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Abstract

This paper develops a threshold panel data nonlinearity test for poverty traps. The new

testing strategy extends the work on nonlinearity tests for panel data by considering threshold

nonlinearities in the fixed-effects components. Monte Carlo simulations are conducted to evalu-

ate the finite-sample performance of these tests. his test is applied to the relationship between

GDP per capita and capital stock per capita. Our application to a panel of countries for the pe-

riod 1973-2007 uncovers the presence of two regimes determined by the level of capital stock per

capita. The conclusions from our test also support the existence of a poverty trap determined

by a capital stock per capita level at the 11% quantile of its pooled worldwide distribution.

Keywords: nonlinearity tests, panel data, poverty traps, threshold models.

JEL classification: C33, C12, C13, O1

∗Corresponding Author: Department of Economics, City University London, Northampton Square, London EC1V
0HB, UK, email: Gabriel.Montes-Rojas.1@city.ac.uk, tel: +44 (0)20-7040-8919. We are grateful to the excellent
research assistance provided by Alexander Dentler. We are also grateful to an anonymous referee and participants of
the Econometric Society World Congress held in Shanghai, 2010. This project was supported by a 2009/2010 Grant
from City University London.

1



1 Introduction

Poverty has a tendency to persist over time. This raises the suspicion that underdevelopment is a

state of equilibrium and that there are forces at work that tend to restore the equilibrium every

time there are small improvements in living conditions. Moreover, this gives the idea of a vicious

circle of poverty as a “constellation of forces tending to act and react upon one another in such a

way as to keep a poor country in a state of poverty” (Nurkse, 1953, p.4). A poverty trap arises

when poor individuals or countries are faced with two distinct equilibria, one below the poverty

line and one above it. Individuals or countries with a sufficiently low income or asset endowments

are trapped in the poor-equilibrium, and small improvements are not enough to escape the forces

bringing them back to this level. This idea was first applied in the early development economics

literature. For instance, Rosenstein-Rodan (1943) “big-push” theory, where countries needed a big

enough inflow of capital to break the vicious cycle of poverty, implicitly assumes a dual-equilibrium

process. Moreover, the theory of different “convergence clubs” (Baumol, 1986; DeLong, 1988; Quah,

1993, 1996, 1997) turns fundamentally on the existence of an exclusionary mechanism that keeps

members of one group or club facing a lower level equilibrium from moving to another group or

club with a higher level equilibrium.

To motivate the existence of a poverty trap we follow Barro and Sala-i-Martin (2004, ch.1)

exposition of a Solow-Swan type model with a generic country that has access to a traditional

and a modern technology. This simple model produces a poverty trap if nonlinearities exist in

the production function describing the relationship between GDP per capita and capital stock per

capita.1 We, then, develop a poverty trap test by means of a nonlinearity test of the production

function, where the nonlinearity may be present either in the capital stock (capital elasticity),

in the technology parameter, or in both. The latter two require panel data and country-specific

fixed-effects. This new testing strategy extends the work of Hansen (1999) on nonlinearity tests for

panel data2 by also considering the possibility of a threshold effect on the fixed-effects component,
1While our work is framed within the dual-equilibrium paradigm, the existence of poverty traps is also contested

on the empirical growth literature. For instance, Jones and Olken (2008) claim that “almost all countries in the world
have experienced rapid growth lasting a decade or longer”, and that “economic growth can be easily reversed, often
leaving countries no better off than they were prior to the expansion” (p.584).

2Threshold nonlinearity tests for panel data have been recently applied by Nautz and Scharff (2012) for the case
of inflation and relative price variability.
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a procedure that was recently suggested by Bick (2010), who proposes a threshold regime switching

model for studying inflation and economic growth.

The closest contributions to our application are Durlauf and Johnson (1995) and Bloom, Can-

ning, and Sevilla (2003). These authors however do not implement formal tests to determine the

presence of nonlinearities in the production function or make use of a panel of observations. That

is, they consider multiple regimes in the production function and test for this using a cross-section

of countries. We argue that the panel data set-up is more appropriate because of potential model

misspecification. If there are idiosyncratic differences across countries and regimes, inference made

on cross-sectional only models may be misleading. Including additional control variables to cap-

ture countries’ idiosyncratic characteristics or initial conditions (such as education) does not solve

the potential misspecification problem, because which variables should be included is an empirical

problem that will depend on the available data and nature of the countries under study. A more

pragmatic alternative, which we follow, is to consider differences in the country-specific intercept

parameters, i.e. fixed-effects. These fixed-effects can be interpreted as differences in the countries’

technology parameters for the Solow-Swan type production function regression or differences in

country-specific variables, e.g. natural resources, governance, human capital, for the regression

equation in growth models. For instance, Graham and Temple (2006) find that multiple equilibria

is associated with differences in aggregate total factor productivity (TFP). It is also reasonable to

assume that these fixed-effects are themselves functions of the capital stock, as in Romer (1986)

and Azariadis and Drazen (1990), or depend on the initial conditions of the endogenous variables

in the presence of historical self-reinforcement (Mookherjee and Ray, 2001). Therefore, we believe

that a model that allows for threshold effects on the country-specific fixed-effects is an important

contribution to the empirical growth literature.

Our empirical analysis is concerned with a panel data containing 138 countries and covering

35 years, from 1973 to 2007. There is strong statistical evidence to reject the linear model due

to threshold effects. The interpretation of this nonlinearity depends on the testing method and

the threshold estimate. Thus, whereas the standard F-test developed in Hansen (1999) reports a

threshold at the 41% quantile of the pooled worldwide distribution of capital stock per capita, our

nonlinear method allowing for a change in both fixed effects and capital per-capita yield a threshold
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at 11%. These findings suggest changes in technology parameters and other nonobservable factors

that depend on the amount of capital. The difference between our method and that of Hansen

(1999) might therefore be attributed to model misspecification. A more restricted model only

allowing for changes in the fixed effects but taking capital elasticity as constant across regimes also

rejects linearity. In this case, the capital threshold is 46% of the overall distribution of capital.

These results give evidence of the importance of considering the possibility of changes in all the

parameters of growth regression equations.

The article is structured as follows. Section 2 discusses the extensive literature on growth

models dealing with poverty traps and multiple equilibria with special attention to empirical papers

proposing statistical tests for detecting threshold models. Section 3 sets the theoretical foundations

for this paper and introduces different tests for the hypotheses of multiple equilibria derived from

the existence of more than a single production function. Section 4 presents a Monte Carlo study to

assess in finite samples the performance of these tests in terms of size and power. These nonlinear

tests are implemented in Section 5 to analyze empirically the existence of poverty traps and/or

multiple equilibria in the relationship between income and capital per capita. Section 6 concludes.

Tables and figures are gathered in an appendix.

2 Literature Review

In economic growth theory, neoclassical models like Solow (1956) or Diamond (1965) assume that

countries with similar characteristics and with access to similar technologies may show temporary

differences in output growth levels, but these will disappear in the long-run steady state equilibrium.

Furthermore, if the fundamental factors can be assumed to be the same across countries their

income levels and growth rates should be distributed around a single expected value. The empirical

evidence, however, contradicts this claim. While some countries manage to sustain high growth

rates of per capita income others stagnate in low growth traps exhibiting low levels of economic

development.

There is an extensive literature on models able to generate poverty traps and multiple equilibria.

One mechanism that has been extensively analyzed is increasing returns to scale. This mechanism
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implies the existence of a threshold value such that once it is exceeded, increasing returns to scale

can make investment and capital accumulation more productive, and lead to a self-sustaining high

equilibrium. Azariadis and Drazen (1990) focus on technological externalities that permit returns

to scale to rise rapidly whenever economic and social variables exceed certain thresholds. Among

the types of externalities considered by these authors are spillovers from the stocks of physical and

human capital. Durlauf and Johnson (1995) explore this possibility and develop a statistical model

for describing nonlinearities in cross country growth rates due to returns to scale in stock of capital.

Bloom, Canning, and Sevilla (2003) discuss endogenous fertility (see also Barro and Becker (1989),

Becker, Murphy, and Tamura (1990)) as another mechanism for the generation of poverty traps. In

this model improvements on health or the accumulation of knowledge beyond some critical point

increase the return to human capital to lead parents to produce fewer children but invest more in

each child. Other possible mechanisms are, for example, the existence of imperfect credit markets,

lack of credibility of legal entities and of trustable political institutions. Azariadis (1996), and more

recently Azariadis and Stachurski (2005), present an excellent survey of theoretical models with

the potential to produce poverty traps.

Surprisingly, there are very few empirical studies assessing the validity of each of the above

theories. Some exceptions are Bloom, Canning, and Sevilla (2003) that allow for the existence

of two regimes in GDP per capita. These authors propose a Markov regime switching model.

The income per capita variable changes between regimes with probabilities p(x) and 1 − p(x),

respectively, where x is a set of exogenous characteristics. The nature of this statistical model,

however, does not permit to identify the theoretical model generating the nonlinearity. In a related

context, Durlauf and Johnson (1995) apply nonlinear regression tree methods to test the existence

of convergence clubs among countries. These authors model the threshold nonlinearity by grouping

countries with similar characteristics and running different growth regression equations for each

club. This seminal contribution finds strong evidence of different rates of convergence for developed

and developing economies. Other influential empirical studies are Lee, Pesharan, and Smith (1997)

that consider international per capita output and study their growth for 102 countries using panel

data; Quah (1996, 1997) investigates the existence of twin peaks in the empirical distribution of

national per capita income, Bianchi (1997) and Paap and van Dijk (1998) introduce mixtures of

5



distributions to describe the divergence in growth among countries.

3 Econometric tests for two regimes in the production function

This section introduces threshold nonlinearity tests in a panel data context. The null hypothesis

corresponds to a linear model and the alternative to a nonlinear model defined by a capital per

capita threshold variable that can affect not only the relationship between income and capital per

capita but also other unobserved components explaining income per capita. These factors are

reflected in the fixed-effects. First, we describe the theoretical foundations on the existence of

poverty traps, the corresponding cross-sectional econometric tests and their limitations. Next, we

consider the extension to panel data.

3.1 Cross-sectional econometric tests

To motivate the existence of a poverty trap we follow Barro and Sala-i-Martin (2004, ch.1) exposition

of a Solow-Swan type model with a generic country that has access to a traditional (A) and a modern

(B) technology. Each technology is represented by a Cobb-Douglas production function with two

factors of production (labor and capital) and constant returns to scale.3 In per capita terms, these

production functions are YA = A Kα and YB = B Kβ − c, where Y is a measure of per capita

national income or GDP, K the per capita capital stock and α, β ∈ (0, 1) and B > A > 0 are

technology parameters. It is assumed that in order to exploit the better technology the country has

to pay a setup cost, that is given in per capita terms by c > 0. The envelope production function

takes the form Y = max{A Kα;B Kβ − c}. Different from Barro and Sala-i-Martin (2004, ch.1)

we allow for the possibility of α 6= β, that is, distinct capital elasticities, and for simplicity, assume

that α < β to ensure non-reversibility. After simple algebra, the log-linearized envelope production
3We use a very stylized model. Different production functions can be used here controlling for education levels (in

a Mincerian sense) or other observable variables. In the following subsection, we argue that these variables should
be captured by the country-specific fixed effect.
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function can be expressed as the combination of the two above functions:

y =

 a+ αk, if k ≤ k̃,

b+ βk + ln
(
1− c

BKβ

)
, if k > k̃,

(1)

where for notational convenience we use x = lnX. Thus, k̃ = lnK̃ is the solution to A Kα =

B Kβ − c that represents the threshold where the country is better off by adopting the modern

technology. Of course if α = β, then K̃ = [c/(B −A)]1/α.

The poverty trap hypothesis arises because the countries’ production functions can be modeled

as (1). This dual production function does not imply the existence of a poverty trap. The latter

depends on the existence of different steady state solutions of the growth model. Assuming, as

in the Solow-Swan model, that the population growth rate (n > 0), the savings rate (s ∈ (0, 1))

and the depreciation rate (δ ∈ (0, 1)) are exogenous, multiple equilibria arise if there are at least

two steady states with capital stock per capita K∗ < K̃ < K∗∗ such that AαK∗α−1 = n+δ
s =

BβK∗∗β−1 − c/K∗∗. We focus on tests for nonlinearity of the log production function because this

is one of the most important cases where the poverty trap can be motivated.

In statistical terms, the null hypothesis of a single production function is

yi = d+ γki + εi, (2)

with i = 1, 2, ..., N , a cross-sectional sample of N countries, εi a random variable describing the

component of the production function not explained by per capita capital, and satisfying E[εi] = 0

and E[εiεj ] = 0 for i 6= j, i, j > 0, and d an exogenous parameter usually identified with technology

factors.

The alternative competing model is a simplification of model (1) given by a threshold model

with two regimes for each country:

yi =

 a+ αki + εi, if ki ≤ k̃,

b+ βki + εi, if ki > k̃,
(3)

7



To obtain this model we assume that ln
(

1− ci
BK̃β

i

)
≈ 0 for every country in the study. That

is, the cost of switching to a better technology is negligible compared to the per-capita output

level obtained in the new regime with a capital of K̃. In addition, model (3) also assumes that

the two output regimes are determined by the same threshold value of log capital per-capita, k̃,

for all countries. We believe that this assumption is not very restrictive given that the model is

in per-capita terms. It seems natural to think that the levels of capital per-capita that induce a

high-productivity regime are similar across countries. As we discussed previously, for each economy

the threshold K̃i is the solution to Ai Kα
i = Bi K

β
i − ci. Now, using simple algebra and taking logs

we obtain the following expression

k̃i =
bi − ai
α− β

+
1

α− β
ln

(
1− ci

BK̃β
i

)
,

which under the previous assumption simplifies to

k̃i =
bi − ai
α− β

. (4)

Hence, using the same threshold k̃i = k̃ for every country implies that bi − ai also takes the same

value across countries.4 That is, assuming that all the economies switch to a new regime when they

achieve the same levels of per-capita capital implies a constraint on the amount of heterogeneity

between regimes and countries. This assumption will be further discussed in the next section

because it is also required to avoid the incidental parameter problem.

After simple algebra it can be shown that this model admits the following representation:

yi = xi(k̃)′ρ+ εi, (5)

with xi(k) = (1, I(ki > k), ki, kiI(ki > k))′, ρ = (ρ0, ρ1, ρ2, ρ3)′ where ρ0 = a, ρ1 = b − a, ρ2 = α

and ρ3 = β − α; I(·) is an indicator function that takes a value of 1 if the event is true and zero

otherwise.

The hypothesis of interest is linearity of the model, H0 : ρ1 = ρ3 = 0 against a threshold effect
4We thank an anonymous referee for pointing this out.
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in either the intercept or slope.5

3.2 Panel data econometric tests

A crucial point to note is that the technology parameters, d, a and b, are assumed to be the same

across countries. To the best of our knowledge all empirical tests making allowance for multiple

regimes in the production function and based on a cross-section of countries implicitly assume this,

see for example Durlauf and Johnson (1995) or Bloom, Canning, and Sevilla (2003). There are

two main advantages obtained from relaxing this assumption and making allowance for different

technologies across countries. First, the econometric models are more flexible for describing the

pattern of each economy. Second, it is the issue of model misspecification. If in fact, there are

idiosyncratic differences across countries and regimes, inference made on the above model may

be misleading. The question now is whether there is a unique intercept parameter or there are

different intercepts for different countries. One alternative explored in the literature, as in Durlauf

and Johnson (1995) or Bloom, Canning, and Sevilla (2003), is to include additional control variables

to capture countries’ idiosyncratic characteristics or initial conditions. However, this does not solve

the potential misspecification problem, because which variables should be included is an empirical

problem that will depend on the available data and nature of the countries under study. A more

pragmatic alternative, which we follow, is to consider differences in the intercept parameters as fixed-

effects. These fixed-effects can be interpreted as differences in the countries’ technology parameters

(di 6= dj , i 6= j) for the Solow-Swan type production function regression or differences in country-

specific variables, e.g. natural resources, governance or human capital. For instance, Graham and

Temple (2006) find that multiple equilibria is associated with differences in aggregate TFP. It is

also reasonable to assume that d, a and b are themselves functions of the capital stock, as in Romer

(1986) and Azariadis and Drazen (1990), or depend on the initial conditions of the endogenous
5The same methodology can be applied to study the existence of convergence clubs in growth rates. The linear

model is
∆yit = α0 + α1yi0 + εi

with ∆yit = yit − yi0, and yit and yi0 denoting terminal and initial per capita income of country i, respectively. The
alternative model is

∆yit =

{
α01 + α11yi0 + εi, if yi0 ≤ c,
α02 + α12yio + εi, it yi0 > c.

The rate of convergence for each “club” is characterized by the parameters α11 and α12.
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variables in the presence of historical self-reinforcement (Mookherjee and Ray, 2001).

Consider now a panel data of N countries for T periods (indexed by t = 1, 2, ..., T ). In order to

consider the different effects in a single model we consider the following model:

yit = di + γkit + εit, (6)

that represents a unique production function that only differs across countries in a country-specific

technology parameter, which for convenience is denoted di. The competing model that extends (3)

by allowing for nonlinearities in this parameter is

yit =

 ai + αkit + εit, if kit ≤ k̃,

bi + βkit + εit, if kit > k̃.
(7)

Model (7) allows the fixed-effects to vary with the evolution of the country and its transition from

an undeveloped to a developed state (and, at least in theory, the other way round). Note from the

previous section that the assumption of a unique threshold k̃ across countries limits the amount of

heterogeneity in the model. We formalize this now and use ρ1 = bi − ai to denote the difference

in the fixed-effects between regimes. Interestingly, the assumption is crucial to solve the incidental

parameter problem. That is, in principle the estimation of the country-specific effects ai and bi is

problematic as the number of observations N increases, and with it the number of parameters to be

estimated. This phenomenon also implies the inconsistency of the structural parameters, which are

the parameters measuring the dependence between GDP per capita and capital stock per capita.

Fortunately, the availability of a panel data and the constraint bi − ai = ρ1 for every i, makes

possible to disentangle the uniqueness of the equilibrium outcome in the presence of country-specific

differences in other variables from the presence of multiple regimes in the production function. To

test for these two hypotheses, we introduce a more convoluted F-type test to account for the

regime-dependent fixed-effects. This framework extends Hansen (1999) that studies nonlinearity

tests robust to the presence of fixed-effects that are constant across regimes.
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The demeaned specification of the linear model with fixed-effects as in (6) is

y∗it = γk∗it + ε∗0,it, (8)

with ∗ being the within demeaning transformation, i.e f∗it = fit − f i, with f denoting the sample

mean for each country i for t = 1, . . . , T , and ε∗0,it the demeaned error term of the model under

the null hypothesis. The specification corresponding to the alternative hypothesis, described in

equation (7), can be written as,

y∗it = (bi − ai)I∗(kit > k̃) + αk∗it + (β − α)
(
kitI(kit > k̃)

)∗
+ ε∗it

= ρ1I
∗(kit > k̃) + ρ2k

∗
it + ρ3

(
kitI(kit > k̃)

)∗
+ ε∗it, (9)

assuming that bi − ai = ρ1 and where ρ2 = α, ρ3 = β − α. The hypothesis of no threshold effect in

the accumulation of capital is

Test a : Ha
0 : ρ1 = ρ3 = 0 vs. Ha

1 : ρ1 6= 0 or ρ3 6= 0.

A similar approach was developed by Hansen (1999). However, this author imposed no changes

in the country-specific fixed-effects for the different regimes and evaluated only differences in the

slope (i.e. ai = bi ∀i in our setting). This corresponds to the following alternative model regression

equation

y∗it = ρ2k
∗
it + ρ3

(
kitI(kit > k̃)

)∗
+ ε∗it. (10)

The implied null hypothesis in Hansen (1999) is

Test b : Hb
0 : ρ3 = 0 vs. Hb

1 : ρ3 6= 0,

that assumes ρ1 = 0.
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Finally, a test for the nonlinearities produced by Barro and Sala-i-Martin model considers

y∗it = ρ1I
∗(kit > k̃) + ρ2k

∗
it + ε∗it. (11)

This model takes the capital elasticity to be constant across regimes. The implied null hypothesis

is

Test c : Hc
0 : ρ1 = 0 vs. Hc

1 : ρ1 6= 0

assuming that ρ3 = 0.

In the next sections, we compare estimates and testing procedures for Ha
0 , Hb

0 and Hc
0.

4 A Nonlinear Test for Poverty Traps

For any given k̃, the coefficients of all models can be estimated by ordinary least squares (OLS).

This involves estimating a set of coefficients for the null and alternative models. For each case,

define the vector of residuals ê0, êa1, êb1 and êc1. Following Chan (1993) and Hansen (1999) the

estimation of the threshold parameter is done by minimization of the concentrated sum of squared

residuals of each alternative model:

Ŝj(k) = êj1(k)′êj1(k), (12)

for j = a, b, c indexing the different alternative models. Moreover, define

ˆ̃
kj = arg min

k∈κ
Ŝj(k), (13)

as the threshold estimates for each model, with j = a, b, c. The consistency of the threshold

parameter k̃ follows from standard arguments in threshold models for time series (see Chan, 1993;

Gonzalo and Pitarakis, 2002) and its application to panel data (see Hansen, 1999).

Nonlinearity tests have the difficulty that under the null hypothesis of linearity k̃ cannot be

identified (see Hansen, 1996, for a general discussion). This problem was first studied by Andrews

12



(1993), Andrews and Ploberger (1994) and in the context of threshold regression models in time

series by Hansen (1997) using F-tests. Hansen (1999) extends the use of F-tests for threshold

models to a panel data context. Wald tests can be derived similarly using the score function of the

demeaned process, see Hansen (1996).

The test statistics to discriminate between (8) and its alternative hypotheses are similar in spirit

to Hansen (1999). We consider statistics based on the stochastic process

F j(ˆ̃kj) = N(T − 1)

(
Ŝ0 − Ŝj(ˆ̃kj)

Ŝj(
ˆ̃
kj)

)
, (14)

for j = a, b, c, where Ŝ0 = ê′0ê0 is the concentrated sum of squares under the null hypothesis. These

processes converge weakly to a nonlinear function of a Gaussian process with covariance kernel

that depends on moments of the sample, and thus critical values cannot be tabulated. Following

Davies (1977, 1987) and Andrews and Ploberger (1994) the test statistics that we propose are the

supremum, average and exponential average, that is,

supF j = sup
k∈Γ

F j(k),

aveF j = average
k∈Γ

F j(k),

expaveF j = exp ave F j(k)
k∈Γ

,

for j = a, b, c. Andrews and Ploberger (1994) show that the exponential average test is optimal

in terms of power in very general frameworks. On the other hand, the supremum test has the

advantage of providing very valuable information about the location of the rejection, and hence of

the threshold value. We approximate the liming distribution of these statistics using bootstrap.

The bootstrap algorithm to approximate the p-value of the different supremum, average and

exponential average tests is the same of Hansen’s (1999) approach. The difference in p-values

between our method and Hansen’s panel data nonlinearity test is due to the models estimated under

the alternative hypothesis. Whereas in Hansen’s approach Ŝ(ˆ̃k) is computed from the residuals of

model (10), in the methodology introduced in this paper we construct the statistic with the residuals
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of model (9). The rest of bootstrap procedure is analogous; the algorithm is as follows:

Algorithm:

• Generate a grid of M = 1, . . . ,m different k values, with k ∈ κ, let Γ = (k1, . . . , km).

• Generate a sequence of NT observations {ν(h)
it }

N,T
i=1,t=1 indexed by h with h = 1, . . . ,H, from

a N(0, 1) distribution.

• Regress ν(h)
it on k∗it, obtain the residuals for the null hypothesis model e(h)

0,it = ν
(h)
it − γ̂(h)k∗it,

and compute Ŝ(h)
0 .

• Similarly, obtain the residuals for each alternative hypothesis model for fixed k ∈ κ, and

obtain the sum of squared residuals: Ŝj(h)(k), j = a, b, c, as in eq. (12).

• Construct F j(h)(k), k ∈ κ, j = a, b, c, as in eq. (14).

• Compute supF j(h) = sup
k∈Γ

F j(h)(k), aveF j(h) = ave
k∈Γ

F j(h)(k), expaveF j(h) = expave
k∈Γ

F j(h)(k),

j = a, b, c, for each h = 1, . . . ,H.

• For the supremum, average or exponential average cases this procedure gives a random sample

of H simulated observations. The empirical p-value is computed as the percentage of these

artificial observations which exceed the actual test statistic,

p̂H =
1
H

H∑
h=1

I(statF j(h) ≥ statF j), j = a, b, c,

where statF is either supF , aveF or expaveF . Hansen (1996) shows that this empirical

p-value converges in probability to the true asymptotic p-value, in this case under the null

hypothesis.

5 Monte Carlo Experiments

The Monte Carlo simulation experiments in this section examine the finite-sample performance

of the nonlinearity tests proposed in the previous section. The test statistics analyzed are the

supremum, average and exponential average methods discussed above.
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We consider a null data generating process, which corresponds to a linear model with fixed-

effects:

(i) yit = ai + βkit + εit,

with ai ∼ N(1, 1), and kit ∼ N(0, 1) and εit ∼ N(0, 1) mutually independent random variables.

Alternative DGPs are

(ii) yit = ai + βkit + γkitI(kit > k̃) + εit,

(iii) yit = ai + ρ1I(kit > k̃) + βkit + εit,

(iv) yit = ai + ρ1I(kit > k̃) + βkit + γkitI(kit > k̃) + εit,

with ρ1 = 1.5; this implies that bi = ai + ρ1. Throughout the experiments β = 1, γ = 0.5 and

k̃ = 0. The domain of the threshold parameter is the space κ = {k ∈ R, s.t.F (k) ∈ [0.05, 0.95]} with

F (·) the distribution function of the random variable k. We consider several panel sizes. First we

evaluate the tests performance under very small panel sizes (N = 10, T = 5;N = 20, T = 10). Then

we consider similar panel sizes to those used in the application (N = 100, T = 10;N = 100, T =

20;N = 250, T = 10;N = 250, T = 10). We use H = 200 bootstrap internal simulations to get the

p-value and we use 500 Monte Carlo simulations to compute the empirical size and power. Tables

1, 2 and 3 report empirical estimates of size and power evaluated at 5% and 1% significance level

for the supremum, average and exponential average test statistics, respectively.

[INSERT TABLES 1,2,3 ABOUT HERE]

These simulations are consistent with the findings of Hansen (1996) and Andrews and Ploberger

(1994). Whereas the supremum test overestimates the size of the test (see rows starting with (i),

null DGP), the average and exponential average methods provide very reliable estimates for rather

small sample sizes. In every case, for fixed N , increasing the T dimension of the panel produces

more accurate empirical sizes.

The power of the tests yields interesting results. As expected, Hansen (1999) test, Test b (test

for threshold effects in the slope only), has the highest power for DGP (ii), while Test c (test for
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threshold effects in the fixed-effects only) shows the highest power for DGP (iii). By construction

Hansen (1999) test should not detect nonlinearities on capital produced by changes in the fixed-

effects, as in DGP (iii). However, rejection rates are rather high for this test and model. In a

similar vein, Test c, should not detect nonlinearities in the slope, because this test only looks

at changes in the fixed effects. However, rejection rates are high for DGP (ii). This determines

that these tests are not able to discriminate the source of the threshold effect, even though in this

case, the fixed-effects are uncorrelated with the k variable. The reason is that the threshold effect

implicitly produces a correlation between the fixed-effects and the covariate.

The joint F-test, Test a (test for threshold effects in the slope and fixed-effects), has (correctly)

the highest power for detecting non-linearities in both slope and fixed-effects, DGP (iv). Moreover,

it shows good power for DGPs (ii) and (iii). Therefore, this tests can be used when the nature of

the nonlinearity is unknown.

6 Detection of Poverty Traps: An Empirical Study

The application of this study consists on determining statistically whether the relationship between

per capita gross domestic product (GDP) and capital stock per capita is linear or exhibits discon-

tinuities due to the accumulation of capital. Two different approaches can be followed. First, we

could opt for a panel with a large time-series dimension but a short cross-country variation. Second,

a shorter time-series dimension with a larger cross-country variability. Each approach has its own

merits and disadvantages. The former corresponds to long-term historical analysis where the overall

process of industrialization can be evaluated. However, it relies mostly on developed countries data,

for which long historical statistics are available. The second corresponds to the empirical growth

literature (conditional convergence, multiple equilibria). Most studies on this approach start in

1960 or 1970, where standardized cross-country statistics started to be systematically collected.

Following Durlauf and Johnson (1995) and Bloom, Canning, and Sevilla (2003), which we believe

are the closest studies to ours, we use the second approach.

In order to do this we create a panel data set using World Development Indicators. Our simple

model of poverty traps contains the country’s GDP per capita and capital stock per capita. While
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the former can be found in any cross-country panel database, the latter is difficult to obtain. To our

knowledge the largest panel data covering both developed and developing countries was constructed

by Crego, Larson, Butzer, and Mundlak (2000). Those authors provide a comprehensive study

to estimate aggregate capital stocks in a systematic way and they use the perpetual inventory

method to obtain fixed capital estimates for 63 countries between 1948 and 1992 resulting in 1323

observations. We follow their methodology and construct our own capital stock estimates using

data from gross capital formation, using the perpetual inventory method with a yearly depreciation

of 7% and obtain estimates for the period 1973 to 2007. Our final balanced panel data contains

138 countries and 35 years (1973 to 2007) resulting in 4830 observations.6 We apply Levin, Lin,

and Chu (2002) tests for unit roots in panel data. In all cases we reject the null hypothesis of a

unit root.7 Therefore, we can apply the asymptotics proposed in this paper which are the same as

those in Hansen (1999).

The data is fitted to the four processes detailed in the preceding section. These processes

are (i) a linear model with fixed-effects, (ii) Hansen’s fixed-effects model (10), (iii) model (9)

making allowance for regime switching in the fixed-effects and capital elasticity, and (iv) model

(11), making allowance for regime-switching only in the fixed-effects component. The estimates of

the relevant parameters are in Table 4. The latter two processes are also the building blocks for

the corresponding nonlinearity tests discussed above.

All testing methods reject the linear model against the nonlinear alternative. These results are
6The sample contains Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Australia, Aus-

tria, Bangladesh, Barbados, Belgium, Belize, Benin, Bhutan, Bolivia, Botswana, Brazil, Bulgaria, Burkina Faso,
Burundi, Cambodia, Cameroon, Canada, Cape Verde, Central African Republic, Chad, Chile, Colombia, Comoros,
Dem. Rep. Congo, Costa Rica, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, El Sal-
vador, Equatorial Guinea, Ethiopia, Fiji, Finland, France, Gabon, The Gambia, Germany, Ghana, Greece, Grenada,
Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Ireland, Israel,
Italy, Jamaica, Japan, Jordan, Kenya, Kiribati, Kuwait, Lebanon, Lesotho, Liberia, Libya, Luxembourg, Madagascar,
Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Fed. Sts. Micronesia, Mongolia, Morocco,
Mozambique, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Norway, Oman, Pakistan, Panama,
Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Puerto Rico, Qatar, Romania, Rwanda, Saudi
Arabia, Senegal, Seychelles, Sierra Leone, Singapore, Solomon Islands, Somalia, South Africa, Spain, Sri Lanka,
St. Lucia, Sudan, Suriname, Swaziland, Sweden, Switzerland, Tanzania, Thailand, Togo, Tonga, Tunisia, Turkey,
Uganda, United Arab Emirates, United Kingdom, United States, Uruguay, Vanuatu, Vietnam, Zambia and Zim-
babwe.

7For GDP per capita, it has a Levin, Lin, and Chu (2002) pooled Dickey-Fuller test coefficient of -0.04685 without
lags and -0.05258 augmented one lag. For capital stock per capita, it has a Levin, Lin, and Chu (2002) pooled Dickey-
Fuller test coefficient of -0.02272 without lags and -0.05623 augmented one lag. In all cases the null hypothesis is
rejected with a p-value<0.01.
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in line with Durlauf and Johnson (1995) and Bloom, Canning, and Sevilla (2003), where multi-

plicity of equilibria appeared. In our case, this corresponds to a nonlinear production function.

Moreover, these methods allow us to compute explicit threshold candidates: K = 1, 744, 881,

K = 448, 553 and K = 1, 960, 935 for models (ii), (iii) and (iv), respectively. This corresponds

to 41%, 11% and 46% quantiles of the pooled worldwide distribution of capital stock per capita,

respectively. Interestingly, the threshold effect is observed not only in the capital variable but also

in the fixed-effects component supporting the theory of changes in technology parameters and other

non-observable factors that depend on the amount of capital. Note that the difference between the

estimated thresholds is substantial, and potential model misspecification may play a significant role

in explaining this. In particular, model (iii) implies that much of the nonlinear effect may affect

the country-specific characteristics (i.e. fixed-effects), and that the threshold to achieve this better

technology is lower than otherwise predicted. Although the intercept of process (iii) is negative

the model also shows the incremental effect on per-capita income of exceeding a capital threshold.

This fact highlights the nonlinear technology effects for higher values of capital leading to higher

values of TFP.

Finally note that the dependence reflected in model (iv) might be, however, due to the mis-

specification of the nonlinearity in the capital per-capita variable. A similar conclusion can be

obtained from the results observed from Hansen’s specification in model (ii), aimed to only detect

nonlinearities in the capital elasticity term. From these results, it seems sensible to consider model

(iii) as the most accurate representation of the true relationship between the variables. It is also

remarkable the differences in threshold estimates across models.

[INSERT TABLES 4, 5 ABOUT HERE]

To round off the empirical application Table 5 reports the same specifications allowing now for

year effects. This is done by considering a dummy variable for each year. The results reflect the

presence of a statistically significant effect for some of the years in the sample. It is interesting to

note that this effect is produced in clusters. Thus, for the first years of the study (1973-1977) and

the nineties (1992-1995 and 1998) we observe a marginal negative effect in per-capita income. For
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1980-1981 and 2004-2006 the effect is positive reflecting a recovery of the worldwide economy after

periods of turbulence. In fact, for the latest period of the study this effect is between 5 and 10 times

the effect observed in the rest of the sample. This statistical phenomenon illustrates the failure of

simple models of economic growth to describe the rapid growth in per-capita income during the last

years (although before the 2008 worldwide crisis). For the remaining years the effect of the year is

not statistically significant. Finally note that the qualitative implications of the four econometric

models and hypothesis tests remain unchanged.

7 Conclusion

We developed a new econometric test to evaluate the existence of poverty traps and multiple

equilibria. The test makes use of the panel data structure with country-specific fixed-effects and

tests for threshold nonlinearities on the model’s slope and fixed-effects. The empirical results

confirm the existence of a nonlinear model in modeling GDP per capita and capital stock per

capita (in logs).

It would be interesting to apply this methodology at the microeconomic level by studying

households income dynamics (see for instance Galor and Zeira, 1993; Antman and McKenzie, 2007;

Imai, Gaiha, and Kang, 2012). This would provide further support to the theory of poverty traps at

the individual or family level. Our methodology would be especially useful for panel data surveys

where family specific characteristics can be controlled for.
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TABLES

Table 1 - Monte Carlo simulations - Supremum
SUP N=20, T=5 N=20, T=10 N=100, T=10 N=100, T=20 N=250, T=10 N=250, T=20

α 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Slope&fixed− effects Ha
0 : ρ1 = ρ3 = 0 vs. Ha

1 : ρ1 6= 0 or ρ3 6= 0

(i) 0.148 0.036 0.104 0.026 0.092 0.020 0.054 0.016 0.114 0.032 0.078 0.018
(ii) 0.408 0.202 0.466 0.230 0.980 0.900 1.000 1.000 1.000 1.000 1.000 1.000

(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fixed− effects only Hc
0 : ρ1 = 0 vs. Hb

1 : ρ1 6= 0, assuming ρ3 = 0

(i) 0.134 0.034 0.088 0.016 0.074 0.026 0.052 0.014 0.110 0.024 0.084 0.012
(ii) 0.336 0.154 0.348 0.166 0.93 0.778 1.000 0.998 1.000 0.998 1.000 1.000

(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Slope only Hb
0 : ρ3 = 0 vs. Hb

1 : ρ3 6= 0, assuming ρ1 = 0 (Hansen, 1999)

(i) 0.102 0.024 0.092 0.020 0.076 0.014 0.050 0.010 0.074 0.024 0.064 0.020
(ii) 0.454 0.226 0.586 0.368 0.992 0.952 1.000 1.000 1.000 1.000 1.000 1.000

(iii) 0.606 0.306 0.980 0.796 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 0.544 0.230 0.966 0.75 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Simulations based on 500 Monte Carlo experiments.

Table 2 - Monte Carlo simulations - Average
AVE N=20, T=5 N=20, T=10 N=100, T=10 N=100, T=20 N=250, T=10 N=250, T=20

α 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Slope&fixed− effects Ha
0 : ρ1 = ρ3 = 0 vs. Ha

1 : ρ1 6= 0 or ρ3 6= 0

(i) 0.106 0.018 0.084 0.022 0.088 0.014 0.050 0.016 0.074 0.020 0.066 0.018
(ii) 0.478 0.248 0.602 0.382 0.994 0.958 1.000 1.000 1.000 1.000 1.000 1.000
(iii) 0.968 0.796 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 0.952 0.802 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fixed− effects only Hc
0 : ρ1 = 0 vs. Hb

1 : ρ1 6= 0, assuming ρ3 = 0

(i) 0.134 0.034 0.084 0.022 0.074 0.018 0.040 0.012 0.102 0.028 0.080 0.020
(ii) 0.336 0.154 0.394 0.18 0.964 0.870 1.000 1.000 1.000 0.998 1.000 1.000
(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Slope only Hb
0 : ρ3 = 0 vs. Hb

1 : ρ3 6= 0, assuming ρ1 = 0 (Hansen, 1999)

(i) 0.086 0.014 0.076 0.022 0.066 0.012 0.046 0.018 0.062 0.020 0.056 0.014
(ii) 0.474 0.244 0.614 0.386 0.992 0.972 1.000 1.000 1.000 1.000 1.000 1.000
(iii) 0.318 0.042 0.946 0.522 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 0.338 0.080 0.952 0.420 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Simulations based on 500 Monte Carlo experiments.
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Table 3 - Monte Carlo simulations - Exponential Average
EXPAVE N=20, T=5 N=20, T=10 N=100, T=10 N=100, T=20 N=250, T=10 N=250, T=20

α 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Slope&fixed− effects Ha
0 : ρ1 = ρ3 = 0 vs. Ha

1 : ρ1 6= 0 or ρ3 6= 0

(i) 0.130 0.036 0.106 0.014 0.092 0.012 0.050 0.014 0.094 0.030 0.070 0.014
(ii) 0.440 0.232 0.550 0.322 0.992 0.938 1.000 1.000 1.000 1.000 1.000 1.000
(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fixed− effects only Hc
0 : ρ1 = 0 vs. Hb

1 : ρ1 6= 0, assuming ρ3 = 0

(i) 0.134 0.030 0.084 0.022 0.072 0.022 0.040 0.014 0.102 0.028 0.072 0.018
(ii) 0.350 0.168 0.394 0.180 0.948 0.826 1.000 1.000 1.000 0.998 1.000 1.000
(iii) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Slope only Hb
0 : ρ3 = 0 vs. Hb

1 : ρ3 6= 0, assuming ρ1 = 0 (Hansen, 1999)

(i) 0.088 0.020 0.086 0.028 0.072 0.012 0.042 0.018 0.064 0.018 0.058 0.018
(ii) 0.482 0.246 0.624 0.394 0.992 0.974 1.000 1.000 1.000 1.000 1.000 1.000
(iii) 0.546 0.262 0.988 0.808 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(iv) 0.496 0.190 0.98 0.754 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Simulations based on 500 Monte Carlo experiments.

Table 4 - Empirical growth panel data model
Threshold in slope slope&fixed-effects fixed-effects

ρ1 -3.285 0.207
(0.122) (0.011)

ρ2 0.689 0.646 0.562 0.651
(0.004) (0.005) (0.007) (0.004)

ρ3 0.014 0.252
(0.001) (0.009)

Threshold (K per capita, US$) 1,744,881 448,553 1,960,935
Fraction of observations below 0.41 0.11 0.46

p value of Fave test 0.00 0.00 0.00
p value of Fsup test 0.00 0.00 0.00

p value of Fexpave test 0.00 0.00 0.00

N 99
T 35(1973-2007)

NT 3465

Notes: All regression coefficient estimates are statistically significant with p-value< 0.01

Table 5 - Empirical growth panel data model with dummies for time effects
Threshold in slope slope&fixed-effects fixed-effects

ρ1 -3.310 0.210
(0.123) (0.011)

ρ2 0.658 0.623 0.528 0.624
(0.009) (0.008) (0.010) (0.008)

ρ3 0.014 0.256
(0.001) (0.009)

Threshold (K per capita, US$) 1,744,881 405,342 1,960,935
Fraction of observations below 0.41 0.10 0.46

p value of Fave test 0.00 0.00 0.00
p value of Fsup test 0.00 0.00 0.00

p value of Fexpave test 0.00 0.00 0.00

N 99
T 35(1973-2007)

NT 3465

Notes: All regression coefficient estimates are statistically significant with p-value< 0.01
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