

Permanent City Research Online URL: http://openaccess.city.ac.uk/12845/

Copyright & reuse
City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at publications@city.ac.uk.
Quantum Probability in Operant Conditioning

Behavioral Uncertainty in Reinforcement Learning

Eduardo Alonso$^{1,2}$ and Esther Mondragón$^2$

$^1$Department of Computer Science, City University London, London EC1V 0HB, U.K.
$^2$Centre for Computational and Animal Research Centre, St. Albans AL1 1RQ, U.K.

Keywords: Operant Conditioning, Reinforcement Learning, Uncertainty, Quantum Probability, Classical Probability.

Abstract: An implicit assumption in the study of operant conditioning and reinforcement learning is that behavior is stochastic, in that it depends on the probability that an outcome follows a response and on how the presence or absence of the output affects the frequency of the response. In this paper we argue that classical probability is not the right tool to represent uncertainty operant conditioning and propose an interpretation of behavioral states in terms of quantum probability instead.

1 INTRODUCTION

Operant conditioning, how animals learn the relation between their behavior (responses) and its consequences (outcomes) is explained in reference to two dimensions, namely, whether the outcome follows the response and whether the frequency of the response increases or decreases subsequently (Skinner, 1938). If the outcome follows the response, the relation is positive; and negative if it does not. If the frequency of the response increases, we call it reinforcement; if it decreases, punishment. Thus, as illustrated in Fig. 1, there are four fundamental conditioning procedures:

- Positive reinforcement: The response is followed by an outcome that is appetitive, increasing the response frequency. For instance, food follows pressing a lever.
- Negative reinforcement: The response is not followed by the outcome, increasing the response frequency. For instance, pressing the lever removes an aversive output such as a loud noise.
- Positive punishment: The response is followed by the outcome, decreasing the response frequency. For instance, pressing a lever is followed by an electric shock.
- Negative punishment: The response is not followed by the outcome, decreasing the response frequency. For instance, removing ad libitum food when pressing the lever.

This interpretation of associative learning has been borrowed in Artificial Intelligence, in particular in modeling reinforcement learning, where an agent learns by interacting with its environment in the form rewards (Sutton and Barto, 1998). In reinforcement learning, positive and negative outputs are defined as scalar rewards. It is assumed that those behaviors that are predicted to obtain higher accumulative reward will be elicited more frequently. One of the main issues in modeling operant conditioning and reinforcement learning is to represent the inherent uncertainty animals and software agents face accurately. In this paper we present a formalization of uncertainty in terms of quantum probabilities, which solve some issues that arise with classical and Bayesian probabilities typically associated with operant conditioning and reinforcement learning.
2 BASIS VECTORS AND BEHAVIORAL STATE

In quantum probability theory a vector space (technically, a Hilbert space) represents all possible outcomes for questions we could ask about a system. A basis is a set of linearly independent vectors that, in linear combination, can represent every vector in the vector space. They represent the coordinate system and correspond to elementary observations. Put it another way, the intersection of all subspaces containing the basis vectors, that is, their linear span, constitutes the vector space. A vector represents the state of the system, given by the superposition of the basis vectors according to their coefficients (Hughes, 1989; Isham, 1989). Historically, quantum probability has been applied to physical systems but the same analysis can refer to other types of systems, including animals and software agents. At the end of the day, animals are behavior systems—sets of behaviors that are organized around biological functions and goals, e.g., feeding (Timberlake and Silva, 1995), defense (Fanselow, 1994), or sex (Domjan, 1994). Software agents, on the other hand, are formally defined as systems that (learn to) act in virtual environments. Not surprisingly, reinforcement learning in software agents has taken concepts and methods from operant conditioning theory. In turn, the former, software learning agents, can be understood as computational models of the latter, operant conditioning.

We define two basis vectors according to the dichotomies reinforcement vs. punishment and positive vs. negative in Fig. 1. The former, that we call Frequency, takes values ranging from a maximum number of responses per unit time (Reinforcement) to the absence of response (Punishment); the latter, that we call Applies, takes values from “the response always applies the outcome” (Positive) to “the response always removes the outcome” (Negative). The values in between indicate various response frequencies, that is, probabilities that the animal responds, and various probabilities that the outcome follows the response, respectively.

The relation of the two bases is undetermined, in the sense that even in the simplest reinforcement schedules (fixed/variable ratio/interval schedules) we cannot observe with certainty how the response affects the outcome and how the outcome affects the frequency of responding at the same time. This uncertainty is aggravated in more complex compound schedules.

The problem is thus how to determine the behavioral state of an animal given this uncertainty. Several models have been proposed to explain patterns of operant behavior, some of which use probabilities (see Staddon and Cerutti, 2003 for a recent survey). We argue that the inherent uncertainty in operant conditioning cannot be represented using classical probability (Kolmogorov, 1933), and that we need quantum probability instead.

The behavioral state of the animal is represented using the state vector, a unit length vector, denoted as |Ψ⟩ in bra-ket notation. We need to find out which linear combination of the basis vectors results in a given behavioral state and with which probability. We start with a single question in Fig. 2, about whether the response applies the outcome. In this case |Positive⟩ and |Negative⟩ are the basis states, so we can write |Ψ⟩ = a|Positive⟩ + b|Negative⟩, where “a” and “b” are amplitudes (coefficients) that reflect the components of the state vector along the different basis vectors. The answer to the question is certain when the state vector |Ψ⟩ exactly coincides with one basis vector. For instance if “the response always applies the outcome”, then |Ψ⟩ = |Positive⟩. In such case the probability of Positive is 1. Since the basis vectors are orthogonal, that is, they represent mutually exclusive answers, we know that “the response removes the outcome” with 0 probability, corresponding to a 0 projection to the subspace for Negative.

![Figure 2: State space with the Applies subspace (corresponding to the question whether response applies outcome) and Positive-Negative basis vectors. The blue vertical line represents the projection of |Ψ⟩ on |Positive⟩.](image)

To determine the probability of Positive we use a projector, P_{Positive}, which takes the vector |Ψ⟩ and lays it down on the subspace spanned by |Positive⟩, that is, P_{Positive}(|Ψ⟩) = a|Positive⟩. Then, the probability that the response applies the outcome is equal to the squared length of the projection, |P_{Positive}(|Ψ⟩)|^2. The same applies to the probability associated with b|Negative⟩.
3 COMPATIBILITY

In operant conditioning we are interested in two questions, whether the response applies the outcome, and whether the response frequency increases, each with two possible answers: Positive and Negative to the question “Applies”, and Reinforcement and Punishment to “Frequency”. Crucially for our analysis, these questions are incompatible. For compatible questions, we can specify a joint probability function for all combinations of answers, and in such cases the predictions of classical probability and quantum probability theories are the same. By contrast, for incompatible questions, it is impossible to determine the answers concurrently. Being certain about the answer of one question induces an indeterminate state regarding the answers of other, incompatible questions. This is the case in operant conditioning: We cannot observe at the same time whether an outcome follows from a response and whether the response follows from the outcome, that is, whether the response frequency increases. Classical probability does not apply to incompatible questions.

Suppose that we ask first about frequency and then whether the response applies the outcome, and that we denote the answer to the first question as Fr (a value between Reinforcement and Punishment) and the answer to the second question as Ap (a value between Positive and Negative). In quantum probability theory, a conjunction of incompatible questions involves projecting first to a subspace corresponding to an answer for the first question and, second, to a subspace for the second question (Busemeyer, Pothos, Franco, and Trueblood, 2011). The magnitude of a projection depends on the angle between the corresponding subspaces. When the angle between subspaces is large a lot of probability amplitude is lost between successive projections. As can be seen in Fig. 3, this can result in

$$|\langle P_{Ap} | \Psi \rangle |^2 < |\langle P_{Fr} P_{Ap} | \Psi \rangle |^2,$$

that is, the direct projection to the Applies subspace (blue line) is less than the projection to the Applies subspace via the Frequency one (green line).

In classical terms, we have a situation whereby

$$\text{Prob}(Ap | Fr) < \text{Prob}(Ap & Fr),$$

which is impossible in classical probability theory: The probability of two events occurring together is always less than or equal to the probability of either one occurring alone. The opposite, assuming that specific conditions are more probable than a single general one, is the well-known conjunction fallacy.

The second case that illustrates that operant conditioning may be governed by quantum probabilities, refers to the effect of the order of the observations. Consider the comparison between first asking about Fr and then about Ap versus first asking about Ap and then about Fr. By virtue of the commutative property, in classical probability theory the order of conjunction does not alter the result, hence

$$\text{Prob}(Fr & Ap) = \text{Prob}(Ap & Fr).$$

However, in quantum probability theory $P_{Ap} P_{Fr} \neq P_{Fr} P_{Ap}$, and thus, the conjunction of incompatible questions fails commutativity. We see that

$$\text{Prob}(Fr & Ap) = |\langle P_{Fr} P_{Ap} | \Psi \rangle |^2$$

is less than

$$\text{Prob}(Ap & Fr) = |\langle P_{Ap} P_{Fr} | \Psi \rangle |^2$$

because in the second case we project from $|\Psi\rangle$ to $|Ap\rangle$, losing a lot of amplitude (their relative angle is large), and then from $|Ap\rangle$ to $|Fr\rangle$ we lose even more amplitude.

In general, the smaller the angle between the subspaces for two incompatible questions the greater
the relation between the answers. We lose little amplitude by sequentially projecting the state vector from one subspace to the other. That means that accepting one answer makes the other very likely – or, in classical terms, that they are highly correlated.

4 CONCLUSIONS

In this short paper we argue that quantum probability might be a useful tool in representing inherent uncertainty in observing (measuring) behavioral states in operant conditioning and, by extension, in reinforcement learning. Such states are defined as the superposition of incompatible basis vectors and thus cannot be represented using classical probability – which axioms don’t apply. Our approach, that borrows ideas from recent proposals to use quantum probability in categorization (Pothos & Busemeyer, 2009), addresses long-lasting calls to formalize operant conditioning in a rigorous way (e.g., Killeen, 1992). We have kept the formal aspects of quantum probability to a minimum and focused on illustrating with a simple example how quantum probability principles can be used in operant conditioning and why.

REFERENCES