

Permanent City Research Online URL: http://openaccess.city.ac.uk/1299/

Copyright & reuse
City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at publications@city.ac.uk.
A visual analytics approach to understanding cycling behaviour

Roger Beecham*
City University London
Jo Wood, Member, IEEE †
City University London
Audrey Bowerman‡
Transport for London

ABSTRACT

Existing research into cycling behaviours has either relied on detailed ethnographic studies or larger public attitude surveys [1] [9]. Instead, following recent contributions from information visualization [13] and data mining [5] [7], this design study uses visual analytics techniques to identify, describe and explain cycling behaviours within a large and attribute rich transactional dataset. Using data from London’s bike share scheme†, customer level classifications will be created, which consider the regularity of scheme use, journey length and travel times. Monitoring customer usage over time, user classifications will attend to the dynamics of cycling behaviour, asking substantive questions about how behaviours change under varying conditions. The 3-year PhD project will contribute to academic and strategic discussions around sustainable travel policy. A programme of research is outlined, along with an early visual analytics prototype for rapidly querying customer journeys.

1 INTRODUCTION

Despite recent investment into sustainable travel, there is little evidence that levels of cycling in the UK are increasing [9]. Results from the National Travel Survey show that cycling accounted for 2% of all trips of 5 miles or less made in Great Britain in 2010, and that the average number of trips per person made by bike has generally fallen over the last 15 years [3]. A tranche of research aimed at better understanding cycling behaviours has subsequently emerged within the social sciences [9]. Much of this work has been based on empirically collected datasets - attitudinal surveys and deeper ethnographic studies - and has identified distinct but nuanced attitudes towards cycling [9] [11]. Studies focusing on actual rather than self-reported behaviour have generally relied on GPS logs [3] or automated traffic counts at fixed sites [6]. Due to their complexity, the former have been relatively small in scale and the latter, only reporting counts and timestamps at specific locations, too coarse to meaningfully identify behaviour.

Shared-bicycle schemes offer new research possibilities. In many recent schemes, data on usage are continually reported to central databases. Researchers working within data mining [5] [7], and information visualization [13] have queried these data to identify patterns of scheme use, as well as more nuanced space-time journey flows. This analysis has nevertheless been constrained by the level of detailed information made publicly available. Whilst a complete set of journey records, including journey origin-destination (OD) and start and end times was used by Wood et al. [13], these data could not be linked back to individual customers. Cyclists’ journey histories, and the context framing those journeys, could not be identified. This limits the extent to which such data can be used to engage with the more complex questions around motivations and barriers to cycling [7] [13]. Working collaboratively with Transport for London (TfL), customer records reporting a unique customer identifier, gender and postcode the customer registered with, have been made available. So too has a complete set of user journeys. Linking with geodemographic and other contextual information, and querying these attribute rich data within a visual analytics application, we attempt to explore and explain cycling behaviour from an individual customer perspective.

2 OBJECTIVES AND APPROACH

The research project aims to:

- Classify bike share customers according to the journeys they make.
- Validate, rewrite and add qualitative descriptions to these classifications paying attention to journey context; by querying the dataset at particular space-times, in response to changes internal and external to the scheme.
- Furnish social scientists, and strategists within TfL, with generalisable insights into the barriers, incentives and conditions that motivate cycling behaviour.

This approach situates comfortably within a visual analytics framework [11]. We will take a large and attribute rich dataset, query it to identify general and distinct space-time journey patterns, before creating modelled data and subsequently querying the models. Attempting to engage with difficult questions around cycling behaviours, it will be necessary to quickly consider many combinations of contextual variables and customer attributes. This might be best achieved through a highly flexible visual analytics application.

3 EARLY ANALYSIS AND FIRST VISUAL ANALYTICS PROTOTYPE

At the time of writing, the dataset contained 114,947 valid customer records, linked to 6,490,479 journeys. After loading data into an SQLite database, relevant derived variables were computed. Linking customers with their journeys, recency-frequency (RF) segmentation, a technique used within direct marketing [8], was performed. Matching customers’ postcodes to geographic coordinates,
a straight-line ‘distance to nearest docking station’ variable was created and customer records were further augmented by linking the postcode variable to a geodemographic classifier.

Access to the customer dataset enables a profile of London bike share members. We found the geodemographic composition of members to reflect relatively closely that of London’s residents, that the average (median) ‘distance to nearest docking station’ for members with valid postcodes is 1.7km, with the middle 50% of members ordered according to nearest docking station living between 0.2 km and 13 km of a docking station. Comparison by RF scores suggests an association between usage and proximity to a bike share docking station. For high RF segments (combined RF scores of 4/5), the median distance to a docking station is 0.4km, whereas for lower segments (combined RF scores of 1/2) the median distance is 2.8km.

Whilst the summary statistics are instructive, without very detailed analysis it is difficult to describe the temporal and spatial extent of particular member journeys. We therefore propose a visual analytics prototype for rapidly exploring space-time patterns of customer cycling behaviour (Figure 1). Three integrated views are presented. In the centre, a spatial overview of journeys is achieved by drawing lines between sets of OD pairs. For a given pair of bike share docking stations A and B, flows from A to B are made distinct from those between B to A. Following Wood et al. [13], this was implemented using Bezier curves made to be asymmetric; the straight end of an OD pair represents an origin, the curved end a destination. To emphasise flow magnitudes, and to partially overcome problems of salience bias, a weighting factor determines the transparency, thickness and colour of flow lines [13]. Existing analysis into the London bike share scheme has found that usage is highly temporally regular [7], and that journeys made within these regular usage intervals have a distinct spatial expression [13]. The temporal view therefore displays hourly usage by day of week as a cycle plot [10]. Finally, to the top left, a customer segment view appears as a Recency (column) Frequency (row) matrix (RF matrix) [12][8]: the most frequent and recent customers can be found in the top right cell. It is possible to brush [4] values from the RF view and therefore describe the spatial pattern of journeys made by particular RF segments, compare their temporal structure (blue) to that of the total customer population (grey) and contrast the relative number of journeys made by the selected segment with the relative number of customers that segment comprises (bars below the RF view).

Brushing the RF view first on high RF scores, the most recent and frequent scheme users, a dominant commuting function can be visualized. The straight end of an OD pair represents an origin, the curved end a destination. To emphasise flow magnitudes, and to partially overcome problems of salience bias, a weighting factor determines the transparency, thickness and colour of flow lines [13]. Existing analysis into the London bike share scheme has found that usage is highly temporally regular [7], and that journeys made within these regular usage intervals have a distinct spatial expression [13]. The temporal view therefore displays hourly usage by day of week as a cycle plot [10]. Finally, to the top left, a customer segment view appears as a Recency (column) Frequency (row) matrix (RF matrix) [12][8]: the most frequent and recent customers can be found in the top right cell. It is possible to brush [4] values from the RF view and therefore describe the spatial pattern of journeys made by particular RF segments, compare their temporal structure (blue) to that of the total customer population (grey) and contrast the relative number of journeys made by the selected segment with the relative number of customers that segment comprises (bars below the RF view).

Brushing the RF view first on high RF scores, the most recent and frequent scheme users, a dominant commuting function can be visualized. The straight end of an OD pair represents an origin, the curved end a destination. To emphasise flow magnitudes, and to partially overcome problems of salience bias, a weighting factor determines the transparency, thickness and colour of flow lines [13]. Existing analysis into the London bike share scheme has found that usage is highly temporally regular [7], and that journeys made within these regular usage intervals have a distinct spatial expression [13]. The temporal view therefore displays hourly usage by day of week as a cycle plot [10]. Finally, to the top left, a customer segment view appears as a Recency (column) Frequency (row) matrix (RF matrix) [12][8]: the most frequent and recent customers can be found in the top right cell. It is possible to brush [4] values from the RF view and therefore describe the spatial pattern of journeys made by particular RF segments, compare their temporal structure (blue) to that of the total customer population (grey) and contrast the relative number of journeys made by the selected segment with the relative number of customers that segment comprises (bars below the RF view).

Whilst the summary statistics are instructive, without very detailed analysis it is difficult to describe the temporal and spatial extent of particular member journeys. We therefore propose a visual analytics prototype for rapidly exploring space-time patterns of customer cycling behaviour (Figure 1). Three integrated views are presented. In the centre, a spatial overview of journeys is achieved by drawing lines between sets of OD pairs. For a given pair of bike share docking stations A and B, flows from A to B are made distinct from those between B to A. Following Wood et al. [13], this was implemented using Bezier curves made to be asymmetric; the straight end of an OD pair represents an origin, the curved end a destination. To emphasise flow magnitudes, and to partially overcome problems of salience bias, a weighting factor determines the transparency, thickness and colour of flow lines [13]. Existing analysis into the London bike share scheme has found that usage is highly temporally regular [7], and that journeys made within these regular usage intervals have a distinct spatial expression [13]. The temporal view therefore displays hourly usage by day of week as a cycle plot [10]. Finally, to the top left, a customer segment view appears as a Recency (column) Frequency (row) matrix (RF matrix) [12][8]: the most frequent and recent customers can be found in the top right cell. It is possible to brush [4] values from the RF view and therefore describe the spatial pattern of journeys made by particular RF segments, compare their temporal structure (blue) to that of the total customer population (grey) and contrast the relative number of journeys made by the selected segment with the relative number of customers that segment comprises (bars below the RF view).

Brushing the RF view first on high RF scores, the most recent and frequent scheme users, a dominant commuting function can be visualized. The straight end of an OD pair represents an origin, the curved end a destination. To emphasise flow magnitudes, and to partially overcome problems of salience bias, a weighting factor determines the transparency, thickness and colour of flow lines [13]. Existing analysis into the London bike share scheme has found that usage is highly temporally regular [7], and that journeys made within these regular usage intervals have a distinct spatial expression [13]. The temporal view therefore displays hourly usage by day of week as a cycle plot [10]. Finally, to the top left, a customer segment view appears as a Recency (column) Frequency (row) matrix (RF matrix) [12][8]: the most frequent and recent customers can be found in the top right cell. It is possible to brush [4] values from the RF view and therefore describe the spatial pattern of journeys made by particular RF segments, compare their temporal structure (blue) to that of the total customer population (grey) and contrast the relative number of journeys made by the selected segment with the relative number of customers that segment comprises (bars below the RF view).

Brushing the RF view first on high RF scores, the most recent and frequent scheme users, a dominant commuting function can be visualized. The straight end of an OD pair represents an origin, the curved end a destination. To emphasise flow magnitudes, and to partially overcome problems of salience bias, a weighting factor determines the transparency, thickness and colour of flow lines [13]. Existing analysis into the London bike share scheme has found that usage is highly temporally regular [7], and that journeys made within these regular usage intervals have a distinct spatial expression [13]. The temporal view therefore displays hourly usage by day of week as a cycle plot [10]. Finally, to the top left, a customer segment view appears as a Recency (column) Frequency (row) matrix (RF matrix) [12][8]: the most frequent and recent customers can be found in the top right cell. It is possible to brush [4] values from the RF view and therefore describe the spatial pattern of journeys made by particular RF segments, compare their temporal structure (blue) to that of the total customer population (grey) and contrast the relative number of journeys made by the selected segment with the relative number of customers that segment comprises (bars below the RF view).

Brushing the RF view first on high RF scores, the most recent and frequent scheme users, a dominant commuting function can be visualized. The straight end of an OD pair represents an origin, the curved end a destination. To emphasise flow magnitudes, and to partially overcome problems of salience bias, a weighting factor determines the transparency, thickness and colour of flow lines [13]. Existing analysis into the London bike share scheme has found that usage is highly temporally regular [7], and that journeys made within these regular usage intervals have a distinct spatial expression [13]. The temporal view therefore displays hourly usage by day of week as a cycle plot [10]. Finally, to the top left, a customer segment view appears as a Recency (column) Frequency (row) matrix (RF matrix) [12][8]: the most frequent and recent customers can be found in the top right cell. It is possible to brush [4] values from the RF view and therefore describe the spatial pattern of journeys made by particular RF segments, compare their temporal structure (blue) to that of the total customer population (grey) and contrast the relative number of journeys made by the selected segment with the relative number of customers that segment comprises (bars below the RF view).

Brushing the RF view first on high RF scores, the most recent and frequent scheme users, a dominant commuting function can be visualized. The straight end of an OD pair represents an origin, the curved end a destination. To emphasise flow magnitudes, and to partially overcome problems of salience bias, a weighting factor determines the transparency, thickness and colour of flow lines [13]. Existing analysis into the London bike share scheme has found that usage is highly temporally regular [7], and that journeys made within these regular usage intervals have a distinct spatial expression [13]. The temporal view therefore displays hourly usage by day of week as a cycle plot [10]. Finally, to the top left, a customer segment view appears as a Recency (column) Frequency (row) matrix (RF matrix) [12][8]: the most frequent and recent customers can be found in the top right cell. It is possible to brush [4] values from the RF view and therefore describe the spatial pattern of journeys made by particular RF segments, compare their temporal structure (blue) to that of the total customer population (grey) and contrast the relative number of journeys made by the selected segment with the relative number of customers that segment comprises (bars below the RF view).