70 and 65 stocks respectively. 
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Table 5-7: Statistics of Portfolios (number of stocks used from algorithms). 

Over the whole out-of sample period, "No Reb", "Q Reb" and "M Reb" shows the total number of stocks selected in each 
tracking portfolio i.e. under No rebalancing, Quarterly rebalancing and Monthly rebalancing, respectively. Note that '"No 
Reb" is also the initial number of selected stocks for both "Q Reb" and "M Reb" because at to=O the estimation period is the 
same for all three rebalancing frequencies; hence, the number of stocks involved is identical. For further details, see also 
table 5-2. 

No Reb QReb MReb 

~K! p.! DE GA DE GA DE GA 

Panel A: Bovesl!a 

10 0.6 10 7 19 22 22 38 

0.8 10 5 19 25 25 34 

10 6 22 20 23 32 

15 0.6 10 5 20 23 24 39 

0.8 11 6 20 24 25 36 

10 3 20 23 25 34 

20 0.6 11 8 20 36 25 47 

0.8 10 8 21 30 25 42 

1 10 7 22 30 24 44 

Panel B: DJIA 

10 0.6 10 5 24 23 31 30 

0.8 10 3 23 23 29 34 

10 3 23 27 27 38 

15 0.6 15 4 31 28 35 37 

0.8 15 3 29 30 32 38 

15 2 29 27 32 38 

20 0.6 17 6 31 36 36 42 

0.8 20 5 32 32 33 39 

1 19 7 33 35 32 43 

Panel C: FTSE 100 

10 0.6 10 9 33 41 41 58 

0.8 10 4 32 43 40 61 

10 2 34 41 42 62 

9 43 46 49 70 
15 0.6 15 

7 40 47 46 66 
0.8 15 

1 15 8 39 48 47 60 

44 51 48 64 
20 0.6 16 10 

42 50 48 63 
0.8 17 10 

38 50 48 64 
16 6 

Panel D: UK Filter 
28 31 30 37 

10 10 10 0.6 
29 37 

5 26 24 
0.8 10 

36 26 28 28 
1 10 10 

31 35 34 39 
15 0.6 15 14 

40 30 37 33 
0.8 15 15 

40 30 39 32 
15 15 

39 36 40 
0.6 16 20 33 

20 41 
30 40 34 

0.8 17 20 
33 41 

31 39 
18 19 

Panel E: US Filter 
43 38 54 

10 25 
10 0.6 10 

33 56 
10 25 40 

0.8 10 
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10 10 29 45 34 64 
15 0.6 15 11 34 44 44 61 

0.8 15 12 33 42 45 65 
15 15 35 51 40 64 

20 0.6 16 12 35 50 43 65 
0.8 16 10 34 56 44 69 

16 19 34 58 39 72 

5.6. Conclusions 

In this chapter, a Geometric Average Spot Energy Index is constructed and then its 

performance is being reproduced with stock portfolios. This is achieved by investing in small 

baskets of equities, selected from five stock pools, the Dow Jones, FTSE 100, Bovespa 

Composite, and the UK and US Filters. The investment methodology used employs two 

advanced EAs, the GA and the DE. Both algorithms are self-adaptive stochastic optimization 

methods, superior to other rival approaches when applied to the index tracking problem. To 

test the performance of the tracking baskets three different rebalancing scenarios are 

examined, also taking transaction costs into consideration: a) buy-and-hold, b) monthly 

rebalancing, and c) quarterly rebalancing. For comparison reasons the performance of a 

"naIve" investment strategy of randomly selected stocks forming equally weighted portfolios 

is also reported. 

It is found that energy commodities, as proxied by the SEI, can have equity-like returns, since 

they can be effectively tracked with stock portfolios selected by the investment methodology 

followed in this thesis. Overall, during the three-year period examined, which reflects a 

period before, during and towards the end of the recent global economic recession, an 

investor would realise positive returns by investing in commodities, as the SEI returns 

suggest. With the methodology employed that performance is closely replicated, and in the 

case of the energy related stock portfolios and those selected from the Bovespa equity pooL 

the benchmark index is even outperformed. In most cases there seem to be no major 

differences between the DE and GA selected portfolios, though the GA tends to select 

portfolios that have a lower tracking error. Both algorithms, in most cases, do not utilise the 

maximum number of stocks allowed to select, with the DE being more stable in the number 

of stocks picked between the various cases of the risk! return trade-off; the GA tends to select 

portfolios quite different in terms of their composition. 
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On average, based on the results of this chapter, portfolios with 15 stocks and a risk-return 

trade-off value of 0.8 are the most desirable combination providing the best results for most 

tracking portfolios. Also, it is found that when rebalancing, the additional information 

available from the latest price data does make a difference on reducing the portfolios' 

volatility; the resulting return deterioration however, out-weighs the volatility benefits 

leading to smaller information ratios. Moving from the Buy and Hold strategy to Quarterly 

Rebalancing and then to the more frequent Monthly Rebalancing strategy, returns tend to 

deteriorate for most selected portfolios, by both the DE and the GA. Nonetheless, the same 

holds for the portfolios' volatilities that also tends to go down when moving from no 

rebalancing to the more frequent one. Between monthly and quarterly rebalancing the 

differences are relatively small in terms of the portfolios' return and volatility performance; 

however the information ratios are in almost all cases higher for the quarterly rebalanced 

portfolios. The only exception is for the US Filter in the case of the baskets selected by the 

GA. Thus, it is concluded that greater capital efficiency can be achieved with rebalancing, 

preferably every quarter, compared to the buy-and-hold strategy. 

The investment approach proposed in this thesis, for tracking the performance of the energy 

sector with stocks selected by two innovative evolutionary algorithms, promotes a cost 

effective implementation and true investability. While most mutual funds cannot invest in 

commodities directly, they can track the performance of the SEI by investing in the stocks 

selected by the evolutionary algorithms used in this thesis. There are many investment houses 

around the globe that use evolutionary algorithms for tactical asset management
37

• The work 

and findings presented in this chapter can encourage asset and fund managers to recognise the 

importance of the energy sector and prompt them to set-up similar funds that will track the 

constructed Spot Energy Index. To that end, the proposed methodology suggests an effective, 

and at the same time, least expensive way to operate such a fund, giving the full flexibility of 

any investment style, long or short, that equities can provide. 

37 First Quadrant a US based investment firm started using EAs in 1993 to manage its investments, ~t ~he ti~e 
$5 billion USD allocated across 17 countries around the globe, claiming that have made substantIa pro 1 s 

(Kieran, 1994). 
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Chapter 6. 

6. Concluding remarks and future research 

A thorough understanding of the dynamics of energy prices is of outmost importance when 

deciding to make an investment into energy commodities. There is a plethora of factors 

affecting the evolution of energy prices from both the supply and the demand side, which 

make the models and risk management ideas developed for the financial markets not directly 

applicable to the energy complex. What is more, the mean-reverting behaviour of energy 

commodities and their often unexpected and discontinued changes is well documented in the 

literature. This thesis proposes a modelling procedure that improves the fit of the models to 

better match the actual behaviour of the energy markets under investigation. In this thesis, a 

mean-reverting model with jumps is proposed that also incorporates two different speeds of 

mean reversion. One to capture the fast mean-reverting behaviour of returns after a jump 

occurs, and another for the slower mean reversion rate of the diffusive part of the model. The 

faster mean reversion rate after a jump occurs is used for a duration equal to the half-life of 

the jumps' returns. The model is also extended to incorporate time-varying volatility in the 

models' specification, modelled as a GARCH and an EGARCH process. Identifying any 

volatility asymmetries using the EGARCH specification can result in more efficient risk 

management applications by market practitioners. It can also enhance the accuracy of various 

widely used risk management techniques, such as Value-at-Risk (VaR). Furthermore, 

contrary to previous work, this thesis expands the choice of available models and the number 

of energy markets that these models are applied on. 

The presence of a "leverage effect" for the spot log-price returns of WTI, Heating Oil, and 

Heating Oil-WTI crack spread is found. In contrast, for Gasoline, Gasoline-WTI crack 

spread, NG, Propane, PlM and the SEI the presence of an "inverse leverage" effect is 

indicated. The proposed modelling approach captures very well both the skewness and 

kurtosis of the actual series. Furthermore, the addition of the EGARCH (1,1) specification for 

the variance improves significantly the fit of the simulated returns to the actual distributions 

for most of the energy markets under investigation, and the SEl. 

Moreover, the experience of the latest market shock highlights many shortcomings in the risk 

management practices used by market practitioners, who have clearly underestimated the 
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frequency and magnitude of such extreme events. Many investors and financial managers did 

not have sufficiently strong modelling capabilities to comprehensively cover all asset classes 

in their portfolios, such as energy products and their derivative contracts. This led to a 

miscalculation of the actual risk of these assets and their hedging instruments, as in a number 

of cases they were based on wrong or flawed models. A consistent risk management 

framework and improved methods are required for measuring and modelling tail risk, while 

at the same time effectively assessing the integrity of the models. 

The risk management models and framework proposed in this thesis move towards this 

direction by optimally capturing the behaviour of the energy markets under investigation, 

accounting not only for their frequency of occurrence but also for the volatility spikes and 

their clustering behaviour through time. Moreover, a solid two-stage back-testing and 

selection procedure is applied, so that all models are assessed on how well they can perform 

both statistically and economically. Following, the best model in terms of its VaR forecasting 

power is selected. Traditional VaR methods tend to underestimate the likelihood of extreme 

events because they usually assume normality or log-normality in the returns' behaviour. 

However, this thesis addresses the aforementioned shortcomings with the proposed modelling 

approach. The MC simulation models with the MRJD GARCH and EGARCH specifications, 

and the Hybrid MC-HS models, proposed for the first time in this thesis, control for the fat 

tails in energy returns as observed in their actual empirical distribution. Furthermore, by 

adding in the proposed methodology the Expected Shortfall notion as a measure to support 

the risk manager's decision, a more complete reflection of the expected loss in a worst-case 

scenario is provided. 

This thesis finds that for the entire fuels complex, including the WTI, HO, Gasoline, and the 

two crack spreads with WTI, the MC simulations methodology under the MRJD 

specifications, followed by the Hybrid MC-HS models, pass all three statistical criteria from 

the first evaluation stage. At the same time they deliver the lowest LF at the second 

evaluation stage. These results are similar for both long and short trading positions. The only 

exceptions are for WTI and CS-HO-WTI, but only for the long trading positions, with the 

ARCH-type methodologies delivering the lowest Loss Function values. 

The remarkable gains witnessed in commodity markets over the past decade, with this pattern 

accelerating in the last few years, has attracted investors' attention and led to an impressive 
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growth of passive investment strategies in the commodity markets and in particular index 

investing. Moreover, index investing is becoming increasingly popular with empirical 

evidence supporting the idea that passive strategies are better than active ones especially in 

the longer term. The presence of high transaction costs in active strategies, and sometimes the 

overconfidence of investors in their predictions reduce profits substantially, leading to 

potential losses. Index tracking attempts to replicate the performance of an index, either by 

using full or partial replication. The latter is the most effective method and hence the most 

popular one. What is more, in general, there are three major ways of investing in a 

commodity index; first, choosing an index and replicating it by following the related Rule 

Book; second, investing in a fund which replicates the chosen index; finally, buying shares of 

an Exchange Traded Fund (ETF) having as a strategy to follow a commodity index. The latter 

is currently the most popular approach due to the numerous advantages that ETFs have over 

traditional investments, such as their wide range of investment applications, their flexibility 

as they can even be shorted without a preceding uptick, their cost effectiveness and tax 

efficiency. 

Thus, the recently observed financialization of commodities and the increasing popularity of 

commodity index investing have pushed for more innovative investment strategies in the 

commodities markets, and especially for the energy-related products. One way of energy 

commodity investing is via futures contracts or energy commodity futures indexes. However, 

there are several risks and disadvantages associated with futures' based commodity indexes 

as discussed earlier in this thesis. 

By following the investment approach proposed in this thesis, the aforementioned risks and 

disruptions can be eliminated, allowing for more flexibility to investors while at the same 

time giving them access to the excess returns and diversification benefits of energy 

commodities. Using as a performance benchmark for the energy markets the SEI, which 

allows investors to get closer to the underlying commodity price trends, and investing in the 

selected equity baskets investors overcome the shortcomings that futures indexes have. Using 

the evolutionary algorithms and the investment strategy suggested in this thesis, investors can 

optimally select their equity portfolios for tracking the SEI, without spending time, effort, and 

money trying to identify which stocks can simultaneously act as a profitable investment and a 

good commodity play. At the same time, investors are given the full flexibility of any 

investment style, either long or short, that equities can provide. The latter is very important 
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for certain investor types like pension funds, which are usually not allowed to invest in 

futures contracts and other derivative products in alternative investment classes such as 

commodities. This is mostly due to strict regulation enforced by governments in their effort 

to protect peoples' savings. 

Additionally, this thesis demonstrates that by applying the proposed investment strategy of 

tracking and trying to "beat" the constructed spot energy index, investors can gain superior 

results with reduced volatility and improved returns for their holding portfolios. This 

investment strategy adds depth to the capacity of investors' portfolios by providing them with 

the flexibility of investing in global securities markets, while extending their portfolios' span 

by including natural resources and tactical strategies that are not available via the futures 

markets/ indexes. It is also found that greater capital efficiency can be achieved with 

rebalancing, preferably every quarter, compared to the buy-and-hold strategy. The calculated 

information ratios are in almost all cases higher for the quarterly rebalanced portfolios. It is 

found that when moving from the buy-and-hold strategy to quarterly rebalancing and then to 

the more frequent monthly rebalancing strategy, returns, as well as portfolio volatilities, tend 

to deteriorate in most cases, for both the DE and the GA. Moreover, on average, the 

combination of portfolios with 15 stocks and a risk-return trade-off value of 0.8 is the most 

desirable one, providing the best results for most tracking portfolios. Overall, during the 

three-year period examined, which reflects a period before, during and towards the end of the 

recent global economic recession, an investor would realise positive returns by investing in 

commodities, as the SEI returns suggest. With the methodology employed in this thesis, 

SEl's performance is closely replicated, and in the case of the energy related stock portfolios 

as well as those selected from the Bovespa equity pool, the benchmark index in some 

instances is even outperformed. 

It should be noted though that this research has not focused on a few important issues that 

still need to be thoroughly investigated in the literature. A potential avenue for future 

research is an extension of the proposed modelling approach to allow for a better 

understanding of the role of demand and supply conditions on the probability of jump 

occurrence, and in general on the distributional properties of the jumps. Some considerations 

for future research and improvement of the current research would also be to assess the VaR 

performance of the employed models for different time horizons, longer than one day. The 

additional information that might arise by assessing weekly or monthly VaR forecasts could 
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lead to setting-up improved energy risk management policies by governments and regulators. 

The proposed VaR estimates could also be used for setting the margin requirements in the 

growing energy derivatives market, and more importantly for the energy forwards. futures. 

and options contracts that are widely used for both hedging and speculation purposes by 

many industrial players, commodity and investment houses. Additionally, for hedging 

purposes, in order for the proposed models to be adapted by practitioners, transactions costs 

associated with hedging portfolios should also be considered. Moreover, a possible extension 

of the work done on the VaR calculations of the various energy portfolios would be to use the 

VaR estimates as a tool for portfolio optimization. The VaR estimates produced in this thesis 

could be used as a risk management tool to build a special optimal portfolio that will then be 

used as the benchmark for the proposed index tracking investment methodology. Another 

future extension of this research could be to implement various long/short strategies using the 

proposed index tracking methodology. Then the performance of these strategies can be tested 

as to whether they can improve the risk! return profile of traditional asset portfolios. Industry 

practitioners such as commodity trading advisors and commodity pool operators regularly use 

investment strategies that besides long-only, can also be systematic long/short, using leverage 

to take the short positions. 

An additional limitation of this research is that it does not consider any futures or other 

derivatives contracts to test the proposed modelling framework. The latter can be further 

investigated in future research, where the forward curve approach could also be used as an 

alternative modelling framework to the spot price models. Based on a data set of historical 

forward curves for all the NYMEX traded energy contracts, the number of independent 

factors needed to model adequately the forward curve's dynamic evolution could be 

determined, using the Principals Component Analysis (PCA) technique. The PCA technique 

could be used in the context of a multi-factor forward curve model that could capture the 

evolution of the forward curve for each one of the energy contracts that is examined in this 

thesis. Then, the ability of the spot models proposed in this thesis, and the forward curve 

based models could be compared in terms of their ability to price the respective NYMEX 

traded energy options. 

Furthermore, this thesis does not address the issue of valuing real assets based on real options 

theory. The framework employed follows the approach where the main source of uncertainty 

is the price of the commodity itself, whereas it could prove more interesting to introduce a 
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number of other uncertainties into the valuation process. Hence, a further extension of this 

research could be the application of Me simulations for pricing real options. Many 

practitioners are starting to treat energy related fixed assets as derivative instruments using 

the real options analysis. This grasp of the derivatives point of view gives a greater 

understanding of the asset's value, compared with the most traditional Net Present Value 

analysis. Under this approach, to be able to price this "derivative", plausible pricing scenarios 

need to be assumed, and the appropriate stochastic process needs to be used for the simulated 

valuations to be realistic. 

In sum, it is acknowledged that this thesis has certain limitations and caveats which must be 

taken into consideration when interpreting its findings and results. Furthermore, some of 

these limitations can constitute a fertile ground for further research that could potentially 

strengthen the findings and outcomes of this thesis. They could also add to the existing 

literature regarding the best approach for modelling spot prices, the application of effective 

risk management practises, and the development of innovative investment strategies in the 

energy commodity markets. 
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Chapter 8. 

S. Appendix 

8.1. Industry Classification Benchmark (ICB) 

The Industry Classification Benchmark (ICB) is a company classification system developed 
jointly by Dow Jones and FTSE. It is used to segregate markets into a number of sectors 
within the macro-economy. The ICB uses a system of 10 industries, partitioned into 19 super 
sectors, which are further divided into 41 sectors, which then contain 114 subsectors. 

The principal aim of the ICB is to categorize individual companies into sub sectors based 
primarily on a company's source of revenue or where it constitutes the majority of revenue. 
If a company is equally divided amongst several distinct subsectors, the judging panel from 
both Dow Jones and FTSE makes a final decision. Firms may appeal their classification at 
any time. 

The ICB is used globally (though not universally) to divide the market into increasingly 
specific categories, allowing investors to compare industry trends between well-defined 
subsectors. The ICB replaced the old classification systems used previously by Dow Jones 
and FTSE on 3 January, 2006, and is used today by the NASDAQ, NYSE and several other 
markets around the globe. All ICB sectors are represented on the New York Stock Exchange 
except Equity Investment Instruments (8980) and Non-equity Investment Instruments (8990). 

Table 8-1 below presents the ICB codes used for filtering all US and UK stock markets, 
creating the two energy-related stock pools named US Filter and UK Filter, respectively. 

Table 8-1: Industry Classification Benchmark (ICB) codes 

Industry Super-sector Sector Sub-sector 

0001 Oil & Gas 0500 Oil & 0530 Oil & Gas Producers 0533 Exploration & 
Gas Production 

0537 Integrated Oil & Gas 

0570 Oil Equipment, Services & 0573 Oil Equipment & 
Distribution Services 

0577 Pipelines 

0580 Alternative Energy 0583 Renewable Energy 
Equipment 
0587 Alternative Fuels 

7000 Utilities 7500 Utilities 7530 Electricity 7535 Conventional 
Electricity 
7537 Alternative Electricity 
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8.2. Stocks used in all five equity pools 

The table below includes all stocks used in the five equity pools from which the final stock 
portfolios were selected by the two algorithms, GA and DE, respectively. 

Table 8-2: List of all stocks used in each pool for the selection ofthe tracking stock 
portfolios. 

FTSE 100 (98 stocks DJIA 65 (65 Bovespa (56 UK Energy Filter US Energy 
in total) stocks in total) stocks in total) (54 stocks in Filter (89 stocks 

total) in total) 
31 GROUP 3M ALLAMER AFREN ALONUSA 

LATUNT ENERGY 
ADMIRAL GROUP AES AMBEVPN ALKANE AMERICAN 

ENERGY OIL & GAS 
ALLIANCE TRUST ALCOA ARACRUZ ANDES ARENA RES. 

PNB ENERGIA 
AMEC ALEX.& BANCO ASCENT ATLAS 

BALDWIN BRASIL ON RESOURCES AMERICA 
ANGLO AMER.ELEC.P BRADESCO BALTIC OIL ATPOIL&GAS 
AMERICAN WR. PN TERMINALS 
ANTOFAGASTA AMERICAN BRADESPAR BORDERS & BASIC 

EXPRESS PN SOUTHERN PTL. ENERGY SVS. 
ASSOCIATED AMR BRASIL BOWLEVEN BGE CAPITAL 
BRIT. FOODS TELCOM TST.II 

PARTP.PN 
ASTRAZENECA AT&T BRASIL CDS OIL & GAS BILL BARRETI 

TELECOMPN GROUP 
AUTONOMY CORP. BANK OF BRASKEM CERES POWER BOARDWALK 

AMERICA PNA HOLDINGS PIPELINE 
PTNS. 

AVIVA BOEING BRFFOODS CIRCLE OIL BRONCO 
ON DRILLING 

BAE SYSTEMS BURL.NTHN.S CCR CLIPPER CANO 

ANTAFEC RODOVIAS WINDPOWER PETROLEUM 
ON (REGS) 

BALFOUR BEATIY CATERPILLAR CELESCPNB DIOILS CHINA 
NTH.ET.PTL.H 
DG. 

BARCLAYS CENTERPOINT CEMIGPN DRAXGROUP CIMAREXEN. 

EN. 
BGGROUP CHROBINSON COMGAS EGDON CNXGAS 

WWD. PNA RESOURCES 

BHP BILLITON CHEVRON COMPANHIA EMPYREAN COMPLETE 

BRASL.DIST ENERGY PRDN.SVS. 

B.PNA 

BP CISCO COPELPNB ENCORE OIL COPANO 

SYSTEMS ENERGY 

BRITISH AIRWAYS COCA COLA COSANON EUROPA OIL & CROSSTEX EN. 
GAS (HDG.) 

BRITISH CON-WAY CPFL FALKLAND OIL CROSSTEX 

AMERICAN ENERGIAON & GAS EN.SHBI 

TOBACCO 
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BRITISH LAND CONSOLIDAT CYRELA FAROE CUBIC 
ED EDISON REALTON PETROLEUM ENERGY 

BRITISH SKY CONT.AIRL.B DURATEX FORUM DAYSTAR 
BCAST.GROUP PN ENERGY TECHS. 
BTGROUP CSX ELETROBRA FRONTERA DCP 

SON RESOURCES MIDSTREAM 
PTNS. 

BUNZL DOMINION ELETROBRA GETECH GROUP DELEK US 
RES. SPNB HOLDINGS 

CABLE & DUKE EMBRAER GLOBAL DRESSER-
WIRELESS ENERGY ON ENERGYDEV. RAND GROUP 
CADBURY EIDUPONT GAFISAON GOOD ENERGY DTE EN.TST.II 

DE NEMOURS GROUP GTDTOPRS 
CAIRN ENERGY EDISON INTL. GERDAUPN GULFSANDS DUNE 

PETROLEUM ENERGY 
CAPITA GROUP EXELON GOLPN HALLIN ENBRIDGE 

MAR. SUB SEA EN.MAN. 
INTL. 

CARNIVAL EXPEDITOR ITAUSAPN HARDY OIL & ENCORE ACQ. 
INTL.OF GAS 
WASH. 

CENTRICA EXXON MOBIL ITAUUNIBAN HYDRO DEC ENDEAVOUR 
COPN GROUP INTL. 

COBHAM FEDEX KLABINSA INDEPENDENT ENERGY 
PN RESOURCES TRANSFER EQ. 

COMPASS GROUP FIRSTENERGY LIGHT ON IPSA GROUP ENTERGY 
MS.6% 
1 ST.MGE. BDS. 

DIAGEO FPLGROUP LOJAS ISLAND OIL ENTERPRISE 
AMERICPN AND GAS GROUP HOG. 

FOREIGN & GATX LOJAS ITMPOWER EVERGREEN 

COLONIAL RENNER ON SOLAR 

FRIENDS GENERAL METALURGI LANSDOWNE EXCO 

PROVIDENT ELECTRIC CAGERDAU OIL & GAS RESOURCES 

GROUP PN 

G4S HEWLETT- NATURA ON MAX FMC 

PACKARD PETROLEUM TECHNOLOGI 
ES 

GLAXOSMITHKLI HOME DEPOT NETPN MEDITERRANE GASCOEN. 

NE AN OIL & GAS 

HAMMERS ON HUNTJB PETROBRAS MERIDIAN GEOPETRO 

TRANSPORT ON PETROLEUM RESOURCES 

SVS. 
HOME RETAIL INTEL PETRO BRAS NAUTICAL GLOBAL 

GROUP PN PETROLEUM ENERGY 
HOG.GP. 

HSBC HDG. (ORD INTERNATION ROSSlRESID NOVERA GLOBAL 

$0.50) AL BUS.MCHS. ON ENERGY (LON) PARTNERS 
UNITS 

ICAP JETBLUE SABESPON OFFS.HYDROCA GMXRES. 

AIRWAYS RBON MAPPING 

ICTL.HTLS.GP. JOHNSON & SADIAPN PANTHEON GRAN TIERRA 

JOHNSON RESOURCES ENERGY 

IMPERIAL JPMORGAN SIDER.NACI PETROFAC GREEN 
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TOBACCOGP. CHASE & CO. ONALON PLAINS 
RENEW.E~. 

INMARSAT KRAFT FOODS SOUZA CRUZ PETROLATINA HECO I 

ON ENERGY CAPITAL 
TST.III 6.5% 

INTERNATIONAL LANDSTAR TAMPN PLEXUS HERCULES 
POWER SYSTEM HOLDINGS OFFSHORE 
INTERTEK GROUP MCDONALDS TELE REGAL HILAND 

NRLES.PART PETROLEUM PARTNERS 
P.ON 

INVENSYS MERCK & CO. TELE RENEWABLE HOKU 
NRLES.PART ENERGY SCIENTIFIC 
P.PN GNRTN. 

JOHNSON MICROSOFT TELEMAR RENEWABLE HOLLY 
MATTHEY NRLES.PNA ENERGYHDG. ENERGY PTNS. 
KAZAKHMYS NISOURCE TELESPPN RHEOCHEM HORNBECK 

OFFS.SVS. 
KINGFISHER NORFOLK TIM PART ROCKHOPPER HOUSTON 

SOUTHERN ON EXPLORATION AMERICAN 
EN. 

LAND SECURITIES OVERSEAS TIMPARTPN RURELEC ITC HOLDINGS 
GROUP SHlPHLDG.GP. 
LEGAL & PFIZER TRAN SERICA KINDER 

GENERAL PAULISTPN ENERGY (LON) MORGAN 
MAN. 

LIBERTY lNTL. PG&E ULTRAPAR SOVEREIGN LINN ENERGY 
PARTP.PN OILFIELD GP. 

LLOYDS BANKING PROCTER & USIMINAS VENTURE MAGELLAN 

GROUP GAMBLE ON PRODUCTION MIDSTREAM 
HDG. 

LONDON STOCK PUB.SER.ENTE USIMINAS VICTORIA OIL & MAGELLAN 

EX.GROUP R.GP. PNA GAS MIDSTREAM 
PTNS. UTS. 

LONMlN RYDER VALE ON WOOD GROUP MARINER 

SYSTEM (JOHN) ENERGY 

MAN GROUP SOUTHERN VALEPNA MARTIN 
MIDSTREAM 
PTNS. 

MARKS & SOUTHWEST VlVOPN MlRANT 

SPENCER GROUP AIRLINES 
MORRISON(WM)SP TRAVELERS MMCENERGY 

MKTS. COS. 
NATIONAL GRID UNION NATURAL GAS 

PACIFIC SVS.GP. 

NEXT UNITED NEW 

PARCELSER. GNRTN.BIFL.H 
DG. 

OLD MUTUAL UNITED 
NORTHWESTE 

TECHNOLOGI RN 

ES 
PEARSON VERIZON 

NRGENERGY 

COMMUNICAT 
IONS 

PENNON GROUP WALMART 
NUSTAR 
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STORES ENERGY LP 
PETROFAC WALT DISNEY OCEAN 

POWER 
TECHS. 

PRUDENTIAL WILLIAMS OIL STS.lNTL. 
COS. 

RANDGOLD YRC OILSANDS 
RESOURCES WORLDWIDE QUEST 
RECKITT ORMAT 
BENCKISER TECHS. 
GROUP 
REED ELSEVIER PLAINS EXP.& 

PRDN. 
REXAM PORTLAND 

GEN.ELEC. 
RlOTINTO RAM ENERGY 

RESOURCES 
ROLLS-ROYCE RASER TECHS. 
GROUP 
ROYAL BANK OF REGENCY 
SCTL.GP. ENERGY PTNS. 
ROYAL DUTCH RIO VISTA 
SHELL A(LON) EN.PTNS.LP. 
ROYAL DUTCH ROSETTA 
SHELLB RESOURCES 

RSA INSURANCE RRlENERGY 

GROUP 
SABMILLER SOUTH TEXAS 

OIL 

SAGE GROUP SUNOCO 
LOGIST.PTNS. 
LP 

SAINSBURY (J) SUNPOWER 'A' 

SCHRODERS SUPERIOR 
WELL SVS. 

SCHRODERS NY TEEKAY LNG 
PARTNERS 

SCOT.& TETON 

SOUTHERN ENERGY 

ENERGY 
SERCOGROUP TRANSMONTA 

IGNE PTNS. 

SEVERN TRENT TRICO 
MARINE SVS. 

SHIRE 
ULTRAPTL. 

SMITH & NEPHEW UNION 
DRILLING 

SMITHS GROUP 
W&T 
OFFSHORE 

STANDARD 
WARREN 

CHARTERED 
RESOURCES 

TESCO 
WESTERN 
REFINING 
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THOMAS COOK WHITf\:G PTL. 
GROUP 
TUITRAVEL WILLIAMS 

PARTNERS 
TULLOWOIL 

UNILEVER (UK) 

UNITED UTILITIES 
GROUP 
VEDANTA 
RESOURCES 
VODAFONE 
GROUP 
WOLSELEY 
wpp 

XSTRATA , 
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