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Abstract -- This paper investigates how to train a recurrent 
neural network (RNN) using the Levenberg-Marquardt (LM) 
algorithm, as well as how to implement optimal control of a grid-
connected converter (GCC) using a RNN. To successfully and 
efficiently train a RNN using the LM algorithm, a new Forward 
Accumulation Through Time (FATT) algorithm is proposed to 
calculate the Jacobian matrix required by the LM algorithm. 
This paper explores how to incorporate FATT into the LM 
algorithm. The results show that the combination of the LM and 
FATT (LM-FATT) algorithms trains RNNs better than the 
conventional Backpropagation Through Time (BPTT) algorithm. 
The paper presents an analytical study on the optimal control of 
GCCs, including theoretically ideal optimal and suboptimal 
controllers. To overcome the inapplicability of the optimal GCC 
controller under practical conditions, a new RNN controller with 
an improved input structure is proposed to approximate the ideal 
optimal controller. The performance of an ideal optimal 
controller and a well-trained RNN controller was compared in 
close to real-life power converter switching environments, 
demonstrating that the proposed RNN controller can achieve 
close to ideal optimal control performance, even under low 
sampling rate conditions. The excellent performance of the 
proposed RNN controller under challenging and distorted system 
conditions further indicates the feasibility of using a RNN to 
approximate optimal control in practical applications. 
 
Index Terms – optimal control, recurrent neural network, 
Levenberg-Marquardt, Forward Accumulation Through Time, 
Jacobian matrix, Backpropagation Through Time, dynamic 
programming, d-q vector control, grid-connected converter  

I.  INTRODUCTION 
N modern electric power systems, power electronic 
converters play an increasingly important role in the 

integration of smart grids, renewable energy resources and 
energy storage devices (Fig. 1). A grid-connected converter 
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(GCC) is a key component that physically connects wind 
turbines, solar panels, or batteries to the grid [1], [2], and [3]. 
A critical issue for energy generation from renewable sources 
and for smart grid integration is the control of the GCC (green 
boxes in Fig. 1). Traditionally, this type of converter is 
controlled using a standard decoupled d-q vector control 
approach [4]. However, recent studies have noted the 
limitations of the standard vector controller [4]. Practically, 
these limitations could result in low power quality, inefficient 
power generation and transmission, and a possible loss of 
electricity, all of which cause loss of dollars for both electric 
utility companies and electric energy customers.  
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Fig.1 A microgrid with GCC-interfaced distributed energy sources 

Recent research [5] has shown that recurrent neural 
networks (RNNs) can be trained and used to control grid-
connected converters. In [5], the RNN implemented a dynamic 
programming (DP) algorithm and was trained using 
Backpropagation Through Time (BPTT). BPTT was combined 
with Resilient Propagation (RPROP) to accelerate the training. 
Compared to conventional standard vector control methods, 
the neural network vector controller produced an extremely 
fast response time, low overshoot, and, in general, the best 
performance [6]. In [7], it was shown that the neural network 
vector control technique can be extended to other applications, 
such as brushless dc motor drives. 

For both applications, conventional control techniques, 
such as PID and predictive control, were integrated into the 
DP-based neural network design [5]-[7]. This unifying 
approach produced some important advantages, including zero 
steady-state error, great control under physical system 
constraints, and the ability to exhibit adaptive control 
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behavior, even though the RNN controller was trained entirely 
offline. However, for such an integrative neural network 
control structure, training the RNN controller was very 
difficult using BPTT combined with RPROP due to issues 
such as slow convergence and oscillation problems that 
usually cause training to diverge.  This paper also addresses 
the practical limitations that may prevent the creation of an 
optimal neural network controller based on DP. Both issues 
have caused great challenges in applying the neural network 
controller to a real-life system, which served as the motivation 
for the research presented here.  

In [8], Real Time Recurrent Learning (RTRL) was 
proposed to train a RNN. However, the high computational 
cost of the RTRL causes it to be appropriate only for the 
online training of a small RNN [8]-[10]. Alternatively, 
Extended Kalman Filters (EKF) have proven useful in training 
RNN controllers for linear and nonlinear dynamical systems 
[11]-[13]. Nevertheless, EKFs are also computationally 
expensive because each estimation requires numerous matrix 
calculations. In addition, the eventual success and quality of 
EKF training depends highly on professional experience, 
including an appropriate selection of the network architecture, 
learning rates, and network inputs [10]. Levenberg-Marquardt 
(LM) ([14]-[16]) is used widely to train feed-forward 
networks. Although some research has shown the potential of 
training RNNs using LM [17]-[19], it has not been used 
broadly for this purpose. Furthermore, none of these studies 
have described how the Jacobian matrix was defined and 
calculated for a RNN. In the study presented in this paper, we 
investigated how the Jacobian matrix can be evaluated for a 
RNN by unrolling it forward through time. 

In summary, the purpose of the study was to implement 
optimal GCC control under practical constraints, and to 
investigate how to utilize LM to improve RNN training. 
Accordingly, the defining features and contributions of the 
paper include: 1) an analytical study of the ideal optimal and 
suboptimal GCC controllers, 2) a Forward Accumulation 
Through Time (FATT) algorithm to calculate the Jacobian 
matrix efficiently for RNN training, 3) an approach to 
integrate FATT with LM to accelerate RNN training, and 4) a 
new RNN vector controller with improved input structure for a 
GCC to increase RNN adaptability to broad vector control 
applications.  

The remainder of the paper is organized as follows. First, 
Section II introduces a GCC vector control model and 
analyzes ideal optimal GCC control characteristics. Section III 
illustrates the proposed RNN controller structure; it also 
explains how to extend LM to train a RNN and how to 
calculate the Jacobian matrix required by LM for efficient 
RNN training. Section IV compares the training performance 
of the proposed FATT-LM training algorithm with that of the 
BPTT training algorithm. Section V compares the 
performance of the ideal optimal controller and the neural 
network controller and evaluates the performance of the 
proposed RNN controller under challenging GCC operating 
conditions. Finally, the paper concludes with a summary of the 
main points. 

II.  OPTIMAL CONTROL OF GRID-CONNECTED CONVERTER 

A.  Grid-Connected Converter Model 
Fig. 2 shows the schematic of a GCC, which has a dc-link 

capacitor on the left and a three-phase voltage source 
representing the voltage at the Point of Common Coupling 
(PCC) of the ac system on the right. In the d-q reference 
frame, the voltage balance across the grid filter is given in Eq. 
(1), where sω is the angular frequency of the grid voltage, and 
L  and R represent the inductance and resistance of the grid 
filter.  
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Fig. 2 Grid-connected converter schematic 

From Eq. (1), the state-space model of the integrated GCC 
and grid system can be obtained using Eq. (2), where the 
system states are di  and qi , grid PCC voltages dv  and qv  are 

normally constant, and converter output voltages 1dv  and 1qv  
are the control voltages that are to be specified by the output 
of the controller. For digital control implementation using 
neural networks, the continuous state-space model of the 
system in Eq. (2) must be converted to the discrete state-space 
model represented by Eq. (3), where sT stands for the sampling 
period, and k  is an integer time step. We used 0.001sT s= in 
all experiments. To simplify the expressions, the discrete 
system model in Eq. (3) is rewritten in Eq. (4), where ( )dqu k



is 
represented by Eq.  (5).  
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B.  GCC Vector Control  
Typically, a GCC has a nested-loop vector control 

structure consisting of a faster inner current loop and a slower 
outer loop, as shown in Fig. 3 [4]. In this figure, the d-axis 
loop is used for active power or dc-link voltage control, and 
the q-axis loop is used for reactive power or grid voltage 
support control. The active and reactive power control is 
converted into decoupled d-q current control, which 
implements the final control function by applying a voltage 
signal to the converter [20].  



 

The control signal applied directly to the converter is a 
three-phase sinusoidal voltage. The general strategy for 
transforming  d-q control signals into three-phase sinusoidal 
signals is also illustrated in Fig. 3, in which *

1dv and *
1qv are the 

d- and q-axis output voltages generated by the controller. The 
two d- and q-axis voltages are converted to the three-phase 
sinusoidal voltage signals, *

1av , *
1bv  and *

1cv , through Park 
transformation [21] to control the voltage-source converter. 
The ratio of the GCC output voltage 1dv and 1qv , to the output 

voltage of the current-loop controller *
1dv and *

1qv , is a gain of

PWMk , which equals 2dcV  if the amplitude of the triangle 
voltage waveform in the PWM scheme is 1V [22].  
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C.  Dynamic Programming in GCC Vector Control 
Dynamic programming (DP) employs Bellman’s 

optimality principle [23] for solving optimization and optimal 
control problems. The typical structure of the discrete-time DP 
includes a discrete-time system model and a performance 
index or cost associated with the system [24]. 

The DP cost function associated with the vector-controlled 
system is defined as 

 ( )( ) ( ( )), 0,0 1k j
dq dq

k j
C i j U e k jγ γ

∞
−

=

= > < ≤∑
 

   (6) 

where γ is a discount factor, and U is defined as 
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in which α  is a constant. The function ( )C ⋅ , which depends 

on the initial time j and the initial state ( )dqi j


, is referred to as 

the cost-to-go of state ( )dqi j


 of the DP problem. The objective 

is to choose a vector control sequence ( )dqu k


 that minimizes 

the function ( )C ⋅  in Eq. (6).  

D.  Ideal Optimal and Suboptimal Vector Control Models  
The GCC dynamic model in Eq. (4) is linear, so the ideal 

optimal control problem can be represented as  
 ( ) _min 0 ( ( )) 0 ( ) ( ) 0dq dq dq refC U e k i k i k= ⇔ ≡ ⇔ − ≡

  

   (8) 

Then, according to Eq. (4), the optimal control problem can be 
solved directly by  
 1

_( ) ( 1) ( )dq dq ref dqu k i k i k−  = + − B A
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   (9) 

where , 1, .k j j= + ∞  Based on Eq. (5), the control voltage 
can be obtained by 
 1
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 Furthermore, consider a special case in the steady state in 
which _ ( 1) ( )dq ref dqi k i k+ =

 

. Eq. (9) can be simplified as  

 ( )1( ) ( )dq dqu k i k−= −B I A
 

  (11) 

where ( )1− −B I A  is a stabilization matrix proposed in [7] and 
[25]. 

The ideal optimal controller in Eq. (10) can regulate the 
system to catch up with the reference currents in one time step, 
which is the fastest response time. However, the ideal optimal 
controller may generate a control voltage signal 1dqv



 beyond 
the converter’s pulse width modulation (PWM) constraint in 
order to meet the immediate current tracking requirement. To 
avoid a large control voltage signal, an extension of the one-
step ideal optimal controller was also studied and will be 
discussed later; it is also a special analytical solution to the DP 
problem. The controller uses a constant control signal 

* ( )  dq dqu k u≡




to catch up with the reference within L  time 

steps. Then, from Eq. (4), ( )dqi k L+


 can be solved recursively, 

as shown by 
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Hence, the required *  dqu


can be found as follows: 
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Based on Eq. (5), the control voltage can be obtained as 
follows: 

 
1

1 _( )  ( ) ( )
L

L
dq dq ref dq dqv k i k L i k v

−
 −  = + − +   − 

I A B A
I A

   

  (14) 

Eq. (15) proves that Eq. (9) is the limit form of Eq. (13):  
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Furthermore, Eq. (10) is the limit form of Eq. (14). Therefore, 
Eq. (14) can be considered a suboptimal controller ( 1L > ) in 
the sense that the controller’s response speed is determined by 
time step L . After dqi



 catches up with _dq refi


, that is, when it 
reaches a steady state, Eq. (11) is applied to control the system. 

Fig. 4 illustrates an example of the ideal optimal controller, 
as specified in Eq. (10), for the GCC system. The figure 
reveals that the ideal optimal controller exhibits perfect 
tracking, the fastest response without any delay, no overshoot, 



 

and no steady-state error. Fig. 5 demonstrates the suboptimal 
controller, Eq. (14), for GCC control, with L  equal to 1, 3, 5, 
7, and 9, respectively. As shown in Fig. 5, the controller can 
follow the reference current over exactly L  time steps. 

 
Fig. 4 Ideal optimal controller for GCC 

 
Fig. 5 GCC suboptimal controller in L  steps 

III.  NEURAL NETWORK VECTOR CONTROLLER AND PROPOSED 
FATT-LM TRAINING ALGORITHM 

A.  GCC Neural Network Vector Controller   
The ideal optimal controller, Eq. (10), and suboptimal 

controller, Eq. (14), were deduced under the assumption that 
the exact GCC system parameters were known. In practice, the 
system parameters may deviate significantly from its nominal 
values. Particularly, the inductance of the grid filter could be 
affected by the temperature and grid voltage frequency. 
Changes in the system parameters will affect the performance 
of both the ideal optimal and suboptimal controllers. Thus, 
these controllers are not robust in practice. Therefore, a RNN 
vector controller is employed to approximate the ideal optimal 
controller. 

Fig. 7 depicts the overall RNN vector-control structure of 
the GCC current-loop, which combines the vector control 
technique with the DP-based neural network design. The 
neural network component shown in Fig. 7 is a fully 
connected multi-layer perceptron [26] with 2 hidden layers 
having 6 nodes each, and 2 output nodes, with hyperbolic 
tangent functions at all nodes, as detailed in Fig. 6. 

To avoid neural network input saturation, the inputs are 
regulated to the range [-1, 1] using the hyperbolic tangent 

function, as shown in Fig. 6. The first 4 input nodes are 
tanh( / )dqe Gain



 and tanh( / 2)dqs Gain


, where 

 ( ) ( ) ( )_dq dq dq refe k i k i k= −
  

  (16) 
is referred to as the “error input term,” and  
 

0
( ) ( )skT

dq dqs k e t dt= ∫
 

  (17) 

is referred to as the “integral term.” Unlike [6], this paper also 
proposes an RNN controller that achieves an improved input 
structure by using two error terms and two integral terms as 
the network inputs, i.e., removing the d-q current inputs 
indicated by the blue dashed lines in Fig. 7. This network 
input scheme is particularly important when some network 
states cannot be measured, such as the rotor currents in the 
control of a squirrel-cage induction motor. This improvement 
also reduces the number of weights between the input layer 
and the first hidden layer and requires less calculation effort in 
the real control loop. 
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B.  Define RNN controller function   
Based on the proposed RNN controller structure, the RNN 

can be denoted as ( ( ), ( ), )dq dqR e k s k w
  

, which is a function of

( )dqe k


, ( )dqs k


 and w


. If the RNN takes ( )dqi k


 as inputs, the 

function ( )R ⋅ can also be denoted as ( ( ), ( ), ( ), )dq dq dqR i k e k s k w
   

.

                  

 

Thus, the control action ( )dqu k


 is expressed by 

 1( ) ( ) ( ( ), ( ), )dq dq dq PWM dq dq dqu k v k v k R e k s k w v= − = −
      

  (18) 

where PWMk  is the  PWM gain, as explained in Section II.B. 

The converter output voltages 1dv  and 1qv  are proportional 
to the control voltage of the RNN output, as explained in 
Section II.B. Although Fig. 6 shows a feed-forward network 
configuration, the controller is considered a recurrent network 
because the feedback signal generated by the system in Eq. (5) 
acts as a recurrent network connection from the output of the 
system shown in Fig. 7 back to the input.   

C.  Backpropagation Through Time (BPTT)  
Before defining the main algorithm of this paper, i.e., 

LM+FATT, we first review the BPTT method used in [6] for 
this GCC problem for the purpose of comparison, as discussed 
in Section IV.  
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Algorithm 1: BPTT algorithm for training a GCC RNN vector 
controller 

1: 0C ← , (0) 0dqe ←




, (0) 0←




dqs , 
2: {Unroll a full trajectory} 
3: for k = 0 to N-1 do  

4: ( ) ( )( )1 , ( ), ( ),dq PWM dq dq dqv k k R i k e k s k w←
    

 

5: ( ) ( ) ( )11dq dq dq dqi k i k v k v + ← + − A B
   

 

6: ( ) ( )_( 1) 1 1dq dq dq refe k i k i k+ ← + − +
  

 

7: ( )( 1) ( ) ( 1) ( )
2
s

dq dq dq dq
T

s k s k e k e k+ ← + + +
   

 

8: ( ( 1))k
dqC C U e kγ← + +


 
9: end for 

10: {Backward pass along trajectory} 

11: ( )
0, 0, 0

( )dq dq

C C C
w i N s N

∂ ∂ ∂
← ← ←

∂ ∂ ∂
     

12: for k = N-1  to 0 step -1 do 

13: ( ) ( )1 1
T

dq dq

C C
v k i k

∂ ∂
←

∂ ∂ +
B 

 

14:  
( )

( )1( ) ( 1) ( )PWM
dq dq dq dq

R kC C Ck
s k s k s k v k

∂∂ ∂ ∂
← +

∂ ∂ + ∂ ∂
   

 

15: 

( )
( )
( ) ( ) ( )

( ) ( ) ( )

1 1

( ( ))
2 1

T
PWM

dq dq dq dq

dqks

dq dq dq

R kC C Ck
i k i k v k i k

U e kT C C
s k s k i k

γ

∂∂ ∂ ∂
← +

∂ ∂ ∂ ∂ +

  ∂∂ ∂
+ + + 

∂ + ∂ ∂  

A   



            
 

16: 
( )
( ) ( )1

PWM
dq

R kC C Ck
w w w k v k

∂∂ ∂ ∂
← +

∂ ∂ ∂ ∂
     

17: end for 

18: {on exit, C
w

∂
∂
  holds for the whole trajectory} 

BPTT is gradient descent on ( )( ),dqC i j w


   with respect to 

the weight vector of the recurrent neural network. In general, 
the BPTT algorithm consists of two steps, a forward pass that 
unrolls a trajectory, followed by a backward pass along the 
whole trajectory, which accumulates the gradient descent 
derivative. 

Alg. 1 provides pseudo code for both stages of this process. 
Lines 1-9 evaluate a trajectory of length N  using Eqs. (4) and 
(5). The second half of the algorithm, from lines 10-18, 
calculates the desired gradient /C w∂ ∂



. The derivation of the 
gradient computation part of the algorithm (lines 11-18) is 
exact and follows the method detailed in [27], which is 
referred to as generalized backpropagation [28], or automatic 
differentiation [29]. The derivatives ( ) /R k w∂ ∂



, ( ) / ( )dqR k i k∂ ∂


 , 

and ( ) / ( )dqR k s k∂ ∂


 are calculated according to the standard 
neural network back-propagation rule [30], which is basically 
the chain rule for computing the derivatives of the 
composition of two or more functions. 

During the evaluation of the trajectory forward pass (lines 
3-9 of Alg. 1), and in all subsequent pseudo code in this paper, 
the integral input term of Eq. (17)  was evaluated using the 
following trapezoid formula in Eq. (19), instead of the forward 
Euler formula in [6]: 

 
1

( 1) ( )
( ) , (0) 0

2

k
dq dq

dq s dq
j

e j e j
s k T e

=

− +
≈ =∑

 

  

   (19) 

This approximation can also be rewritten as a recurrence 
relation: 

 
( 1) ( )

( ) ( 1) , (0) 0
2

dq dq
dq dq s dq

e k e k
s k s k T s

− +
= − + =

 

   

   (20) 

Hence, Eq. (20) appears as line 7 of Alg. 1.  
 

D.  Levenberg-Marquardt algorithm, and its applicability to 
RNNs 

The Levenberg-Marquardt (LM) algorithm is widely used 
to train feed-forward networks and provides a nice 
compromise between the speed of Newton’s method and the 
guaranteed convergence of the steepest descent. Thus, LM 
appears to be the fastest neural network training algorithm for 

Fig. 7 GCC neural network vector control structure.  va1,b1,c1 represents the GCC output voltage in the three-phase ac system, and the 
corresponding voltages in the d-q reference frame are vd1 and vq1. va,b,c is the three-phase PCC voltage, and the corresponding voltages in 
the d-q reference frame are vd and vq. ia,b,c stands for the three-phase current flowing from the PCC to the GCC, and the corresponding 
currents in the d-q reference frame are id and iq. vd1

* and vq1
*
 are the d- and q-axis voltages from the RNN controller, and the 

corresponding control voltage in the three-phase domain is va1,b1,c1. 



 

a moderate number of network parameters [30]. Although LM 
has achieved great success in training feed-forward networks, 
it is not sufficiently straightforward for use in training RNNs 
directly. This paper develops a mechanism by which to train a 
recurrent network based on LM, which can be applied to any 
problem in which the RNN has fixed target outputs at each 
time step, such as the GCC tracking control problem. 

LM can minimize a non-linear sum-of-squares cost 
function, such as in a case in which the cost function can be 
written as 2( ) ( )

p
C w V p= ∑


, where p is the training “pattern” 

index, and ( )V p is the error  for pattern p . Then, the LM 
algorithm consists of the following weight update [30]: 

 
1

( ) ( ) ( )T Tw J w J w J w Vµ
−

 ∆ = − + I
    

   (21) 

where ( )J w


 is the Jacobian matrix of V


with respect to the 

weight vector of the neural network, V


 is defined by 

 
(1)

( )

V
V

V N

 
 =  
  



    (22) 

where I  is the identity matrix, and µ  is a scalar regulation 
parameter that is dynamically adjusted during learning (see 
Fig. 8). The quantity ( ) ( )TJ w J w

 

is called the Gauss-Newton 
matrix, and it approximates the Hessian matrix for the cost 
function [31]. Hence, LM approximates the Newton method in 
solving the cost-minimization problem.   
 To extend the applicability of LM to the RNN case, we 
simply define ( )V k  as the error of the output of the RNN at 
time step k . Hence, if there are N time steps in the state 
trajectory and M weights in the neural network, then the 
Jacobian matrix ( )J w



is defined for a RNN as  

 
1

1

(1) (1)

( )
( ) ( )

M

M

V V
w w

J w
V N V N

w w

∂ ∂ 
 ∂ ∂ 
 =
 ∂ ∂ 
 ∂ ∂ 





  



  (23) 

 This completes the definition that extends LM for 
applicability to RNNs. Derivatives of the form ( ) / iV k w∂ ∂ will 
be dependent upon ( ) / iV j w∂ ∂  for j i<  (by the chain rule); 
therefore, the Jacobian matrix must be calculated with care. 
The FATT algorithm presented in Section III.F shows the 
correct way to perform this calculation. 

E.  Levenberg-Marquardt algorithm for non-sum-of-squares 
cost functions 

If the performance error function is not a sum of squares, 
then the LM weight update equation (Eq. (21)) is not directly 
applicable. 

In the definition of the cost function ( )C ⋅  and the local 
cost ( )U ⋅ , there is a constant numberα . When 1α = , the cost 
function is just the sum of squares of errors. In such cases, LM 
can be applied directly to train the RNN. However, the 

selection of the constant number α has an important impact 
on RNN training. Better convergence in RNN training can be 
achieved when α is a fractional number, as demonstrated in 
Section IV.   

In order to use LM for any α values, the cost function ( )C ⋅  
defined in Eq. (6) must be modified. Consider the cost 

function ( ( ))k j
dq

k j
C U e kγ

∞
−

=

= ∑


 in which 1,γ = 1,=j  and 

1, , .= k N  Then, ( )C ⋅  can be written as  

 ( )
define ( ) ( ( )) 2

1 1
( ( )) ( )dq

N NV k U e k

dq
k k

C U e k C V k
=

= =

→= =←∑ ∑




   (24) 

 and the gradient /C w∂ ∂


 can be written in a matrix form as 

 
( )2

1

1

( )
( )2 ( ) 2 ( )

N

N
Tk

k

V k
C V kV k J w V
w w w

=

=

∂
∂ ∂

= = =
∂ ∂ ∂

∑
∑

 

        (25) 

F.  Forward Accumulation Through Time (FATT) 

In order to calculate the Jacobian matrix ( )J w


for a RNN 
efficiently, a new algorithm, Forward Accumulation Through 
Time (FATT), is proposed. FATT combines the computation 
of the Jacobian matrix ( )J w



 and the unrolling of the system 

trajectory, and calculates both system states ( )dqi k


and

( )V k w∂ ∂


, the k-th row of the Jacobian matrix ( )J w


, at time 
step st kT= . The following proposed FATT is suitable for a 
general constantα . 

To find the k-th row of the Jacobian matrix ( )J w


, the 

derivative ( )V k w∂ ∂


 is expressed as   

 
( )( ) ( )

( )
dq

dq

e kV k V k
w e k w

∂∂ ∂
=

∂ ∂ ∂



      (26) 

According to the definition of ( )V k  in Eq. (24),  

 
( )

( )

2 2 2

12 2 2

( ) [ ( ) ( ) ]
( ) ( )

            ( ) ( ) [ ( ) ( )]

d q
dq dq

d q d q

V k e k e k
e k e k

e k e k e k e k

α

α

α
−

∂ ∂
= +

∂ ∂

= +

 

   (27) 

Differentiating ( )dqe k


of Eq. (16) yields: 

 
( ) ( )dq dqe k i k

w w
∂ ∂

=
∂ ∂

 

     (28) 

The derivative ( 1)dqi k w∂ + ∂
 

 is found based on the recursive 
formula in Eq. (4) and the definition of the RNN controller in 
Eq. (18): 

 
( 1) ( ) ( )dq dq dqi k i k u k
w w w

∂ + ∂ ∂
= +

∂ ∂ ∂
A B

  

      (29) 

Differentiating Eq. (18) and utilizing Eq. (28) yields 

 
( ) ( ) ( )( ) ( ) ( )

( ) ( )
dq dq dq

PWM
dq dq

u k i k s kR k R k R kk
w e k w s k w w

 ∂ ∂∂ ∂ ∂
 = + +
 ∂ ∂ ∂ ∂ ∂ ∂ 

  

         (30) 

 



 

where ( ) /dqs k w∂ ∂
 

 is calculated according to Eq. (19) 

 
1

0

( ) ( 1) ( )
2

( ) ( )1            
2

k
dq dq dqs

j

k
dq dq

s
j

s k e k e kT
w w w

i j i k
T

w w

=

=

 ∂ ∂ − ∂
 = +

∂ ∂ ∂ 
 ∂ ∂
 = −

 ∂ ∂ 

∑

∑

  

  

 

 

   (31) 

Calculating ( )dqi k w∂ ∂
 

 requires a loop from 0j =  to j k= . 

Thus, the process for calculating ( )dqi k w∂ ∂
 

  and ( )V k w∂ ∂


 
is integrated into the process of unrolling the trajectory. 

Algorithm 2:  FATT algorithm to calculate the Jacobian 
matrix. 

1: (0) (0)0, (0) 0, (0) 0, 0, 0dq
dq dq

i
C e s

w w
ϕ∂ ∂

← ← ← ← ←
∂ ∂





     

    

2: {Calculate Jacobian matrix ( )J w


} 
3: for k = 0 to N-1 do  
4: ( ) ( ( ), ( ), )dq PWM dq dq dqu k k R e k s k w v← −

    

 

5:    
( ) ( )( ) 1

2
dq dq

s

s k i kkT
w w w

ϕ ∂ ∂∂ ← −
∂ ∂ ∂ 

 



    

6:  ( ) ( ) ( )( ) ( ) ( )
( ) ( )

dq dq dq
PWM

dq dq

u k i k s kR k R k R kk
w e k w s k w w

 ∂ ∂ ∂∂ ∂ ∂
 ← + +
 ∂ ∂ ∂ ∂ ∂ ∂ 

  

     

 

7: 
( 1) ( ) ( )dq dq dqi k i k u k
w w w

∂ + ∂ ∂
← +

∂ ∂ ∂
A B

  

    

8: ( ) ( ) ( )1dq dq dqi k i k u k+ ← +A B
  

 

9: ( ) ( )_( 1) 1 1dq dq dq refe k i k i k+ ← + − +
  

 

10: ( )( 1) ( ) ( 1) ( )
2
s

dq dq dq dq
T

s k s k e k e k+ ← + + +
   

 

11: ( ( 1))dqC C U e k← + +


 

12: 
( 1)( 1) ( ) dqi kk k

w w w
ϕ ϕ ∂ +∂ + ∂

← +
∂ ∂ ∂



 

    

13:  
( 1)( 1) ( 1)

( 1)
dq

dq

i kV k V k
w e k w

∂ +∂ + ∂ +
←

∂ ∂ + ∂



    

14: ( ) ( 1)the 1 th  row of ( ) V kk J w
w

∂ +
+ ←

∂



  

15: end for 

16: 
{on exit, the Jacobian matrix ( )J w



 is finished for the 
whole trajectory} 

 
Alg. 2 shows the entire FATT process for calculating the 

Jacobian matrix ( )J w


 for a complete trajectory. In the 

algorithm, 
1

( ) ( )
k

dq
j

k i jϕ
=

= ∑
 

and
1

( ) ( )( ) ( 1)k
dq dq

j

i j i kk k
w w w w

ϕ ϕ
=

∂ ∂∂ ∂ −
= = +

∂ ∂ ∂ ∂
∑

 

 

   

. 

Lines 5, 6, 7 and 13 of Alg. 2 come from Eqs. (31), (30), (29) 
and (26), respectively. 

The proposed FATT algorithm also can be applied to 
develop neural network vector controllers of other dynamic 
systems. To utilize FATT on another dynamic system, the new 
state-space model of the system must be incorporated into the 
FATT algorithm (Alg. 2), i.e., only those formulas that are 
related to the system’s state-space model need to be modified. 
This shows the generalizability and broad scope of the 
potential impact of our novel approach. 

G.  Computational complexity study 
In Alg. 2, N denotes the trajectory length. The most time-

consuming part of Alg. 2 is the matrix multiplications that 
involve m  by M dimensional matrices, where M stands for 
the number of all the weights, and m  represents the dimension 
of the RNN output layer, which is also the dimension of the 

state vector dqi


, i.e., 2m = . For example, line 6 of Alg. 2 
involves matrix multiplication between an m m×  matrix 

( ) / ( )dqR k e k∂ ∂


 and an m M× matrix ( ) /dqi k w∂ ∂
 

. Using 

standard matrix multiplication, this will take 2m M floating-
point operations (flops). Thus, combining it into the loop of 
N  time steps for the entire length of the trajectory, the FATT 
algorithm takes 2( )O m NM  flops to complete ( )J w



. 

H.  Training algorithm for RNN: LM plus FATT 
Fig. 8 illustrates the entire process for incorporating FATT 

into LM. In Fig. 8, maxµ stands for the maximum acceptable µ , 

deβ  and inβ signify the decreasing and increasing factors, 
respectively, that are used to adjust the learning rate during the 
training, maxEpoch represents the maximum number of training 

epochs, and
min

/C w∂ ∂


denotes the norm of the minimum 

acceptable gradient. 
 Besides calculating the Jacobian matrix, FATT can also 

output the DP cost, as shown in line 11 of Alg. 2. FATT* in 
Fig. 8 refers to the process for calculating the DP cost, which 
involves limiting the running of lines 5-7 and 12-13 in Alg. 2 
to save calculation time. The standard LM procedure was 
followed during the training in [16] and [30] (Fig. 8). In order 
to accelerate the calculation, the weights in Eq. (21) were 
updated using Cholesky factorization, which is roughly twice 
as efficient as LU decomposition for solving systems of linear 
equations [32]. 

The procedure for adjusting µ  also appears in Fig. 8. The 
parameter µ  is dynamically adjusted to ensure that the 
training follows the decreasing direction of the DP cost 
function. When µ increases, it approaches the steepest descent 
algorithm with a small learning rate; when µ  decreases, the 
algorithm approaches Gauss-Newton, which provides faster 
convergence. The following three training stopping conditions 
used are : 1) when the training epoch reaches the maximum 
number of training epochs, maxEpoch  , 2) when µ  is larger 

 



 

than  maxµ , and 3) when the gradient is smaller than the 

predefined minimum gradient
min

/C w∂ ∂


.  

Update weights W=W* 
and Decrease      µ=µ/η   

DP* < DP

Initialize training 
Epoach←1
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with W*=W+ΔW
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

min

C C

w w
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∂ ∂
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*
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  
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∂

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w∆


NO

maxEpoch Epoch<

Fig. 8 Training algorithm for RNN: LM+FATT 

I.  Off-line training vs on-line training  
The proposed FATT algorithm for calculating the Jacobian 

matrix does not require backward computing. Thus, it is 
suitable for on-line training and also can be combined with 
other algorithms, such as RPROP, for on-line learning. To 
compute the gradient ( 1) /V k w∂ + ∂



 at each time step, FATT 
can yield the needed gradient as the system propagates. 

LM is not appropriate for on-line learning because each 
training epoch may contain several iterations; thus, LM + 
FATT training in this paper was conducted off-line. The 
neural network trained off-line with the proposed LM + FATT 
demonstrated great performance under variable system 
parameters and noise conditions, as demonstrated in Section 
V. 

IV.  COMPARISON OF FATT-LM AND BPTT IN TRAINING AN 
RNN CONTROLLER  

To train the RNN controller, data for a typical GCC in 
renewable energy conversion applications were specified [33], 
[34], and [35]. These included: 1) a three-phase 60Hz, 690V 
voltage source signifying the grid, 2) a reference voltage of 
1200V for the dc link, and 3) a resistance of 0.012Ω and an 
inductance of 2mH for the grid filter. Training took the 
following policies: 1) randomly generating a sample initial 
state (0)dqi



, 2) randomly generating a sample reference d-q 
current trajectory with consideration of the rated current and 

PWM saturation constraints [35] and [5], 3) selecting the 
sampling time as 1sT ms=  and the entire duration of training 
as 1 second, and 4) randomly generating initial network 
weights using a Gaussian distribution with zero means and 0.1 
variances.  

A.  FATT is equivalent to BPTT  
To verify the proposed algorithm, the gradients generated 

using FATT (Eq. (25)) were compared with those computed 
using BPTT (Alg. 1). Table I shows the comparison results, 
which demonstrates the equivalence of the two methods. The 
matrix W3 in Table I denotes the weights of the output layer 
of the RNN and its dimension, 7x2. The mean square error 
(MSE) for calculated weights W3 is 2.7043×10-13 with a 95% 
confidence interval [1.3460×10-13, 6.2458×10-13]. For all 
calculated neural network weights, the total MSE value is 
4.4377×10-14 with a 95% confidence interval [3.3819×10-14, 
5.9372×10-14]. The MSE was calculated using 32-bit 
MATLAB with double precision. Thus, the gradients 
calculated using FATT and BPTT are basically the same; their 
differences are limited to rounding errors. 

TABLE I  
GRADIENT COMPARISON BETWEEN FATT AND BPTT 

W3 (1.0e+009 ) 
FATT BPTT 

0.092796562629715 0.020751225861687 0.092796562629715 0.020751225861687 
0.229650202454692 0.020683288705771 0.229650202454692 0.020683288705771 
0.175811456841742 0.015729812462136 0.175811456841742 0.015729812462136 
0.126106210024035 0.010156322474025 0.126106210024035 0.010156322474025 
0.144791337207981 0.013380664777951 0.144791337207981 0.013380664777951 
0.241910710409875 0.013627701859040 0.241910710409874 0.013627701859040 

2.168691142995110 0.039567808952663 2.168691142995100 0.039567808952663 

B.  RNN training algorithm comparison: LM+FATT and 
BPTT+RPROP  

Fig. 9 shows the average DP cost per trajectory time step 
for training the neural network vector controller using 
FATT+LM and BPTT+RPROP, respectively. The training of 
both algorithms uses the same parameters, including the same 
initial weights, starting d-q currents, and d-q reference 
currents.  

Fig. 9 Comparison of average DP cost per trajectory time step for training 
RNN controller using FATT+LM and FATT+RPROP 

In theory, LM is faster than RPROP (in [36]), as verified 
by Fig. 9. The overall average trajectory cost decreased to a 
small number much faster using LM than using RPROP, 
demonstrating the excellent learning ability of the proposed 
FATT algorithm with LM for training the RNN controller. 
The results also revealed a major drawback of RPROP, an 
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oscillation problem during the training, as illustrated in Fig. 9, 
which may cause the training to get stuck at a high average DP 
cost level.  

C.  Different constant α effects in training a RNN 
Fig. 10 compares the average DP cost for training the 

recurrent network with different α  values using FATT+LM. 
For 1α = , we used the square roots of the average DP cost in 
Fig. 10 in order to compare the average DP cost corresponding 
to 1/ 2α = . Fig. 10 shows that 1/ 2α =  yielded better and 
faster convergence. When 1α = , the training had difficulty 
converging to the required result. This also indicates the 
necessity of transformation Eq. (24).  Directly using the MSE 
as a RNN training objective, which is the general case for 
feed-forward neural networks, does not work well. 

 
Fig. 10 Comparison of average DP cost per trajectory time step with different 
α values using FATT+LM 

D.  Comparison of RNN controllers with different input 
structures  
Fig. 11 compares the average DP cost for training the 

recurrent network using the FATT+LM when 1) all six inputs, 

including dqi


, indicated by the blue dashed lines in Fig. 7, are 
used as the network inputs, and 2) only two error terms and 
two integral terms are used as the network inputs, as in Fig. 6.  

 
Fig. 11 Average DP cost per trajectory time step for training RNN controller 
with two different network input schemes using FATT+LM 

As illustrated in Fig. 11, with the RNN input structure 
shown in Fig. 6, the training actually converged to good 
performance faster. In addition, reducing the RNN input 
variables reduces the calculation efforts needed in real-time 
control, which allows the proposed RNN controller to be 
applied easily in hardware. This optimized RNN controller 
would make it more practical to develop neural network vector 

controllers for many other power and energy system 
applications, making RNN controllers a reality.    

E.  Comparison of optimal controller and RNN controller  
Fig. 12 compares the performance of an ideal optimal 

controller, a suboptimal controller and a RNN controller. The 
RNN controller used for this comparison was trained 
sufficiently well when the average DP cost per trajectory 
dropped to a small value and stabilized there, as indicated by 
Fig. 11.  Basically no steady-state error existed for the RNN 
controller after the twentieth time step, according to Fig. 12. 
Compared to the 20-step suboptimal controller, the RNN 
controller had a smaller overshoot. Fig. 12 also indicates that 
the RNN controller properly approximated the ideal optimal 
controller.  

Fig. 12  Controller performance comparison between ideal optimal controller, 
20-step controller and RNN controller. 

V.  PERFORMANCE EVALUATION OF TRAINED NEURAL 
NETWORK VECTOR CONTROLLER 

To evaluate the performance of the neural network vector 
controller trained with the proposed FATT+LM algorithm, 
and to compare the performance of the ideal optimal controller 
and the neural network vector controller, an integrated 
transient simulation system of a GCC system was developed 
using SimPowerSystems (Fig. 13). The converter switching 
frequency was 3000Hz. In the switching environment, the 
performance was evaluated under close to real-life conditions 
[35]. The PCC bus was connected to the grid through a 
transmission line modeled by an impedance. For digital 
control implementation, the measured instantaneous three-
phase PCC voltage and grid current passed through a zero-
order-hold (ZOH) block [37].  

 
Fig.13 Vector control of GCC in power converter switching environment 

Section V.A compares the performance of the ideal 
optimal controller and the neural network controller, while 
Sections V.B-V.D evaluate the performance of the neural 

100 101 102
101

102

103

Iteration

Av
er

ag
e D

P 
Co

st

 

 

α=1/2
α=1

0 10 20 30 40 50 60 70 80 90 100
10

1

10
2

10
3

Iteration

Av
er

ag
e D

P 
Co

st

 

 
Six Inputs:idq,edq,and Sdq

Four Inputs:edqand Sdq

0 10 20 30 40 50
-150

-100

-50

0

50

100

150

200

Time step

d-
q 

Cu
rre

nt
s (

A
)

 

 
i
d
-ideal optimal controller

i
q
-ideal optimal controller

i
d
-20-step controller

i
q
-20-step controller

i
d_ref

i
q_ref

i
d
-RNN

i
q
-RNN

   

Vs_abc

Ig_abc
Uabc*

ideal optimal controller

A
B
C

A
B
C

Transmission
Line

RNN

Manual Switch

g
A
B
C

+

-

Grid-Connected
converter

N
A
B
C

Grid System

[Vabc_b]
[Iabc_b]

A
B
C

A
B
C

GSC choke 

[Iabc_b]

[Vabc_b]

[Iabc_b]

[Vabc_b] U
re

f
P
u
ls

e
s

Discrete
PWM Generator

DC Voltage 
Source

c
c

A

B

C

a
b
c

B1

 



 

network vector controller under different stringent conditions, 
including distorted grid voltage, PWM saturation and voltage 
control mode. In each experiment, the proposed neural 
network controller structure (only two error terms and two 
integral terms fed into the neural network vector controller) 
was used as the network inputs, as indicated in Fig. 6. 

A.  Performance comparison of neural network vector 
controller and ideal optimal controller   
Fig. 14 compares the performance of the neural network 

vector controller and the ideal optimal controller in tracking 
the d-q reference currents. The first four plots show the 
performance of the ideal optimal controller under the different 
sampling rates of 0.001sT s= , 0.0001sT s= , 0.00001sT s= , 
and 2 6sT e s= −  . The fifth plot shows the performance of the 
neural network vector controller under a sampling rate of

0.001sT s= . 

 
Fig. 14 Performance comparison between neural network vector controller 
and ideal optimal controller: d-q currents.    

Small discretization is required to make an ideal optimal 
controller work properly. When the sampling time became 

sufficiently small, e.g., 2 6sT e s= −  , which is also the 
sampling time generally used to simulate hardware systems, 
the ideal optimal controller exhibited very good performance, 
as would be expected theoretically (Fig. 4). However, such a 
high sampling frequency with 1/ 1/ 2 6 50sf T e MHz= = − = is 
computationally expensive and can cause potential overrun 
problems in hardware implementation. In addition, the ideal 
optimal controller could not tolerate any changes in the system 
parameters. All of these factors make the practical application 
of ideal optimal controllers difficult. The fifth plot in Fig. 14 
demonstrates the good tracking performance of the proposed 
neural network vector controller with a sampling time of

0.001sT s= , which is very close to the performance of the 
ideal optimal controller with a sampling time of 2 6sT e s= − , 
corresponding to the fourth plot in Fig. 14. However, under a 
sampling rate of 0.001sT s=  , the ideal optimal controller 
performed very poorly. Fig. 14 illustrates that the proposed 
neural network controller achieved very good tracking 
performance, close to that of the ideal optimal controller, 
under a low sampling rate, which makes optimal control 
feasible in reality using neural networks.   

 
Fig. 15 Performance comparison between neural network vector controller 
and ideal optimal controller: three-phase currents.      

   Fig. 15 compares the actual three-phase currents using 
the ideal optimal controller with a sampling time of 

2 6sT e s= −  and the neural network controller with a 
sampling time of 0.001sT s= . Even though the actual d-q 
current oscillated around the reference current because of the 
switching impact (as indicated by Fig. 14), the actual three-
phase grid current was properly balanced, and the neural 
network vector controller performed close to the ideal optimal 
controller. 

B.  Performance evaluation of neural network vector 
controller under distorted grid voltage conditions  
The grid voltage often is distorted in reality and shows 

high-order harmonics, which is caused by nonlinear loads in 
general. Fig. 16 shows the performance of the neural network 
vector controller under a distorted grid voltage condition. The 
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voltage distortion appears between 0.5s and 1.5s. This 
distorted grid voltage (Fig. 16a) would cause difficulty with 
the vector control. However, the neural network vector 
controller still performed very well under this condition, as 
shown in Fig. 16b, which demonstrates the robustness of the 
neural network vector controller trained using the proposed 
FATT+LM algorithm.  

   
a) PCC voltage 

b) d- and q-axis currents 
Fig. 16 d-q current under distorted grid voltage 

C.  Performance evaluation of neural network vector 
controller under PWM saturation  
In practice, outer-loop controllers (Fig. 3) may generate a 

d-q reference current signal that could cause the converter to 
exceed its PWM saturation limit. When the actual inductance 
is higher than the nominal inductance, it is easier for the GCC 
to reach PWM saturation, as explained in [35], particularly 
under reactive power generation conditions. Under PWM 
saturation, the conventional vector control method will 
malfunction [4]. However, the RNN controller trained by 
FATT+LM can automatically maintain the effectiveness of the 
d-axis current control while satisfying the q-axis control needs 
as much as possible, as shown in Fig. 17. The controller 
automatically operates in this mode during the period between 
1s and 2s when there is a high demand for reactive power. 
This property would ensure the appropriate operation of the 
GCC under PWM saturation constraints. 

 
Fig. 17 d-q current under PWM saturation 

D.  Performance evaluation of neural network vector 
controller under grid voltage control mode  
Fig. 18 depicts the performance of the trained neural 

network vector controller in PCC voltage control mode. In the 
figure, a grid voltage fault simulated by connecting with a 
fault load appears between 4s and 6s, causing a sudden PCC 
voltage reduction. However, the controller trained using the 
proposed FATT+LM algorithm performed very well, as 
shown in Fig. 18. Due to the converter’s PWM saturation 
constraint, the RNN controller could not maintain the PCC 
voltage at 1 per unit to compensate for the voltage reduction 
during the fault (Fig. 18a). Instead, it operated by maintaining 
the effectiveness of the d-axis current control while providing 
PCC voltage support control as much as possible (Fig. 18b). 
At t=6s, when the fault was cleared, the neural network vector 
controller returned to its normal operating condition, and the 
PCC bus voltage quickly recovered to the rated bus voltage.  

 
a) PCC voltage  

 
b) d-q current  

Fig. 18 RNN controller under PCC voltage control mode 

VI.  CONCLUSIONS 
 This paper investigated how to use Levenberg–Marquardt 

(LM) to train a RNN for optimal control of a GCC and studied 
the relationship between the RNN, ideal optimal controller and 
suboptimal controller for GCCs. In particular, we explained 
how to extend the LM algorithm for training a RNN by 
showing how the Jacobian matrix can be defined and found 
for RNNs. The paper demonstrates that the proposed LM-
FATT algorithm is efficient and reliable and converges faster. 
The training results show that the proposed LM-FATT 
algorithm can solve the RNN tracking problem very well.  

The study showed that although an ideal optimal controller 
for a GCC can track a target in one time step, it usually 
requires a control voltage that is beyond the physical system 
constraints. Other issues associated with an ideal controller 
include sensitivity to variations in system parameters and 
noises, and poor performance at a low sampling rate. 
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However, the proposed RNN vector controller achieved close 
to ideal controller performance, even under many challenging 
dynamic, variable, and power converter switching conditions. 
The RNN controller can use a much lower sampling rate than 
that used for the ideal optimal controller while maintaining 
performance equivalent to that of the ideal optimal controller 
at a high sampling rate. This would significantly reduce the 
computing time and enhance the deployment of the proposed 
RNN controller to real-life systems.  
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