

City, University of London Institutional Repository

Citation: Fu, X., Li, S., Fairbank, M., Wunsch, D. C. & Alonso, E. (2015). Training

Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of
a Grid-Connected Converter. IEEE Transactions on Neural Networks and Learning
Systems, 26(9), pp. 1900-1912. doi: 10.1109/tnnls.2014.2361267

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12514/

Link to published version: https://doi.org/10.1109/tnnls.2014.2361267

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Abstract -- This paper investigates how to train a recurrent
neural network (RNN) using the Levenberg-Marquardt (LM)
algorithm, as well as how to implement optimal control of a grid-
connected converter (GCC) using a RNN. To successfully and
efficiently train a RNN using the LM algorithm, a new Forward
Accumulation Through Time (FATT) algorithm is proposed to
calculate the Jacobian matrix required by the LM algorithm.
This paper explores how to incorporate FATT into the LM
algorithm. The results show that the combination of the LM and
FATT (LM-FATT) algorithms trains RNNs better than the
conventional Backpropagation Through Time (BPTT) algorithm.
The paper presents an analytical study on the optimal control of
GCCs, including theoretically ideal optimal and suboptimal
controllers. To overcome the inapplicability of the optimal GCC
controller under practical conditions, a new RNN controller with
an improved input structure is proposed to approximate the ideal
optimal controller. The performance of an ideal optimal
controller and a well-trained RNN controller was compared in
close to real-life power converter switching environments,
demonstrating that the proposed RNN controller can achieve
close to ideal optimal control performance, even under low
sampling rate conditions. The excellent performance of the
proposed RNN controller under challenging and distorted system
conditions further indicates the feasibility of using a RNN to
approximate optimal control in practical applications.

Index Terms – optimal control, recurrent neural network,
Levenberg-Marquardt, Forward Accumulation Through Time,
Jacobian matrix, Backpropagation Through Time, dynamic
programming, d-q vector control, grid-connected converter

I. INTRODUCTION
N modern electric power systems, power electronic
converters play an increasingly important role in the

integration of smart grids, renewable energy resources and
energy storage devices (Fig. 1). A grid-connected converter

This work was supported in part by the U.S. National Science Foundation
under Grant EECS 1102038/1102159, the Mary K. Finley Missouri
Endowment, and the Missouri S&T Center for Infrastructure Engineering
Studies and Intelligent Systems Center.
Xingang Fu and Shuhui Li are with the Department of Electrical & Computer
Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
(email: xfu@crimson.ua.edu, sli@eng.ua.edu).
Michael Fairbank and Eduardo Alonso are with the School of Mathematics,
Computer Science and Engineering, City University London, EC1V 0HB, UK
(email: michael.fairbank@virgin.net, e.alonso@city.ac.uk).
Donald C. Wunsch, the Mary K. Finley Missouri Distinguished Professor, is
with the Department of Electrical & Computer Engineering, Missouri
University of Science and Technology, Rolla, MO 65409-0040, USA (email:
dwunsch@mst.edu).

(GCC) is a key component that physically connects wind
turbines, solar panels, or batteries to the grid [1], [2], and [3].
A critical issue for energy generation from renewable sources
and for smart grid integration is the control of the GCC (green
boxes in Fig. 1). Traditionally, this type of converter is
controlled using a standard decoupled d-q vector control
approach [4]. However, recent studies have noted the
limitations of the standard vector controller [4]. Practically,
these limitations could result in low power quality, inefficient
power generation and transmission, and a possible loss of
electricity, all of which cause loss of dollars for both electric
utility companies and electric energy customers.

25kV
690V

AC/DC DC/DCDC/DC

AC/DC

C
o
n
t
r
o
l
l
e
r Controller

AC/DC DC/DC

Controller

AC/DC DC/DC

Controller

AC/DC DC/AC

Controller

AC/DC

DC/AC

C
o
n
t
r
o
l
l
e
r

DMS

Energy
StorageThe Grid

Solar

Wind
Fuel cell

Microturbine

MGCC

Charging
Station for EV

Fig.1 A microgrid with GCC-interfaced distributed energy sources

Recent research [5] has shown that recurrent neural
networks (RNNs) can be trained and used to control grid-
connected converters. In [5], the RNN implemented a dynamic
programming (DP) algorithm and was trained using
Backpropagation Through Time (BPTT). BPTT was combined
with Resilient Propagation (RPROP) to accelerate the training.
Compared to conventional standard vector control methods,
the neural network vector controller produced an extremely
fast response time, low overshoot, and, in general, the best
performance [6]. In [7], it was shown that the neural network
vector control technique can be extended to other applications,
such as brushless dc motor drives.

For both applications, conventional control techniques,
such as PID and predictive control, were integrated into the
DP-based neural network design [5]-[7]. This unifying
approach produced some important advantages, including zero
steady-state error, great control under physical system
constraints, and the ability to exhibit adaptive control

Training Recurrent Neural Networks with the Levenberg–
Marquardt Algorithm for Optimal Control of a Grid-

Connected Converter

Xingang Fu, Student Member, IEEE, Shuhui Li, Senior Member, IEEE,

Michael Fairbank, Member, IEEE, Donald C. Wunsch, Fellow, IEEE, and Eduardo Alonso

I

behavior, even though the RNN controller was trained entirely
offline. However, for such an integrative neural network
control structure, training the RNN controller was very
difficult using BPTT combined with RPROP due to issues
such as slow convergence and oscillation problems that
usually cause training to diverge. This paper also addresses
the practical limitations that may prevent the creation of an
optimal neural network controller based on DP. Both issues
have caused great challenges in applying the neural network
controller to a real-life system, which served as the motivation
for the research presented here.

In [8], Real Time Recurrent Learning (RTRL) was
proposed to train a RNN. However, the high computational
cost of the RTRL causes it to be appropriate only for the
online training of a small RNN [8]-[10]. Alternatively,
Extended Kalman Filters (EKF) have proven useful in training
RNN controllers for linear and nonlinear dynamical systems
[11]-[13]. Nevertheless, EKFs are also computationally
expensive because each estimation requires numerous matrix
calculations. In addition, the eventual success and quality of
EKF training depends highly on professional experience,
including an appropriate selection of the network architecture,
learning rates, and network inputs [10]. Levenberg-Marquardt
(LM) ([14]-[16]) is used widely to train feed-forward
networks. Although some research has shown the potential of
training RNNs using LM [17]-[19], it has not been used
broadly for this purpose. Furthermore, none of these studies
have described how the Jacobian matrix was defined and
calculated for a RNN. In the study presented in this paper, we
investigated how the Jacobian matrix can be evaluated for a
RNN by unrolling it forward through time.

In summary, the purpose of the study was to implement
optimal GCC control under practical constraints, and to
investigate how to utilize LM to improve RNN training.
Accordingly, the defining features and contributions of the
paper include: 1) an analytical study of the ideal optimal and
suboptimal GCC controllers, 2) a Forward Accumulation
Through Time (FATT) algorithm to calculate the Jacobian
matrix efficiently for RNN training, 3) an approach to
integrate FATT with LM to accelerate RNN training, and 4) a
new RNN vector controller with improved input structure for a
GCC to increase RNN adaptability to broad vector control
applications.

The remainder of the paper is organized as follows. First,
Section II introduces a GCC vector control model and
analyzes ideal optimal GCC control characteristics. Section III
illustrates the proposed RNN controller structure; it also
explains how to extend LM to train a RNN and how to
calculate the Jacobian matrix required by LM for efficient
RNN training. Section IV compares the training performance
of the proposed FATT-LM training algorithm with that of the
BPTT training algorithm. Section V compares the
performance of the ideal optimal controller and the neural
network controller and evaluates the performance of the
proposed RNN controller under challenging GCC operating
conditions. Finally, the paper concludes with a summary of the
main points.

II. OPTIMAL CONTROL OF GRID-CONNECTED CONVERTER

A. Grid-Connected Converter Model
Fig. 2 shows the schematic of a GCC, which has a dc-link

capacitor on the left and a three-phase voltage source
representing the voltage at the Point of Common Coupling
(PCC) of the ac system on the right. In the d-q reference
frame, the voltage balance across the grid filter is given in Eq.
(1), where sω is the angular frequency of the grid voltage, and
L and R represent the inductance and resistance of the grid
filter.

 1

1

d d d dq
s

q q q qd

v i i vidR L L
v i i vidt

ω
−

= + + +

 (1)

C

+

-

Vdc

R Lva1

vb1

vc1

ia

ib

ic

Grid

va

vb

vc

Fig. 2 Grid-connected converter schematic

From Eq. (1), the state-space model of the integrated GCC
and grid system can be obtained using Eq. (2), where the
system states are di and qi , grid PCC voltages dv and qv are

normally constant, and converter output voltages 1dv and 1qv
are the control voltages that are to be specified by the output
of the controller. For digital control implementation using
neural networks, the continuous state-space model of the
system in Eq. (2) must be converted to the discrete state-space
model represented by Eq. (3), where sT stands for the sampling
period, and k is an integer time step. We used 0.001sT s= in
all experiments. To simplify the expressions, the discrete
system model in Eq. (3) is rewritten in Eq. (4), where ()dqu k

is
represented by Eq. (5).

 1

1

1 1d d d ds

q q q qs

i i v vR Ld
i i v vR Ldt L L

ω
ω

−
= − − +

 (2)

 ()
()

()
()

()
()

1

1

d s s d s d s d

q s s q s q s q

i kT T i kT v kT v
i kT T i kT v kT v

+ −
= + + −

A B (3)

 (1) () ()dq dq dqi k i k u k+ = +A B

 (4)

 1() ()dq dq dqu k v k v= −

 (5)

B. GCC Vector Control
Typically, a GCC has a nested-loop vector control

structure consisting of a faster inner current loop and a slower
outer loop, as shown in Fig. 3 [4]. In this figure, the d-axis
loop is used for active power or dc-link voltage control, and
the q-axis loop is used for reactive power or grid voltage
support control. The active and reactive power control is
converted into decoupled d-q current control, which
implements the final control function by applying a voltage
signal to the converter [20].

The control signal applied directly to the converter is a
three-phase sinusoidal voltage. The general strategy for
transforming d-q control signals into three-phase sinusoidal
signals is also illustrated in Fig. 3, in which *

1dv and *
1qv are the

d- and q-axis output voltages generated by the controller. The
two d- and q-axis voltages are converted to the three-phase
sinusoidal voltage signals, *

1av , *
1bv and *

1cv , through Park
transformation [21] to control the voltage-source converter.
The ratio of the GCC output voltage 1dv and 1qv , to the output

voltage of the current-loop controller *
1dv and *

1qv , is a gain of

PWMk , which equals 2dcV if the amplitude of the triangle
voltage waveform in the PWM scheme is 1V [22].

ia

R

ibic
vavc vb

L
Voltage angle

calculation

2/3

2/3

eje θ

eje θ

idiq

eθ

,vα β

,iα β

, ,a b cv

, ,a b ci

busV

+- Vdc

va1vb1vc1

PWM2/3eje θ

*
1, 1, 1a b cv

*
1vβ

*
1vα

*
1dv

*
1qv

_d refi

_q refi
*

busV

*
dcV Inner

current
control

loop

Outer
control

loop

dcV

Fig. 3 Standard vector control structure

C. Dynamic Programming in GCC Vector Control
Dynamic programming (DP) employs Bellman’s

optimality principle [23] for solving optimization and optimal
control problems. The typical structure of the discrete-time DP
includes a discrete-time system model and a performance
index or cost associated with the system [24].

The DP cost function associated with the vector-controlled
system is defined as

 ()() (()), 0,0 1k j
dq dq

k j
C i j U e k jγ γ

∞
−

=

= > < ≤∑

 (6)

where γ is a discount factor, and U is defined as

{ }

2 2

2 2

_ _

(()) () ()

 () () () () , >0

dq d q

d d ref q q ref

U e k e k e k

i k i k i k i k

α

α

α

 = +

 = − + −

 (7)

in which α is a constant. The function ()C ⋅ , which depends

on the initial time j and the initial state ()dqi j

, is referred to as

the cost-to-go of state ()dqi j

 of the DP problem. The objective

is to choose a vector control sequence ()dqu k

 that minimizes

the function ()C ⋅ in Eq. (6).

D. Ideal Optimal and Suboptimal Vector Control Models
The GCC dynamic model in Eq. (4) is linear, so the ideal

optimal control problem can be represented as
 () _min 0 (()) 0 () () 0dq dq dq refC U e k i k i k= ⇔ ≡ ⇔ − ≡

 (8)

Then, according to Eq. (4), the optimal control problem can be
solved directly by
 1

_() (1) ()dq dq ref dqu k i k i k− = + − B A

 (9)

where , 1, .k j j= + ∞ Based on Eq. (5), the control voltage
can be obtained by
 1

1 _() (1) ()dq dq ref dq dqv k i k i k v− = + − + B A

 (10)

 Furthermore, consider a special case in the steady state in
which _ (1) ()dq ref dqi k i k+ =

. Eq. (9) can be simplified as

 ()1() ()dq dqu k i k−= −B I A

 (11)

where ()1− −B I A is a stabilization matrix proposed in [7] and
[25].

The ideal optimal controller in Eq. (10) can regulate the
system to catch up with the reference currents in one time step,
which is the fastest response time. However, the ideal optimal
controller may generate a control voltage signal 1dqv

 beyond
the converter’s pulse width modulation (PWM) constraint in
order to meet the immediate current tracking requirement. To
avoid a large control voltage signal, an extension of the one-
step ideal optimal controller was also studied and will be
discussed later; it is also a special analytical solution to the DP
problem. The controller uses a constant control signal

* () dq dqu k u≡

to catch up with the reference within L time

steps. Then, from Eq. (4), ()dqi k L+

 can be solved recursively,

as shown by

1 *

*

() () ()

 ()

L L
dq dq dq

L
L

dq dq

i k L i k u

i k u

−+ = + + + + ⋅

−
= + ⋅

−

A A A I B

I AA B
I A

 (12)

Hence, the required * dqu

can be found as follows:

1

*
_= () ()

L
L

dq dq ref dqu i k L i k
−

 − + − −

I A B A
I A

 (13)

Based on Eq. (5), the control voltage can be obtained as
follows:

1

1 _() () ()
L

L
dq dq ref dq dqv k i k L i k v

−
 − = + − + −

I A B A
I A

 (14)

Eq. (15) proves that Eq. (9) is the limit form of Eq. (13):

11

* 1
_1

lim () () ()dq dq ref dq dqL
u i k L i k u k

−

→

 − = + − = −

I A B A
I A

 (15)

Furthermore, Eq. (10) is the limit form of Eq. (14). Therefore,
Eq. (14) can be considered a suboptimal controller (1L >) in
the sense that the controller’s response speed is determined by
time step L . After dqi

 catches up with _dq refi

, that is, when it
reaches a steady state, Eq. (11) is applied to control the system.

Fig. 4 illustrates an example of the ideal optimal controller,
as specified in Eq. (10), for the GCC system. The figure
reveals that the ideal optimal controller exhibits perfect
tracking, the fastest response without any delay, no overshoot,

and no steady-state error. Fig. 5 demonstrates the suboptimal
controller, Eq. (14), for GCC control, with L equal to 1, 3, 5,
7, and 9, respectively. As shown in Fig. 5, the controller can
follow the reference current over exactly L time steps.

Fig. 4 Ideal optimal controller for GCC

Fig. 5 GCC suboptimal controller in L steps

III. NEURAL NETWORK VECTOR CONTROLLER AND PROPOSED
FATT-LM TRAINING ALGORITHM

A. GCC Neural Network Vector Controller
The ideal optimal controller, Eq. (10), and suboptimal

controller, Eq. (14), were deduced under the assumption that
the exact GCC system parameters were known. In practice, the
system parameters may deviate significantly from its nominal
values. Particularly, the inductance of the grid filter could be
affected by the temperature and grid voltage frequency.
Changes in the system parameters will affect the performance
of both the ideal optimal and suboptimal controllers. Thus,
these controllers are not robust in practice. Therefore, a RNN
vector controller is employed to approximate the ideal optimal
controller.

Fig. 7 depicts the overall RNN vector-control structure of
the GCC current-loop, which combines the vector control
technique with the DP-based neural network design. The
neural network component shown in Fig. 7 is a fully
connected multi-layer perceptron [26] with 2 hidden layers
having 6 nodes each, and 2 output nodes, with hyperbolic
tangent functions at all nodes, as detailed in Fig. 6.

To avoid neural network input saturation, the inputs are
regulated to the range [-1, 1] using the hyperbolic tangent

function, as shown in Fig. 6. The first 4 input nodes are
tanh(/)dqe Gain

 and tanh(/ 2)dqs Gain

, where

 () () ()_dq dq dq refe k i k i k= −

 (16)
is referred to as the “error input term,” and

0
() ()skT

dq dqs k e t dt= ∫

 (17)

is referred to as the “integral term.” Unlike [6], this paper also
proposes an RNN controller that achieves an improved input
structure by using two error terms and two integral terms as
the network inputs, i.e., removing the d-q current inputs
indicated by the blue dashed lines in Fig. 7. This network
input scheme is particularly important when some network
states cannot be measured, such as the rotor currents in the
control of a squirrel-cage induction motor. This improvement
also reduces the number of weights between the input layer
and the first hidden layer and requires less calculation effort in
the real control loop.

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

l

sd

sq

ed

eq

1/Gain

1/Gain

1/Gain2

1/Gain2

Input Preprocess

Output

V*d1

V*q1

Fig. 6 RNN controller structure

B. Define RNN controller function
Based on the proposed RNN controller structure, the RNN

can be denoted as ((), (),)dq dqR e k s k w

, which is a function of

()dqe k

, ()dqs k

 and w

. If the RNN takes ()dqi k

 as inputs, the

function ()R ⋅ can also be denoted as ((), (), (),)dq dq dqR i k e k s k w

.

Thus, the control action ()dqu k

 is expressed by

 1() () ((), (),)dq dq dq PWM dq dq dqu k v k v k R e k s k w v= − = −

 (18)

where PWMk is the PWM gain, as explained in Section II.B.

The converter output voltages 1dv and 1qv are proportional
to the control voltage of the RNN output, as explained in
Section II.B. Although Fig. 6 shows a feed-forward network
configuration, the controller is considered a recurrent network
because the feedback signal generated by the system in Eq. (5)
acts as a recurrent network connection from the output of the
system shown in Fig. 7 back to the input.

C. Backpropagation Through Time (BPTT)
Before defining the main algorithm of this paper, i.e.,

LM+FATT, we first review the BPTT method used in [6] for
this GCC problem for the purpose of comparison, as discussed
in Section IV.

0 20 40 60 80 100
-50

0

50

100

150

200

Time step

d-
q

C
ur

re
nt

s
(A

)

i
d

i
q

i
d_ref

i
q_ref

2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

Time step

d-
q

C
ur

re
nt

s
(A

)

id-1-step

iq-1-step

id-3-step

iq-3-step

id-5-step

iq-5-step

id-7-step

iq-7step

id-9-step

iq-9-step

id_ref

iq_ref

ia

R

ibic
vavc vb

L
Voltage angle

calculation

2/3

2/3

eje θ

eje θ

id

iq eθ

,vα β

,iα β

, ,a b cv

, ,a b ci

+- Vdc

va1vb1vc1

PWM2/3eje θ

*
1, 1, 1a b cv

*
1vβ

*
1vα

*
1dv

*
1qv

_d refi

_q refi

Input
Hidden

Output

+

-

+

-

∫
∫ +

+

1/ PWMk

1/ PWMk

*
dv

*
qv

+

+

dv
qv

+
+

-

-
+

+
+

+
+

+RNN Current-Loop Controller

Algorithm 1: BPTT algorithm for training a GCC RNN vector
controller

1: 0C ← , (0) 0dqe ←

, (0) 0←

dqs ,
2: {Unroll a full trajectory}
3: for k = 0 to N-1 do

4: () ()()1 , (), (),dq PWM dq dq dqv k k R i k e k s k w←

5: () () ()11dq dq dq dqi k i k v k v + ← + − A B

6: () ()_(1) 1 1dq dq dq refe k i k i k+ ← + − +

7: ()(1) () (1) ()
2
s

dq dq dq dq
T

s k s k e k e k+ ← + + +

8: ((1))k
dqC C U e kγ← + +

9: end for

10: {Backward pass along trajectory}

11: ()
0, 0, 0

()dq dq

C C C
w i N s N

∂ ∂ ∂
← ← ←

∂ ∂ ∂

12: for k = N-1 to 0 step -1 do

13: () ()1 1
T

dq dq

C C
v k i k

∂ ∂
←

∂ ∂ +
B

14:
()

()1() (1) ()PWM
dq dq dq dq

R kC C Ck
s k s k s k v k

∂∂ ∂ ∂
← +

∂ ∂ + ∂ ∂

15:

()
()
() () ()

() () ()

1 1

(())
2 1

T
PWM

dq dq dq dq

dqks

dq dq dq

R kC C Ck
i k i k v k i k

U e kT C C
s k s k i k

γ

∂∂ ∂ ∂
← +

∂ ∂ ∂ ∂ +

 ∂∂ ∂
+ + +

∂ + ∂ ∂

A

16:
()
() ()1

PWM
dq

R kC C Ck
w w w k v k

∂∂ ∂ ∂
← +

∂ ∂ ∂ ∂

17: end for

18: {on exit, C
w

∂
∂
 holds for the whole trajectory}

BPTT is gradient descent on ()(),dqC i j w

 with respect to

the weight vector of the recurrent neural network. In general,
the BPTT algorithm consists of two steps, a forward pass that
unrolls a trajectory, followed by a backward pass along the
whole trajectory, which accumulates the gradient descent
derivative.

Alg. 1 provides pseudo code for both stages of this process.
Lines 1-9 evaluate a trajectory of length N using Eqs. (4) and
(5). The second half of the algorithm, from lines 10-18,
calculates the desired gradient /C w∂ ∂

. The derivation of the
gradient computation part of the algorithm (lines 11-18) is
exact and follows the method detailed in [27], which is
referred to as generalized backpropagation [28], or automatic
differentiation [29]. The derivatives () /R k w∂ ∂

, () / ()dqR k i k∂ ∂

 ,

and () / ()dqR k s k∂ ∂

 are calculated according to the standard
neural network back-propagation rule [30], which is basically
the chain rule for computing the derivatives of the
composition of two or more functions.

During the evaluation of the trajectory forward pass (lines
3-9 of Alg. 1), and in all subsequent pseudo code in this paper,
the integral input term of Eq. (17) was evaluated using the
following trapezoid formula in Eq. (19), instead of the forward
Euler formula in [6]:

1

(1) ()
() , (0) 0

2

k
dq dq

dq s dq
j

e j e j
s k T e

=

− +
≈ =∑

 (19)

This approximation can also be rewritten as a recurrence
relation:

(1) ()

() (1) , (0) 0
2

dq dq
dq dq s dq

e k e k
s k s k T s

− +
= − + =

 (20)

Hence, Eq. (20) appears as line 7 of Alg. 1.

D. Levenberg-Marquardt algorithm, and its applicability to
RNNs

The Levenberg-Marquardt (LM) algorithm is widely used
to train feed-forward networks and provides a nice
compromise between the speed of Newton’s method and the
guaranteed convergence of the steepest descent. Thus, LM
appears to be the fastest neural network training algorithm for

Fig. 7 GCC neural network vector control structure. va1,b1,c1 represents the GCC output voltage in the three-phase ac system, and the
corresponding voltages in the d-q reference frame are vd1 and vq1. va,b,c is the three-phase PCC voltage, and the corresponding voltages in
the d-q reference frame are vd and vq. ia,b,c stands for the three-phase current flowing from the PCC to the GCC, and the corresponding
currents in the d-q reference frame are id and iq. vd1

* and vq1
*
 are the d- and q-axis voltages from the RNN controller, and the

corresponding control voltage in the three-phase domain is va1,b1,c1.

a moderate number of network parameters [30]. Although LM
has achieved great success in training feed-forward networks,
it is not sufficiently straightforward for use in training RNNs
directly. This paper develops a mechanism by which to train a
recurrent network based on LM, which can be applied to any
problem in which the RNN has fixed target outputs at each
time step, such as the GCC tracking control problem.

LM can minimize a non-linear sum-of-squares cost
function, such as in a case in which the cost function can be
written as 2() ()

p
C w V p= ∑

, where p is the training “pattern”

index, and ()V p is the error for pattern p . Then, the LM
algorithm consists of the following weight update [30]:

1

() () ()T Tw J w J w J w Vµ
−

 ∆ = − + I

 (21)

where ()J w

 is the Jacobian matrix of V

with respect to the

weight vector of the neural network, V

 is defined by

(1)

()

V
V

V N

 =

 (22)

where I is the identity matrix, and µ is a scalar regulation
parameter that is dynamically adjusted during learning (see
Fig. 8). The quantity () ()TJ w J w

is called the Gauss-Newton
matrix, and it approximates the Hessian matrix for the cost
function [31]. Hence, LM approximates the Newton method in
solving the cost-minimization problem.
 To extend the applicability of LM to the RNN case, we
simply define ()V k as the error of the output of the RNN at
time step k . Hence, if there are N time steps in the state
trajectory and M weights in the neural network, then the
Jacobian matrix ()J w

is defined for a RNN as

1

1

(1) (1)

()
() ()

M

M

V V
w w

J w
V N V N

w w

∂ ∂
 ∂ ∂
 =
 ∂ ∂
 ∂ ∂

 (23)

 This completes the definition that extends LM for
applicability to RNNs. Derivatives of the form () / iV k w∂ ∂ will
be dependent upon () / iV j w∂ ∂ for j i< (by the chain rule);
therefore, the Jacobian matrix must be calculated with care.
The FATT algorithm presented in Section III.F shows the
correct way to perform this calculation.

E. Levenberg-Marquardt algorithm for non-sum-of-squares
cost functions

If the performance error function is not a sum of squares,
then the LM weight update equation (Eq. (21)) is not directly
applicable.

In the definition of the cost function ()C ⋅ and the local
cost ()U ⋅ , there is a constant numberα . When 1α = , the cost
function is just the sum of squares of errors. In such cases, LM
can be applied directly to train the RNN. However, the

selection of the constant number α has an important impact
on RNN training. Better convergence in RNN training can be
achieved when α is a fractional number, as demonstrated in
Section IV.

In order to use LM for any α values, the cost function ()C ⋅
defined in Eq. (6) must be modified. Consider the cost

function (())k j
dq

k j
C U e kγ

∞
−

=

= ∑

 in which 1,γ = 1,=j and

1, , .= k N Then, ()C ⋅ can be written as

 ()
define () (()) 2

1 1
(()) ()dq

N NV k U e k

dq
k k

C U e k C V k
=

= =

→= =←∑ ∑

 (24)

 and the gradient /C w∂ ∂

 can be written in a matrix form as

()2

1

1

()
()2 () 2 ()

N

N
Tk

k

V k
C V kV k J w V
w w w

=

=

∂
∂ ∂

= = =
∂ ∂ ∂

∑
∑

 (25)

F. Forward Accumulation Through Time (FATT)

In order to calculate the Jacobian matrix ()J w

for a RNN
efficiently, a new algorithm, Forward Accumulation Through
Time (FATT), is proposed. FATT combines the computation
of the Jacobian matrix ()J w

 and the unrolling of the system

trajectory, and calculates both system states ()dqi k

and

()V k w∂ ∂

, the k-th row of the Jacobian matrix ()J w

, at time
step st kT= . The following proposed FATT is suitable for a
general constantα .

To find the k-th row of the Jacobian matrix ()J w

, the

derivative ()V k w∂ ∂

 is expressed as

()() ()

()
dq

dq

e kV k V k
w e k w

∂∂ ∂
=

∂ ∂ ∂

 (26)

According to the definition of ()V k in Eq. (24),

()

()

2 2 2

12 2 2

() [() ()]
() ()

 () () [() ()]

d q
dq dq

d q d q

V k e k e k
e k e k

e k e k e k e k

α

α

α
−

∂ ∂
= +

∂ ∂

= +

 (27)

Differentiating ()dqe k

of Eq. (16) yields:

() ()dq dqe k i k

w w
∂ ∂

=
∂ ∂

 (28)

The derivative (1)dqi k w∂ + ∂

 is found based on the recursive
formula in Eq. (4) and the definition of the RNN controller in
Eq. (18):

(1) () ()dq dq dqi k i k u k
w w w

∂ + ∂ ∂
= +

∂ ∂ ∂
A B

 (29)

Differentiating Eq. (18) and utilizing Eq. (28) yields

() () ()() () ()

() ()
dq dq dq

PWM
dq dq

u k i k s kR k R k R kk
w e k w s k w w

 ∂ ∂∂ ∂ ∂
 = + +
 ∂ ∂ ∂ ∂ ∂ ∂

 (30)

where () /dqs k w∂ ∂

 is calculated according to Eq. (19)

1

0

() (1) ()
2

() ()1
2

k
dq dq dqs

j

k
dq dq

s
j

s k e k e kT
w w w

i j i k
T

w w

=

=

 ∂ ∂ − ∂
 = +

∂ ∂ ∂
 ∂ ∂
 = −

 ∂ ∂

∑

∑

 (31)

Calculating ()dqi k w∂ ∂

 requires a loop from 0j = to j k= .

Thus, the process for calculating ()dqi k w∂ ∂

 and ()V k w∂ ∂

is integrated into the process of unrolling the trajectory.

Algorithm 2: FATT algorithm to calculate the Jacobian
matrix.

1: (0) (0)0, (0) 0, (0) 0, 0, 0dq
dq dq

i
C e s

w w
ϕ∂ ∂

← ← ← ← ←
∂ ∂

2: {Calculate Jacobian matrix ()J w

}
3: for k = 0 to N-1 do
4: () ((), (),)dq PWM dq dq dqu k k R e k s k w v← −

5:
() ()() 1

2
dq dq

s

s k i kkT
w w w

ϕ ∂ ∂∂ ← −
∂ ∂ ∂

6: () () ()() () ()
() ()

dq dq dq
PWM

dq dq

u k i k s kR k R k R kk
w e k w s k w w

 ∂ ∂ ∂∂ ∂ ∂
 ← + +
 ∂ ∂ ∂ ∂ ∂ ∂

7:
(1) () ()dq dq dqi k i k u k
w w w

∂ + ∂ ∂
← +

∂ ∂ ∂
A B

8: () () ()1dq dq dqi k i k u k+ ← +A B

9: () ()_(1) 1 1dq dq dq refe k i k i k+ ← + − +

10: ()(1) () (1) ()
2
s

dq dq dq dq
T

s k s k e k e k+ ← + + +

11: ((1))dqC C U e k← + +

12:
(1)(1) () dqi kk k

w w w
ϕ ϕ ∂ +∂ + ∂

← +
∂ ∂ ∂

13:
(1)(1) (1)

(1)
dq

dq

i kV k V k
w e k w

∂ +∂ + ∂ +
←

∂ ∂ + ∂

14: () (1)the 1 th row of () V kk J w
w

∂ +
+ ←

∂

15: end for

16:
{on exit, the Jacobian matrix ()J w

 is finished for the
whole trajectory}

Alg. 2 shows the entire FATT process for calculating the

Jacobian matrix ()J w

 for a complete trajectory. In the

algorithm,
1

() ()
k

dq
j

k i jϕ
=

= ∑

and
1

() ()() (1)k
dq dq

j

i j i kk k
w w w w

ϕ ϕ
=

∂ ∂∂ ∂ −
= = +

∂ ∂ ∂ ∂
∑

.

Lines 5, 6, 7 and 13 of Alg. 2 come from Eqs. (31), (30), (29)
and (26), respectively.

The proposed FATT algorithm also can be applied to
develop neural network vector controllers of other dynamic
systems. To utilize FATT on another dynamic system, the new
state-space model of the system must be incorporated into the
FATT algorithm (Alg. 2), i.e., only those formulas that are
related to the system’s state-space model need to be modified.
This shows the generalizability and broad scope of the
potential impact of our novel approach.

G. Computational complexity study
In Alg. 2, N denotes the trajectory length. The most time-

consuming part of Alg. 2 is the matrix multiplications that
involve m by M dimensional matrices, where M stands for
the number of all the weights, and m represents the dimension
of the RNN output layer, which is also the dimension of the

state vector dqi

, i.e., 2m = . For example, line 6 of Alg. 2
involves matrix multiplication between an m m× matrix

() / ()dqR k e k∂ ∂

 and an m M× matrix () /dqi k w∂ ∂

. Using

standard matrix multiplication, this will take 2m M floating-
point operations (flops). Thus, combining it into the loop of
N time steps for the entire length of the trajectory, the FATT
algorithm takes 2()O m NM flops to complete ()J w

.

H. Training algorithm for RNN: LM plus FATT
Fig. 8 illustrates the entire process for incorporating FATT

into LM. In Fig. 8, maxµ stands for the maximum acceptable µ ,

deβ and inβ signify the decreasing and increasing factors,
respectively, that are used to adjust the learning rate during the
training, maxEpoch represents the maximum number of training

epochs, and
min

/C w∂ ∂

denotes the norm of the minimum

acceptable gradient.
 Besides calculating the Jacobian matrix, FATT can also

output the DP cost, as shown in line 11 of Alg. 2. FATT* in
Fig. 8 refers to the process for calculating the DP cost, which
involves limiting the running of lines 5-7 and 12-13 in Alg. 2
to save calculation time. The standard LM procedure was
followed during the training in [16] and [30] (Fig. 8). In order
to accelerate the calculation, the weights in Eq. (21) were
updated using Cholesky factorization, which is roughly twice
as efficient as LU decomposition for solving systems of linear
equations [32].

The procedure for adjusting µ also appears in Fig. 8. The
parameter µ is dynamically adjusted to ensure that the
training follows the decreasing direction of the DP cost
function. When µ increases, it approaches the steepest descent
algorithm with a small learning rate; when µ decreases, the
algorithm approaches Gauss-Newton, which provides faster
convergence. The following three training stopping conditions
used are : 1) when the training epoch reaches the maximum
number of training epochs, maxEpoch , 2) when µ is larger

than maxµ , and 3) when the gradient is smaller than the

predefined minimum gradient
min

/C w∂ ∂

.

Update weights W=W*
and Decrease µ=µ/η

DP* < DP

Initialize training
Epoach←1

FATT calculates DP cost and
outputs Jacobian matrix J(W)

YES

Epoch←Epoch+1

Increase
µ=µ×β NO

FATT* calculates DP* cost
with W*=W+ΔW

µ>µmin

YES

NO

Training Stop

µ<µmax

YES

NO

ΔW >ΔWmin

YES

Initialize Weights W with small
random numbers

Initialize training parameters

µ,µmin,µmax,β,η,Δ

()J w

w

min

C C

w w

∂ ∂

∂ ∂
>

maxµ µ<

*
w w w← + ∆

*DP < DP

*DP

inµ µ β← ×

/ deµ µ β←

*
w w←

DP

max max
min

, , , ,Epoch ,in de
C

w
µ µ β β ∂

∂

Compute ΔW using Cholesky
factorization

w∆

NO

maxEpoch Epoch<

Fig. 8 Training algorithm for RNN: LM+FATT

I. Off-line training vs on-line training
The proposed FATT algorithm for calculating the Jacobian

matrix does not require backward computing. Thus, it is
suitable for on-line training and also can be combined with
other algorithms, such as RPROP, for on-line learning. To
compute the gradient (1) /V k w∂ + ∂

 at each time step, FATT
can yield the needed gradient as the system propagates.

LM is not appropriate for on-line learning because each
training epoch may contain several iterations; thus, LM +
FATT training in this paper was conducted off-line. The
neural network trained off-line with the proposed LM + FATT
demonstrated great performance under variable system
parameters and noise conditions, as demonstrated in Section
V.

IV. COMPARISON OF FATT-LM AND BPTT IN TRAINING AN
RNN CONTROLLER

To train the RNN controller, data for a typical GCC in
renewable energy conversion applications were specified [33],
[34], and [35]. These included: 1) a three-phase 60Hz, 690V
voltage source signifying the grid, 2) a reference voltage of
1200V for the dc link, and 3) a resistance of 0.012Ω and an
inductance of 2mH for the grid filter. Training took the
following policies: 1) randomly generating a sample initial
state (0)dqi

, 2) randomly generating a sample reference d-q
current trajectory with consideration of the rated current and

PWM saturation constraints [35] and [5], 3) selecting the
sampling time as 1sT ms= and the entire duration of training
as 1 second, and 4) randomly generating initial network
weights using a Gaussian distribution with zero means and 0.1
variances.

A. FATT is equivalent to BPTT
To verify the proposed algorithm, the gradients generated

using FATT (Eq. (25)) were compared with those computed
using BPTT (Alg. 1). Table I shows the comparison results,
which demonstrates the equivalence of the two methods. The
matrix W3 in Table I denotes the weights of the output layer
of the RNN and its dimension, 7x2. The mean square error
(MSE) for calculated weights W3 is 2.7043×10-13 with a 95%
confidence interval [1.3460×10-13, 6.2458×10-13]. For all
calculated neural network weights, the total MSE value is
4.4377×10-14 with a 95% confidence interval [3.3819×10-14,
5.9372×10-14]. The MSE was calculated using 32-bit
MATLAB with double precision. Thus, the gradients
calculated using FATT and BPTT are basically the same; their
differences are limited to rounding errors.

TABLE I
GRADIENT COMPARISON BETWEEN FATT AND BPTT

W3 (1.0e+009)
FATT BPTT

0.092796562629715 0.020751225861687 0.092796562629715 0.020751225861687
0.229650202454692 0.020683288705771 0.229650202454692 0.020683288705771
0.175811456841742 0.015729812462136 0.175811456841742 0.015729812462136
0.126106210024035 0.010156322474025 0.126106210024035 0.010156322474025
0.144791337207981 0.013380664777951 0.144791337207981 0.013380664777951
0.241910710409875 0.013627701859040 0.241910710409874 0.013627701859040

2.168691142995110 0.039567808952663 2.168691142995100 0.039567808952663

B. RNN training algorithm comparison: LM+FATT and
BPTT+RPROP

Fig. 9 shows the average DP cost per trajectory time step
for training the neural network vector controller using
FATT+LM and BPTT+RPROP, respectively. The training of
both algorithms uses the same parameters, including the same
initial weights, starting d-q currents, and d-q reference
currents.

Fig. 9 Comparison of average DP cost per trajectory time step for training
RNN controller using FATT+LM and FATT+RPROP

In theory, LM is faster than RPROP (in [36]), as verified
by Fig. 9. The overall average trajectory cost decreased to a
small number much faster using LM than using RPROP,
demonstrating the excellent learning ability of the proposed
FATT algorithm with LM for training the RNN controller.
The results also revealed a major drawback of RPROP, an

100 101 102
101

102

103

Iteration

Av
er

ag
e D

P
Co

st

FATT+LM
BPTT+RPROP

oscillation problem during the training, as illustrated in Fig. 9,
which may cause the training to get stuck at a high average DP
cost level.

C. Different constant α effects in training a RNN
Fig. 10 compares the average DP cost for training the

recurrent network with different α values using FATT+LM.
For 1α = , we used the square roots of the average DP cost in
Fig. 10 in order to compare the average DP cost corresponding
to 1/ 2α = . Fig. 10 shows that 1/ 2α = yielded better and
faster convergence. When 1α = , the training had difficulty
converging to the required result. This also indicates the
necessity of transformation Eq. (24). Directly using the MSE
as a RNN training objective, which is the general case for
feed-forward neural networks, does not work well.

Fig. 10 Comparison of average DP cost per trajectory time step with different
α values using FATT+LM

D. Comparison of RNN controllers with different input
structures
Fig. 11 compares the average DP cost for training the

recurrent network using the FATT+LM when 1) all six inputs,

including dqi

, indicated by the blue dashed lines in Fig. 7, are
used as the network inputs, and 2) only two error terms and
two integral terms are used as the network inputs, as in Fig. 6.

Fig. 11 Average DP cost per trajectory time step for training RNN controller
with two different network input schemes using FATT+LM

As illustrated in Fig. 11, with the RNN input structure
shown in Fig. 6, the training actually converged to good
performance faster. In addition, reducing the RNN input
variables reduces the calculation efforts needed in real-time
control, which allows the proposed RNN controller to be
applied easily in hardware. This optimized RNN controller
would make it more practical to develop neural network vector

controllers for many other power and energy system
applications, making RNN controllers a reality.

E. Comparison of optimal controller and RNN controller
Fig. 12 compares the performance of an ideal optimal

controller, a suboptimal controller and a RNN controller. The
RNN controller used for this comparison was trained
sufficiently well when the average DP cost per trajectory
dropped to a small value and stabilized there, as indicated by
Fig. 11. Basically no steady-state error existed for the RNN
controller after the twentieth time step, according to Fig. 12.
Compared to the 20-step suboptimal controller, the RNN
controller had a smaller overshoot. Fig. 12 also indicates that
the RNN controller properly approximated the ideal optimal
controller.

Fig. 12 Controller performance comparison between ideal optimal controller,
20-step controller and RNN controller.

V. PERFORMANCE EVALUATION OF TRAINED NEURAL
NETWORK VECTOR CONTROLLER

To evaluate the performance of the neural network vector
controller trained with the proposed FATT+LM algorithm,
and to compare the performance of the ideal optimal controller
and the neural network vector controller, an integrated
transient simulation system of a GCC system was developed
using SimPowerSystems (Fig. 13). The converter switching
frequency was 3000Hz. In the switching environment, the
performance was evaluated under close to real-life conditions
[35]. The PCC bus was connected to the grid through a
transmission line modeled by an impedance. For digital
control implementation, the measured instantaneous three-
phase PCC voltage and grid current passed through a zero-
order-hold (ZOH) block [37].

Fig.13 Vector control of GCC in power converter switching environment

Section V.A compares the performance of the ideal
optimal controller and the neural network controller, while
Sections V.B-V.D evaluate the performance of the neural

100 101 102
101

102

103

Iteration

Av
er

ag
e D

P
Co

st

α=1/2
α=1

0 10 20 30 40 50 60 70 80 90 100
10

1

10
2

10
3

Iteration

Av
er

ag
e D

P
Co

st

Six Inputs:idq,edq,and Sdq

Four Inputs:edqand Sdq

0 10 20 30 40 50
-150

-100

-50

0

50

100

150

200

Time step

d-
q

Cu
rre

nt
s (

A
)

i
d
-ideal optimal controller

i
q
-ideal optimal controller

i
d
-20-step controller

i
q
-20-step controller

i
d_ref

i
q_ref

i
d
-RNN

i
q
-RNN

Vs_abc

Ig_abc
Uabc*

ideal optimal controller

A
B
C

A
B
C

Transmission
Line

RNN

Manual Switch

g
A
B
C

+

-

Grid-Connected
converter

N
A
B
C

Grid System

[Vabc_b]
[Iabc_b]

A
B
C

A
B
C

GSC choke

[Iabc_b]

[Vabc_b]

[Iabc_b]

[Vabc_b] U
re

f
P
u
ls

e
s

Discrete
PWM Generator

DC Voltage
Source

c
c

A

B

C

a
b
c

B1

network vector controller under different stringent conditions,
including distorted grid voltage, PWM saturation and voltage
control mode. In each experiment, the proposed neural
network controller structure (only two error terms and two
integral terms fed into the neural network vector controller)
was used as the network inputs, as indicated in Fig. 6.

A. Performance comparison of neural network vector
controller and ideal optimal controller
Fig. 14 compares the performance of the neural network

vector controller and the ideal optimal controller in tracking
the d-q reference currents. The first four plots show the
performance of the ideal optimal controller under the different
sampling rates of 0.001sT s= , 0.0001sT s= , 0.00001sT s= ,
and 2 6sT e s= − . The fifth plot shows the performance of the
neural network vector controller under a sampling rate of

0.001sT s= .

Fig. 14 Performance comparison between neural network vector controller
and ideal optimal controller: d-q currents.

Small discretization is required to make an ideal optimal
controller work properly. When the sampling time became

sufficiently small, e.g., 2 6sT e s= − , which is also the
sampling time generally used to simulate hardware systems,
the ideal optimal controller exhibited very good performance,
as would be expected theoretically (Fig. 4). However, such a
high sampling frequency with 1/ 1/ 2 6 50sf T e MHz= = − = is
computationally expensive and can cause potential overrun
problems in hardware implementation. In addition, the ideal
optimal controller could not tolerate any changes in the system
parameters. All of these factors make the practical application
of ideal optimal controllers difficult. The fifth plot in Fig. 14
demonstrates the good tracking performance of the proposed
neural network vector controller with a sampling time of

0.001sT s= , which is very close to the performance of the
ideal optimal controller with a sampling time of 2 6sT e s= − ,
corresponding to the fourth plot in Fig. 14. However, under a
sampling rate of 0.001sT s= , the ideal optimal controller
performed very poorly. Fig. 14 illustrates that the proposed
neural network controller achieved very good tracking
performance, close to that of the ideal optimal controller,
under a low sampling rate, which makes optimal control
feasible in reality using neural networks.

Fig. 15 Performance comparison between neural network vector controller
and ideal optimal controller: three-phase currents.

 Fig. 15 compares the actual three-phase currents using
the ideal optimal controller with a sampling time of

2 6sT e s= − and the neural network controller with a
sampling time of 0.001sT s= . Even though the actual d-q
current oscillated around the reference current because of the
switching impact (as indicated by Fig. 14), the actual three-
phase grid current was properly balanced, and the neural
network vector controller performed close to the ideal optimal
controller.

B. Performance evaluation of neural network vector
controller under distorted grid voltage conditions
The grid voltage often is distorted in reality and shows

high-order harmonics, which is caused by nonlinear loads in
general. Fig. 16 shows the performance of the neural network
vector controller under a distorted grid voltage condition. The

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-600

0

600

Time (sec)

d-
q

Cu
rre

nt
s

(A
)

Ideal Optimal Controller with Ts=0.001s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-200

-100

0

100

200

Time (sec)

d-
q

Cu
rre

nt
s

(A
)

Ideal Optimal Controller with Ts=0.0001s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-200

-100

0

100

200

Time (sec)

d-
q

Cu
rre

nt
s

(A
)

Ideal Optimal Controller with Ts=0.00001s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-200

-100

0

100

200

Time (sec)

d-
q

Cu
rre

nt
s

(A
)

Ideal Optimal Controller with Ts=2e-6s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-200

-100

0

100

200

Time (sec)

d-
q

Cu
rre

nt
s

(A
)

Neural Netwok Vector Controller with Ts=0.001s

id-ref
iq-ref
id
iq

id-ref
iq-ref
id
iq

id-ref
id-ref

id
iq

id-ref
iq-ref

id
iq

id-ref
iq-ref
id
iq

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
-150

-100

-50

0

50

100

150

Time (sec)

Th
re

e
Ph

as
e

C
ur

re
nt

s
(A

)
Ideal Optimal Controller with Ts=2e-6s

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
-150

-100

-50

0

50

100

150

Time (sec)

Th
re

e
Ph

as
e

C
ur

re
nt

s
(A

Neural Network Vector Controller with Ts=0.001s

voltage distortion appears between 0.5s and 1.5s. This
distorted grid voltage (Fig. 16a) would cause difficulty with
the vector control. However, the neural network vector
controller still performed very well under this condition, as
shown in Fig. 16b, which demonstrates the robustness of the
neural network vector controller trained using the proposed
FATT+LM algorithm.

a) PCC voltage

b) d- and q-axis currents
Fig. 16 d-q current under distorted grid voltage

C. Performance evaluation of neural network vector
controller under PWM saturation
In practice, outer-loop controllers (Fig. 3) may generate a

d-q reference current signal that could cause the converter to
exceed its PWM saturation limit. When the actual inductance
is higher than the nominal inductance, it is easier for the GCC
to reach PWM saturation, as explained in [35], particularly
under reactive power generation conditions. Under PWM
saturation, the conventional vector control method will
malfunction [4]. However, the RNN controller trained by
FATT+LM can automatically maintain the effectiveness of the
d-axis current control while satisfying the q-axis control needs
as much as possible, as shown in Fig. 17. The controller
automatically operates in this mode during the period between
1s and 2s when there is a high demand for reactive power.
This property would ensure the appropriate operation of the
GCC under PWM saturation constraints.

Fig. 17 d-q current under PWM saturation

D. Performance evaluation of neural network vector
controller under grid voltage control mode
Fig. 18 depicts the performance of the trained neural

network vector controller in PCC voltage control mode. In the
figure, a grid voltage fault simulated by connecting with a
fault load appears between 4s and 6s, causing a sudden PCC
voltage reduction. However, the controller trained using the
proposed FATT+LM algorithm performed very well, as
shown in Fig. 18. Due to the converter’s PWM saturation
constraint, the RNN controller could not maintain the PCC
voltage at 1 per unit to compensate for the voltage reduction
during the fault (Fig. 18a). Instead, it operated by maintaining
the effectiveness of the d-axis current control while providing
PCC voltage support control as much as possible (Fig. 18b).
At t=6s, when the fault was cleared, the neural network vector
controller returned to its normal operating condition, and the
PCC bus voltage quickly recovered to the rated bus voltage.

a) PCC voltage

b) d-q current

Fig. 18 RNN controller under PCC voltage control mode

VI. CONCLUSIONS
 This paper investigated how to use Levenberg–Marquardt

(LM) to train a RNN for optimal control of a GCC and studied
the relationship between the RNN, ideal optimal controller and
suboptimal controller for GCCs. In particular, we explained
how to extend the LM algorithm for training a RNN by
showing how the Jacobian matrix can be defined and found
for RNNs. The paper demonstrates that the proposed LM-
FATT algorithm is efficient and reliable and converges faster.
The training results show that the proposed LM-FATT
algorithm can solve the RNN tracking problem very well.

The study showed that although an ideal optimal controller
for a GCC can track a target in one time step, it usually
requires a control voltage that is beyond the physical system
constraints. Other issues associated with an ideal controller
include sensitivity to variations in system parameters and
noises, and poor performance at a low sampling rate.

0.45 0.475 0.5 0.525 0.55 0.575 0.6
-500

-250

0

250

500

P
C

C
 v

o
lta

g
e

 (
V

)

Time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-200

-100

0

100

200

d
-q

 C
ur

re
n
ts

 (
A

)

Time (sec)

id-ref iq-ref id iq

0 0.5 1 1.5 2 2.5 3
-200

-100

0

100

200

300

d
-q

 C
u
rr

e
n
ts

 (
A

)

Time (sec)

id-ref iq-ref id iq

0 1 2 3 4 5 6 7 8
660

670

680

690

700

710

720

V
ol

ta
ge

 (
V

)

Time (sec)

0 1 2 3 4 5 6 7 8
-200

-100

0

100

200

d
-q

 C
u
rr

e
n
ts

 (
A

)

Time (sec)

id-ref iq-ref id iq

However, the proposed RNN vector controller achieved close
to ideal controller performance, even under many challenging
dynamic, variable, and power converter switching conditions.
The RNN controller can use a much lower sampling rate than
that used for the ideal optimal controller while maintaining
performance equivalent to that of the ideal optimal controller
at a high sampling rate. This would significantly reduce the
computing time and enhance the deployment of the proposed
RNN controller to real-life systems.

REFERENCES
[1] G. Buticchi, D. Barater, E. Lorenzani, and G. Franceschini, “Digital

Control of Actual Grid-Connected Converters for Ground Leakage
Current Reduction in PV Transformerless Systems,” IEEE Transactions
on Industrial Informatics, Vol. 8, No. 3, August 2012.

[2] J. Shen, H. Jou, and J. Wu, “Novel Transformerless Grid-Connected
Power Converter with Negative Grounding for Photovoltaic Generation
System,” IEEE Transactions on Power Electronics, Vol. 27, No. 4, April
2012.

[3] X. Zhou, S. Lukic, S. Bhattacharya, and A. Huang, “Design and Control
of Grid-Connected Converter in Bi-Directional Battery Charger for
Plug-In Hybrid Electric Vehicle Application,” Vehicle Power and
Propulsion Conference, 2009.

[4] S. Li, T.A. Haskew, Y. Hong, and L. Xu, “Direct-Current Vector
Control of Three-Phase Grid-Connected Rectifier-Inverter,” Electric
Power System Research (Elsevier), Vol. 81, Issue 2, February 2011, pp.
357-366.

[5] S. Li, M. Fairbank, D. C. Wunsch, and E. Alonso, “Vector Control of a
Grid-Connected Rectifier/Inverter Using an Artificial Neural Network,”
Proceedings of 2012 IEEE World Congress on Computational
Intelligence, Brisbane, Australia, June, 10-15, 2012.

[6] S. Li, M. Fairbank, C. Johnson, D.C. Wunsch, and E. Alonso, “Artificial
Neural Networks for Control of a Grid-Connected Rectifier/Inverter
under Disturbance, Dynamic and Power Converter Switching
Conditions,” IEEE Transactions on Neural Networks and Learning
Systems, 2014, 25(4), 738-750 .

[7] S. Li, M. Fairbank, X. Fu, D. C. Wunsch, and E. Alonso, “ Nested-Loop
Neural Network Vector Control of Permanent Magnet Synchronous
Motors,” Proceedings of 2013 International Joint Conference on Neural
Networks, Dallas, Texas, USA, August 3-8, 2013.

[8] R. J. Williams and D. Zipser, “A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks,” Neural Computation,
Vol.1, Issue 2, Summer 1989, pp. 270-280.

[9] R. J. Williams and D. Zipser, “Gradient-Based Learning Algorithms for
Recurrent Networks and Their Computational Complexity,” in: Back-
Propagation: Theory, Architectures and Applications, Hillsdale, NJ:
Lawrence Erlbaum Associates,1995, ch.13, pp. 433-486.

[10] H. Jaeger, “Tutorial on Training Recurrent Neural Networks, Covering
BPPT,RTRL, EKF and the ‘Echo State Network’ Approach,” GMD
Report 159, German National Research Center for Information
Technology, 2002.

[11] S. Li, D. C. Wunsch, E. O’Hair, and M. G. Giesselmann, “Extended
Kalman Filter Training of Neural Netowrks on a SIMD Parallel
Machine,” Journal of Parallel and Distributed Computing, Vol. 62,
Issue 4, April 2002, pp 544–562.

[12] G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of Nonlinear
Dynamical Systems with Kalman Filter Trained Recurrent Networks,”
IEEE Transactions on Neural Networks, Vol. 5, No. 2, March 1994, pp.
279-297.

[13] R. Ilin, R.T Kozma and P. J, Werbos, “Beyond Feedforward Models
Trained by Backpropagation: A Practical Training Tool for a More
Efficient Universal Approximator,” IEEE Transactions on Neural
Networks, Vol. 19, No.6, June 2008, pp. 929-937.

[14] K. Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares,” Quart. Appl. Math., Vol. 2, 1944, pp. 164–
168.

[15] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of
Nonlinear Parameters,” Journal of the Society for Industrial and Applied
Mathematics, Vol. 11, June 1963, pp. 431–441.

[16] M. T. Hagan and M. B. Menhaj, “Training Feedforward Networks with
the Marquardt Algorithm,” IEEE Transactions on Neural Networks, Vol.
5, No. 6, November 1994, pp. 989-993.

[17] Y. Tanoto, W. Ongsakul and C. O.P. Marpaung, “Levenberg-Marquardt
Recurrent Networks for Long Term Electricity Peak Load
Forecasting,”TELKOMNIKA, Vol. 9, No. 2, August 2011, pp. 257-266.

[18] L. Chan and C. Szeto, “Training Recurrent Network with Block-
Diagonal Approximated Levenberg-Marquardt Algorithm,” Proceedings
of 1999 International Joint Conference on Neural Networks,
Washington, DC, Vol. 6, 1999, pp. 4043-4047.

[19] L. Chan and C. Szeto, “Weight Groupings in the Training of Recurrent
Networks,” Proceedings of 2000 International Joint Conference on
Neural Networks, Como, Italy, Vol. 3, 2000, pp. 21-26.

[20] D. Zhi, L. Xu, and B.W. Williams, “Improved Direct Power Control of
Grid-Connected DC/AC Converters,” IEEE Transactions on Power
Electronics, Vol. 24, No. 5, May 2009, pp. 1280-1292.

[21] J.A. Restrepo, J.M. Aller, J.C. Viola, A. Bueno, and T.G. Habetler,
“Optimum Space Vector Computation Technique for Direct Power
Control,” IEEE Transactions on Power Electronics, Vol. 24, No. 6, June
2009, pp. 1637-1645.

[22] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics:
Converters, Applications, and Design, 3rd Ed., John Wiley & Sons Inc.,
October 2002.

[23] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

[24] D. V. Prokorov and D. C. Wunsch, “Adaptive Critic Designs,” IEEE
Transactions on Neural Networks, Vol. 8, No. 5, 1997, pp. 997–1007.

[25] M. Fairbank, S.Li, X. Fu, E. Alonso, and D. Wunsch, “An Adaptive
Recurrent Neural-Network Controller Using a Stabilization Matrix and
Predictive Inputs to Solve a Tracking Problem under Disturbances,”
Neural Networks (2013),http://dx.doi.org/10.1016/j.neunet.2013.09.010

[26] S. Haykin, Neural Networks – A Comprehensive Foundation, Upper
Saddle River, NJ: Prentice Hall (1999).

[27] P. J. Werbos, “Backpropagation Through Time: What It Does and How
to Do It,” Proceedings of the IEEE, Vol. 78, No. 10, 1550-1560, 1990.

[28] P. J. Werbos, “Neural Networks, System Identification, and Control in
the Chemical Process Industries,” in Handbook of Intelligent Control,
White and Sofge, Eds. New York: Van Nostrand Reinhold, 1992, ch. 10,
sec. 10.6.1–10.6.2, pp. 339–343. [Online]. Available: www.werbos.com

[29] P. J. Werbos, “Backwards Differentiation in AD and Neural Nets: Past
Links and New Opportunities,” in Automatic Differentiation:
Applications, Theory, and Implementations, ser. Lecture Notes in
Computational Science and Engineering, H. M. B¨ucker, G. Corliss, P.
Hovland, U. Naumann, and B. Norris, Eds. Springer, 2005, pp. 15–34.

[30] M. T. Hagan, H. B. Demuth, and M. H. Beale, “Neural Network Design,”
Boston: PWS, 2002, ch.12, pp 19-23.

[31] M. Fairbank and E. Alonso, “Efficient Calculation of the Gauss-Newton
Approximation of the Hessian Matrix in Neural Networks,” Neural
Computation, Vol. 24(3), 2012, pp. 607–610.

[32] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
“Numerical Recipes in C: The Art of Scientific Computing (second
edition),” Cambridge University Press, October 1992, pp. 994.

[33] A. Mullane, G. Lightbody, and R. Yacamini, “Wind-Turbine Fault Ride-
Through Enhancement,” IEEE Transactions on Power Systems, Vol. 20,
No. 4, Nov. 2005.

[34] R. Pena, J.C. Clare, and G. M. Asher, “Doubly Fed Induction Generator
Using Back-to-Back PWM Converters and Its Application to Variable
Speed Wind-Energy Generation,” IEEE Proc.-Electr. Power Appl., Vol.
143, No 3, May 1996, pp. 231-241.

[35] S. Li, T.A. Haskew, and L. Xu, “Control of HVDC Light Systems Using
Conventional and Direct-Current Vector Control Approaches,” IEEE
Transactions on Power Electronics, Vol. 25, No. 12, December 2010,
pp. 3106-3118.

[36] M. Riedmiller and H. Braun, “A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm,” Proc. of the IEEE
Intl. Conf. on Neural Networks,” San Francisco, CA, 1993, pp. 586-591.

[37] G.F. Franklin, J.D. Powell, M.L. Workman, Digital Control of Dynamic
Systems, 3rd edition, Addison-Wesley, 1998.

	I. Introduction
	II. Optimal Control of Grid-Connected Converter
	A. Grid-Connected Converter Model
	B. GCC Vector Control
	C. Dynamic Programming in GCC Vector Control
	D. Ideal Optimal and Suboptimal Vector Control Models

	III. Neural Network Vector Controller and Proposed FATT-LM Training Algorithm
	A. GCC Neural Network Vector Controller
	B. Define RNN controller function
	C. Backpropagation Through Time (BPTT)
	D. Levenberg-Marquardt algorithm, and its applicability to RNNs
	E. Levenberg-Marquardt algorithm for non-sum-of-squares cost functions
	F. Forward Accumulation Through Time (FATT)
	G. Computational complexity study
	H. Training algorithm for RNN: LM plus FATT
	I. Off-line training vs on-line training

	IV. Comparison of FATT-LM and BPTT in Training an RNN Controller
	A. FATT is equivalent to BPTT
	B. RNN training algorithm comparison: LM+FATT and BPTT+RPROP
	C. Different constant effects in training a RNN
	D. Comparison of RNN controllers with different input structures
	E. Comparison of optimal controller and RNN controller

	V. Performance Evaluation OF Trained Neural Network Vector Controller
	A. Performance comparison of neural network vector controller and ideal optimal controller
	B. Performance evaluation of neural network vector controller under distorted grid voltage conditions
	C. Performance evaluation of neural network vector controller under PWM saturation
	D. Performance evaluation of neural network vector controller under grid voltage control mode

	VI. Conclusions
	References

