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Abstract 

 

INTRODUCTION 

Heart function can be impaired by rhythm disturbances (cardiac arrhythmia), illustrated by 

electrocardiogram (ECG) recordings. Computerised arrhythmia diagnosis is well established for 

ECG’s but less for intracardiac electrophysiological (EP) testing. Accurate diagnosis is pre-

requisite for delivering appropriate treatment to patients however existing algorithms misdiagnose 

a proportion of arrhythmias. Studies suggested artificial intelligence (AI) classifiers are accurate 

using ECG and intracardiac electrogram features and reviews suggested new features might 

augment diagnosis. This study aimed to develop an accurate cardiac rhythm diagnostic algorithm 

for electrophysiological (EP) studies with potential application as a generic rhythm classifier.  

METHOD 

An ethically approved prospective clinical study collected clinical history, right atrial and right 

ventricular intracardiac electrograms, beat-to-beat cardiac stroke volume, body motion and body 

temperature data during EP studies. An iterative system development life-cycle was used, 

including knowledge management and classifier development sub-processes. Domain expert 

knowledge and clinical arrhythmia diagnosis were modelled, synthesised as AI classifiers and 

used to classify cardiac rhythms.  

RESULTS 

Data collected from 65 patients was pre-processed into instances for classifier inputs. Decision 

tree, naïve Bayes, neural network, support vector machine and inference engine classifiers 

developed using Matlab showed good performance and were combined as a production system in 

a mixture-of-experts multi-classifier system. 18 different rhythms were classified, with the naïve 

Bayes classifier used to classify 11 rhythms, decision tree 4 rhythms, neural network and support 

vector machine one each, unclassified instances by the inference engine classifier and final class 

allocation using decision rule. Production system showed overall correct clasification rate 0.960; 

error 0.040; mean sensitivity 0.855; mean specificity 0.977; mean κ 0.767; mean positive 

predictive value 0.792; mean negative predictive value 0.975; mean Pearson’s phi 0.787, with P 

< 0.004 (equivalent to P = 0.05 for 18 way Bonferroni comparison) supporting no difference with 

the gold standard. Correct classification, sensitivity, specificity, Cohen’s kappa and positive 

predictive value showed values of 1.0 for inappropriate sinus tachycardia, focal atrial tachycardia 

and ventricular tachycardia and > 0.9 for sinus node dysfunction and atrio-ventricular nodal/ 

junctional tachycardias. Temperature, accelerometry and QT interval were assessed as features 

by a comparison of algorithm performances with each feature removed and found not to affect 

classification performance. An evaluation showed 10 beat analysis performed better than 5 beat 

analysis. 

CONCLUSIONS 

Modelling of the clinical diagnosis process produced an AI based mixture-of-experts multi-

classifier system, which accurately diagnosed different 18 cardiac rhythms. The naïve Bayes 

classifier performed best and classified 11 rhythms. Features for clinical symptoms and 

predisposing factors, atrial electrogram morphology and changes in stroke volume were found to 

influence rhythm classification. High performances encourage further development and potential 

future improvements include: a larger sample dataset; inclusion of His and coronary sinus 

electrograms; data mining for unknown features with significant influence on diagnosis; binary 

classification. The aim to classify rhythm using artificial intelligence suitable for use during EP 

studies was satisfied and the research hypothesis that it outperformed current algorithms was 

accepted. The system was likely to be able to accept updates but needs conversion as a precursor 

to use in a live clinical environment. 
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ClassDT  Class label (decision tree classifier) 

ClassSVM  Class label (support vector machine classifier) 

ClassNN  Class label (neural network classifier) 

ClassIE   Class label (inference engine classifier)  

CPU  Central processing unit 
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Abbreviations and Acronyms (continued) 

 

CT   Computerised tomography 

∆Z  Thoracic impedance change with time (full notation ∆Z(t)) 

∆ZR  Respiratory component of thoracic impedance change 

∆ZC  Cardiac component of thoracic impedance change 

dis   Disagreement measure 

dP/dt  First time derivative of change in pressure 

dZ/dt   First time derivative of change in thoracic impedance 

DF  Double-fault measure 

DSP   Digital signal processing 

DT  Decision tree 

ECG   Electrocardiogram 

EGM  Intracardiac electrogram 

EP   Electrophysiological testing 

fin   Sample rate 

fout  Desired sample rate 

F1   F1 score, a measure of test accuracy 

FFBP   Feed-forward, back-propagation 

FFT   Fast Fourier transform 

FIR   Finite impulse response 

FIS   Fuzzy inference system 

FP  False positive 

FN  False negative 

FCNN  Fuzzy clustering-neural network 

FES   Fuzzy expert system  

FJT   Focal junctional tachycardia 

g0   Acceleration due to gravity 

GB  Gigabyte of digital information 

GD  Generalised diversity 

GDA   Generalised discriminant analysis 

GEE   Generalised estimating equation 

GSTT  Guy’s and St. Thomas’ NHS Foundation Trust 

H  Hypothesis 

H0  Null hypothesis 

H1  Research hypothesis 

HRS  Heart Rhythm Society 

HRT   Heart-rate turbulence 
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Abbreviations and Acronyms (continued) 

 

HRV   Heart rate variability  

I, II, III  Standard (Einthoven) ECG lead I, II or III 

ICD   Implantable cardioverter-defibrillator 

ICG  Impedance cardiography 

ID   Identification number 

IE  Inference engine 

IEEE  Institute of Electrical and Electronics Engineers 

IF   Impact factor 

IFVT   Idiopathic fascicular ventricular tachycardia 

ILR   Implantable loop recorder 

IST   Inappropriate sinus tachycardia  

IVC   Inferior vena cava  

κ  Cohen’s kappa; inter-rater agreement 

kB  Kilobyte of digital information 

k-NN   k-nearest neighbour 

L  Up-sampling factor 

LDA   Linear discriminant analysis 

LR+   Positive likelihood ratio 

LR-   Negative likelihood ratio 

LVET   Left ventricular ejection time 

MAR   Missing at random 

MAT   Multifocal atrial tachycardia 

MB  Megabyte of digital information 

MCAR   Missing completely at random 

MNAR   Missing not at random 

MCS  Multi-classifier system 

ME  Mixture-of-experts 

MeSH   Medical subject headings 

MRAT  Macro-re-entrant atrial tachycardia 

MRI   Magnetic resonance imaging 

MV  Minute ventilation 

MVI  Minute ventilation index 

MWI   Moving window integration 

N  Number of samples 

NaN   Not a number 

NB  Naïve Bayes 
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Abbreviations and Acronyms (continued) 

 

NHS   National Health Service 

NHS REC  National Health Service Research Ethics Committee 

NN  Neural network  

NPJT   Non-paroxysmal junctional tachycardia  

NPSA  National Patient Safety Agency 

NSR   Normal sinus rhythm 

OAVRT  Orthodromic atrio-ventricular reciprocating tachycardia   

OR   Odds ratio 

OTVT   Outflow tract ventricular tachycardia 

OVA   One-versus-all 

OVO   One-versus-one 

ϕ  Pearson’s phi 

P  Probability 

Pcrit  Critical probability value for significance testing (such as 0.05) 

P  The P wave component of the ECG 

PAC  Premature atrial contraction 

PCA   Principal component analysis 

PDA  Personal digital assistant 

PJRT   Permanent junctional reciprocating tachycardia  

POTS   Postural orthostatic tachycardia syndrome 

PP   The interval between successive P wave components of the ECG 

PPV   Positive predictive value 

PR   The interval between successive P wave and R wave components of the ECG 

P:R   Arithmetic ratio between P and R waves 

PVC  Premature ventricular contraction 

PVT   Polymorphic ventricular tachycardia 

PWM  Pulse width modulation 

Q  Yule’s Q 

QRS  The QRS complex, a component of the ECG 

QRST   The QRS and T wave complex, a component of the ECG 

QTc   The corrected QT interval (using Bazett’s formula) 

r  Pearson’s product-moment correlation coefficient 

R  The R wave component of the QRS complex 

RA  Right atrium (atrial) 

RBF  Radial basis functions 

RCT   Randomised clinical trial 
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Abbreviations and Acronyms (continued) 

 

RFA   Radiofrequency ablation 

ROC   Receiver operating characteristic 

RR  Respiratory rate 

RR  The interval between successive R wave components of the ECG  

RSA  Respiratory sinus arrhythmia  

RSS   Square root of the sum of squares 

RV   Right ventricle (ventricular) 

RVPP   RV pulse pressure 

S1  Unipolar atrial EGM 

S2  Composite atrio-ventricular EGM 

S3   Unipolar ventricular EGM 

SA   Sinus arrest 

SAB   Sino-atrial block 

SB   Sinus bradycardia 

SCD  Sudden Cardiac Death 

SDLC  Systems development life-cycle 

SDNN   Standard deviation of mean RR interval between normal heart beats 

Se  Sensitivity 

SICD  Subcutaneous ICD 

SIDS  Sudden infant death syndrome 

SNRT   Sinus node re-entry tachycardia 

Sp   Specificity 

ST segment A component of the ECG waveform, the ST segment 

ST   Physiological sinus tachycardia 

SV  Cardiac stroke volume 

SVI   Stroke volume index 

SVM   Support vector machine 

SVT   Supraventricular tachycardia 

SVTab   SVT with aberration 

t   Time 

τ  Statistical power 

T  The T wave component of the QRST complex 

TFIT   Thoracic flow inversion time 

TP   True positive 

TN  True negative 

TV  Tidal volume 
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Abbreviations and Acronyms (continued) 

 

μ   Measure of difficulty 

U  The U wave component of the QRSTU complex 

V   Intracardiac wave corresponding to a QRS complex component of the ECG 

VTC   Vector timing and correlation (QRS morphology) 

VTCA  Vector timing and correlation in the atrium (P wave morphology) 

VF   Ventricular fibrillation 

VL  Voltage at the left arm  

VLSI   Very-large-scale integration 

VMU   Vector magnitude units 

VT   Monomorphic ventricular tachycardia or ventricular tachycardia  

VV   The interval between successive V waves 

WCT   Wilson’s Central Terminal  

X point  Nadir of dZ/dt wave following C wave 

Z   Absolute impedance 

Z0  Base thoracic impedance 
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Chapter 1 Introduction 

 

1.1 Overview 

The concepts of heart rhythms and their diagnosis will be introduced with the disciplines of 

cardiac rhythm diagnosis, using clinical examination, non-invasive and invasive investigations as 

well as treatment options summarised. Currently available technologies for automated arrhythmia 

analysis will be reviewed and the problem of misdiagnosis, motivation for the study, will be 

outlined. 

 

1.2 Background 

The heart is a sophisticated muscular pump, designed to efficiently deliver oxygen-rich blood to 

the tissues and organs of the body. This function can become impaired due to heart disease, 

including disturbances of the heart rhythm (cardiac arrhythmia). A normal heart rhythm is a 

regular, coordinated sequence of heart beats with each beat initiated by a wave of electrical 

activation of heart muscle cells, starting in the atria and travelling to the ventricles, called 

depolarisation. A similar sequence of mechanical contraction follows electrical activation, 

providing the heart’s pumping action. Arrhythmia is an electrical disturbance, followed by its 

mechanical consequence, which upsets this coordinated sequence. 

 

Arrhythmia is among the top ten reasons for hospital admission, can be debilitating and may 

require high cost treatments, emphasising the importance of timely and accurate diagnosis 

(Stewart et al. 2004). There are a number of different arrhythmias; some consisting of a single 

abnormal heart beat, others are more sustained and some provoke serious symptoms. There are 

two main types of sustained arrhythmia, slow heart beats or bradycardia and rapid heartbeats or 

tachycardia, both of which can be further subdivided into more specific rhythms.  

 

Bradycardia and tachycardia can sometimes result in haemodynamic compromise (circulatory 

impairment) and hypoxia, a reduced oxygen supply to tissues and organs. Depending on the 

severity of these effects, some arrhythmias are considered life-threatening and require prompt 

treatment, for example by a pacemaker or a defibrillator. Ventricular fibrillation (VF) is 

considered the most serious arrhythmia and is almost invariably fatal unless corrected 

immediately by an electric shock treatment called defibrillation. All cardiac arrhythmias require 

accurate diagnosis to guide the choice of treatment.  

 

A diagnosis of arrhythmia is made clinically, supported by evidence from tests to improve 

diagnostic granularity and accuracy. Several tests can be used to aid differential diagnosis, 

including the electrocardiogram (ECG) and invasive electrophysiological (EP) testing. 
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Automated computerised rhythm diagnosis is widely used in ECG’s and implantable cardioverter 

defibrillators (ICD’s) and less in EP studies. This study will focus on computerised rhythm 

diagnosis of intracardiac electrograms, as used in EP testing and in ICD’s, seeking to maximise 

diagnostic accuracy to a uniformly high standard, working towards reducing need for domain 

expert interpretation, offering improved and clinically valuable differential diagnosis.  

 

1.3 Conventional Cardiac Arrhythmia Diagnosis and Treatment 

Physicians assess patients for suspected arrhythmia using well-validated clinical diagnostic 

techniques and a range of tools, with the ECG playing a central role. Patients with arrhythmia 

may present with symptoms such as: palpitation; syncope (blackouts); light-headedness; chest 

pain; breathlessness or fluid retention. Symptom severity, quality and characteristics are 

important. They include regularity or irregularity of palpitations; whether palpitations are very 

fast and how symptoms start and stop (National Institutes of Health 2011). 

 

A medical history is collected from the patient, with particular attention to factors known to 

predispose towards arrhythmia (see Appendix A) (Brignole et al. 2001 and 2004; Zipes et al. 

2006) and effort is made to discover circumstances that might have triggered an arrhythmia.  

 

Arrhythmia may be the result of an identifiable cause, such as: structural heart disease; medication 

reaction; stress; caffeine intake; electrolyte imbalance; electrical abnormality (channelopathies); 

mechanical or electrical stimulation, such as chest trauma or electrocution. A physical 

examination is conducted, including: evaluation of heart sounds; assessment of arterial and 

venous pulses; measurement of resting blood pressure and an ECG recording and sometimes 

further diagnostic tests, all of which aid the differential diagnosis of cardiac arrhythmia and 

formulation of a therapeutic strategy (Zimetbaum & Josephson 1998). If an arrhythmia has been 

detected, it is likely to be represented using an ECG trace (see Fig. 1.1).  

 

Diagnosis of arrhythmia is a process of clinical evaluation that includes non-invasive testing, such 

as electrocardiogram (ECG), augmented by echocardiogram and in some cases, invasive 

electrophysiological (EP) testing.  

 

1.3.1 Non-Invasive Arrhythmia Diagnosis 

Non-invasive tests involve no intrusion into the body, usually only requiring application of 

external skin electrodes, a probe or use of a scanner. The ECG is the classic non-invasive 

diagnostic test for arrhythmia and is used in various forms, such as: a resting 12-lead ECG; a 

treadmill or bicycle exercise stress electrocardiogram; an ambulatory electrocardiogram; an ECG 

loop recorder; a signal-averaged electrocardiogram; tilt-table testing and vectorcardiography. 

Arrhythmias may be assessed for clinical severity or an underlying structural cause by other non-
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invasive examinations, such as: ultrasonic examination of the heart (echocardiography); cardiac 

computerised tomography (CT); nuclear scan and magnetic resonance imaging (MRI).  

 

 

 

 

Figure 1.1 An ECG showing onset of an arrhythmia (atrial fibrillation). This ECG 

tracing, read from left to right, shows two normal heartbeats, followed by an 

abnormal premature wave (arrowed) then by abnormally rapid, irregular heartbeats. 

Signal amplitudes are not calibrated in this diagram, as the focus is upon timing 

changes. 

 

 

Where non-invasive testing fails to provide a differential arrhythmia diagnosis and it is 

prognostically important, invasive electrophysiological testing (EP) may be indicated. 

 

1.3.2 Invasive Arrhythmia Diagnosis  

Invasive diagnostic techniques involve intrusion into the body, are less well-tolerated, involve 

discomfort and risks of complication. Typically, in an EP study, four thin multi-polar electrode 

catheters are passed through veins, using a percutaneous femoral venous approach, under X-Ray 

guidance, into standard positions within the heart, according to the technique described by 

Josephson (2002). In a typical EP study, quadripolar electrodes with 5mm inter-electrode spacings 

are placed in standard positions of: the high right atrium (RA) near to the sino-atrial node or right 

atrial appendage; a position adjacent to the bundle of His (His) and at the right ventricular apex 

(RV) with a decapolar electrode with alternating 2mm and 5mm spacings placed within the 

coronary sinus (CS) and advanced towards the left cardiac border (see Fig. 1.2).  

 

Following positioning of the electrodes, simultaneous continuous recordings are taken of 

intracardiac electrogram signals from adjacent electrode pairs (see Fig. 1.3). Changes of timing 

relationships, observed as pattern variations, during pacemaker stimulation and during instances 

of arrhythmia are noted, to provide insight into the underlying mechanisms of an arrhythmia, 

leading to a differential diagnosis. 

1 second 
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Figure 1.2 X-ray image of electrode catheters in the heart during an EP study. 

Electrodes in the RA (right atrium), His (bundle of His), RV (right ventricle) and CS 

(coronary sinus). Patient 11; PA view; Normal cardiac structural anatomy, history of 

arrhythmia only. 

 

 

If a suspected arrhythmia is rare, or exhaustive testing during an EP study is inconclusive, an 

implantable loop recorder (ILR) may be used (Seidl et al. 2000). An ILR is the semi-permanent 

implant of a small ECG recorder placed beneath the skin of the chest wall. 

 

1.3.3 Treatments for Cardiac Arrhythmia  

Treatments are tailored, based on the arrhythmia type, symptom frequency and severity, tolerance 

to drugs and prognoses attached to therapy options. Treatments include non-interventional options 

such as: lifestyle adjustment; dietary modification and drugs and interventional treatments such 

as: cardioversion; the implant of electronic devices, such as pacemakers or cardioverter-

defibrillators (ICDs); ablation or surgery (Heart Rhythm Society n.d.).  

 

1.3.4 Implantable Pacemakers and Cardioverter Defibrillators (ICDs) 

For patients with symptomatic bradycardia, or other special conditions, pacemaker treatment may

RA 

RV 

CS 

His 

Vertebral Column Diaphragm 

Right cardiac border  Left cardiac border  

  1cm 
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Figure 1.3 Intracardiac electrograms recorded during an EP study. Key (top first):  Surface ECG II, III, V1 and V6; HRAd - right atrial electrogram (A); 

HISp, HISm and HISd - His bundle electrograms (H); CSd to CSp - coronary sinus electrograms; RVd - right ventricular electrogram (V). Archive 

recording; Normal cardiac anatomy, no non-arrhythmia history; Signal amplitudes uncalibrated as the focus is timing and sequence.

V V 

A A A 

V 

H H H 

0.5 secs 



30 

 

be chosen. Pacemakers have electrodes connected to the heart, usually in the right atrium and 

right ventricle, in similar positions to those of an EP study. More sophisticated models have an 

additional electrode within the coronary venous system, allowing connection with the left 

ventricle  

 

Pacemakers are able to detect cardiac activity and, deliver electrical pulses to stimulate heart 

beats, automatically maintaining the heart rate and improving cardiac output. Implantable 

defibrillators incorporate all the capabilities of pacemakers with additional functionality of rapid 

ventricular stimulation or delivery of high voltage electric shocks, to correct ventricular 

tachycardia (VT) or ventricular fibrillation (VF) respectively.  

 

1.3.5 Ablation 

Cardiac ablation involves the localisation then destruction of very small areas of abnormal heart 

tissue responsible for a rhythm disturbance. Once an arrhythmia diagnosis is made at an EP study, 

it is usual to proceed directly to treatment with ablation, if that is indicated. Ablation may also be 

a stand-alone procedure for certain indications, such as macro-re-entrant atrial tachycardia, 

paroxysmal or persistent atrial fibrillation. At EP study, arrhythmia localisation is achieved by a 

process of “mapping” the inner surface of the heart or endocardium, first approximately, using 

the four standard electrode positions, then more precisely with an adjustable electrode which is 

moved into different positions. Electrogram timing characteristics at the tip of this adjustable 

electrode allow the electrophysiologist determine the area within which the abnormality is 

located. Ablation is then performed by delivery of energy to the localised site of the abnormality, 

using the same adjustable electrode, typically with radiofrequency electrical energy or less 

commonly, other energy sources such as cryothermal, microwave or laser may be used. 

 

1.3.6 Arrhythmia Surgery 

Occasionally, an arrhythmia can be treated with surgery, most commonly when cardiac surgery 

is already being performed for another reason, for example a heart valve replacement. The most 

frequently performed of these treatments is the maze procedure for atrial fibrillation, where a 

surgeon either ablates with a hand-held probe or places cuts on the left and right atria, provoking 

scarring which creates electrical barriers to prevent spread of the disorganised atrial depolarisation 

characteristic of atrial fibrillation (Cox et al. 1991).  

 

1.4 Computerised Arrhythmia Diagnosis 

The state of current research into computerised cardiac rhythm diagnosis will be summarised, 

focussing on ECG diagnosis, EP studies, ICD algorithms, bench studies and comparative studies. 
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1.4.1 Rhythm Classification in ECG Interpretation 

The most widely used form of medical computer decision support is computerised analysis of the 

resting ECG (Tsai et al. 2003), where ECG recordings and their automated diagnosis are made 

available to clinicians who then are able to edit its interpretation, guiding teatment. 

 

1.4.2 Rhythm Classification in Electrophysiological Studies 

Rhythm diagnosis made during invasive electrophysiological testing and ablation procedures is 

non-automated, involving interpretation of signals by a domain expert using a systematic manual 

process to reach a conclusion. There are no notable studies in the area of computerised diagnosis 

during EP studies with which to compare algorithm accuracy. Development of automated rhythm 

diagnosis for electrophysiological studies requires maintenance of high diagnostic accuracy, 

comparable to that of a domain expert - an experienced cardiac electrophysiology consultant, 

while reducing the need for the presence of that domain expert. 

 

The extent of computerised analysis during electrophysiological studies is restricted to specialised 

applications, such as 3D anatomical navigation systems used to guide therapeutic ablation 

procedures and 3D mapping to precisely locate intracardiac pathways, in both cases where a 

rhythm diagnosis has previously been made. 

 

1.4.3 Rhythm Classification in ICDs 

Implants of ICDs and the availability of automatic external defibrillators (AED’s), such as seen 

in public buildings, are now ubiquitous and their automated rhythm diagnostic capability may be 

considered among the most advanced available and may serve as a model for comparative 

purposes. Real-time algorithms, such as those in cardiac implantable devices require rapid, 

accurate diagnosis with no short-term possibility of alteration. ICD algorithms are considered 

among the most sophisticated of this type of unsupervised classification algorithm. 

 

The diagnosis of ventricular tachycardia (VT) and ventricular fibrillation (VF) in ICDs depends 

on sophisticated diagnostic capabilities, enabling not only very slow or very rapid rhythms to be 

distinguished but also differentiation and classification of rhythms, to deliver the most appropriate 

therapy (or none) from a range of options. Most ICD’s employ binary algorithms, designed to 

make “treatment / no-treatment” decisions, rather than a formal rhythm diagnosis.  

 

The most diagnostically accurate ICD algorithm was found to have an error of 0.053, sensitivity 

of 1.000, specificity 0.898 and κ of 0.895, with P <0.001 for differential diagnosis of VT and VF 

from supraventricular arrhythmia (Gold et al. 2012b). Current ICD algorithms have high 

sensitivities varying from of 98.7% to 100% but much more varied specificities of between 65% 
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and 95%, varying by manufacturer and model for the detection of life-threatening cardiac 

arrhythmias (Aliot et al. 2004).  

 

ICDs classify atrial and ventricular rhythms by placing them into heart rate “zones”, according to 

what are believed to be appropriate therapeutic options (see subsection 1.3.3). Classifications are 

often not clinically accurate but, in practice, the delivery of appropriate ATP or shock therapy is 

generally good. Studies of ICD algorithm performances tend to focus on the differential diagnosis 

only as it affects treatment, rather than the actual rhythm diagnosis. This differentiation is usually 

between supraventricular tachycardia, a rapid heart rhythm where no treatment is indicated and 

ventricular tachycardia, where treatment is indicated (see Appendix E). ICD diagnosis of other 

rhythms is considered of secondary importance. This is well illustrated in the START study (Gold 

et al., 2012), where diagnosis of atrial tachyarrhythmia is described only in terms of its effect on 

the specificity of ventricular arrhythmia diagnosis and thereby its importance “to inhibit therapy”. 

Recent improvements in the accuracy of ICD diagnostic algorithms have centred on digital signal 

processing, such as filtering rectification and noise rejection of the detected intracardiac 

electrograms. 

 

1.4.4 Rhythm Diagnosis Algorithms – Bench Studies  

The usefulness of classifier algorithms and artificial intelligence (AI) classifiers in the field of 

rhythm analysis has been demonstrated in small studies (see Chapter 2, subsections 2.8.2 to 

2.8.12). AI has so far failed to be widely adopted for this application. Apparent poor physician 

acceptance of “black box” computer decision making suggests adoption of AI in cardiac 

implantable devices is against the trend (Kalogeropoulos et al. 2003; Erickson & Bartholmai 

2002). Factors contributing to this include processing power and time-delays in “greedy” AI 

processes, such as training neural networks.  

 

1.4.5 Computational Power and Automated Rhythm Diagnosis 

Limitations on the computational power of cardiac rhythm classification systems are largely 

related to size and power requirements.  

 

ECG recorders are usually portable, to allow bedside use in a clinic or hospital environment. 

There is an increasing availability of lightweight options, including notebook and tablet computer 

applications which require only a very small interface box with necessary patient cable 

connections to acquire the ECG. Processing and interpretation is limited only by the constraints 

of the computing power and power requirements of the device used, which vary considerably. 

 

In ICD’s and pacemakers, due to the limitations of size on implanted devices, information 

gathering is currently at the expense of capability or vice versa. There are competing influences 
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at work: clinicians wish to include as much technology and capability as possible into an 

implanted device and maximise the longevity of the device, reducing the need for replacement. 

These tend to increase circuit complexity, power requirements and increase device size. Patients 

desire an effective treatment with a cosmetically acceptable result which minimises 

complications, tending to reduce device size. The balance of these is addressed by manufacturers 

in collaboration with their customers. Future devices of more compact size and higher processing 

power may be possible with developments in battery chemistry, reduced power consumption and 

miniaturisation of circuitry, helping to solve these limitations. 

 

Fewer limitations are applicable to EP studies and to bench studies of rhythm diagnostic 

algorithms. EP studies are performed using sophisticated PC-based systems which are directly 

fed with signals from a patient for on-line analysis, currently performed manually. These systems 

are usually purchased and upgraded periodically, limiting technological capability to that 

available at the time of purchase and available to the particular manufacturer. Bench studies may 

be performed on any suitable computer systems available to the researcher, with no size limitation 

at all, limited only by the availability of suitable technology and the budget of the researcher. 

 

By the nature of these limitations one may envisage a loose process, with bench studies being 

more aspirational in nature, computational power and power requirements limited only by the 

budget of the researcher. Following the refinement and improvement processes required to bring 

a practical solution to market one would anticipate reduced need for computational power and 

restricted power requirements allowing future inclusion in dedicated systems, such as those used 

in EP testing, then ultimate inclusion into the capability of implanted devices. One pathway that 

has been explored is the development of system-on-a-chip, where large scale integration is used 

to microminiaturise a system into a single chip, allowing integration into implanted devices of the 

future (Leong & Jabri 1995).  

 

1.4.6 Misdiagnosis in Automatic Rhythm Diagnosis 

Studies of the accuracy of ECG interpretive algorithms (Willems et al. 1991; Salerno et al. 2003a) 

have found that in some instances expert cardiologists were susceptible to error, compared with 

computerised diagnosis, as well as the reverse. Willems et al. (1991) concluded that computer 

analysis could be used to support uniform high diagnostic standards. No major studies focused on 

computerised ECG rhythm diagnosis but the review of Salerno et al. (2003b) suggested evidence 

to support the position that common ECG interpretation algorithms performed poorly for 

arrhythmias. Studies by Shah et al. (2007) and Poon et al. (2005) both examined errors in 

computerised ECG rhythm diagnosis and found 

 

Until recently the incorrect diagnosis from implantable defibrillator (ICD) algorithms approached 
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20% (Nunain et al. 1995; Rinaldi et al. 2004; Sacher et al. 2006). In the MADIT II trial, 11.5% 

of ICD patients received inappropriate shock episodes, accounting for 31.2% of all shocks. In 

MADIT II, incorrect diagnoses were due to: atrial fibrillation (44%); supraventricular tachycardia 

(36%) and abnormal sensing (20%). They also found that patients with inappropriate shocks had 

a greater likelihood of all-cause mortality (P = 0.025) (Daubert et al. 2008). The delivery of 

inappropriate therapies causes discomfort, pain and psychological difficulty to patients as well as 

unsatisfactory clinical outcome. The MADIT-RIT study found substantial reductions in 

inappropriate therapy and all-cause mortality were achieved by modifying ICD detection 

parameters, either increasing the heart rate boundaries for detection or increasing the time to 

detection of ventricular tachycardia (VT) and VF (Moss et al. 2012). This major improvement in 

outcome from simple algorithm adjustments has reduced research activity into further 

development of diagnostic discriminators in ICD’s.  

 

Single chamber pacemakers and ICDs have one electrode in the right ventricle and dual chamber 

pacemakers and ICDs have two electrodes, one in the right atrium, and another in the right 

ventricle. This enables them both to detect electrical activity from and deliver electrical therapies, 

such as bradycardia pacing therapy; anti-tachycardia pacing (ATP) and shock therapy to the 

chambers in which electrodes are placed. ICDs illustrate sophisticated diagnosis using 

intracardiac electrograms, similar to those collected for interpretation during EP studies, as in the 

objective of this study.  

 

The relationship between diagnosis and treatment is the key to delivering effective healthcare 

generally. Misdiagnosis is important where it results in either the delivery of an inappropriate 

treatment or where a treatment is not delivered when it is required. This evidence has shown that 

automated cardiac rhythm diagnosis remains imperfect and in many cases lies substantially below 

that achievable by a human domain expert. Automated cardiac rhythm diagnosis offers the 

prospect of technology coming to our aid in widening the availability of expert diagnostic 

capability and of maintaining uniformly high standards of diagnostic accuracy. Atrificial 

intelligence (AI) technologies offer a prospect of improved diagnostic accuracy and this will be 

explored as part of this study. 

 

1.5 Towards Accurate Arrhythmia Diagnostic Algorithms 

This study hypothesises that new algorithms, offering improved diagnostic accuracy and 

improved granularity of rhythm classification, could lead to appropriate treatment decisions, 

supplementing expert interpretation, leading to a reduction in misdiagnosis and with the potential 

to offer sophisticated accurate diagnostic capability where such expertise is not available. A 

preliminary study demonstrated the feasibility and desirability of using an artificial neural 

network (ANN) to develop an improved cardiac rhythm diagnostic algorithm (Bostock 2004).  
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A challenge of automatic rhythm diagnosis is to synthesise the knowledge and techniques of 

domain experts, in this case cardiac electrophysiologists. Techniques used in clinical cardiac 

arrhythmia diagnosis have the potential for inclusion in automatic diagnostic algorithms and this 

will be attempted in this study. This study will refine previous work, producing improvements to 

the performance of algorithms in implantable devices, leading to improved clinical outcome and 

quality of life for patients. Using a structured approach, informatics techniques will be used to 

synthesise the diagnostic methods of a human cardiac electrophysiologist, particularly focussed 

on the use of AI classifiers, using data obtained during human electrophysiological testing 

procedures and evaluate the performances of any production system. 

 

1.6 Research Question 

A research question encapsulating the main theme of the research was formulated: 

 

“Can cardiac rhythm classification algorithms with greater performance than 

those current commercially available be developed using artificial intelligence 

for electrophysiological studies?” 

 

1.7 Aims and Objectives 

It should be noted that given the considerations outlined in Chapter 1, section 1.4, there are no 

prominent comparable diagnostic systems designed for electrophysiological studies, using 

intracardiac electrophysiological signals. Performance comparisons are best made against results 

of bench studies and ICD diagnostic accuracy studies. 

 

The aims of the research were identified based on the research question: 

 

1. Produce cardiac rhythm classification algorithm with good performance 

compared with bench studies and those of implantable cardioverter defibrillators, 

suitable for use during electrophysiological studies and other applications. 

2. Use of artificial intelligence. 

 

Critical steps in achievement of these aims were set as objectives and as an outline of the 

processes in the study. These were: to review the literature; outline a theoretical 

background; assemble resources and tools and develop a methodology. Following these, 

data was to be collected and prepared for use in prototype algorithms; divided into training 

and test sets. Iterative development cycles (prototyping) would be performed using a 

variety of classifiers and classifier combinations and performances compared with current 

algorithms. 
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1.8 Hypotheses 

Using the research question, null and research hypotheses were designed to allow satisfaction of 

the research aims to be statistically tested: 

 

Null hypothesis (H0)  

Prototype cardiac rhythm diagnostic classifiers using AI do not outperform current 

algorithms. 

 

Research Hypothesis (H1)   

Prototype cardiac rhythm diagnostic classifiers using AI outperform current 

algorithms. 

 

1.9 Research Plan 

A methodology was developed, guided by the literature review and an examination of the 

theoretical background of classification, with emphasis on approaches already known to be 

successful. The methodology led to data collection for features as classifier inputs and 

construction of base classifier units. Classifier development would culminate in a production 

system with performance characteristics and a level of statistical significance enabling acceptance 

or rejection of the null hypothesis. 

 

1.10 Summary 

Rhythm diagnosis, its methods and current systems for computerised diagnosis were summarised. 

The need for the research was established from a brief critique of currently available systems and 

identifying limitations, such as the availability of domain expert diagnosis. The rate of 

misdiagnosis was identified as the problem for address. This research aimed to synthesise domain 

expert diagnostic capability, aiming to reduce misdiagnosis. 

 

The research question asked whether new rhythm diagnostic algorithms could be designed using 

AI, to exceed the performance of existing systems. Based on the research question, aims and 

objectives, null and research hypothesis were stated and a research plan outlined.   
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Chapter 2 Literature Review 

 

2.1 Overview 

A need for improved accuracy of automatic cardiac rhythm diagnostic algorithms in ICDs was 

outlined (see Chapter 1, subsection 1.1.2). This review sought to provide an overview of research 

and standard methods in this field and identify new methodological approaches. 

 

From the research question, aims, objectives and hypotheses (see Chapter 1, sections 1.6, 1.7 and 

1.8), inclusion and exclusion criteria were defined, literature sources and search resources 

identified, search terms defined and a search strategy formulated.  

 

Research which met the inclusion criteria was critically appraised. Search results were analysed 

to identify prominent authors and principle sources of research. Continuous re-evaluation of the 

literature was performed during the research to provide supplemental references. Influences on 

this research from the reviewed literature were summarised. 

 

EndNote X5 (Thomson Reuters 2011) bibliographic software was used for reference 

management. 

 

2.2 Search Terms 

Key words were extracted from the research question, aims and objectives (see Chapter 1, sections 

1.6, 1.7 and 1.8): 

 

cardiac rhythm  

classification 

algorithms 

artificial intelligence 

electrophysiological studies 

compared  

bench studies  

implantable cardioverter defibrillators 

 

Further examination of the research question identified two domains: cardiac rhythm analysis 

using AI and implantable defibrillator algorithms. 

 

To generate search terms, the use of natural language or a controlled vocabulary was considered. 

Medical subject headings (MeSH) terms are suited to medical fields but unsuited to AI 
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terminology so a decision to use natural language terms was made. Using these key words, search 

terms, synonyms and subordinate terms were identified:  

 

Term     Synonym  Subordinate term 

cardiac rhythm    (none) 

artificial intelligence   (none)   pattern recognition 

neural network 

fuzzy 

support vector 

machine 

expert system 

decision tree 

genetic algorithm 

evolutionary  

        Bayes 

Classifier    (none) 

algorithm    process 

comparison     correlation, association 

implantable cardioverter-defibrillator (none) 

 

Search terms were combined using Boolean operators, rationalised by limiting combinations to 

those forming “sentences” within the identified domains. Results were concatenated (see 

Appendix B) and references stored in EndNote. 

  

2.2.1 Search Scope 

Broad subject areas encompassed by the research question were biomedical engineering, 

computer science and medicine. The search was limited by inclusion and exclusion criteria, 

selection of source databases, search strategy and the selection of references by relevance. 

 

2.3 Inclusion and Exclusion Criteria  

To ensure a sufficiently broad search but limiting results to high quality texts and research most 

likely to be of relevance, inclusion and exclusion criteria were identified: 

  

2.3.1 Inclusion Criteria: 

1. Direct relevance to the research question. 

2. Recognised authoritative texts, peer-reviewed research, reviews, conference proceedings 

(within 5 years) or new technology/ research not found elsewhere; patents; technical 

papers (grey literature). 
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2.3.2 Exclusion Criteria: 

1. Literature relating to the topic area but not related to the specific focus. 

2. Literature proposing new algorithms, using theory alone, without provision of bench test 

results and standard statistical analysis. 

 

2.4 Literature Sources 

For subject areas identified in the scope (see subsection 2.2.1), all relevant high quality literature 

that met the inclusion criteria (see subsection 2.3.1) were found to be available through online 

search engines. 

  

The Google search engine was used as a general search tool with Google Scholar as a broadly 

based general literature search resource. Specialist search resources were selected based on 

subject areas and likely availability of content relevant to the research question. Scientific 

bibliographic database resources were evaluated. In the area of general scientific enquiry: Elsevier 

Sciverse Hub and Web of Science; for biomedical engineering: Institute of Electrical and 

Electronics Engineers (IEEE) Xplore and IET InspecDirect; for computer science: ACM Digital 

Library and CiteseerX and for medicine: Embase, and Cinahl.PubMed (Medline portal) and 

Cochrane Library. During trial searches, Elsevier Science Hub, IET InspecDirect, Embase, 

Cinahl, ACM Digital Library and CiteseerX were considered to add little to results, either 

producing duplicate results or lacking sufficient granularity by producing excessive results.  

 

It was noted that, other than for selected cases, non-indexed abstracts from major medical 

conferences were not available within these resources. To correct for this, recent conference 

abstracts from Heart Rhythm Society (HRS), the most prominent annual international conference 

in the field were sought. Three dedicated databases were used:  HRS Abstract Archive 2006 - 

2010 Abstracts2View™ Archive and Online Itinerary Planners for HRS 2011 and 2012 (Heart 

Rhythm Society 2010a, 2010b, 2011, 2012). 

 

The sources selected were: Google (restricted to first 10 results by relevance); Google Scholar 

(restricted to first 10 results by relevance); IEEE Xplore; Science Direct; Web of Science; 

PubMed; HRS Abstracts and the Cochrane Library. Primary, secondary and grey literature 

sources were considered. Primary sources were defined as: articles in peer reviewed journals; 

conference proceedings and textbooks of widely accepted high quality and repute. Secondary 

sources were defined as: review articles in peer reviewed journals; reference books; Wiki and 

other Internet sites; biographies.  
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Grey literature sources were defined as: theses; unpublished conference proceedings; reports. 

Secondary sources were examined for cited high profile research not previously found using the 

search strategy.  

 

2.5 Search Strategy 

The scope of the search was defined. Search terms identified in section 2.2 were entered as search 

criteria into the selected resources and the numbers of references returned for each term or 

combination of terms were assessed.  

 

2.5.1 Granularity of Search 

A sufficiently narrow search, retaining the most relevant results, was considered to be ≤ 100 

returned results. If the number of returned results was greater than 100, refinement of the search 

was considered to reduce the results and improve relevance. Selection of a second or third term 

and use of Boolean operators was used, provided they produced a logical search “sentence”. Use 

of fewer terms and Boolean OR would be used to widen a search if required. Narrowing a search 

used combinations of search terms using Boolean AND as well as “filters” (such as: topic areas; 

journal name or keywords) offered within resources. When sufficiently narrow, results were 

examined for relevance to the study and stored for further examination and refinement. 

 

2.5.2 Relevance 

Relevance was considered to be content involving the design, testing and evaluation of methods 

for cardiac rhythm classification using an AI technique or a commercial ICD. Initial assessment 

used title and abstract content. References were rated highly, moderately or not directly relevant. 

Where review articles were found, their reference lists were examined to ensure inclusion of 

relevant cited literature. Where the same research was represented by a conference paper and 

subsequent full journal paper the latter was quoted. For highly relevant papers, the content was 

evaluated and critically reviewed. 

 

2.6 Search Results  

An initial literature search was performed in October 2005 and repeated in April 2012. Results of 

the latter search were analysed. It was noted that approximately 55% of relevant references 

originated between 2005 and 2012. 

 

Use of a single search term was found to provide insufficient granularity. Use of Boolean AND 

operators to combine terms in “sentences” of two or three terms achieved sufficient granularity 

and no further refinement was required (see Appendix B). 

 

Search “sentences” used were:  
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rhythm  

rhythm AND classifier  

rhythm AND “artificial intelligence” 

rhythm AND “neural network”   

rhythm AND “fuzzy” 

rhythm AND “support vector machine” 

rhythm AND “expert system” 

rhythm AND “decision tree” 

rhythm AND “Bayes” 

rhythm AND “genetic algorithm” 

rhythm AND evolutionary 

rhythm AND “pattern recognition” 

implantable cardioverter-defibrillator 

algorithm AND comparison 

implantable cardioverter-defibrillator AND algorithm 

implantable cardioverter-defibrillator AND algorithm AND comparison  

 

Note that results using the term “cardiac”, and the synonyms “correlation”, “association” and 

“process”, although tested, were unproductive and are not listed. 

 

Results from both domains (see section 2.2) were pooled. Following elimination of duplicates and 

an initial evaluation for relevance, returned results were: 4 book chapters, 7 peer-reviewed 

reviews, 136 peer-reviewed journal papers and 47 peer-reviewed conference papers (within 5 

years of 2012). No relevant grey literature or patents were found.  

 

2.6.1 Results by Year of Publication  

Publication trends were examined (see Fig. 2.1). Publication in significant numbers commenced 

in 1989 and plateaued at about 4 publications per annum until 2004. For 2012, mean annual 

publication had risen to approximately 11 publications per annum.  

 

2.6.2 Results by Journal 

Results were analysed by journal and impact factor (IF) for 2010 (BioxBio.com, 2013). The 

scientific journal with most publications in the field was IEEE Transactions on Biomedical 

Engineering (21 papers), then Pacing and Clinical Electrophysiology (14 papers). Papers 

published in journals with very high impact factor: 6 papers in Circulation (IF = 14.816) and 4 in 

the Journal of the American College of Cardiology (IF = 12.535). The most prominent journal in 

the field of computer science was Artificial Intelligence in Medicine (IF = 1.568). Surprisingly, a 
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major journal in the specialised field of electrophysiology, Heart Rhythm (IF = 4.246) was under-

represented in results, providing only one result (see Appendix C (a)). 

 

 

 

Figure 2.1 Totals relevant publications per year, by year of publication. 

 

 

2.6.3 Results by Author 

Returned results were searched by co-authorship for publication frequency, ranked by number of 

citations and most recent citation in the field within 10 years (see Appendix C (b)).   

 

The four most prominent authors were all USA based: Dr Michael Gold, Chief of Cardiology at 

the Medical University of South Carolina and Professor of Medicine at the Medical University of 

South Carolina; Dr Charles Swerdlow, a cardiac electrophysiologist at Cedars-Sinai Medical 

Center, Los Angeles and Professor of Medicine at the University of California, Los Angeles;  

Jeffrey Gillberg MS, Research Director at Medtronic, who has a large portfolio of published 

articles, reviews and patents related to cardiac rhythm management devices and Dr Kenneth 

Ellenbogen, Chairman of Cardiology at McGuire Veterans Administration Medical Center in 

Richmond, Virginia and Professor in Cardiology at Virginia Commonwealth University.  

 

Other prominent authors were: Prof. Peter Macfarlane Institute of Cardiovascular and Medical 

Sciences, University of Glasgow, renowned for pioneering work on application of computer 

techniques to ECG interpretation; Associate Prof. Vessela Krasteva, Bulgarian Academy of 

Science, Sofia, Bulgaria; Yüksel Özbay, Selcuk University, Konya, Turkey; Prof. Stanislaw 

Osowski, Warsaw University of Technology and Dominic Theuns PhD at Erasmus MC, 

Rotterdam, the Netherlands. 
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2.6.4 Conference Papers 

Representing recent and unpublished research within 5 years (2007 to 2012), 47 peer reviewed 

conference papers were found. Major conferences were identified as the IEEE Engineering in 

Medicine and Biology Society, HRS and Computing in Cardiology conferences. Biomedical 

engineering and computer science conferences were well represented in the literature, believed to 

be linked to the custom of publishing full papers, often indexed, whereas medical conferences, 

with a more usual format of brief published abstract, supported with a poster or oral presentation 

and commonly non-indexed, were not well represented. 

 

2.6.5 Results by Algorithm 

Search results were evaluated for classifier technologies and ranked by both journal and 

conference papers and total publications since 2007. Neural networks were ranked highest (14 

journal and 11 since 2007); followed by fuzzy logic, support vector machines and morphology 

discrimination (see Appendix D). Uses of hybrid technologies and multi-classification systems 

were led by neuro-fuzzy classification (4 publications since 2007). Two studies compared 

multiple technologies (Jovic & Bogunovic 2011; Acharya et al. 2004). In a similar ranking for 

ICD algorithms, morphology and dual chamber detection ranked highest (see Appendix C (c)).  

 

2.7 Selection of References 

Having been refined by relevance, search results were further refined using bibliometric scoring.  

Review articles were examined for supplementary references to ensure broad capture of important 

sources. Rejected articles were re-examined for re-inclusion based on any importance or relevance 

“missed” by the inclusion/ exclusion criteria. 

 

2.7.1 Bibliometric Analysis 

Relevant results were ranked for highly-citedness using bibliometric analysis. Impact factors were 

accessed from BioxBio.com (2013) and citation scores from Google Scholar. Three factors were 

used for ranking: Google Scholar total citations per paper (C); calculated citations per paper per 

year since publication (c′) (2.1) and impact factor (IF).  

 

𝑐′ =  (𝐶 / (2012 – (𝑦𝑒𝑎𝑟 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛))     (2.1) 

 

References were further refined, satisfying at least one of the following criteria:  

 

1. C ≥ 25 (highly-cited papers). 

2. c′ ≥ 8 (recently published highly-cited papers). 

3. Published in 2012 in journals with IF > 2 (high profile recently published papers). 
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2.7.2 Supplementary References 

Among review papers, 7 additional references were considered important, although none met the 

inclusion criteria, they were retained as background (Moss et al. 2004; Poole et al. 2008; Osswald 

et al. 2000; Langenfeld et al. 1998; Ellenbogen et al. 1990; Turcott & Pavek 2008; Revishvili 

1999). Excluded papers were re-examined for inclusion should they offer significant relevant 

content. One paper was reinstated in this way (Hintringer et al. 2004). 

 

2.7.3 Evidence 

In addition to citation data, levels of evidence were evaluated. References were dominated by 

bench studies using open-access data sources for classifier training, testing and validation. A 

number of review papers and cohort studies were available. Only two randomised clinical trials 

(RCT) were available (Gold et al. 2012a and 2012b). 

 

2.8 Critical Reviews  

The final collection of 47 papers consisted: 4 review papers; 19 papers (1 conference paper) 

describing single classifier technology; 4 hybrid classifiers; 6 multi-classifier systems; 2 

comparing classifiers; 7 papers (1 conference paper) single ICD algorithms and 6 comparative 

studies of ICD algorithms. Full texts were accessed online and subjected to critical review. 

 

Critical reviews took account of provenance, hypothesis, study design, limitations and impact on 

this research. All selected references were published by authors and scientific journals of high 

repute. Papers were grouped as: review papers; single classifiers; hybrid classifiers; multi-

classifier systems; comparative studies of classifiers; single ICD algorithms and comparative 

studies of ICD algorithms. Single classifier papers were further grouped by classifier type: 

statistical classifiers; syntactic classification; neural network classifiers; fuzzy classifiers; 

decision tree classifiers; support vector machine classifiers; k-nearest neighbour classifiers and 

other classifier technologies. 

 

2.8.1 Review Papers 

Aliot et al. (2004) compared arrhythmia detection algorithms in ICDs using a meta-analysis of 

data published in previous individual studies. An overview of five different manufacturers’ 

algorithms was provided. Clinical results of selected studies were summarised and showed all 

algorithms having a VT sensitivity of >98% and specificities between 66 and 94%. Hintringer’s 

study (2001) compared four device algorithms using the same arrhythmia test set, showed 

specificities of 11% for the Boston Scientific, 12% for the Biotronik; 20% for the Medtronic and 

28% for the ELA algorithms. This review discussed limitations of many of the studies, advising 

cautious interpretation due to small study sizes, lack of large randomised studies and that some 

studies focused on specific tachycardias, making comparisons difficult. They also mention 
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limitations of imperfect ICD sensing and data storage in capturing and counting arrhythmic 

events. On statistical analysis of algorithm performance, they noted that specificity illustrated 

classification performance of supraventricular rhythms and positive predictive values (PPV) 

measured appropriateness of therapies. The authors criticised lack of use of PPVs in studies, as 

these are known to have value as accuracy indices (Charbonnier & Tacker, 1994). They 

recommended use of the generalised estimating equation (GEE) to correct for bias, where a few 

patients account for many episodes (Zeger et al. 1988) and cite Wilkoff et al. (2001) in this. They 

suggested improved uniformity of study design and that new hemodynamic sensors might 

augment rate detection for therapy decisions. This review of ICD algorithms failed to analyse 

results in depth, citing differences in statistical technique between studies. The recommendation 

of PPV as a measure of algorithm accuracy does not solve the issue of a global accuracy measure, 

as it uses only two cells of the 2 x 2 contingency table, true and false positives, where alternative 

statistics, such as kappa (κ), use all four cells of the 2 x 2 contingency table, more fully 

representing accuracy. 

 

An invited review by Kaszala & Ellenbogen (2010) centred on use of sensors in devices. They 

summarised sensors in current use and included a section on myocardial function relevant to this 

study. They particularly mentioned the study of Osswald et al. (2000) which demonstrated that 

right ventricular (RV) impedance changes correlated with contractility and that acceleration 

sensors within the lead achieved a similar effect (Langenfeld et al. 1998). Poor specificity of 

arrhythmia discrimination using hemodynamic sensors (Ellenbogen et al. 1990) was briefly 

discussed and they suggested miniaturised wireless sensors and photoplethysmography (Turcott 

& Pavek 2008) as potential solutions for this. This paper failed to critically appraise the 

technologies it summarised, seeking to offer a technological overview and look to the future, 

rather than assessing the available research. 

 

Andrikopoulos et al. (2010) focused their review on device-based monitoring. A summary of 

arrhythmia diagnostic capabilities of devices, including counters, histograms and electrogram 

storage was provided. They provided a brief overview of self-diagnostic capabilities related to 

pacing, sensing and impedance and briefly mentioned automaticity and its associated reduced 

need for intervention. Heart failure monitoring capabilities with heart rate variability (HRV), 

intrathoracic impedance, patient activity, intracardiac pressure monitoring, patient alerts and ECG 

ST segment monitoring to detect ischemic events were summarised. The authors concluded with 

a suggestion for improvements in the accuracy of diagnostics and for patient alerts as important 

directions for development. Although this review was likely to guide study design, it offered no 

assistance in the area of algorithm accuracy and performance. 
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Jackson et al. (2012) emphasised the importance of misclassification of atrial arrhythmias to rates 

of inappropriate therapy. They quoted the MADIT II trial (Moss et al. 2004) and the SCD-HeFT 

trial (Poole et al. 2008) where 34% and 22% of patients respectively received inappropriate 

shocks. They discussed consistency of detection algorithms, focussing on detection and 

prevention of inappropriate shock treatments. Arrhythmia detection algorithms were briefly 

outlined but no suggestions of specific future developments in this area were made, limiting its 

value for this study. 

 

2.8.2 Statistical Classifiers 

Zhang et al. (1999) aimed to demonstrate a chaotic complexity measure described by Lempel & 

Ziv (1976) applied to arrhythmia detection. Classification was non-automated sequential 

hypothesis testing. They found sensitivity, specificity and accuracy to be incremental with ECG 

window lengths, >90% at 5 sec and reaching 100% at 7 sec. Statistical analysis and comparisons 

with previous studies were not made. They failed to discuss methods for automation of their 

algorithm.  

 

Chiarugi et al. (2007) described a method to detect termination of atrial fibrillation (AF) based 

on two-lead surface ECGs. QRS complexes were eliminated using a QRST cancelling approach 

based on morphology classification and average cluster template subtraction. Stepwise 

discriminant analysis was used for feature selection. This paper, within its limitations and specific 

to the discrimination of AF termination modalities, was well designed and conducted. The study 

did not directly address rhythm classification beyond AF, limiting its value. 

 

2.8.3 Syntactic Classification 

Udupa & Murthy (1980) aimed to develop a syntactic approach to ECG rhythm recognition. The 

authors succeeded in their aim and produced some initial accuracy measures however they failed 

to validate these with statistics or comparison with other studies. Syntax analysis was performed 

using context-free languages to classify the patterns. This short paper described a novel process 

using a very small development set. There was a simple validation process but no testing with 

new data. Statistics were lacking and detailed discussion very brief. The paper was useful to this 

research as a test of concept of syntactic analysis of ECG rhythm. 

 

2.8.4 Neural Network Classifiers 

Yang et al. (1994) compared an ANN with deterministic logic for ECG classification. 

Combination methods of the neural-network and deterministic classifications were explored. 

They reported sensitivity for AF using ANN as 92%, compared with 88.5% using deterministic 

classification, with no difference in specificity of 92.3%. 
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Coggins et al. (1995) demonstrated classification of QRS morphologies using a purpose-designed 

very-large-scale integration (VLSI) circuit containing a neural network classifier. The ANN used 

a 6-node hidden layer and 3 outputs with a “winner-take-all” arbitration. Results showed ≥ 93% 

accuracy for VT and 77.6% -100% for sinus tachycardia. They offered preliminary results and 

suggested possible improvements. It was useful to this study as a practical approach to the 

integration of technology in devices. 

 

Minami et al. (1999) used power spectral analysis to generate 5 spectral components as inputs to 

an ANN classifier implemented on a single chip central processing unit (CPU) and compared 

classification of their system using surface ECGs against intracardiac electrograms (EGM). For 

classification into normal, VT or VF rhythms, ECG showed 80% sensitivity and 92% specificity; 

the EGM showed 68% sensitivity and 86% specificity. This paper offered an example, useful to 

this research, of effective rhythm classification using an ANN and demonstrated its 

implementation as a low-power single chip configuration, offering potential for incorporation in 

implantable devices. 

 

Kara & Okandan (2007) examined specifically the diagnosis of AF as a rhythm diagnosis. Mean 

power spectral densities were used as features for input to an ANN. On the trained network, 

classification performance of sensitivity, specificity and positive predictive value, and accuracy 

were 100%. The authors failed to detail the source of their ECG data. Discussion of study 

limitations was brief, mentioning only that the method worked off-line and not in real-time. This 

paper provided an elegant methodological description, though its failings render it of little further 

value. 

 

Christov & Bortolan (2004) ranked ECG features for premature ventricular contraction (PVC) 

classification. Using Matlab Neural Network Toolbox, two approaches were taken: the 

Levenberg–Marquardt algorithm for rapid convergence and the Bayesian framework for good 

generalisation. For all features sensitivity was 99.7% and specificity 98.5%. Features were ranked 

using the values of ANN input weights. Additional features improved specificity (up to 98.5% 

with 26 features). The study concluded that beat classes should have individual optimal feature 

sets for classification. This demonstrated use of an ANN for feature selection, indicated grouping 

of features and suggested further research into class-specific feature sets, valuable in this research. 

 

Acharya et al. (2008) aimed to show that of ECG power spectral density features, extracted using 

an autoregressive moving average model improved ANN ECG classification. The authors were 

able to show that their method held advantage over certain alternate feature extraction alternatives 

but failed to adequately compare the results with other studies. This paper held interest solely for 

its use of power spectral density as ECG features providing limited value for this research. 
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2.8.5 Fuzzy Classifiers 

Usher et al. (1999) designed a fuzzy inference system for cardiac rhythm classification intended 

for use in ICDs. The authors concluded the method provided correct rhythm classification and 

was computationally efficient. Without published results or statistical analysis, these claims were 

poorly substantiated. This paper was of value to this research in its demonstration of the feasibility 

of fuzzy systems for this application.  

 

Anuradha et al. (2008) looked at four features extracted from ECG intervals used as inputs to a 

Mamdani fuzzy classifier and assessed classification accuracy. The results showed an accuracy 

of 93.1%. Having quoted four similar studies (Zong & Jiang 1998; Sugiura et al. 1998; Acharya 

et al. 2003; Kannathal et al. 2005) they failed to compare their results with these studies to 

demonstrate any benefit from their approach. Though an interesting study, it was unclear if the 

use of a fuzzy classifier, the choice of features or wavelet pre-processing was responsible for 

success. The use of features derived only from RR interval seemed a limitation, so perhaps we 

can ascribe any benefit to the fuzzy classifier. 

 

2.8.6 Decision Tree Classifiers 

Tsipouras et al. (2005) designed a knowledge-based rhythm classification system using ECG RR 

interval features for beat then rhythm classification. Rules based on expert clinical practice were 

applied sequentially. Detailed results were tabulated and the summary statistics provided were: 

beat classification 98% accuracy; rhythm classification 94% accuracy. Not unexpectedly, the 

system performed well on beats pre-selected to match the classification system and less well on 

un-preselected beats. Described as an expert system and “deterministic automaton”, the system 

de-facto comprised a decision tree classification system. There was no attempt at statistical 

significance measures. The study was useful as an indicator for the utility of expert knowledge in 

a classification system. 

 

Rodriguez et al. (2005) investigated the utility and assessed performance of a personal digital 

assistant (PDA) to classify ECG beat and rhythm. Weka open source (University of Waikato, 

New Zealand), AnswerTree (IBM Corp., New York) decision tree and LogitBoost (Friedman et 

al. 2000) boosting applications were used. The authors derived inference rules from cardiology 

texts and pruned them using reduced-error pruning. A weighted majority vote provided final class. 

The algorithm was implemented in a PDA. The study was of interest for the extraction of 

inference rules and rule pruning, rather than algorithm performance. 

 

2.8.7 Support Vector Machine Classifiers 

Polat & Gunes (2007) conducted a bench study using an SVM to classify rhythm and PCA as a 

feature reduction method. Results with all three data allocations were 100% sensitivity and 
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specific and accuracy. The study suggested PCA feature selection and SVM attained near perfect 

performance and provided an interesting indicator, within its limitations. 

 

Asl et al. (2008) proposed an arrhythmia classification algorithm based on generalised 

discriminant analysis (GDA) and SVM. Features were reduced using GDA and used as inputs to 

the SVM. SVM classification using one versus all (OVA) and one versus one (OVO) methods 

were compared. The SVM with OAA was found to produce marginal performance gain.  SVM 

classifier performance using GDA feature reduction, sensitivity was 95.7%, specificity 99.4% and 

accuracy 99.1%. The study served to recommend SVM as a classifier, despite design faults. 

 

2.8.8 k-Nearest Neighbour Classifiers 

Owis et al. (2002), in a bench study, used nonlinear dynamics of ECG signals for rhythm 

classification. Clustering, Bayes and k-Nearest Neighbour (k-NN) classification methods were 

compared. The best overall classifier was k-NN (k=12) giving a sensitivity of 85% and specificity 

of 34%. Owis’ study, contradicted the results of Zhang (1999), with the resultant conflicting 

evidence of utility of chaotic features in this research. 

 

Minhas & Arif (2008) demonstrated use of a wavelet transform and a k-NN classifier to provide 

high classification accuracy. The study design, using this classifier to assess the value of features 

based on a wavelet transform as well as the use of PCA, reduced the impact of this study. The 

seeming inadvisability of this approach limited its usefulness to this study. 

 

2.8.9 Other Classifier Technologies 

Sarkar et al. (2008) described a Lorenz plot as a detector for AF and atrial tachycardia (AT) with 

an irregular ventricular response and a supplementary detector for AT with regular response. The 

differences in density of the Lorenz plot distributions of RR intervals during various rhythms 

were illustrated. Validation showed that including the supplementary detector improved 

sensitivity from 80% to 92% and reduced specificity from 99% to 96%. The authors emphasised 

the utility of this study for longer term monitoring of atrial tachyarrhythmia, rather than its 

classification accuracy, limiting its utility for this study. 

 

Bayesian classifiers have not been widely tested in this domain with only one paper found (Brüser 

et al. 2012), looking at diagnosis of AF from ballistocardiograms, which examine body vibrations 

corresponding to heart beats, tested a naïve Bayes classifier among others and found it not to be 

a high performer.  
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2.8.10 Hybrid Classifiers 

Wang et al. (2001) proposed short-time multifractality for arrhythmia detection. The classifier 

was a fuzzy Kohonen network (Tsao et al.). Data was recorded from patients at ICD implantation. 

Sensitivity, specificity and accuracy were: for VF (98%, 96% and 97%), VT (95%, 99% and 97%) 

and AF (98%, 100% and 99%). The authors suggested that a large cardiac rhythm database would 

be necessary. This paper was of interest for its assessment of fractal dimensions of the ECG and 

their usefulness as features for rhythm classification. 

 

Linh et al. (2003) devised a hybrid neuro-fuzzy classifier for heart rhythm. Misclassification rate 

was 3.95%, corresponding to an accuracy of 96%. Comparisons were made to four results from 

the literature but not discussed in detail or the statistical significance of their results. 

 

Polat et al. (2006) applied an existing artificial immune recognition system (AIRS) to arrhythmia 

classification. The algorithm was in four stages: initialization; memory cell identification and 

artificial recognition ball (ARB) generation; competition for resources and development of a 

candidate memory cell and memory cell introduction. The study showed an interesting anecdotal 

use of a relatively new field of AI in rhythm classification. 

 

Exarchos et al. (2007) proposed a fuzzy expert system (FES) for ischaemic and arrhythmic beat 

classification. Construction of decision trees used the C4.5 inductive algorithm with post-pruning. 

Using the FES, performance was 92.4 to 98.9% sensitivity, 97.6 to 99.9% specificity and 95.8% 

accuracy and was statistically significant. This was a well-designed study which succeeded in its 

aims, a possible criticism was the method for extraction of crisp rules, relying on data mining, 

rather than expert knowledge. The paper convincingly assessed the accuracy of its prototype 

algorithm and compared its accuracy with competing systems. Several aspects of methodology 

acted as a model for this research. 

 

2.8.11 Multi-Classifier Systems (MCS)  

Leong & Jabri (1992) designed a neural network-decision tree multi-classifier system which used 

a first-past-the-post arbitration strategy. They used intracardiac electrogram morphology and 

timing for decision tree classification, augmented by a neural network for 1:1 tachycardias. 99.6% 

correct classification was achieved however there was no statistical analysis of this result. In this 

very early description of a multiple classifier system, the authors discussed possible reasons for 

misclassifications and the limitations of their study. Comparison is made with an ICD algorithm 

using the same data but no detailed statistical analysis was made of the differences.  

 

De Chazal et al. (2004) designed and tested an ECG classification system comparing eight 

combinations of features and 12 classifier configurations. Their system consisted of linear 
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discriminant classifiers using Bayesian product integration as a combiner. For supraventricular 

ectopic beats, sensitivity was 75.9%, positive predictive value 38.5% and false positive rate 4.7%. 

For ventricular ectopic beats, sensitivity was 77.7%, positive predictive value 81.9% and false 

positive rate 1.2%. The authors found that feature sets using absolute amplitude and ECG 

segmentation improved results. They discussed choice of data division methods and stated that 

dividing data on a beat basis optimistically biased classification results. They also discussed 

possible reasons for misclassification errors. 

 

De Chazal and Reilly (2006) proposed an adaptive ECG arrhythmia detection where the classifier 

used expert knowledge about a portion of the recording to improve performance on the rest of the 

recording. The system processed ECG with a global-classifier, placing beats into one of five 

classes. A fraction of the beats were subjected to expert validation and corrected. A local-classifier 

was trained using the validated beats and combined with the global-classifier to form an adapted 

system to classify future beats. For premature atrial contractions (PAC’s) sensitivity was 87.7%, 

accuracy 95.9% and PPV 47%; for PVC’s sensitivity was 94.3%, accuracy 99.4% and PPV 96.2. 

Global accuracy was 84.5%. A full confusion matrix was provided. The results also showed 

performance increases with training on the local record. The use of a simple combining strategy 

served as a good working example of multiple classifier system in practice.  

 

Osowski et al. (2004) demonstrated a multiple classifier approach to ECG classification using 

SVM and a weighted voting combiner. The authors failed to make detailed comparison with other 

studies or estimate statistical significance. Misclassification rates using a higher order statistics 

feature extraction was 3.5% and 2.8% using the Hermite feature extraction method and 2.6% with 

the combined classifier. This study expanded on previously published work by the authors Linh 

et al. (2003).  

 

Ozbay et al. (2006) conducted a bench study of ECG classification using a fuzzy clustering-neural 

network (FCNN) multi-classifier system in a cascade configuration. Inputs were segments of 

ECG in the RR interval. Outputs of unsupervised self-organizing neurons generated inputs to an 

ANN classifier. Results were compared between an ANN and the FCNN. Classification accuracy 

was 98.9% (NN) and 99.9% (FCNN) and mean classification error 0.22. Training time for the 

FCNN was 60% that of the ANN. They concluded that FCNN generalised better than ANN, with 

a shorter training time. The study was of interest for its innovation and suggested that this type of 

classifier may be more computationally efficient for similar accuracy to an ANN.  

 

Ceylan et al. (2009) developed a fuzzy c-means clustering-PCA-NN multi-classifier system in a 

cascade configuration. Feature extraction used PCA, fuzzy c-means clustering and wavelet 
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transform, then compared performance with an ANN classifier. This was an interesting study of 

a multi-classifier system in a cascade configuration, let down by poor study design. 

 

2.8.12 Comparative Studies of Classifiers 

Jovic & Bogunovic (2011) compared 7 classifiers using RR interval features in a bench study. 

The best overall accuracy of 99.6% was achieved by random forest. Classification sensitivity, 

specificity and accuracy for normal versus arrhythmia with decision tree; Bayesian network; 

ANN; SVM and random forest all approached 100%. Selected results, noted only in passing by 

the authors, showed very high performance for ANN, SVM and random forest in detection of 

arrhythmia. This bench study was particularly useful for its comparisons of several classification 

methods on the same data and its comparisons with other studies. 

 

Acharya et al. (2004) examined derivatives of the RR interval, used as inputs to two alternate 

classifiers, an ANN and a fuzzy classifier and results compared. They found the accuracy of their 

fuzzy system to be better than the ANN at 84% or better. This was an interesting technical paper 

however due to its lack of analysis served only as insight to the direction of future research. 

 

2.8.13 Single ICD Algorithms 

Kuhlkamp et al. (1999) compared arrhythmia discrimination functions of single chamber and dual 

chamber ICD algorithms (see Chapter 1, subsections 1.1.1, 1.3.1 and 1.3.2). Inappropriate 

treatment rates were used as the primary measure. They found the rate of inappropriate therapies 

was significantly higher with the dual chamber detection system. In summary, this study was well 

constructed and executed within its recognised limitations (single centre, non-randomised) and 

used standard statistical analysis techniques. The study concluded that, due to flaws in the 

decision algorithm, the rate of inappropriate therapies in the dual chamber ICD algorithm under 

evaluation was significantly higher. 

 

Swerdlow et al. (2000) aimed to assess the ability of a new ICD with combined atrial and 

ventricular cardioversion capability to distinguish prolonged episodes of AF that required 

cardioversion from other AT’s. Sensitivity of the ICD algorithm for AT/AF diagnosis was 100% 

and specificity was 99.99%. This study describes experience with this ICD. The results compared 

favourably with the quoted comparative study (Wellens et al. 1998) but the authors failed to offer 

detail of statistical significance.  

 

Wilkoff et al. (2001) proposed methods for comparative studies and assessed the PR Logic dual-

chamber detection algorithm using these methods. Recommendations for statistical corrections of 

algorithm performance metrics and a brief analysis of the algorithm under question using these 

techniques were made. The authors noted that absolute sensitivity could not be calculated, as the 
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ICD stored only data for episodes satisfying the detection criteria and a relative sensitivity was 

calculated. Absolute specificity of VT/VF detection could not be calculated for the same reasons 

and an incremental specificity was calculated. Detailed recommendations for statistical 

corrections of algorithm performance metrics were made with specific guidance on calculation of 

statistical corrections for sensitivity and specificity made. P values for algorithm performance and 

comparisons with other algorithms were not presented in this study. 

 

Swerdlow et al. (2002) investigated a downloadable temporary ICD algorithm enhancement using 

Haar wavelet transforms of intracardiac electrograms as a morphology feature to aid 

discrimination of supraventricular tachycardia (SVT) from VT. Using a match threshold of 70%, 

sensitivity was 100%, GEE corrected positive predictive value was 61% and specificity 78%. The 

receiver operating characteristic (ROC) curve showed optimal match threshold to be 60–70%. 

They concluded that 69% of inappropriate detections could have been prevented by optimal 

programming. The authors failed to define the gold standard. Confidence intervals were quoted 

but no details of statistical tests used or origin of the quoted P value for specificity (P < 0.01).  

 

In a multicentre, open study, Kouakam et al. (2004) aimed to evaluate the performance of a new 

dual-chamber ICD detection algorithm. Sensitivity was 99% and specificity 89%. Inappropriate 

therapy occurred in 17 cases. They concluded that though performance of the algorithm was 

satisfactory, diagnosis of 1:1 tachycardias was imperfect. 

 

Kremers et al. (2012) demonstrated a use of RV pressure, incorporated in an investigational ICD 

device, to assess hemodynamic stability during tachycardia and improve diagnostic accuracy. The 

algorithm used RV pulse pressure (RVPP), RV dP/dtmax and electrogram based detection. In this 

small technology evaluation, 100% sensitivity and specificity was claimed, suggesting use of RV 

pressure improves arrhythmia discrimination. The study succeeded in testing the utility of the 

technology, paving the way for evaluation in a randomised clinical trial. 

 

2.8.14 Comparative Studies of ICD Algorithms 

Hintringer et al. (2001) conducted a study to compare four ICD algorithms of Biotronik, ELA, 

Guidant and Medtronic, using arrhythmias recorded during invasive electrophysiological studies 

applied to the inputs of ICDs in vitro. The responses were evaluated using interrogation of the 

ICD. Specificities were compared using McNemar’s test (McNemar 1947). Specificities for 

supraventricular tachyarrhythmia were: Biotronik (12%); Guidant (11 %); ELA (28%) and 

Medtronic (20%), all very low values compared with the target 100% specificity. The authors 

identified potential for miscalculations of absolute specificity due to the disproportionate 

incidence of specific rhythms compared with their actual prevalence. They defended their 



54 

 

approach as a valid comparison, as all four algorithms were tested with the same arrhythmias. 

There was no comparison with data from other studies and no indication of P values.  

 

Gold et al. (2002) Morphology-based algorithms had been shown to be effective for arrhythmia 

discrimination by Langberg et al. (1988). The authors proposed a second morphology channel 

could result in improved discrimination and evaluated a new algorithm based on vector timing 

and correlation (VTC). The results showed encouraging performance measures. Algorithm 

performance was assessed by comparison with physician diagnosis. In dual-chamber versus single 

chamber configurations (see Chapter 1, subsections 1.1.1, 1.3.1 and 1.3.2), sensitivities were 

100% and 99% respectively and specificities 97% and 97%. Although no direct comparisons were 

made  with  competing  morphology  algorithms,  the  authors  concluded  that  their  algorithm 

demonstrated accurate classification of supraventricular and ventricular tachyarrhythmia. 

 

Theuns et al.  (2004)  compared single and dual- chamber algorithms for improved specificity. 

Correction was made for multiple episodes within a patient using a GEE method. 

Tachyarrhythmia detection (atrial and ventricular) was not significantly different between both 

settings (P = 0.77). The study was well-designed and used a standard methodology. No 

comparisons were made with comparable studies. 

 

Hintringer et al. (2004) compared specificity and the impact of sample size on specificity of ICD 

algorithms, using published clinical data and the authors own bench study. Data from multiple 

studies were pooled and specificities recalculated. Comparison of algorithms used McNemar’s 

test (McNemar 1947) and the relationship between specificity and sample size was using 

Spearman’s correlation coefficient. Specificities for the five ICD algorithms were: Biotronik 

Phylax AV/ Tachos DR (90%); ELA Defender (89%); Guidant Ventak AV III/ Prizm II DR 

(89%); Medtronic Gem DR (68%) and St. Jude Photon DR (76%). The correlation between 

specificity and number of patients reached statistical significance at the 5% level. In a bench test, 

after correction for prevalence, specificities were: Biotronik Phylax AV/Tachos DR (95%); ELA 

Defender (99%); Guidant Ventak AV III/ Prizm II DR (94%); Medtronic Gem DR (93%) and St. 

Jude Photon DR (92%). The interesting relationship between specificity and sample size is 

unsurprising but previously undocumented in this context. The authors’ correction technique, 

using a weighting based on prevalence, was unproven and there was no explanation of the theory 

underlying their approach. The comparisons they made between algorithms clearly showed a 

difference using the same input data but statistical significance was not indicated. 

 

Gold et al. (2012a) directly compared two manufacturers ICD algorithms for their ability to 

prevent inappropriate therapy. PPV for VT were 41.2% for Guidant and 51.3% for Medtronic 

devices. A standard programming configuration was used and chi-squared tests were used to 



55 

 

compare percentages. Cox proportional hazard models (Cox 1972) were used to obtain hazard 

ratios. Algorithm PPV’s were 41.2% for Guidant and 51.3% for Medtronic devices. Hazard ratios 

similarly favoured the Medtronic devices (1.34 for inappropriate therapy), P = 0.003. Similarly, 

Kaplan-Meier curve (Kaplan & Meier 1958) for inappropriate therapy-free survival favoured 

Medtronic (P = 0.002). This study was the first well-designed very large prospective RCT of its 

type. Within its limited scope, it was able to demonstrate differences in performance between two 

algorithms, supported by high quality statistical analysis. 

Gold et al. (2012b) assessed the performance of a new algorithm, specifically developed for an 

entirely subcutaneous ICDs (SICD), compared with established algorithms of dual- and single- 

chamber ICDs with standard intracardiac electrodes, the START study. The authors found that 

all systems had sensitivity of between 99 and 100%. Specificity of was 98.0% for the SICD and 

64.0-92.0% for single chamber ICDs and 32.7-89.8% for dual chamber ICDs and was 

significantly better than 2 of the 3 standard ICD systems (P < 0.001). This well designed algorithm 

performance study tested algorithms using the same data resulting in good direct comparability 

 

2.9 Summary of Literature 

Using the research question, a search strategy, literature sources resources and search terms were 

defined. The search included primary, secondary and grey sources and was conducted using 

Google, Google Scholar, IEEE Xplore, Science Direct, Web of Science, Pubmed, Heart Rhythm 

Society Abstracts and the Cochrane Library. Granularity was narrowed using Boolean AND 

combinations of terms and results were limited using inclusion and exclusion criteria. 

 

2.9.1 Reviews 

Amongst review papers, Jackson et al. (2012) emphasised that up to 34% of patients receive 

inappropriate therapy, partly due to misclassification of atrial arrhythmias. Aliot et al. (2004) 

analysed ICD algorithm performance research finding studies had poor comparability and there 

was a need for large scale randomised studies. They recommended standardised statistical 

analysis and suggested that hemodynamic sensors might augment arrhythmia detection. New 

sensor technology and diagnostic capabilities in implantable devices was highlighted by Kaszala 

& Ellenbogen (2010). RV impedance and an acceleration sensor within the lead for contractility 

monitoring were featured. The poor specificity of haemodynamic sensors (Ellenbogen et al. 1990) 

was discussed and photoplethysmography (Turcott & Pavek 2008) proposed as having potential 

to solve this. Andrikopoulos et al. (2010) focused on device-based monitoring and suggested 

improved accuracy of diagnostics and patient alerts as an important direction for development. 

 

2.9.2 Single Classifiers  

Since 1980, reports AI use for cardiac rhythm classification, served to establish a potential utility 

and suggest which technologies more suited to the field. In a comparison of studies of individual 
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classifiers, there were notable differences in study design, in particular: data source, sample size, 

ECG features and number of classes, with the implication that direct comparison might not be 

meaningful. Despite this, there was evidence of good classification accuracies, where quoted, of 

more than 83% (see Table 2.1). 

 

 

Table 2.1 Comparison of studies measuring performance of different AI classifiers. 

 

Study Classifier Classes Accuracy Sensitivity Specificity PPV 

Zhang et al. (1999) Statistical 3 100 100 100 - 

Chiarugi et al. (2007) Statistical 5 89-92 - - - 

Udupa & Murthy (1980) Syntactic 6 82 - 95 - 

Yang et al. (1994) ANN 2 - 92 92.3 - 

Coggins et al. (1995) ANN 2 93 - - - 

Minami et al. (1999) ANN 3 - 80 92 - 

Kara & Okandan (2007) ANN 2 100 100 100 100 

Christov & Bortolan (2004) ANN 2 98.5 99.7 98.5 - 

Acharya et al. (2008) ANN 9 83.8 81.7 100 100 

Anuradha et al. (2008) Fuzzy 8 93.1 - - - 

Tsipouras et al. (2005) Decision 

tree 

6 93 96.9 99.9 83.3 

Rodriguez et al. (2005) Decision 

tree 

3 92.7 - - - 

Polat & Gunes (2007) SVM 2 100 100 100 100 

Asl et al. (2008) SVM 5 99.1 95.7 99.4 93.5 

Owis et al. (2002) k-NN 5 - 85 34 - 

Minhas & Arif (2008) k-NN 6 99.5 - - - 

PPV= positive predictive value; Accuracy= correct classification rate 

 

 

Three studies claimed 100% accuracy (Zhang et al. 1999; Kara & Okandan 2007; Polat & Gunes 

2007) however these classified only 2 or 3 classes and this “simpler” requirement may have been 

responsible for over-optimistic results. High values in all performance indices were found using 

SVM classifiers (Polat & Gunes 2007; Asl et al. 2008), suggesting best overall performance. Of 

poorer performing classifiers with indices of between 80 and 90%, one (Acharya et al. 2008) 

quoted sensitivity of 83.8% and specificity of 100%, reflecting trade-off between sensitivity and 

specificity, with the accuracy reflecting the lower of the two values. Two studies directly 

compared classifier performances, using the same data (Acharya et al. 2004; Jovic & Bogunovic 

2011). Notable among these, Jovic & Bogunovic (2011) compared 7 classifiers, (see Table 2.2). 

 

Jovic & Bogunovic (2011) showed that clustering algorithms performed poorly and that decision 

tree, Bayesian, ANN, SVM and random forest algorithms, all showing accuracies of > 90%, 
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appeared more accurate. Random forest, a combination of decision trees in a multi-classifier 

system, was found to be the best classifier. Despite poor study design, the comparison of 

classification methods using the same data was useful to act as a guide to study design and 

suggests a potential advantage of using multi-classifier systems for improving accuracy. 

 

 

Table 2.2 Comparison of ECG rhythm classifiers. (Data from Jovic & Bogunovic 

(2011). 

 

Classifier Accuracy (%) 

K-means clustering 49.3 

EM clustering 50.8 

Decision tree (C4.5) 92.2 

Bayes 99.4 

ANN 91.4 

SVM (linear) 73.5 

SVM (squared polynomial) 98.4 

RF 99.6 

Accuracy= correct classification rate 

 

 

Table 2.3 Comparison of ANN and fuzzy classifiers. (Data from Acharya et al. 

(2004). 

 

Rhythm Class 
Accuracy (%) 

ANN Fuzzy 

normal  90 92.5 

premature ventricular contraction 88 90 

complete heart block 81 88 

sick sinus syndrome 88.9 90.9 

left bundle branch block 85.7 88.9 

cardiomyopathy 83.3 86.4 

atrial fibrillation 85 88 

ventricular fibrillation 81 84 

Mean accuracy 85.3 88.5 

Accuracy= correct classification rate 

 

 

Acharya et al. (2004) used RR interval derivatives: spectral entropy; Poincaré plot geometry and 

largest Lyapunov exponent (presence of chaos) for 8 classes and compared the performances of 

an ANN with a fuzzy classifier (see Table 2.3).  
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The fuzzy classifier outperformed the ANN for accuracy in all 8 classes by a mean difference of 

3%. The study suggested that fuzzy classifiers had superior performance to ANNs, using features 

lending themselves to fuzzification, rather than crisp measures. 

 

Given the evidence of these comparative studies, high performing classifiers such as decision 

trees, Bayesian classifiers, fuzzy classifiers, neural networks and support vector machines were 

considered for use in this study 

 

2.9.3 Hybrid and Multi-Classifier Systems 

Classifier hybrids and multi-classifier systems (MCS) have become increasingly popular as they 

promise improvement on single classifier performance. Hybrid classifiers have a more sequential 

configuration whereas MCS commonly rely on a combination strategy for final class allocation.  

Studies examining the performances of hybrid and MCS algorithms for rhythm classification are 

summarised in Table 2.4. 

 

 

Table 2.4 Comparison of accuracies of hybrid (above) and multi-classifier systems 

(below) (Data from published studies). 

 

Study Classifier Classes 
Accuracy 

(%) 

Wang et al. (2001) Fuzzy-Kohonen Hybrid 3 97 

Linh et al. (2003) Neuro-Fuzzy Hybrid 6 96 

Polat et al. (2006) Fuzzy-Artificial Immune Hybrid unspecified 76 

Exarchos et al. (2007)  Fuzzy-Expert Hybrid 4 95.8 

Leong & Jabri (1992) ANN-Decision Tree MCS  9 99.6 

de Chazal et al. (2004) LDA-LDA MCS  5 84.5 

de Chazal & Reilly (2006)  LDA-LDA MCS (Human interaction) 5 95.7 

Osowski et al. (2004)  SVM-SVM MCS  13 97.4 

Ozbay et al. (2006)  Fuzzy Clustering-ANN Cascade MCS 10 98.9 

Ceylan et al. (2009) FCM-PCA-ANN Cascade MCS 10 99 

Accuracy= correct classification rate 

 

 

In the hybrid classifier studies reviewed, classification was performed for 6 or fewer classes. With 

the exception of a fuzzy-artificial immune hybrid (Polat et al. 2006) accuracies of more than 

95.8% were exhibited (Wang et al. 2001; Linh et al. 2003; Exarchos et al. 2007).  

 

For the MCS classifier studies examined, between 5 and 13 rhythm classes were classified. One 

study (de Chazal et al. 2004) showed an MCS which performed with 84.5% accuracy and a second 
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study by the same group (de Chazal & Reilly 2006) which showed the same system, with an 

additional phase to correct misclassifications using human expert interaction, improved accuracy 

to 95.7%. Given the additional stage was non-automatic and consisted of manual reclassification; 

it was difficult to compare its performance with other studies. With the exception of these two 

studies, MCS had accuracies of ≥ 97.4%. 

 

2.9.4 ICD Classifiers 

In studies of ICD algorithm performance there was wide variation in performance metrics used 

and important “gaps” in the published data (see Table 2.5).  

 

 

Table 2.5 Comparative studies of ICD algorithms. (Data from published studies). 

 

 Study Classifier Classes 
Acc. 

(%) 

Se. 

 (%) 

Sp. 

(%) 

PPV 

(%) 

Swerdlow et al. (2000) Jewel AF 3 91.6 100 99.9 - 

Wilkoff et al. (2001) PR Logic 4 90.3 100 56.1 78.1 

Swerdlow et al. (2002) Wavelet 4 - 100 78 61 

Kouakam et al. (2004) Ventak AV 4 95 99 89 93.3 

Kremers et al. (2012) HemoDx  

 

4 100 100 100 100 

Hintringer et al. (2001) 

Phylax AV 4 - 100 87 - 

Defender IV, 4 - - 93 - 

Ventak AV III DR 4 - 100 86 - 

Gem DR 4 - 100 83 - 

Gold et al. (2002) 
Dual Chamber VTC 4 99 100 97 99 

SingleChamber VTC 4 98 99 97 99 

Theuns et al. (2004) 
Single Chamber 4 76 100 56 76 

Dual Chamber   4 76 100 60 76 

Hintringer et al. (2004) 

Biotronik Tachos DR  4 - - 95 - 

ELA Defender IV 4 - - 99 - 

Guidant Prizm II DR 4 - - 94 - 

Medtronic Gem DR 4 - - 93 - 

St Jude Photon DR 4 - - 92 - 

Gold et al. (2012a)  

Guidant Dual Chamber 4 - - - 38.4 

Guidant Single Chamber 4 - - - 41.3 

Medtronic Dual 

Chamber 

4 - - - 51.1 

Medtronic Single 

Chamber 

4 - - - 52 

Gold et al. (2012b) 

SCICD 4 - 100 98 - 

Dual Chamber ICD 4 - 99 68 - 

Single Chamber ICD 4 - 99 76.7 - 

(Key: Acc. = accuracy; Se. = sensitivity; Sp. = specificity) 
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All but one study emphasised specificity and in several studies, sensitivities were not quoted 

hence, specificity was used as the main comparator. 

 

Where raw data for confusion matrices was published, reanalysis was performed to provide more 

complete data.  With ICD algorithms, under-detection of arrhythmia has a life-threatening 

potential and a reasonable expectation is sensitivity near 100%. This was borne out in studies 

where sensitivities were quoted or calculated (Swerdlow et al. 2000; Wilkoff et al. 2001; 

Swerdlow et al. 2002; Kouakam et al. 2004; Kremers et al. 2012; Hintringer et al. 2001; Gold et 

al. 2002; Theuns et al. 2004). 

 

Many studies were observational and were subject to under-detection error, as arrhythmia 

detections and performance metrics depended on the algorithm itself detecting the arrhythmia. 

Between individual studies, specificities for algorithms varied from 56 to 100%. One study 

claiming 100% performance (Kremers et al. 2012) was an experimental algorithm incorporating 

haemodynamic assessment of arrhythmia augmenting the more usual interval features.  

 

It should be noted that initial studies evaluating the performance of individual algorithms were 

often manufacturer sponsored and specifics of study design such as manufacturer specific 

program settings, though scientifically valid, may have shown the algorithm in the best light. 

Studies which directly compared algorithms using the same data address differences in inter-study 

design. With a standardised study design, direct comparisons are valid, as errors and biases are 

common to all. The study by Hintringer et al. (2004) provided a comparison of 5 manufacturers’ 

algorithms and showed high specificities of 92-99%, of which the ELA algorithm performed best 

with a specificity of 99%, which the authors were unwilling to subject to significance testing. 

Gold et al. (2012a) showed statistically significant superiority of Medtronic over Guidant 

algorithms in preventing inappropriate therapy but did not assess overall algorithm performance.  

 

2.9.5 Feature Selection 

Features used as classifier inputs varied between studies. Feature sets for classifiers with 

accuracies of better than 90% were examined (see Table 2.6). 

 

All the selected studies used more than 5 features, the most common being RR interval (heart 

rate) and its derivatives, in 7 studies. RR interval derivatives included pattern, regularity, power 

spectral density and largest Lyapunov exponent. Combined morphology and interval features 

were used in 2 studies (Leong & Jabri 1992; de Chazal & Reilly 2006) with morphology alone in 

a further 2 studies (Ozbay et al. 2006; Ceylan et al. 2009). Wavelet transforms, considered a form 

of morphological analysis, were used in 2 studies (Minhas & Arif 2008). 
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Table 2.6 Features used in rhythm classification algorithms. (Data from published 

studies with accuracies of > 90%). 

 

Study Features Feature group 1 Feature group 2 

Anuradha et al. (2008) 8 RR interval  

Tsipouras et al. (2005) 6 RR interval  

Minhas & Arif (2008) 6 RR interval Wavelet transform 

Linh et al. (2003) 6 RR interval  

Leong & Jabri (1992) 9 Morphology Intervals 

de Chazal & Reilly (2006) 5 RR, other intervals morphology 

Osowski et al. (2004) 13 higher order cumulants Hermite basis functions 

Ozbay et al. (2006) 10 Morphology  

Ceylan et al. (2009) 10 Morphology  

Jovic & Bogunovic ( 2011) 11 RR interval  

 

 

 

Use of RR interval features was common to all ICD classifier algorithms. R waves were detected 

in a number of different approaches, most common being use of wavelet transforms or the Pan-

Tompkins method (Pan & Tompkins 1985), combined with threshold detection. Some algorithms 

added morphology, with or without PP interval and PR relationship and one experimental 

algorithm added a haemodynamic assessment (Kremers et al. 2012). 

 

2.10 Classifier Data Sources 

The majority of classifier evaluation studies used surface ECG data from open source databases 

available from the Physionet PhysioBank (2012) and the UC Irvine Machine Learning Repository 

(1988). Intracardiac electrograms were used in few of these studies, with the Ann Arbor 

Electrogram Library at Electrogram.com (n.d.), used by Usher et al. (1999). Leong & Jabri (1992) 

used their own intracardiac electrogram recordings made at invasive electrophysiological (EP) 

studies.  

 

Observational studies evaluating ICD algorithm performances, of necessity used only intracardiac 

electrograms available to the device inputs. In their ICD algorithm comparison studies, Hintringer 

et al. (2001 and 2004) used a library of intracardiac electrograms they compiled themselves to 

compare ICD algorithms using the same data. 

 

2.11 Summary 

Review papers suggested a need for large scale randomised studies and recommended 

standardised statistical analysis. They suggested that hemodynamic sensors might augment 
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arrhythmia detection and that improved accuracy of diagnostics and patient alerts were important 

future developments. 

 

Good classification accuracies were found in studies evaluating single classifier technology and 

(see subsection 2.9.2) suggested that decision trees, fuzzy, neural network and support vector 

machines classifiers performed well in this domain. There was limited experience with hybrid 

and multi-classifier systems, but reports suggested performance gain over single classifiers. 

Hintringer (2004) showed the PARAD+ algorithm in the ELA Defender IV ICD best, with 99% 

and other manufacturers with 92-95% specificity. Other head-to-head comparisons (Gold et al. 

2012a and b) showed superior performance of the Medtronic PR Logic over the Guidant Rhythm 

ID algorithm and of the Cameron SICD algorithm (98% specificity) over conventional ICDs.  

 

The aim of the proposed performance improvement was to raise specificity without cost to 

sensitivity, for a wide range of rhythms. In the reviewed studies, features used in classification 

algorithms centred on the ECG and specifically RR intervals and QRS morphology both in 

classifier technology and ICD algorithm evaluations. Use of additional features appeared lacking 

other than in early experimentation. These influences aided design and selection of classifiers for 

inclusion, the development process, methodology and approach to analysis. 
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Chapter 3 Methodological Approach 

 

3.1 Overview 

A standard methodological approach was unclear from the literature review. Two main types of 

study had emerged, the bench study, evaluating classification algorithms using archived 

arrhythmia databases or the clinical study, mainly involving implanted devices and their built-in 

algorithms.  Elements of a standard methodology were seen in both, such as commonality of 

statistical analysis and some indication of available databases and alternative suitable data 

collection methods. This indicated a need to design a methodology specifically for this study.  

 

The methodological approach was evolutionary, building successive stages according to the 

findings of preceding stages. It was not always necessary to follow the stages exactly in sequence. 

The following stages were included: 

 

1. Evaluation of the technologies underpinning pattern recognition and AI classifiers 

and their suitability for this study (see sections 3.2 to 3.6). 

2. Developing a plan to create suitable datasets, decide a partitioning strategy and decide 

how to deal with missing data (see 3.8 and 3.9)  

3. Developing a knowledge-based system, representing the domain and ontology (see 

section 3.10). 

4. Modelling the systems (see subsections 3.10.1, 3.10.2 and 3.10.4). 

5. Selecting methods to assess classifier performance (see section 3.12 and subsection 

10.2.1). 

6. Selecting classifiers and designing a multi-classifier system (see section 3.15). 

7. Using a knowledge-base to examine rhythm definitions (see section 3.18). 

8. Selecting process models, such as system development, knowledge engineering and 

classifier development and integrating them into a well-defined process (see section 

3.19). 

9. Implementing the process model (SDLC) (see Chapter 4).  

10. Selection of classifier features (see Chapter 5). 

11. Prepare and plan data collection (see Chapter 6). 

12. Collect patient data (see Chapter 7). 

13. Data preparation and pre-processing (see Chapter 8, sections 8.2 to 8.5). 

14. Generation of feature sets and instances (see Chapter 8, section 8.6). 

15. Initial data analysis and data quality assessments (see Chapter 9). 

16. Design of individual classifiers and classifier tuning (see Chapter 10, section 10.2 to 

subsection 10.2.7). 
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17. Iterative development with performance assessments and design modifications (see 

Chapter 10, subsection 10.2.8 to section 10.9). 

18. Select or combine classifiers into a production system (see Chapter 10, section 

10.11). 

19. Performance testing of the production system (see Chapter 10, subsection 10.11.1). 

 

3.2 Artificial Intelligence in Rhythm Classification 

AI has subfields reflecting human intelligence traits, such as: deduction; reasoning; problem 

solving; knowledge representation; planning and learning. AI is well represented in medicine, 

particularly the specialist areas of pattern recognition, knowledge representation and ontology, 

decision support, reasoning under uncertainty, modeling human reasoning and cognitive science, 

all of which relate to this study. 

 

AI has been used in published examples of cardiac rhythm diagnosis and showed AI algorithm 

accuracies comparable to commercial systems for cardiac rhythm diagnosis (see Chapter 2, 

subsection 2.8.12). In commercially available implantable cardiac devices, algorithms are 

dominated by expert systems using decision trees, often augmented by specific digital signal 

processing techniques. This research aimed to show the value of AI in the development of new 

rhythm diagnostic systems with improved accuracy. 

 

3.3 Logical Reasoning in AI 

Logical rules can be expressed in natural or formal language and encoding is normally 

prerequisite for their input into computer systems. In this study, rules in natural language were 

easily converted to conditional statements for an inductive inference rule-based system. A 

classifier using an inference engine was included in this study. 

 

3.4 Problem-Solving in AI 

Human problem solving is often intuitive, without conscious decision making, so in AI systems, 

modeling human intelligent behaviour may be advantageous. Heuristic, algorithmic and cognitive 

techniques can be used to model human problem-solving processes in AI. Heuristic problem 

solving allows simplification of complex problems, with the limitation that solutions may be of 

lower quality than more formal methods. Algorithmic or goal-based problem-solving is where a 

sequence of actions leads to a desirable goal, such as classification of a rhythm.  

 

Algorithmic approaches can help define a process but are less adaptable than human cognitive 

processes. Simple cognitive models aid visualisation of human cognitive processes and will be 

used to aid understanding (see subsection 3.10.4 and Fig. 3.3). AI-based medical diagnostic 
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systems can be considered intelligent agents (Russell et.al 2003, p.40). Production algorithm(s) 

which simulate human cognitive processes were considered here to be cognitive agents.  

 

3.5 Pattern Recognition and Classification 

Machine learning is a branch of AI for development of learning algorithms, using data with known 

properties to predict outcome (Mitchell 1997, p.2). Machine learning fits well with this study, 

placing cardiac rhythms into classes, based on examples with known diagnosis. Pattern 

recognition is machine learning with decisions based on recognition of patterns or feature sets, 

using training data in a learning phase. Patterns are points in n-dimensional feature space, with 

dimension determined by the number of features and similar patterns tending to form clusters. 

Popular methods include: template matching; statistical classification; syntactic or structural 

matching and neural networks (Jain et al. 2000). 

 

3.5.1 Template Matching 

Template matching compares unknown patterns with a stored template. Decisions are typically 

not statistically or probability based and do not account for variation within a class. It has been 

used for comparison of cardiac waveforms in previous research (Coggins et al. 1995; Swerdlow 

et al. 2002) and will be similarly used in this study. 

 

3.5.2 Statistical Pattern Recognition  

Statistical pattern recognition algorithms use a function to divide feature space into decision 

regions, using decision boundaries, one for each class. The group of techniques includes linear 

discriminants, principal components analysis, support vector machines and Bayes classifiers 

amongst others (see Chapter 2, subsections 2.8.2 and 2.8.7). 

 

3.5.3 Syntactic Pattern Recognition 

Syntactic or structural matching is pattern recognition where features may be represented by a set 

of new categorical features allowing the representation of pattern structures with more complex 

interrelationships between attributes than in statistical classification. ECG waveforms can be 

represented by a sequence of lines, with normal and abnormal waveforms defined as formal 

grammars and can be classified by describing them in term of line sequences. In cardiac rhythm 

diagnosis, this has largely been abandoned in favour of statistical methods (see Chapter 2, 

subsection 2.8.2). 

 

3.5.4 Unsupervised and Supervised Learning 

A form of pattern recognition using unsupervised learning is clustering, with training set data 

allocated to a class by similarity rather than their known class. Clustering risks creating arbitrary 

groups of statistically related data points, having no class relationship. 
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3.5.5 Classification 

Classification is pattern recognition using supervised learning. Training sets consist of “patterns” 

of features, each having membership of a known class, established using human expertise. 

Different classifiers use different decision functions (see section 3.11). In cardiac rhythm analysis, 

rhythm examples are reliably classed (diagnosed) by human domain experts, indicating the 

advisability of a supervised learning approach. Given these influences, cardiac rhythm diagnosis 

can be considered a classification problem. 

 

3.6 Uncertainty in Classifiers 

Probability theory provides a framework dealing with uncertainty in AI applications. Stochastic 

(non-deterministic) programs use probabilistic methods to solve problems.  

 

With frequency based probability, a hypothesis must be either true or false (0 or 1), conversely 

Bayesian probability reasons, with premises of uncertain truth, allowing a hypothesis to have a 

value of between 0 and 1. In this study, pre-test probability for each rhythm diagnosis may be 

estimated using disease prevalence, where available, post-test probability from a preceding test 

or an heuristic estimate based on experience. Errors may be introduced into calculations by 

inaccuracies in the estimation of prior probabilities and by inadequate testing. Bias, error and 

variance in hypothesis testing is dealt with in more detail in section 3.12.6 and probability in 

significance testing in sections 3.12.1 to 3.12.4.  

 

The Dempster-Shafer theory of evidence allows the combination of evidence from different 

sources to produce a degree of belief. Such combination methods have utility in classifier fusion. 

 

3.7 Data Sets for Classifiers  

Existing data is unlikely to match the requirements for a specific problem unless the goal is the 

same. A data set, supporting design and evaluation of a classifier should be appropriate to the 

task. Existing data sets were considered, to avoid undertaking unnecessary data collection.  Most 

published studies of cardiac rhythm classifier performance use open-source electrocardiogram or 

intracardiac electrogram data libraries (see Chapter 2, section 2.10). In this study no existing data 

adequately represented the feature space under investigation so a new data collection exercise was 

justified. 

 

Data collection should be designed so the feature space provides a good representation of the 

ontology (see subsection 3.10.2), with all possible pattern combinations included. High 

dimensional data with a set of features likely to contain all relevant information is advantageous. 

A balance between training set size and dimensionality needs to be achieved to get the best 

performance. Dimension reduction during processing by pruning, rather than during data 
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collection by selection bias helps achieve this. Optimal dimensionality reduction would be a 

reduced feature set without loss of accuracy. 

 

3.8 Data Partitioning 

Classifier input patterns are typically arranged as data arrays, rows representing individual 

patterns or instances and columns feature variables. One column represents the known class (in 

the case of supervised learning). To reduce over-training, data re-use is controlled, using 

partitioning techniques, such as: “hold-out”; k-fold cross-validation or bootstrapping. Hold-out 

works well with large data sets, but rare patterns may not be represented in the training set, 

reducing performance. k-fold cross-validation works well when the data is not large. 

Bootstrapping works well when the data contains all the available information about the 

population, allowing the sample to be treated as a population estimate. Bootstrapping is 

particularly suited to very small data sets. Given that the data set collected in this study was not 

very small or sufficiently large for hold-out sampling, k-fold cross-validation was selected. 

 

3.9 Missing data 

AI algorithms which imitate human step-by-step problem-solving are improved with methods for 

dealing with uncertainty (see section 3.6) and missing data. 

 

Missing data occurs because of dropout or poor data collection methods and research should be 

designed to minimise missing data (Adèr 2008). Missingness has value on a continuum from 

missing completely at random (MCAR), through missing at random (MAR) to missing not at 

random (MNAR) (Graham 2009). In this study, missing data from dropout was considered MAR 

and from equipment failure MNAR. 

 

For limited missing data, imputation is a typical strategy. Multiple imputations can improve the 

quality of results but may reduce statistical power (Graham 2009). In this study, for small 

percentages of data loss, interpolation will be used to impute data.  

 

3.10 A Knowledge-Based System 

In AI systems, a human expert is central to knowledge acquisition and in supervised learning so 

the processing of knowledge is considered important. Models were used to represent the domain 

and ontology. Evaluation of the domain used a knowledge engineering approach, guiding feature 

selection. 

 

3.10.1 Domain  

The domain was defined as cardiac rhythm diagnosis, a human specialist discipline, with domain 

experts. To gain deeper understanding of the domain, an analysis was conducted, focused on two 
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areas relevant to this study: definitions of different cardiac rhythms and the processes 

involved in cardiac rhythm diagnosis. The domain was illustrated using models. A 

knowledge acquisition approach was used, with a combination of knowledge transfer and 

modelling techniques.  

 

Landmark scientific papers, joint working group reports and consensus guidelines were used as 

source material for knowledge acquisition (Buxton et al. 2006; Blomström-Lundqvist et al. 2003; 

Epstein et al. 2008; Brugada et al. 1991; Saoudi et al. 2001; Fuster et al. 2011; Bonow et al. 2012; 

Surawicz et al. 2009). These formed a body of knowledge from a large number of domain experts, 

distilled into detailed statements, likely to be superior in scope and accuracy compared with 

interview results from a single domain expert. Human domain expert activity was limited to 

accuracy checking and validation tasks.  

 

Major rhythm class descriptions and their diagnostic criteria were extracted into a knowledge base 

(see Appendix E). The natural language of this knowledge base was translated into progressive 

structured representations to model cardiac rhythms and their relationships.  

 

A hierarchical taxonomy illustrated disease relationships in a structure recognisable to domain 

experts (see Fig. 3.1). Cardiac rhythms were represented by six parent classes, eighteen child 

classes and twenty sub-classes, within which there were 31 different rhythms (see Table 3.1). The 

rhythms listed were intended to be clinically useful, rather than exhaustive, whilst remaining 

manageable. Variants of rhythms and rare or difficult to diagnose rhythms were not included.  The 

knowledge base generated (see Appendix E) was intended for re-use during feature selection and 

classifier development.  

 

3.10.2 Ontology 

The hierarchical taxonomy was used as the basis for a relationship diagram used as a simple 

ontology. The model used was based on Gene Ontology, which places terms as nodes and 

relations between terms as arcs (see Fig. 3.2). 

 

3.10.3 Knowledge Engineering 

Ontology development is the precursor to its use for problem-solving and knowledge engineering 

provides a systematic method for this. A three stage knowledge engineering approach of 

knowledge acquisition, knowledge representation and implementation (Edwards 1991) was 

adopted in this study.  
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Figure 3.1 A hierarchical taxonomy of cardiac rhythms. Reading from left to right, with increasing granularity for different specific rhythms.
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Table 3.1 Listing of rhythm types and their acronyms. (Parent classes in bold 

type). 

 

Rhythm Description      Acronym 

Normal rhythm 

Normal sinus rhythm      NSR 

Respiratory sinus arrhythmia    RSA 

Physiological sinus tachycardia    ST 

Premature beats 

Premature atrial contraction    PAC 

Premature ventricular contraction   PVC 

Sinus node dysfunction 

Sinus bradycardia     SB 

Sinus arrest      SA 

Sino-atrial block     SAB 

Atrio-ventricular block 

First degree atrio-ventricular block   1HB 

Second degree atrio-ventricular block (Mobitz type I) 2HB 

Second degree atrio-ventricular block (Mobitz type II) 2HB2 

Complete atrio-ventricular block   CHB 

Narrow complex tachycardias 

Postural orthostatic tachycardia syndrome  POTS 

Sinus node re-entry tachycardia    SNRT 

Atrio-ventricular nodal reciprocating tachycardia  AVNRT 

Focal junctional tachycardia    FJT 

Non-paroxysmal junctional tachycardia   NPJT 

Orthodromic atrio-ventricular reciprocating tachycardia  OAVRT 

Permanent junctional reciprocating tachycardia  PJRT 

Inappropriate sinus tachycardia    IST 

Focal atrial tachycardia    AT 

Macro-re-entrant atrial tachycardia   MRAT 

Multifocal atrial tachycardia     MAT 

Atrial fibrillation     AF 

Broad complex tachycardias 

SVT with aberration     SVTab 

Antidromic atrio-ventricular reciprocating tachycardia  AAVRT 

Monomorphic ventricular tachycardia   VT 

Polymorphic ventricular tachycardia   PVT 

Idiopathic fascicular ventricular tachycardia  IFVT 

Outflow tract ventricular tachycardia   OTVT 

Ventricular fibrillation     VF 
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Figure 3.2 Cardiac rhythm ontology diagram. The hierarchical taxonomy of Fig. 3.1 can be shown as nodes and arcs in a directed graph, as a 

representation of an ontology.
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Figure 3.3 A cognitive model of cardiac rhythm diagnosis by a human cardiologist (See text for explanation).
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3.10.4 A Cognitive Model of the Diagnostic Process 

A synthesis of the human diagnostic process that would aid its understanding was produced. The 

relationships between rhythms in the domain and ontology models did not represent diagnostic 

processes well so a specific representation was produced. Knowledge sources (see subsection 

3.10.1) were re-used to analyse the descriptions of diagnostic processes and a flow diagram was 

prepared and subjected to validation by a human domain expert (consultant cardiologist). This 

process was then condensed into a simple cognitive model (see section 3.4 and Fig. 3.3). 

 

3.11 Types of AI Classifier 

Medical diagnosis lends itself well to binary classification, for example disease presence or 

absence. When selecting classifiers, those having established utility will be considered. High 

performing classifiers were decision trees, Bayesian, fuzzy, neural networks and support vector 

machines. Hybrid and multi-classifier systems were also successful in published reports; 

particularly those including a fuzzy, neural network, expert system or support vector machine 

classifier unit (see Chapter 2, sections 2.8.10 and 2.8.11). 

 

3.12 Measuring Classifier Performance 

The standard method for assessment of classifier performance measures, uses test results 

presented in a confusion matrix or contingency table. 

 

3.12.1 The Gold Standard Test 

In medicine, diagnostic tests are considered classification exercises and performance is measured 

by comparing classifier outputs to a “gold standard” test, using test data. A gold standard test is 

the best practical test available that provides an unequivocal diagnosis. Gold standard test results 

provide class labels to a supervised learning process. In this study this is taken to be human 

domain expert diagnosis, a specialist cardiac electrophysiologist. This study did not seek to 

evaluate disagreement between domain experts. 

 

3.12.2 Confusion Matrices and Contingency Tables 

Results of classification testing for n classes may be expressed as an n-way confusion matrix 

which may then be tested for inter-relationships. 

 

Diagnostic tests commonly use 2-way contingency tables, with test results tabulated against the 

gold standard test. The tables have four categories: true positive (TP), positive tests result where 

the condition was present; false positive (FP), positive tests but the condition was absent; false 

negative (FN), negative tests where the condition was present and true negative (TN), negative 

tests and the condition was absent. Each individual rhythm diagnosis requires a 2–way 

contingency table to generate performance indices (see Table 3.2).   
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Table 3.2 A 2-way contingency table for a diagnostic test. 

 

 Gold Standard Test 

 
 

Condition 

Present 

Condition 

Absent 

Test under 

Evaluation 

Positive Test  TP FP 

Negative Test  FN TN 

 

 

For each possible class of rhythm diagnosis, represented as “condition present” data, the 

corresponding “condition absent” data is the summed total of the alternative condition. 

 

3.12.3 Measures of Diagnostic Test Performance 

Tests of diagnostic test performance in the medical domain predominantly quote sensitivity, 

specificity and accuracy. Other useful indices are: false positive and false negative rates; positive 

and negative predictive values; likelihood ratios; error; Youden’s index; diagnostic odds ratio; F1 

score (Jardine & van Rijsbergen 1971); Cohen’s kappa (Cohen 1968) and Yule’s Q (Yule 1912). 

In machine learning, Pearson’s phi (ϕ) (Pearson 1899), precision and recall are also used. 

Receiver operating characteristic (ROC) curves illustrate test performance, plotting specificity 

against sensitivity for varying decision threshold values. The popular area under the curve (AUC) 

for a ROC is one of the most used measures of classifier performance. AUC was not used in this 

study as the gold standard decision threshold is considered fixed, providing only one data point, 

rendering an ROC curve of limited use. 

 

Baldi et al. (2000) found that all performance information is contained in the four contingency 

table values and indices based on less than four values tend to lose information. Performance 

indices using all four numbers are: sensitivity and specificity (used together); likelihood ratios; 

error; diagnostic odds ratio; Youden’s index (Youden 1950); Cohen’s kappa; Yule’s Q and AUC.  

 

3.12.4 Weak and Strong Learners 

A correct classification rate (CCR) of > 0.5 represents weak learners well but the transition value 

to strong learner is ill-defined. ϕ represents correlation well, with 0 meaning correlation no better 

than random; values just above 0 representing weak learners; values approaching 1 meaning 

strong learning; +1 for perfect accuracy or −1 for all classifications being incorrect. 
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3.12.5 Consistency and Generalisability 

Classifiers correctly classifying all training examples are considered consistent.  Generalisability 

is where an algorithm produces a plausible output for any input (Bishop 2006, p.2). A rote learner 

which matches patterns identical with learned examples may be consistent but not generalisable. 

CCR and φ with values of 1 represent perfect consistency. Accuracy tests performed on classifiers 

will emphasise generalisability, reflecting real world performance. 

 

3.12.6 Error, Bias and Variance 

Hypothesis testing is subject to type I error (α), where a true null hypothesis is rejected or type II 

error (β), where a false null hypothesis fails to be rejected and α is the significance level of a test 

and β  is related to power of the test (1 - β), with power equal to the sensitivity of the test. Type I 

errors are represented by false positives (FP) and type II by false negatives (FN).  

 

Classifiers with high bias are systematically incorrect when trained with different training sets 

and high variance if they predict different classes for a particular pattern. Classifier error is related 

to the sum of bias and variance. Type I and II error, bias and variance will be discussed for the 

production system. 

 

3.13 Comparing Classifiers  

Tests computing P value indicate a level of statistical significance and are considered more useful 

for comparisons, as they are readily performed on 2-way contingency tables. The significance 

level (α) is the probability below which the null hypothesis will be rejected (usually 5%) with P 

values < α considered statistically significant.  

 

Standard error (σX) and confidence interval (CI) analysis of performance indices (see subsection 

3.12.13) expressed as a proportion were estimated using the normal approximation method of the 

binomial confidence interval, using a 95% level (CI95) to quantify imprecision (3.1 and 3.2). 

 

𝜎𝑋 = √
𝑋(1−𝑋)

𝑛
     (3.1) 

 

𝐶𝐼95 = 1.96√
𝑋(1−𝑋)

𝑛
      (3.2) 

 

3.13.1 Bayesian Analysis 

Naïve Bayes classification uses algebraic calculations on contingency table data, where final class 

is that with the highest posterior probability (P(H|E)). The odds-ratio form of Bayes’ rule applies 

to classification and contingency table analysis, allowing calculation of posterior probability 

(P(H|E)) from odds, as a result of new data provided by the results of tests. Prior probability 
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(P(H)) for the hypothesis (H) is estimated using prevalence of the condition in the gold standard. 

Prior odds may be calculated from prior probability. Using the odds rule, posterior odds for 

positive and negative test results are calculated from positive likelihood ration (LR+) and negative 

likelihood ratio (LR-) indices and then posterior odds are converted to a posterior probability 

(P(H|E)). Posterior probabilities generated in this way for each classifier allow comparisons. 

 

3.14 Classifier Selection 

Diagnostic tests commonly use 2 x 2 contingency tables, with test results tabulated against the 

gold standard test (see subsection 3.12.2 and Table 3.2). Analysis of the table provides 

understanding of the test. Fisher’s exact test is valid for all sample sizes and as complex 

computation is now possible has largely superseded the chi-squared test, provided row 

and column totals are fixed.  

 

Best performance is the standard indicator for the individual best classifier (Ruta & Gabrys 2005) 

(see section 2.9.2). Agreement statistics, such as sensitivity and specificity, are widely used to the 

describe performance of arrhythmia classifiers, with differences between classifiers evaluated by 

significance testing. Other performance indices are commonly used, such as the correct 

classification rate (CCR) - a derivation of sensitivity and specificity and Cohen's kappa (κ).  κ 

provides an index of agreement between two “raters” and may be used for to rank classifiers as 

an alternative to statistical significance testing. κ is widely used to represent overall classifier 

performance as it incorporates all four components of the contingency table. Where there is low 

prevalence CCR can be an over-optimistic measure of classifier performance and κ is also less 

reliable. It is recognised that no single performance index adequately represents classifier 

performance and that use of a wide range of agreement measures is advisable.  

 

3.15 Designing a Multiple Classifier System.  

Multiple classifier systems (MCS) aim to improve overall accuracy, combining weak learners to 

create a strong learner, on the assumption that they are the best possible solutions. Synonyms are: 

“hybrid systems”, “ensemble classifiers”, “combinations of classifiers” and “committee 

machines”. In MCS design a number of key factors guide strategy, such as the accuracy and 

diversity of individual and combinations of classifiers; classifier selection strategies and the 

choice of combiner. Decision optimisation methods select and optimize the combiner for a fixed 

ensemble of base classifiers. Coverage optimisation methods create diverse base classifiers 

assuming a fixed combiner. 

 

3.15.1 Accuracy and Diversity 

With a perfect single classifier there are no errors and an MCS is not needed. A classifier that 

does make errors can be complemented with another classifier, which makes errors on different 
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objects. Diversity of classifiers in an MCS serves to correct for systematic misclassification of 

one classifier with correct outputs from another. The relationship between diversity and accuracy 

in MCS is unclear and intuitive methods for inducing diversity when building MCS appear to 

work well. Measuring diversity and using the results to guide building systems is less successful. 

Misclassified instances having different labels for different classifiers are a simple sign of 

diversity.  

 

Various diversity measures have been proposed, the most widely used examples are: ф; Yule’s Q 

statistic;   the   disagreement   measure   (dis)   (Skalak 1996), which measures the ratio of number 

of observations on which one classifier is correct and the other is incorrect to the total number of 

observations;   the   double-fault   measure   (DF) (Giacinto & Roli 2001a), which measures the 

proportion of cases misclassified by both classifiers; Kohavi–Wolpert variance (Kohavi & 

Wolpert 1996), which is a bias-variance decomposition of the error of a classifier; inter-rater 

agreement (κ); the measure of difficulty (μ) , where for a discrete random variable for a random 

sample from the training set, μ is the variance of this variable over the whole training set, so with 

decreasing diversity μ increases (Hansen & Salamon 1990) and generalised diversity (GD) 

(Partidge & Krzanowski 1997). Similar to Double-Fault Measure, GD is a coefficient representing 

the ratio of probabilities of one randomly picked classifier failing against both classifiers failing.  

 

Studies advocate producing a pool of classifiers followed by selection of the most diverse and 

accurate. Giacinto & Roli (2001a) used the double fault measure DF (probability of both 

classifiers being incorrect) and the Q statistic, to form a pairwise diversity matrix for a classifier 

pool and then select classifiers that are least related. Tang et al. (2006) demonstrated explicit 

relationships between diversity measures and margin maximization, showing experimentally they 

were all ineffective for constructing ensembles with good generalisation. 

 

3.16 Classifier Combiners 

Classifier combination strategies may be categorised into ‘selection’, where specialised classifiers 

are dedicated to parts of the feature space or ‘fusion’, where classifiers are combined using a 

variety of algorithms (Kuncheva 2004). Classical combination strategies include voting, boosting, 

bagging and stacking. There are many others including mixture-of-experts (ME); cascade and 

hybrid systems. A combiner may also consist of another layer of classification, with base classifier 

outputs used as inputs for a classifier used as a combiner. 

 

In a “parallel” combination, identical input patterns are applied to each of n classifiers and each 

outputs a class label. These labels become inputs for a combiner, where a decision rule is applied 

to allocate the final label. As an example, typical voting decision rules are: simple majority (class 

with the most votes) (see Fig. 3.4); overall majority (>50%); two-thirds majority or unanimity.  
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Figure 3.4 Illustration of a simple multi-classifier system (MCS), using a voting 

combiner. Data for classification is input (left) to each of various classifier units, 

each independently allocating a class then using a combination strategy (centre) final 

class label is decided (right). 

 

 

Weighted voting allocates more competent classifiers a greater weight based on lower 

classification error, such as misclassifications during training, before application of the decision 

rule.  

 

Boosting is a combination strategy that iteratively adapts diverse weak classifiers, arranged in a 

series and is effective for classification of patterns that are difficult to learn. AdaBoost is the most 

commonly used boosting algorithm (Freund & Schapire 1995). Bagging (bootstrap aggregation) 

creates multiple data sets by sampling with replacement (Breiman 1996) and the resultant models 

combined using a combiner. Stacking (Wolpert 1992) consists of layers of classifiers. Classifiers 

at higher layers learn misclassification errors of classifiers immediately below hence minimising 

generalisation error. A cascade is a series of classifiers with one classifier active at a time. Only 

misclassifications are passed to the next classifier in the cascade (Kuncheva 2004). ME uses a 

separate classifier to control “gating” or “soft” switches to activate specific combinations of 

“expert” classifiers for each input pattern.  

 

3.16.1 Combining Specialist Classifiers 

Specific classifiers may perform well in regions of competence. These can be arbitrary divisions 

of the feature space, provided estimates of competencies may be made. It is possible for the 

classifier with the highest accuracy for the whole feature space to be eliminated or a classifier to 
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be nominated for more than one region. Related features may be combined in groups or subsets 

and may be separately classified for subsequent combination. 

 

3.17 Current ICD algorithms  

Arrhythmia detection in ICD algorithms starts when heart rate enters a tachycardia or bradycardia 

zone and persists for a number of beats. Diagnosis using heart rate alone is acceptable for some 

rhythms, such as ventricular fibrillation, but leads to a high incidence of misdiagnosis. ICD 

algorithms use additional criteria, such as sudden onset; rate stability and sustained high rate and 

a morphology discriminator to reduce misdiagnosis. Dual chamber ICDs offer atrial signal 

analysis and atrio-ventricular timing relationships to assist in rhythm determination. ICD 

manufacturers use this information differently. One algorithm has the form of a decision tree (see 

Fig. 3.5).  

 

 

 

Figure 3.5 A schematic of an ICD decision tree algorithm. (From Aliot et al. 2004). 

A representation of the Sorin PARAD+ ICD algorithm, in the form of a decistion 

tree. Reading from top to bottom, each node requires satisfaction to proceed down 

the tree to a diagnosis. 

 

 

Commercial ICDs rhythm discriminators nominal settings are shown in Table 3.3. Although there 

is inter-manufacturer variation in the exact method of detecting an arrhythmia, there is common 

ground. A method common to several algorithms is to assess heart rate on a continuous basis until 
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the rate increases above a set limit. Two further criteria are then activated: percent “onset”, where 

the heart rate immediately after a detection is compared with immediately before and a percentage 

change is required to satisfy the criterion; then “stability”, where the heart rate after a detection is 

required to be stable to with a percentage of variation.  

 

 

Table 3.3 Nominal settings in commercial dual-chamber ICD algorithms. 

 

Manufacturer 

Discriminator 

VT count 

(beats) 

VF count 

(beats) 

Onset  

(%) 

Stability 

(msec) 

Sustained 

VT 

Morphology 

Threshold 

(%) 

AF 

Threshold 

(bpm) AV 

Biotronik 26 8 / 12 20 24/12% Off N/A 200 On 

Boston 

Scientific 

2.5sec 1sec 9 20 3mins 90 170 On 

Cameron 

Health 

18 / 24 18 / 24 N/A N/A N/A 50 N/A N/A 

Medtronic 16 18 / 24 81 Off Off 70 171 On 

Sorin 6 / 8 6 / 8 25 63 N/A N/A N/A On 

St. Jude 

Medical 

12 12 100ms 80 Off 60 N/A Off 

 

 

The Medtronic algorithm (Medtronic, 2010), which is common to all their ICD models will be 

considered typical. In this algorithm, “onset” compares heart beat cycle lengths, using a rolling 

average of four beats, between the current average and that of the preceding four intervals, with 

a programmable percentage defining a sudden onset. Within the pre-set VT heart rate zone, on 

the third consecutive VT event, “stability” compares the current ventricular interval to each of the 

previous three and defines the rhythm as unstable if the difference is greater than a programmed 

value. Satisfaction of these criteria allows a preliminary diagnosis and it is this diagnosis which 

will be used in this study, for comparative purposes. 

 

3.18 The Basis of Cardiac Rhythm Analysis 

The ECG is at the core of analysis of cardiac rhythm. An authoritative text, Wagner (2001, p.44) 

suggest systematic analysis of the ECG using the following guide: 

 

1. Rate and regularity. 

2. P wave morphology. 

3. PR interval. 

4. QRS-complex morphology.  

5. ST-segment morphology.  

6. T-wave morphology. 
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7. U-wave morphology. 

8. QTc interval (the corrected QT interval). 

9. Rhythm 

 

Wagner (2001, pp.236-237) also advocates consideration of the ECG features of mechanism and 

site of origin. Wagner (2001) defines bradyarrhythmia as any rhythm with a rate <60 beats/min, 

and "tachyarrhythmia" any rhythm with a rate > 100 beats/min. Other arrhythmias do not alter the 

rate beyond normal limits. Wagner (2001) also suggests that the site of origin of arrhythmias may 

be determined by rate and atrio-ventricular relationship. It is argued that if the relationship is 1:1, 

the rhythm originates in either atria or ventricles, if n:1 the rhythm originates in the atria or if 1:n 

the rhythm originates in the ventricles. When associated rhythms have differing rates, the rhythm 

is named for the originating chamber or when rhythms are dissociated, both rhythms should be 

named. This conventional analysis indicates that rhythm analysis depends on individual beat 

characteristics, including intervals and sequences. Electro-mechanical features such as 

electrogram morphologies and the effect of the beat on stroke volume are likely to add to this.  

 

3.18.1 Rhythm Change – Guidelines 

Consensus guidelines (Buxton et al. 2006; Blomström-Lundqvist et al. 2003; Epstein et al. 2008; 

Brugada et al. 1991; Saoudi et al. 2001; Fuster et al. 2011; Bonow et al. 2012; Surawicz et al. 

2009) show that many diagnoses (see Appendix E) are based on the intervals between beats. Other 

key features are beat morphology of either P or QRS complex in the form of duration, axis, 

morphology and presence or absence of major waves.  

 

Clues within these consensus guidelines allow estimation of the intervals required to show a 

rhythm change, its persistence and stability. Criteria are: 10% or 120 msec (RSA); “shorter 

coupling” interval (PAC, PVC); regular ≤ 2% cycle-to-cycle variation (MRAT); irregularly 

irregular (AF) and ≥ 3 ventricular beats at > 100bpm (VT). No guideline specifies an interval 

count for detection and diagnosis of atrially based rhythms.  

 

3.18.2 Number of Beats to Diagnose Rhythm 

Given the widespread use of electrogram intervals in this domain (see Chapter 2, subsection 

2.9.5), consideration was made of the required sample length to achieve diagnosis, using the 

electrogram intervals. 

 

Guidelines (see subsection 3.18.1 and Appendix E) suggest that for rhythm change to have 

occurred, an interval change of 10% or 120ms must occur. Detection requires at least two 

ventricular intervals (three beats), with R0 the first beat (onset) of the altered rhythm, R-1 and R-2 

the two preceding beats. To indicate regularity, at least two succeeding intervals should conform 
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to the regularity criterion of ≤ 2% variation so 5 ventricular beats are required, 2 preceding (R-1 

to R-2) and 2 succeeding (R1 to R2) the first beat (R0) of each altered rhythm. This can be 

represented in a conduction diagram (after Langendorf et al. 1944) (see Fig. 3.6). 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 An illustration of a 5 beat sequence to diagnose rhythm, indicated by 

clinical guidelines. Top trace is ECG (read from left to right) showing two normal 

beats, followed by a ventricular “triplet” arrhythmia. The lower diagram represents 

atrio-ventricular conduction sequence, with the upper bar (A) atrial depolarisation; 

the lower bar (V) ventricular depolarisation; the oblique line joining them atrio-

ventricular conduction (AV); double lines represent “blocked conduction, where 

atrio-ventricular conduction is absent in either direction. R-2 and R-1 represent the 

two ventricular beats preceding the onset of the arrhythmia, R0 represents the first 

ventricular beat of the arrhythmia, R1 and R2 the following beats, with P waves 

labelled in the same way for atrial beats. Note that P0 and P1 (arrowed) are not easily 

visible on the ECG trace. 

 

 

In a typical ICD algorithm, such as Medtronic PR logic (Medtronic 2010), detailed in section 

3.17, at least 5 beats (or 4 inter-beat intervals) within a detection zone, are required to classify an 

episode as non-sustained VT. Thus, 10 ventricular beats are required to satisfy the requirement 

for a rolling average of 4 beats before and after arrhythmia onset: 5 preceding (R-5 to R-1) the first 

beat (R0) of each altered rhythm and 4 succeeding (R1 to R4) (see Fig. 3.7). 
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Figure 3.7 An illustration of a 10 beat sequence to diagnose rhythm in an ICD 

algorithm. Top trace is an ECG (read from left to right) shows five normal beats but 

at a heart rate of 130 per minute (sinus tachycardia), followed by five beats of 

ventricular tachycardia. The lower diagram is thr atrio-ventricular conduction. 

Labelling conventions as for Fig. 3.6. The positions of P1 and P3 are arrowed; 

positions of P0 and P2 were not easily visible on the ECG trace and were inferred.  

 

 

In this study, to satisfy the requirements of the guidelines and those required for a conventional 

ICD algorithm (see section 3.17), a 10 beat segment will be the basis for the data collection and 

pre-processing phases of this study, allowing a “like-for-like” performance comparison between 

a new algorithm  and ICD algorithms, using data as similar as possible. 

 

Figure 3.7 illustrates the well-recognised difficulty of demonstrating an important diagnostic 

feature often associated with ventricular tachycardia, that of ventriculo-atrial dissociation (see 

Appendix E). The use of intracardiac electrograms is known to facilitate atrial rhythm detection 

and would enable detection of this feature, so their use is perhaps indicated in this study. 

 

3.19 System development  

A project strategy for classifier development was developed, to include necessary steps for design 

of a classifier, such as feature selection, data collection, pre-processing, classifier testing and the 
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possibility of iterative development. A method using informatics techniques was preferred. This 

would include an algorithmic approach, a selection process for technologies and analytical 

techniques suited to the problem. Consideration of study design and methods of analysis 

recognisable and familiar to medical practitioners, particularly cardiologists, which might 

encourage widespread acceptance of the study conclusions was preferred. 

 

A systems engineering approach was successfully used in in a preliminary study (Bostock 2004), 

using a “single-pass” process model (Jenkins 1969, Flood & Carson 1988). Based on this, a 

systems development life-cycle model was considered suitable to guide development.  

 

3.19.1 The Incremental Build Model 

An incremental build systems development life-cycle (SDLC) model was selected, for its 

simplicity and practicality. The model is a modification of the waterfall model which allows 

prototyping with iterative design improvements. There are six stages: user requirements; system 

specification; system design; increment verification; prototype operation and maintenance, with 

iterations for major redesign or design modification. 

 

In this study redesigns were limited to encourage rapid prototyping and evaluation, rather than 

allowing frequent minor modifications. Given that SDLC’s are intended for large-scale systems 

design projects, and that a prototype production system was the objective in this study, the model 

was used as a general guide. 

 

3.20 Summary 

AI and its subfields relevant to this study were briefly explored with concepts of supervised and 

unsupervised learning and classification introduced. Cardiac rhythm analysis, able to be classed 

by human domain experts was considered to be a classification problem.  

 

Uncertainty in classifiers was summarised, with the use of probability and hypothesis testing in 

classification being discussed. Issues in classifier design applicable to this study, such as data 

dimensionality, collection strategies, set allocation and missing data were reviewed. Cross-

validation sampling for data set allocation and imputation to deal with missing data were chosen. 

 

The importance of knowledge in AI, with concepts of domain and ontology, was outlined. An 

understanding of the cardiac rhythm domain was aided by modelling. A hierarchical taxonomy 

was constructed as a knowledge representation and refined into an ontology, demonstrating the 

hierarchical nature of rhythms and their relationships. The diagnostic process was illustrated as a 

cognitive model, with a view to its use in system design. 
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The choice of AI classifiers emphasised those with known utility in this field: Bayesian classifiers, 

fuzzy classifiers, decision trees, neural networks and support vector machines. Classifier 

performance measurement, the need for a “gold standard” and the use of confusion matrices to 

analyse results were introduced. Indices derived from these analyses were used as performance 

measures. Categorisation of classifiers as weak or strong learners and their consistency, 

generalisabilty, error, bias and variance were outlined. To select classifiers, statistical hypothesis 

testing using the Fisher’s exact test with the Bonferroni correction at a 5% level of significance 

was used and Cohen's kappa (κ) selected as a simple index of agreement. In choice of classifiers 

for a multiple classifier system, measurement of accuracy and diversity and the trade-off between 

them was examined. Classifier combination methods such as voting, boosting, bagging, stacking, 

cascade of classifiers and ME schemes were overviewed. 

 

ICD algorithms from major manufacturers and their common and unique features were 

summarised. Clinical rhythm diagnosis techniques were examined and an outline of data required 

to achieve a diagnosis made. Both evaluations were to ensure inclusion of key features in any 

algorithm. 

 

A system development life-cycle approach to design, using an incremental model was selected 

for algorithm development.  
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Chapter 4. Implementing the System Development Process 

 

4.1 Overview 

The incremental build systems development model, was tailored to incorporate additional 

processes needed for classifier development: feature selection; data collection; pre-processing; 

classifier testing and iterative development, as illustrated in the incremental model.  

 

In implementing the first two stages of the incremental model (see Fig. 4.1), a user requirement 

and system specification were prepared based on the study aims and objectives. System design 

consisted of the preparatory stages of design followed by successive classifier iterations. During 

the implementation phase, to aid rapid prototyping and avoid multiple iterations of similar 

systems, iterations were optimised prior to testing. Increment (iteration) verification used the 

classifier performance measures introduced in Chapter 3, section 3.12. Prototype operation and 

maintenance were important only should new information forcing a design change become 

available prior to satisfaction of the user requirement. 

 

Each increment implies iterative improvement. In this study there was no guarantee of successive 

improvement, so increments were referred to as iterations. 

 

4.2 User Requirement  

In system development, achievements of the goals set in a user requirement indicate when no 

further iterations are required and the final prototype becomes the production system.  

 

User requirements were elicited from the study objectives (see Chapter 1, section 1.7). These were 

re-focused on the systems and diagnostic methods which would provide an accurate cardiac 

rhythm classification algorithm. Elimination of duplication and use of systems development terms 

condensed these to three goals: 

 

1. Iterations will use AI based classifiers, knowledge management and analytic techniques. 

 

2. Final production system will have a higher performance than existing production  

 

4.3 System Specification 

A system specification was developed, containing the information required to describe the system, 

including function, development, information inputs and outputs.   

 

Modelling is a legitimate means of communicating a system specification and a Hatley-Pirbhai 

system context diagram was chosen for this (Hatley et al. 2000, p.434; Pressman & Ince 2001,   
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Figure 4.1 Incorporation of classifier design into the incremental build model. Reading from top to bottom (direction arrows), this is an adaptation of 

the standard waterfall model, showing stages and internal processes. The “System design” stage contains internal sub-stages and an iterative process. 
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pp.262-263). User requirements were used alongside the cognitive model (see Chapter 3, 

subsection 3.10.4 and Fig. 3.3) and the processes for classifier design outlined in section 4.1 as 

the basis for the model (see Fig. 4.2). 

 

 

 

 

Figure 4.2 Hatley-Pirbhai system context diagram of cardiac rhythm classifier 

prototype development. The flow runs from left to right: starting with inputs (data) 

which in this application consists of cardiac signals and clinical history data; 

followed by central functions of signal pre-processing and classification, which is in 

turn subject to validation and updates; leading to class label allocation and rhythm 

diagnosis in the output stage. 

 

 

This system context diagram was usable as a system specification when accompanied by further 

explanation and detail.  

 

The system context diagram consisted of major stages as nodes, linked by arcs indicating 

sequence. Within the design process, the domain expert interacted with the classification system 

by provision of the gold standard diagnosis, the validation process and recommendation of future 

updates. System inputs were cardiac signals and medical history which were selected during a 
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process of feature selection (described in Chapter 5. Material requirements including software 

and hardware for data acquisition, signal and data pre-processing, classifier prototyping and 

performance testing are covered in Chapters 6 to 10. Finally, classifier output codes were decoded 

into the rhythm diagnosis. 

 

4.4 System Design  

System design built on the user requirements and system specification (see sections 4.2 and 4.3) 

and detailed how these were satisfied in the build. In this study, design processes included: feature 

selection, data collection, data pre-processing and classifier design and build, output class 

encoding and decoding. Any design modification, due to new knowledge or classifier inadequacy 

triggered a new iteration.  

 

4.5 Iteration Implementation (Prototype Build)  

Evaluation of the literature in Chapter 2 suggested a range of classifiers for implementation which 

performed well in this domain. Individual classifiers selected as iterations for comparison were 

summarised in Table 4.1. 

 

 

Table 4.1 AI Classification technologies. 

 

Classifier Technology 

Decision tree 

Fuzzy classifier 

Naïve Bayes 

Neural network 

Support vector machine 

Inference engine 

 

 

To satisfy user requirements, classifier performance was to be maximised within the design 

constraints.  

 

4.6 Iteration Verification (Prototype Testing) 

Iterations were verified using various performance measures (See Chapter 3, section 3.12) and 

classifier performances compared. Later iterations were, selected for use in hybrid or multi-

classifier systems. Combination strategies examined in Chapter 3, section 3.16 depended on 

results: the best performing classifiers overall; the presence of any misclassification and possible 

use of specialist classifiers in specific areas of the feature or solution spaces. 
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4.7 Prototype Operation and Maintenance 

Comparisons between algorithms suggested requirement for improvement, triggering a design 

modification or major redesign iteration. 

 

Each stage of the process was documented and evaluated to ensure an efficient, non-repetitive 

development process. Successive prototypes were based on single classifier units or 

combinations. Prototype testing included performance measures and expert feedback to highlight 

problems and suggest modifications. Iterations continued until performance was maximised and 

the production system was produced.  

 

4.8 Summary 

In this chapter, use of the incremental build model for classifier design was outlined. A user 

requirement was summarised in three goals, for which achievement would signal the end of the 

development process. These consisted of use of defined AI techniques, resulting in a production 

system with lower misclassification rate and higher accuracy than commercial ICD algorithms.  

 

A system specification was developed, containing information describing the system. A Hatley-

Pirbhai system context diagram was used as a model of system specification, completed with 

further detail. System design detailed how user requirements and system were satisfied in the 

build. A range of classifiers were suggested for implementation which performed well in this 

domain: decision tree, fuzzy, naïve Bayes, neural network and support vector machine.  

 

Iterations were verified using performance measures. Combination strategies were to depend on 

results, using the best performing classifiers. When user requirements were met the final classifier 

was to become the production system.  
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Chapter 5 Feature selection 

  

5.1 Overview 

A feature is a measurable characteristic, in this case, of a cardiac rhythm. Features are usually 

numeric and a set of features may be grouped in a feature vector. The initial stage of classifier 

development is feature selection.  

 

Classifier development depends on large volumes of data available as training, test and validation 

sets. Early data collection, without adequate consideration of the data to be included, could be 

counterproductive, as the features used may not be useful or others inadvertently omitted. To 

make best use of a data collection opportunity careful selection of features as potential algorithm 

inputs was considered essential.  

 

Clinical evaluation of patients with suspected arrhythmia includes an assessment of their 

symptoms; clinical history of predisposing influences for arrhythmia as well as more objective 

measurements (see Chapter 1, section 1.2). As an aim of the study was to simulate the human 

diagnostic process, detailed analysis of human diagnostic processes could aid in feature selection.  

 

Cardiac signals were identified as feature groups needed as classifier inputs (see Chapter 2, 

subsection 2.9.5). More specific definition of these cardiac signals and aspects of clinical history 

to be collected were required before data collection could proceed. 

 

Three approaches were used for feature identification: firstly, features used in implantable 

pacemakers and defibrillators for rhythm diagnosis were identified; secondly, the literature was 

reviewed for other features previously used or feasible for use for rhythm diagnosis; finally, a 

knowledge elicitation process for feature selection was used and the results from the three 

approaches were pooled. 

 

5.2 Features used in Implantable Pacemakers and Defibrillators 

Heart rate, atrial and ventricular cardiac electrograms and their derivations: intervals, beat 

counters and morphology were identified as features for cardiac rhythm diagnosis in Chapter 2, 

subsections 2.9.5. Accelerometers, incorporated in all current devices will be examined for utility 

as features. 

 

5.2.1 Electrogram Intervals 

Intracardiac electrogram waves, recorded from within the heart, correspond to the surface ECG, 

with characteristics of timing, frequency and vector (amplitude and direction). Different intervals 

are measured for each cardiac cycle (See Fig. 5.1). 
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Figure 5.1 Intracardiac electrogram interval measurements. Traces (from the top) 

are: electrocardiogram (ECG) with P, R and T waves marked; right atrial (RA) 

bipolar electrogram with A waves marked; right ventricular (RV) bipolar 

electrogram with V waves marked. Intervals shown are the atrial interval (PPINT), the 

ventricular interval (RRINT), the atrio-ventricular interval (PRINT), the ventriculo-

atrial interval (RPINT), the ventricular electrical recovery time (QTINT), the atrial 

activation (P) wave duration (PDUR) and ventricular activation (QRS) wave duration 

(QRSDUR). Note that for this study, P and R waves were measured from their detected 

peak, rather than the onset. Signal amplitudes are not calibrated in this diagram, as 

the focus is upon timing intervals. 

 

 

Important timing intervals used for cardiac rhythm diagnosis are: PP interval, PR interval; RR 

interval (heart rate); RP interval; QT interval; sequential variability of RR interval (stability and 

onset); P:R ratio and P/R relationship. P duration and QRS duration relate to wave morphology. 

 

The Hamilton-Tompkins method for the detection of QRS waves from surface ECG’s was 

implemented, adapted for use with intracardiac A and V electrograms. Intracardiac A waves will 

be detected instead of P waves and intracardiac V waves instead of QRS complexes or R waves 
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and should be considered synonymous in method descriptions. Peaks and fiducial points were 

detected, followed by detection of T waves (Hamilton & Tompkins 1986).  

 

Electrogram waveforms recorded from the right atrial and right ventricular electrodes usually 

contain a single chamber-specific signal. Unlike these, those recorded from the His bundle and 

coronary sinus electrodes have complex components. The His bundle electrogram, due to the 

electrode location near the tricuspid valve, contains three major components (A, H and V) and 

the coronary sinus, which lies in the atro-ventricular groove, contains two (A and V) (see Chapter 

1, Figure 1.3). The amenity of His and CS electrograms to computerised analysis is reduced, since 

more than one peak is usually present, making correct detection of the components complex. 

 

Intracardiac electrograms conform to the single electric dipole model, such that unipolar electrode 

configurations, with the cathode within the heart and a distant anode, detect a larger signal but are 

more likely to detect interference, as the dipole is larger (Parker et al. 1969). Bipolar 

configurations have a smaller dipole and with a shorter distance between anode and cathode. 

Intracardiac electrograms also include “far-field” signals, from adjacent chambers, superimposed 

on local “near-field” signal. Far-field signals have been found to be less with shorter inter-

electrode spacing (Fröhlig et al. 1999) and mean that far-field signals were unlikely to be 

detectable with the 5 mm inter-electrode spacing used in this study. To identify the maximum 

peaks of the ventricular waveform, and the maximum peaks and fiducial points of the atrial 

waveform, bipolar electrograms were used, due to low susceptibility to noise. To identify fiducial 

points of the ventricular waveform, a unipolar far-field electrogram was used. 

 

It is notable that none of the algorithms found during a search of the literature involved analysis 

of the His and CS electrograms and this aspect of electrogram analysis will not be attempted in 

this study. 

 

5.2.2 Electrogram Morphology 

Morphology detection works by examining right ventricular electrogram morphology for its 

major features. Atrial electrogram morphology or vector analysis is not currently used in any 

device. Typically, the intracardiac electrogram is detected and the timing of QRS onset, offset 

and duration can be measured. Each electrogram has a series of major peaks and troughs, having 

characteristics of timing, sequence, polarity and amplitude which contribute towards electrogram 

morphological analysis. 

 

Electrogram morphologies are analysed in a number of ways: comparison of a number of points 

of the waveform timed to a reference point or by a representation of salient (e.g. wavelet 

transforms). The St. Jude Medical MD algorithm (see Chapter 2, subsection 2.8.14) represents 
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electrogram morphology features as triangular waves, allowing a “reconstructed” approximation 

of the electrogram to be made and used for analysis. During normal rhythm, the right ventricular 

electrogram peaks and troughs are converted to a series of triangular waves, whose characteristics 

of sequence, duration and amplitude are stored as a template for comparison. During a suspected 

arrhythmia, the differences between each triangular wave of the template and the current beat are 

computed, to provide a percentage match, used to differentiate “normal” from “abnormal” beat 

morphology. 

 

5.2.3 Accelerometry 

Semiconductor accelerometer sensors are the dominant sensor in current pacemakers and 

defibrillators, converting body motion into data. Accelerometer frequency and amplitude output 

is converted into a proposed heart rate according to a predefined formula, used to modulate heart 

rate. Accelerometers have rapid response, are relatively free of interference and can be tuned to 

patients’ individual requirements.  

 

Accelerometer data are not used in arrhythmia discrimination algorithms. If combined, the 

presence of a tachycardia and low activity levels may be a good indicator of inappropriate 

tachycardia. The investigational “Smartracking” algorithm for pacemakers, developed to prevent 

unnecessarily high pacing at heart rates higher than indicated by the accelerometer sensor 

(Kamalvand et al. 1996), demonstrated this in principle, though this was not adopted. Use of 

multi-axis accelerometers could potentially enable the additional detection of posture and 

direction of travel, provided appropriate calibration is made.  

 

5.3 Feature Selection by Review of the Literature  

Candidate features and sensors not currently used for arrhythmia diagnosis, but with evidence in 

the literature supporting their use in arrhythmia diagnosis or management were then considered. 

Published evidence of outcomes research, review articles and case studies were considered. 

Individual case or cohort studies were considered only where they were the first report, most cited 

or sole available published evidence.  

 

5.3.1 QRS Duration 

QRS wave duration is a very primitive representation of QRS morphology and has been previously 

used in ICDs with evidence of utility (Klingenheben et al. 1998). It was susceptible to variation 

unrelated to arrhythmia, resulting in poor predictive value (Aliot et al. 2004) and has been 

superseded by morphology assessment. 
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5.3.2 Heart Rate Variability 

Decreased heart rate variability (HRV) was proposed as a predictor of arrhythmia linked to 

Sudden Infant Death Syndrome (SIDS) (Leistner et al. 1980) and in adults following acute 

myocardial infarction (heart attack) (Kleiger et al. 1987). Both groups proposed that this is due 

to increased sympathetic or decreased vagal tone, predisposing towards ventricular fibrillation. 

Healthy hearts have a large HRV, with decreased or absent variability suggesting cardiac disease. 

Measures of heart rate variability are principally time-domain and frequency domain metrics. An 

example of a time domain metric is standard deviation of the mean of the RR intervals (of the 

ECG) between all normal heart beats (SDNN) over a period (usually 24 hours). A frequency 

domain method is the use of fast Fourier transform (FFT) to estimate power spectral density (PSD) 

analysis of beat-to-beat intervals, over several frequency bands (Task Force of the European 

Society of Cardiology and the North American Society of Pacing and Electrophysiology 1996).  

 

On-going research into indices derived from HRV found it to be predictive of ventricular 

arrhythmias (Malik et al. 1989; Osterhues et al. 1993; Huikuri et al. 1995; Copie et al. 1996; 

Bernardi 1996; Nolan et al. 1998). Other methods of analysis have been proposed, including 

fractal components, chaos theory, entropy and heart rate “turbulence”.  

 

5.3.3 Heart Rate Turbulence 

Heart-rate turbulence (HRT) is variation of sinus-rhythm cycle length after a single ventricular 

premature beat. Absence of the heart rate turbulence after ventricular premature beats has been 

found to be a strong risk stratifier after myocardial infarction (Schmidt et al. 1999). Onset and 

slope are the commonly used measures of HRT. Use of HRT is limited to patients with dominant 

sinus rhythm and the presence of single ventricular premature beats. 

 

5.3.4 QT interval and T waves 

Where the duration of ventricular repolarisation, measured as the QT interval, is abnormally 

prolonged or shortened, it is known to be associated with sudden arrhythmic death (Phillips & 

Ichinose 1970; Gaita et al. 2003).  

 

QT interval and heart rate are inversely related, with the slope and curvature of the relationship 

varying between individuals (Batchvarov et al. 2002). A correction may be applied to eliminate 

the influence of heart rate (QTc). Fixed correction methods (Bazett 1920; Friderica 1920) can be 

accurate for small heart rate changes (< 5 beats/min) but are inaccurate for larger changes and 

individualised calculations are indicated (Malik et al. 2012 and 2013; Garnett et al. 2012). QT 

interval has also been utilised in pacemaker applications. QT interval was the earliest effective 

sensor used in rate-controlled pacemakers use to determine pacing rate (Rickards & Norman 

1981; Rickards et al. 1983; Donaldson & Rickards 1983). The QT sensor remains in clinical use 
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today, in a combined “blended” sensor with an accelerometer. In relation to this effect, a useful 

quality of QT interval is that it has an association with blood catecholamine levels (Hedman et al. 

1990).  

 

A study by Andrássy et al. (2007) supports this with its suggestion that QTc is prolonged with 

mental but unaltered by physical stress. These studies suggest QT interval has utility in detection 

of mental stress. In this study changes in the QT interval was considered for use as one among 

several rhythm discrimination features representing physiological and mental stress. A fixed 

correction method (Bazett 1920) (5.1) was used to reduce the influence of heart rate on QT 

interval values and produce an index of stress, rather than to quantify the absolute value of QTc 

and in this context, the impact of any error was considered minor. 

 

𝑄𝑇𝑐 =
𝑄𝑇

√𝑅𝑅
     (5.1) 

 

5.3.5 Peak Endocardial Acceleration and Heart Sounds 

The assessment of heart sounds, cardiac auscultation, is a conventional technique used in diagnosis 

of heart disease. A commercial pacemaker system is available with a specially made electrode, 

having a peak endocardial acceleration (PEA) sensor able to detect left ventricular contractility 

and intracardiac heart sounds and has been validated as a guide to device programming (Delnoy 

et al. 2008). 

 

5.3.6 Body Temperature  

The relationship between body temperature and metabolic rate is well established (Berggren & 

Christensen 1950). Body heat is generated by: metabolic processes; exercise; infection; hormonal 

influences (such as thyroxine, triiodothyronine, adrenaline and noradrenaline); after eating and 

exposure to high or low environmental temperatures and is regulated by the thermoregulatory 

mechanism in the hypothalamus area of the brain. A correlation between blood temperature and 

heart rate in pacemaker technology was demonstrated (Fearnot & Evans 1988) but has fallen out 

of favour due to the fragility of the electrode-mounted sensors and the slow response time from 

onset of exertion (Sugiura 1983; Fearnot et al. 1984; Alt et al. 1988). Its usefulness in arrhythmia 

detection is unknown, with just one old publication suggesting a relationship (Beaulnes & Day 

1957). Axillary temperature is lower than core temperature, however there is good correlation, 

and it may be inferred that temperature variations are accurately reflected (Fullbrook 1993).  

 

5.3.7 Blood Oxygen Saturation  

Venous oxygen saturation was evaluated as a pacemaker rate-response sensor but due to sensor 

complexity and non-standard electrode failed to gain acceptance (Wirtzfeld et al. 1983; Stangl et 
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al. 1988; Lau et al. 1995). Ohlssen (2001) revisited this during a trial of an implantable 

haemodynamic monitor, also finding a problem with sensor failures.  

 

5.3.8 Blood pH  

It is known that severe physiological exercise may produce metabolic acidosis (reduced blood  

pH) (Robergs et al. 2004). Camilli et al. (1983) demonstrated use of an implantable pH rate-

response sensor to detect exercise in animal implants; however this has not been successfully 

produced for large-scale evaluation. Anderson et al. (1968) found that haemodynamic instability, 

associated with acidosis, following cardiac infarction may also result in arrhythmia. However, 

there is no published evidence that arrhythmia is a causal factor in acidosis. 

 

5.3.9 Blood Pressure  

Blood pressure measurement has been in routine clinical use since the early twentieth century 

(Korotkoff 1905) and is the standard measure in clinical evaluation of haemodynamic status. 

Blood pressure is generated by the forceful contraction of the heart and may be reduced 

(hypotension) if contraction is impaired or raised (hypertension) due to bradyarrhythmia or a 

chronic clinical condition unrelated to arrhythmia. A sudden drop in blood pressure may make 

someone black out and is sometimes associated with bradycardia (Yuskis & Griffith 1949).  

 

Ovsyshcher et al. (1992) using a pacemaker with a specially made unipolar electrode with 

pressure sensor, examined the peak of first derivative of the pressure waveform (dP/dtmax) as a 

pacemaker rate-response sensor. Recently, an implantable haemodynamic monitor with a pressure 

sensor mounted on a right ventricular electrode, also having core temperature and heart rate 

sensors in the device was used in large-scale clinical trials (Steinhaus 2005) and has been 

incorporated into a new ICD. A preliminary study suggested that pressure based indices may 

augment arrhythmia classification algorithms (Kremers et al. 2012) 

 

5.3.10 Bio-impedance  

Nyboer et al. (1940) described a cardiac component associated with thoracic electrical impedance. 

Thoracic electrical impedance is able to detect changes in cardiac output, respiration and thoracic 

fluid volume. From this, impedance cardiography (ICG) was developed for physiological 

monitoring of astronauts in space, by NASA (Kinnen & Kubicek 1963, 1964a and 1964b; 

Kubicek et al. 1966).  

 

Standard pacing electrodes have been used to record intracardiac impedance. Constant-current 

non-stimulating (very low current and voltage) pulses are injected to a pair of right ventricular 

intracardiac electrodes and the resulting voltage is detected from the same or from a different pair. 

The detected signal is modulated by chamber volume and is inversely proportional to right 
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ventricular volume. Amplitude changes (stroke volume) and timing parameters may be measured, 

such as the pre-ejection interval (Chirife 1988). Salo et al. (1984) made stroke volume 

measurements using a catheter-based, right ventricular, intracardiac impedance system and 

Schaldach (1990) suggested the use as a pacemaker sensor (Schaldach 1990; Schaldach & Hutten 

1992). Right ventricular impedance changes were found to correlate well with dP/dtmax and RV 

contractility during dobutamine stress testing and it was suggested as a sensor for a closed-loop 

pacing system (Osswald et al. 2000). 

 

A respiration sensor based on impedance was first used in pacemakers in 1984 (Rossi et al. 1984). 

This was refined into a reliable minute ventilation sensor to modulate pacemaker controlled heart 

rate on exercise (Alt et al. 1987; Nappholz et al. 1987; Mond 1988; Lau et al. 1988). Minute 

ventilation is the product of tidal volume and respiration rate. Changes in minute ventilation are 

slightly delayed from onset of physiological exercise and the sensor is best used in combination 

with an accelerometer, called “sensor blending”, which remains in clinical use. 

 

5.4 Feature Selection by Knowledge Engineering 

Features important to arrhythmia diagnosis were evaluated in a knowledge engineering process, 

outlined in a previous study (Bostock et al. 2010). Use of a knowledge engineering approach 

ensures the system includes up-to-date expert knowledge and is updatable. 

 

5.4.1 Domain Expertise 

Domain expertise for knowledge acquisition was provided by a series of internationally validated 

consensus clinical guidelines and highly-cited papers, rather than a single human domain expert. 

These source documents were considered “expert opinion” evidence, based on meta-analysis of 

large volumes of study data and sound international expert consensus and were used in this study 

as the primary source for knowledge elicitation. Source documents used were: Bonow et al. 2012; 

Blomström-Lundqvist et al. 2003; Surawicz et al. 2009; Buxton et al. 2006; Epstein et al. 2008; 

Saoudi et al. 2001; Fuster et al. 2011 and Brugada et al. 1991. Extracted knowledge was then 

validated by a human domain expert. 

 

5.4.2 Clinical Diagnosis of Arrhythmia 

The practice of cardiac rhythm diagnosis not specific to individual rhythms was analysed. Two of 

the source documents (see Chapter 3, subsection 3.10.1) contained recommendations for the 

clinical diagnosis of arrhythmia (Blomström-Lundqvist et al. 2003; Fuster et al. 2011) and were 

subjected to knowledge elicitation by detailed manual analysis of the text. Key phrases and 

measured parameters used in cardiac rhythm diagnosis were identified and recorded in as few 

words as possible. In a similar process, detailed arrhythmia definitions, previously obtained (see 
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Appendix E) were also subject to detailed manual analysis of the text. Key phrases and measured 

parameters used were identified. 

 

5.5 Results of Feature Selection 

Results of the three feature selection techniques were pooled and listed. Features were merged and 

functional duplicates eliminated (see Appendix F).  

 

Features were placed into two groups: those likely to be obtained during an initial clinical 

evaluation (i) and those likely to be obtained during more detailed diagnostic testing (ii). 

 

i. Features likely to be obtained during an initial clinical evaluation, from the clinical 

history, physical examination or simple investigative testing were: arrhythmia related 

symptoms; a history of cardiac or pulmonary (lung) disease; predisposing or precipitating 

factors; physical signs and metabolic imbalances or disease. 

ii. Features likely to be obtained during detailed diagnostic testing using an 

electrocardiogram (ECG) or advanced tests were: the influence of stress; haemodynamic 

status during arrhythmia; ECG measurements and response to pacing. 

 

5.6 Summary 

In summary, important features used in implantable devices are: PP interval, PR interval; RR 

interval (heart rate); RP interval; sequential variability of RR interval (stability and onset); P:R 

ratio; P/R relationship; electrogram morphology and accelerometry.  

 

Additional sensors and parameters examined were not all suitable for inclusion in this study. QRS 

duration has poor predictive value, used in isolation but is incorporated in some of the morphology 

algorithms. Heart rate variability and turbulence indices have been shown to be predictive of 

arrhythmia but require long periods of continuous monitoring, rather than providing an “instant” 

result. QT intervals offer a simple way of detecting catecholamine changes, particularly with 

mental stress and QT dispersion provides an additional index of arrhythmic risk. T wave alternans 

was described in as an additional predictor of arrhythmia.  

 

A peak endocardial acceleration sensor, mounted in a pacemaker electrode can detect cardiac 

function and guide to device programming. Metabolic sensors mounted on intracardiac electrodes, 

able to detect blood temperature, oxygen saturation of acidity, have been tested. Blood temperature 

has been demonstrated as a useful pacemaker sensor however the sensors are fragile and have a 

slow response time. The usefulness of body temperature as a detector of arrhythmia is not 

established. Blood oxygen saturation was evaluated but failed to gain acceptance due to frequent 

sensor failures. Use of an implantable blood pH rate-response sensor to detect exercise has not 
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had large scale human trials and there is no published evidence that arrhythmia is a causally related 

to acidosis. A blood pressure sensor can be incorporated in an intracardiac electrode and has been 

successfully used to monitor cardiac function and may have utility in arrhythmia classification. 

Impedance sensors for respiration and cardiac function assessment are successful and do not 

require additional sensors. 

 

The knowledge engineering exercise was in two parts, analysis of the general clinical approach 

to arrhythmia diagnosis and detailed analysis of differential diagnosis of arrhythmia. From the 

first part, results were dominated by factors related to clinical history and physical examination. 

From the second, ECG related features, acknowledged to be central to modern cardiac rhythm 

diagnosis, dominated. 

 

Pooled results from the three feature selection techniques were divided into two groups: those 

obtained during an initial clinical evaluation and those obtained during more detailed diagnostic 

testing. 

 

The first group consisted of: arrhythmia related symptoms; a history of cardiac or pulmonary 

(lung) disease; predisposing or precipitating factors; physical signs and metabolic imbalances or 

disease. The second of: the influence of stress; haemodynamic status during arrhythmia; ECG 

measurements and response to pacing. These features will provide the basis for data collection, 

the next phase of classifier development. 

 

Decisions to include particular sensors were made based on their relevance to the selected features 

and that there was a corresponding sensor technology. The implementation of features and sensor 

technologies is discussed further in the following Chapter (see Chapter 6, section 6.6). 
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Chapter 6 Preparation for Data Collection 

  

6.1 Overview 

Features identified in Chapter 5 (see Chapter 5, sections 5.5 and 5.6) identified two groups of 

features: those likely to be obtained during an initial clinical evaluation and those likely to be 

obtained during more detailed diagnostic testing. Data in both groups consisted of human clinical 

data. To collect such data required a clinical study to be designed.  

 

A diagnostic trial was designed as a sub-study. A population was identified and sample size 

estimation made. The process of ethical approval was described, including its aims, inclusion and 

exclusion criteria and data security. 

 

Features were examined in detail to establish optimal measurable parameters which would enable 

their capture. A list of equipment required for data collection was based on the measurable 

parameters identified. The characteristics of the measured signals were used to form the basis of 

a minimum technical specification and equipment satisfying the specification was identified and 

assembled, ready for data collection. 

 

6.2 Guidelines for Diagnostic Trials 

In medical research diagnostic trials are clinical studies intended to find better diagnostic tests, 

and this study involved developing and testing a new classifier, which equated to a diagnostic 

test.  

 

Many diagnostic trial results are hampered by poor study design and until recently there was a 

lack of guidance. This has been addressed by the production of internationally recognised 

guidelines for good practice by the STARD group (STAndards for the Reporting of Diagnostic 

accuracy studies) (Bossuyt et al. 2003), whose recommendations include a 25 point checklist for 

diagnostic trial design and reporting results (see Appendix G). STARD recommendations do not 

include sample size estimations, ethical and data security considerations. All were incorporated 

into study design at the appropriate points.  

 

6.3 Sub-study Population 

Previous studies looking at rhythm classification in ICDs (summarised in Chapter 2, subsections 

2.8.13 and 2.8.14) used data from different types of collection: retrospective data from arrhythmia 

libraries and repositories; retrospective data collected from event data stored in ICDs and 

prospective data collection, using Holter monitoring for standard ECG’s or invasive 

electrophysiological studies for intracardiac electrograms. Unlike this study, the previous studies 
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reviewed here did not collect continuous temperature, accelerometry or cardiac function data, so 

failed to provide a methodological model or a suitable source of data. 

 

6.3.1 ICD Implant Patients as Sub-study Population  

Patient populations in previous studies of ICD algorithm performances (see Chapter 2, 

subsections 2.8.13 and 2.8.14) either had existing ICD implants or were studied during ICD 

implant procedures. This population may not be easily reproducible, so data from a population 

that deviates from this may be expected to differ.  

 

In the reviewed studies of ICD algorithm performances, sensitivity measures were based on 

diagnosis of VT and VF diagnosis and specificity measures based on discrimination of SVT. Little 

attention was paid to other arrhythmias.  

 

Given that this study placed emphasis on the suitability of the final algorithm for use in ICDs, 

certain data characteristics were required. Firstly, collection of ECG data from skin (surface) 

electrodes is impractical for an implanted device, secondly, implanted electrode configuration and 

complexity is limited by compatibility with existing ICD hardware (standard / non-standard) 

thirdly, durability issues (potential for failure of overly complex or fragile technology) and lastly, 

current hardware configurations (electrodes and ICDs) undergo rigorous long term testing and are 

subject to continuous performance review so significant changes in design, though possible, may 

be inadvisable.  

 

Cardiac electrograms are equivalent parameters to ECG’s, recorded directly from or near the 

heart. To enable standard ICD compatibility, cardiac electrogram data should be collected from 

standard ICD compatible electrodes placed in the right atrium and right ventricle. The ICD device 

should be placed in the pectoral region. Left sided implants are preferred, as right-sided implants 

show higher all-cause mortality rate and defibrillation threshold (Gold et al. 2007). Data 

collection based on this prescription, with prospective data being collected during standard ICD 

implant procedures, would have seemed advisable. Potential limitations of the approach included: 

 

1. The need to collect data at ICD implant procedures and the risks of infection or 

complication associated with resultant prolonged procedure times. 

2. The need to artificially initiate arrhythmias other than VF during the ICD implant. 

3. The low likelihood of many non-life-threatening arrhythmias beyond ICD implant 

indications. 

 

Given these limitations, an alternative study population was sought for which these limitations 

were solved: access to a population that had right atrial and right ventricular electrodes placed, 



103 

 

with a low risk of infection or complication, where initiation of arrhythmia is routinely performed 

and where many different rhythms may be observed. 

 

6.3.2 Electrophysiological Studies Patients as Sub-study Population  

A suitable population was patients undergoing EP, which also involved placement of electrodes 

in the right atrium and right ventricle, among other locations. EP offered a solution to the 

limitations listed in subsection 6.3.1. Collection of arrhythmic data and artificial initiation of 

arrhythmias is normal practice during EP and the possibility of encountering very many more 

types of arrhythmia is greater than during ICD implant procedures. This approach also had some 

different potential limitations:  

 

1. Electrophysiology electrodes differ in design to implantable ICD electrodes. 

2. Right atrial electrode locations are often different to the standard location for a pacemaker 

or ICD implant (right atrial appendage). 

 

These limitations were addressed as follows: 

 

1. Electrode designs are sufficiently similar in electrode surface area, electrode material and 

dipole distance to minimise any practical difference. Quadripolar electrodes have 

proximal electrodes which could be used to simulate shock coils.  

2. Right atrial pacing electrodes may often be located in non-standard locations to counter 

poor electrical characteristics or fixation problems. 

 

6.3.3 Sub-Study Population 

Body motion, temperature, respiration and cardiac function data collection are amenable to 

collection from patients at either ICD implant or EP, as data would be collected over a short 

period, under clinical laboratory conditions.  

 

Having satisfactorily addressed any limitations, EP was selected as the data collection mode 

following which detail was added to the methodology, given the type of study involved. 

 

6.4 Sample Size Estimation - Powering the Sub-study 

For the required accuracy to be achieved, a minimum sample size should be calculated, by setting 

a target for power (τ) of the statistical test to be applied.  

 

6.4.1 Effect, α, β and Power  

Values for α (type I error or significance level of the test) and β (type II error), which is related to 

power τ, and a desired effect size (β) are required to calculate τ (6.1). 
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𝜏 = (1 − 𝛽)      (6.1) 

 

Widely accepted convention uses a 4:1 trade-off between β and α error. This trade-off is provided 

when β is 0.2 and α is 0.05 at a value of 0.8 for τ. Values typically used are τ of 0.8 or 0.9, and α 

of 0.05 or 0.01. For a power of 0.8, a false null hypothesis will be rejected 80% of the time.  

 

Effect size represents the association between two groups, which for Fisher’s exact test is often 

represented by the phi (ф) coefficient or odds ratio (OR). Phi values lie between -1 and +1 and a 

common interpretation: -1.0 to -0.7 strong negative association; -0.7 to -0.3 weak negative 

association; -0.3 to +0.3 little or no association; +0.3 to +0.7 weak positive association; +0.7 to 

+1.0 strong positive association. OR is a measure of effect size with values of 0 to infinity, where 

1 represents no relationship; values <1 are not interpretable, so the group expected to have higher 

odds of an event should be in the first column of the 2 x 2 contingency table and values >1 mean 

there is a significant difference between groups. OR is a measure of effect size with values of 0 

to infinity, where 1 represents no relationship; values <1 are not interpretable, so the group 

expected to have higher odds of an event should be in the first column of the 2 x 2 contingency 

table and values >1 mean there is a significant difference between groups. 

 

A simple method to estimate sample size is trial and error, inserting values into the 2 x 2 

contingency table until a desired odds ratio (OR) or ф is obtained. An alternative is the use of 

pilot study data or data from previous similar research to estimate a minimum sample size.  

 

6.4.2 Sample Size Estimation from a Pilot Study and Published Studies 

This study aims to improve diagnostic accuracy for all types of cardiac rhythm, exceeding the 

accuracy of commercial ICD algorithms. A convention in accuracy evaluations of commercial 

ICD algorithms is for a diagnosis of VT and VF to be positive and SVT negative, with accuracy 

expressed in terms of sensitivity and specificity. Sensitivity is used to represent the correct 

diagnosis of VT and VF (usually combined) and specificity the correct classification of SVT. This 

convention was observed in sample size calculations.  

 

Using data from a pilot study (Bostock 2004), sample size estimation was made with pooled data 

used to test all ICD algorithms. For 800 events, 600 were positive (VT or VF) and 200 negative 

(SVT), of which 579 were true positives (a); 145 false positives (b); 21 false negatives (c) and 55 

true negatives (d). Negative to positive ratio was 200:600 or 0.333. The probability of incorrect 

diagnosis of SVT (false positive rate, α error) as VT or VF was 0.725 and of correct diagnosis of 

VT or VF (sensitivity, power) was 0.965. 73 VT or VF events and 25 SVT events are required to 
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be able to reject the null hypothesis that the two probabilities are equal with a power of 0.8 and α 

error of 0.05. 

 

Using data taken from the study of Hintringer et al. (2001) for ELA PARAD algorithm, there 

were 86 events, of which 15 were positive (VT or VF) and 71 negative (SVT), 15 true positives 

(a); 36 false positives (b); 0 false negatives (c) and 35 true negatives (d). Negative to positive ratio 

was 71:15 or 10.47. The probability of incorrect diagnosis of SVT (false positive rate, α error) as 

VT or VF was 0.507 and of correct diagnosis of VT or VF (sensitivity, power) was 1 (0.999 used 

in calculation). 7 VT or VF events and 74 SVT events are required to be able to reject the null 

hypothesis that the two probabilities are equal with a power of 0.8 and α error of 0.05.   

 

No published study was found against which to compare these proportions in a population 

undergoing EP study, but Zeldis et al. (1980) studied a similar population of 518 patients with 

palpitations, dyspnoea, discomfort in the chest, dizziness, and syncope, using 24-hour ECG 

recordings. Of these patients, 40 (7%) had ventricular arrhythmias and 54 (10%) supraventricular 

tachycardia.  

 

Sample size calculations were performed using PS Power and Sample Size Calculations software, 

Version 3.0 (Dupont & Plummer 1990), using Fleiss’s (1981) generalisation of the method of 

Casagrande & Pike (1978).  

 

6.4.3 Converting Samples into Patients 

The pilot study suggested a sample size of 73 VT or VF events and 25 SVT events whereas data 

from Hintringer et al. (2001) suggested 7 and 74 events respectively were required to provide 

sufficient power to reject the null hypothesis. Taking the higher value for each suggests 73 VT or 

VF events and 74 SVT events.  

 

Converting a sample size estimated as units of events into a number of patients is complex. For 

example, 73 patients examined will not all have VT or VF, so patient numbers will need to be 

greater than this. Prevalence of VT, VF and SVT in the population of patients undergoing EP is 

unknown and given that event rates will vary between institutions conducting the procedures, an 

estimate of the number of patients to be recruited to satisfy power requirements is not possible. 

 

The data from Zeldis et al. (1980) indicated a likely prevalence of these arrhythmias in an EP 

patient population. Using the proportions found in Zeldis et al. (1980) study, to find 73 episodes 

of ventricular arrhythmia would require a study sample size of 73/7 * 100 or 1042 patients and to 

find 7 episodes would require 100 patients. In the same way, to find 74 or 25 SVT events would 

require 740 and 250 patents respectively. Given that numbers over 100 were impractical in the 
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planned single-centre study, during the period allocated to data collection, the lower requirement 

of 100 patients was accepted. 

 

6.5 Sub-study Ethics Application 

An application was made to St. Thomas’ Hospital Research Ethics Committee using the NHS 

REC (National Health Service Research Ethics Committee) process on 9/10/2007. The REC 

reference was: 07/H0802/119.  

 

The study title was: “Creation of an Intracardiac Electrogram and Physiological Parameter 

Library for Use in Cardiac Arrhythmia Research”. Approval was received on 30/1/2008 (see 

Appendix H). A protocol amendment was submitted on 8/4/2009 and approval of the amendment 

was received on 22/05/2009. 

 

6.5.1 Type of Study 

This was a single centre, prospective, uncontrolled case-series, involving collection of 

physiological parameter data at the time of elective interventional cardiac electrophysiological 

studies (EP), including radiofrequency ablation (RFA).  

 

6.5.2 Sub-study Objective 

The objective was to obtain a collection of physiological parameter data corresponding to a wide 

variety of cardiac rhythms in a large cohort of patients. 

 

6.5.3 Setting 

The setting for data collection was the location of performance of EP procedures, the cardiac 

catheterisation suites at Guy’s and St. Thomas’ NHS Foundation Trust (GSTT). 

 

6.5.4 Duration of the Sub-study 

Data was collected at the time of EP or RFA procedures only and not at any other time.  

 

6.5.5 Recruitment 

Given the power calculation (see subsection 6.4.30) of 100 patients, a maximum of 200 patients, 

set by expedience for the expected eligibility at GSTT, were to be enrolled within the recruitment 

period of one year. Approved start and end dates of data collection from were 22/5/2009 to 

30/4/2010.  

 

6.5.6 Conduct Monitoring  

A consultant cardiologist, Dr Michael Cooklin monitored the clinical aspects of this work on 

GSTT premises. Individual patient studies were conducted under the direct clinical supervision 
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of the co-investigators who were the consultant physicians caring for the patients undergoing 

investigation: Dr Michael Cooklin; Dr Mark O’Neill; Dr Jaswinder Gill, Dr Aldo Rinaldi and Dr 

Eric Rosenthal. Academic Supervision was provided by Dr Peter Weller, Senior Lecturer in 

Medical Informatics, City University London. 

 

Any adverse event attributable to the study was reported to the monitors who would make an 

evaluation and recommend continuation or discontinuation of the study, as appropriate. 

 

6.5.7 Potential Risks and Benefits to Participants  

There were no known potential adverse effects, risks or hazards. Minor disadvantages were that 

additional skin electrodes might cause very minor skin irritation (itching or redness). There were 

no specific benefits to participants other than their contribution to this or other possible future use 

of the data in research. 

 

6.5.8 Funding 

The sub-study was funded by Guy's and St. Thomas' NHS Foundation Trust. 

 

6.5.9 Main Ethical Issues 

The main ethical issue identified was effects of the use of additional skin electrodes, temperature 

probe and accelerometer and the time taken to apply them, prior to the commencement of the 

study (estimated to be 15 minutes). Patients had this explained to them and had the option to 

decline consent. 

 

6.5.10 Data Types 

Data consisted of a library of anonymised demographic data, clinical history data and 

physiological signals and measurements collected during cardiac electrophysiological studies and 

radio-frequency ablation (RFA) procedures. Measurements included those were those normally 

made during these procedures, including the following parameters: 12-lead ECG, intracardiac 

electrograms, and measurements not normally made during these procedures: impedance 

cardiography (non-invasive), body motion accelerometry (non-invasive) and body temperature 

(non-invasive).  

 

6.5.11 Data Security 

Health records were accessible to no-one outside the normal clinical team. Prior to anonymisation, 

data collection and transfer was on dedicated NHS systems and archived to DVD, held in secure 

storage, as is customary for a standard procedure.  
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Data anonymisation was performed, after the data was collected, on GSTT premises by the chief 

investigator, who had access to the non-anonymised data as a part of his normal duties. 

Anonymisation consisted of the removal of personal identification data, such as participant name, 

address, NHS number, hospital number, date of birth (age and sex at data collection will be 

retained); no other demographic data was collected. Anonymised patient data was identifiable 

beyond the data collection phase only by a study number. Anonymised data was stored in digital 

form on DVD, enabling later off−line processing. 

 

6.5.12 Data Retention 

The Chief Investigator was named as custodian of the data. The data will be retained indefinitely, 

with a minimum of 15 years from the date of enrolment. 

 

6.5.13 Data Verification 

Cardiac rhythms were verified by two domain experts, at the time of recording, at least one of 

whom was a cardiac electrophysiology consultant. This provided the “gold standard” reference 

diagnosis for later use in supervised learning and validation. 

 

6.5.14 Sub-study Inclusion and Exclusion Criteria  

A rationale for study population selection was explained in section 6.4. The patient population 

(see subsection 6.4.3) was patients undergoing invasive diagnostic electrophysiological studies 

where at least right atrial and right ventricular electrodes would be positioned.  

 

Inclusion and exclusion criteria were: 

 

Inclusion Criteria: 

Patients scheduled for non-emergency invasive cardiac electrophysiological study with or 

without radiofrequency ablation, including children under 16. 

 

Exclusion Criteria: 

 Patients having prophylactic ablation (such as for atrial fibrillation) without invasive 

electrophysiological study. 

 

Concurrent participation in any other clinical investigation or trial; prisoners; young 

offenders; adults in Scotland who are unable to consent for themselves; healthy volunteers; 

a dependent relationship with the investigator e.g.: those in care homes, medical students; 

adults with learning disabilities or are unconscious or very severely ill or have a terminal 

illness or in emergency situations or with mental illness or with dementia; other vulnerable 

groups. 
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Justification for the inclusion of vulnerable groups (such as children):  

 

The study of paediatric arrhythmias was an important aspect of this study and exclusion 

would limit the value of the data. As the study involved minimal inconvenience or 

additional risk, this was considered a viable approach.  

 

6.5.15 Participant Recruitment 

Recruitment was based on referral for invasive cardiac electrophysiological testing or ablation 

procedures, based on symptoms with or without tests supporting the diagnosis. 

 

Potential participants were supplied with a written Patient Information Sheet, suited to their age 

group as defined in NPSA guidelines, containing detail of the investigation, for a minimum of 

one hour prior to being approached for consent. Where this time was not available, consent was 

not sought.  

 

6.5.16 Informed consent  

All patients were enrolled following an informed consent procedure with the clinician performing 

the test taking consent. Information and consent procedures were adopted appropriate to each age 

group, with the full participation of parents, patients and responsible physician. Parental and 

patient consent was sought for patients under 16. Investigators explained the purpose of the study 

to the patient and consenting parent or guardian and answered any questions. There were no non-

English-speaking patients.  

 

6.5.17 Withdrawal of Consent 

Participants were informed of their right to withdraw consent at any time. It was considered 

unlikely that additional information would become available during the course of the research 

that might be relevant their continued participation, given the short duration of participation. In 

that eventuality, the consenting clinician was expected to be fully aware of any new information 

relevant to the study and was to supply participants with a suitably updated patient information 

sheet, subject to local research ethics committee approval. If the participant lost capacity to 

consent during the course of the research, they would be withdrawn from the study with any 

identifiable data anonymised and retained or disposed of.  

 

6.5.18 Insurance and Liability 

All patients were recruited at NHS sites, so the NHS indemnity scheme or professional indemnity 

applied. Liability for clinical negligence by NHS staff lay with the NHS. 
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6.6 Converting Features to Measured Parameters 

In machine learning, the terms “feature” and its synonyms “variable” and “attribute” refer to a 

measurable property with a set of features known as an instance or pattern. A “parameter” may 

be a special type of feature. In clinical medicine, parameter often refers to a measurable factor, or 

a vital sign, such as temperature, pressure, or the ECG and this definition is adopted for this study. 

 

A measured parameter may have several features derived from it. For example, from the ECG 

parameter we can derive heart rate, PR, RR, QT intervals and P:R relationship. There were a 

number of different recordable parameters to best represent those features selected in Chapter 7. 

Close examination of individual features, given that they would be collected at EP investigations, 

was made to explore options. 

 

6.6.1 Features from Clinical Evaluation 

Following the pattern of human clinical diagnosis, information from the clinical history, physical 

examination and simple investigative testing was collected during the process of clinical 

evaluation. In this study, it was considered unnecessary to duplicate this process and this 

documented data was extracted and encoded without further intervention. 

 

6.6.2 Features from Diagnostic Testing 

Features obtained during detailed diagnostic testing included those selected on the basis of ECG 

diagnosis, supplemented by supporting evidence (see Chapter 5, section 5.5). These were: the 

influence of ECG measurements; stress; haemodynamic status during arrhythmia and response to 

pacing. 

 

6.6.3 ECG Features 

ECG features could be consolidated to the detection of P, QRS and T waves and measurement of 

their respective time intervals, morphologies and axes as well as detail of P to R arithmetic 

relationships and sequences. 

 

In an EP procedure intracardiac electrograms are taken from the right atrium and right ventricle, 

and the signals are used to represent intracardiac equivalents of the ECG P and QRS waves 

respectively, as in EP studies (see Chapter 5, subsection 5.2.1 and Fig. 5.1). 

 

Electrograms may be “unipolar”, with a distant, extracardiac electrode having a voltage close to 

zero as an indifferent (negative) electrode and an intracardiac recording (positive) electrode or 

they may be bipolar, with both electrodes within the cardiac chamber, separated by a dipole 

distance, typically 1 cm.  
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To achieve a unipolar configuration, options for an indifferent electrode include: a composite of 

surface ECG limb electrodes in Wilson’s central terminal (WCT) configuration (Wilson et al. 

1934); an additional invasive electrode catheter positioned in the inferior vena cava (IVC) or an 

extracardiac electrode in some other position distant to the heart (pseudo-unipolar). 

 

WCT generates a mean voltage from the right arm, left arm and left leg surface ECG electrodes. 

Use of WCT for intracardiac electrogram recording often results in unacceptable levels of 

electrical noise, as intracardiac electrograms require significantly greater amplification compared 

with surface ECG recordings. Unwanted electrical interference is detected and amplified from 

each of the three limb electrodes used to generate a WCT, possibly an exacerbation. The use of 

an additional invasive electrode in the IVC probably provides best results (Stevenson & Soejima 

2005) but involves ethical concern, due to the requirement for the placement of an additional 

intravascular electrode, for a recording that is not clinically indicated. A practical pseudo-unipolar 

alternative was required. An indifferent electrode suitable for pseudo-unipolar recording can be 

provided using a skin ECG electrode placed in the left pre-pectoral region. The voltage at this 

position will be close to that of the left arm (VL) and being distant to the heart will be low 

compared with the high voltages expected from intracardiac active electrodes in this study. An 

assumption was made that the contribution of the indifferent voltage (VL) to recorded signal 

amplitude was small. During an EP study, electrograms (EGM) can be obtained using 

combinations of pairs of different electrodes (see Fig. 6.1). 

 

6.6.4 Features Related to Stress 

A variety of device–based sensors for detecting physiological, emotional and mental stress have 

been tested (see Chapter 5, subsections 5.2.3 to 5.3.8). The most well-known were considered for 

use in this study: accelerometry, minute ventilation, temperature and the QT interval of the ECG. 

 

Body motion has a potential to be used as a detector of physical exercise and so represent physical 

stress. Body motion data is typically acquired in pacemakers (see Chapter 5, subsection) 

by accelerometry and is measured in units of g, multiples of the acceleration due to gravity 

(g0). A commonly used index for body motion over time, combining axial data, is the 

square root of the sum of squares (RSS) of each vector, called vector magnitude units 

(VMU) (Coleman et al. 1997; Steele et al. 2000). With RSS, squaring converts the data 

into positive values and the square root returns an output vector containing VMU as index 

for body motion as an aggregate of the original data, shown here for x and y axes only, in 

a dual-axis accelerometer (6.2).  

 

𝑉𝑀𝑈 = √(𝑥2 + 𝑦2)     (6.2) 
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Figure 6.1 Schematic of atrial, ventricular and atrio-ventricular composite 

electrograms. Quadripolar electrodes are in the lateral RA and RV apex. A skin 

electrode (S) in the left pre-pectoral region. Key: A=Atrial bipolar (black arrows); 

V=ventricular bipolar (blue arrows); AV=composite AV (green arrows); AU= atrial 

unipolar (black dashed arrows); VU=ventricular unipolar (blue dashed arrows); 

S1=far-field atrial unipolar (red arrows); S2=far-field composite A4 to V4 (red 

dashed arrows); S3=far-field ventricular unipolar (red dotted arrows); S is the skin 

electrode used as indifferent for pseudo-unipolar electrograms; + indicates a positive 

(active) recording polarity, otherwise negative. 
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A respiration sensor based on impedance was first used in a pacemaker in 1984 (Rossi et al.1984) 

and was refined into a reliable minute ventilation sensor to modulate pacemaker controlled heart 

rate on exercise (Alt et al. 1987; Nappholz et al. 1987; Mond 1988; Lau et al.1988). Changes in 

minute ventilation, the product of tidal volume and respiration rate, are used in pacemakers to 

detect increased respirations. The availability of this established sensing technology means that, 

like body motion, respiration could be used as a sensor to indicate physical stress. 

 

Features related to stress (see Chapter 5, subsections 5.2.3 to 5.3.8) were consolidated to 

parameters measuring: body motion (by accelerometry); body temperature; respiration by 

thoracic bio-impedance and QT interval from the ECG. 

 

6.6.5 Haemodynamic Status  

Haemodynamic status is most commonly measured using blood pressure. The practicality of 

measuring blood pressure on a beat-by-beat basis requires invasive blood pressure monitoring, by 

insertion of a cannula into an artery. Measurement of haemodynamic status by an implantable 

device has been achieved in a number of ways and these were examined as solutions for data 

collection. 

 

Recently, an implantable haemodynamic monitor with a pressure sensor mounted on a right 

ventricular electrode, also having core temperature and heart rate sensors in the device has been 

used in large-scale clinical trials (Steinhaus 2005) and has been incorporated into a commercial 

ICD. An alternative is a peak endocardial acceleration, which also involves an electrode-mounted 

sensor to measure an analogue of right ventricular contractility. Both peak endocardial 

acceleration and blood pressure would require invasive monitoring, not normally required in 

experimental procedures, posing an ethical challenge. To be developed for any resultant 

commercial system, both require an additional sensor, adding to commercial risk.  

 

In contrast, impedance or conductance measurements have been extensively studied in 

implantable devices and uses standard electrodes, not requiring additional sensors. Stroke volume 

measurements were made by a catheter-based, right ventricular, intracardiac impedance system 

(Salo et al. 1984). Schaldach (1990) suggested the use of intracardiac impedance measurement as 

a pacemaker sensor (Schaldach 1990; Schaldach & Hutten 1992). Further study of right 

ventricular impedance changes were found to correlate well with dP/dtmax and right ventricular 

contractility during dobutamine stress testing and suggested it as a sensor for a closed-loop pacing 

system (Osswald et al. 2000). Standard pacing electrodes have been used to record intracardiac 

impedance. Two or more electrodes are used, depending on the proprietary system. Constant-

current non-stimulating (very low current and voltage) pulses are injected to a pair of right 

ventricular intracardiac electrodes and the resulting voltage is detected from the same or from a 
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different pair. The detected signal is modulated by chamber volume and is inversely proportional 

to right ventricular volume during the cardiac cycle. Amplitude changes (stroke volume) and 

timing parameters may be measured, such as the pre-ejection interval (Chirife 1988). 

 

ICG is a convenient, validated method to non-invasively use thoracic bio-impedance to monitor 

both cardiac function and respiration in a simulation of device-based impedance measurement. 

With an ICG recording, a pair of electrodes is placed at the base of the neck and another pair at 

the upper abdomen. A high frequency, low amplitude, constant alternating measurement current 

is passed through the chest, via the outer pair, producing an induced voltage across the inner pair. 

The measurement current seeks the path of least resistance and blood is the most electrically 

conductive intervening tissue, so current passes mostly through the thoracic aorta, superior vena 

cava and inferior vena cava (Summers et al. 2003). Underpinning theory of thoracic impedance 

is that Z0 is the static base impedance and is indirectly proportional to total thoracic fluid content 

(Pomerantz et al. 1970). Thoracic fluid conductivity is directly proportional to thoracic fluid 

content (Pomerantz et al. 1969 and 1970) and is used as a diagnostic feature for congestion 

monitoring of heart failure in some ICDs (Yu et al. 2005). Total thoracic impedance change with 

time (∆Z) can be expressed as the sum of its components (6.3) where the cyclic respiratory 

impedance component (∆ZR) is due to changes in venous and pulmonary blood volume caused by 

each respiratory cycle and the cardiac impedance change (∆ZC) is due to aortic blood volume and 

velocity changes with each cardiac cycle. 

 

∆𝑍 = 𝑍0 + ∆𝑍𝑅 + ∆𝑍𝐶     (6.3) 

 

Use of the first time derivative of ∆Z, dZ/dt reduces the effect of ∆ZR signal and its peak is 

proportional to cardiac stroke volume (SV) (Kubicek et al. 1966; Sramek 1983; Bernstein 1986; 

Osypka & Schafer 1998; Osypka & Bernstein 1999). A study by Van de Water and colleagues 

(2003) found dZ/dt correlated well with cardiac output (r = 0.81). Impedance cardiography SV 

formulae include the Sramek-Bernstein equation (6.4) (Sramek 1983; Bernstein 1986) and the 

Bour equation (6.5 and 6.6) (Charloux et al. 2000). 

 

𝑆𝑉 = 𝛿.
(0.17𝐻)3

4.2
.

𝑑𝑍 𝑑𝑡𝑚𝑎𝑥⁄

𝑍0
. 𝐿𝑉𝐸𝑇    (6.4) 

 

In the Sramek-Bernstein equation, δ is weight as a fraction of ideal weight, as taken from the 

Metropolitan Life insurance tables; H is height; dZ/dtmax  is the systolic peak of dZ/dt; Z0 is the 

base impedance; and LVET the left ventricular ejection time.  

 

Used in the PhysioFlow system, the Bour equation (6.6) uses a stroke volume index calibration 

(SVIcal) performed for 30 consecutive beats at rest as a baseline reference (6.5); Zmax – Zmin is the 
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Z variation during systole; TFIT is the thoracic flow inversion time, from first zero crossing after 

the Q wave of dZ/dt to the nadir after dZ/dtmax; TFITcal is TFIT during the calibration period and 

is weighted by heart rate and arterial pressure difference (systolic minus diastolic); k is a constant. 

Parameters are measured and compared to the baseline. 

 

𝑆𝑉𝐼𝑐𝑎𝑙 = 𝑘.
𝑑𝑍 𝑑𝑡𝑚𝑎𝑥⁄

(𝑍𝑚𝑎𝑥−𝑍min ))
. 𝑊(𝑇𝐹𝐼𝑇𝑐𝑎𝑙)   (6.5) 

 

𝑆𝑉 = 𝑆𝑉𝐼 = 𝐵𝑆𝐴. 𝑆𝑉𝐼𝑐𝑎𝑙 . √(𝑑𝑍 𝑑𝑡𝑚𝑎𝑥⁄ 𝑑𝑍 𝑑𝑡𝑚𝑎𝑥𝑐𝑎𝑙).  𝑇𝐹𝐼𝑇𝑐𝑎𝑙 𝑇𝐹𝐼𝑇)⁄⁄⁄3
 (6.6) 

 

Impedance measurements provided a validated method to record beat-by-beat haemodynamic 

status and monitor respiration. 

 

Naidu and co-workers accurately extracted impedance cardiogram B, C and X fiducial points 

using Matlab with a low computational cost (Naidu et al. 2011). Their recommended window size 

for C wave detection was modified heuristically in this study to the first 40% of each RR interval 

following the V wave, rather than 20%. Conventionally, the B point is the point of onset for the 

rapid upstroke of dZ/dt preceding the C wave. Naidu, at-odds with convention, used the nadir 

preceding the C wave to detect B point. An optimal automated algorithm for B detection using 

this might involve use of the peak second derivative (d2Z/dt2) following the R wave (Debski et al. 

1993; Bour & Kellett 2008). Lozano et al. (2007) derived a simple function to accurately estimate 

RB interval, based on RC interval (6.7).  

 

𝑅𝐵𝑖𝑛𝑡 = 1.233𝑅𝐶𝑖𝑛𝑡 − 0.0032𝑅𝐶𝑖𝑛𝑡
2 − 31.59   (6.7) 

 

Attempts to derive the second derivative d2Z/dt2 in this study resulted in excessive high-frequency 

noise and were abandoned, leading to use of the Lozano equation. 

 

6.6.6 Pace Termination 

Literature on pace termination of arrhythmia overwhelmingly relates to treatment, rather than 

diagnosis; however overdrive pacing is particularly useful for the treatment of re-entrant 

arrhythmias and is extensively used during diagnostic invasive electrophysiological studies 

(EP).The source material used for feature extraction refers to this only once, by way of its 

ineffectuality in the termination of non-paroxysmal junctional tachycardia (See Appendix E). 

Pace termination is the subject of recently increased research activity however, in this study, in 

common with a majority of commercial ICD systems, pace termination will be considered a 

treatment rather than a diagnostic technique and will be excluded from further evaluation.  
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6.6.7 Equivalent Measurable Parameters 

From the exploration of recording suitable parameters with which to capture the feature data 

suggested in Chapter 5, section 5.6, data collection was planned using the following measurable 

parameters: ECG’s (intervals, relationship, morphology and vector); body temperature; body 

motion accelerometry and thoracic bio-impedance. 

 

6.7 Equipment Selection  

Based on the parameters outlined (see subsection 6.6.7) any equipment required, its minimum 

specification, consumables and data collection methodology were considered and outlined. 

 

6.7.1 A Generic Equipment List  

Features previously consolidated into recordable parameters were matched to recording solutions: 

manual notation; intracardiac electrograms; temperature; body motion (accelerometry) and 

thoracic bio-impedance and using this, a generic equipment list was drawn up. 

 

Demographic and clinical history data would be manually recorded, using a procedure worksheet 

(see Appendix J); ECG-like features as well as emotional and psychological stress would be 

recorded using an electrophysiological system; metabolic stress using body temperature; exercise 

physiologic stress using accelerometry; physiologic stress (respiration) and haemodynamic status 

using impedance cardiography.  

 

Equipment for data collection was specified, based on capability (to record the required 

parameters), technical specification and availability. 

 

6.7.2 Technical Specification: Bandwidth, Sampling Rate and Resolution 

Digital, rather than analogue, data recording simplifies data export for later off-line post-

processing. Sampling converts analogue signals into time-series of digital data, whose accuracy 

is dependent on sampling rate and signal resolution.  

 

To calculate an appropriate sampling rate, Nyquist–Shannon theorem can be used. The Nyquist 

rate is the lowest sampling rate (in Hz) which avoids aliasing and is equal to double the bandwidth 

of the signal. The minimum sampling rate should be greater than the Nyquist rate. Oversampling 

at a rate above the Nyquist rate does not alter information content but may be advantageous during 

digital signal processing, for example in noise elimination. Signal resolution is measured in 

voltage (amplitude) or bit rate, both set by analogue-to-digital converter (ADC) circuitry. An 8-

bit ADC output has 256 amplitude steps, 12-bit 4096 steps and 16-bit 65,536 steps. Resolution in 

volts is the voltage range divided by the number of amplitude steps. Knowledge of signal 

http://en.wikipedia.org/wiki/Sampling_frequency
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bandwidth and the required resolution of a parameter are important when specifying recording 

equipment. 

 

Intracardiac electrogram bandwidth has been studied (Myers et al. 1978; Kleinert et al. 1979; 

Parsonnet et al. 1980) and found to be 300Hz, and a Nyquist rate of 600Hz. To specify the 

electrophysiology system, practical systems typically have 12-bit resolution and 1 kHz or better 

sampling rates.  

 

Meng et al. (2006) performed a power spectral analysis for common movements (walking, 

running, jumping, skipping) and found they occupy a narrow bandwidth up to 10 Hz with a central 

frequency 4Hz and frequencies above 10 Hz caused by vibration artefact . This gives a Nyquist 

rate of 20Hz. Typical commercial accelerometers have 8 to 12-bit resolution.  

 

For temperature measurement, Wurster & McCook (1969) found that the maximum rate of change 

of skin temperature was 0.008 OC /sec. With the range of body temperatures compatible with life 

being 27 to 43 OC and a resolution of 0.1 OC required for medical temperature monitoring, the 

resolution equates to 160 amplitude steps, a bandwidth of 0.08Hz and a Nyquist rate of 0.16Hz. 

Impedance cardiogram bandwidth is 50Hz (Hurwitz et al. 1993), a Nyquist rate of 100Hz. 

Impedance cardiography systems typically have 12-bit resolution and 200Hz or better sampling 

rates.  

 

These minimum specifications are summarised in Table 6.1. 

 

 

Table 6.1 Minimum equipment specifications. 

 

Parameter Description Bandwidth Nyquist Rate Resolution 

ECG, Intracardiac Electrograms 0 - 300 Hz 600 Hz 12-bit 

Accelerometer 0 - 10 Hz 20 Hz 8-bit 

Temperature 0 - 0.08 Hz 0.16 Hz 0.1 OC 

Impedance 0 - 50 Hz 100 Hz 12-bit 

 

 

6.7.3 Satisfying the Specification 

Equipment was selected to meet the specifications in table 6.1. 

 

The Ensite 3000 (St. Jude Medical, St. Paul, MN, USA) electrophysiological system with V7.0 

software was selected for use. The system has 12-bit resolution (range of 125mV), a sampling 

rate of 1200Hz, exceeding the Nyquist rate (see subsection 6.7.2) and 32 channels which may 
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include ECG’s, intracardiac electrograms and up to 8 analogue inputs. It has a digital data export 

capability, allowing off-line processing. 

 

Body temperature was monitored using a TEMPerNTC USB temperature probe (RDing 

Technology Ltd, Shenzhen, China) with a probe resolution of 0.06 OC. No analogue waveform 

output was available and a Windows XP SP3 desktop computer with a USB interface and the 

manufacturer’s TEMPerNTC v3.2 data logging software was used, set to a sampling rate of 1Hz. 

The software allowed for probe calibration, to account for any differential between measured and 

actual temperature. 

 

Body motion was monitored using an Analog Devices ADXL202EB dual-axis accelerometer 

(Analog Devices Inc., Norwood, MA, USA) with a bandwidth of 500Hz, range of ± 2 g and 5 mg 

resolution. No analogue waveform output was available and a Windows XP SP3 desktop 

computer having an unused serial port (RS232) with X-Analyze v2.02 software (Crossbow 

Technology Inc., San Jose, CA, USA) was used for data logging, set to a sampling rate of 100Hz. 

 

A PhysioFlow, model PF-05 Lab1 with v1.0.7 software (Manatec Biomedical, Paris, France) 

impedance cardiography system with a sampling rate of 250 Hz. The PhysioFlow system uses a 

measurement current of 3.8 mA (peak to peak) at 75 kHz and uses the Bour equations (6.5 and 

6.6) to calculate stroke volume. 

 

6.7.4 Additional Equipment 

As stated, a desktop computer running Windows XP SP3 was required to run software for the 

impedance cardiograph, temperature and accelerometry data logging. 

 

6.8 Consumables 

Quadripolar electrophysiology catheters for intracardiac electrograms are part of the normal 

consumables for EP so were not an additional requirement. Additional consumables were: 11 

additional standard ECG electrodes per participant for ECG and impedance cardiography. 3 

recordable DVD’s per participant for data archival. 

 

6.9 Summary 

Feature selection identified features consisting of human clinical data. To collect such data 

required a clinical study and a diagnostic trial was designed as a sub-study.  

 

The STARD guidelines were incorporated into study design. Features were amenable to 

collection from patients at either ICD implant or EP and the limitations of both were examined. 
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EP was selected and it was then possible to add detail to the methodology in the knowledge of the 

type of study involved. 

 

Minimum sample size calculations were performed, using previous research and pilot study data, 

for α of 0.05 and τ of 0.8. These suggested 73 VT or VF events and 74 SVT events. An estimate 

of the number of patients corresponding to this number of events was not possible.  

 

A sub-study was designed for data collection. Ethics application was made and suitable approvals 

obtained. The sub-study was a single centre, prospective, uncontrolled case-series, involving 

collection of data at EP, aiming to obtain a collection of physiological data corresponding to a 

wide variety of cardiac rhythms. Data collection was once-only for each participant at the time of 

EP. Recruitment was to be a maximum of 200 patients over 1 year, at GSTT. Conduct of the study 

was monitored by a responsible clinician and academic supervisor. There were no major risks or 

benefits identified. Funding was provided by GSTT. Minor ethical issues of the additional 

electrodes applied and the time taken to set up equipment with the patient were identified. Data 

types being collected, data security, anonymisation and data retention arrangements were defined. 

Data verification was by domain experts, providing the “gold standard”. Having identified the 

population of patients undergoing EP, inclusion and exclusion criteria were defined. Participant 

recruitment process was outlined. Informed consent and issues of consent withdrawal of consent, 

participant insurance and researcher liability were considered. 

 

Clinical history, physical examination and simple investigative testing data was collected during 

clinical evaluation. Features included demographics and clinical history; the influence of ECG 

measurements; stress; haemodynamic status during arrhythmia and response to pacing. Detailed 

examination of features identified recordable parameters and matched these to recording solutions 

and a generic equipment list. These were a procedure worksheet; an electrophysiological system; 

body temperature; accelerometry; physiologic stress (respiration) and impedance cardiography.  

 

Equipment for data collection was specified, based on capability, specification and availability. 

Minimum specifications for the four systems for recording parameters, based on bandwidth, 

sampling rate and resolution were established. Available equipment that met the technical 

specification was an Ensite 3000 electrophysiological system, for intracardiac electrogram and 

waveform recording; a TEMPerNTC USB temperature probe; an Analog Devices ADXL202EB 

dual-axis accelerometer and a PhysioFlow, model PF-05 Lab1 impedance cardiography system. 

Availability of this equipment allowed the study to proceed to data collection. 

 

 In summary, equipment and consumables required were: 
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Ensite 3000 (Electrophysiology system) 

TEMPerNTC USB temperature probe (Body temperature) 

Analog Devices ADXL202EB Dual-axis accelerometer with arm band (Body motion) 

PhysioFlow, model PF-05 Lab1 impedance cardiograph  

Windows XP SP3 desktop PC (Impedance, Temperature and Accelerometer Data 

logging) 

1 x E7506 Patient Return Electrode (Intracardiac electrograms) (Per Participant) 

11 x ECG electrodes (Impedance and ECG) (Per Participant) 

3 x Recordable DVD (Data archival and storage) (Per Participant) 

PhysioFlow v1.0.7 software (Impedance cardiograph) 

TEMPerNTC v3.2 software (Temperature) 

X-Analyze v2.02 software (Accelerometer) 
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Chapter 7 Data Collection 

 

Having specified and identified equipment and consumables (see Chapter 6, section 6.9), the 

practicalities of data collection are described. Conduct during the study is represented by a typical 

workflow. Equipment setup, connections, use during procedures and data export are explained. 

Data collection was conducted at Guy’s and St. Thomas’ NHS Foundation Trust, London between 

22/6/2009 and 27/4/2010. 

 

7.1 Equipment Assembly and Workflow 

Equipment was assembled in advance and positioned in the cardiac catheter laboratory to 

minimise disruption of the working environment and avoid delays. A stainless steel clinical trolley 

was used for the impedance cardiograph and the Windows PC (see also section 7.5).  The 

remaining large equipment was routinely stored in the laboratory used for the investigations. 

 

A workflow for sub-study patient procedures was devised: 

 

1. Participant enrolled, following informed consent 

2. Participant allocated a study identification number (ID), used to identify recordings 

ensuring anonymisation of data from the time of collection. 

3. Windows desktop PC – connections to impedance cardiograph, accelerometer and 

temperature probe and power up. 

4. Electrophysiological system (Ensite) – pin-tip jumpers, all connections (see Table 7.1) 

and power up. Software loaded and ready for recording. 

5. Temperature software started (logged at 1 second intervals).   

6. Accelerometer software started (continuous X, Y monitoring) . 

7. Impedance cardiograph software started (continuous dZ/dt monitoring, SV logged at 1 

second intervals). 

8. Manual time synchronisation of the 3 systems. 

9. Attach sensors and electrodes (15 minutes allowed). 

10. Manual notation on worksheet of clinical history and demographic data. 

11. Start recording as soon as RA and RV catheters in position. 

12. Note arrhythmias induced, medications, proceed to RFA, any other notable event. 

13. Archival of data to DVD (one per patient for Ensite data, one for other data 

 

Workflow sequence between stages 5 to 10 was not critical. 

 

Patient’s connections appeared similar to those encountered during routine invasive 

electrophysiological studies (see Fig. 7.1). 
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Figure 7.1 Simulation of a patient with systems attached (intracardiac electrodes not 

shown). The accelerometer is attached to left upper arm, non-invasive blood pressure 

cuff to the right upper arm. Electrodes attached to the neck and lower sternum are 

for impedance cardiography. The large white patch electrodes are for standby 

emergency cardioversion. The remaining ECG electrodes provide a 12-lead ECG to 

the electrophysiology recording system. The large blue abdominal patch is the 

reference electrode for the Ensite system. Intracardiac electrode insertions to the 

femoral veins are not shown. (Subject was a volunteer model). 

 

 

7.2 Procedure Worksheet 

At the start of the study, demographics, clinical history and examination data were manually 

transcribed from medical records onto a procedure worksheet (see Appendix J).  Concurrent notes 

of events during EP procedures were made, including any adverse events or complications, 

induced arrhythmias, medications administered and whether a procedure proceeded to RFA. 

 

7.3 Electrophysiological System 

An Ensite 3000 (St. Jude Medical, St. Paul, MN, USA) electrophysiology system, with v7.0 

software recorded ECG, intracardiac electrograms and Z (∆Z) waveforms. Four radio-translucent 

pre-gelled ECG electrodes (4500M, Unomedical, Lejre, Denmark) were connected to the patient’s 

limbs to obtain standard surface ECG waveforms. The Ensite system required a large surface area 

electrode (E7506 Patient Return Electrode, Covidien, Dublin, Ireland) on the abdomen to act as 
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a reference electrode. Two 5F (1.67 mm in diameter) Supreme JSN 401443 quadripolar 

electrophysiology electrode catheters (St. Jude Medical, St. Paul, MN, USA), with 5 mm inter-

electrode spacing (see Fig. 7.2), were inserted by the operator under X-Ray control, into the 

femoral vein, advanced to heart and positioned in the right atrium and right ventricle (see Chapter 

1, Fig. 1.2).  

 

 

 

 

Figure 7.2 Tip appearance of a 5F quadripolar catheter showing the four electrodes. 

 

 

The quadripolar electrodes were connected to the Ensite system interface module, using pin-tip 

jumpers connected in parallel with the clinical electrophysiology system. Intracardiac 

electrograms (see Chapter 6 subsection 6.6.3 and Fig. 6.1) configuration was as shown in Table 

7.1 and stored as a template for re-use in all patients in the study.  

 

 

Table 7.1 Waveforms recorded on the Ensite system. 

 

Channel Signal Type Parameter Name Polarity 

+ - 

1 ECG Surface I LA RA 

2 ECG Surface  II LL RA 

3 ECG Surface III LL LA 

4 EGM Atrial bipolar (A) A1 A2 

5 EGM Ventricular bipolar (V) V1 V2 

6 EGM AV Composite (AV) V1 A1 

7 EGM Ventricular unipolar (VU) V1 Skin 

8 EGM Coil Composite (S2) V4 A4 

9 EGM Can to V coil (S3) V4 Skin 

10 Analog 1 PhysioFlow ECG N/A N/A 

11 Analog 2 PhysioFlow Z curve N/A N/A 
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The Ensite system recorded waveforms continuously during the EP (see Fig. 7.3). Recordings 

were interrupted during ablation energy application, due to distortion of the signals. Some studies 

were of long duration, resulting in the generation of large text files of up to 500MB in size, 

containing up to 4604201 lines of data. Data export was performed using a proprietary application 

within the Ensite software. Data was exported as a single tab-delimited text file (.TXT) for each 

period of recording (see Fig. 7.4) and burned to DVDR.  

 

All the waveform data was sampled at 1200 Hz with 12-bit resolution by the Ensite system. 

Surface ECG signals were band-pass filtered for display between 0.1 – 100Hz and intracardiac 

electrograms between 4 – 150Hz, both with 50Hz noise filters switched on however data was 

exported to text file as raw, unprocessed data. ECG and electrogram data had a flat frequency 

response between 0.1 to 300Hz with data values of 1.0 corresponding to signal amplitude 1mV, 

with a maximum range of 125mV. A DC analog input from the PhysioFlow impedance 

cardiograph, provided Z (impedance) data with data values of 0.01 corresponding to signal 

amplitude 1 Ohm. 

 

7.3 Digital Thermometer 

A TEMPerNTC USB temperature probe was connected to an unused USB port of the Windows 

PC (defaults to COM3). The probe was positioned in the patient’s left axilla and secured using a 

thermally insulating self-adhesive polyurethane foam pad (often an unconnected ECG electrode). 

At the start of each procedure a digital clinical thermometer (ACT 2010, Actherm Medical Corp., 

HsinChu, Taiwan) was used to measure axillary temperature, placed adjacent to the USB 

temperature probe. The value was recorded simultaneously with temperature from the probe, to 

allow for a correction to be applied during post-processing. Temperature was continuously 

displayed during the procedure. 

 

Temperature data was logged using the TemperNTC software at 1 sample per second and stored 

in a dedicated folder on the hard disk drive of the PC, as a comma separated volume file (.TXT) 

(see Fig. 7.5). File sizes were up to 50MB and consisted of up to 1482124 lines of data. 

 

7.4 Accelerometer 

An Analog Devices ADXL202EB dual-axis accelerometer was connected to the 9-pin RS232 

serial input (COM1) of the Windows PC. The X-Analyze software was run and the accelerometer 

zeroed so all subsequent motion, during the recording would be compared to the original sensor 

position. The accelerometer was strapped to the patient’s upper arm, without causing constriction. 

Motion in two axes (X and Y) was recorded throughout the procedure. Data was stored in a 

dedicated folder on the hard disk drive of the PC, in comma separated volume format, as a text 

file (.TXT) (see Fig. 7.6). 
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Figure 7.3 An example of waveforms recorded on the Ensite system. Traces are (top down) 1 to 3 - ECG leads I, II, III, 4 - RA bipolar electrogram; 5 - 

RV bipolar electrogram; 6 -composite atrial and ventricular electrogram; 7 - ventricular pseudo-unipolar electrogram; 8 – far-field composite atrio-

ventricular electrogram; 9 – far-field pseudo unipolar ventricular electrogram; lowest (label not shown) - impedance cardiogram Z. Signal gain settings 

(bracketed) are shown adjacent to channel labels. Gains were arbitrary for wavefrom viewing and not used in signal analysis. 

1 sec 
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St. Jude Medical Waveform data export; file format revision 4 

Exported from study study_esi9080_2009:09:30:09:39:14 

Beginning sample number (time): 10:14:40:0411 

Ending sample number (time):    10:26:48:1199 

 

Number of waves (columns):      11 

Number of samples (rows):       874389 

 

**************************************** 

* Wave Names and ( x y z ) coordinates * 

**************************************** 

Wave 0 = ECG I 

Wave 1 = ECG II 

Wave 2 = ECG III 

Wave 3 = A D-2 

Wave 4 = V D-2 

Wave 5 = AV D-2 

Wave 6 = VU D-2 

Wave 7 = S2 D-2 

Wave 8 = S3 D-2 

Wave 9 = ECG 

Wave 10 = Z 

 

Begin data 

 Wave  0  Wave  1  Wave  2  Wave  3  Wave  4  Wave  5  Wave  6  Wave  7  Wave  8  Wave  9  

Wave 10  

   0.063    0.148    0.089   -0.001    0.204    0.213    0.411   -0.328    0.247    1.408    1.254  

   0.060    0.137    0.081   -0.007    0.195    0.221    0.463   -0.410    0.304    1.408    1.254  

   0.057    0.126    0.074   -0.010    0.186    0.222    0.486   -0.464    0.335    1.402    1.254  

   0.055    0.117    0.067   -0.008    0.181    0.216    0.456   -0.441    0.315    1.397    1.249  

   0.054    0.108    0.059   -0.005    0.179    0.208    0.395   -0.290    0.266    1.392    1.249  

   0.054    0.100    0.051    0.000    0.177    0.197    0.336    0.011    0.222    1.387    1.254  

 

Figure 7.4 Extract of data export from Ensite system (data from patient KP029). 
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NO , Time , Inner, Outer 

1,27/08/2009 09:35:15,waitting,waiting 

2,27/08/2009 09:35:15,waitting,waiting 

3,27/08/2009 09:35:17,20.91 C,94.83 C 

4,27/08/2009 09:35:17,20.91 C,94.83 C 

5,27/08/2009 09:35:19,20.91 C,32.38 C 

6,27/08/2009 09:35:19,20.91 C,32.38 C 

7,27/08/2009 09:35:21,20.85 C,32.36 C 

8,27/08/2009 09:35:21,20.85 C,32.36 C 

9,27/08/2009 09:35:23,20.98 C,32.15 C 

 

Figure 7.5 Extract of temperature data export (data from patient ML015). 

 

 

X-ANALYZE Sensor Data 

ADXL202-EB-232A on COM1 

File Opened:  03/15/2010 10:03:17 

Software Version:  2.02 

 

Initial Settings: 

Digital Filtering: 5 

X Sens (PWM %/g): 12.500 

Y Sens (PWM %/g): 12.500 

X Offset (PWM %): 50.000 

Y Offset (PWM %): 50.000 

 

Time (s) X (PWM %) Y (PWM %) X (g) Y (g) 

7.221 55.33 59.53 0.426 0.763 

7.346 55.36 59.55 0.429 0.764 

7.352 55.21 59.56 0.416 0.765 

7.392 55.12 59.59 0.409 0.767 

 

Figure 7.6 Extract of accelerometer data export (data from patient AC052). 

 

 

7.5 Impedance Cardiograph  

A PhysioFlow, model PF-05 Lab1 impedance cardiograph was operated from a Windows PC, 

using the PhysioFlow software. The 9-pin RS232 serial output of the PhysioFlow was connected, 

using a serial to USB converter, to an unused USB port (default COM4) of the PC. The analogue 

Z output was connected from the 15-pin analogue output (DA 15) of the PhysioFlow, using a 

proprietary cable, to an unused DC analogue input of the Ensite, by a BNC connection. 6 radio-

translucent pre-gelled ECG electrodes (4500M, Unomedical, Lejre, Denmark) were placed on the 

patient in the manufacturer’s recommended positions (see Fig. 7.7). With the Bour equation, used 

in the PhysioFlow system, there is no absolute measurement of Z0 so electrode positioning was 

not critical.  
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Figure 7.7 Schematic of electrode placements for impedance cardiography. Outer 

electrodes (White/ Black) apply the AC measurement current; inner electrodes 

(Blue/ Green) measure the thoracic impedance. Red/ Yellow electrodes provided an 

ECG reference trace. Exact electrode placements were not critical (manufacturer’s 

recommendation) with approximate positions being based on positions relative to 

the sternum and neck.  

 

 

Using the PhysioFlow software, study ID, patient height, weight and starting blood pressure were 

entered. A 30 second calibration phase was initiated, during which artefact level was monitored 

and the results displayed.  

 

Recording was started and ICG derived haemodynamic parameters were displayed during the 

procedure and logged at 1 second intervals. PhysioFlow computed multiple haemodynamic 

indices which were exported as an Excel file (.XLS) for each patient. 

 

7.6 Clock Synchronisation 

The system clock times on Ensite and PC were manually noted simultaneously, to enable data 

synchronisation to within one second, during post-processing. 
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7.7 Summary 

Equipment was assembled and positioned in the catheter laboratory. A standardised workflow 

was in place and a procedure worksheet used for documentation during the study. 

 

The Ensite system was used to record ECG, intracardiac electrograms and impedance waveforms 

(∆Z). An axillary temperature probe was used to monitor body temperature, a dual-axis 

accelerometer strapped to the patient’s upper arm monitored body motion and impedance 

cardiography monitored heart function. These parameters were all displayed in real-time, during 

the procedure. 

 

Data export was performed from the Ensite and the three systems running software on the 

Windows PC. Data was exported either as text or Excel files and burned to DVDR.  
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Chapter 8 Data Preparation and Pre-processing 

 

8.1 Overview 

Newly collected raw data may be unsuitable for use in classifiers without some form of processing 

to create usable feature sets. Data preparation takes raw data and produces high quality data as 

feature sets, containing sufficient information to adequately represent the feature space.  

 

In Chapter 3, sections 3.7 and 3.8 transforming datasets into features were explained and concepts 

of dimensionality and dimension reduction techniques introduced, in section 3.9 missing data and 

use of imputation were discussed. These will be enacted within a data preparation regime.  

 

There is no universal recipe for data preparation, other than to transform data into a form suitable 

as machine learning inputs which will produce the best possible results. Zhang et al. (2003) 

presented a comprehensive review of data preparation processes for pattern recognition, defining 

them as a staged process of: data collection, cleaning, integration, transformation, reduction, and 

discretisation (binning). Zhang’s structured approach was used and will be described. Waveforms, 

temperature and accelerometer data were considered continuously monitored parameters and 

were pre-processed using Zhang’s algorithm. Demographic, clinical history, symptomatic and 

baseline steady state values for haemodynamic parameters were not continuously monitored 

parameters and detailed pre-processing was not needed prior to their being appended as features.  

Data quality was assessed following data collection. 

 

Microsoft® Excel® 2010 (Microsoft Corporation, Redmond, WA, USA), Matlab® version 7.8.0, 

R2009a (The MathWorks Inc., Natick, MA, USA) and a freeware text editor, Win32Pad (Feldman 

2007) were used during data preparation.  

 

8.2 Data Cleaning 

Data was examined for its completeness, accuracy and consistency by manual examination of a 

domain expert, at the time of annotation (see also Chapter 9, subsection 9.4.5).  

 

Imported data files were examined for corrupt, inaccurate and missing data, ensuring consistency 

with other data, including dealing with missing data (see Chapter 3, section 3.9). Unusable data 

was discarded; any required calibration or time synchronisation factors were applied. There were 

few missing data within demographics, clinical history and examination data. Where sign or 

symptom data was not explicitly recorded, it was assumed to be absent. Waveform data was of 

high reliability, with no corrupted or missing data. Intracardiac electrogram data was considered 

critical to rhythm classification, so corrupt, inaccurate or missing data was considered lost with 

further processing infeasible. Waveform data was “topped and tailed” to exclude noisy or 
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incomplete data at the start of procedures and to include complete ECG cycles, starting and ending 

the segment during the inter-beat period. 

 

Using Win32Pad, temperature data header row and columns containing sample number, recording 

date, outer (ambient) temperature and units were not required and were deleted. Data collected 

prior to attaining a steady state was unreliable and discarded. Likewise, unusable data at the start 

and end of the file was discarded by “topping and tailing”. Where electromagnetic interference 

interfered with data collection data was also discarded. As temperature was calibrated to skin 

temperature (see Chapter 7, section 7.3), a calibration factor was calculated. The data was 

imported to Excel and the calibration factor applied. As the maximum rate of change of skin 

temperature is 0.008 OC /sec (see Chapter 6, subsection 6.7.2), and temperature resolution was 

0.1 OC, missing data lasting less than 12 seconds was linearly interpolated without loss of 

resolution.  

 

Accelerometer data column one was a time stamp and columns four and five contained 

acceleration on X and Y axes. Columns two and three contained pulse width modulation (PWM) 

data which was not required and deleted using Win32Pad. Calibration had been performed prior 

to recording. As the bandwidth of body motion is 10Hz (see Chapter 6, subsection 6.7.2), missing 

data lasting less than 0.1 seconds was linearly interpolated without loss of resolution.  

 

8.3 Data Integration 

The integration target was a concatenation of waveform data with temperature and accelerometer 

data, using time synchronisation and up-sampling. 

 

8.3.1 Time Synchronisation 

As temperature and waveform data were collected on different systems, a time correction was 

applied to align to waveform data (see Chapter 7, section 7.6). For each waveform segment, times 

of first and last waveform data points were noted and temperature or accelerometer data outside 

this range was discarded. 

 

8.3.2 Up-sampling 

Up-sampling was required to integrate the temperature and accelerometer data. Temperature and 

accelerometer sample rates were calculated for each dataset. Data points were considered to be 

located at sample interval start, so for n samples collected between time t1 and t2 there would be 

n-1 points, enabling sample rate (fin) calculation. Up-sampling then increased fin to the desired 

sample rate (fout) by an up-sampling factor (L), adding L-1 zero-value points to each sample 

interval. For each recording, L was calculated for both temperature and accelerometry data, using 

an Excel worksheet (see Table 8.1). 
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Table 8.1 Up-sampling Excel worksheet (temperature data, patient ID AC052). 

 

Description Value Units 

Samples                            n 680  

Time of first sample         t1 09:48:13 hh:mm:ss 

Time of last sample          t2 09:59:41 hh:mm:ss 

Sampling period               t2 - t1 00:11:28 hh:mm:ss 

Calculated sample rate     fin 0.9869186047 Hz 

Sample interval 1.0132547865 secs 

Desired sample rate         fout 1200 Hz 

Up-sampling factor           L 1215.905744  

Non-up-sampled interval 1 sample 

Up-sampled interval         c 0.0008224322 samples 

Expected samples           fout * (t2 - t1) +1 825601 samples 

 

 

Number of samples (n); and fout were entered into the worksheet and values of L and up-sampled 

interval (1/L) computed. Temperature and accelerometry recorded outside the limits of the 

waveform recording was considered superfluous so data preceding the initial waveform sample 

(up to 1200 samples) and beyond those required to match the waveform vector size were 

discarded. This meant the synchronisation of data had a maximum error of 1 second. 

 

Linear interpolation was used to up-sample data. Waveform, temperature and accelerometer data 

text files were imported into Matlab as variables. An impulse response x was created, beginning 

with the starting sample number and ending in the last sample number to be interpolated (in the 

above example samples 1 to 680), taken from the Excel worksheet. An up-sampled impulse 

response xi was then created, using the start and end sample numbers together with the up-

sampled interval (1/L) calculated in the Excel worksheet. An input vector y was created from the 

appropriate column of the imported data matrix, comprising the data between the desired samples 

numbers as before. One-dimensional data interpolation, Matlab function interp1q was used to 

generate a vector yi of the desired length, containing the original and interpolated values. In some 

recordings, where missing data was significant, a Matlab padarray command was used to add 

values equal to the nearest measured value (no change). Up-sampled data was concatenated with 

waveforms, using the Matlab horzcat function. 

 

8.4 Data Transformation 

Recorded waveforms were amenable to digital signal processing (DSP) techniques available 

using Matlab and data was transformed using filtering and differentiation. In this study, absolute 

values were considered useful and normalisation of data was not performed. 
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8.4.1 Clinical History and Examination Data 

Data was manually transferred from the procedure worksheet into an Excel worksheet. In the 

absence of a risk scoring system for arrhythmia, a completely arbitrary encoding system was 

designed for clinical history and examination data.  

 

Where a drug, condition, sign or symptom was present it was represented in binary form (0 absent 

or 1 present). Grading systems were used for some parameters (see Appendix K): syncope (0 no 

symptom , through light headedness to 2, loss of consciousness); symptom character (0 to 8, the 

sum of 4 characteristics: 0 to 3 for increasing duration of relevant symptomatic episodes; 0 to 3 

for increasing;  0 to 1 for sudden onset and offset; and 0 to 1 for termination with vagal 

manoeuvres; 0 to 3 a count of pre-existing cardiac conditions, including previous cardiac surgery 

(>3 counted as 3); antiarrhythmic drugs, alcohol intake, nicotine (smoking) caffeine intake were 

all scored 0 for none to 3 for heavy usage, taken as 20 cigarettes, 3 units alcohol, 3 drugs, 5 cups 

caffeinated coffee per day).    

 

8.4.2 Interference and Far-Field Electrograms 

Reliable identification of waves was limited by unwanted waveform components, such as: power-

line interference (50 or 60 Hz); somatic muscular activity; variation in electrode contact and 

electromagnetic interference. Much of the required signal decomposition was achieved at data 

collection, as electrode locations were known as part of the study design. Recorded bipolar 

electrograms contained little far-field information (see Fig. 8.1 a) and b)) (see Chapter 5, 

subsection 5.2.1). 

 

 

 

Figure 8.1 Unprocessed bipolar intracardiac electrograms showing component 

waves. a) Atrial electrogram with A waves labelled; b) Ventricular electrogram with 
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V and T waves labelled. Note: Electrograms show minimal visible “far-field” 

interference. 

 

 

8.4.3 Power Spectral Analysis 

As characteristics of recording instruments vary, power spectral analysis by fast Fourier transform 

(FFT) was performed on waveforms recorded on the Ensite system, using the Matlab fft function. 

The power spectra of atrial and ventricular bipolar electrograms were found to be similar, having 

major peaks at 10 Hz, 30 Hz, minor peaks at 50 Hz, representing power-line noise, and 70 Hz, 

and noise above 100 Hz (see Fig. 8.2). ∆Z spectra contained a peak at very low frequencies (1-5 

Hz) representing respiration components and a small peak between 5 and 20Hz, representing 

cardiac components and high levels of noise above 30 Hz. 

 

 

 

Figure 8.2 Power spectrum of a bipolar atrial electrogram. This shows that the 

majority of the spectral energy is located below 100Hz. 

 

 

8.4.4 Filtering and Differentiation 

Using the power spectral analyses, filters were selected to reduce unwanted components, while 

retaining desired signal content. Second order Butterworth filters were selected as having near 

flat frequency response and reduced computation time. Filters were designed using Matlab Signal 

Processing Toolbox sptool and the Filter Design and Analysis Tool fdatool. Filters produced a 

delay and correction for this was made later in processing.  

 

Bipolar (near-field) electrograms had a 5 to 300 Hz band-pass (BP_5_300.m) filter and unipolar 

(far field) electrograms had 5 to 150 Hz band-pass (BP_5_150.m) filter applied, followed by 
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differentiation, using the Matlab diff function, to exclude baseline wander, far-field waves and 

high frequency noise.  

 

Thoracic electrical bio-impedance decreases for each heartbeat (Patterson 1989), so absolute 

impedance (Z) requires inversion for conventional positive-going ∆Z waves. Following inversion, 

cardiac components of ∆Z (see Fig. 8.3 a)) were processed using a 1 to 30 Hz band-pass filter 

(BP_1_30.m) (see Fig. 8.3 b)). Differentiation then generated the derivative dZ/dt used for 

haemodynamic assessment, but also amplified high frequency noise (see Fig. 8.3 c)), requiring a 

further 12 Hz low-pass filter (LP12.m) to be applied (see Fig. 8.3 d)). 

 

 

 

Figure 8.3 Stages in ∆Z cardiac component signal processing. a) unfiltered ∆Z; b) 

∆Z with band-pass filtering; c) Differentiated ∆Z (dZ/dt); d) dZ/dt with secondary 

low-pass filtering applied. 

 

 

Temperature and accelerometer data were acceptable in their raw form and did not require 

filtering.  

 

8.5 Data Reduction 

The aim of data reduction is to reduce data without significant information loss, using techniques 

such as dimensionality reduction (see Chapter 3, section 3.7), feature selection and feature 

extraction. Given that feature selection was the focus of Chapter 5, dimensionality reduction and 

feature extraction were the main focus of this section. 
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8.5.1 Clinical History and Examination Data  

As feature selection was driven by known utility in consensus clinical guidelines, it was 

considered undesirable to reduce dimensionality of clinical history and examination data by 

grouping or dimensionality reduction. 

 

8.5.2 Intracardiac Electrograms – Peaks and Fiducial Points  

Open source Matlab code (Uysal 2011) for the Hamilton-Tompkins method (Hamilton & 

Tompkins 1986) was modified for this application. The method had the following steps: filtering, 

to remove noise, baseline wander, far-field V waves and T waves; differentiation, to amplify sharp 

slopes; rectification and moving window integration, to extract peaks and fiducial points. 

 

Filtering and differentiation of atrial and ventricular bipolar (near-field) electrograms and “S3” 

unipolar (far-field) electrogram were performed as described in Chapter 6, subsections 6.6.3. 

Differentiated waveforms were then rectified using the Matlab abs function. Rectified waveforms 

were passed through a non-recursive finite impulse response (FIR) filter (convolution). The 

moving window integration (MWI) window size w was set to 100 msec, using principles 

suggested by Urrusti & Tompkins (1993) and an impulse response h was triggered. MWI was 

performed by continuous time case convolution integral using the Matlab conv function. 

Convolution increased output vector length by w-1 and these additional points were removed. 

Convolved waves, from a segment of waveform containing normal sinus rhythm near the start of 

each recording, were analysed manually by domain expert to select optimal sensing thresholds. 

Sensing thresholds required values higher than that at which over-sensing occurs and low enough 

for reliable peak sensing. Heuristically, this was optimal at 25% of the maximum value (see Fig. 

8.4).  

 

 

 

Figure 8.4 Peak detection thresholds. Upper dashed line is at the selected threshold 

value of 25% of the peak value of 0.16mV.samples, at approximately 

0.04mV.samples. (Patient MM030). 
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In Fig. 8.4, over-sensing occurred below 0.02 mV.samples (and the threshold value was set using 

the maximum amplitude (0.16 mV.samples), at 25% or 0.04 mV.samples (higher broken line). 

The sensing algorithm was validated for each recording and adjusted where required. 

 

From the convolved waveform, a logical array of points satisfying the threshold value was 

generated, with values of 1 within each detection window. The differential of this gave values of 

+1 at the start and -1 at the end of each window, used later in marking P and R waves for interval 

measurements. Using find functions, left and right sides of each window were located and a 

correction made for delay during band-pass filtering. A Matlab for loop, with the number of 

detected windows as the index value, identified exact locations and values of peaks within the 

windows. Fiducial points were then identified, referenced to peak locations. Peak and fiducial 

points were then verified manually by domain expert inspection (see Fig. 8.5 and 8.6). 

 

 

 

Figure 8.5 Intracardiac electrogram fiducial points. Rectified atrial a) and 

ventricular b) electrogram peaks (red triangles). Atrial c) and ventricular d) 

electrograms and fiducial points. Key: Blue o onset; red * first negative wave (Q); 

green ∆ (Q) wave end; red ∆ peak; blue ∆ maximum positive detection; green * peak 

end; blue * second negative (S) wave; red o wave end. Note: d) has a QS complex 

so Q and S fiducial points appear simultaneous. (Patient MM030). 

 

 

Dimensionality reduction was achieved by reduction of electrogram waveform files into vectors 

containing the location and value of 8 fiducial points. These contained sufficient information 

content to accurately reflect the waveforms.  
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Figure 8.6 Detection of A and V wave peaks. a) ECG trace recorded for reference; 

b) atrial and c) ventricular rectified electrograms with detected peaks, marked with 

triangles. (Patient MM030). 

 

 

8.5.3 T wave Detection 

T wave end detection from the bipolar ventricular electrograms used open source MATLAB code 

twaveend.m (Zhang et al, 2006). Previous R wave peak detection, T wave polarity and window 

size were input. A modification to the code was made to automate T wave polarity input by use 

of the rectified V waveform, giving positive T waves. Moving window integration was performed, 

using a window size between the expected maximum V wave width and minimum RR intervals, 

240 samples (200 msec) was selected, to limit detection to V wave widths < 200 msec or heart 

rates < 300 beats/ minute.  

 

Correct detection of T wave ends was confirmed manually by a domain expert (see Fig. 8.7). The 

only data required from T waves was the location of the T wave end referenced to each R wave, 

reducing the information to a single short vector.  

 

8.5.4 Impedance Cardiogram Wave Detection and Fiducial points  

A Matlab script ImpedanceCardiac.m implemented the Naidu method (see Chapter 6, subsection 

6.6.5) to detect fiducial points on the dZ/dt trace. Stroke volume index, could be extracted from 

B, C and X points for each beat, reducing the data to point values and locations. Fiducial point 

locations were confirmed by domain expert inspection. Output from this is illustrated in Fig. 8.8). 
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Figure 8.7 T wave end detection. ECG trace (top trace), and rectified ventricular 

electrogram (bottom trace) showing T wave ends (arrowed). (Patient MM030). 

 

 

 

Figure 8.8 Impedance cardiogram fiducial points. Ventricular electrogram (top 

trace) showing R wave reference points (red trriangles) and impedance cardiogram 

dZ/dt (bottom trace) showing B points (Green stars), C (red triangles) and X (green 

triangles) waves. (Patient MM030). 

 

 

8.5.5 Respiration Peak and Trough Detection 

A respiration component was extracted from the ∆Z wave using a composite methodology, as 

there is no well-accepted method. Techniques of filtering (Houtveen et al. 2006), convolution (or 
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averaging) (Korten & Haddad 1989) and peak and trough detection (Wilson et al. 1982) were 

combined into a rational process. Peak detection used open source Matlab code peakdet.m 

(Billauer 2005). Moving averaging was performed using the tsmovavg function in Matlab. To 

allow the detection of a full range of respiratory rates (Rowland & Cunningham 1997), lag was 

set to 1100 samples (920 msec), for which 65 respirations per minute is the maximum detectable 

rate.  

 

Within peakdet.m function, delta (of ∆Z) was set as the minimum variation of ∆Z for maxima and 

minima detection. The optimal value of delta was found heuristically to be 0.012 (equivalent to 

1.2 Ohms). A phase shift caused by the filter delay, was less than one quarter of a breath and 

given that respiratory phase was not of interest in this study, compensation was considered 

unnecessary (see Fig. 8.9). The location and amplitude of peaks and troughs in each respiration 

cycle were confirmed by domain expert inspection and reduced the data required to represent 

respiration into four vectors. 

 

 

 

Figure 8.9 Respiration peak detection. (a) Unprocessed ∆Z; (b) Low-pass filtered 

∆Z opitimised for respiration. Peak (red dots) and trough (blue dots) detections are 

shown. (Patient MM030). 

 

 

8.5.6 Temperature and Body Motion Data Reduction 

Moving averaging was performed on accelerometry and temperature data, using the Matlab 

tsmovavg function, eliminating unwanted high frequencies and reducing data, indicated by 

frequency bandwidths (see Chapter 6, subsection 6.7.2).  
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8.6 Data Discretisation 

Data Discretisation was performed to divide the data into intervals (“bins”) or concept hierarchies 

to supplement data reduction, reduce dimensionality and present a final set of features suitable 

for use as classifier inputs.  

 

8.6.1 Clinical History and Examination Data  

The Excel data containing clinical history and examination data (see subsection 8.4.1) was 

imported as a matrix to Matlab. 

 

8.6.2 Electrogram Intervals 

The Hamilton-Tompkins method for the detection of QRS waves from surface ECG’s was 

implemented, adapted for use with intracardiac electrograms. Intracardiac A waves were detected 

instead of P waves and intracardiac V waves instead of QRS complexes or R waves and were 

considered synonymous in method descriptions. Peaks and fiducial points were detected, 

followed by detection of T waves (Hamilton & Tompkins 1986).  

 

Using A and V wave markers (see subsection 8.5.2), beat-by beat AA interval, VV intervals and 

heart rate were automatically calculated arithmetically. AV ratio, representing the instantaneous 

value of the ratio of A and V rates, was calculated directly from the ratio of AA and VV intervals. 

Atrial rhythms were analysed using A events occurring within the ventricular (VV) intervals of a 

beat sequence. AV and VA intervals were derived with nested Matlab for and if loops. Intervals 

were converted from samples to time intervals using the sampling rate.  

 

An indication from guideline driven feature selection was for a sample of 5 heart beat duration, 

having 2 beats preceding and 2 succeeding the first beat of an arrhythmia (see Chapter 3, 

subsection 3.18.2). To maintain comparability with ICD algorithms, a 10 beat sample was also 

indicated.  A decision was to take 10 beat samples of data and to select a subset of that data to 

satisfy the 5 beat requirement (see also Chapter 10, section 10.5). 

 

8.6.3 Electrogram Morphology 

Electrogram morphology was assessed using near-field A wave electrograms and far-field V wave 

electrograms (S3) (see Chapter 6, subsection 6.6.3), between the detected fiducial points of wave 

onset and offset.  Four methods were used: wave duration (width); axis (Euclidean vector 

direction); VTC and waveform area. Template-matching pattern recognition was used, with an 

example of normal rhythm analysed and stored, against which new beats were compared.  

 

A 10 beat sample of mean values of the relevant features sampled during a period of normal sinus 

rhythm were as used as template values and stored for comparison. All remaining beat values 
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were compared with the template values and the difference expressed as a percentage or 

correlation coefficient allocated to each beat. 

 

Wave widths were calculated from the arithmetic difference between wave onset and offset, 

converted to time intervals.  

 

It was assumed that each electrogram was a vector, having magnitude and direction, and that the 

direction of vectors, taken from the relative locations of collecting electrodes, were known. It was 

also assumed that the vectors were arranged as an approximately right-angled triangle with the 

vector at S3 as its hypotenuse (see Chapter 6, Fig. 6.1) and that the triangle rule for addition of 

vectors, derived from Euclidean geometry, was applicable. The arctan inverse trigonometric 

function (8.1) was used to estimate the instantaneous direction of depolarisation θ, for A and V 

waveforms, from the amplitudes of S1 and S2 waveforms (see Chapter 6, Fig. 6.1 and Chapter 7, 

Table 7.1), given their directions were known.  

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑆1𝑛𝑒𝑡 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑆2𝑛𝑒𝑡 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
)    (8.1) 

 

As absolute values were of less importance than relative change, correction for any inaccuracies 

of these assumptions was not made and the value of θ was used to provide an index of change of 

instantaneous vector direction. 

 

Areas under the A and V waves were also estimated. As waveform samples were equally spaced, 

Newton-Cotes formulae were appropriate for approximating the definite integral with the 

rectangle mid-point rule being selected, as sampling rate was high and expected error low. The 

sample value became rectangle height, sampling interval width and the product of height and 

width was used to output the area. Summed area under the waves was termed “gross” area, 

irrespective of sign, absolute area, taking account of sign, was termed net area. Rectangular 

integration used the Matlab sum function. Output was rounded to aid subsequent calculation. 

 

VTC was calculated using peak A and V waves as reference points and eight fiducial points were 

located for each beat. Using the Matlab corr function, Pearson's linear correlation coefficient was 

calculated, between template and new values for eight fiducial points, for each beat and converted 

to a percentage match. 

 

8.6.4 Derivation of Corrected QT interval  

Zhang’s twaveends.m script was incorporated into a new Matlab script qtinerval.m which output 

corrected QT intervals (QTc), calculated using Bazett’s formula (5.1) (see Chapter 5, subsection 

5.3.4). Given the known inaccuracies of Bazett’s formula and that the intent was to demonstrate 
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change, the absolute value was of considered of no importance and the value of QTc was used to 

provide an index of change of QT interval. 

 

8.6.5 Haemodynamic Parameter Derivation 

A baseline value of stroke volume index (SVI), measured by the PhysioFlow system, the patients 

height and baseline values of dZ/dtmax and BX interval were all inserted into the Sramek-Bernstein 

equation (6.4) to estimate the base impedance (Z0) and calibrate further measurements. New 

values of  BX  time and  dZ/dtmax  for each beat  were then inserted  into  the  equation  to  calculate 

beat-by-beat stroke volume index (SVI), using a Matlab script SramekBernstein.m. 

 

8.6.6 Respiration Derivatives 

Using intervals between peaks, respiratory rate (RR) was calculated and from cyclic peak-to-

trough depth, an index of tidal volume (TV) calculated. TV and RR product was calculated to 

produce a single measure of respiration, minute ventilation (MV). 

 

8.6.7 Temperature 

Temperature was presented as a single feature. In order to discretise, averaged values taken at the 

time of each beat (R peak) were stored as a feature vector. 

 

8.6.8 Body Motion Data Discretisation  

From up-sampled, averaged dual-axis accelerometry data, xaxis and yaxis variables were created 

and the Matlab hypot function used to calculate the RSS and generate an output vmu. Testing and 

validation of this data were not required since feature extraction was not performed. 

 

8.6.9 Generation of Feature Sets as Classifier Inputs 

Time-series feature sets, as with the measurements in this study, typically consist of a matrix, 

with rows representing time vectors of observations and columns representing the individual 

features. For supervised learning, an annotation vector, with rows exactly corresponding to the 

rows of the feature matrix is also required.  

 

Meticulous beat-by-beat visual examination of rhythm for the entirety of each recording was made 

by a domain expert and then confirmed using concurrent notes made during data collection and 

with reference to the medical report of the procedure.  

 

Each feature set contained data from 10 beat sequences corresponding to each rhythm occurrence 

(see Chapter 3, subsection 3.8.2). For each record, a 10 beat sample of normal sinus rhythm was 

selected for comparative purposes. If the patient was in a persistent arrhythmia, such as atrial 

fibrillation or flutter this sample was not taken. At each rhythm change within the record, 10 beat 
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samples were taken, with 5 beats preceding and 4 succeeding the initial beat (R0) of a rhythm (see 

subsection 8.6.3). Where rhythms were continuous or R0 was unclear or not captured, the sixth 

beat in a sequence was arbitrarily selected as R0. For this study, a beat was defined as a V wave 

detection. Rhythm segments were selected for use as feature sets, provided all beats in the relevant 

10 beat segment were reliably sensed. All available rhythm examples in each recording, where 

these criteria were satisfied were collected and each 10 beat segment retained for reference. 5 beat 

segments (see Chapter 3, subsection 3.8.2) could be derived as a subset of each 10 second 

sequence and were obtained in a later phase of processing (see Chapter 10, section 10.5). 

 

For each record, the reliable detection of A and V waves, T wave end markers and impedance 

cardiac and respiration waveforms without evidence of significant over-sensing or under-sensing 

were confirmed by a domain expert. Detection of A and V wave peaks was made from the 

concatenated waveforms (see subsection 5.2.1 and Fig. 5.1). Nominal sensitivity values were set 

to > 20% of mean peak value during 8 seconds of normal sinus rhythm. Respiration detection 

sensitivity was nominally set to 1.2 Ohms (see subsection 8.5.5). These sensitivities were adjusted 

where required, to individually optimised values. For each 10 beat segment, 20 features for each 

beat and 12 clinical history features (see Chapter 6, subsection 6.6.1, subsection 8.4.1 and Table 

8.2) were concatenated into vectors of 212 features.  

 

A feature matrix was generated with rows for each rhythm segment. A single column vector was 

used for rhythm annotation with rows matched with the corresponding feature matrix row. 

 

8.7 Summary 

The Zhang algorithm for data preparation was used, where data collection is followed by data 

cleaning, integration, transformation, reduction and discretisation to produce a suitable set of 

features for use in classification systems. 

 

Data cleaning was performed using manual editing of text files. There was little missing data 

demographic and history and Waveform data was found to be of generally high quality with little 

missing data. From temperature and accelerometer data header rows and columns containing 

unwanted data or data containing unacceptable levels of interference were deleted. Missing data 

was replaced wherever practical with interpolated data. 

 

Data integration of waveform data with the remaining data was performed using time 

synchronisation, up-sampling with linear interpolation and concatenation. 

 

Data transformation was achieved by digital signal processing (DSP) together with 

differentiation, without normalisation, to improve signal quality of waveforms. Clinical history   
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Table 8.2 Feature vector component features. 

 

Feature 

Number 
Feature Description Vector Name 

1 AA interval PPint 

2 AV interval PRint 

3 VV interval RRint 

4 VA interval RPint 

5 A/V rates ratio PRratio 

6 A wave axis percent template match PAXISmatchsamples 

7 V wave axis percent template match QRSAXISmatchsamples 

8 A wave duration percent template match Pwidthmatchsamples 

9 V wave duration percent template match QRSwidthmatchsamples 

10 A wave gross area percent template match Pgrossareamatchsamples 

11 A wave net area percent template match Pnetareamatchsamples 

12 V wave gross area percent template match QRSgrossareamatchsamples 

13 V wave net area percent template match QRSnetareamatchsamples 

14 A wave VTC percent template correlation VTCAsamples 

15 V wave VTC percent template correlation VTCsamples 

16 Corrected QT interval QTcsamples 

17 Minute ventilation (relative) MVsamples 

18 Stroke volume index SVIsamples 

19 Body Temperature TEMP 

20 Velocity motion index (VMU) ACCEL 

Features 1 -20 repeated 

for a total of 10 beats 
  

201 Tiredness or lethargy symptom - 

201 Chest pain symptom - 

203 Shortness of breath symptom - 

204 Dizziness or blackouts symptom - 

205 Palpitations symptom - 

206 Abnormal heart sounds sign - 

207 Cardiac or pulmonary disease clinical history - 

208 Antiarrhythmic medication Prescribed - 

209 Tobacco consumption - 

210 Alcohol consumption - 

211 Caffeine intake - 

212 Metabolic conditions  - 

 

 

data was encoded and rationalised. Unwanted signal content in the waveforms was identified and 

power spectral analysis of recorded waveforms directed choice of filter. Second order Butterworth 
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filters were used exclusively.To reduce data without significant information loss, data reduction 

was performed, primarily by feature extraction. Fiducial points, sufficient for subsequent 

processing into features, were extracted using Matlab scripts for intracardiac electrograms and 

thoracic bio-impedance, reducing the waveforms into vectors containing their location and value.  

 

In a process of data discretisation, the data points obtained during transformation, final features 

were extracted, such as electrogram intervals, morphology, respiration and haemodynamic 

features. Pre-processing computation time, before concatenation, was approximately 20secs of 

data per second of processing time (desktop PC running Windows 7 with Intel Core 2 Quad 2.8 

GHz CPU, 4GB RAM). A time-series matrix of features was produced for each patient, divided 

into annotated rhythm segments, in preparation for use as classifier inputs. Allowing for some 

patients who had multiple recorded segments, this produced 75 files with a total size of 3.11GB. 
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Chapter 9 Data Collection Results 

 

9.1 Overview 

Results of the data collection study were summarised in terms of the demographics of patients 

from whom data was collected, rhythms detected and data quality. 

 

9.2 Demographics of Patients Studied 

Between June 2009 and April 2010, 495 patients underwent electrophysiology procedures, with 

273 satisfying the inclusion criteria (see Chapter 6, subsection 6.5.14). 67 patients (28%) were 

approached to participate in the study, 65 of whom consented and participated in the data 

collection part of the study. There were 4 (6%) failed recordings, from which no data was obtained 

(patients 3, 4, 5 and 8). Many of the procedures proceeded to therapy for an arrhythmia, using 

radiofrequency ablation, however this was not specifically documented as it was not relevant to 

this data collection exercise. No patient studied had significant complication and there were no 

adverse events.  

 

Of 61 (94%) patients from whom successful recordings were made, 30 (49.2%) were male, of age 

42.2 ± 16.3 years with an age range of 16 to 77 years, had a mean body surface area of 1.90 ± 

0.25 m2 and body mass index of 25.8 ± 4.9 kg/ m2 (mean ± standard deviation). 22 (36%) patients 

had a known clinical history of cardiac disease; 29 (48%) had significant non-cardiac clinical 

history; 19 (31%) had a family history of heart disease; 16 (26%) smoked tobacco; 45 (74%) 

patients admitted alcohol use of whom 1 admitted regular consumption of 3 units or more per 

day; 8 (13%) had previously diagnosed hypertension; 4 (7%) had diabetes mellitus; 13 (21%) had 

a history of hypercholesterolemia and 5 (8%) had known significant coronary arterial disease. 55 

(90%) patients reported symptoms of palpitations; 10 (16%) reported previous syncope; 19 (31%) 

dizziness; 6 (9%) reported shortness of breath; 6 (9%) chest pains and 4 (6%) tiredness or lethargy. 

No patients were asymptomatic; 32 (52%) patients complained of 1 symptom; 20 (32%) patients 

2 symptoms and 9 (14%) patients 3 symptoms. 

 

9.3 Rhythms Detected 

From the 61 successful recordings, 1109 examples of rhythms (instances) were collected. Within 

these, 20 (61%) of 33 possible rhythms were represented (see Table 9.1). Each of the 7 rhythm 

groups were represented: 110 instances of normal rhythms; 783 premature beats; 29 of sinus node 

dysfunction; 5 of atrio-ventricular block; 108 narrow complex tachycardias; 6 broad complex 

tachycardias and 78 instances of paced rhythms.  
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Using data from the study of Zeldis et al. (1980) (see Chapter 6, subsection 6.4.3) equivalent 

proportions were calculated for this study and a comparison made of proportions of arrhythmia 

incidence found in this study. Proportions were found to be similar (see Table 9.1).  

 

 

Table 9.1 A comparison of rhythm occurrence in this study with published data. 

Data from Zeldis et al. (1980). 

 

Rhythms Zeldis et al. (1980) This study 

n (number of patients) 581 61 

Premature Ventricular Complexes (PVC) 362 (69%) 48 (78%) 

Premature Atrial Complexes (PAC) 226 (44%) 48 (78%) 

Sick Sinus Syndrome (SB/SA/SAB) 10 (2%) 2 (3%) 

Heart block (SHB2/CHB) 0 (0%) 0 (0%) 

Supraventricular Tachycardia (AVNRT/OAVRT) 54 (10%) 18 (28%) 

Atrial Flutter (MRAT) 11 (2%) 6 (9%) 

Atrial Fibrillation (AF) 28 (5%) 9 (14%) 

Ventricular Tachycardia (VT) 40 (7%) 4 (6%) 

No arrhythmias 92 (17%) 2 (3%) 

 

 

A reduced number of patients with no arrhythmias in Zeldis et al. (1980) was contrasted with 

increased percentages of patients with PVC, PAC, SVT, MRAT and AF in this study. These 

differences may largely be explained by difference between the contrasting nature of non-invasive 

24-hour Holter recording and EP studies where electrodes placed in the heart cause mechanical 

irritability as well arrhythmia provocation during pacing and pharmacological manoeuvres. This 

comparison serves to support that data in this study reflects the natural class distribution. 

 

Rhythms not represented were: sinus arrest, sino-atrial block, Mobitz type II second degree heart 

block, complete atrio-ventricular block, postural orthostatic tachycardia syndrome, sinus node re-

entry tachycardia, focal junctional tachycardia, non-paroxysmal junctional tachycardia, 

permanent junctional reciprocating tachycardia, SVT with aberration, antidromic atrio-ventricular 

reciprocating tachycardia, outflow tract ventricular tachycardia and ventricular fibrillation. 

 

Rhythm classes were condensed based on rhythm group and common diagnostic characteristics. 

Grouped rhythms were: sinus node dysfunction; second and third degree atrio-ventricular blocks; 

atrio-ventricular nodal and junctional tachycardias; atrio-ventricular re-entry tachycardias; 

abnormal tachycardias of the sinus node and ventricular tachycardias. SVT with aberration was 

absorbed into more specific groups. Grouping of classes resulted in 19 classes and included one 
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empty class, ventricular fibrillation (see Table 9.2). In this study, grouping resulted in loss of class 

resolution only between variants of VT.  

 

   

Table 9.2 Rhythm instances and abbreviations. 

 

Rhythm  Abbr. Group Total 

Normal sinus rhythm NSR % Normal rhythm 52 

Respiratory sinus arrhythmia RSA  49 

Physiological sinus tachycardia        ST  9 

Premature atrial complex                 PAC % Premature beats 397 

Premature ventricular complex PVC  386 

Sinus bradycardia   SB % Sinus node dysfunction 29 

Sinus arrest                                               SA  0 

Sino-atrial block                                           SAB  0 

First degree atrio-ventricular block                        FHB % Atrio-ventricular block  3 

Second degree AV block (Mobitz type I/ Wenckebach) SHB  2 

Second degree AV block (Mobitz type II)                    SHB2  0 

Complete atrio-ventricular block                            CHB  0 

Postural orthostatic tachycardia syndrome POTS % Narrow complex tachycardias 0 

Atrio-ventricular nodal reciprocating tachycardia          AVNRT  27 

Orthodromic atrio-ventricular reciprocating tachycardia OAVRT  12 

Permanent junctional reciprocating tachycardia           PJRT  0 

Focal atrial tachycardia                                   AT  8 

Focal junctional tachycardia                               FJT  0 

Non-paroxysmal junctional tachycardia                      NPJT  0 

Sinus node re-entry tachycardia              SNRT  0 

Inappropriate sinus tachycardia                          IST  3 

Macro-re-entrant atrial tachycardia                    MRAT  8 

Multifocal atrial tachycardia                            MAT  17 

Atrial fibrillation                                        AF  23 

SVT with aberration                                       SVTAB % Broad complex tachycardias 0 

Antidromic atrio-ventricular reciprocating tachycardia AAVRT  0 

Monomorphic ventricular tachycardia VT  2 

Polymorphic ventricular tachycardia                        PVT  1 

Idiopathic fascicular ventricular tachycardia              IFVT  3 

Outflow tract ventricular tachycardia                      OTVT  0 

Ventricular fibrillation                                   VF  0 

Atrial paced rhythm APACE % Paced rhythms 48 

Ventricular paced rhythm VPACE  30 
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Rhythm class frequencies were: 52 instances of normal sinus rhythm, 49 of respiratory sinus 

arrhythmia, 9 of physiological sinus tachycardia, 397 atrial contractions, 386 premature 

ventricular contractions, 29 of sinus node dysfunction, 3 of first degree atrio-ventricular block, 2 

of 2nd and 3rd degree atrio-ventricular block, 27 atrio-ventricular nodal and junctional 

tachycardias, 12 atrio-ventricular reciprocating tachycardias, 3 abnormal tachycardias of the sinus 

node, 8 focal atrial tachycardias, 8 macro-re-entrant atrial tachycardias, 17 multifocal atrial 

tachycardias, 23 atrial fibrillation, 6 ventricular tachycardias, 48 atrial paced, 30 ventricular paced 

(see Table 9.2). 

 

9.4 Data Quality 

Data quality was measured by assessing the completeness, validity, consistency, timeliness and 

accuracy of the data. 

 

9.4.1 Data Completeness 

Of the 61 patient recordings analysed, 22 (36%) patients had incomplete data, including 1 with 

no impedance data, 4 (7%) no temperature data and 8 (13%) no accelerometer data, 11 (18%) had 

partial impedance or accelerometer data. All data loss was attributable to technical failures. 

Incomplete data was entered as NaN (Not a Number) in Matlab, allowing analysis of empty cells, 

while satisfying matrix requirements. Each of the 1109 feature vectors had 212 values, a total of 

235108 data items. Of these, 836 (75.4%) instances were complete with no missing data and 273 

(24.6%) instances contained 3480 (1.48%) empty data (NaN) values, resulting in an overall data 

completeness of 98.52%. 

   

Detailed analysis of the 3480 empty values showed no missing data were due to electrogram data; 

350 empty values (0.15% of all data, 3.2% of temperature data) were due to unavailable 

temperature data; 1710 empty values (0.7% of all data, 15.4% of accelerometry data)  were due 

to unavailable accelerometer data; 1340 empty values (0.57% of all data, 6.0% of impedance data) 

were due to unavailable impedance data and 80 empty values (0.03% of all data, 0.6% of clinical 

history data) were due to unavailable clinical history data. 

 

There was partial data where it would be possible to derive a patient-specific mean value, for 491 

empty values (14% of all empty cells) from 10 patients, consisting of 170 temperature values 

(49% of empty temperature values, 1.5% of temperature data) and 321 accelerometry values (19% 

of empty accelerometry values, 2.9% of accelerometry data). This was not the case for any 

missing impedance or clinical history data.  

 

In this study, temperature was used as an indicator of metabolic stress and accelerometry to detect 

physical stress, as body motion. Neither indicator was considered critical to diagnosis but had 
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potential relevance to the context of a rhythm, such as sinus tachycardia at rest. In the absence of 

real data, given the low percentages of missing data, use of mean feature values as interpolated 

values were not expected to introduce significant error.  

 

9.4.2 Data Validity 

Data was examined manually during pre-processing for allowed characters and values within the 

expected range. Matlab generated error messages wherever there were significant data processing 

errors, allowing for their correction, beyond this, automated validity checks were not considered 

useful.  

 

9.4.3 Data Consistency 

Archived recordings were pre-processed and examined for consistency of the data through the 

various processes. There was staged backup and replication of data in this study with each phase 

of pre-processing. Where data copies were made, they were examined to ensure that reconstructed 

data remained a valid representation of the physiological conditions. 

 

9.4.4 Data Timeliness 

Given that the data examined was largely time-series in nature, timeliness was a critical 

component. Data sequences were rigorously examined during data combination to confirm 

sampling appearance at the expected interval.  

 

9.4.5 Data Accuracy 

Data accuracy, as the degree to which the data correctly reflected the real world of the 

representation of the physiological conditions was assessed by a domain expert. This was 

performed manually using visual validation of each instance as a correct and true representation. 

Annotation of rhythm was appended as part of this process. 

 

An objective assessment of instance accuracy was made by checking that heart rates of 

tachycardias bradycardias and normal sinus rhythm for adherence to heart rate limits of above 

100, below 60 and between 60 and 100 beats per minute, respectively. 

 

9.5 Factors Affecting Data Analysis 

Data dimensionality, imbalance and partitioning strategies are known to affect outcome in 

classifier development and were considered.  
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9.5.1 Dimensionality  

Classifiers are known to perform well with data of low dimensionality. In this study, data had 

high dimensionality, with 212 features. Dimensionality reduction can be approached in a number 

of ways.  

 

Collapsing or re-binning, combining results from two or more columns, with eliminated cell 

results being combined with other cells. Collapsing entails a loss of information of potential 

interest and was considered undesirable. Alternatively, a tiny number (such as 0.000000001) may 

be added to all cells in the table to facilitate convergence however this can give misleading results. 

Disregarding sparse cells by considering only cells with observed or expected frequencies above 

a certain value also leads to loss of information and unforeseen results.  

 

An alternative is pruning, where features or aspects of the classifier are removed without 

significant loss of accuracy. This can be pre-pruning, during classifier development where 

features are added until maximum accuracy is achieved or post pruning where features are 

removed until loss of accuracy is detected. 

 

9.5.2 Data Imbalance 

This study had a heavily imbalanced dataset, with 783 instances (71%) falling in the two majority 

classes, consisting of 397 instances of PAC and 386 of PVC. This imbalance made it likely that 

any successful classifier would over-train for the majority classes and less likely to correctly 

classify rare classes.  

 

A data partitioning strategy (see Chapter 3, section 3.8), advocated use of a hold-out sampling 

technique should the dataset be sufficiently large or k-fold cross-validation if not. A hold-out 

partitioning strategy was inappropriate for this dataset, since rare instances could potentially be 

placed in either training or test set, risking poor performance.  In medical diagnosis minority 

classes are often classes of interest so their accurate classification is of importance, an effective 

strategy for dealing with this imbalance in the data was sought and techniques which improved 

performance while avoiding over-training, were considered.  

 

Sampling techniques rebalance data, either oversampling to synthesise data or under-sampling to 

ignore certain instances. Oversampling was considered undesirable in this domain, where data 

provenance and integrity are valued and interference discouraged. Alternatives include 

resampling methods such as cross validation (Bishop 1995, pp.372-375) and bootstrapping. 

Bootstrap increases variance compared with cross-validation. Kohavi (1995) recommended 10-

fold cross validation over bootstrapping for a wide range of data, but Hastie suggested the two 

methods provide similar results (Hastie et al. 2008, pp.253-254). 10-fold cross-validation was 
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confirmed as the preferred approach to data partitioning. Under-sampling reduces proportions of 

majority classes but risks training using an unrepresentative sample. In this study, the two 

majority classes were not considered “high cost”, with mis-classifications not critical to classifier 

performance, as these rhythms were neither debilitating nor life-threatening, further resampling 

of under-sampled instances was considered unnecessary, though this could be revisited should 

minority classification prove poor.  

 

The full dataset was resampled using under-sampling, using the Matlab datasample function. 

There were 326 instances for 16 minority classes, a mean sampling frequency of 20. Minority 

instances were retained while the majority classes were randomly sampled with 20 instances of 

each, to be in proportion, producing an under-sampled dataset of 366 instances. Both full and 

under-sampled datasets were used as alternates during classifier development and testing and 

cross-validation during training to generate classifier models. 

 

9.5.3 Empty Classes 

Of 19 possible rhythm classes (see Table 9.2), there was 1 empty class, with no examples 

recorded. As this study sought to classify rhythms of all types, classification of unlearned rhythms 

was required. Given the availability of extensive guidelines for cardiac rhythm diagnosis an 

inference engine would be created to offer an unseen diagnosis. This inference engine would sit 

in a multi-classifier configuration, offering an alternate diagnosis. Final class label would be 

decided using a combining scheme. 

 

9.6 Summary 

Of 65 patients consented for data collection, 61 data sets were generated, resulting in the 

production of 1109 feature vectors or instances. Data quality was evaluated, with good data 

completeness (98.5%), satisfactory accuracy and validity, using visual confirmation by a domain 

expert for each instance generated. Annotated instances generated by the data collection process 

were used as classifier inputs. 
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Chapter 10 System Development and Testing  

 

10.1 Overview 

Classifiers selected for implementation were decision trees, fuzzy inference (see subsection 

10.2.2), naïve Bayes, neural networks, support vector machines and an inference engine (see 

Chapter 4, section 4.5). Using features previously described (see Chapter 5, section 5.6) as inputs, 

classifier performances represented the first iterative stage in the system development life-cycle.  

 

Classifier units were designed and tuned, specifically for the data collected in this study, using a 

heuristic process. Classifiers were then evaluated for performance indices, taken as an estimate 

of generalisability. A guideline-based inference engine was designed as a “catch all” for empty 

classes, unlearned rhythms and unclassified instances. To maintain simplicity of design and 

encourage adoption, a one-classifier-for-all, rather than one-classifier-per-class design principle 

was preferred, though this was subject to findings during classifier development. 

 

Comparisons between classifiers were made using classifier error, sensitivity, specificity, κ and 

P value from a two-tailed Fisher’s exact test (see Chapter 3, sections 3.12 and 3.14). For a 5-way 

comparison with a Bonferroni correction, the critical P value (Pcrit) was set as 0.010, equivalent 

to P < 0.05.  

 

Initial classifier development using data from an under-sampled data set (see Chapter 9, 

subsection 9.5.2), as that reduced over-training for the majority PAC and PVC classes. 10-fold 

cross-validation was used to train classifiers and generate models, other than for the inference 

engine and the support vector machine, where this was not practical. The classifier generated from 

the fold with best performance indices was selected and re-tested with all available data.  

 

Performance assessments made during iterations influenced proposals for design modifications. 

Iterations continued, with modifications, until achievement of target performance. 

 

Classifier combination strategies used the best performing classifiers. Where user requirements 

were considered met the final classifier model became the production system.  

 

10.2 Classifier Design and Iteration 1 

Classifiers were designed using the Matlab Statistics Toolbox for decision tree, naïve Bayes and 

support vector machine classifiers, Neural Network Toolbox for neural network classifier and a 

script written as an inference engine classifier.  
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Class data was multinomial and it was found that neural network classifiers would not easily 

operate with the chosen class coding. Binarisation of class data was performed, resulting in one 

column per class, in preparation for use in neural network classifiers with 212 inputs for ANN 

training. For inputs to support vector machines, Matlab functions did not readily accept empty or 

NaN values, data was corrected, with empty cells replaced with feature mean values. In the text, 

data with no imputed values was termed “uncorrected” and data with imputed values for empty 

or NaN cells was termed “corrected”.  

 

Classifier performance was assessed as an estimate of classifier generalisability. Model selection 

strategy was to avoid models with over-training and while selecting the model with the best 

performance indices and using that model to derive new performance indices for all instances as 

an estimate of generalisability.  

 

Classifier models were tuned during development using the options available in Matlab, scored 

for the number of performance index values best for that model. Where fold models had the same 

“score”, high κ was taken as indicative of acceptable “trade-off” between sensitivity and 

specificity.   

 

10.2.1 Statistical Testing of Classifier Performances 

In this study, each specific rhythm diagnosis was considered to have its own diagnostic test, in a 

one-versus-all (OVA) classification. In this context, a 2 x 2 contingency table (see subsection 

3.12.2 and Table 3.2) was constructed for each rhythm diagnosis, with the gold standard provided 

by domain expert diagnosis, in this case the domain expert was a cardiac electrophysiologist in a 

United Kingdom teaching hospital. A TP was counted when a specific rhythm diagnosis was 

made and confirmed by the domain expert; a TN when the specific rhythm diagnosis was not 

made and this was confirmed by a domain expert; a FP when a specific rhythm diagnosis was 

made and the domain expert made an alternative diagnosis; a FN when a specific rhythm was not 

diagnosed but the domain expert determined that the rhythm was present. 

 

The statistical measures used were chosen in line with the conclusions from Chapter 3, sections 

3.13 to 3.15. They were: correct classification rate (CCR); error; sensitivity; specificity; Cohen’s 

kappa (κ) and P value, calculated using the Fisher exact test. Additional coefficients: prevalence; 

positive predictive value (PPV); negative predictive value (NPV); odds ratio (OR) and its 

derivatives relative risk (RR) and Yule’s Q. Coefficients of association, Pearson’s phi (ϕ), an 

equivalent of Pearson’s product-moment correlation coefficient r when applied to contingency 

tables, and the F1 score were used. Type I (α) and II (β) errors were also calculated. 
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For this study, with an OVA classification, correct classification rate (CCR) was defined as the 

proportion of all rhythms correctly classified, from the total of all rhythm instances N, according 

to the Gold Standard of expert cardiac electrophysiologist diagnosis (10.1). 

 

𝐶𝐶𝑅 =
𝑇𝑃+𝑇𝑁

𝑁
     (10.1) 

 

Error was defined as the proportion of all rhythms incorrectly classified, according to the Gold 

Standard of expert cardiac electrophysiologist diagnosis (10.2). 

 

𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑃+𝐹𝑁

𝑁
= 1 − 𝐶𝐶𝑅    (10.2) 

 

Sensitivity or true positive rate, was defined as the proportion of all rhythms that were correctly 

classified as having that rhythm diagnosis (10.3). 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝑝𝑜𝑤𝑒𝑟)  =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10.3) 

 

Specificity or true negative rate, was defined as the proportion of all rhythms with an alternative 

diagnosis that were correctly classified (10.4). 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (10.4) 

 

For CCR, sensitivity and specificity, values of 1 represent perfect agreement and values 

approaching zero poor results. For error, values of 0 represent perfect agreement.  

 

Cohen’s kappa (κ) is a measure of agreement, calculated using the marginal (row and column) 

totals of the 2 x 2 contingency table (10. 5), including all four proportions.  

. 

𝜅 =
(𝑃𝑜−𝑃𝑒)

(1−𝑃𝑒)
     (10. 5) 

 

where 𝑃𝑜 = agreement observed =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
 

and 𝑃𝑒 = agreement expected due to chance = (𝑟1. 𝑐1) + (𝑟2. 𝑐2)  

where 𝑟1 = 𝑟𝑜𝑤 1 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝑇𝑃+𝐹𝑃

𝑁
 

and 𝑐1 = 𝑐𝑜𝑙𝑢𝑚𝑛 1 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (𝑡𝑜𝑡𝑎𝑙 𝐺. 𝑆 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝑇𝑃+𝐹𝑁

𝑁
 

and 𝑟2 = 𝑟𝑜𝑤 2 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) =
𝐹𝑁+𝑇𝑁

𝑁
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and 𝑐2 = 𝑐𝑜𝑙𝑢𝑚𝑛 2 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (𝑡𝑜𝑡𝑎𝑙 𝐺. 𝑆 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) =
𝐹𝑃+𝑇𝑁

𝑁
 

 

κ can have values of between 0, +1 and -1. Values of 0 are found where agreement is no 

more than expected by chance, 1 for perfect agreement and -1 for perfect disagreement. 

According to Altman (1991), κ values of less than 0.2 represent poor agreement; between 

0.21 and 0.4 fair agreement; between 0.41 and 0.6 moderate agreement; between 0.61 and 

0.8 good agreement and greater than 0.81 very good agreement. Paradoxes of the κ 

statistic have been identified, such as where there is good agreement associated with low 

values and where the value changes unpredictably with variation of marginal totals. Most 

observers agree that κ should be supported with other measures 

 

With Fisher’s exact test, P values are computed directly from contingency tables (10.6). 

 

𝑃 =
(𝑇𝑃+𝐹𝑃)!(𝐹𝑁+𝑇𝑁)!(𝑇𝑃+𝐹𝑁)!(𝐹𝑃+𝑇𝑁)!

𝑇𝑃!𝐹𝑃!𝐹𝑁!𝑇𝑁!(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)!
    (10.6) 

 

P values from Fisher’s exact test tend to be optimistic, so for comparison of multiple classifiers, 

the Bonferroni correction is most commonly applied. This correction alters the critical P value 

(Pcrit) from α (usually 0.05), dividing it by the number (n) of comparisons to be made (10.7).  

𝑃𝑐𝑟𝑖𝑡 =
𝛼

𝑛
     (10.7) 

 

The prevalence (10.8) of a rhythm was defined as the proportion of instances of a specific rhythm 

from the total N (10.8), not the prevalence of the rhythm in the population. The ideal prevalence 

would be where there were equal proportions of all rhythms being analysed. 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 (≈  𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑃(𝐻)) =
𝑇𝑃+𝐹𝑁

𝑁
 (10.8) 

 

A positive predictive value (PPV) was defined as the proportion of true positives from all positive 

results for a rhythm (10.9) Likewise, a negative predictive value (NPV) was defined as the 

proportion of true negatives from all negative results for a rhythm (10.10). Ideal predictive values 

correspond to absence of false diagnoses, with all positive and negative diagnoses correct, PPV 

and NPV having values of 1. 

 

𝑃𝑃𝑉 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (10.9) 

 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
     (10.10) 
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The diagnostic odds ratio (OR)  measures the effectiveness of classification (10.11) by the ratio 

of the odds of being positive for a specific rhythm if the rhythm is present, to the odds of the test 

being positive if the rhythm is absent. Odds ratio may also be calculated using the ratio of positive 

(LR+) to negative (LR-) likelihood ratios. 

 

𝑂𝑅 =
(𝑇𝑃

𝐹𝑁⁄ )

(𝐹𝑃
𝑇𝑁⁄ )

=
𝐿𝑅+

𝐿𝑅−
     (10.11) 

 

where LR+ (𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
  

and LR- ( 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ) =
1−𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
  

 

Derivatives of the odds ratio were relative risk (RR) (10.12) and Yules Q (10.13). 

 

𝑅𝑅 =
(𝑇𝑃/(𝑇𝑃+𝐹𝑃)

𝐹𝑁/(𝐹𝑁+𝑇𝑁}
      (10.12)  

 

𝑌𝑢𝑙𝑒′𝑠 𝑄 =
((𝑇𝑃.𝑇𝑁)−(𝐹𝑃.𝐹𝑁))

((𝑇𝑃.𝑇𝑁)+(𝐹𝑃.𝐹𝑁))
=

𝑂𝑅−1

𝑂𝑅+1
     (10.13) 

 

An alternative measure of association, Pearson’s phi coefficient (ф) (10.14) has values from −1 

to +1, with a similar interpretation to values of κ (see also Chapter 6, subsection 6.4.1). 

 

ф =
((𝐹𝑃.𝐹𝑁)−(𝑇𝑃.𝑇𝑁))

√ (𝑇𝑃+𝐹𝑃)(𝐹𝑁+𝑇𝑁)(𝑇𝑃+𝐹𝑁)(𝐹𝑃+𝑇𝑁)
    (10.14) 

 

A similar coefficient to ф is the F1 score (10.15), which reaches its best value at 1 and worst score 

at 0. A limitation of F1 is that true negatives are unaccounted for, suggesting that other measures 

may be more useful. 

 

𝐹1 = 2.
𝑃𝑃𝑉.𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
     (10.15) 

 

Type I and II errors were estimated using false positive (10.13) and false negative (10.14) rates. 

 

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 (𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒) = 𝛼 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
   (10.16) 

 

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 (𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒) = 𝛽 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
   (10.17) 
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Pre-test and post-test probabilities may be derived from calculated values for prevalence, positive 

predictive value (PPV) and negative predictive value (NPV). Prevalence estimates pre-test 

probability (10.8); PPV is an estimate of the positive post-test probability and 1-NPV is an 

estimate of the negative post-test probability. 

 

Statistical testing used the Matlab Statistics and Bioinformatics toolboxes, supplemented with 

open-access Matlab code for the Fisher exact test, "FisherExactTest22" (Li 2010) and Cohen’s 

kappa, "kappa" (Cardillo 2009).  

 

10.2.2 Decision Tree Classifier 

A decision tree was created using ClassificationTree.fit, configured to default settings of 

optimised pruning and leaf merging switched on. A column class vector was required for correct 

training. Data was partitioned for 10-fold cross validation using cvpartition and trained using the 

under-sampled dataset (see Chapter 9, subsection 9.5.2), with and without correction for empty 

or NaN cells.  

 

Matlab decision tree tuning options were considered. Prior probabilities for each class, trained 

with the under-sampled set, was optimal with the default 'empirical' setting. Optimal pruned sub-

tree sequence setting was 'on' and pruning criterion was the default 'error' setting. Score 

transformation function was optimised to the 'symmetric' (2x – 1) setting, the split criterion to the 

Gini (1912) index and surrogate decision splits at branch nodes to 'off'. The tuned classifier 

configuration was retained for testing. 

 

10.2.3 Fuzzy Inference  

Construction of a fuzzy inference system (FIS) depended to some extent on suitability of the 

application. Use of a FIS to classify cardiac rhythm was previously reported (see Chapter 2, 

subsection 2.8.5). Of these studies only Usher et al. (1999) used intracardiac electrograms in a 

similar way to this study but failed to describe performance in any detail. Fuzzy systems are 

known to perform well in hybrid systems (see Chapter 2, subsection 2.8.10 and Table 2.4).  

 

To formulate fuzzy rules, fuzzification converts numeric values to non-numeric concepts such as 

high, medium and low. Given that in analysis of cardiac rhythm, intervals have critical threshold 

values, fuzzification appears inappropriate, diminishes the information content of features, 

reducing resolution, and appears likely to reduce diagnostic performance. For example, for a 

diagnosis of first degree heart block, a PR interval of  > 0.2 seconds is the accepted cut-off value 

and leads to a crisp rule: 

 

IF PR Interval IS > 0.2 secs THEN first degree heart block 
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Fuzzification of this crisp rule would produce a fuzzy rule: 

 

IF PR interval IS long THEN first degree heart block 

 

Although the imprecision implicit during the fuzzification process would result in resolution loss, 

this could still allow correct diagnosis but, depending on the training set, also risk 

misclassification of borderline cases. This suggests that interval based features are unsuited to 

fuzzification. 

 

Other feature subsets considered for fuzzification, were symptoms, such as: rare, occasional or 

frequent palpitations, dizziness or syncope; haemodynamic, temperature and accelerometer 

parameters, where accepted cut-off values were unknown or patient-specific. The relative 

importance of features will be examined later (see subsection 10.3.1). The potential utility of FIS 

as a specialist classifier or component of a hybrid or multiple classifier system was deferred for 

possible later use.  

 

10.2.4 Naïve Bayes Classifier 

Data was partitioned for 10-fold cross-validation using cvpartition. With a for-end loop for each 

fold, a NaiveBayes.fit command created a classifier object. The classifier was then tuned using 

options available in Matlab. Distributions then prior probability estimations were tested for 

settings which worked best for this data. The kernel smoothing density estimate distribution and 

empirical prior probability estimation settings were selected, based on performance. The tuned 

classifier was retained for testing. 

 

10.2.5 Neural Network Classifier 

Feed-forward, back-propagation (FFBP) and radial basis functions (RBF) neural networks are 

known to be suited to classification. RBF networks are complex and perform best in low-

dimensional feature space, whereas data in this study had high dimensionality. A single hidden 

layer model is considered a universal approximator and additional layers are rarely needed 

(Bishop 2006, pp.230-231).  

 

An FFBP network model with a single hidden layer was chosen. Number of hidden nodes, transfer 

functions and learning algorithm were tuned heuristically to maximise performance. Network 

design used nfittool, set to defaults of Levenberg-Marquardt back-propagation (trainlm) training 

algorithm with early stopping based on a criterion of minimum error in the validation set, a 

hyperbolic tangent sigmoid (tansig) hidden layer and linear (purelin) output transfer functions. 

The network structure was stored as m code which was heuristically tuned by experimentation. 
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To train correctly, a column vector for each class was required, so the class vector was converted 

into a binary matrix using a simple Matlab script.  

 

Tuning was performed using 10-fold cross validation, with each fold generating a network which 

was assessed for performance (see Table 10.1).  

 

 

Table 10.1 Illustration of the performance assessment of cross-validation folds. 

 

 Fold 

 1 2* 3 4 5 6 7 8 9 10 

CCR  0.86 0.88 0.87 0.86 0.87 0.88 0.90* 0.79 0.87 0.79 

Error rate 0.14 0.12 0.13 0.14 0.13 0.13 0.10* 0.21 0.13 0.21 

Sensitivity 0.67 0.83* 0.75 0.67 0.75 0.80 0.67 0.67 0.75 0.67 

Specificity 0.89 0.89 0.89 0.89 0.89 0.89 0.94* 0.81 0.89 0.81 

κ 0.49 0.69* 0.59 0.49 0.59 0.65 0.61 0.33 0.59 0.33 

P (Fisher exact) 0.073 0.002* 0.021 0.073 0.021 0.006 0.041 0.143 0.021 0.143 

* Optimal values; CCR=correct classification rate 

 

 

In the example shown in Table 10.1, both folds 2 and 7 had best performance values for 3 of the 

6 indices. κ was used as a tie-breaker and indicated fold 2 as the best performing fold, so the 

network from fold 2 was stored and used for tuning and further testing.  

 

Hidden nodes were tuned, starting with 1 hidden node and increasing until no further performance 

improvements were observed. When optimised for under-sampled data, performance indices were 

optimal with 7 or 8 hidden nodes. As fewer hidden nodes minimise computing resources, 7 hidden 

nodes was selected. Preconfigured with 7 hidden nodes, performances with the hyperbolic tangent 

sigmoid, logistic sigmoid, linear, radial basis function, hard and softmax hidden layer transfer 

functions were then compared. The softmax function was selected, as it performed best over a 

wide range of indices. Output layer configurations were evaluated with hidden layer settings set 

at their optimised values and the best performer was a linear transfer function. 

 

Eight back-propagation training algorithms were evaluated. Bayesian regulation did not offer 

automatic early stopping so epochs were heuristically limited to 10. Bayesian regulation and 

Levenberg-Marquardt back-propagation algorithms performed well, with the former chosen as it 

performed best for the under-sampled training set. 
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Given that the hidden layer transfer function and learning algorithm had changed during tuning, 

hidden nodes were retuned, indicating optimal performance between 9 and 12 hidden nodes (see 

Fig. 10.1).  

 

 

 

 

Figure 10.1 Optimisation of hidden nodes by network performance. Increasing 

numbers of hidden nodes improves performance indices other than error (sensitivity, 

specificity and kappa) until 10 to 11 hidden nodes, beyind which further increases 

lead to a reduction in performance for the same indices. 

 

 

Sensitivity rose and specificity fell as hidden nodes increased, in a trade-off, with error relatively 

unaffected. A balance between performance indices was reached, with κ maximal (0.488), centred 

on the selected value of 11 hidden nodes. Performance fell off with more than 12 hidden nodes. 

During tuning repeat repartitioning for cross-validation produced varied results for unchanged 

configurations. Where choice between configurations having similar performances was made, 

consistency of performance was considered, with multiple training and testing cycles. 

 

Final optimised NN configuration for this application was an FFBP using the Bayesian regulation 

back-propagation learning algorithm; a single layer of 11 hidden nodes with the softmax transfer 

function and a linear output transfer function. The tuned network was retained for testing. 

 

10.2.6 Support Vector Machine Classifier 

Matlab allows support vector machine (SVM) classification into two groups. For multiclass SVM 

with one binary classifier for each class, open-access Matlab code multisvm was used (Neuburger 
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2012).  Support vector machines would train only where partitions contained at least one example 

for each class and without features containing NaN or empty values.  

 

With one class having two examples, the maximum number of partitions was two, so hold-out 

partitioning was used with a 10% test set, rather than cross-validation. Repartitioning was 

performed four times to obtain best performance. Tuning evaluated alternative kernels and 

showed the quadratic kernel produced best performance. A tuned ensemble of SVM classifiers 

was generated and retained for further testing. 

 

10.2.7 Guideline-Based Inference Engine Classifier 

A knowledge engineering approach was used in design of a decision tree solution for classifying 

empty classes. Knowledge acquisition of cardiac rhythm definitions from clinical guidelines was 

performed (see Chapter 3, subsection 3.10.3 and Chapter 5, section 5.4), as an aid to 

understanding the domain. This knowledge was re-used to design a knowledge-based inference 

engine.  

 

A simplified approach avoided use of propositional logic and formalisation of inference rules. 

Rules were converted from natural language into Matlab IF-ELSE-END loops, serving as 

inference rules and equivalent to IF-AND-THEN conditional statements.  

 

7 additional derived features were required as inputs to decision rules. Additional pre-processing 

derived these features from the original feature set. Code was checked by a human domain expert. 

The engine was tested for functionality and retained for testing.  

 

10.2.8 Iteration 1 – Classifier testing 

The tuned classifiers were tested, using training sets from the corrected and uncorrected full and 

under-sampled datasets (see section 10.2.2). With the exception of the support vector machine, 

10-fold cross-validation was used, producing 10 trained classifiers, from which the best 

performing was chosen. The selected classifier was then re-tested with all the data to produce 

performance indices, as a generalisation estimate (see Table 10.2).  

 

Performance measures for classifiers trained on each of four training sets were assessed. Using 

the two-tailed Fisher exact test, all tested classifiers trained with all feature sets showed P < 0.05 

for difference to the gold standard test. The neural network classifier trained with the corrected 

full dataset performed best overall using all indices, with CCR of 0.962; error 0.038; sensitivity 

1.000; specificity 0.947; κ 0.906 and P < 0.001. Decision tree and neural network classifier 

technologies performed well when trained with the full data set, with values of > 0.80 for CCR, 
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sensitivity, specificity and κ. The inference engine classifier trained showed best performance for 

classifiers trained with the undersampled data set.  

 

 

Table 10.2 Iteration 1 classifier performance measures for different training sets. 

 

  Training Set 

 Performance Index 

All 

instances 

corrected 

Under-

sampled 

corrected 

Decision 

Tree 

CCR 0.906* 0.536 

Error rate 0.094* 0.464 

Sensitivity 0.904* 0.885 

Specificity 0.988* 0.935 

κ 0.831* 0.520 

P (Fisher exact) <0.001* <0.001* 

Naïve 

Bayes 

CCR 0.832 0.485 

Error rate 0.168 0.515 

Sensitivity 0.365* 0.654 

Specificity 0.995* 0.851 

κ 0.485* 0.221 

P (Fisher exact) <0.001* <0.0001* 

Neural 

network 

CCR 0.962* 0.800 

Error rate 0.038* 0.200 

Sensitivity 1.000* 0.750 

Specificity 0.947* 0.810 

κ 0.906* 0.429 

P (Fisher exact) <0.001* 0.053 

Support 

vector 

machine 

CCR 0.870* 0.203 

Error rate 0.130* 0.797 

Sensitivity 0.942* 0.942* 

Specificity 0.918* 0.814 

κ 0.486 0.273 

P (Fisher exact) <0.001* <0.001* 

Guideline-

based 

inference 

engine 

CCR 0.261 0.571* 

Error rate 0.739* 0.429 

Sensitivity 0.846* 0.846* 

Specificity 0.947* 0.876 

κ 0.551 0.578* 

P (Fisher exact) <0.001* <0.001* 

*best performance, by training set; CCR=correct classification rate 
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Performance measures for classifiers trained on each of four training sets were assessed. Using 

the two-tailed Fisher exact test, all tested classifiers trained with all feature sets showed P < 0.05 

for difference to the gold standard test. The neural network classifier trained with the corrected 

full dataset performed best overall using all indices, with CCR of 0.962; error 0.038; sensitivity 

1.000; specificity 0.947; κ 0.906 and P < 0.001. Decision tree and neural network classifier 

technologies performed well when trained with the full data set, with values of > 0.80 for CCR, 

sensitivity, specificity and κ. The inference engine classifier trained showed best performance for 

classifiers trained with the undersampled data set.  

 

The high performances reached when classifiers were trained with the full data set does not 

adequately exclude the possibility of over-training for majority PAC and PVC classes. 

Moderately good overall perfromances when classifiers were trained with the undersampled data 

sets suggest that over-training affects perfromance but that there is underlying good classification 

performance. All classifiers were taken forward for further evaluation. 

 

10.3 Design Modifications following Iteration 1 

Classifiers produced during classifier development and tested in iteration 1 were taken forward 

for modifications and subsequent use in a second iteration of the system development life-cycle. 

Given that performances were good but that maximal performance was not considered to be 

reached, it was considered that classifier modification rather than redesign was indicated. Design 

modifications were considered and priority was given to retention of principal features to avoid 

loss of information content and any indicated additional pre-processing. 

 

10.3.1 Retention of Principal Features 

Feature selection was driven by established requirements of cardiac rhythm diagnosis, rather than 

analysis, such as principal component analysis (see Chapter 7). It remained useful to highlight the 

relative importance of features and ensure their retention, avoiding a critical loss of information 

content.  

 

The decision tree classifier resulting from iteration 1 (see subsection 10.2.8), was analysed as a 

simple and rapid method of feature ranking. For decision trees trained  using  the  full  data  set,  

the  root  node  was based on feature 105. Examination of leaves showed that differential diagnosis 

was possible but clarity was reduced at pruning levels > 14 end nodes there being duplicate leaves 

for each possible diagnosis (see Fig. 10.2). 

  

In this tree, the root node was based on feature 105 (P:R ratio for beat R0), level 1 on feature 84 

(RP interval for beat R-1), level 2 on feature 184 (RP interval for beat R4) and level 3 on feature 

42 (PR interval for beat R-3). 
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Figure 10.2 Decision tree trained using full data set (pruned to 14 of 18). (Full 

training set). The root node (x105) is top and is most important, representing P:R 

ratio for beat R0, above the nodes of levels 1, 2, 3 and 4 sequentially. 

 

 

For decision trees trained with the under-sampled data set, reducing the influences of features 

which lead to diagnosis of the majority PAC and PVC classes, the root node was based on feature 

101, PP interval of beat R0. Analysis of trees emphasised the importance of interval-based 

features in rhythm diagnosis in 73% of nodes in levels 0 to 3; morphology based features 17%; 

other features were caffeine intake and respiration (MV) (10%) of nodes. The importance of 

caffeine and respiration features was unclear but noted for later use. 

 

10.3.2 Additional Pre-processing 

Consensus guidelines indicated the utility of interval derivatives including onset, inter beat 

variation, regularity, short coupling intervals and haemodynamic change (see Chapter 3, 

subsection 3.18.1 and Appendices E and F). Rate, regularity and site of origin are among ECG 

features considered useful in rhythm analysis. There is also a convention for site of origin based 

on atrio-ventricular association and relative rates (Wagner 2001, p.44 and pp.236-237). 

 

Of note, ICD algorithms (see Chapter 4, section 4.17) all use rate, rhythm duration, sudden onset, 

stability, sustained rate duration, beat morphology and atrio-ventricular relationship in differential 

diagnosis. Sudden haemodynamic change, onset, stability and chamber of origin were all 
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previously suggested during feature selection (see Chapter 7, section 7.6).The initial feature set 

did not provide these derivations, suggesting a need for additional pre-processing to improve 

performance. This suggestion was supported by the need, during inference engine classifier 

development (see subsection 10.2.7) for additional processing to obtain derived features in 

appropriate form. The following additional features were produced: 

 

RR3mean4  – mean RR interval of the first 4 beats of a new rhythm (R0, R1, R2, R3) 

PR3mean4 – mean PR interval of the first 4 beats of a new rhythm (R0, R1, R2, R3) 

RP3mean4 – mean RP interval of the first 4 beats of a new rhythm (R0, R1, R2, R3) 

PRratio3mean4 – mean P:R ratio of the first 4 beats of a new rhythm (R0, R1, R2, R3) 

RR0delta - % change between RR interval means at start of a new rhythm (onset) 

Stab012 - deviation RR interval from most recent 3 beat mean (stability) 

Stress - indicator of stress (QT interval, respiration, motion, haemodynamics) 

 

These indications motivated further feature pre-processing to improve classifier performance. 

New derived features would include: an indicator of stress, sudden haemodynamic change and 

sudden rhythm onset, rhythm stability and chamber of origin. 

 

10.3.3 Indicator of Stress 

No single index, using a combination of parameters to represent physiological and emotional 

stress and activity was found in the published literature. A simple index was devised using 

features previously selected to represent stress: minute ventilation index (MVI); haemodynamic 

stress in the form of stroke volume index (SVI); body motion accelerometry and corrected QT 

interval (QTc).  

 

Threshold values were applied: 

 

Increase in MVI > 10% (MV (VE) increases 0.8 to 0.89 on low level exercise) (Vai et al. 

1988) 

Increase in SVI > 10% (Stratton et al. 1994)  

Acceleration of > 0.1g (0.2 to 0.4g during walking) (Kavanagh et al. 2004) 

  

Body temperature was not processed further, as temperature change is insensitive to stress, with 

any temperature increase of 0.5°C delayed up to 5 minutes following onset of exercise (Lim et al. 

2008). The index detected stress when one or more threshold value was exceeded. 
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10.3.4 Sudden Haemodynamic Change and Sudden Onset of Rhythms 

It is recognised that differential diagnosis of arrhythmias with 1:1 atrio-ventricular conduction 

poses particular challenges.  

 

Fig. 10.3 illustrates the sudden onset of a rhythm change due to a premature ventricular 

contraction (PVC) at beat number 150 (arrowed), followed by a reduction in RR interval, P:R 

ratio and stroke-volume index (SVI). An index was devised to represent the percent change of 

SVI between the first beat of a new rhythm (R0) and the preceding beat (R-1) (10.18): 

 

𝑆𝑉𝐼 𝑐ℎ𝑎𝑛𝑔𝑒 = 100.
(𝑆𝑉𝐼0−𝑆𝑉𝐼−1)

𝑆𝑉𝐼−1
    (10.18) 

 

Similarly, interval onset measures sudden change in RR interval at the first beat of a new rhythm 

(see subsections 4.18.1 and 4.18.2 and Fig. 10.4).  

 

 

 

Figure 10.4 Schematic of prematurity using beat-to-beat RR interval (PVC). RR 

interval RR0 is much shorter than that of its precesssor, interval RR-1, representing a 

premature beat. Where this interval is the first of a new rhythm (beats R0, R1 and R2), 

prematurity as a percentage of the previous RR interval quantifies the sudden onset. 

 

 

A sudden onset represents prematurity where the interval is shorter or a pause where it is longer. 

RR interval of the first beat (RR0) compared with the preceding beat (RR-1) and can be expressed 

as a percentage change (10.19). 

 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑂𝑛𝑠𝑒𝑡 = 100.
(𝑅𝑅−1−𝑅𝑅0)

𝑅𝑅−1
   (10.19) 
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Positive interval onset values represent a premature beat and negative values a pause. To describe 

a new ventricular rhythm as having “sudden onset”, interval onset should exceed a threshold 

value, typically > 20% (see Chapter 3, Table 3.3). 

 

10.3.5 Rhythm Stability 

Interval stability measures the regularity of a new rhythm once established (see Chapter 4, 

subsections 4.18.1, 4.18.2 and Fig. 10.5).  

 

 

 

Figure 10.5 Rhythm stability and regularity assessed by RR interval variation. 

Where RR interval RR0 is the first of a new rhythm (beats R0, R1 and R2), stability is 

the maximum variation of RR interval from the mean in the new rhythm. 

 

 

Stability can be expressed as the maximum variation from the mean of the first three RR intervals 

of a new rhythm (RR0, RR1 and RR2) (10.20 and 10.21). 

 

𝑅𝑅̅̅ ̅̅ =
1

3
. ∑ 𝑅𝑅𝑖

2
𝑖=0                (10.20) 

 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max (|𝑅𝑅0 − 𝑅𝑅̅̅ ̅̅ |, |𝑅𝑅1 − 𝑅𝑅̅̅ ̅̅ |, |𝑅𝑅2 − 𝑅𝑅̅̅ ̅̅ |)       (10.21) 

 

Interval stability should exceed a threshold value to enable a new ventricular rhythm to be 

described as being “stable”. A typical stability threshold would be 20msecs (see Chapter 3, Table 

3.3). 

 

10.3.6 Chamber of Origin 

P:R ratio from beat R0 was at the root node of the decision tree classifier, indicating its utility in 

the discrimination of the majority classes, premature atrial complexes (PAC) from premature 

ventricular complexes (PVC). By analysis of atrial and ventricular intervals leading to a rhythm 
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change and at the point (onset) of rhythm change, rhythm classification can be indicated by the 

chamber activating first – the “chamber of origin”. The original feature set included interval 

derivatives describing the relationship between atria and ventricles and their use deciding 

chamber of origin was explored using simulated rhythm scenarios. 

 

Fig. 10.6 shows a simulation of a PAC with 1:1 atrio-ventricular conduction, where it was clear 

that the rhythm commenced with P0 and originated in the atrium.  

 

 

 

 

Figure 10.6 PAC with 1:1 conduction (a P:R ratio of 1:1) - chamber of origin is atrial 

(PAC). Continuous analysis of P:R ratio can indicate the chamber of origin of beats 

as they occur, with few exceptions (see text). 

 

 

This is the only case where P:R ratio at R0 is 1, demonstrating a rule, that if P:R ratio is equal to 

1 at the beat of onset (R0) then chamber of origin is the atrium (10.5). If the P:R ratio is less than 

1, then chamber of origin is the ventricle (10.6). 

 

Simulations indicated that the chamber with the faster rate and that P:R ratio may indicate 

chamber of origin, leading to the following statements: 

 

𝑃𝑅𝑟𝑎𝑡𝑖𝑜0 ≥ 1 ⇒ 𝐴𝑡𝑟𝑖𝑎𝑙 𝐶ℎ𝑎𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛    (10.22) 

 

𝑃𝑅𝑟𝑎𝑡𝑖𝑜0 < 1 ⇒ 𝑉𝑒𝑛𝑡𝑟𝑖𝑐𝑢𝑙𝑎𝑟 𝐶ℎ𝑎𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛   (10.23) 

 

P:R ratio of beat R0 was in the original feature set and did not require additional pre-processing. 

It was anticipated that actual values of P:R ratio would not be exact, as heart rate or atrio-

P1 
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ventrucular conduction time may vary slightly and a margin of error was needed. One scenario 

not adequately dealt with was the possibility for co-existence of atrial and ventricular arrhythmias. 

Chamber of origin describes the first impulse at the onset of new rhythm and may be considered 

inadequate to deal with complex discrimination. Satisfactory differential diagnosis of all possible 

rhythms requires additional discriminators. 

 

10.3.7 Implementation of Modifications 

Threshold values for new features were based on published data (see subsection 10.3.3 and 

Chapter 3, Table 3.3) and an evaluation of the number of beats required for detection of change 

(see Chapter 3, subsections 3.18.1). Modifications were implemented using Matlab script and by 

the concatenation of new features to existing features. Classifier units developed in section 10.2 

were re-used. 

 

10.4 Iteration 2  

Classifiers were trained using the modified feature set, including four additional features of stress, 

sudden haemodynamic change and sudden rhythm onset and rhythm stability as iteration 2. 

 

As for iteration 1, performances were again compared for the different classifiers with the full 

and undersampled data sets (see Table 10.3). The best performing classifier overall was the neural 

network classifier trained with the corrected full dataset, with CCR of 0.926; error 0.074; 

sensitivity 1.000;  specificity 0.900;  κ 0.824 and P < 0.001, very similar values to those achieved 

in iteration 1 (CCR of 0.962; error 0.038; sensitivity 1.000; specificity 0.947; κ 0.906 and P < 

0.001). P was < 0.05 for difference to the gold standard test for iteration 2. 

 

Further iterations were to continue, until no further improvement was likely or performance 

reduction was resultant. Given that further performance improvement was considered unlikely 

with the inclusion of additional and derived features, a further iteration was proposed to reduce 

the number of features, on the basis that this dimensionality reduction may have positive effect 

of performance. 

 

Based on this comparison, iteration 2 was believed to show performance improvement for the 

decision tree, naïve Bayes, and inference engine classifiers, with the neural network classifier 

slightly improved performance and the support vector machine classifier showing no overall 

improvement.  

 

10.5 Optimising a Feature Sub-Set 

Increasing the number of features improves classifier performance until a point where peak 

performance may be exceeded. Given the high dimensionality of the data, with 212 features for   



173 

 

Table 10.3 Iteration 2 classifier performance measures for different training sets. 

 

  Training Set 

 Performance Index 

All 

instances 

corrected 

Under-

sampled 

corrected 

Decision 

Tree 

CCR 0.911* 0.595 

Error  0.089* 0.405 

Sensitivity 0.942 0.962* 

Specificity 0.991* 0.873 

κ 0.885* 0.378 

P <0.001* <0.001* 

Naïve 

Bayes 

CCR 0.854* 0.578 

Error 0.146* 0.422 

Sensitivity 0.423 0.827* 

Specificity 0.999* 0.971 

κ 0.574 0.664* 

P <0.001* <0.001* 

Neural 

network 

CCR 0.926* 0.778 

Error 0.074* 0.222 

Sensitivity 1.000* 0.800 

Specificity 0.900* 0.773 

κ 0.824* 0.438 

P <0.001* 0.030 

Support 

vector 

machine 

CCR 0.869* 0.243 

Error rate 0.131* 0.757 

Sensitivity 0.923* 0.904 

Specificity 0.918* 0.819 

κ 0.478* 0.268 

P <0.001* <0.001* 

Guideline-

based 

inference 

engine 

CCR 0.263 0.571* 

Error 0.737 0.429* 

Sensitivity 0.846* 0.846* 

Specificity 0.947* 0.882 

κ 0.551 0.591* 

 P  <0.001* <0.001* 

*best performance, by training set 

 

 

iteration 1 and 216 features for iteration 2, additional features may not improve performance and 

this is borne out by the disappointing performance in iteration 2. 
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An optimisation process to reduce dimensionality and potentially improve performance was 

explored. Given that a stated design approach was to include a cognitive approach (see Chapter 

3, subsection 3.10.4) feature selection was based on domain knowledge. The minimum number 

of beats to diagnose a rhythm, indicated by clinical guidelines (see Chapter 3, subsection 3.18.1), 

was used as the basis of a cognitive feature selection process. 

 

The minimum beats to diagnose a rhythm change was previously found to require 5 beats (see 

Chapter 3, subsection 3.18.2): 2 beats preceding a rhythm change and 3 beats following onset of 

a new rhythm, consisting of beats R-2, R-1, R0, R1 and R2, rather than the 10 beats, used to 

accommodate beats required by standard ICD algorithms. Selecting features associated with a 5 

beat requirement reduced features from 216 to 116. 

 

10.6 Iteration 3 

Implementation of modifications used a Matlab script. Classifiers were trained with training sets 

based on the modified feature set, using a 5 beat analysis. The inference engine script was 

modified for excluded features. Classifiers were tested with all the data in the same way as 

iterations 1 and 2 (see Table 10.4). 

 

In iteration 3, the neural network classifier was best performing, when trained with the full data 

set, with a CCR of 0.960; error 0.040; sensitivity 1.000;  specificity 0.947;  κ  0.896 and P < 0.001, 

compared with results from iteration 2 of  CCR of 0.926; error 0.074; sensitivity 1.000;  specificity 

0.900;  κ 0.824 and P < 0.001, very similar values to those achieved in iteration 1 (CCR of 0.962; 

error 0.038; sensitivity 1.000; specificity 0.947; κ 0.906 and P < 0.001). For the neural network 

classifier, the greatest CCR and lowest error was achieved in iteration 1: sensitivity was perfect 

(1.00) in all 3 iterations; specificity was 0.947 for both iterations 1 and 3 and κ was highest in 

iteration 1 at 0.906.  

 

10.7 Comparison of Performances between Iterations 

Iterations 1, 2 and 3 were evaluated to assess progress towards satisfaction of the user 

requirements of maximisation of overall performance. 

 

Iteration characteristics were summarised: 

 Iteration 1 - 212 features, 10 beats, initial feature set 

 Iteration 2 - 216 features, 10 beats, features for stress, sudden haemodynamic change, 

sudden rhythm onset, rhythm stability 

 Iteration 3 - 116 features, 5 beats, features for stress, sudden haemodynamic change, 

sudden rhythm onset, rhythm stability 
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Table 10.4 Iteration 3 classifier performance measures for different training sets. 

 

  Training Set 

 Performance Index All 

instances 

corrected 

Under-sampled 

corrected 

Decision 

Tree 

CCR 0.904* 0.630 

Error  0.096* 0.370 

Sensitivity 0.904* 0.788 

Specificity 0.992* 0.957 

κ 0.872* 0.569 

P <0.001* <0.001* 

Naïve 

Bayes 

CCR 0.839* 0.672 

Error 0.161* 0.328 

Sensitivity 0.423 0.673* 

Specificity 0.998* 0.983 

κ 0.566 0.650* 

P <0.001* <0.001* 

Neural 

network 

CCR 0.960* 0.759 

Error 0.040* 0.241 

Sensitivity 1.000* 0.833 

Specificity 0.947* 0.739 

κ 0.896* 0.438 

P <0.001* 0.018 

Support 

vector 

machine 

CCR 0.875* 0.327 

Error rate 0.125* 0.673 

Sensitivity 0.904 0.942* 

Specificity 0.918* 0.813 

κ 0.470* 0.271 

P <0.001* <0.001* 

Guideline-

based 

inference 

engine 

CCR 0.216 0.436* 

Error 0.784 0.564* 

Sensitivity 0.827* 0.096 

Specificity 0.649 0.898* 

κ 0.110* -0.007 

 P  <0.001* 1.000 

*best performance, by training set 

 

 

During the iterative process, all classifiers had been tested and performance measured using four 

different feature sets, two of which were subsets: 

 

1. All data - 1109 instances, uncorrected for missing data  

2. All data corrected – 1109 instances, corrected for missing data 
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3. Under-sampled data (subset of 1) - 366 instances, uncorrected for missing data  

4. Under-sampled data corrected (subset of 2)  - 366 instances, corrected for missing data 

 

Undersampled data was a subset of all available instances selected at random to balance data, 

reducing the majority classes to the mean prevalence of the remaining classes (see Chapter 9, 

subsection 9.5.2). 

 

Classifier maximal performances between iterations 1, 2 and 3 were directly compared for each 

of the four data sets, by classifier technology (see Table 10.5). Note that support vector machines 

could not be trained with missing data, precluding input of uncorrected data. 

 

Using the data in Table 10.5, classifiers were scored, by their having the value of each 

performance index for that classifier technology closest to the optimal value of 1.0 for CCR, 

sensitivity, specificity and κ; 0 for error and values of P < 0.05. The maximum score would be 

six, for six indicators having the most optimal value, with the highest scoring classifier 

configuration considered best performing. Classifiers with κ of < 0.2 or P ≥ 0.05 were discarded. 

κ was arbitrarily given a higher weighting, with the result that tie-breaks favoured the classifier 

configuration with the highest κ score. For each classifier type, the best performing was selected 

to take forward for further analysis. 

 

The best performing classifier overall was the neural network classifier, with its highest CCR and 

lowest error in iteration 1; sensitivity was perfect (1.00) in all 3 iterations; specificity was highest 

at 0.947 for iterations 1 and 3 and κ was highest in iteration 1 at 0.906. 

 

The decision tree classifier performed best in iteration 2 when trained with the corrected full data 

set, having CCR of 0.911; error 0.089; sensitivity 0.942; specificity 0.991; κ 0.885 and P < 0.001.  

 

The naïve Bayes classifier performed best in iteration 1 when trained with the uncorrected full 

data set, having CCR of 0.859; error 0.141; sensitivity 0.692; specificity 0.998; κ 0.792 and P < 

0.001. 

 

The neural network classifier performed best in iteration 1 when trained with the corrected full 

data set, with a CCR of 0.962; error 0.038; sensitivity 1.000; specificity 0.947; κ 0.906 and P < 

0.001.  

 

The support vector machine classifier performed best in iteration 1 when trained with the 

corrected full data set, with CCR of 0.870; error 0.130; sensitivity 0.942; specificity 0.918; κ 0.486 

and P < 0.001.   
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Table 10.5 A comparison of classifier performances by iteration and training set. 

 

 Training Set All Data 

All Data 

All Data 

All Data corrected 

Corrected 

Corrected 

Under-sampled 

Under- 

Under- 

sampled 

sampled 

sampled 

Under-sampled corrected 

Under- 

Under- 

sampled 

sampled 

sampled 

        

 Iteration 1 2 3 1 2 3 1 2 3 1 2 3 

Decision CCR 0.907 0.886 0.890 0.906 0.911* 0.904 0.523 0.515 0.515 0.536 0.595 0.630 
Tree Error rate 0.093 0.114 0.110 0.094 0.089* 0.096 0.477 0.485 0.485 0.464 0.405 0.370 

 Sensitivity 0.923 0.865 0.904 0.904 0.942 0.904 0.865 0.962* 0.808 0.885 0.962* 0.788 

 Specificity 0.990 0.992* 0.989 0.988 0.991 0.992* 0.941 0.837 0.957 0.935 0.873 0.957 

 κ 0.858 0.850 0.839 0.831 0.885* 0.872 0.537 0.313 0.580 0.520 0.378 0.569 

 P <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 

Naïve CCR 0.859 0.843 0.901* 0.832 0.854 0.839 0.476 0.595 0.670 0.485 0.578 0.672 
Bayes Error rate 0.141 0.157 0.099* 0.168 0.146 0.161 0.524 0.405 0.330 0.515 0.422 0.328 

 Sensitivity 0.692 0.212 0.519 0.365 0.423 0.423 0.808* 0.519 0.500 0.654 0.827 0.673 

 Specificity 0.998 0.746 0.753 0.995 0.999* 0.998 0.835 0.720 0.737 0.851 0.971 0.983 

 κ 0.792* -0.014 0.086 0.485 0.574 0.566 0.257 0.069 0.072 0.221 0.664 0.650 

 P  <0.001* 0.624 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 

Neural CCR 0.957 0.920 0.885 0.962* 0.926 0.960 0.840 0.760 0.760 0.800 0.778 0.759 
network Error rate 0.043 0.080 0.115 0.038* 0.074 0.040 0.160 0.240 0.240 0.200 0.222 0.241 

 Sensitivity 1.000* 1.000* 1.000* 1.000* 1.000* 1.000* 0.800 0.667 0.667 0.750 0.800 0.833 

 Specificity 0.947* 0.900 0.857 0.947* 0.900 0.947* 0.850 0.773 0.773 0.810 0.773 0.739 

 κ 0.862 0.783 0.698 0.906* 0.824 0.896 0.565 0.279 0.279 0.429 0.438 0.438 

 P  <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 0.0123 0.178 0.180 0.053 0.030 0.018 

Support CCR    0.870 0.869 0.875*    0.203 0.243 0.327 
vector Error rate    0.130 0.131 0.125*    0.797 0.757 0.673 

machine Sensitivity    0.942* 0.923 0.904    0.942* 0.904 0.942* 

 Specificity    0.918* 0.918* 0.918*    0.814 0.819 0.813 

 κ    0.486* 0.478 0.470    0.273 0.268 0.271 

 P    <0.001* <0.001* <0.001*    <0.001* <0.001* <0.001* 

Inference CCR 0.261 0.263 0.216 0.261 0.263 0.216 0.571* 0.571* 0.436 0.571* 0.571* 0.436 
engine Error rate 0.739 0.737 0.784 0.739 0.737 0.784 0.429* 0.429* 0.564 0.429* 0.429* 0.564 

 Sensitivity 0.846* 0.846* 0.827 0.846* 0.846* 0.827 0.846* 0.846* 0.096 0.846* 0.846* 0.096 

 Specificity 0.947* 0.947* 0.649 0.947* 0.947* 0.649 0.876 0.882 0.898 0.876 0.882 0.898 

 κ 0.551 0.551 0.110 0.551 0.551 0.110 0.578 0.591* -0.007 0.578 0.591* -0.007 

 P <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 1.000 <0.001* <0.001* 1.000 
*Best performance for each classifier 
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The inference engine classifier performed best in iteration 2 when trained with the under-sampled 

corrected data set, giving a CCR 0.571; error 0.429; sensitivity 0.846; specificity 0.882; κ 0.591 

and P < 0.001.  

 

There were no classifiers showing best overall performance for iteration 3, indicating that 

performance had declined, satisfying a target criterion for iterative development. The utility of 5 

beat rhythm analysis, as implemented in iteration 3, was not held by these results and will be 

explored further in Chapter 11, subsection 11.2.2. 

 

10.7.1 Selecting Optimal Feature Sub-sets for Classifiers. 

The only difference between data sets containing all data and under-sampled data was the reduced 

number of instances of the majority PAC and PVC classes. This meant that any reduction in 

performance between classifiers trained with full and under-sampled sets respectively could be 

attributed to over-training for these majority classes.  

 

Using the data in Table 10.5, classifiers trained using the under-sampled corrected set were scored 

using the same system as in section 10.7. For each classifier type, the best performing iteration 

was selected to take forward for further analysis (see Table 10.6).  

 

 

Table 10.6 Classifier performances by iteration. All classifiers trained with the 

corrected under-sampled set. 

 

Classifier Decision Tree Naïve Bayes 
Neural 

Network 
SVM 

Inference 

Engine 

Number of features 116 216 116 116 216 

Iteration 3 2 3 3 2 

CCR 0.630 0.578 0.759* 0.327 0.571 

Error 0.370 0.422 0.241* 0.673 0.429 

Sensitivity 0.788 0.827 0.833* 0.942 0.846 

Specificity 0.957 0.971* 0.739 0.813 0.882 

κ 0.569 0.664* 0.438 0.271 0.591 

P <0.001* <0.001* 0.018 <0.001* <0.001* 

*best performance by classifier technology 

 

 

For the decision tree classifier, the selected feature set having best performance was the 116 

feature set used for iteration 3, iteration 2, showing CCR of 0.630; error 0.370; sensitivity 0.788; 

specificity 0.957; κ of 0.569 and P < 0.001.  
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For the naïve Bayes classifier, the selected feature set having best performance was the 216 

feature set used for iteration 2, showing CCR of 0.578; error of 0.422; sensitivity of 0.827; 

specificity 0.971; κ 0.664 and P < 0.001.  

 

For the neural network classifier, the selected feature set having best performance was the 116 

feature set used for iteration 3, showing CCR 0.759; error 0.241; sensitivity 0.833; specificity 

0.739; κ 0.438 and P of 0.018.  

 

For the support vector machine classifier, the selected feature set having best performance was 

the 116 feature set used for iteration 3, showing CCR of 0.327; of 0.673; sensitivity 0.942; 

specificity 0.813; κ 0.271 and P < 0.001.  

 

For the inference engine classifier, the selected feature set having best performance was the 216 

feature set used for iteration 2, showing CCR of 0.571; error 0.429;  sensitivity 0.846; specificity 

0.882; κ of 0.591 and P < 0.001. A major change was the reversal in success for iteration 3, using 

5 beat analysis, unmasked by minimisation of the influence of over-training for the majority 

classes by the use of under-sampled data for training. 

 

Feature sets selected were: 

 

Decision Tree Classifier   5 beats (as in iteration 3), 116 features  

Naïve Bayes Classifier   10 beats (as in iteration 2), 216 features 

Neural Network Classifier  5 beats (as in iteration 3), 116 features  

Support Vector Machine Classifier 5 beats (as in iteration 3), 116 features  

Inference Engine Classifier  10 beats (as in iteration 2), 216 features 

 

Comparing these classifiers , the naïve Bayes classifier performed best, with CCR of  0.578; error 

0.422; sensitivity 0.827; specificity 0.971, κ 0.664 and P < 0.001. The two-tailed Fisher exact test 

showed P < 0.05 for all the selected classifiers, indicating no significant difference to the gold 

standard test. 

 

10.8 Performance of Classifiers by Rhythm Type 

Classifiers selected in section 10.7.1 were re-trained using corrected under-sampled instances. 

Each trained classifier was re-tested with all instances and a confusion matrix was generated, 

using the Matlab confusion function. Analysis of the confusion matrices for each classifier was 

performed and performance indices for individual rhythms tabulated, (see Tables 10.7 to 10.11). 

Rhythms were allocated to 19 classes, into some of which were pooled (see Chapter 9, section 

9.3): normal sinus rhythm; respiratory sinus arrhythmia; physiological sinus tachycardia; 



180 

 

premature atrial contraction; premature ventricular contraction; sinus node dysfunction; first 

degree atrio-ventricular block; 2nd and 3rd degree atrio-ventricular block; atrio-ventricular nodal 

junctional tachycardias; atrio-ventricular reciprocating tachycardias; abnormal tachycardias of the 

sinus node; focal atrial tachycardia; macro-re-entrant atrial tachycardia; multifocal atrial 

tachycardia; atrial fibrillation; ventricular tachycardias; ventricular fibrillation; atrial paced 

rhythm and ventricular paced rhythm. Note that ventricular fibrillation was an empty class. 

 

10.8.1 Decision Tree Classifier Performances for Different Rhythms 

The decision tree classifier rhythm specific performances are shown in Table 10.7.  

 

 

Table 10.7 Decision tree classifier performances by rhythm. 

 

Rhythm CCR Error Se Sp κ P 

Normal sinus rhythm 0.950 0.050 0.788 0.957 0.569 <0.001 

Respiratory sinus arrhythmia 0.958 0.042 0.980 0.957 0.651 <0.001 

Physiological sinus tachycardia 0.983 0.017 0.556 0.986 0.337 <0.001 

Premature atrial contraction 0.802 0.198 0.599 0.914 0.544 <0.001 

Premature ventricular contraction 0.805 0.195 0.492 0.972 0.494 <0.001 

Sinus node dysfunction 0.982 0.018 0.966 0.982 0.728 <0.001 

First degree atrio-ventricular block 0.998 0.002 0.333 1.000 0.499 0.003 

2nd and 3rd degree atrio-ventricular block 0.998 0.002 0.000 1.000 0.000 1.000 

Atrio-ventricular nodal junct. tachycardias 0.983 0.017 0.852 0.986 0.699 <0.001 

Atrio-ventricular recip. tachycardias 0.999 0.001 0.917 1.000 0.956 <0.001 

Abnormal tachycardias of the sinus node 0.997 0.003 0.333 0.999 0.399 0.005 

Focal atrial tachycardia 0.984 0.016 0.750 0.985 0.394 <0.001 

Macro-re-entrant atrial tachycardia 0.994 0.006 0.875 0.995 0.664 <0.001 

Multifocal atrial tachycardia 0.946 0.054 0.588 0.951 0.231 <0.001 

Atrial fibrillation 0.986 0.014 0.913 0.988 0.625 <0.001 

Ventricular tachycardias 0.993 0.007 0.167 0.997 0.197 0.0210 

Atrial paced rhythm 0.925 0.075 0.917 0.926 0.482 <0.001 

Ventricular paced rhythm 0.978 0.022 0.800 0.983 0.856 <0.001 

CCR=correct classification rate; Se=sensitivity; Sp=specificity 

 

 

The decision tree classifier did not classify 2nd or 3rd degree atrio-ventricular block well from the 

instances presented as input patterns. The rhythm with which the highest performance parameters 

was achieved was for atrio-ventricular reciprocating tachycardias, with CCR of 0.999; error of 

0.001; sensitivity of 0.917; specificity of 1.000; κ of 0.956 and P < 0.001. Good performance was 

achieved for other rhythms, particularly respiratory sinus arrhythmia, with CCR of 0.958; error 
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of 0.042; sensitivity 0.980; specificity 0.957, κ of 0.651 and P < 0.001, sinus node dysfunction 

and atrial fibrillation and ventricular paced rhythm. High specificities of > 0.91 were achieved for 

all rhythms, with sensitivity being more variable, of between 0 and 0.980 and κ between 0 and 

0.856.  

 

10.8.2 Naïve Bayes Classifier Performances for Different Rhythms 

The naïve Bayes classifier rhythm specific performances are shown in Table 10.8.  

 

 

Table 10.8 Naïve Bayes classifier performances by rhythm. 

 

Rhythm CCR Error Se Sp κ P 

Normal sinus rhythm 0.964 0.036 0.827 0.971 0.664 <0.001 

Respiratory sinus arrhythmia 0.990 0.010 0.816 0.998 0.874 <0.001 

Physiological sinus tachycardia 0.998 0.002 1.000 0.998 0.899 <0.001 

Premature atrial contraction 0.662 0.338 0.164 0.940 0.123 <0.001 

Premature ventricular contraction 0.702 0.298 0.718 0.693 0.384 <0.001 

Sinus node dysfunction 0.984 0.016 0.966 0.984 0.749 <0.001 

First degree atrio-ventricular block 0.999 0.001 0.667 1.000 0.800 <0.001 

2nd and 3rd degree atrio-ventricular block 0.998 0.002 0.000 1.000 0.000 1.000 

Atrio-ventricular nodal junct. tachycardias 0.998 0.002 1.000 0.998 0.963 <0.001 

Atrio-ventricular recip. tachycardias 0.998 0.002 0.833 1.000 0.908 <0.001 

Abnormal tachycardias of the sinus node 1.000 0.000 1.000 1.000 1.000 <0.001 

Focal atrial tachycardia 1.000 0.000 1.000 1.000 1.000 <0.001 

Macro-re-entrant atrial tachycardia 0.999 0.001 1.000 0.999 0.941 <0.001 

Multifocal atrial tachycardia 0.940 0.060 1.000 0.939 0.319 <0.001 

Atrial fibrillation 0.946 0.054 1.000 0.945 0.415 <0.001 

Ventricular tachycardias 1.000 0.000 1.000 1.000 1.000 <0.001 

Atrial paced rhythm 0.975 0.025 0.938 0.976 0.750 <0.001 

Ventricular paced rhythm 0.995 0.005 0.833 0.999 0.890 <0.001 

CCR=correct classification rate; Se=sensitivity; Sp=specificity 

 

 

The naïve Bayes classifier also failed to successfully classify 2nd or 3rd degree atrio-ventricular 

block from the instances presented as input patterns. Several rhythm diagnoses had “perfect” 

performance indices of error 0.000; sensitivity 1.000; specificity 1.000; κ of 1.000 and P < 0.001. 

These were: abnormal tachycardias of the sinus node; focal atrial tachycardia and ventricular 

tachycardias. The classifier performed very well with several other rhythms: respiratory sinus 

arrhythmia, physiological sinus tachycardia, sinus node dysfunction, atrio-ventricular nodal and 

junctional tachycardias, atrial fibrillation and atrial and ventricular paced rhythms. 
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10.8.3 Neural Network Classifier Performances for Different Rhythms 

The neural network classifier rhythm specific performances are shown in Table 10.9.  

 

 

Table 10.9 Neural network classifier performances by rhythm. 

 

Rhythm CCR Error Se Sp κ P 

Normal sinus rhythm 0.784 0.216 0.942 0.777 0.230 <0.001 

Respiratory sinus arrhythmia 0.940 0.060 0.980 0.939 0.566 <0.001 

Physiological sinus tachycardia 0.992 0.008 0.000 1.000 0.000 1.000 

Premature atrial contraction 0.641 0.359 0.000 0.999 -0.002 1.000 

Premature ventricular contraction 0.778 0.222 0.435 0.961 0.448 0.000 

Sinus node dysfunction 0.920 0.080 0.931 0.919 0.351 <0.001 

First degree atrio-ventricular block 0.997 0.003 0.000 1.000 0.000 1.000 

2nd and 3rd degree atrio-ventricular block 0.998 0.002 0.000 1.000 0.000 1.000 

Atrio-ventricular nodal junct. tachycardias 0.930 0.070 0.741 0.934 0.313 <0.001 

Atrio-ventricular recip. tachycardias 0.989 0.011 0.000 1.000 0.000 1.000 

Abnormal tachycardias of the sinus node 0.916 0.084 1.000 0.916 0.056 <0.001 

Focal atrial tachycardia 0.993 0.007 0.000 1.000 0.000 1.000 

Macro-re-entrant atrial tachycardia 0.993 0.007 0.000 1.000 0.000 1.000 

Multifocal atrial tachycardia 0.987 0.013 0.235 0.999 0.359 <0.001 

Atrial fibrillation 0.981 0.019 0.087 1.000 0.157 <0.001 

Ventricular tachycardias 0.995 0.005 0.000 1.000 0.000 1.000 

Atrial paced rhythm 0.895 0.105 0.875 0.896 0.379 <0.001 

Ventricular paced rhythm 0.975 0.025 0.933 0.976 0.655 <0.001 

CCR=correct classification rate; Se=sensitivity; Sp=specificity 

 

 

The neural network classifier failed to successfully classify several rhythms: 1st degree, 2nd or 3rd 

degree atrio-ventricular blocks; physiological sinus tachycardia; atrio-ventricular reciprocating 

tachycardias; focal atrial tachycardia; macro-re-entrant atrial tachycardia and ventricular 

tachycardias. The classifier performed well for respiratory sinus arrhythmia, sinus node 

dysfunction and ventricular paced rhythm and performances for other rhythms were 

unexceptional. 

 

10.8.4 Support Vector Machine Classifier Performances for Different Rhythms 

The support vector machine classifier rhythm specific performances are shown in Table 10.10. 
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Table 10.10 Support vector machine classifier performances by rhythm. 

 

Rhythm CCR Error Se Sp κ P 

Normal sinus rhythm 0.833 0.167 0.923 0.829 0.287 <0.001 

Respiratory sinus arrhythmia 0.989 0.011 0.980 0.990 0.883 <0.001 

Physiological sinus tachycardia 0.996 0.004 0.889 0.997 0.798 <0.001 

Premature atrial contraction 0.678 0.322 0.131 0.983 0.140 <0.001 

Premature ventricular contraction 0.695 0.305 0.130 0.997 0.159 <0.001 

Sinus node dysfunction 0.988 0.012 0.931 0.990 0.800 <0.001 

First degree atrio-ventricular block 0.970 0.030 0.000 0.973 -0.005 1.000 

2nd and 3rd degree atrio-ventricular block 0.988 0.012 0.000 0.990 -0.003 1.000 

Atrio-ventricular nodal junct. tachycardias 0.952 0.048 0.000 0.976 -0.024 1.000 

Atrio-ventricular recip. tachycardias 0.460 0.540 0.083 0.464 -0.018 0.002 

Abnormal tachycardias of the sinus node 0.997 0.003 0.000 1.000 0.000 1.000 

Focal atrial tachycardia 0.993 0.007 0.000 1.000 0.000 1.000 

Macro-re-entrant atrial tachycardia 0.993 0.007 0.000 1.000 0.000 1.000 

Multifocal atrial tachycardia 0.985 0.015 0.000 1.000 0.000 1.000 

Atrial fibrillation 0.979 0.021 0.000 1.000 0.000 1.000 

Ventricular tachycardias 0.995 0.005 0.000 1.000 0.000 1.000 

Atrial paced rhythm 0.957 0.043 0.000 1.000 0.000 1.000 

Ventricular paced rhythm 0.973 0.027 0.000 1.000 0.000 1.000 

CCR=correct classification rate; Se=sensitivity; Sp=specificity 

 

 

The support vector machine was unable to diagnose eight rhythms: abnormal tachycardias of the 

sinus node; focal atrial tachycardia; macro-re-entrant atrial tachycardia; multifocal atrial 

tachycardia; atrial fibrillation; ventricular tachycardias; atrial paced rhythm or ventricular paced 

rhythm. Good performance was exhibited in classification of the following rhythms: respiratory 

sinus arrhythmia, with error of 0.011, sensitivity 0.980, specificity 0.990, κ of 0.883 and P < 

0.001; physiological sinus tachycardia, with error of 0.004, sensitivity of 0.889, specificity 0.997, 

κ of 0.798, P < 0.001 and sinus node dysfunction with error of 0.012, sensitivity of 0.931, 

specificity 0.990, κ of 0.800 and P < 0.001. 

 

10.8.5 Inference Engine Classifier Performances for Different Rhythms  

The inference engine classifier rhythm specific performances are shown in Table 10.11. 
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Table 10.11 Inference engine classifier performances by rhythm. 

 

Rhythm CCR Error Se Sp κ P 

Normal sinus rhythm 0.901 0.099 0.846 0.904 0.403 <0.001 

Respiratory sinus arrhythmia 0.724 0.276 0.592 0.730 0.090 <0.001 

Physiological sinus tachycardia 0.972 0.028 0.667 0.975 0.270 <0.001 

Premature atrial contraction 0.662 0.338 0.060 0.997 0.073 <0.001 

Premature ventricular contraction 0.688 0.312 0.166 0.967 0.162 <0.001 

Sinus node dysfunction 0.963 0.037 0.276 0.981 0.262 <0.001 

First degree atrio-ventricular block 0.997 0.003 0.000 1.000 0.000 1.000 

2nd and 3rd degree atrio-ventricular block 0.986 0.014 1.000 0.986 0.197 <0.001 

Atrio-ventricular nodal junct. tachycardias 0.967 0.033 0.444 0.980 0.377 <0.001 

Atrio-ventricular recip. tachycardias 0.979 0.021 0.417 0.985 0.293 <0.001 

Abnormal tachycardias of the sinus node 0.989 0.011 0.000 0.992 -0.004 1.000 

Focal atrial tachycardia 0.973 0.027 0.250 0.978 0.108 0.014 

Macro-re-entrant atrial tachycardia 0.970 0.030 0.500 0.974 0.186 <0.001 

Multifocal atrial tachycardia 0.976 0.024 0.000 0.991 -0.011 1.000 

Atrial fibrillation 0.805 0.195 0.478 0.812 0.057 0.002 

Ventricular tachycardias 0.904 0.096 0.500 0.907 0.044 0.014 

Atrial paced rhythm 0.957 0.043 0.000 1.000 0.000 1.000 

Ventricular paced rhythm 0.973 0.027 0.000 1.000 0.000 1.000 

CCR=correct classification rate; Se=sensitivity; Sp=specificity 

 

 

The inference engine classifier failed to diagnose five rhythms: first degree atrio-ventricular 

block; abnormal tachycardias of the sinus node; multifocal atrial tachycardia; atrial paced and 

ventricular paced rhythms. Best performance was achieved for atrio-ventricular nodal junctional 

tachycardias, with a CCR of 0.967; error 0.033; sensitivity 0.444; specificity 0.980; κ of 0.377 

and P < 0.001. No notably high performances were exhibited.  

 

10.8.6 Optimal Classifier by Rhythm 

Subsections 10.8.1 to 10.8.5 indicated that different classifiers perform best for specific rhythms. 

The performances of each classifier, trained with its optimal feature set, were compared for each 

rhythm and the best performing classifier for that rhythm was selected, using the scoring system 

outlined in Chapter 10, section 10.7 (see Table 10.12). 

 

The naïve Bayes classifier, trained with the 216 feature set (iteration 2) performed best for eleven 

rhythms, the decision tree classifier, trained with the 116 feature set (iteration 3) for four rhythms, 

and the support vector machine (116 features), neural network (116 features) and inference engine 

classifiers (216 features) performed best for one rhythm each. 
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Table 10.12 Optimal classifier for each rhythm by performance. 

 

DT=decision tree; NB=Naïve Bayes; NN=neural network; SVM=support vector machine; IE=inference engine. 

 

 

All the classification performances for each rhythm had a high CCR, with values of between 0.793 

for premature ventricular contractions, to 1.000 for abnormal tachycardias of the sinus node, focal 

atrial tachycardia and ventricular tachycardias. High CCR represents high consistency (see 

Chapter 3, subsection 3.12.5). The bias-variance trade off tends to result in satisfactory 

performance when there is low classification error, corresponding to high CCR. For an 18-way 

comparison, statistical significance at the 5% level, with the Bonferroni correction Pcrit = 0.003. 

All the classifiers had P < 0.001, for no significant difference to the gold standard, satisfying Pcrit. 

Given all five classifiers produced during classifier development were included among these best 

performing classifiers, all were retained for inclusion in the production system. 

 

10.9 Analysis to Allow Performance Comparisons to an ICD Classifier 

Class recoding would have been required to evaluate the production classifier system 

performances for the differential diagnosis of VT and VF (combined) against supraventricular 

tachycardia, in a one-versus-one (OVO) classification (see Chapter 2, subsection 2.8.14 and Table 

2.5), to make a direct comparison with tachycardia discrimination in ICDs and compare 

performance indices with the target criteria (see section 10.1). 

Classifier Rhythm CCR Error Sens. Spec. κ P 

NB Normal sinus rhythm 0.964 0.036 0.827 0.971 0.664 <0.001 

NB Respiratory sinus arrhythmia 0.990 0.010 0.816 0.998 0.874 <0.001 

NB Physiological sinus tachycardia 0.998 0.002 1.000 0.998 0.899 <0.001 

DT Premature atrial contraction 0.802 0.198 0.599 0.914 0.544 <0.001 

DT Premature ventricular contraction 0.805 0.195 0.492 0.972 0.494 <0.001 

SVM Sinus node dysfunction 0.988 0.012 0.931 0.990 0.800 <0.001 

NB First degree atrio-ventricular block 0.999 0.001 0.667 1.000 0.800 <0.001 

IE 2nd and 3rd degree atrio-ventricular 

block 

0.986 0.014 1.000 0.986 0.197 <0.001 

NB Atrio-ventricular nodal junct. 

tachycardias 

0.998 0.002 1.000 0.998 0.963 <0.001 

DT Atrio-ventricular recip. tachycardias 0.999 0.001 0.917 1.000 0.956 <0.001 

NB Abnormal tachycardias of the sinus node 1.000 0.000 1.000 1.000 1.000 <0.001 

NB Focal atrial tachycardia 1.000 0.000 1.000 1.000 1.000 <0.001 

NB Macro-re-entrant atrial tachycardia 0.999 0.001 1.000 0.999 0.941 <0.001 

NN Multifocal atrial tachycardia 0.987 0.013 0.235 0.999 0.359 <0.001 

DT Atrial fibrillation 0.986 0.014 0.913 0.988 0.625 <0.001 

NB Ventricular tachycardias 1.000 0.000 1.000 1.000 1.000 <0.001 

NB Atrial paced rhythm 0.975 0.025 0.938 0.976 0.750 <0.001 

NB Ventricular paced rhythm 0.995 0.005 0.833 0.999 0.890 <0.001 
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Given that such a comparison was not a requirement central to satisfaction of the research 

question, that there was a zero incidence of VF patterns and that “perfect” performance had been 

achieved for diagnosis of VT by the naïve Bayes classifier (see subsection 10.8.2), the one-versus-

all (OVA) analysis offered in section 10.8, comparing classification of VT (and VF) against all 

other rhythms, was considered an equivalent criterion.  

 

10.10 Classifier Combination 

The five trained classifiers (see subsection 10.8.6) were used to build a multi-classifier system 

(MCS) (see Chapter 3, section 3.16) using a mixture-of experts combination (Kuncheva 2004), 

which requires a gating classifier to allocate final class (see Chapter 3, Fig. 3.4). A simple voting 

combiner was not useful for this system, as optimal classification required a rhythm-specific 

decision, based on the best classifier for each rhythm.  

 

The support vector machine and neural network classifiers were used to classify one rhythm each 

(see subsection 10.8.6) and were considered specialist classifiers. Both classifiers were rebuilt 

and re-trained as specialist binary classifiers, using the tuning stages outlined in subsections 

10.2.5 and 10.2.6. All the developed classifiers were used in the production system so diversity 

measures suggested in Chapter 3, section 3.15 were not required to select classifiers. 

 

10.10.1 A Mixture-of-Experts System 

A mixture-of-experts system was designed, with gating using a decision rule. The decision rule 

was to function as an “expert” consultation system, consulting classifiers in reverse sequence of 

performance, starting with that having greatest performance with the highest number of different 

cardiac rhythms.  

 

The first to be consulted was the naïve Bayes classifier and if the output (ClassNB) was any of the 

eleven rhythms listed for its use (see Table 10.12), those were allocated to the class label. If no 

class label was allocated, the decision tree was then consulted and if class was allocated (ClassDT) 

to any of its four rhythms, then for the remaining unclassified rhythms, the support vector machine 

(ClassSVM), neural network (ClassNN) and inference engine classifiers, (ClassIE) sequentially.  

 

10.10.2 Unclassified Instances 

A strategy was required to deal with failure to classify any instance, where the consultation system 

had been exhausted. In the classifier design process, the guideline-based inference engine was 

intended to fulfil such a role. Testing indicated that the inference engine classifier performed well 

for all rhythms, with a κ of 0.59, making this a reasonable approach.  
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10.10.3 The Decision Rule 

Using the best classifier for each rhythm (see subsection 10.8.6), application of a sequential 

consultation system (see subsection 10.10.1) and the strategy for unclassified instances (see 

subsection 10.10.2), a decision rule was derived:  

 

IF ClassNB = NSR OR RSA OR ST OR FHB OR AVNRT OR IST  

OR AT OR MRAT OR VT OR APACE OR VPACE 

THEN  ClassNB  = Class Label 

ELSE IF ClassDT  = PAC OR PVC OR AVRT OR AF 

 THEN  ClassDT  = Class Label 

ELSE IF ClassSVM = SND 

THEN  ClassSVM = Class Label 

ELSE IF ClassNN  = MAT 

THEN  ClassNN = Class Label 

ELSE   ClassIE  = Class Label 

 

10.11 The Production System 

The classifier units, and decision rule gating resulted in a multiple classifier system model (see 

Fig. 10.7). 

 

10.11.1 Production system performance 

A confusion matrix was generated for the production system, tested with all the data (see Table 

10.13) and performance indices calculated (see Tables 10.14 and 10.15). Major indices of error, 

sensitivity, specificity and κ had 95% confidence intervals (CI95) calculated (see Table 10.14). 

 

Performance of the production system classifier was good for all rhythms, with  an overall CCR 

of 0.960 and error of 0.040 ± 0.012. Mean values were: sensitivity of 0.855; specificity of 0.977; 

κ of 0.767; PPV of 0.792; NPV of 0.975; ϕ of 0.787) with all rhythms having P values being 

below the required Bonferroni Pcrit of 0.004, equivalent to P =  0.05  for an 18 way comparison, 

supporting there being no difference with the gold standard (see Tables 10.14 and 10.15). 

 

Performances were largely preserved from those calculated for the optimal; classifier units, in 

Table 10.12, with the exception of multifocal atrial tachycardia, with a markedly improved , 

sensitivity of 0.765, compared with 0.235 achieved with the neural network classifier unit alone. 

For indices with 95% confidence intervals, CI95 values were all within 0.03, meaning imprecision 

was 3% or better. For all 18 different rhythms, error ranged from 0 to 0.246 and for 15 rhythms, 

other than for normal sinus rhythm, premature atrial and ventricular contractions, was 0 to 0.014.  
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Figure 10.7 Production system flow diagram. Data is input at the left of the system. Data is processed into patterns (instances), containing a set of 

features, presented as inputs near simultaneously to classifier units. Class allocation of each classifier is passed through a gating decision rule, in 

sequence: naïve Bayes first, then decision tree, then support vector machine, then neural network and finally an inference engine, to allocate final class.
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Table 10.13 Production system output confusion matrix, by rhythm. 

 

  Test Positive (Output Class)  

  NSR RSA ST PAC PVC SND FHB SHB AVNRT AVRT IST AT MRAT MAT AF VT APACE VPACE Total 

G
o

ld
 S

ta
n

d
ar

d
 D

ia
gn

o
si

s 
(T

ar
ge

t 
C

la
ss

) 

 

NSR 45 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 52 

RSA 6 40 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 49 

ST 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 

PAC 113 1 0 237 11 0 0 12 0 0 0 0 0 11 7 0 5 0 397 

PVC 135 0 2 56 190 0 0 0 1 0 0 0 0 0 2 0 0 0 386 

SND 1 0 0 1 0 27 0 0 0 0 0 0 0 0 0 0 0 0 29 

FHB 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 3 

SHB 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 

AVNRT 0 0 0 0 2 0 0 0 25 0 0 0 0 0 0 0 0 0 27 

AVRT 2 0 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 0 12 

IST 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 3 

AT 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 8 

MRAT 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 8 

MAT 2 0 0 0 2 0 0 0 0 0 0 0 0 13 0 0 0 0 17 

AF 1 0 0 0 1 0 0 0 0 0 0 0 0 1 20 0 0 0 23 

VT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6 

APACE 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 44 1 48 

VPACE 4 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 24 30 

Total 311 42 11 295 209 29 2 14 27 9 3 8 9 25 30 6 54 25 1109 
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Table 10.14 Production system major performance indices, by rhythm.  

 

Rhythm CCR Error ± CI95 Se ± CI95 Sp ± CI95 κ ± CI95 P 

Normal sinus rhythm 0.754 0.246 ± 0.025 0.865 ± 0.020 0.748 ± 0.026 0.182 ± 0.023 <0.001 

Respiratory sinus arrhythmia 0.990 0.010 ± 0.006 0.816 ± 0.023 0.998 ± 0.003 0.874 ± 0.020 <0.001 

Physiological sinus tachycardia 0.998 0.002 ± 0.002 1.000 ± 0.000 0.998 ± 0.003 0.899 ± 0.018 <0.001 

Premature atrial complex(es) 0.803 0.197 ± 0.023 0.597 ± 0.029 0.919 ± 0.016 0.547 ± 0.029 <0.001 

Premature ventricular complex(es) 0.806 0.194 ± 0.023 0.492 ± 0.029 0.974 ± 0.009 0.522 ± 0.029 <0.001 

Sinus node dysfunction 0.996 0.004 ± 0.004 0.931 ± 0.015 0.998 ± 0.003 0.929 ± 0.015 <0.001 

First degree AV block 0.999 0.001 ± 0.002 0.667 ± 0.028 1.000 ± 0.000 0.800 ± 0.024 <0.001 

Second/third degree AV block 0.989 0.011 ± 0.006 1.000 ± 0.000 0.989 ± 0.006 0.248 ± 0.025 <0.001 

AV nodal/ junctional tachycardias 0.996 0.004 ± 0.004 0.926 ± 0.015 0.998 ± 0.003 0.924 ± 0.016 <0.001 

AV reciprocating tachycardias 0.997 0.003 ± 0.003 0.750 ± 0.025 1.000 ± 0.000 0.856 ± 0.021 <0.001 

Inappropriate sinus tachycardia 1.000 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 <0.001 

Focal atrial tachycardia 1.000 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 <0.001 

Macro-reentrant atrial tachycardia 0.999 0.001 ± 0.002 1.000 ± 0.000 0.999 ± 0.002 0.941 ± 0.014 <0.001 

Multifocal atrial tachycardia 0.986 0.014 ± 0.007 0.765 ± 0.025 0.989 ± 0.006 0.612 ± 0.029 <0.001 

Atrial fibrillation 0.988 0.012 ± 0.006 0.870 ± 0.020 0.991 ± 0.006 0.749 ± 0.026 <0.001 

Ventricular tachycardias 1.000 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 <0.001 

Atrial paced rhythm 0.987 0.013 ± 0.007 0.917 ± 0.016 0.991 ± 0.006 0.856 ± 0.021 <0.001 

Ventricular paced rhythm 0.994 0.006 ± 0.005 0.800 ± 0.024 0.999 ± 0.002 0.870 ± 0.020 <0.001 

ALL (mean) 0.960 0.040 ± 0.012 0.855   0.977   0.767   <0.004 

CCR = correct classification rate; Se = sensitivity; Sp = specificity; κ = Cohen’s kappa; CI95 = 95% confidence interval; P values to 3 significant figures 
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Table 10.15 Additional performance indices by rhythm. Note that prevalence is the rate of occurrence in sample instances not the population. 

 

Rhythm FPR (α) FNR (β) Odds Ratio Relative Risk PPV NPV F1 score Youles Q Pearsons ϕ Prevalence 

Normal sinus rhythm 0.252 0.135 19.12 16.49 0.145 0.991 0.248 0.901 0.289 0.047 

Respiratory sinus arrhythmia 0.002 0.184 2351 112.9 0.952 0.992 0.879 0.999 0.877 0.044 

Physiological sinus tachycardia 0.002 0.000 - - 0.818 1.000 0.900 - 0.904 0.008 

Premature atrial complex(es) 0.081 0.403 16.70 4.087 0.803 0.803 0.685 0.887 0.559 0.358 

Premature ventricular complex(es) 0.026 0.508 35.92 4.174 0.909 0.782 0.639 0.946 0.568 0.348 

Sinus node dysfunction 0.002 0.069 7277 502.8 0.931 0.998 0.931 1.000 0.929 0.026 

First degree AV block 0.000 0.333 - 1107 1.000 0.999 0.800 - 0.816 0.003 

Second/third degree AV block 0.011 0.000 - - 0.143 1.000 0.250 - 0.376 0.002 

AV nodal/ junctional tachycardias 0.002 0.074 6750 500.9 0.926 0.998 0.926 1.000 0.924 0.024 

AV reciprocating tachycardias 0.000 0.250 - 366.7 1.000 0.997 0.857 - 0.865 0.011 

Inappropriate sinus tachycardia 0.000 0.000 - - 1.000 1.000 1.000 - 1.000 0.003 

Focal atrial tachycardia 0.000 0.000 - - 1.000 1.000 1.000 - 1.000 0.007 

Macro-reentrant atrial tachycardia 0.001 0.000 717.3 239.8 0.667 0.997 0.755 0.997 0.942 0.007 

Multifocal atrial tachycardia 0.011 0.235 292.5 140.9 0.520 0.996 0.619 0.993 0.624 0.015 

Atrial fibrillation 0.009 0.130 717.3 239.8 0.667 0.997 0.755 0.997 0.756 0.021 

Ventricular tachycardias 0.000 0.000 - - 1.000 1.000 1.000 - 1.000 0.005 

Atrial paced rhythm 0.009 0.083 1156 214.9 0.815 0.996 0.863 0.998 0.858 0.043 

Ventricular paced rhythm 0.001 0.200 4312 173.4 0.960 0.994 0.873 1.000 0.873 0.027 

ALL (mean) 0.023 0.145   0.792 0.975 0.777  0.787 0.056 

FPR=false positive rate; FNR=false negative rate; α =type I error; β = type II error; PPV=positive predictive value; NPV=negative predictive valu
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Perfect diagnostic performances were exhibited for 3 rhythms, with errors of 0, sensitivities, 

specificities and κ all having values of 1 and P < 0.001, these were: abnormal tachycardias of the 

sinus node, focal atrial tachycardia and ventricular tachycardias. Poor performance, where κ was 

< 0.2, was encountered only for normal sinus rhythm, with a CCR of 0.754; error of 0.246 ± 0.025; 

sensitivity of 0.865 ± 0.020; specificity of 0.748 ± 0.026; κ of 0.182 ± 0.023 and P < 0.001. Good 

performance was exhibited by the remaining rhythms. 

 

Prevalence values represented the incidence of the various rhythms in the sample population and 

had relevance in the interpretation of results. For rhythms with very low prevalence, high 

performance indices were less reliable, as they were based on very small numbers. This was the 

case for first degree atrio-ventricular block with prevalence of 0.002; abnormal tachycardias of 

the sinus node with prevalence of 0.003; ventricular tachycardia with prevalence of 0.005; focal 

atrial tachycardia with prevalence of 0.007; atrio-ventricular reciprocating tachycardias with 

prevalence of 0.008 and macro-re-entrant atrial tachycardia with prevalence of 0.008 (see Table 

10.18).  

 

Odds ratio (OR) and relative risk values were not computable for some rhythms. High positive 

and negative predictive values (PPV and NPV) values of 0.5 or greater were found for all rhythms 

with the exception of normal sinus rhythm, with PPV of 0.145 and second/third degree AV block, 

with PPV of 0.143. Values of F1 score and Pearson’s ϕ for individual rhythms corresponded well 

with κ but added little to the interpretation (see Table 10.18). 

 

The confusion matrix (Table 10.13) allowed rhythm diagnoses to be examined in more detail in 

an attempt to identify and explain  misclassifications. No misclassifications were diagnosed for 

physiological sinus tachycardia, second and third degree heart blocks, inappropriate sinus 

tachycardia, focal atrial tachycardia, macro-re-entry atrial tachycardia and ventricular 

tachycardia. Gold standard diagnoses were diagnosed as other rhythms (false negatives) for 6 of 

52 (11.5%) diagnoses of normal sinus rhythm; 9 of 49 (8%) of respiratory sinus arrhythmia; 160 

of 397 (40%) of premature atrial complexes; 196 of 386 (51%) of premature ventricular 

complexes; 2 of 29 (7%) of sinus node disease; 1 of 3 (33%) of first degree heart block; 2 of 27 

(7%) of atrio-ventricular and junctional tachycardias; 3 of 12 (25%) of atrio-ventricular re-entry 

tachycardias; 4 of 17 (23%) of multifocal atrial tachycardia; 3 of 23 (13%) of atrial fibrillation; 4 

of 48 (8%) of atrial paced rhythm and 6 of 30 (20%) of ventricular paced rhythm. 

 

High rates of misclassification were observed for normal sinus rhythm, with 266 false positives 

and 7 false negatives, an error 0.246 ± 0.025; premature atrial contractions with 58 false positives 

and 160 false negatives, an error 0.197 ± 0.023 and premature ventricular contractions with 19 

false positives and 196 false negatives, an  error of 0.194 ± 0.023. The majority of 
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misclassifications were included within 113 PAC’s (28%) misdiagnosed as normal sinus rhythm; 

11 as PVC’s; 12 as second or third degree heart block and 11 as multifocal atrial tachycardia; 135 

PVC’s (34%) misdiagnosed as normal sinus rhythm and 56 (14%) as PAC’s. The remaining small 

number of misdiagnoses did not demonstrate clear patterns.  

 

This analysis showed that PA’s and PVC’s were frequently misdiagnosed as normal sinus rhythm 

and PAC’s and PVC’s respectively into the others class. The key indicators for differentiation of 

PAC’s and PVC’s both from sinus rhythm and each other’s class were prematurity and QRS 

morphology. Alterations to the detection thresholds for these features could further improve 

diagnostic accuracy. 

 

10.12 Summary 

Five classifiers were successfully developed and tuned using Matlab - a decision tree, a naïve 

Bayes classifier, a neural network, a support vector machine and an inference engine. Iterative 

testing using different data sets showed that different classifiers were optimal for different 

rhythms. A production classifier system was-designed to make best use of these characteristics. 

This was a multi-classifier system, in a mixture-of-experts configuration, with decision rule 

gating.  

 

For the production system, a confusion matrix was generated, and performance indices calculated. 

Performance was good for all rhythms, with all rhythms having P < 0.001 supporting no 

difference with the gold standard. Performance for multifocal atrial tachycardia, was improved 

with sensitivity of 0.765, compared with 0.235 achieved with the neural network classifier unit 

alone. imprecision was 3% or better. Perfect diagnostic performances were exhibited for 3 

rhythms, reduced performance, with κ was < 0.2, was for normal sinus rhythm and there was good 

performance by the remaining rhythms. Low prevalence made performance indices less reliable 

for 6 rhythms.  

 

Miscalssifications were analysed and high misclassification rates were observed for normal sinus 

rhythm, premature atrial contractions and premature ventricular contractions. Suggesting that 

there was potential for alteration of detection thresholds to improve diagnostic accuracy. 
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Chapter 11 Discussion 

 

11.1 A Holistic Approach 

This study adopted a holistic approach to the problem of developing a more accurate cardiac 

rhythm classifier, re-examining the issue from basic principles. The thinking behind this 

approach, rather than a piecemeal or focussed approach, such as examining classifier 

performances without carefully considering feature selection or without considering the classifier 

development processes was that one could otherwise neglect an import aspect worthy of inclusion.  

 

The problem of misclassification by existing algorithms led to the research question and published 

research was examined for its contributions. Two main areas of research were identified, 

involving bench testing of classifier technology with its application in cardiology and clinical 

research, evaluating algorithms already in use. There was very little research work linking the two 

fields and this study aimed to bridge the gap, between technological evaluation and real-world 

application, a field known generically as translational medicine.  

 

This study used heuristics at specific design stages, an algorithmic approach with intelligent 

agents for rhythm classifier design and a cognitive approach to guide choices in classifier design. 

The domain of AI was examined and its utility in classification problems outlined, emphasising: 

Bayesian classifiers; fuzzy classifiers; decision trees; neural networks and support vector 

machines.  

 

11.1.1 Modelling 

Modelling, rarely used in this field, was successfully used to assist in visualisation of the domain 

and processes, with the ontology being modelled as a hierarchical taxonomy and the clinical 

diagnostic process in a cognitive model. A systematic approach to the mechanics of system 

development and testing used an incremental SDLC was used, incorporating sub-structures of 

classifier development and knowledge engineering, aimed at incorporating domain expert 

knowledge at appropriate points and the Hatley-Pirbhai system context diagram was used as a 

system specification.  

 

11.1.2 Data Collection 

Data collection was conducted in an ethically approved study, as it involved the collection of 

human physiological data. The population was chosen from those most easily accessible in a 

cardiology unit, with high risk of rhythm disturbances. The data collection was successfully 

planned with equipment specified in detail and was performed on patients while they underwent 

invasive EP study and was successful in 61 of 65 attempts. The small data loss experienced was 
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attributed to the complexity of the setup including the number of simultaneously recording 

systems (Bostock 2010). 

 

11.1.3 Offline Analysis 

Offline analysis of collected data was complex and was performed using Matlab scripts. 

Physiological data and MatLab scripts written specifically for this study are available for 

download (see Appendix L). This required extensive knowledge of Matlab and was very time-

consuming. Data was concatenated into a single file for each patient then digital signal processing 

and imputation were used to process data into a form suitable for feature extraction. The Zhang 

algorithm for classifier input data pre-processing was successfully used to guide this process. 10 

beat rhythm segments, for each rhythm encountered during a procedure, were extracted as 

instances and class labelling based on concurrent rhythm annotations made at the time of data 

collection by the domain expert consultant cardiologist. Generated instances were confirmed by 

a domain expert for accuracy and validity prior to use as classifier inputs. All these elements were 

integrated into a continuous process which was found to be a successful and comprehensive 

approach to classifier development. 

 

11.2 Relative Importance of Features 

The suggestion from review papers led to the concept that a re-evaluation of features commonly 

included in typical comparable algorithms would be useful. Re-examination of features required 

for a cardiac rhythm diagnostic algorithm started with a baseline of those features widely accepted 

and used extensively in those studies reviewed in Chapter 2, as having a role, such as heart rate 

and features of the ECG as well as technologies widely used in cardiac rhythm diagnostic systems, 

such as RR intervals and morphology. Related technologies previously used or evaluated were 

also considered, with emphasis on those incorporated in complex implantable devices, ICDs. It 

was considered expedient to use technologies with known utility, augmenting them with new 

features rather than a “clean sheet” approach. A knowledge engineering approach then considered 

the general clinical approach to arrhythmia diagnosis and differential diagnosis of arrhythmia, 

taken predominantly from clinical guidelines (Bostock 2010). New factors related to clinical 

history, physical examination and some ECG related features emerged from this process as 

candidate features.  

 

To test the utility of these new features in a rhythm classifier required new data collection, as 

similar data did not exist in established databases. The brief examination of principal features 

using an analysis of decision tree outputs during iterative classifier testing (see Chapter 10, 

subsection 10.3.1), suggested further analysis to attempt to determine the reasons for its high 

classification performance related to feature selection.  
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Relative feature importance was formally assessed using the ReliefF classification algorithm 

(Kononenko 1994), available in the Matlab statistics toolbox. The 216 feature set was input and 

compared to the output of the production system, using 10-nearest neighbours per class. The total 

of all weights was 6.04277. 30 features of high importance were found, with a sum of weights of 

1.904365, representing 31% of all feature weights (see Table 11.1 and Fig. 11.1).  

 

 

Table 11.1 Top 30 features using ReliefF, ranked by weight. 

 

Weight Beat Feature description 

0.14074 R0 VTCsamples 

0.09483  Rx 

0.09195 R0 PRint 

0.07703  Caffeine 

0.07468  SVIonset 

0.07332 R0 PAXISmatchsamples 

0.06819 R0 RPint 

0.06736  Syncope 

0.06633 R0 QRSgrossareamatchsamples 

0.06522 R0 QRSAXISmatchsamples 

0.06316 R1 PAXISmatchsamples 

0.06179 R1 PPint 

0.06176 R0 VTCAsamples 

0.06102 R0 PPint 

0.06077  Sm 

0.05851 R2 PAXISmatchsamples 

0.05841 R1 VTCsamples 

0.05633 R0 RRint 

0.05481  ETOH 

0.05381 R1 RPint 

0.05231 R0 QRSwidthmatchsamples 

0.05162 R2 VTCsamples 

0.05134 R1 RRint 

0.05022 R2 PPint 

0.05012  Cardiac/Pulm Dis 

0.04817 R1 QRSgrossareamatchsamples 

0.04811 R1 QRSAXISmatchsamples 

0.04800 R-1 QRSAXISmatchsamples 

0.04791 R3 PPint 

0.04656 R1 QRSnetareamatchsamples 

Total   1.904365   
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Figure 11.1 Feature importance distribution, from ReliefF analysis. Features are unidentified in this illustration showing that that there are few features 

with high importance, less than 10 with weighting > 0.05, and many of low importance. Detailed analysis allows key features to be identified (see text).
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The feature with highest ranking was VTC for beat R0, representing QRS morphology of the first 

beat of anew rhythm. Ten among the top 30 weighted features related to QRS morphology:  VTC 

for beats R0, R1 and R2, the first three beats of a new rhythm; QRS gross area match for beats R0 

and R1; QRS width match for beat R0; QRS axis match for beats R-1, R0 and R1 and QRS net area 

match for beat R1. This placed a very high importance on QRS morphology in rhythm diagnosis. 

  

Nine features related to intervals: PP interval of beats R0, R1, R2 and R3; RR interval of beats 

R0 and R1; PR interval of beat R0 and the RP interval of beats R0 and R1, also emphasising the 

importance of interval features. 

 

Five beats: R-1, R0, R1, R2 and R3, provided features in the top 30 features ranked by weight, 

supported the belief expressed in Chapter 3, subsection 3.8.2 of the need for only 5 beats to 

diagnose rhythm, though these were described as beats R-2 to R2. 

 

A new finding of this study was the high importance attributable to symptoms and predisposing 

factors. 6 of the 12 predisposing factor features collected were ranked in the top 30 features: 

symptoms of syncope (blackout); a history of cardiac or pulmonary disease; high caffeine intake; 

high alcohol intake; smoking and prescribed anti-arrhythmic medication. Those features not 

ranked were: tiredness or lethargy; chest pain; shortness of breath; palpitations; abnormal heart 

sounds sign; metabolic conditions. 

 

Another new finding was that a change in haemodynamic status, represented by the change in 

stroke volume index at onset of a new rhythm (SVI onset), ranked fifth among the top 30 features, 

suggesting a previously unestablished importance in rhythm diagnosis. Additionally, P wave 

morphology was responsible for 4 features, with P axis match for beats R0, R1, R2 and VTCA for 

beat R0. 

 

No features relating to stress, such as QT interval, temperature and accelerometry were placed 

within the top 30 rank. This was not unexpected, as patients enrolled in this study were immobile 

for the duration of the data collection exercise, minimising the likely impact of physiological 

stress.  

 

11.2.1 Influence of Accelerometry, Temperature and QT Interval  

Given the absence of accelerometry, temperature and QT interval features within the top 30 

ranked according to ReliefF analysis, reanalysis of data was proposed, removing these features, 

to evaluate their impact on results. 
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Evaluation began with assessing the influence of accelerometry, temperature and QT interval 

features individually on performance with each of the 5 classifiers used in the production system. 

Classifier units were designed using all features, containing data from 10 beats.  

  

For data containing all the features, SVM and NN classifiers were optimal when trained as binary 

classifiers for sinus node dysfunction and multifocal atrial tachycardia respectively (see Chapter 

10, subsection 10.8.6). The specialist classifiers were trained using the modified feature set, 

excluding accelerometry, temperature and QT interval features, with a 10% hold-out test set. The 

trained models were stored to be re-used in a modified production system. 

 

Decision trees were generated with optional settings set as for iteration 3, using a 'symmetric' (2x-

1) transformation function. The tree from the fold with the lowest kappa was selected as best and 

tested with all instances. Naïve Bayes classifiers were generated with optional settings set as for 

iteration 3, using 'distribution', 'kernel', 'Prior' and 'empirical'. The classifier from the fold with 

the lowest kappa was selected as best and tested with all instances. Neural networks were 

generated using 10-fold cross validation, with optional settings set as for iteration 3, using 11 

hidden nodes, a 'softmax' hidden layer transfer function, a 'purelin' output layer transfer function, 

a 'trainbr' learning algorithm. The network from the fold with the lowest kappa was selected as 

best and tested with all instances. Support vector machines (SVM) were generated and retested 

with all the data. The inference engine was tested without training, using all features and the full 

dataset. Lines of code corresponding to accelerometry and QT deactivated respectively and then 

together. Note that temperature was not used in the inference structure.  

 

Performances were compared with the corresponding base classifier used in the production 

system (see Table 11.2). 2-way comparisons were made, using the Bonferroni correction with Pcrit 

at 0.025. 

 

The decision tree classifier base unit showed no differences in CCR, error, sensitivity, specificity, 

kappa or P value between feature sets where individual features were removed from input data. 

A performance improvement was observed when all three features (accelerometry, temperature 

and QT interval) were removed. Positive predictive value (PPV) was improved at 0.978, 

compared with 0.719; specificity improved to 0.999, compared with 0.983 and kappa improved 

to 0.903 compared with 0.782, though other indices and P values showed no differences.  

 

The neural network classifier demonstrated small performance improvement with individual 

features removed and a greater performance improvement across all indices with all three features 

removed: CCR improved to 0.963 compared with 0.889; PPV to 0.889 from 0.667; sensitivity 

was unchanged at 1.0; specificity to 0.947 from 0.857 and kappa to 0.914 from 0.727, though P   
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Table 11.2 Influence of accelerometry, temperature and QT interval on performance. For each classifier, columns (from left to right)  represent 

performance of: the production system base unit (Prod.); the full dataset without accelerometry features (No Acc); without temperature features (No T); 

without QT interval features (No QT) and without all three (NoATQ).  

 

 Decision Tree Naïve Bayes Neural Network 

 Prod. No Acc  No T  No QT  NoATQ  Prod. No Acc  No T No QT  NoATQ  Prod. No Acc No T  No QT NoATQ 

CCR 0.908 0.914 0.908 0.909 0.911 0.853 0.847 0.836 0.882 0.845 0.889 0.920 0.923 0.913 0.963 

Error 0.092 0.086 0.092 0.091 0.089 0.147 0.153 0.164 0.118 0.155 0.111 0.080 0.077 0.087 0.037 

NL 0.117 0.136 0.136 0.117 0.154 0.615 0.328 0.655 0.462 0.693 0.000 0.000 0.000 0.000 0.000 

PL 51.9 83.1 114.3 62.3 894 - 237 183 285 325 7.00 10.0 10.0 10.0 19.0 

NPV 0.994 0.993 0.993 0.994 0.992 0.971 0.984 0.969 0.978 0.967 1.000 1.000 1.000 1.000 1.000 

PPV 0.719 0.804 0.849 0.754 0.978 1.000 0.921 0.900 0.933 0.941 0.667 0.714 0.750 0.600 0.889 

Prevalence 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.222 0.200 0.231 0.130 0.296 

Sensitivity 0.885 0.865 0.865 0.885 0.846 0.385 0.673 0.346 0.538 0.308 1.000 1.000 1.000 1.000 1.000 

Specificity 0.983 0.990 0.992 0.986 0.999 1.000 0.997 0.998 0.998 0.999 0.857 0.900 0.900 0.900 0.947 

kappa 0.782 0.825 0.850 0.804 0.903 0.544 0.769 0.487 0.672 0.451 0.727 0.783 0.806 0.701 0.914 

P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0003 0.0004 0.0001 0.0057 <0.0001 

 Support Vector Machine Inference Engine 

 Prod.  No Acc  No T  No QT  NoATQ  Prod. No Acc  No T No QT  NoATQ  

CCR 0.883 0.869 0.966 0.872 0.872 0.193 0.193  0.193 0.193 

Error 0.117 0.131 0.034 0.128 0.128 0.807 0.807  0.807 0.807 

NL 0.063 0.084 0.072 0.105 0.105 0.170 0.170  0.170 0.170 

PL 11.3 11.2 4.65 10.9 11.2 8.77 8.77  8.77 8.77 

NPV 0.997 0.996 0.996 0.995 0.995 0.992 0.992  0.992 0.992 

PPV 0.358 0.356 0.186 0.348 0.356 0.301 0.301  0.301 0.301 

Prevalence 0.047 0.047 0.047 0.047 0.047 0.047 0.047  0.047 0.047 

Sensitivity 0.942 0.923 0.942 0.904 0.904 0.846 0.846  0.846 0.846 

Specificity 0.917 0.918 0.798 0.917 0.920 0.904 0.904  0.904 0.904 

kappa 0.483 0.478 0.253 0.467 0.476 0.403 0.403  0.403 0.403 

P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001 
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values showed no significant difference. 

 

The naïve Bayes, support vector machine and inference engine classifier base units showed no 

significant differences in performance between all the feature sets.   

 

Testing showed that no significant differences in performance could be ascribed to the absence 

of accelerometry, temperature and QT interval data. Equally important, no performance 

advantage was gained by their removal, reducing the likelihood of any confounding influence. 

 

11.2.2 Comparing the 10 beat and 5 beat Diagnostic Models 

The use if iteration 3 in three of the five classifier models used in the mixture-of-experts multi-

classifier production system suggested utility for the 5 beat rhythm analysis model. Further testing 

was performed to determine whether the dimensionality reduction implicit in a 5 beat diagnostic 

model provided a performance advantage, when compared with a 10 beat model. 

 

The production model was modified to run with datasets containing the minimum possible 

features, based on the guideline driven feature selection process adhered to in this study and the 

findings that the influence of accelerometry, temperature and QT interval data were not significant 

(see subsection 11.2.1). Two datasets were created, based on 10 beats and 5 beats (see Chapter 3, 

subsection 3.18.2). 

 

Each classifier unit was re-trained with the revised datasets and the corresponding models stored 

for use in 5 beat and 10 beat multi-classifier systems, having structure identical to the production 

system (see Chapter 10, Fig. 10.7), except the input sets used either 5 beat or 10 beat data, not 

both. Analysis used the same procedure as for the production system (see Chapter 10, subsection 

10.11.1 and in Figs. 10.16, 10.17 and 10.18).  

 

10 beat analysis (see Tables 11.3 and 11.4) showed small improvements in performance indices 

over the original production system for some rhythms. 5 beat analysis showed poor overall 

performance, with high correct classification rates and high specificities with very low sensitivity 

and kappa values for all rhythms, other than atrial or ventricular paced rhythms (see Tables 11.5 

and 11.6).  

 

CCR was clearly higher and error lower for 10 beat analysis, compared with 5 beat analysis for 

four rhythms: respiratory sinus arrhythmia (RSA) CCR of 0.995 compared to 0.636; physiological 

sinus tachycardia (ST) with CCR of 0.995 compared with 0.652; premature atrial complexes 

(PAC) with CCR of 0.960 compared with 0.635 and premature ventricular complexes (PVC) with 

CCR of 0.950 compared with 0.662.  
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Table 11.3 Major performance indices, for 10 beat analysis - excluding accelerometry, temperature and QT interval features.  

 

Rhythm CCR Error ± CI95 Se ± CI95 Sp ± CI95 κ ± CI95 P 

Normal sinus rhythm 0.957 0.043 ± 0.012 0.885 ± 0.019 0.960 ± 0.011 0.636 ± 0.028 <0.001 

Respiratory sinus arrhythmia 0.995 0.005 ± 0.004 0.939 ± 0.014 0.998 ± 0.003 0.946 ± 0.013 <0.001 

Physiological sinus tachycardia 0.995 0.005 ± 0.004 0.778 ± 0.024 0.997 ± 0.003 0.735 ± 0.026 <0.001 

Premature atrial complex(es) 0.960 0.040 ± 0.011 0.942 ± 0.014 0.971 ± 0.010 0.914 ± 0.017 <0.001 

Premature ventricular complex(es) 0.950 0.050 ± 0.013 0.930 ± 0.015 0.960 ± 0.012 0.889 ± 0.018 <0.001 

Sinus node dysfunction 0.997 0.003 ± 0.003 0.897 ± 0.018 1.000 ± 0.000 0.944 ± 0.014 <0.001 

First degree AV block 1.000 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 <0.001 

Second/third degree AV block 1.000 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 <0.001 

AV nodal/ junctional tachycardias 0.995 0.005 ± 0.004 0.852 ± 0.021 0.999 ± 0.002 0.900 ± 0.018 <0.001 

AV reciprocating tachycardias 0.993 0.007 ± 0.005 1.000 ± 0.000 0.993 ± 0.005 0.747 ± 0.026 <0.001 

Inappropriate sinus tachycardia 0.998 0.002 ± 0.002 0.333 ± 0.028 1.000 ± 0.000 0.499 ± 0.029 0.003 

Focal atrial tachycardia 0.997 0.003 ± 0.003 0.625 ± 0.028 1.000 ± 0.000 0.768 ± 0.025 <0.001 

Macro-reentrant atrial tachycardia 0.999 0.001 ± 0.002 0.875 ± 0.019 1.000 ± 0.000 0.933 ± 0.015 <0.001 

Multifocal atrial tachycardia 0.995 0.005 ± 0.004 0.765 ± 0.025 0.998 ± 0.003 0.810 ± 0.023 <0.001 

Atrial fibrillation 0.993 0.007 ± 0.005 0.826 ± 0.022 0.996 ± 0.004 0.822 ± 0.022 <0.001 

Ventricular tachycardias 0.995 0.005 ± 0.004 0.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 1.000 

Atrial paced rhythm 0.980 0.020 ± 0.008 0.604 ± 0.029 0.997 ± 0.003 0.715 ± 0.027 <0.001 

Ventricular paced rhythm 0.993 0.007 ± 0.005 0.733 ± 0.026 1.000 ± 0.000 0.843 ± 0.021 <0.001 

ALL (mean) 0.988 0.012 ± 0.005 0.777 ± 0.017 0.993 ± 0.003 0.350 ± 0.028 <0.001 

CCR = correct classification rate; Se = sensitivity; Sp = specificity; κ = Cohen’s kappa; CI95 = 95% confidence interval; P values to 3 significant figures 
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Table 11.4 Additional performance indices for 10 beat analysis - excluding accelerometry, temperature and QT interval features. Note that prevalence 

is the rate of occurrence in sample instances not the population. 

 

Rhythm FPR (α) FNR (β) Odds Ratio Relative Risk PPV NPV F1 score Youles Q Pearsons ϕ Prevalence 

Normal sinus rhythm 0.040 0.115 185.278 88.951 0.523 0.994 0.657 0.989 0.661 0.047 

Respiratory sinus arrhythmia 0.002 0.061 8111.333 338.931 0.958 0.997 0.948 1.000 0.946 0.044 

Physiological sinus tachycardia 0.003 0.222 1279.833 384.650 0.700 0.998 0.737 0.998 0.736 0.008 

Premature atrial complex(es) 0.029 0.058 535.060 29.393 0.947 0.968 0.944 0.996 0.914 0.358 

Premature ventricular complex(es) 0.040 0.070 318.194 24.708 0.925 0.963 0.928 0.994 0.889 0.348 

Sinus node dysfunction 0.000 0.103 - 361.000 1.000 0.997 0.945 - 0.946 0.026 

First degree AV block 0.000 0.000 - - 1.000 1.000 1.000 - 1.000 0.003 

Second/third degree AV block 0.000 0.000 - - 1.000 1.000 1.000 - 1.000 0.002 

AV nodal/ junctional tachycardias 0.001 0.148 6215.750 259.948 0.958 0.996 0.902 1.000 0.901 0.024 

AV reciprocating tachycardias 0.007 0.000 - - 0.600 1.000 0.750 - 0.772 0.011 

Inappropriate sinus tachycardia 0.000 0.667 - 554.000 1.000 0.998 0.500 - 0.577 0.003 

Focal atrial tachycardia 0.000 0.375 - 368.000 1.000 0.997 0.769 - 0.789 0.007 

Macro-reentrant atrial tachycardia 0.000 0.125 1284.875 224.283 0.826 0.996 0.826 0.998 0.935 0.007 

Multifocal atrial tachycardia 0.002 0.235 1771.250 237.033 0.867 0.996 0.813 0.999 0.811 0.015 

Atrial fibrillation 0.004 0.174 1284.875 224.283 0.826 0.996 0.826 0.998 0.822 0.021 

Ventricular tachycardias 0.000 1.000 - - - 0.995 - - - 0.005 

Atrial paced rhythm 0.003 0.396 538.281 51.370 0.906 0.982 0.725 0.996 0.731 0.043 

Ventricular paced rhythm 0.000 0.267 - 135.875 1.000 0.993 0.846 - 0.853 0.027 

ALL (mean) 0.007 0.223 14.726 - - 0.993 0.958 0.873 0.350 0.056 

FPR- false positive rate; FNR=false negative rate; α = Type I error; β = Type II error; PPV= positive predictive value; NPV=negative predictive value 
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Table 11.5 Major performance indices for 5 beat analysis - excluding accelerometry, temperature and QT interval features.  

 

Rhythm CCR Error ± CI95 Se ± CI95 Sp ± CI95 κ ± CI95 P 

Normal sinus rhythm 0.980 0.020 ± 0.008 0.308 ± 0.027 0.988 ± 0.006 0.257 ± 0.026 <0.001 

Respiratory sinus arrhythmia 0.636 0.364 ± 0.028 - ± - 0.636 ± 0.028 0.000 ± 0.000 1.000 

Physiological sinus tachycardia 0.652 0.348 ± 0.028 0.000 ± 0.000 0.657 ± 0.028 -0.014 ± - 0.057 

Premature atrial complex(es) 0.635 0.365 ± 0.028 0.003 ± 0.003 0.970 ± 0.010 -0.036 ± - <0.001 

Premature ventricular complex(es) 0.662 0.338 ± 0.028 0.000 ± 0.000 0.996 ± 0.004 -0.005 ± - 0.555 

Sinus node dysfunction 0.978 0.022 ± 0.009 0.000 ± 0.000 0.999 ± 0.002 -0.002 ± - 1.000 

First degree AV block 0.971 0.029 ± 0.010 0.000 ± 0.000 0.974 ± 0.009 -0.005 ± - 1.000 

Second/third degree AV block 0.991 0.009 ± 0.006 - ± - 0.991 ± 0.006 0.000 ± 0.000 1.000 

AV nodal/ junctional tachycardias 0.973 0.027 ± 0.010 0.000 ± 0.000 0.997 ± 0.003 -0.005 ± - 1.000 

AV reciprocating tachycardias 0.986 0.014 ± 0.007 0.000 ± 0.000 0.995 ± 0.004 -0.006 ± - 1.000 

Inappropriate sinus tachycardia 0.990 0.010 ± 0.006 0.000 ± 0.000 0.993 ± 0.005 -0.004 ± - 1.000 

Focal atrial tachycardia 0.995 0.005 ± 0.004 0.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 1.000 

Macro-reentrant atrial tachycardia 0.979 0.021 ± 0.008 0.000 ± 0.000 0.986 ± 0.007 -0.009 ± - 1.000 

Multifocal atrial tachycardia 0.991 0.009 ± 0.006 0.000 ± 0.000 0.997 ± 0.003 -0.004 ± - 1.000 

Atrial fibrillation 0.957 0.043 ± 0.012 0.000 ± 0.000 0.973 ± 0.009 -0.021 ± - 1.000 

Ventricular tachycardias 0.979* 0.021* ± 0.008 0.000 ± 0.000 0.985 ± 0.007 -0.008 ± - 1.000 

Atrial paced rhythm 0.966 0.034 ± 0.011 0.453 ± 0.029 0.997 ± 0.003 0.588 ± 0.029 <0.001 

Ventricular paced rhythm 0.978 0.022 ± 0.009 0.478 ± 0.029 1.000 ± 0.000 0.637 ± 0.028 <0.001 

ALL 0.928 0.072 ± 0.015 -   0.952   0.076   <0.001 

CCR = correct classification rate; Se = sensitivity; Sp = specificity; κ  = Cohen’s kappa; CI95 = 95% confidence interval; P values to 3 significant figures 
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Table 11.6 Additional performance indices for 5 beat analysis - excluding accelerometry, temperature and QT interval features. Note that prevalence is 

the rate of occurrence in sample instances not the population. 

 

Rhythm FPR (α) FNR (β) Odds Ratio Relative Risk PPV NPV F1 score Youles Q Pearsons ϕ Prevalence 

Normal sinus rhythm 0.008 0.765 37.026 25.941 0.308 0.988 0.267 0.947 0.259 0.015 

Respiratory sinus arrhythmia 0.000 1.000 - - - 0.636 - - - 0.364 

Physiological sinus tachycardia 0.011 1.000 0.000 0.000 0.000 0.657 - -1.000 -0.061 0.341 

Premature atrial complex(es) 0.353 0.957 0.083 0.086 0.003 0.970 0.005 -0.846 -0.093 0.021 

Premature ventricular complex(es) 0.336 1.000 0.000 0.000 0.000 0.996 - -1.000 -0.037 0.003 

Sinus node dysfunction 0.021 1.000 0.000 0.000 0.000 0.999 - -1.000 -0.004 0.001 

First degree AV block 0.003 1.000 0.000 0.000 0.000 0.974 - -1.000 -0.009 0.026 

Second/third degree AV block 0.000 1.000 - - - 0.991 - - - 0.009 

AV nodal/ junctional tachycardias 0.024 1.000 0.000 0.000 0.000 0.997 - -1.000 -0.008 0.003 

AV reciprocating tachycardias 0.009 1.000 0.000 0.000 0.000 0.995 - -1.000 -0.006 0.005 

Inappropriate sinus tachycardia 0.003 1.000 0.000 0.000 0.000 0.993 - -1.000 -0.004 0.007 

Focal atrial tachycardia 0.005 - - - 0.000 1.000 - - - 0.000 

Macro-reentrant atrial tachycardia 0.007 1.000 0.000 0.000 0.000 0.973 - -1.000 -0.010 0.014 

Multifocal atrial tachycardia 0.006 1.000 0.000 0.000 0.000 0.997 - -1.000 -0.004 0.003 

Atrial fibrillation 0.018 1.000 0.000 0.000 0.000 0.973 - -1.000 -0.022 0.026 

Ventricular tachycardias 0.005 1.000 0.000 0.000 0.000 0.985 - -1.000 -0.009 0.015 

Atrial paced rhythm 0.032 0.094 287.790 157.839 0.453 0.997 0.604 0.993 0.627 0.029 

Ventricular paced rhythm 0.022 0.000 - - 0.478 1.000 0.647 - 0.684 0.020 

ALL 0.047 0.364 35.474 16.911 0.538 0.968 0.583 0.945 0.546 0.079 

FPR- false positive rate; FNR=false negative rate; α = Type I error; β = Type II error; PPV= positive predictive value; NPV=negative predictive value 
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Sensitivities were low for 5 beat analysis, beng unmeasurable for 14 rhythms, with the exception 

of normal sinus rhythm (NSR), having sensitivity of 0.885 for 10 beat analysis compared with 

0.308 for 5 beat analysis; atrial paced rhythm with a sensitivity of 0.604 for 10 beat and 0.453 for 

5 beat analysis and ventricular paced rhythm with a sensitivity of 0.733 for 10 beat and 0.478 for 

5 beat analysis. Specificities were high (> 0.6) for all rhythms having both 10 and 5 beat analysis.  

Kappa (κ) indices were consistently low for 5 beat rhythm analysis, with the exceptions of normal 

sinus rhythm (NSR) with κ of 0.636 for 10 beat and 0.257 for 5 beat analysis; atrial paced rhythm 

with κ of 0.715 compared with 0.588 and ventricular paced rhythm with κ of 0.843 and 0.637.  

 

Positive predictive value (PPV) was >0.5 for all rhythms having 10 beat analysis, with the 

exception of ventricular tachycardias, where no instances were diagnosed and <0.5 for all rhythms 

having 5 beat analysis.  

 

Pearson’s ϕ was >0.57 for all rhythms having 10 beat analysis and consistently low with negative 

values, for 5 beat analysis, except for normal sinus rhythm (NSR) with ϕ of 0.661 for 10 beat and 

0.259 for 5 beat analysis, atrial paced rhythm, with ϕ of 0.731 and 0.627 respectively and 

ventricular paced rhythm with ϕ of 0.853 and 0.684 respectively. F1 score and Youles Q values, 

where calculable, followed the pattern of ϕ scores. 

 

None of the major indices, CCR, error, sensitivity, specificity, κ or P value indicated superior 

performance, beyond the 95% confidence interval for 5 beat analysis. Likewise none of the 

additional scores showed improvement in performance for 5 beat analysis. With the exception of 

normal sinus rhythm (NSR), atrial and ventricular paced rhythms, 10 beat analysis was 

convincingly superior. These findings did not correspond with those for the production system, 

where 5 beat based rhythm classification was applied to the diagnosis of six rhythms: PAC; PVC; 

AVRT; AF; SND and MAT. The explanation for this difference is likely to be the different 

approaches taken between iterative development (see Chapter 10), where small differences in 

performance indices by rhythm and different classifier units drove decisions for their inclusion in 

the production system, compared with this structured test of 10 beat versus 5 beat rhythm analysis.  

 

Though guidelines used as the basis for feature selection (see Chapter 3, subsection 3.8.12) 

supported the use of a smaller number of heart beats (5 beats) in an approach to rhythm diagnosis, 

use of 10 beats produced comparable or higher performances, over a wide range of indices, for 

all rhythms. 

 

In this assessment, performances for 5 beat analysis, other than for normal sinus rhythm and paced 

rhythms, were found to be poor across all examined performance indices.  
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Performances for 10 beat analysis for normal sinus rhythm, premature atrial complexes, 

premature ventricular complexes, and second and third degree heart block were superior to that 

achieved in the production system, suggesting the potential for use in a future upgrade. 

Performance indices for ventricular tachycardia were poor and for the remaining rhythms showed 

little difference (see Chapter 10, Tables 10.17 and 10.18; Chapter 11, Tables 11.3, 11.4, 11.5 and 

11.6).  

 

Favourable performance of 10 beat analysis for second and third degree heart block was notable. 

The individual decision tree, naïve Bayes, neural network and support vector machine classifier 

units had failed to adequately classify this rhythm during the iterative development phase and  the 

production system successfully used the “catch-all” inference engine classifier but with poor 

performance.  

 

These results suggest that further optimisation of the production system would be possible, using 

10 beat analysis to improve performance for under-performance with normal sinus rhythm and 

second and third degree AV block. 

 

11.3 Comparisons with Other Studies 

Classifier performance of the production system were compared with the studies reviewed in 

Chapter 2, subsections 2.8.10, 2.8.11 and 2.9.3, which examined single classifier, hybrid and 

multi-classifier systems and ICD algorithms used for cardiac rhythm diagnosis. 

 

11.3.1 Review Papers 

The results from this study support the review of Aliot et al. (2004) advising cautious 

interpretation of small or focused studies however found that use of a wide range of indices better 

reflects classification performance, rather than their prescribed emphasis on specificity and PPV. 

 

11.3.2 Statistical Classifiers 

Zhang et al. (1999) examined the performance of their classifier, based on a chaotic complexity 

measure, for diagnosis of VT and VF from surface ECG recordings, designed for application in 

AED’s, using  VT and VF instances form patients undergoing ICD implant and instances of sinus 

rhythm from the MIT database. They recorded a direct ventricular electrogram though appear not 

to have used it for analysis. They achieved 100% sensitivity, specificity and accuracy, though 

there was no comparison between rhythms for individual patients, such as sinus rhythm against 

an unknown rhythm within the same patient. Our results compare favourably for VT diagnosis 

only, as no instances of VF were detected.  
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11.3.3 Syntactic Classification 

No studies of syntactic classifiers were available that provided useful statistical measures for 

comparison. 

 

11.3.4 Neural Network Classifiers 

Yang et al. (1994) compared deterministic logic with an artificial neural network for 

differentiating both sinus rhythm with PAC’s or PVC’s from AF. They found that the artificial 

neural network achieved sensitivity of AF diagnosis to 92%, with specificity 92.3%, compared 

with a lower sensitivity of 0.870 (87%) and a higher specificity of 0.991 (99.1%) for atrial 

fibrillation in our study. The difference emphasises the balance of sensitivity and specificity 

where there is similar overall performance, one may improve at the cost of the other. 

 

Coggins et al. (1995) tested a low power analogue VLSI neural network chip with a 10:6:3 

multilayer perceptron, an input bucket brigade device (BBD) and a winner take all output. QRS 

morphology classifier aimed at application in ICD’s. The study showed discrimination for sinus 

tachycardia with ventricular tachycardia and quote correct classification (CCR) of between 77.6% 

and 100% for ST and 98.3 and 100 for VT, similar results to our study, with CCR of 0.998 (99.8%) 

for physiological sinus tachycardia and 1.000 (100%) for VT. 

 

Minami et al. (1999) analysed spectral components of ECG or RV electrogram QRS complexes 

to discriminate rhythms using a back-propagation neural network. Classification was into three 

rhythm classes: supraventricular rhythm (including sinus rhythm and supraventricular 

tachycardias), ventricular rhythm (including VT and PVC) and VF. They provided sensitivity and 

specificities for all three rhythms using both ECG and electrogram data. Using the RV 

electrogram, for “supraventricular rhythm” sensitivity was 1.00 and specificity 0.98; for 

“ventricular rhythm” 0.68 and 1.00 and for VF 0.99 and 0.86 respectively. Given the differences 

in approach to defining rhythm classes, other than VF, for which we obtained no data, direct 

comparison was not possible.  

 

Kara & Okandan (2007) developed a LM back propagation neural network to diagnose AF and 

sinus rhythm from the ECG. Performance for AF was CCR 100% with 100% sensitivity, 

specificity and PPV, compared with CCR of 0.988 (98.8%), sensitivity of 0.870 (87%) and 

specificity of 0.991 (99.1%) and PPV of 0.667 (66.7%) for atrial fibrillation in our study. The 

simple binary classification in Kara & Okandan’s study was less challenging than the multi-class 

classification in our study, where subtle intermediate diagnoses such a macro-re-entrant atrial 

tachycardia and multifocal atrial tachycardia were differentiated from atrial fibrillation, perhaps 

partly explaining the slightly lower performance indices.  
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Christov & Bortolan (2004) classified PVC’s using ECG and vectorcardiogram morphology 

features and a neural network classifier.  The sensitivity of 99.7% and specificity of 98.5% they 

achieved for PVC classification was superior to our study, with a sensitivity of 0.492 (49.2%) and 

specificity of 0.974 (97.4%), perhaps due to use of a specialised binary classifier. 

 

Acharya et al. (2008) analysed 15 minute segments of ECG using fast-Fourier analysis, input 

features to a neural network which classified nine conditions, some not related to rhythm, such as 

congestive heart failure, ischemic/dilated cardiomyopathy and left bundle branch block, and 

certain rhythms, such as normal sinus rhythm, AF, VF, PVC, complete heart block and sick sinus 

syndrome. They achieved a sensitivity of 81.72%, specificity of 100% and PPV of 100% for all 

classes combined. Given their analysis was of long (15 minute) segments of ECG, they did not 

quote class-specific statistics and their classes included conditions unrelated to cardiac rhythms, 

so a direct comparison was not performed. 

 

11.3.5 Fuzzy Classifiers 

Usher et al. (1999) studied classification of AF, VF, SVT and VT using intracardiac electrograms, 

and a fuzzy inference system. The system had low computational resource requirement but did 

not offer statistical indices. Anuradha et al. (2008) used chaotic features input to a fuzzy system 

to classify ECG rhythms into 8 classes: left bundle branch block; normal sinus rhythm; PVC; AF; 

VF; complete heart block; ischemic dilated cardiomyopathy and sick sinus syndrome. Statistical 

analysis of their results was limited to CCR and results for 4 rhythms were amenable to 

comparison with our study. Of the very few studies examining fuzzy inference for rhythm 

diagnosis, this study alone showed demonstrable value. Normal sinus rhythm showed a higher 

CCR of 96.77% compared with 0.754 (75.4%) in our study; PVC also showed a higher CCR of 

93.85% compared with 0.806 (80.6%) in our study. Conversely, AF had a lower CCR of 90% 

compared with 0.988 (98.8%) in our study; complete heart block had a CCR of 90% compared 

with 0.989 (98.9%) in our study and sick sinus syndrome had a CCR of 88.9% compared with 

0.996 (99.6%) in our study.  

 

11.3.6 Decision Tree Classifiers 

Tsipouras et al. (2005) designed a knowledge-based decision tree method to classify rhythm into 

four beat classes using only the RR interval of the ECG: normal, premature ventricular 

contractions, ventricular flutter/fibrillation and heart block. Results for 3 rhythms were amenable 

to comparison with our study. Sensitivity was 97.05%, specificity 50.03% and PPV 50.16% for 

PVC’s, compared with similar results of sensitivity 0.492 (49.2%), specificity 0.974 (97.4%) and 

PPV of 0.909 (90.9%) for our study; ventricular tachycardia had sensitivity 61.33%, specificity 

95.45% and PPV of 30.46% compared with higher values of sensitivity of 1.00 (100%), 

specificity of 1.00 (100%)  and PPV of 1.00 (100%) for our study; and for heart block sensitivity 
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of 100%, specificity 99.96% and PPV of 83.33%, compared with slightly poorer results of 

sensitivity 1.000 (100%), specificity 0.989 (98.9%) and PPV of 0.143 (14.3%) for our study. 

 

Rodriguez et al. (2005) algorithm called MOLEC that classifies ECG beats and rhythms. Tested 

a variety of different classifiers and found that the decision tree performed best. Optimised using 

various options and used “info-gain” to rank features. CCR was the sole statistical performance 

index quoted and was amenable to comparison for two rhythms: CCR was 97.95%, compared 

with 1.00 (100%) for VT in our study and CCR of 67.35%, compared with 0.754 (75.4%) for 

normal sinus rhythm in our study, favouring performances from our study. 

 

11.3.7 Support Vector Machine Classifiers 

Polat & Güneş (2007) selected ECG features using principal component analysis (PCA) and used 

a support vector machine to classify rhythm as either normal or arrhythmia. This classification 

scheme was of insufficient granularity for comparison with our study. 

 

Asl et al. (2008) classified rhythms using the RR interval of the ECG, based on generalized 

discriminant analysis (GDA) feature reduction and a support vector machine classifier. 6 rhythms 

were classified of which 5 were amenable to comparison with our study: normal sinus rhythm 

with a CCR of 98.94%, higher than the 0.754 (75.4%) in our study; premature ventricular 

contraction with a CCR of 98.96%, higher than 0.806 (80.6%) in our study; atrial fibrillation with 

a CCR of 98.53%, similar to the 0.988 (98.8%) in our study; sick sinus syndrome with a CCR of 

98.51%, had a similar value to 0.996 (99.6%) in our study and heart block with CCR of 100%, 

was similar to the 0.989 (98.9%) in our study. 

 

11.3.8 k-Nearest Neighbour Classifiers 

Owis et al. (2002) used nonlinear dynamics to model the chaotic nature of ECG signals. 5 classes 

of rhythm: normal rhythm and ventricular couplet, VT, ventricular bigeminy, and VF were 

discriminated comparing several different classifier technologies. They found k-NN results 

generally indicate the highest detection rate among the three classifiers at the price of lowest 

specificity. Only values for VT were directly amenable to comparison with the results of our 

study: specificity (all rhythms) was 81.25%, compared to 0.979 (97.9%) in our study and 

sensitivity for VT was 6.25% and compared very unfavourably with our study, having sensitivity 

of 1.0 (100%). 

 

Minhas & Arif (2008) used 11 wavelet transform and RR-interval features for ECG classification 

using a k-nearest neighbour classifier, into six beat classes: PVC, PAC; APB), left and right 

bundle branch block beats, paced beats and normal beats. For normal beats was CCR 99.87%, 
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compared with 0.754 (75.4%) in our study; for PAC’s CCR was 99.02%, compared with 0.803 

(80.3%) in our study and CCR of 98.85% for PVC’s, compared with 0.806 (80.6%) in our study. 

 

11.3.9 Other Classifier Technologies 

Srakar et al. (2008) described an AF and AT burden estimator looking at 24 hour ECG samples, 

which was not directly comparable with this study. 

 

Brüser et al. (2012) designed a novel system for detection of AF using cardiac vibration signals 

recorded by bed mounted sensors, intended as tool for home-healthcare. They ranked seven 

classifiers from naïve Bayes, linear and quadratic discriminant analysis, support vector machines, 

random forests, bagged and boosted trees, for which random forests performed best. 

Classification indices were: for AF sensitivity of 0.938, higher than the 0.870 from our study; 

specificity of 0.978 was similar to 0.991 from our study; PPV of 0.934 was higher than 0.667 in 

our study and for normal rhythm sensitivity was 0.897, similar to 0.865 for our study, specificity 

0.980, higher than the 0.748 of our study and PPV of 0.792, higher than the 0.145 in our study. 

 

11.3.10 Hybrid classifiers 

Wang et al. (2001) used ECG short-time multifractality features, to classify VT, VF, and AF 

rhythms using a fuzzy Kohonen network. For AF, sensitivity was 96.7%, specificity 98.3% and 

CCR 97.8%, compared with lower sensitivity 0.870 (87.0%), similar specificity 0.991 (99.1%) 

and similar CCR of  0.988 (98.8%) and for VT, sensitivity 96.7%, specificity 97.5% and CCR 

97.2% , compared with sensitivity of 1.00 (100%), specificity  of 1.00 (100%) and CCR 1.00 

(100%). 

 

Linh et al. (2003) used Hermite ECG features, with a neuro-fuzzy beat classifier for six beat types: 

normal beats, PVC, left bundle branch block beats, right bundle branch block beats, PAC, 

ventricular flutter and ventricular escape beats. They quoted “misclassification” (error), from 

which CCR was able to be deduced. Normal beats showed 1.6% error, a CCR of 98.4%, compared 

with CCR of 0.754 (75.4%) in our study; PAC beats showed 9.09% error, a CCR of 90.91%, 

compared with CCR of 0.803 (80.3%) in our study and PVC beats showed a 3.6%error, a CCR of 

96.4%, compared with CCR of 0.806 (80.6%) in our study; 

 

Polat et al. (2006) classified ECG arrhythmia data using input values obtained from fuzzy 

weighted pre-processing into 16 classes using an artificial immune recognition classifier system. 

CCR of up to 80.77% was obtained, however detailed class-specific statistics were not provided.  

 

Exarchos et al. (2007) studied ischaemic and arrhythmic beat ECG classification using a fuzzy 

expert system. Rhythm classes were VF, PVC, normal and heart block. Comparable rhythm 
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classification results were: PVC sensitivity of  92.4%, was higher compared with 0.492 (49.2%) 

with our study, specificity of 97.6%, compared with 0.782 (78.2%) in our study and CCR of 

95.8%, compared with 0.806 (80.6%) in our study; for normal beats, sensitivity was 93.6%, 

compared with 0.865(86.5%) in our study, specificity 97.7%, compared with 0.748 (74.8%) in 

our study and CCR of 95.8%, compared with 0.754 (75.4%); for heart block sensitivity was 98.3 

%, compared with 1 (100%), specificity 99.9% compared with 0.989 (98.9%) and CCR of 95.8%, 

compared with 0.989 (98.9%). 

 

11.3.11 Multi-Classifier Systems (MCS) 

Leong & Jabri (1992) used atrial and ventricular intracardiac electrogram timing together with a 

morphology feature in a decision tree and neural network hybrid classifier, with decision rules to 

allocate final class. Atrial and ventricular intervals were classified using a decision tree and a 

neural network based morphology classifier only for certain cases, such as ventricular tachycardia 

with 1:1 conduction. With a view to application in ICD’s, four rhythms were classified: NSR, 

SVT, VT, and VF were included but only an overall CCR of 99.6% was quoted, inadequate for 

useful comparison. 

 

de Chazal et al. (2004) classified 2 channels of ECG using morphology and interval features. Each 

ECG channels had a dedicated linear discriminant classifier to obtain posterior probability 

estimates and a combiner allocated class to that having the highest posterior probability estimate. 

They detailed performance statistics for 4 classes, for which two were amenable to comparison 

with our study: For PAC’s, sensitivity was similar at 53.3%, compared with 0.597 (59.7%) for 

our study; For PVC’s, sensitivity was slightly higher at 67.3%, compared with 0.492 (49.2%) for 

our study. de Chazal & Reilly (2006) refined this classifier. Performance statistics for 2 classes 

were: for PAC’s, CCR was higher at 95.9% compared with 0.803 (80.3%) for our study; 

sensitivity was higher at 87.7%, compared with 0.597 (59.7%) for our study; PPV was lower at 

47%, compared with 0.803 (80.37%) for our study and FPR was lower at 3.8%, compared with 

0.081 (8.1%) for our study. For PVC’s, CCR was higher at 99.4% compared with 0.806 (80.6%) 

for our study; sensitivity was higher at 94.3%, compared with 0.492 (49.2%) for our study; PPV 

was higher at 96.2%, compared with 0.909 (90.9%) for our study and FPR was lower at 0.3%, 

compared with 0.026 (2.6%) for our study. 

 

Ceylan et al. (2009) examined ECG rhythm classification using a combined Fuzzy Clustering 

Neural Network Algorithm. Ten rhythms were classified: normal beat, sinus bradycardia, 

ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle 

branch block, left bundle branch block, atrial fibrillation and atrial flutter. Classification accuracy 

was 99% for all types, with results not broken down by rhythm type. 
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Osowski et al. (2004) classified ECG rhythms using features from Hermite characterization of 

and higher order statistics, into 13 heart rhythm classes. They combined two neural classifiers, 

using a weighted voting scheme into an expert system. Results only quoted “relative” 

classification errors and were not directly comparable to this study. Ozbay et al. (2006) classified 

ECG rhythms using two neural networks, the first distinguished arrhythmias from normal sinus 

rhythm and the second to classify rhythm into 10 classes. Accuracy (CCR) rates were quoted but 

not by rhythm. 

 

11.3.12 Comparative Studies of Classifiers  

Jovic & Bogunovic (2011) evaluated the potential usefulness of ECG rhythm classification using 

features based on heart rate variability (HRV). Although they analysed a number of different 

classifier units using this, there was no rationale behind the choice of features, other than an 

exploration of alternative features in this application. They succeeded in classifying rhythm into 

three broad categories: normal, arrhythmia and supraventricular arrhythmia. HRV is believed to 

reflect the autonomic nervous system and its relationship with heart rhythm and has been found 

to be predictive of ventricular arrhythmias, in the context of prevention of sudden cardiac death 

(SCD) (see Chapter 5, subsection 5.3.2) (Malik et al. 1989; Osterhues et al. 1993; Huikuri et al. 

1995; Copie et al. 1996; Bernardi 1996; Nolan et al. 1998) buts its value in rhythm diagnosis is 

not established. Acharya et al. 2004) succeeded in using HRV derived ECG features to diagnose 

5 different rhythms, as well as left bundle branch block and dilated cardiomyopathy, using an 

artificial neural network and a fuzzy classifier. Neither of these two studies examined the more 

orthodox features associated with rhythm diagnosis – ECG intervals and QRS morphology. Given 

the poor comparability of these two studies with the more rational method developed in this work, 

direct comparisons were considered inappropriate. 

 

Acharya et al. (2004) compared an artificial neural network and a fuzzy classifier for 8 classes: 

left bundle branch block, normal sinus rhythm, PVC, AF, VF, complete heart block, ischaemic/ 

dilated cardiomyopathy and sick sinus syndrome. For the better performing fuzzy classifier, CCR 

indices for 5 classes were comparable with our study: for normal beats CCR was 92.5% compared 

with 0.754 (75.4%) in our study; for PVC 90.0%, compared with 0.806 (80.6%) in our study; for 

AF 88.0%, compared with 0.988 (99.8%) in our study; for complete heart block 88.0%, compared 

with 0.989 (98.9)% for our study and for SSS 90.9% compared to 0.996 (99.6%) in our study. 

 

11.3.13 Single ICD Algorithms 

Kuhlkamp et al. (1999) compared dual chamber to single chamber ICD algorithms from a single 

manufacturer. The study focussed on therapy decisions and did not dwell on diagnostic 

performance, offering no statistical indices suitable for comparison. Swerdlow et al. (2000) 

studied diagnosis of short episodes of AF with prolonged episodes that require cardioversion. 
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Their detection measures do not correspond well with indices from our study, preventing useful 

comparison. 

 

Wilkoff et al. (2001) examined performance of a dual-chamber ICD detection algorithm. Of 

indices suitable for comparison with our study, sensitivity for VT was 100.0% and PPV 78.1%, 

compared with 1.00 (100%) and 1.00 (100%) respectively for our study.  

 

Swerdlow et al. (2002) investigated a downloadable algorithm for ICD’s to discriminate 

supraventricular tachycardia from VT, based on morphology differences of ventricular 

electrograms, using corresponding coefficients of wavelet transforms expressed as a match-

percent score. Sensitivity for VT detection was 100%, specificity was 78%, compared with 1.000 

(100%) for both indices in our study. 

 

Kouakam et al. (2004) assessed a dual-chamber detection ICD algorithm for performance with 

VT. Using their contingency table values indices had slightly lower values than those in our study, 

with CCR of 0.950 sensitivity 0.983 specificity 0.900 and kappa 0.895, compared with all indices 

having values of 1.00 in our study. 

 

Kremers et al. (2012) used electrogram-based detection with a right ventricular pressure sensor 

to assess haemodynamic stability during tachycardia in an investigational ICD. VT/VF 100% 

specificity was 100%, similar to that achieved in our study. 

 

11.3.14 Comparative Studies of ICD Algorithms 

Hintringer et al. (2001) compared four ICD algorithms using electrograms recorded during EP 

studies. Four dual chamber ICD algorithms were tested: Phylax AV, Defender IV, Ventak AV II 

DR, and Gem DR 7271 using 86 arrhythmias recorded from patients undergoing invasive EP 

studies. Episodes included 7 different rhythm diagnoses: atrial fibrillation, atrial flutter, atrial 

tachycardia, AV nodal re-entrant tachycardia, AV re-entrant tachycardia, sinus tachycardia, and 

ventricular tachycardia. Unfortunately, the published analysis quotes supraventricular versus 

ventricular arrhythmia diagnostic indices in an OVO analysis and did not include raw data 

allowing re-analysis, precluding rhythm specific comparison other than for VT. The indices for 

VT for the best performing ICD algorithm, the ELA Defender IV, were sensitivity of 100% and 

specificity 28%, compared with these having values of 1.00 (100%) in our study. 

 

Gold et al. (2002) proposed an electrogram vector timing and correlation (VTC) morphology 

algorithm for ICD’s and assessed performance by comparison with physician diagnosis. 

Discrimination was between ventricular and supraventricular arrhythmias. Electrograms were 

collected at ICD placement and tested in a software model. For the dual chamber ICD they found 
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a sensitivity of 100% and specificity 97% for VT , which compares with sensitivity and specificity 

of 1.000 (100%) found in our study. 

 

Theuns et al. (2004) compared single and dual- chamber ICD algorithms and found no significant 

difference in tachyarrhythmia detection. Unfortunately, data presented was largely pooled, as the 

emphasis of their study was on low rates of inappropriate treatment rather than diagnosis and the 

only comparable result was the sensitivity for VT/VF detection of 100%, the same as in our study.  

 

Hintringer et al. (2004) compared specificities of dual chamber ICD algorithms in a bench study 

which used tachyarrhythmia’s recorded during EP studies, processed through ICD devices. For 

VT specificity was 90% (Biotronik), 89% (ELA Medical), 89% (Guidant), 68% (Medtronic), and 

76% (St. Jude Medical), compared with sensitivity and specificity of 1.000 (100%) found in our 

study. 

 

Gold et al. (2012a) directly compared Medtronic and VITALITY 2 ICD algorithms for prevention 

of inappropriate therapy. PPV’s were 41.2% for Guidant and 51.3% for Medtronic ICD’s, 

compared with a PPV of 1.000 (100%) for VT in our study. 

 

Gold et al. (2012b) assessed the performance of a subcutaenous ICD algorithm, compared with 

established ICD algorithms. For VT the sensitivity was 100.0% and specificity 98.0%, similar to 

the results from our study of 1.00 (100%) and 1.00 (100%) respectively. 

 

11.3.15 Summary of Comparisons with Other Studies 

Performance indices for the studies examined in chapter 11, subsections 11.3.1 to 11.3.14 were 

tabulated by rhythm (see Tables 11.7 to 11.14).  

 

Studies had comparable results for 8 of the 18 rhythms studied: normal sinus rhythm; 

physiological sinus tachycardia; premature atrial complex(es); Premature ventricular 

complex(es); Sinus node dysfunction; Second/third degree AV block; Atrial fibrillation and 

ventricular tachycardias. No studies provided comparative results for 10 rhythms: respiratory 

sinus arrhythmia; first degree AV block; AV nodal/ junctional tachycardias; AV reciprocating 

tachycardias; inappropriate sinus tachycardia; focal atrial tachycardia; macro-reentrant atrial 

tachycardia; multifocal atrial tachycardia; atrial paced rhythm and ventricular paced rhythm.  

 

The production classifier in our study clearly poorly for normal sinus rhythm (see Table 11.7) 

when compared to published studies evaluated, having inferior performance for all indices with 

the exception of Rodriguez et al. (2005), whose decision tree algorithm had inferior performance 

to our results. Notably 3 of the studies attempted classification of 5 different rhythms. Lack of 
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multiple indices in some studies and lack of clearly superior results means that it is difficult to 

determine the best performing classifier. Of the available data, the best performing was the k-

nearest neighbour classifier of Minhas & Arif (2008), with a CCR of 99.87%. 

 

 

Table 11.7 A comparison of classifier performances for normal sinus rhythm 

 

Study n Classifier Rhythm CCR Se Sp PPV κ 

This study 18 MCS NSR 75.4 86.5 74.8 14.5 18.2 

Anuradha et al. (2008) 5 Fuzzy NSR 96.77     

Asl et al. (2008) 5 SVM NSR 98.94     

Rodriguez et al. (2005) 2 DT NSR 67.35     

Minhas & Arif (2008) 3 k-NN NSR 99.87     

Brüser et al. (2012) 2 RF NSR  89.7 98.0 79.2  

Linh et al. (2003) 3 Fuzzy-NN NSR 98.4     

Exarchos et al. (2007) 3 Fuzzy-Expert NSR 95.8 93.6 97.7   

Acharya et al. (2004) 5 Fuzzy NSR 92.5     

Key: MCS = multi-classifier system; RF = random forest; n = number of rhythms classified; All values % 

 

 

The sole study we found which had directly comparable results for sinus tachycardia (see Table 

11.8) was a neural network of Coggins et al. (1995), showed that its CCR of 100% closely 

matched that of our results. 

 

 

Table 11.8 A comparison of classifier performances for physiological sinus 

tachycardia 

 

Study n Classifier Rhythm CCR Se Sp PPV κ 

This study 18 MCS ST 99.8 100 99.8 81.8 89.9 

Coggins et al. (1995) 2 NN ST 100     

Key: MCS = multi-classifier system; n = number of rhythms classified; All values % 

 

 

For PAC diagnosis (see Table 11.9), the results of this study compare unfavourably to published 

results, with the best performing classifier appearing to be the k-nearest neighbour classifier of 

Minhas & Arif (2008), which showed a CCR of 99.02%, compared to our result of 80.3%. 
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Table 11.9 A comparison of classifier performances for premature atrial complexes 

 

Study n Classifier Rhythm CCR Se Sp PPV κ 

This study 18 MCS PAC 80.3 59.7 91.9 80.3 54.7 

Minhas & Arif (2008) 3 k-NN PAC 99.02     

Linh et al. (2003) 3 Fuzzy-NN PAC 90.91     

de Chazal et al. (2004) 2 Linear Hybrid PAC  53.3    

de Chazal & Reilly (2006) 2 Linear Hybrid PAC 95.9 87.7 47   

Key: MCS = multi-classifier system; n = number of rhythms classified; All values % 

 

 

Performance indices for PVC diagnosis (see Table 11.10) with the production system fared poorly 

when compared with published studies with the exception only of the hybrid linear classifier of 

de Chazal et al. (2004). Best performing classifier for this rhythm was probably the neural network 

classifier of Christov & Bortolan (2004), with a sensitivity of 99.7% and specificity of 98.5%.

  

 

Table 11.10 A comparison of classifier performances for premature ventricular 

complexes 

 

Study n Classifier Rhythm CCR Se Sp PPV κ 

This study 18 MCS PVC 80.6 49.2 97.4 90.9 52.2 

Christov & Bortolan (2004) 1 NN PVC  99.7 98.5   

Anuradha et al. (2008) 5 Fuzzy PVC 93.85     

Tsipouras et al. (2005) 3 DT PVC  97.05 50.03 50.16  

Asl et al. (2008) 5 SVM PVC 98.96     

Minhas & Arif (2008) 3 k-NN PVC 98.85     

Linh et al. (2003) 3 Fuzzy-NN PVC 96.4     

Exarchos et al. (2007) 3 Fuzzy-Expert PVC 95.8 92.4 97.6   

de Chazal et al. (2004) 2 Linear Hybrid PVC  67.3    

de Chazal & Reilly (2006) 2 Linear Hybrid PVC 99.4 94.3 96.2   

Acharya et al. (2004) 5 Fuzzy PVC 90     

Key: MCS = multi-classifier system; n = number of rhythms classified; All values % 

 

 

For diagnosis of sinus node dysfunction (see Table 11.11), our study out-performed comparable 

studies for CCR, which was the only available index for comparison. Our study showed a CCR 

of 99.6%; a sensitivity of 93.1%; specificity of 99.8%, PPV of 93.1% and kappa of 92.9%. 
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Table 11.11 A comparison of classifier performances for sinus node dysfunction 

 

Study n Classifier Rhythm CCR Se Sp PPV κ 

This study 18 MCS SND 99.6 93.1 99.8 93.1 92.9 

Anuradha et al. (2008) 5 Fuzzy SND 88.9     

Asl et al. (2008) 5 SVM SND 98.51     

Acharya et al. (2004) 5 Fuzzy SND 90.9     

Key: MCS = multi-classifier system; n = number of rhythms classified; All values % 

 

 

For second and third degree heart block (see Table 11.12), our classifier had similar performace 

with the best published algorithm, the support vector machine of Asl et al. (2008), which showed 

a CCR of 100%. 

 

 

Table 11.12 A comparison of classifier performances for second and third degree 

AV block 

 

Study n Classifier Rhythm CCR Se Sp PPV κ 

This study 18 MCS 2HB 98.9 100 98.9 13.3 24.8 

Anuradha et al. (2008) 5 Fuzzy 2HB 90     

Tsipouras et al. (2005) 3 DT 2HB  100 99.96 83.33  

Asl et al. (2008) 5 SVM 2HB 100     

Exarchos et al. (2007) 3 Fuzzy-Expert 2HB 95.8 98.3 99.9   

Acharya et al. (2004) 5 Fuzzy 2HB 88     

Key: MCS = multi-classifier system; n = number of rhythms classified; All values % 

 

 

Our study showed fair performance for atrial fibrillation (see Table 11.13) but was slightly out-

performed by one study, the binary neural network classifier of Kara & Okandan (2007), which 

had CCR, sensitivity, specificity and PPV of 100%.  
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Table 11.13 A comparison of classifier performances for atrial fibrillation 

 

Study n Classifier Rhythm CCR Se Sp PPV κ 

This study 18 MCS AF 98.8 87 99.1 66.7 74.9 

Yang et al. (1994) 1 NN AF  92 92.3   

Kara & Okandan (2007)  1 NN AF 100 100 100 100  

Anuradha et al. (2008) 5 Fuzzy AF 90     

Asl et al. (2008) 5 SVM AF 98.53     

Brüser et al. (2012) 2 RF AF  93.8 97.8 93.4  

Wang et al. (2001) 2 Fuzzy-NN AF 97.8 96.7 98.3   

Acharya et al. (2004) 5 Fuzzy AF 88     

Key: MCS = multi-classifier system; n = number of rhythms classified; All values % 

 

 

This study performed well for VT diagnosis (see Table 11.14), with perfect performance on all 

indices, based on a very small number of training examples. Our perfect results were comparable 

in performance with the statistical classifier of Zhang et al. (1999), the neural network classifier 

of Coggins et al. (1995) and ICD algorithms of Kremers et al. (2012) and Theuns et al. (2004). 

 

 

Table 11.14 A comparison of classifier performances for ventricular tachycardias 

 

Study n Classifier Rhythm CCR Se Sp PPV κ 

This study 18 MCS VT 100 100 100 100 100 

Zhang et al. (1999) 1 Statistical VT 100 100 100   

Coggins et al. (1995) 2 NN VT 100     

Tsipouras et al. (2005) 3 DT VT  61.33 95.45 30.46  

Rodriguez et al. (2005) 2 DT VT 97.95     

Owis et al. (2002) 1 k-NN VT  6.25 81.25   

Wang et al. (2001) 2 Fuzzy-NN VT 97.2 96.7 97.5   

Wilkoff et al. (2001) 1 ICD VT  100.0  78.1  

Swerdlow et al. (2002) 1 JCD VT  100 78   

Kouakam et al. (2004) 1 ICD VT 95 98.3 90  89.5 

Kremers et al. (2012) 1 ICD VT   100   

Hintringer et al. (2001) 1 ICD VT  100 28   

Gold et al. (2002) 1 ICD VT  100 97   

Theuns et al. (2004) 1 ICD VT  100    

Hintringer et al. (2004) 1 ICD VT  100 90   

Gold et al. (2012a) 1 ICD VT  100 98.0   

Key: MCS = multi-classifier system; n = number of rhythms classified; All values % 
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In summary, the production system diagnostic performance of this study was the best performing 

of all comparable algorithms for 4 of the 8 different rhythms for which comparison data were 

available: physiological sinus tachycardia, sinus node dysfunction and ventricular tachycardia 

(see Table 11.15). 

 

 

Table 11.15 Best performing classifier by rhythm, from comparable studies 

  

Rhythm Classifier Technology Study 

Normal sinus rhythm k-nearest neighbour classifier Minhas & Arif (2008) 

Physiological sinus tachycardia Multi-Classifier System This study 

Physiological sinus tachycardia Neural network classifier Coggins et al. (1995) 

Premature atrial contraction k-nearest neighbour classifier Minhas & Arif (2008) 

Premature ventricular contraction Neural network classifier Christov & Bortolan (2004) 

Sinus node dysfunction Multi-Classifier System This study 

 Second/ third degree heart block Multi-Classifier System This study 

 Second/ third degree heart block Support vector machine Asl et al. (2008) 

Atrial fibrillation Neural network classifier   Kara & Okandan (2007) 

Ventricular tachycardia Multi-Classifier System  This study 

Ventricular tachycardia Statistical classifier Zhang et al. (1999) 

Ventricular tachycardia Neural network classifier Coggins et al. (1995) 

Ventricular tachycardia ICD algorithm  Kremers et al. (2012) 

Ventricular tachycardia ICD algorithm Theuns et al. (2004) 

   

 

 

Notably, decision trees and naïve Bayes classifiers did not feature highly in published studies and 

likely is the explanation for their absence from this analysis. Neural network classifiers feature as 

best or tied for best performer for 4 rhythms, k-nearest neighbour for 2 rhythms, a statistical 

classifier, support vector machine and ICD algorithms for only one rhythm, suggesting that either 

neural network experimentation is very widespread or that they truly offer high classification 

performances for a range of rhythms. 

 

The availability of comparable performance indices for only 8 rhythms from published studies 

suggested that the remaining 10 rhythms were, to our knowledge, classified only in our study. 

Published studies were found that did classify a number of these rhythms, however results were 

not of sufficient quality to allow direct comparison. These rhythms were: respiratory sinus 

arrhythmia; first degree AV block; AV nodal/ junctional tachycardias; AV reciprocating 

tachycardias; inappropriate sinus tachycardia; focal atrial tachycardia; macro-re-entrant atrial 
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tachycardia; multifocal atrial tachycardia; atrial paced rhythm and ventricular paced rhythm. 

Performance indices for these rhythms were taken from our study as “best performances”.  

 

Table 11.16 illustrates the best achieved performance indices for the 18 rhythms diagnosed in this 

study from published studies and from the results of this study. For all the studies, the best 

achievable CCR values are in excess of > 98% and specificity > 99% for all classified rhythms. 

More variability is apparent for sensitivity with 4 rhythms with low (< 90%) sensitivities achieved 

for the following rhythms: physiological sinus tachycardia with 81.8%; macro-re-entrant atrial 

tachycardia with 88.9%; multifocal atrial tachycardia with 52% and atrial paced rhythm with 

81.5%, all values from this study. Values of PPV of < 90 were found for 6 rhythms, all provided 

by this study, and the value of any interpretation is questionable. 

 

 

Table 11.16 Best published achieved performance for each rhythm, by study. 

 

Rhythm Study CCR Se Sp PPV 

Normal sinus rhythm Minhas & Arif (2008) 99.87    

Respiratory sinus arrhythmia This study 99.0 95.2 99.2 81.6 

Physiological sinus tachycardia This study 

 

99.8 81.8 100 100 

 Coggins et al. (1995) 100    

Premature atrial complex(es) Minhas & Arif (2008) 99.02    

Premature ventricular complex(es) Christov & Bortolan (2004)  99.7 98.5  

Sinus node dysfunction This study 99.6 93.1 99.8 93.1 

First degree AV block This study 99.9 100 99.9 66.7 

Second/third degree AV block This study 98.9 100 98.9 14.3 

 Asl et al. (2008) 100    

AV nodal/ junctional tachycardias This study 99.6 92.6 99.8 92.6 

AV reciprocating tachycardias This study 99.7 100 99.7 75 

Inappropriate sinus tachycardia This study 100 100 100 100 

Focal atrial tachycardia This study 100 100 100 100 

Macro-reentrant atrial tachycardia This study 99.9 88.9 100 87 

Multifocal atrial tachycardia This study 98.6 52 99.6 76.5 

Atrial fibrillation Kara & Okandan (2007) 100 100 100  

Ventricular tachycardias This study 

 

100 100 100 100  

 Zhang et al. (1999) 

 

100 100 100  

 Coggins et al. (1995) 

 

100    

 Kremers et al. (2012) 

 

  100  

 Theuns et al. (2004)  100   

Atrial paced rhythm This study 98.7 81.5 99.6 91.7 

Ventricular paced rhythm This study 99.4 96 99.4 80 

All values % 
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It should be noted that many studies published only CCR (accuracy) as a performance index and 

many observers believe CCR is inadequate when unsubstantiated to fully reflect classifier 

performance. Among these was the study by Minhas & Arif (2008), using a k-nearest neighbour 

classifier, the only comparable study which published data for classification of 3 rhythm and 

features as best classifier for two of them: normal sinus rhythm and premature atrial complexes. 

Three of the published comparable studies were able to classify 5 rhythms: Acharya et al. (2004) 

and Anuradha et al. (2008) both used fuzzy classifiers, but did not feature among the best 

performing classifiers however the support vector machine of Asl et al. (2008) was best 

performing for second/third degree AV block. 

 

11.4 Considerations for Updates 

Given the imperfect classification performances for certain rhythms, consideration was made of 

an approach to future upgrades. 

 

11.4.1 Re-examination of Performances of Classifier Units 

A multi-classifier system is a product of the strengths of its component classifier units. A finding 

of this study was that the naïve Bayes and decision tree classifier units performed best with the 

neural network, support vector machine and inference engine classifier units less well 

 

Re-analysis of the results was made, using > 0.5 as an arbitrary minimum level of “good” 

performance for sensitivity and specificity, corresponding to better than random detection of true 

positives or true negatives respectively, alongside kappa > 0.75 (Fleiss 1981) and P < 0.05, 

representing rhythms for which each classifier performed well.  

 

For the naïve Bayes classifier, 11 rhythms met these criteria, 10 of which were also those selected 

by the decision rule for classification by the naïve Bayes classifier (see subsection 10.10.3). The 

exceptions were normal sinus rhythm, for which kappa was 0.664, failing to meet the above 

criteria but for which naïve Bayes performed better than all the other classifiers and atrio-

ventricular reciprocating tachycardias which met the criteria but were outperformed by the 

decision tree classifier. The naïve Bayes classifier model selected from cross-validation as best 

performing was trained on 17 of 18 possible rhythms, the missing rhythm being 2nd and 3rd degree 

block, explaining its poor performance with this rhythm. This class contained only 2 instances, 

so of the 10 cross-validation training sets, several could easily contain no examples. Selection of 

an alternative model could have ensured training with this rhythm but at the cost of overall 

performance with the remaining rhythms, as suggested by the choice of best performing model 

that was made. 
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The naïve Bayes classifier performed well with the largest feature set, containing 216 features. 

With naïve Bayes, assumption of conditional independence of features is made. A naïve Bayes 

classifier works well with inputs of high dimensionality and, even if the assumption of conditional 

independence is unmet, classification performance may be good (Bishop 2006, p.381). Where the 

underlying distribution is known, the Bayes rule is optimal for classification (Zhang 2004). 

 

During classifier tuning, optimal performance with the options available in Matlab, was with prior 

probabilities estimated using class prevalence in the training set and using the kernel smoothing 

density estimate rather than a Gaussian or multinomial distribution. These options were set 

heuristically with the reasons they worked well being unclear.  

 

The naïve Bayes approach estimates pre-test probability and post-test probabilities, highly 

relevant to clinical diagnostic process, as illustrated in the cognitive model (see Chapter 3, 

subsection 3.10.4 and Fig, 3.3). It is postulated that naïve Bayes classification most closely 

represents the clinical diagnostic process and may account for its superior accuracy. 

 

The decision tree performed well, being trained with the reduced, 116 feature set. 3 rhythms met 

the above criteria for high performance, (see Fig. 10.10). These were: sinus node dysfunction; 

atrio-ventricular recip. tachycardias; ventricular paced rhythm. None corresponded to those 

selected by the decision rule for classification: premature atrial contraction; premature ventricular 

contractions; atrio-ventricular reciprocating tachycardia and atrial fibrillation. Interestingly, 

optimal settings were with prior probabilities set according to class prevalence in the training set, 

as with the naïve Bayes classifier. 

 

Of note, this classifier was trained using the smaller 116 feature set. Reanalysis of the decision 

tree used in the production system showed branch and leaf structure as in Table 11.17:  

 

Decision nodes corresponded well with clinical diagnostic criteria, with the root node of PP 

interval of beat R0 having a threshold value of 988 milliseconds, corresponding to a bradycardia 

of less than 59 beats per minute. Likewise the RP interval of beat R-1, threshold value of 104 

milliseconds, corresponded to the shorter values expected during atrio-ventricular nodal 

reciprocating tachycardia. Early detection was expected, as instances were rarely spontaneous, 

having been artificially stimulated and established prior to the nominal first beat R0. 

 

The stability criterion added in iteration 2 featured twice in this list, emphasising its importance. 

P wave morphology (Pgrossareasamples) featured highly in diagnosis of atrial pacing and as the 

node responsible for a split leading to eight leaf nodes (rhythms). 
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Table 11.17 Production system decision tree nodes. 

 

Code Beat Feature 

Threshold 

Value 

Branch 

Level 
Leaf node(s) Split 

41 R0 PPint 988 Root - Level 1 

24 R-1 RPint 104 1 AVNRT - 

1 R-2 PPint 978 1 RSA - 

65 R1 PRratio 1.68 2 AF* Level 3 

115 - Stability 22.5 2 SND, VPACE - 

90 R2 Pgrossareamatch 4 3 APACE Levels 4 - 7 

84 R2 RPint 385 4 - Levels 5 - 7 

83 R2 RRint 600 5 VPACE - 

115 - Stability 5 5 NSR - 

21 R-1 PPint 812 6 MAT - 

45 R0 PRratio 0.78 6 PAC*, PVC* - 

108 - Rx 1.5 7 AT, OAVRT* - 

* Rhythms classified by the decision tree within the production system. 

 

 

With the support vector machine, performances for 3 rhythms met these criteria (see Table 10.12): 

respiratory sinus arrhythmia; physiological sinus tachycardia and sinus node dysfunction, of 

which one, sinus node dysfunction, was the rhythm selected for classification. The support vector 

machine performed poorly throughout, in contrast to studies supporting its use (Polat & Gunes 

2007; Asl et al. 2008). Polat & Gunes (2007) used PCA and Asl et al. (2008) used GDA for 

feature selection. Major differences in methodology may be responsible for the performance 

difference. 

 

For the neural network classifier, none of the rhythms met the criteria (see Tables 10.12 and 

10.14).  Multifocal atrial tachycardia was selected for classification with the NN classifier, with 

kappa of 0.359 being the sole poor performance metric, however this improved, when 

implemented in the production system as a binary classifier, to 0.612 ± 0.029. Networks are 

known to classify poorly where there are a large number of input features and there is possibility 

that many of these are redundant, or not required for a diagnosis, making it susceptible to the 

“curse of dimensionality”. Feature reduction to correct for this was discussed in Chapter 10, 

subsection 10.5 and implemented in iteration 3 but was insufficient to improve performance (see 

Chapter 10, Table 10.8). 

 

The inference engine was used as a specialist classifier only for 2nd and 3rd degree atrio-

ventricular block, despite low error of 0.011 ± 0.006 (value ± CI95) and perfect sensitivity of 1.000 

± 0.000, specificity also good at 0.989 ± 0.006, however κ was very low at 0.248 ± 0.025. The 
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implication was that all classifiers were poor at detecting 2nd and 3rd degree atrio-ventricular 

block. The inference engine, which successfully classified this rhythm, used a fixed set of rules 

and unlike the other classifiers was not subjected to training. The classifier was limited by design 

to the constraints set by the clinical guidelines on which it was based, so less amenable to 

modification.  

 

11.4.2 Binary Classification 

The iterative development process undertaken in Chapter 10 study was based on a premise that 

classifier selection and tuning was best performed while evaluating overall performance. A 

reasonable alternative approach would be to examine classifier performances for each rhythm 

from the outset, with a binary classification model. The iterative process undertaken in this study 

led to the inclusion of specialist binary classifiers into our production system, for rhythms where 

that was indicated to be advantageous. It is possible that further performance improvements could 

be achieved using specialist binary classification for all rhythms. 

 

11.4.3 Elimination of Unnecessary Features 

The Hughes effect suggests that high dimensionality leads to reduced predictive power (Hughes 

1968). The high dimensionality of the features in this study resulted from its adherence to 

inclusion of all the features required to satisfy the diagnostic criteria, as laid out in the guideline 

documents used to provide cardiac rhythm diagnostic criteria (see Chapter 3, subsection 3.10.1) 

(Buxton et al. 2006; Blomström-Lundqvist et al. 2003; Epstein et al. 2008; Brugada et al. 1991; 

Saoudi et al. 2001; Fuster et al. 2011; Bonow et al. 2012; Surawicz et al. 2009) and to allow 

comparison with ICD algorithms (see Chapter 3, subsection 3.18.2). The implication of the 

Hughes effect is that there is potential for dimensionality reduction to lead to improved 

classification performance (see Chapter 3, section 3.7 and Chapter 8, section 8.5). 

 

There was an heuristic approach to dimensionality reduction in this study, with evaluation of  

alternate feature sets, elimination of features (see Chapter 11, subsection 11.2.1) and the number 

of beats required to diagnose rhythm (see Chapter 11, subsection 11.2.2). A more algorithmic 

approach, such as data mining, could lead to elimination of features with little or no influence on 

diagnosis, for reasons as yet unexplained by current cardiology theory.  

 

11.4.4 Examination of the Number of Beats to Diagnose 

This study included a rudimentary comparison of 5 beats analysis and 10 beat analysis (see 

Chapter 3, subsection 3.18.2 and Chapter 11, subsection 11.2.2). This study did not systematically 

examine the issue beyond these constraints and it is possible that more detailed examination of 

the number of beats required to diagnose could provide guidance towards further performance 

improvements. 
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11.5 Limitations of the Study  

In Chapter 6, subsection 6.4.3 the pilot study (Bostock 2004) and data from Hintringer et al. 

(2001) had suggested 100 patients were required to provide sufficient power to reject the null 

hypothesis. 61 patients were recruited but nonetheless, significance at the 5% level was achieved, 

indicating the study was over-powered. Conversely, the low prevalence of many rhythms 

encountered suggested that a larger sample could have improved the sizes available for training 

and test sets, enabling fully independent training and testing tests. 

 

With the small dataset of 61 patient recordings and 1109 rhythm instances obtained in the data 

collection phase of the study, it was necessary to re-use data for training and testing. Cross-

validation was used to reduce the risks of over-training but a remaining risk was acknowledged. 

Testing with new data would help in estimating true generalisability of the classifiers. 

 

The rhythm instances were collected from a single site, un-randomised and unmatched (such as 

for patient age and sex) study. It is accepted that a multicentre study would provide data from a 

more diverse population. Given the unknown nature of a patients’ arrhythmia before their 

diagnostic study, any randomisation might be difficult to implement. 

 

Confidence limits were calculated for the major performance measures to check for imprecision. 

Given the importance of statistical significance using P values in studies of this type and given 

the large number of measures analysed it was elected to limit analysis of this data.  

 

The absence of real-time blood pressure data limited the credibility of haemodynamic assessment, 

which relied upon a derived parameter – impedance cardiography, perhaps diluting its impact. 

Likewise, the absence of normal physical activity at the time of data recording, a circumstantial 

necessity during EP studies, which must be conducted with patients supine and at rest, precluded 

evaluation the impact of exertional stress indices on rhythm diagnosis. 

 

This study did not evaluate nuances of diagnosis during EP study, such as the value of timed 

electrical stimulations in differential rhythm diagnosis and interpretation of the multiple waves of 

the His bundle and coronary sinus electrograms. As this information is considered invaluable to 

diagnosis during EP studies, it would be desirable to include them in a future development. 

 

11.6 Consideration of Bias 

It is possible that patients selected for EP study may include selection bias. There was no treatment 

allocation relevant to this study, as ablation was considered an extension of the procedure made 

to avoid unnecessary delay to treatment, rather than allocation to a study treatment group. Referral 

for EP study was the point at which selection may have occurred, but this was mitigated by the 
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fact that only patients already referred were approached for inclusion. No systematic selection 

bias was identified. 

 

Blinding was not possible as investigator and patient were both unaware of the diagnosis prior to 

the study, as that was the justification for the procedure being performed. There were 4 patients 

consented for the study for whom no data was collected and may be considered attrition bias, as 

that uncollected data may have affected results. No reporting bias was expected as all results have 

been reported in full. 

 

11.7 Consideration of Error 

Measures were taken to minimise random error, using careful equipment specification the 

resolution of measurements, so this was known prior to data collection. Data was continuously 

monitored during data collection, allowing observed variations or errors to be noted and 

accommodated. Data quality assessment, used as a form of random error assessment, showed low 

random error, in the form of acceptable completeness, consistency, timeliness and accuracy 

analysis (see Chapter 9, section 9.4). 

 

Potential differences of opinion between the domain experts providing the “gold standard” 

diagnosis was not considered and is a potential source of error in annotation of rhythms. 

 

11.8 Advantages of this Approach to Classification 

In this study, we have shown that to work well, data for classifiers should be specific to the task. 

Re-use of standard databases as sources of data for training and testing, as was the case with the 

majority of bench studies reviewed, serves to facilitate comparisons between studies but limits 

any developmental capability to the information contained within that data. 

 

Use of a diverse set of classifier units, enabled rigorous testing of the utility of AI in this domain 

and sought to extend that utility to maximise performance by selecting the best classifiers for 

inclusion in a multi-classifier system. 

 

With the use of AI in classification, there is the possibility of updating algorithms, by retraining 

with new data, should additional or new examples be added to a suitable database. Also, within 

the limits set by hardware capability, software upgrades to modify classifier structure are possible.  

 

11.9 Computational Cost 

Computational resources are used by algorithms in solving computational problems. Efficient 

algorithms use resources below acceptable levels, such as code execution within a reasonable 

time on a normal computer. Simple computational resources are computation time, the number of 
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steps required to solve a problem, memory space, and disk space. The most commonly used 

measures of computational cost are computation time and memory usage. 

 

Expressions of computational complexity were obtained, using datasets having differing numbers 

of inputs but with processing code matched. The production system was used, varying the number 

of instances used in the model. For each dataset, the number of inputs was computed as the sum 

of the product of number of features and number of instances. Computation time was calculated 

using MatLab tic and toc functions and memory usage by the profile function (see Table 11.18).  

 

 

Table 11.18 Computational cost indices. 

 

No. of 

Instances 

No. of  

Inputs 

Computation Time 

(secs) 

Memory Usage 

(kB) 

1109 865020 43.08382 4684 

1100 858000 34.53114 1528 

1000 780000 31.86179 2096 

900 702000 29.52177 1680 

800 624000 27.23476 1516 

700 546000 24.76662 1324 

600 468000 10.25256 1172 

500 390000 9.329284 972 

400 312000 9.304069 1224 

300 234000 8.785004 532 

 

 

Below 300 instances, the model encountered errors and computation time was not obtained. A 

simple expression of computational complexity, using big O notation, was possible by analysis 

of the relationship between the number of inputs and computation time (see Fig. 11.2). 

 

For up to 500 instances, processing time was nearly constant at approximately 9 seconds, a 

designation of O(1) and the relationship is approximately linear, with processing time related to 

number of inputs by a factor of 22, suggesting an O(n) designation. Both these big O designations 

were low, suggesting that the production system might be amenable to implementation using 

larger datasets without major impact on resources.  

 

Regarding memory usage, the maximum allocation of less than 5MB of memory (see Table 11.8), 

considerably below the expected norm of 4GB of memory available in a standard PC, supported 

the view that standard PC computation power would suffice for the processes used here.  
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Figure 11.2 Relationship between the number of inputs and computation time. 

Computation time (complexity) increases with increasing numbers of inputs with an 

approximately linear relationship (dotted line). 

 

 

It was noted that these calculations were applied to classifier base units which had already been 

trained and fixed. The training process itself requires considerably more time and processing 

power but would only be required during algorithm maintenance, when new training instances 

became available. Re-training could be performed off-line, following which the fixed classifiers 

could be updated. 

 

11.10 Summary 

The holistic approach to the problem of cardiac rhythm classification taken in this study was 

emphasised and the appropriate use of heuristic, algorithmic approaches and modelling during 

classifier development were noted. 

 

Data analysis was performed offline, using MatLab. Data for rhythms encountered during a 

procedure were concatenated into 10 beat rhythm segments. 

 

Following implementation of the production system analysis of the relative importance of features 

was performed using ReliefF. Ten of the top 30 ranked features related to QRS morphology, nine 
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to intervals. 6 to predisposing factors and 4 to P wave morphology features. Stroke volume index 

onset (SVI onset), ranked fifth, a previously unreported finding.   

 

Re-analysis of data was performed following removal of low ranking features. Accelerometry, 

temperature and QT interval were selected for this, to evaluate their impact on results. 

Performance was assessed with each of the 5 classifiers used in the production system and showed 

no significant differences in performance due to accelerometry, temperature or QT interval data. 

Equally important, no performance advantage was gained by their removal, reducing the 

likelihood of any confounding influence. 

 

Testing was performed to compare performance of 10 beat and 5 beat diagnostic models. 10 beat 

analysis showed small performance improvements in indices over the original production system 

for some rhythms and 5 beat analysis showed poor overall performance. The lack of 

correspondence with results from the production system was expected to be due to the different 

approaches taken between iterative development, compared with the structured test and the 

different datasets and processing used.  

 

In summary, the production system diagnostic performances achieved in this study were the best 

performing of all compared algorithms, for 3 of 8 different rhythms for which comparison was 

made: physiological sinus tachycardia, sinus node dysfunction and ventricular tachycardia. 

 

When published studies were compared with our results, neural network classifiers performed 

best for 4 rhythms, k-nearest neighbour for 2 rhythms, a statistical classifier, support vector 

machine and ICD algorithms for only one rhythm. Decision trees and naïve Bayes classifiers did 

not feature in published studies. The production system performance of this study was the best 

performing for 3 of the 8 different rhythms for which comparison data were available and the 

remaining 10 rhythms were, to our knowledge, classified only in our study. The results of this 

study demonstrated that high performance is achievable for a range of different rhythms and was 

able to classify 18 different rhythms. 

 

This study found that that the naïve Bayes and decision tree classifier units performed best and 

the classifier units were re-examined in this light. The naïve Bayes classifier performed well with 

the higher dimensionality 10 beat set for the highest number, 11 of 18 rhythms. It was postulated 

that the accuracy of the naïve Bayes classification was due to its close representation of the clinical 

diagnostic process. The decision tree performed best using the 5 beat feature set and analysis of 

decision nodes showed a good correspondence to clinical diagnostic criteria. The support vector 

machine performed well for only 3 rhythms and was selected as best performing for only one, in 

contrast to the views of many exponents of its use in the literature (see Chapter 2, subsection 
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2.8.7). We suggest this finding was due to major methodological differences with this study. The 

neural network classifier performed unexpectedly poorly for all rhythms, performing best for only 

one rhythm. The explanation was proposed to be the known poor performance of networks for a 

large number of input features, the “curse of dimensionality”. Feature reduction was insufficient 

to improve performance (see Chapter 10, Table 10.8). The inference engine was used as a “catch-

all” for otherwise undiagnosed rhythms, of which 2nd and 3rd degree atrio-ventricular block was 

specified, as all other classifiers were poor for that rhythm.  

 

The study was found to be over-powered, however low prevalence of some rhythms suggested a 

larger sample could have supplemented training and test sets, avoiding re-use of data. Data was 

collected form a single site and was un-randomised and unmatched. It was accepted that a 

multicentre study would provide more diverse data but that randomisation might be difficult to 

implement. Lack of blood pressure data limited the credibility of assessment, diluting its impact 

and absence of physical activity during data collection precluded evaluation of its impact on 

rhythm diagnosis. 

 

A possible selection bias for patients referred for EP study was identified but no systematic 

selection bias was identified. The absence of a treatment arm was noted and blinding was not 

possible. Small data losses during data collection were attributed to complexity of the setup and 

random equipment failures. There was a small potential attrition bias, due to uncollected data and 

no evidence of reporting bias. Error was minimised by equipment specification and careful 

monitoring during data collection. Data quality was assessed and showed low random error, 

acceptable completeness, consistency, timeliness and accuracy. 

 

The development of classifiers specific to the task, using data prospectively collected rather than 

an existing database, was considered advantageous, a view supported by leading texts on machine 

learning. Classifier diversity was achieved using a set of different classifier technologies to 

maximise performance. With a learning capability, classifiers offered the prospect of future 

upgrade should new data become available. 

 

Computational resource requirement of the production system was estimated and found to be 

amenable to implementation, without concern over hardware capability or any time constraint. 
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Chapter 12 Conclusions 

The integrated development process presented here succeeded in producing a system, based on a 

combination of AI technology, in a mixture-of-experts multi-classifier system, which could 

accurately diagnose 16 of 18 different cardiac rhythms tested. This study was able to classify 18 

different rhythms, a greater number than any published study. 4 rhythms were classified with 

better performance by comparable published studies but for a further 4 rhythms, performance was 

better than comparable published studies and 10 rhythms were, to our knowledge, classified only 

in our study. 

 

The algorithm was sufficiently developed for a future stage of testing, in a live clinical 

environment. The system could be interpreted as having value for use in a variety of clinical 

applications including invasive EP testing and with potential application in other domains, such 

as AED’s, ICDs and pacemakers. 

 

12.1 Production System Rhythm Diagnostic Algorithm  

Clinical diagnostic processes were modelled and detailed domain knowledge used to develop the 

feature set for the AI classifiers developed in this study. The resultant production system 

incorporated five classifier units: a naïve Bayes; decision tree, neural network, support vector 

machine and an inference engine, in a multi-classifier system having a mixture-of–experts 

configuration. This production system provided high performance indices for all the 18 rhythms 

assessed. The performance indices of the production system were perfect for three rhythms, 

including differential diagnosis if VT and VF, though this should be qualified by low prevalence 

of the rhythms in the study sample. 

 

The naïve Bayes classifier was dominant in the system, responsible for the diagnosis of 11 of 18 

rhythms and explanations were offered for this high performance compared to other classifiers. 

 

Several new findings resultant from this study were noted during ReliefF feature analysis (see 

Chapter 11, section 11.2). The high importance attributable to symptoms and predisposing factors 

was unexpected. Other new findings were that change in haemodynamic status and P wave 

morphology were important in rhythm diagnosis. There was conflicting evidence of the efficacy 

of 5 beat rhythm detection and this warrants further study. 

 

12.2 Contributions 

During the course of this study, the following contributions were made: 

 

1. Simulating the cognitive processes of clinical cardiac rhythm diagnosis, 

emphasising the use of domain knowledge in classifier design. 
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2. Creation of a library of physiological signals with annotated cardiac rhythms. 

3. Use of artificial intelligence-based classifiers to improve automated cardiac 

rhythm diagnostic accuracy beyond current capability. 

4. Naïve Bayes classification as the highest performing classifier in this domain. 

5. Multi-classifier systems outperform individual classifier systems in this domain. 

 

This study introduced the use of several features into rhythm classification; all indicated using the 

knowledge-driven approach adopted from the outset of the study. These were: 

 

1. Symptoms and predisposing factors have a high influence on rhythm diagnosis. 

2. Sudden haemodynamic change, detected using impedance-based measurements 

has value in rhythm classification. 

3. P wave (atrial morphology) has value in rhythm classification. 

 

12.3 Achievement of Objectives 

The aims produce a rhythm classification algorithm using artificial intelligence, suitable for use 

during EP studies was considered achieved, though adaptation and further testing of the algorithm 

will be required. 

 

The study objectives centred on a staged process of classifier development, within the framework 

of a system development life-cycle. Classifiers were successfully developed and tested using this 

template. 

 

12.4 Acceptance of the Research Hypothesis 

The null hypothesis (H0) (see Chapter 1, section 1.8) was “Prototype cardiac rhythm diagnostic 

classifiers using AI do not outperform current algorithms”. For testing the null hypothesis, a 5% 

significance level (α) was selected (see Chapter 3, section 3.20). The Fisher exact test was used 

(see Chapter 3, subsection 3.12.6 and section 3.3) to calculate P values (see Table 10.14). For the 

differences of the production system classification compared with the gold standard, for all 

rhythms, P values were < 0.001. No multiple comparisons with comparable studies were possible, 

so there was no requirement for a Bonferroni correction. As P values were below the level of α, 

the null hypothesis (H0) was rejected and the research hypothesis (H1), that “Prototype cardiac 

rhythm diagnostic classifiers using AI outperform current algorithms” was accepted. 

 

Type I errors (α) were high for five rhythms, normal sinus rhythm at 0.252, premature atrial 

complexes at 0.081, premature ventricular complexes at 0.026 , second and third degree AV block 

at 0.011, multifocal atrial tachycardia at 0.011and below 0.010 for all other rhythms.. Type II 

errors (β) were high for normal sinus rhythm at 0.135, respiratory sinus arrhythmia at 0.184, 
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premature atrial complexes at 0.403, premature ventricular complexes at 0.508, sinus node 

dysfunction at 0.069, first degree AV block, at 0.333, AV nodal and junctional tachycardias at 

0.074, AV reciprocating tachycardias at 0.250, multifocal atrial tachycardia at 0.235, atrial 

fibrillation at 0.130, and for atrial paced rhythm at 0.083, ventricular paced rhythm at 0.200 and 

below 0.010 for the six remaining rhythms. 

 

Despite achievement of the required significance level, the presence of type I error means it 

remains possible that a true null hypothesis was rejected (see Chapter 10, section). The major 

effect of the presence of type II error (β), where a false null hypothesis is failed to be rejected was 

not the case in this study. The Type I errors were represented by false positives (FP) and further 

improvements in algorithm performance should perhaps focus on reducing these errors. 

 

12.5 Further Research 

The low prevalence of certain arrhythmias within the sampled instances (see Chapter 9, section 

9.3) suggested the need for a larger sample dataset. 

 

High performances achieved for the wide range of rhythms assessed in this study encourage 

further development of this line of research into continued improvement of cardiac rhythm 

diagnostic algorithms. The finding that a naïve Bayes classifier was the best performing was 

unexpected and requires further support in new studies. 

 

A consequence of the domain knowledge-driven classifier development process adopted in this 

study was the feature set. Several features, some of which were previously used in standard and 

investigational implantable cardiac devices, have unknown value, such as: atrial electrogram 

morphology; electrogram axes; stress indices, haemodynamic sensors and 5 beat detection, and 

remain poorly used in the context of rhythm classification. The contributions of each to the 

production classifier were initially unclear from results. ReliefF analysis supported the value   and 

will require further investigation, in dedicated studies. 

 

Many medical devices accept periodic software updates and likewise, existing implantable 

devices, such as pacemakers and ICDs, are able to accommodate such updates, limited only by 

hardware capability.  

 

Computational cost was briefly touched upon in this study (see Chapter 1, subsection 1.4.5 and 

Chapter 11, section 11.9) but the computational requirements for loading such an algorithm into 

an investigational device was not assessed as part of this study but it is conceivable that 

investigational software could be developed, incorporating an algorithm of this type, then 

uploaded into implanted devices for clinical testing. 
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The benefits of binary classification for all rhythms were unexplored. Further research, using a 

large data library of rhythm instances would be required to clarify any advantages.  

 

This study relied upon accepted cardiology theory for selection of features and hence the 

dimensionality of data. Data mining or other algorithmic approaches could be evaluated to include 

features only with significant influence on diagnosis,  

 

A rudimentary evaluation in this study, which compared classifier performance for rhythm 

analysis using 5 or10 beats, demonstrated differences, suggesting that a more detailed study of 

the exact number of beats required to diagnose rhythm with highest classification performance 

could guide further performance improvements. 

 

The iterative development process undertaken in Chapter 10 study was based on a premise that 

classifier selection and tuning was best performed while evaluating overall performance. A 

reasonable alternative approach would be to examine classifier performances for each rhythm 

from the outset, with a binary classification model. The iterative process undertaken in this study 

led to the inclusion of specialist binary classifiers into our production system, for rhythms where 

that was indicated to be advantageous. It is possible that further performance improvements could 

be achieved using specialist binary classification for all rhythms. 

 

The inclusion of His bundle and coronary sinus electrograms and timed electrical stimulation in 

differential rhythm diagnosis during EP studies should be evaluated in a future study. 

 

The production classifier accepted a fixed “snapshot” of data from previously recorded 

physiological data, so conversion for use in a live clinical environment would be required. Real-

time, streamed data would need to be continuously input to the algorithm, demanding data 

buffering capabilities and rapid computation times for timely diagnosis. Software containing this 

algorithm could be loaded onto an investigational EP analysis system for testing in a clinical 

environment, during electrophysiological studies. A parallel system, running alongside normal 

clinical systems should avoid affecting patient outcomes and would be a natural precursor to its 

adoption in a clinical environment. 
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Appendix A Factors predisposing toward arrhythmia 

 

Electrical Heart Disorders 

Accessory pathways 

Wolff–Parkinson–White syndrome 

Ebstein’s Anomaly of the Tricuspid Valve  

Primary electrical disorders (i.e. long QT syndrome, Brugada syndrome) 

Survival of cardiac Arrest 

Out-of-hospital resuscitation  

SCD in the normal heart 

Sudden infant death syndrome 

Drug-induced torsades de pointes and SCD 

Catecholaminergic polymorphic ventricular tachycardia 

Previous cardiac Surgery 

Valve surgery 

Post-surgical Ventricular Septal Defect 

Post-surgical Tetralogy of Fallot 

Post-surgical Transposition of the Great Vessels 

Post-surgical Fontan Repairs 

Inflammation near the AV conduction system after surgery in this region 

Other cardiac Disease 

Chronic coronary heart disease -old myocardial infarction 

Congenital heart disease 

Myocardial ischemia 

Congestive cardiac failure 

Heart failure 

Aortic stenosis  

Mitral valve prolapse 

Atrial Septal Defect,  

Myocarditis 

Endocarditis 

Rheumatic heart disease 

Cardiomyopathy - Dilated, Hypertrophic, Arrhythmogenic right ventricular  

Anomalous origin of coronary arteries  

Myocardial bridging  

Conditions causing myocardial scarring (sarcoidosis, amyloidosis, tuberculosis) 

Pulmonary hypertension 
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Appendix A Factors predisposing toward arrhythmia (continued) 

 

Neurological Disorders 

Carotid sinus hypersensitivity 

Enhanced vagal tone (neurogenic syncope) 

Neuromuscular diseases (e.g. myotonic dystrophy) 

Other Medical Conditions 

Anaemia 

Malignancies 

Chronic Pulmonary disease 

Hyperthyroidism 

Hyperlipidaemia 

Electrolyte disturbance 

Hypovolemia 

Hypothermia 

Pulmonary emboli 

Chest trauma 

Shock 

Pulmonary emboli 

Endocrine disorders and diabetes 

Pericardial diseases 

End stage renal failure 

Obesity, dieting and anorexia 

Medications 

Prescribed compounds (salbutamol, aminophylline, atropine, catecholamines) 

Anticancer treatments anthracycline compounds, doxorubicin, Adriamycin, 

daunorubicin- proarrhythmic side effects 

Antiarrhythmics and other cardiac drugs- proarrhythmic side effects 

Drug-Drug and Drug-Metabolic Interactions - proarrhythmic side effects 

Lifestyle Factors 

Physical or mental stress (Physical exertion, Anxiety) 

Pyrexia, Fever, infection 

Lack of sleep 

Premenstrual or menstrual 

Trained heart - Athlete  

Pregnancy 

Use of stimulants (e.g., caffeine, alcohol, nicotine) 

Recreational/ illicit drugs (e.g., amphetamines, cocaine, “ecstasy,” cannabis) 
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Appendix B Search results by search term 

 

  
Google 

Google 

Scholar 
Pubmed 

IEEE 

Xplore 

Science 

Direct 

Web of 

Science 

HRS 

Abstracts 

Cochrane 

Library 

rhythm 0 0 >1000 >1000 >1000 >1000 >1000 0 

rhythm AND 

classifier 
8 7 6 49 9 26 0 0 

rhythm AND 

“artificial 

intelligence” 

0 0 20 123 >1000 7 0 0 

rhythm AND 

“neural 

network”   

1 1 15 41 10 43 0 0 

rhythm AND 

“fuzzy”  
1 8 9 25 7 16 0 0 

rhythm AND 

“support 

vector 

machine”  

7 5 6 15 4 12 1 0 

rhythm AND 

“expert 

system”  

5 5 9 6 4 11 2 0 

rhythm AND 

“decision 

tree”  

6 2 3 2 2 4 0 0 

rhythm AND 

“Bayes”  
5 3 4 4 1 4 0 0 

rhythm AND 

“genetic 

algorithm”  

0 1 0 1 0 2 2 0 

rhythm AND 

evolutionary  
0 0 0 2 1 0 0 0 

rhythm AND 

“pattern 

recognition”  

0 0 35 56 9 16 1 0 
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Appendix B (continued) 

 

  
Google 

Google 

Scholar 
Pubmed 

IEEE 

Xplore 

Science 

Direct 

Web of 

Science 

HRS 

Abstracts 

Cochrane 

Library 

implantable 

cardioverter-

defibrillator 

0 0 >1000 19 >1000 >1000 >1000 1 

algorithm 

AND 

comparison 

0 0 >1000 >1000 >1000 >1000 2 0 

implantable 

cardioverter-

defibrillator 

AND 

algorithm  

9 7 647 12 >1000 491 5 8 

implantable 

cardioverter-

defibrillator 

AND 

algorithm 

AND 

comparison 

2 8 23 3 >1000 22 0 1 
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Appendix C Search results by journal, author and ICD algorithm 

 

a) Results by Journal 

 

Journal 

Journal Title 

Papers Impact Factor (2010) 

IEEE Transactions on Biomedical Engineering 21 2.154 

Pacing and Clinical Electrophysiology 14 1.352 

Journal of Cardiovascular Electrophysiology 8 3.703 

Circulation 6 14.816 

Artificial Intelligence in Medicine 5 1.568 

Journal of Electrocardiology 5 1.109 

Europace 5 1.839 

Physiological Measurement 4 1.567 

Journal of the American College of Cardiology 4 12.535 

 Heart Rhythm 1 4.246 

 

 

b) Results by lead author 

 

Lead Author 

Name 
Papers 

Most 

Recent 
Institution 

Gold MR 5 2012 Medical University of South Carolina, Charleston, USA 

Swerdlow CD 5 2012 Cedars-Sinai Heart Institute, Los Angeles, USA 

Gillberg JM 4 2012 Medtronic Inc., Minneapolis, USA 

Ellenbogen K 

KKA 

4 2012 Virginia Comm. Univ. Sch. Med., Richmond, USA 

Krasteva V 3 2010 Bulgarian Academy of Sciences, Sofia, Bulgaria 

Ozbay Y 3 2009 Selcuk University, Konya, Turkey. 

MacFarlane P 3 2007 University of Glasgow, Glasgow, UK 

Osowski S 3 2005 Warsaw University of Technology, Warsaw, Poland 

Theuns DA 3 2004 Erasmus MC, Rotterdam, Netherlands 

 

 

c) Results by ICD algorithm 

 

ICD Technology Papers 

Boston Scientific Ventak AV 3 

Sorin ELA PARAD+ 1 

Medtronic PR Logic 1 

Boston Scientific Rhythm ID 1 

Medtronic Wavelet 1 

Medtronic RV Pressure 1 
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Appendix D Results by AI Technology 

 

Technology 
Journal 

Papers 

Journal 

Papers         

≤ 5 Years 

Conference 

Papers         

≤ 5 Years 

Total            

≤ 5 

Years 

Neural Network 14 4 7 11 

Morphology 10 5 0 5 

Fuzzy 9 3 3 6 

Bayes 5 3 1 4 

Expert System 4 4 0 4 

Support Vector Machine 4 2 4 6 

Wavelet 3 2 3 5 

Heart Rate Variability 3 2 1 3 

Neuro-Fuzzy Hybrid 2 1 3 4 

Decision Tree 2 1 1 2 

Hybrid Neural Network 1 1 1 2 

Fuzzy-clustering-NN 1 1 0 0 

SVM-NN-Perceptron 1 1 0 0 

Linear discriminant analysis 1 1 0 0 

Phase space matrix 1 1 0 0 

Time-Frequency Analysis 2 0 0 0 

Syntactic 2 0 0 0 

Fuzzy-k-NN 1 0 1 0 

Right Atrial Pressure 1 0 0 0 

Hermite polynomials, Neuro-Fuzzy 1 0 0 0 

Chaos 1 0 0 0 

Wavelet-NN 1 0 0 0 

Fuzzy-Artificial Immune System 1 0 0 0 

Statistical 1 0 0 0 

Onset 1 0 0 0 

Fuzzy-Expert 1 0 0 0 

Heart Rate Turbulence 1 0 0 0 

Linear Classifier 1 0 0 0 

Rule-Based 1 0 0 0 

Knowledge-Based Automaton 1 0 0 0 
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Appendix E Rhythm definitions 

 

Normal Rhythm 

Normal Sinus Rhythm (NSR) 

“P<120; PR 120-200; QRS<120:QTc >=440-460” (Bonow et al. 2012). 

“The P wave on a 12-lead ECG is positive in leads I, II, and aVF and negative in aVR. 

Its axis in the frontal plane lies between 0 and +90; in the horizontal plane, it is directed 

anteriorly and slightly leftward and can, therefore, be negative in leads V1 and V2 but 

positive in leads V3 to V6. The PR interval is normally between 120 ms and 200 ms (220 

ms in the elderly). The P waves have a normal contour, but a larger amplitude may 

develop and the wave may become peaked” (Blomström-Lundqvist et al. 2003). 

“QRS axis -30 - +90; QRS width ≤ 110ms” (Surawicz et al. 2009) 

Respiratory Sinus Arrhythmia (RSA) 

“Normal P wave morphology/axis. Gradual phasic change in PP interval of more than 

10% or 120 ms” (Buxton et al. 2006) 

Physiological Sinus Tachycardia (ST) 

“A cardiac arrhythmia emanating from the sinus node at a rate >100 bpm (cycle length: 

<600 ms) which demonstrates a gradual onset and termination and is in keeping with the 

level of physical, emotional, pathological, or pharmacological stress (Buxton et al. 2006). 

Physiological sinus tachycardia is defined as an increase in sinus rate >100 bpm in 

keeping with the level of physical, emotional, pathological, or pharmacologic stress” 

(Blomström-Lundqvist et al. 2003) 

Premature Atrial Complex (PAC) 

“A depolarization of the atrium which occurs with a coupling interval shorter than that 

resulting from the intrinsic heart rhythm” (Buxton et al. 2006) 

Premature Ventricular Complex (PVC) 

“A depolarization of the ventricle which occurs with a coupling interval shorter than that 

resulting from the intrinsic heart rhythm” (Buxton et al. 2006) 

Sinus Node Dysfunction 

“Sinus node dysfunction manifested as:  

Sinus rate inappropriately slow for the conditions. 

Sinus arrest, sinoatrial exit block 

Prolonged pauses (analogous to sinus node recovery time >1,500 ms or a corrected sinus 

node recovery time greater 550 ms) following cessation of supraventricular 

tachyarrhythmias” (Buxton et al. 2006) 

“SND refers to a broad array of abnormalities in sinus node and atrial impulse formation 

and propagation.” (Epstein et al. 2008) 
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Appendix E Rhythm definitions (continued) 

 

Sinus Bradycardia (SB) 

“Sinus bradycardia characterized as sinus rate less than 60 beats per minute (bpm) (cycle 

length, >1000 msec) with normal P wave axis. Note that P wave morphology may be 

atypical at slow rates” (Buxton et al. 2006) 

Sinus Arrest (SA) 

“Pause without a P wave, >2.0 s during sinus rhythm; PP interval of pause not a multiple 

of basic PP interval” (Buxton et al. 2006) 

Sinoatrial Block (SAB) 

“Normal P wave morphology/axis. Pauses with no visible sinus P waves. Constant PR 

interval 

Mobitz I: Progressive decrease in PP interval before pause; PP interval of pause less than 

twice the preceding PP interval; PP interval following pause greater than twice PP interval 

preceding pause 

Mobitz II: Constant PP interval before and after pause; Pause is an integral multiple 

(within 100 ms) of normal PP interval” (Buxton et al. 2006) 

Atrio-ventricular Block 

“Classified as first-, second-, or third-degree (complete) block; anatomically, it is defined 

as supra-, intra-, or infra-His” (Epstein et al. 2008)  

First degree Atrio-ventricular Block (1HB) 

“PR interval >200msec” (Buxton et al. 2006) 

“Abnormal prolongation of the PR interval (greater than  0.20 seconds)” (Epstein et al. 

2008) 

Second degree Atrio-ventricular Block  

“Regular atrial rhythm with intermittent nonconducted P waves” (Buxton et al. 2006).  

“Advanced second-degree AV block refers to the blocking of 2 or more consecutive P 

waves with some conducted beats, indicating some preservation of AV conduction. In the 

setting of AF, a prolonged pause (e.g., greater than 5 seconds) should be considered to be 

due to advanced second-degree AV block” (Epstein et al. 2008) 

Second degree Atrio-ventricular Block (Mobitz Type I) (2HB)  

“Type I second-degree AV block is characterized by progressive prolongation of the 

interval between the onset of atrial (P wave) and ventricular (R wave) conduction (PR) 

before a nonconducted beat and is usually seen in conjunction with QRS. Type I second-

degree AV block is characterized by progressive prolongation of the PR interval before a 

nonconducted beat and a shorter PR interval after the blocked beat” (Buxton et al. 2006) 
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Appendix E Rhythm definitions (continued) 

 

Second degree Atrio-ventricular Block (Mobitz Type I) (2HB)  

“Type II second-degree AV block is characterized by fixed PR intervals before and after 

blocked beats and is usually associated with a wide QRS complex. When AV conduction 

occurs in a 2:1 pattern, block cannot be classified unequivocally as type I or type II, 

although the width of the QRS can be suggestive, as just described” (Buxton et al. 2006) 

Complete Atrio-ventricular Block (CHB) 

“Independent atrial and ventricular complexes with atrial rate usually exceeding 

ventricular rate” (Buxton et al. 2006) 

“Third-degree AV block (complete heart block) is defined as absence of AV conduction” 

(Epstein et al. 2008) 

Narrow Complex Tachycardia (NCT) 

“If QRS <120ms, the tachycardia is almost always supraventricular. Haemodynamically 

stable, QRS <120 is SVT. If no P waves or evidence of atrial activity and RR interval is 

regular, then AVNRT is most commonly the mechanism. If a P wave is present in the ST 

segment and separated from the QRS by 70 ms, then AVRT is most likely. In tachycardias 

with RP longer than PR, the most typical diagnosis is atypical AVNRT, permanent form 

of junctional reciprocating tachycardia (PJRT) (ie, AVRT via a slowly conducting 

accessory pathway), or AT.” (Blomström-Lundqvist et al. 2003) 

Postural Orthostatic Tachycardia Syndrome (POTS) 

“Orthostatic rise in heart rate of >30 bpm above baseline or >120 bpm within the first 10 

min of head-up tilt, accompanied by palpitations, and no significant (<10 mm Hg) fall in 

systolic blood pressure” (Buxton et al. 2006) 

“Individuals present with orthostatic intolerance (ie, symptoms on standing , relieved by 

recumbency) with exaggerated, persistent postural sinus tachycardia (> 30 bpm from 

baseline or > 120 bpm) within 10 minutes of an upright tilt in the absence of postural 

hypotension and any demonstrable autonomic neuropathy.” (Blomström-Lundqvist et al. 

2003) 

Sinus Node Re-entry Tachycardia (SNRT) 

“Arise from re-entrant circuits involving the sinus node's production of paroxysmal, often 

nonsustained bursts of tachycardia with P waves that are similar, if not  identical, to 

those in sinus rhythm. They are usually triggered and terminated  abruptly by an atrial 

premature beat”. (Blomström-Lundqvist et al. 2003) 

Atrio-ventricular Nodal Reciprocating Tachycardia (AVNRT) 

“A regular SVT from re-entry within the AV node and/or perinodal atrial tissue. 

Subclasses: Slow-fast; Fast-slow; Slow-slow” (Buxton et al. 2006).  

“Rates of tachycardia often between 140 and 250 per minute. The most common SVT 
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 not usually associated with structural heart disease. involves reciprocation between two 

pathways, the fast pathway and the slow pathway. Typical AVNRT slow-fast AV-node 

re-entry.  shorter duration (40 ms) P wave during or close to the QRS complex (less than 

or equal to 70 ms). Atypical AVNRT less common (5-10%) fast-slow AV-node re-entry, 

producing a long R-P  tachycardia or slow-slow AV-node re-entry, P wave is after the 

QRS (RP interval greater than or equal to 70 ms)” (Blomström-Lundqvist et al. 2003) 

Focal Junctional Tachycardia (FJT) 

“Arises from the atrio-ventricular junction, has a rate >60 bpm (cycle length: <1,000 ms), 

and may demonstrate dissociation from atrium or ventricle” (Buxton et al. 2006).  

“Origin from AV node or His bundle. include heart rates of 110 to 250 bpm and a narrow 

complex or typical BBB conduction pattern. Atrio-ventricular dissociation is often 

present although one-to-one retrograde conduction may be transiently observed. On 

occasion, the junctional rhythm is quite erratic, suggesting AF” (Blomström-Lundqvist 

et al. 2003) 

Non-Paroxysmal Junctional Tachycardia 

“A benign arrhythmia characterized by narrow complex tachycardia 70 to 120 bpm. 

Mechanism is thought to be enhanced automaticity arising from a high junctional focus 

or in response to a triggered mechanism. It shows a typical “warm-up” and “cool-down” 

pattern and cannot be terminated by pacing. Iit may be a marker for a serious underlying 

condition, such as digitalis toxicity, postcardiac surgery, hypokalemia, or myocardial 

ischemia. Other associated conditions include chronic obstructive lung disease with 

hypoxia, and inflammatory myocarditis.There is commonly one-to-one AV association. 

In some cases, particularly in the setting of digitalis toxicity, anterograde AV-nodal 

Wenckebach conduction block may be observed” (Blomström-Lundqvist et al. 2003) 

Orthodromic Atrio-ventricular Reciprocating Tachycardia (OAVRT)  

“A re-entrant arrhythmia whose circuit involves the atrium, the AV node, the ventricles, 

and one or more accessory AV connections. AVRT can be classified as orthodromic 

AVRT, in which conduction through the AP occurs from the ventricle to the atrium” 

(Buxton et al. 2006). 

“Typical accessory pathways are extra nodal pathways that connect the myocardium of 

the atrium and the ventricle across the AV groove. Delta waves on ECG present in 0.15 

to 0.25% of the general population. Pathway conduction may be intermittent, decremental 

or nondecremental); and capable of anterograde conduction, retrograde conduction, or 

both. 8% of accessory pathways display decremental anterograde or retrograde 

conduction.  Accessory pathways capable of only retrograde conduction are referred to as 

“concealed”. (Blomström-Lundqvist et al. 2003) 
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Permanent Junctional Reciprocating tachycardia (PJRT) 

“Episodes of narrow QRS tachycardia alternating with brief periods of sinus rhythm. 

During sinus rhythm, the ECG is normal. During tachycardia, negative P waves are 

typically present in leads II, III and aVF and usually in V4 to V6, with a RP > PR interval. 

Anterograde conduction is through the AV node, retrograde conduction through an 

accessory pathway with slow and decremental conduction. Commonly incessant from 

birth or infancy. Persistence over a long period may lead to tachycardia-induced 

cardiomyopathy” (Gaita et al. 1995). 

Inappropriate sinus tachycardia (IST) 

“Increase in sinus rate unrelated to, or out of proportion with, the level of physical, 

emotional, pathological, or pharmacological stress. Can be persistent or 

intermittent/paroxysmal” (Buxton et al. 2006) 

“Persistent increase in resting heart rate or sinus rate unrelated to, or out of proportion 

with, the level of physical, emotional, pathological, or pharmacologic stress” 

(Blomström-Lundqvist et al. 2003) 

Focal atrial tachycardia (AT) 

“A usually regular cardiac arrhythmia arising from the atrium with a rate >100 bpm (cycle 

length <600 ms). atrial activation from atrial areas with centrifugal spread, with rates 

usually between 100 to 250 bpm (rarely at 300 bpm). They may arise from right or left 

atrial sites” (Buxton et al. 2006) 

“Regular atrial activation from atrial areas with centrifugal spread. Uusually atrial rates 

between 100 to 250 bpm and rarely at 300 bpm. Neither the sinus nor the AV node plays 

a role in the initiation or perpetuation of the tachycardia (Blomström-Lundqvist et al. 

2003).Regular atrial rhythms at a constant rate ≥100 beats/min originating outside the 

sinus node region. Atrial tachycardia CL usually is ≥250msec, but it can be as short as 

≤200 msec” (Saoudi et al. 2001). 

Macro-Reentrant Atrial tachycardia (MRAT) 

“Arising in the atrium which has a regular rate typically between 250 and 350 bpm (cycle 

length 240-170 ms) in the absence of antiarrhythmic drugs” (Buxton et al. 2006) 

“Organized atrial rhythm with a rate typically between 250 and 350 bpm. Includes 

tachycardias using a variety of re-entry circuits, often occupying large areas of the atrium. 

The classic type is dependent on the cavotricuspid isthmus (CTI). Circuits that do not use 

the CTI are less common. Most are related to an atrial scar that creates conduction block 

and a central obstacle for re-entry. Prior cardiac surgery involving the  
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atrium, such as repair of congenital heart disease, mitral valve surgery, or the atrial maze 

procedure, is a common cause “(Blomström-Lundqvist et al. 2003).  

“Typical atrial flutter, the most common macro-re-entrant atrial tachycardia, usually has 

a CL between 190 and 250 msec, with ≤2% cycle-to-cycle variation” (Saoudi et al. 2001) 

Multifocal Atrial Tachycardia (MAT) 

“Iirregular tachycardia characterized by three or more P wave morphologies at different 

rates. Always irregular and frequently confused with AF, but rate is usually not 

excessively rapid. Most commonly associated with underlying pulmonary disease but 

may result from metabolic or electrolyte derangements.” (Blomström-Lundqvist et al.  

2003) 

Atrial fibrillation (AF)  

“A cardiac arrhythmia arising from the atrium with an atrial rate >300 bpm and an 

irregularly irregular ventricular response in the presence of conduction (Buxton et al. 

2006). Supraventricular tachyarrhythmia characterized by uncoordinated atrial activation 

with consequent deterioration of atrial mechanical function. AF is characterized by the 

replacement of consistent P waves by rapid oscillations or fibrillatory waves that vary in 

amplitude, shape, and timing, associated with an irregular, frequently rapid ventricular 

response when atrio-ventricular (AV) conduction is intact. The ventricular response to 

AF depends on electrophysiological (EP) properties of the AV node and other conducting 

tissues, the level of vagal and sympathetic tone, the presence or absence of accessory 

conduction pathways, and the action of drugs. Regular cardiac cycles (R-R intervals) are 

possible in the presence of AV block or ventricular or AV junctional tachycardia. In 

patients with implanted pacemakers, diagnosis of AF may require temporary inhibition 

of the pacemaker to expose atrial fibrillatory activity (4). A rapid, irregular, sustained, 

wide-QRS-complex tachycardia strongly suggests AF with conduction over an accessory 

pathway or AF with underlying bundle-branch block. Extremely rapid rates (over 200 

beats per minute) suggest the presence of an accessory pathway or ventricular 

tachycardia” (Fuster et al. 2011).  

Broad Complex Tachycardia (BCT) 

QRS >120 ms 

“Differentiate between SVT and ventricular tachycardia (VT). Stable vital signs during 

tachycardias are not helpful for distinguishing SVT from VT. If SVT cannot be proven, 

then treat as VT. Dissociation with a ventricular rate faster than the atrial rate generally 

proves the diagnosis of VT. Fusion complexes represent a merger between conducted 

supraventricular impulses and ventricular depolarization occurring during AV  
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dissociation. These complexes are pathognomonic of VT. Retrograde VA block may be 

present.  Demonstration that P waves are not necessary for tachycardia maintenance 

strongly suggests VT” (Blomström-Lundqvist et al. 2003). 

“Algorithm for diagnosis of a tachycardia with a widened QRS complex. QRS complex 

>0.12 second. When an RS complex cannot be identified in any precordial lead, the 

diagnosis of ventricular tachycardia (VT) is made. If an RS complex is present in one or 

more precordial leads, the longest RS interval is measured. If the RS interval is longer 

than 100 msec, the diagnosis of VT is made. If shorter than 100 msec, the next step of the 

algorithm is considered: whether atrio-ventricular dissociation is present. Ifpresent, the 

diagnosis of VT is made. If absent, the morphology criteria for VT are analyzed in leads 

V, and V6. If both leads fulfill the criteria for VT, the diagnosis of VT is made. If not, the 

diagnosis of supraventricular tachycardia (SVT) with aberrant conduction is made by 

exclusion of VT” (Brugada et al. 1991). 

Supraventricular Tachycardia with Aberration 

“Typical LBBB or RBBB precordial ECG pattern (Blomström-Lundqvist et al. 2003) 

The diagnosis  of SVT with  aberrant conduction is made by exclusion of VT” 

(Brugada et al. 1991). 

Antidromic Atrio-ventricular Reciprocating Tachycardia (AAVRT)  

“AVRT can be classified as antedromic AVRT, in which conduction through the AP 

occurs from the atrium to the ventricle (Buxton et al. 2006). Antidromic AVRT occurs in 

only 5 to 10% of patients with WPW syndrome” (Blomström-Lundqvist et al. 2003)  

Monomorphic Ventricular Tachycardia (VT) 

“VT is 3 or more consecutive complexes from the ventricles at >100 bpm (cycle length: 

<600 ms). Sustained: VT >30 s in duration or requiring termination due to hemodynamic 

compromise in <30 s. Nonsustained/unsustained: 3 or more beats in duration, terminating 

spontaneously in <30 s. Narrow complex VT with a QRS duration shorter than 120 ms” 

(Buxton et al. 2006). 

“If RS complex is not present in any precordial lead, the diagnosis of VT is made. If an 

RS complex is present, the longest RS interval in the precordial leads is measured. If the 

RS interval is longer than 100 msec, the diagnosis of VT is made. If an RS complex is 

present and the longest RS interval in the precordial leads is 100 msec or less with atrio-

ventricular dissociation the diagnosis of VT is made. If an RS complex is present, the 

longest RS interval in the precordial leads is measured. When the RS interval is 100 msec 

or less and atrio-ventricular dissociation is not evident, the morphology criteria are 

analyzed in leads V, and V6. If both leads have morphology compatible with the diagnosis 

of VT, the diagnosis of VT is made “(Brugada et al. 1991) 
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Polymorphic Ventricular Tachycardia (PVT) 

“VT with a changing or multiform QRS morphology at cycle length >180 ms. 

Catecholaminergic: polymorphic VT associated with syncope and/or cardiac arrest 

triggered by emotion or exercise in patients whose baseline ECG is normal “(Buxton et 

al. 2006) 

Idiopathic Fascicular Ventricular Tachycardia (IFVT) 

“A tachycardia that emanates from or requires participation of the distal fascicles of right 

or left bundle branches” (Buxton et al. 2006) 

Outflow Tract Ventricular Tachycardia (OTVT) 

“Focal VT emanating from the right or left ventricular outflow tract unrelated to structural 

heart disease” (Buxton et al. 2006). 

Ventricular Fibrillation (VF) 

“Rapid, usually more than 300 bpm (cycle length: ≤180 ms), grossly irregular ventricular 

rhythm with marked variability in QRS cycle length, morphology, and amplitude” 

(Buxton et al. 2006)  
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Arrhythmia Related Symptoms  

fatigue 

chest discomfort 

dyspnoea 

light-headedness 

syncope  

pre-syncope 

palpitations 

polyuria 

cardiac arrest 

duration, frequency, onset of episodes 

termination by vagal manoeuvres  

vagally mediated AF during sleep/ after large meal  

  

Predisposing/ Precipitating Factors  

antiarrhythmic drugs  

nicotine 

alcohol 

caffeine 

premenstrual/ menstrual 

lack of sleep 

 

Stress 

physical stress 

 mental stress 

emotional stress 

pathological stress (infection) 

pharmacological stress 

 

Cardiac or Pulmonary Disease 

pulmonary disease  

structural heart disease  

atherosclerotic heart diseases 

inflammatory myocarditis 

post-cardiac surgery 

valvular disease 



251 

 

Appendix F Pooled features (continued) 

 

cardiomyopathy 

cerebrovascular disease 

hypertensive heart disease. 

congestive heart failure 

congenital heart disease 

other conditions (ie, sarcoidosis, tuberculosis) 

 

Metabolic imbalance/ disease 

metabolic derangements 

electrolyte derangements 

digitalis toxicity 

thyroid disease  

anaemia 

hypovolaemia 

 

Physical Signs 

irregular pulse 

irregular jugular venous pulsations 

regular, rapid jugular pulse oscillations  

irregular cannon A waves  

irregular variation in S1 intensity  

S4 absent (heard during sinus rhythm) 

cardiogenic shock  

 

Haemodynamic Status 

blood pressure  

haemodynamic stability  

cardiac arrest 

 

ECG  

pauses  

heart rate  

regularity  

“warm-up” “cool-down” patterns 

Brugada syndrome 

no P waves  
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non-conducted P wave  

P rate  

P axis  

P duration 

P wave morphology  

negative P wave  

PP interval  

PR interval  

QRS axis  

QRS duration 

QRS morphology  

RR interval stability and onset 

P:R ratio 

P/R relationship 

QRS amplitude  

RR interval  

QTc interval 

RP interval 

F waves  

F amplitude 

F shape 

F timing 

fusion complexes  

 an RS complex  

RS interval  

LBBB or RBBB pattern  

AV conduction pattern 

AV association/dissociation 

delta wave  

3 consecutive complexes  

sustained VT >30 s in duration  

 

Response to Pacing 

terminated by pacing 
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Sensors 

body motion accelerometry 

heart rate variability 

heart rate turbulence 

QT dispersion 

T wave alternans 

peak endocardial acceleration blood temperature 

blood pressure  

impedance respiration  

impedance cardiac function 
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TITLE/ABSTRACT/KEYWORDS 

1. Identify the article as a study of diagnostic accuracy (recommend MeSH heading 

'sensitivity and specificity').  

INTRODUCTION 

2. State the research questions or study aims, such as estimating diagnostic accuracy or 

comparing accuracy between tests or across participant groups.  

METHODS 

Participants  

3. Describe the study population: The inclusion and exclusion criteria, setting and locations 

where the data were collected.  

4. Describe participant recruitment: Was recruitment based on presenting symptoms, results 

from previous tests, or the fact that the participants had received the (evaluated) index tests 

or the (golden) reference standard?  

5. Describe participant sampling: Was the study population a consecutive series of 

participants defined by the selection criteria in items 3 and 4? If not, specify how 

participants were further selected.  

6. Describe data collection: Was data collection planned before the index test and reference 

standard were performed (prospective study) or after (retrospective study)?  

Test methods 

7. Describe the reference standard and its rationale.  

8. Describe technical specifications of material and methods involved including how and 

when measurements were taken, and/or cite references for index tests and reference 

standard.  

9. Describe definition of and rationale for the units, cut-offs and/or categories of the results 

of the index tests and the reference standard. 

10. Describe the number, training and expertise of the persons executing and reading the index 

tests and the reference standard. 

11. Describe whether or not the readers of the index tests and reference standard were blind 

(masked) to the results of the other test and describe any other clinical information available 

to the readers.  

Statistical methods 

12. Describe methods for calculating or comparing measures of diagnostic accuracy, and the 

statistical methods used to quantify uncertainty (e.g. 95% confidence intervals). 

13. Describe methods for calculating test reproducibility, if done.  

Participants  

14. Report when study was done, including beginning and ending dates of recruitment. 

http://www.stard-statement.org/item1_maintext.htm
http://www.stard-statement.org/item1_maintext.htm
http://www.stard-statement.org/item2_maintext.htm
http://www.stard-statement.org/item2_maintext.htm
http://www.stard-statement.org/item3_maintext.htm
http://www.stard-statement.org/item3_maintext.htm
http://www.stard-statement.org/item4_maintext.htm
http://www.stard-statement.org/item4_maintext.htm
http://www.stard-statement.org/item4_maintext.htm
http://www.stard-statement.org/item5_maintext.htm
http://www.stard-statement.org/item5_maintext.htm
http://www.stard-statement.org/item5_maintext.htm
http://www.stard-statement.org/item6_maintext.htm
http://www.stard-statement.org/item6_maintext.htm
http://www.stard-statement.org/item7_maintext.htm
http://www.stard-statement.org/item8_maintext.htm
http://www.stard-statement.org/item8_maintext.htm
http://www.stard-statement.org/item8_maintext.htm
http://www.stard-statement.org/item10_maintext.htm
http://www.stard-statement.org/item10_maintext.htm
http://www.stard-statement.org/item11_maintext.htm
http://www.stard-statement.org/item11_maintext.htm
http://www.stard-statement.org/item11_maintext.htm
http://www.stard-statement.org/item12_maintext.htm
http://www.stard-statement.org/item12_maintext.htm
http://www.stard-statement.org/item14_maintext.htm
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RESULTS  

15. Report clinical and demographic characteristics of the study population (e.g. age, sex, 

spectrum of presenting symptoms, co morbidity, current treatments, recruitment centers).  

16. Report the number of participants satisfying the criteria for inclusion that did or did not 

undergo the index tests and/or the reference standard; describe why participants failed to 

receive either test (a flow diagram is strongly recommended).  

Test results 

17.  Report time interval from the index tests to the reference standard, and any treatment 

administered between. 

18. Report distribution of severity of disease (define criteria) in those with the target condition; 

other diagnoses in participants without the target condition. 

19. Report a cross tabulation of the results of the index tests (including indeterminate and 

missing results) by the results of the reference standard; for continuous results, the 

distribution of the test results by the results of the reference standard.  

20. Report any adverse events from performing the index tests or the reference standard. 

Estimates 

21. Report estimates of diagnostic accuracy and measures of statistical uncertainty (e.g. 95% 

confidence intervals).  

22. Report how indeterminate results, missing responses and outliers of the index tests were 

handled.  

23. Report estimates of variability of diagnostic accuracy between subgroups of participants, 

readers or centers, if done.  

24. Report estimates of test reproducibility, if done.  

DISCUSSION 

25. Discuss the clinical applicability of the study findings. 

http://www.stard-statement.org/item15_maintext.htm
http://www.stard-statement.org/item15_maintext.htm
http://www.stard-statement.org/item16_maintext.htm
http://www.stard-statement.org/item16_maintext.htm
http://www.stard-statement.org/item16_maintext.htm
http://www.stard-statement.org/item17_maintext.htm
http://www.stard-statement.org/item17_maintext.htm
http://www.stard-statement.org/item18_maintext.htm
http://www.stard-statement.org/item18_maintext.htm
http://www.stard-statement.org/item19_maintext.htm
http://www.stard-statement.org/item19_maintext.htm
http://www.stard-statement.org/item19_maintext.htm
http://www.stard-statement.org/item20_maintext.htm
http://www.stard-statement.org/item21_maintext.htm
http://www.stard-statement.org/item21_maintext.htm
http://www.stard-statement.org/item22_maintext.htm
http://www.stard-statement.org/item22_maintext.htm
http://www.stard-statement.org/item23_maintext.htm
http://www.stard-statement.org/item23_maintext.htm
http://www.stard-statement.org/item24_maintext.htm
http://www.stard-statement.org/item25_maintext.htm
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REC Ref: 07/H0802/119      R&D No: RJ109/N04 

Creation of an Intracardiac Electrogram and Physiological Parameter Library 

Study ID:     Procedure date:                  

 

DOB:   dd/mm/yy Sex (M/F): _____   

Height:            cm        Weight:      kg  Build: _________ slim/average/heavy) 

Initial HR:          bpm   Initial BP:       /       mmHg    Initial Temp:        oC 

Initial Rhythm:      Temp time:    

 

Clinical history: 

Known cardiac diagnosis (such as ARVC, WPW, Congenital HD and Valve Disease): 

              

Other known conditions (e.g.Carotid Sinus Hypersensitivity; Metabolic diseases):  

           

Family Hx:  Smoking:   Hypertension:   DM:    

Hypercholesterol:   Coronary Disease:      

Extremes of lifestyle (such as sedentary or athletic):    

  

Caffeine  Alcohol  Recreational drugs:   

  

Current Prescribed Medications:       

  

           

           

Symptoms:          

Heart sounds (as noted):        

  

Echo Ejection fraction:  % Date: ___________ 

EchoSummary:           

Holter Monitor: __________________________________________ Date:___________ 

Thyroid function:   TSH:         Date:    

Notes:           

           

ESI time:           

Sensis time:    

XP time:    
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Arrhythmia Related Symptoms      Score 

Fatigue        0 or 1 

chest discomfort       0 or 1 

dyspnoea        0 or 1 

polyuria        0 or 1 

syncope, light-headedness, pre-syncope    0-2 

palpitations        0 or 1 

cardiac arrest       0 or 1 

vagally mediated AF during sleep/ after large meal    0 or 1 

duration, frequency, onset, termination by vagal manoeuvres   0-8 

      

Physical Signs 

irregular pulse       0 or 1 

irregular jugular venous pulsations     0 or 1 

irregular variation in S1 intensity, S4 absent during arrhythmia 0 or 1 

cardiogenic shock        0 or 1 

 

Cardiac or Pulmonary Disease     0-3 

   

Predisposing/ Precipitating Factors  

antiarrhythmic drugs       0-3 

nicotine        0-3 

alcohol        0-3 

caffeine        0-3 

premenstrual/ menstrual      1 

lack of sleep       1 

 

Metabolic imbalance/ disease     1 
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Link to Matlab Scripts: 

Link to Physiological Signals: 

 

Convert_Classes_to_Binary.m 

DecisionTree_Train.m 

FeatureCheck.m 

ImpedanceCardiac.m 

ImpedanceResp.m 

InferenceEngineRhythms.m 

Iteration2_FeatureProcessing.m 

Iteration3_FeatureSelection.m 

Missing_Data.m 

NaiveBayes_Train.m 

NN_Train.m 

NNRhythms.m 

ProductionSystem.m 

QTInterval.m 

Script_001.m 

ScriptFeatures.m 

ScriptFeaturesNoResp.m 

SramekBernstein.m 

SVM_train.m 

Undersampling.m 

  

https://www.dropbox.com/sh/5tg5ib5d1oj4xk4/AACLR9Or6tsFRwNBPhY8Dowsa
https://www.dropbox.com/sh/od67mluu1n0lrnx/AAAeFvUpZLQONs_G8td-o6ila
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Journal Citations per Paper per Year 𝑐′ =  (𝐶 / (2012 – (𝑦𝑒𝑎𝑟 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛))  (2.1) 

 

Standard Error     𝜎𝑋 = √
𝑋(1−𝑋)

𝑛
    (3.1) 

 

Binomial Confidence Interval (95%)  𝐶𝐼95 = 1.96√
𝑋(1−𝑋)

𝑛
    (3.2) 

 

Bazett’s Formula     𝑄𝑇𝑐 =
𝑄𝑇

√𝑅𝑅
    (5.1) 

 

Power Calculation    𝜏 = (1 − 𝛽)    (6.1) 

 

Vector Magnitude Units    𝑉𝑀𝑈 = √(𝑥2 + 𝑦2)   (6.2) 

 

Total Thoracic Impedance Change  ∆𝑍 = 𝑍0 + ∆𝑍𝑅 + ∆𝑍𝐶   (6.3) 

 

Sramek-Bernstein Equation   𝑆𝑉 = 𝛿.
(0.17𝐻)3

4.2
.

𝑑𝑍 𝑑𝑡𝑚𝑎𝑥⁄

𝑍0
. 𝐿𝑉𝐸𝑇  (6.4) 

 

Bour Calibration Equation  𝑆𝑉𝐼𝑐𝑎𝑙 = 𝑘.
𝑑𝑍 𝑑𝑡𝑚𝑎𝑥⁄

(𝑍𝑚𝑎𝑥−𝑍min ))
. 𝑊(𝑇𝐹𝐼𝑇𝑐𝑎𝑙)  (6.5) 

 

Bour Equation  𝑆𝑉 = 𝑆𝑉𝐼 = 𝐵𝑆𝐴. 𝑆𝑉𝐼𝑐𝑎𝑙 . √(𝑑𝑍 𝑑𝑡𝑚𝑎𝑥⁄ 𝑑𝑍 𝑑𝑡𝑚𝑎𝑥𝑐𝑎𝑙).  𝑇𝐹𝐼𝑇𝑐𝑎𝑙 𝑇𝐹𝐼𝑇)⁄⁄⁄3
 (6.6) 

 

Lozano Equation   𝑅𝐵𝑖𝑛𝑡 = 1.233𝑅𝐶𝑖𝑛𝑡 − 0.0032𝑅𝐶𝑖𝑛𝑡
2 − 31.59 (6.7) 

 

Arctan Trigonometric Function  𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑆1𝑛𝑒𝑡 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑆2𝑛𝑒𝑡 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
)   (8.1) 

 

Correct Classification Rate   𝐶𝐶𝑅 =
𝑇𝑃+𝑇𝑁

𝑁
    (10.1) 

 

Classification Error   𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑃+𝐹𝑁

𝑁
= 1 − 𝐶𝐶𝑅   (10.2) 

 

Sensitivity   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝑝𝑜𝑤𝑒𝑟)  =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10.3) 

 

Specificity   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (10.4) 
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Appendix M. Formulae (continued) 

 

Cohen’s Kappa     𝜅 =
(𝑃𝑜−𝑃𝑒)

(1−𝑃𝑒)
    (10. 5) 

 

Fisher’s Exact Test, P value    𝑃 =
(𝑇𝑃+𝐹𝑃)!(𝐹𝑁+𝑇𝑁)!(𝑇𝑃+𝐹𝑁)!(𝐹𝑃+𝑇𝑁)!

𝑇𝑃!𝐹𝑃!𝐹𝑁!𝑇𝑁!(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)!
  (10.6) 

 

Bonferroni Correction, P value   𝑃𝑐𝑟𝑖𝑡 =
𝛼

𝑛
     (10.7) 

 

Prevalence     𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 (≈  𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑃(𝐻)) =
𝑇𝑃+𝐹𝑁

𝑁
 (10.8) 

 

Positive Predictive Value   𝑃𝑃𝑉 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (10.9) 

 

Negative Predictive Value   𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                           (10.10) 

 

Diagnostic Odds Ratio     𝑂𝑅 =
(𝑇𝑃

𝐹𝑁⁄ )

(𝐹𝑃
𝑇𝑁⁄ )

=
𝐿𝑅+

𝐿𝑅−
              (10.11) 

 

Relative Risk     𝑅𝑅 =
(𝑇𝑃/(𝑇𝑃+𝐹𝑃)

𝐹𝑁/(𝐹𝑁+𝑇𝑁}
               (10.12)  

 

Yules Q    𝑌𝑢𝑙𝑒′𝑠 𝑄 =
((𝑇𝑃.𝑇𝑁)−(𝐹𝑃.𝐹𝑁))

((𝑇𝑃.𝑇𝑁)+(𝐹𝑃.𝐹𝑁))
=

𝑂𝑅−1

𝑂𝑅+1
              (10.13) 

 

Pearson’s Phi    ф =
((𝐹𝑃.𝐹𝑁)−(𝑇𝑃.𝑇𝑁))

√ (𝑇𝑃+𝐹𝑃)(𝐹𝑁+𝑇𝑁)(𝑇𝑃+𝐹𝑁)(𝐹𝑃+𝑇𝑁)
             (10.14) 

 

F1 Score      𝐹1 = 2.
𝑃𝑃𝑉.𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
              (10.15) 

 

Type I Error   𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 (𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒) = 𝛼 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
       (10.16) 

 

Type II Error   𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 (𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒) = 𝛽 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
     (10.17) 

 

Stroke Volume Index, % Change 𝑆𝑉𝐼 𝑐ℎ𝑎𝑛𝑔𝑒 = 100.
(𝑆𝑉𝐼0−𝑆𝑉𝐼−1)

𝑆𝑉𝐼−1
              (10.18) 

 

Interval Onset    𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑂𝑛𝑠𝑒𝑡 = 100.
(𝑅𝑅−1−𝑅𝑅0)

𝑅𝑅−1
             (10.19) 
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Appendix M. Formulae (continued) 

 

Mean RR interval (3 beats)   𝑅𝑅̅̅ ̅̅ =
1

3
. ∑ 𝑅𝑅𝑖

2
𝑖=0                (10.20) 

 

Interval Stability 

 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max (|𝑅𝑅0 − 𝑅𝑅̅̅ ̅̅ |, |𝑅𝑅1 − 𝑅𝑅̅̅ ̅̅ |, |𝑅𝑅2 − 𝑅𝑅̅̅ ̅̅ |)       (10.21) 

 

Atrial Chamber of Origin  

𝑃𝑅𝑟𝑎𝑡𝑖𝑜0 ≥ 1 ⇒ 𝐴𝑡𝑟𝑖𝑎𝑙 𝐶ℎ𝑎𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛    (10.22) 

 

Ventricular Chamber of Origin 

𝑃𝑅𝑟𝑎𝑡𝑖𝑜0 < 1 ⇒ 𝑉𝑒𝑛𝑡𝑟𝑖𝑐𝑢𝑙𝑎𝑟 𝐶ℎ𝑎𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛   (10.23) 
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