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Abstract

This paper empirically investigates the role of banks’ network centrality in the interbank

market on their funding rates. Specifically we analyze transaction data from the e-MID market,

the only electronic interbank market in the Euro Area and US, over the period 2006-2009

that encompasses the global financial crisis. We show that interbank spreads are significantly

affected by both local and global measures of connectedness. The effects of network centrality

increased as the financial crisis evolved. Local measures show that having more links increases

borrowing costs for borrowers and reduces premia for lenders. For global network centrality,

borrowers receive a significant discount if they increase their intermediation activity and become

more central, while lenders pay in general a premium (i.e. receive lower rates) for centrality.

This provides evidence of the ‘too-interconnected-to-fail’ hypothesis.
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1 Introduction

Network positioning could affect interbank interest rates by different mechanisms. First, in line

with Acemoglu et al. (2015), dense interconnections serve as a mechanism for the propagation of

shocks, leading to a more fragile financial system. As such, banks that are more connected may be

perceived by the market as fragile. Second, the same banks can be perceived as ‘too-interconnected-to-fail’

such that rather than fragile those banks are perceived as more likely to be bailout. This is similar

to the ‘too-big-to-fail’ effect observed in other interbank markets (see for instance Battiston et

al. (2012)). Third, as argued by Booth et al. (2014), financial institutions with more extensive

and strategic financial networks acquire and process information more efficiently due to their

better access to order flows. Fourth, as stressed by Gabrieli and Georg (2014), banks with

higher centrality within the network have better access to liquidity and are able to charge larger

intermediation spreads.

Previous empirical evidence (see Angelini et al. (2011), Gabrieli (2011), Gabbi (2012), Bech

and Atalay (2010), Akram and Christophersen (2010) and Gabrieli (2012)) suggests that being

systemically more important, in term of size or connectedness, explains part of the cross-sectional

variation in banks’ borrowing costs before and during the 2008 global financial crisis. Our paper

contributes to the recent literature that investigates the determinants of banks’ borrowing costs

in unsecured money markets and how network characteristics of interbank market participants

affect their funding rates. In particular, we empirically study bank network centrality measures

as determinants of interbank interest rates.

The centrality indicators used in the analysis are constructed from measures of distance of a

bank from the other banks in the network, where distance is expressed in terms of: (1) paths

of length one, i.e. the number of incoming or outgoing links, for degree centrality; (2) geodesics

(shortest) paths (no vertex is visited more than once), for betweenness; (3) walks (vertices and

edges can be visited/traversed multiple times) for eigenvector centrality, Pagerank, Sinkrank and

Katz. We evaluate each measure in a quarterly panel data regression set-up of bank pairs, i.e.

lender and borrower, fixed-effects for the period 2006-2009 and separately for three sub-periods

that encompass the latest 2007-2008 financial crisis: phase I (01 January 2006-30 June 2007, using

the key date of the Bear Stearns hedge fund bankruptcy was 31 July 2007), phase II (01 July

2007-30 September 2008, using the key date of Lehman Brothers collapse was 15-Sep-2008) and
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phase III (01 October 2008-31 December 2009).

In this paper we focus on interbank lending networks on the e-MID overnight (O/N) interbank

market, an electronic platform, based in Italy, that offers a fully transparent trading system with

‘buy’ and ‘sell’ proposals available on screens of the participating banks, along with the identity

of the banks quoting them. Information on the terms (prices and amounts) of executed trades are

available to banks in real time. Search frictions, thus, should not affect the matching process in

the e-MID market. Furthermore lack of information on rates offered by alternative lenders cannot

be responsible for the observed cross-sectional dispersion of O/N rates in this market.

Our results show that network measures are significant determinants of funding rates in the

e-MID O/N market. Local measures show that having more links increases borrowing costs for

borrowers and reduces premia for lenders. However, for global measures of network centrality

borrowers receive a significant discount if they increase their intermediation activity and become

more central, while lenders pay in general a premium (i.e. receive lower rates) for centrality,

thus providing some evidence about the ‘too-interconnected-to-fail’ hypothesis. That is, banks

perceived to be better inter-connected could borrow at discount rates. This effect is higher in phase

II when systemic risk was the highest. Lenders do not benefit from network centrality, and as such,

it could be that the market perception about their network positioning (i.e. fragility) dominates

their strategic location for intermediation (as in Gabrieli and Georg, 2014). The regression analysis

also highlights that there is heterogeneity across different measures of network centrality on how

they affect interbank spreads.

Our findings have implications for systemic risk assessment. Network analysis of the degree of

interconnectedness in the financial system can inform policymakers on optimal bank resolutions

mechanisms and how regulation can help to reduce instability. Empirical networks have been used

for (deterministic) stress test exercises (see Upper (2011) for a comprehensive review). Of critical

importance in macro prudential policy is the identification of key players in the financial network,

which, according to the International Monetary Fund, the Bank for International Settlements and

the Financial Stability Board, should be determined in terms of their size, connectedness and

substitutability. Network centrality measures, developed to assess centrality in other contexts and

adapted to the context of financial networks, can guide national authorities in their assessment

of the systemic importance of financial and non-financial institutions. Our results show that
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borrowers that are more central benefit from lower funding rates. We argue that this effect could

be driven by the market perception that more central banks will be bailed out if in distress, because

‘too-connected-to-fail’. However, the expectation of implicit subsidies could create moral hazard

and provide incentives for banks to become systemically important, exacerbating system fragility.

While we do not demonstrate in the paper that banks actively try to occupy a central position

in the network by strategically forming links with each other, we do believe that monitoring

how funding cost advantages evolve over time can act as an effective early warning indicator of

systemic risk and provide a way to measure the effectiveness of regulatory policy to reduce the

market perception that systemically important institutions will not be allowed to default.

The remainder of this article is organized as follows. Section 2 discusses previous findings

in the literature and how they relate to our paper. Section 3 describes the data and variables.

Section 4 provides methodology of the empirical analysis. In Section 5, we present and discuss the

results of the regression analysis. Section 6 discusses the results and concludes.

2 Network centrality and interbank markets

In the financial economic literature network analysis has mostly been applied to payment systems,

interbank lending markets, and more recently extended to capture the mutual exposure of financial

institutions to other asset classes, including derivatives contracts, in a multilayer networks framework

(Bargigli et al. (2015), Leon et al. (2014), Molina-Borboa et al. (2015), Aldasoro and Alves (2015),

Poledna et al. (2015)).

A number of papers investigate the interplay between financial distress and topological characteristic

of interbank networks, focusing on the network resilience to different kinds of shocks (Iori et al.

(2006), Nier et al. (2007), Gai et al. (2011), Battiston et al. (2012), Anand et al. (2012), Lenzu

and Tedeschi (2012), Georg (2013), Roukny et al. (2013), Acemoglu et al. (2015)). While some

authors argue that a more interconnected architecture enhances the resilience of the system to

failure of an individual bank because credit risk is shared among more creditors, others suggest

that a higher density of connections may function as a destabilizing force, facilitating financial

distress to spread through the banking system. The overall picture that emerges from this body

of work is that the density of linkages has a non-monotonous impact on systemic stability and its

effect varies with the nature of the shock, the heterogeneity of the players and the state of the
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economy. Thus no optimal network structure that is more resilient under all circumstances can

be identified (see Chinazzi and Fagiolo (2013) for a recent survey on systemic risk and financial

contagion).

The structure of interbank networks has been mapped for several countries, the topology

of interbank markets has been characterized and the stylized facts and regularities have been

identified. Examples include Boss et al. (2004) for the Austrian interbank market, Soramaki et al.

(2007) and Bech and Atalay (2010) for the US Federal funds market, De Masi et al. (2006), Iori et

al. (2008) and Fricke and Lux (2015) for the Italian based e-MID, Degryse and Nguyen (2007) for

Belgium, Craig and Von Peter (2014) for the German interbank market, Langfield et al. (2014) for

the UK and in ’t Veld and van Lelyveld (2014) for the Dutch market. Poledna et al. (2015) studied

the multi-layer network of exposure among Mexican banks including interbank credit, securities,

foreign exchange and derivative markets. Billio et al. (2012) studies the time-series properties

of interconnectedness measures in financial markets. The most common findings reported in this

literature are: (i) interbank networks are sparse; (ii) degree and transaction volume distributions

are fat tailed, revealing heterogeneous players characteristics; (iii) the networks show disassortative

mixing with respect to the bank size, so small banks tend to trade with large banks and vice versa;

(iv) clustering coefficients are usually quite small; (v) interbank networks satisfy the small-world

property1; (vi) interbank networks have a tiering structure with a tightly connected core of

money-center banks to which all other periphery banks connect.

In particular for the e-MID market, while early studies (Iori et al. (2008)) have revealed

a fairly random network at the daily scale, a non-random structure has been uncovered for

longer aggregation periods. Monthly and quarterly aggregated data show that since the 1990s

a high degree of bank concentration occurred (Iazzetta and Manna (2009)), with fewer banks

acting as global hubs for the whole network. The hubs tend to cluster together and a significant

core-periphery structure has been observed (Finger et al. (2013)). Hatzopoulos et al. (2015)

have investigated the matching mechanism among lenders and borrowers and its evolution over

time. They show that, when controlling for bank heterogeneity, the matching mechanism is fairly

random. Even though matches that occur more often than those consistent with a random null

model (over expressed links) exist and increase in number during the crisis, neither lenders nor

1A network is small-world if the mean geodesic distance between pairs of nodes is small relative to the total
number of nodes in the network, that is, this distance grows no faster than logarithmically as the number of nodes
tends to infinity
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borrowers systematically present several over expressed links at the same time. The picture that

emerges from their study is that banks are more likely to be chosen as trading partners because

they trade more often and not because they are more attractive in some dimension (such as their

financial healthiness or because they charge lower rates).

Fricke and Lux (2015) and Squartini et al. (2013) investigate if the topology of interbank

networks, respectively for the e-MID market and the Dutch market, underwent major structural

change as the subprime crisis unfolded, in an attempt to identify early-warning signals of the

approaching crisis. In both markets at the onset of the crisis the dynamic evolution of the

network seemed completely uninformative as the networks only display an abrupt topological

change in 2008, providing a clear, but unpredictable, signature of the crisis. Nonetheless, when

controlling for the banks’ connectivity heterogeneity, Squartini et al. (2013) show that higher-order

topological properties (such as dyadic and triadic motifs) revealed a gradual transition into the

crisis, starting already in 2005. Although these results provide some evidence of early warning

topological precursors, at least for the Dutch interbank market, the authors cannot explain the

economic rationale for the observed patterns.

In addition to the abrupt topological change after Lehman defaults, mostly driven by precautionary

liquidity hoarding, Cocco et al. (2009), Affinito (2012), Brauning and Fecht (2012) and Temizsoy

et al. (2015) have shown that banks relied more extensively on relationship lending during

the crisis, with both lenders and borrowers benefiting from close relationship both in terms to

access to liquidity and funding rates. Relationship lending thus plays a positive role for financial

stability and provides a measure of the level of financial substitutability of banks in the interbank

market. Furthermore these results show that interbank exposures are used as a peer-monitoring

device (Rochet and Tirole (1996)) and can help policymakers to assess market discipline. Finally,

reliance on relationship lending is an indicator of trust evaporation in the banking system. Thus,

monitoring how stable relations affect spreads and volumes over time may act as an early warning

indicator of a financial turmoil.

Bech and Atalay (2008) analyze the topology of the Federal Funds market by looking at O/N

transactions from 1997 to 2006. They show that reciprocity and centrality measures are useful

predictors of interest rates, with banks gaining from their centrality. Akram and Christophersen

(2010) study the Norwegian interbank market over the period 2006-2009. They observe large
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variations in interest rates across banks, with systemically more important banks, in terms of size

and connectedness, receiving more favorable terms. Gabrieli (2012) tests whether measures of

centrality explain heterogeneous patterns in the interest rates paid to borrow unsecured funds in

the e-MID market, once bank size and other bank and market factors are controlled for. This

paper shows that the effect of interconnectedness on interbank borrowing costs is different before

and after August 2007.

Similar to Gabrieli (2012), we also study the e-MID market and implement a number of

centrality measures in our analysis. The main difference with Gabrieli’s paper is that, like Akram

and Christophersen (2010), she perform the analysis on daily networks while we compute centrality

measures on quarterly aggregated transaction networks. This choice is motivated by the analysis of

Finger et al. (2012) who show that the e-MID network appears to be random at the daily level, but

contain significant non-random structure for longer aggregation periods. Daily transactions are

rather random draws from the true underlying network with the realizations depending on current

liquidity need. A much higher degree of structural stability is achieved for longer aggregation

periods, monthly or quarterly. At the daily scale several banks act exclusively as lenders or

borrowers, and liquidity flows over short paths resulting in very small values of centrality according

to most measures, which is not the case at longer aggregation scales. In addition we perform the

regression analysis not per bank but per pair, assessing simultaneously the role of lender and

borrower centrality in a transaction.

3 Data and variables definition

3.1 Data

We use tick-by-tick data of the Italian e-MID from 01 January 2006 to 31 December 2009. We have

detailed information about each transaction: time, volume of trade, maturity, interest rate, the

side of the transaction (buy/sell), the code of the banks acting as quoter and aggressor, country of

origin and size of both parties. The interest rate is expressed as annual rate and the volume of the

transaction is provided in millions of Euros. The e-MID market includes contracts with maturities

varying from one day to one year. We restrict our analysis to overnight (O/N) and the overnight

7



long (ONL2), which consists of more than 90% of all e-MID transactions as the interbank market

is mainly a market for short-term trades. If loans with longer maturities were included in the

dataset, it would be difficult to derive a representative interest rate for the market as longer term

loans tend to be infrequent.

In order to construct representative measures of network centrality we use quarterly data. We

also consider three sub-samples according to the evolution of the financial crisis as described in

Table 1.

3.2 Interest rate spreads

In this study, the unit of analysis is not an individual bank but a pair of banks, that is, lender

and borrower, in order to control counterparty specific characteristics. We calculate the quarterly

volume weighted average interbank interest rate for each bank pair ij at quarter t as

Sij,t =
1∑Nij,t

n=1 Vij,n

Nij,t∑
n=1

(rij,n − r̄dm) ∗ Vij,n,

where rij,n and Vij,n are the transaction level interest rate and volume of trade, respectively, for

each pair of banks ij where i 6= j, Nij,t is the number of transactions for the bank pair ij at period

t, and r̄dm is the daily volume weighted average rate over all transactions carried out by the bank

pairs and calculated as

r̄dm =

∑Nij,d

n=1

∑
j=1

∑
i=1 rij,n ∗ Vij,n∑Nij,d

n=1

∑
j=1

∑
i=1 Vij,n

,

where rij,n and Vij,n are defined as above and Nij,d is the number of transactions for the bank pair

ij at day d.

In our study we only include banks that actively participate in the interbank O/N market for

all sub-periods of the financial crisis of 2007-08 in order to avoid potential selection bias in our

analysis. The aim of this approach is to exclude banks that go bankrupt or drop out of the market

for any reason or banks that enter the market during sixteen quarters from January 2006 through

to December 2009. As a result of this data trimming for entering and exiting banks, the number

2ONL refers to contracts when there is more than one day between two consecutive business days.
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of banks during the period analyzed decreases from 200 to 140. Further details about the sample

are in Temizsoy et al. (2015).

Figure 1 plots the evolution of spreads in our sample. A particular feature is the increase in

dispersion during the financial crisis.

3.3 Network centrality measures

Centrality is a concept developed in sociology to assess who occupies critical positions in a network,

and to identify important, or powerful, individuals. Importance can be interpreted in different

ways and this leads to different definitions of centrality. The most popular centrality measures

used in the financial economics literature all reflect the involvement of a node in the cohesiveness

of the network but differ on how cohesiveness is measured, that is in terms of how walks between

nodes are defined and counted. The measures described in this paper span from walks of length one

(degree centrality) to infinite walks (eigenvector centrality). In simple structures these different

measures tend to covary but in more complex and larger networks, nodes can be more important

with respect to some centrality measure and less important with respect to others.

The network perspective emphasizes that power is not an individual attribute but is inherently

relational. Power may arise from occupying advantageous positions in networks of relations, such as

by being close to others. For our analysis we represent the market as a network consisting of nodes

(banks) and a time-varying number of, weighted and directed, links between them (representing

interbank loans). The direction of the links follow the flow of money (from lenders to borrowers).

Two banks can be connected by two links, one in each direction, if they both act as lenders

and borrowers. Thus, network centrality directed measures provide different values of the bank’s

interconnectedness, focusing separately on the role of a bank as lender or as a borrower.

Nodes with more ties to other nodes have alternative ways to satisfy their needs, that is, they

have greater opportunities to exchange liquidity. Choice makes these nodes less dependent on

other nodes, and in this sense more powerful, such as in bargaining better rates. Thus a simple

measure of a node centrality is its degree (see Appendix I for a mathematical definition of degree

and other centrality measures). When links are directed, it is common to distinguish centrality

based on in-degree from centrality based on out-degree. Nodes that receive many ties, i.e. high

in-degree, are said to be prominent, or to have high prestige or trust. Nodes with high out-degree
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are said to be influential.

Degree centrality only takes into account the immediate ties that a node has. A node might

be tied to a large number of others, but those others might be disconnected from the network as

a whole. In a case like this, the node could be central, according to degree centrality, but only in

a local neighborhood. So degree is a measure of local centrality.

Betweenness centrality, introduced by Freeman (1979), focuses on the distance of a node to

all the other nodes in the network, and in this sense is a measure of global centrality. It is based

on the idea that nodes have positional advantage if they lay in between other pairs of nodes. The

intuition is that nodes that are “between” other nodes will be able to translate their broker role

into power. In connected graphs there is a natural distance metric between all pairs of nodes,

defined by the length of their shortest paths (geodesic paths). Betweenness centrality measures

the proportion of times a node fall on the shortest pathway between other pairs of nodes.

When defining betweenness, as well as other centrality measures, we consider two alternative

choices of directed paths: the one that follows the flow of money lent, that is paths that go from

lenders to borrowers (along outgoing links), and the one that follows the direction of repayments

to be made, that is paths that go from borrowers to lenders (along incoming links). We name

these two measures as OutBetweenness and InBetweenness, respectively. While Gabrieli (2012)

reports that betweenness is very small and often zero in daily networks, confirming the limited

extent of intermediary trading in the e-MID market at daily aggregation scale, we find that in

quarterly networks, very few nodes exclusively lend or borrow (on average about 5% of the banks

only lend or only borrow in a given quarter but the proportion increases up to 10% for borrower

in phase III) and values of betweenness are over 10 times larger than the one reported by Gabrieli

both for the directed and non-directed version of the centrality indicator.

Bonacich (1972, 1987) and Katz (1953) proposed a modification of the degree centrality based

on the idea that the centrality of a node depends on the centrality of the nodes that link to it, for

InCentrality, or on the centrality of the nodes it links to, for OutCentrality. Katz centrality can

be interpreted as a distance between nodes measured by unrestricted walks of any length, rather

than by paths or geodesics.

A popular commercialization of eigenvector centrality is Google’s Pagerank algorithm (Page

et al., 1999). Unlike Katz’s centrality, where a node passes all its centrality to its out-links, or

10



inherit all the centrality from its incoming links, with Pagerank each connected neighbor gets a

fraction of the source node’s centrality. Pagerank can be interpreted as the fraction of time that

a random walk(er) will spend at a node over an infinite time horizon.

Two recently-developed centrality measures are Acemoglu et al. (2015) harmonic distance and

Soramaki (2013) Sinkrank. Acemoglu et al. (2015, p.588) show that the harmonic distance from

bank i to j is equal to the mean hitting time of the Markov chain from state i to state j. Acemoglu

et al. (2015) argues that “various off-the-shelf (and popular) measures of network centrality (such

as eigenvector or Bonacich centralities) may not be the right notions for identifying systemically

important financial institutions. Rather, if the interbank interactions exhibit non-linearities similar

to those induced by the presence of unsecured debt contracts, then it is the bank closest to all

others according to the harmonic distance measure that may be ‘too-interconnected-to-fail.’ ” (pp.

566-567). Similar to Acemoglu et al. (2015) Soramaki’s Sinkrank measure is based on absorbing

Markov chains. We compute both the in and out versions of the Sinkrank centrality, where the

in version is known as Sourcerank. While Sinkrank identify liquidity sinks, Sourcerank identifies

liquidity providers.3

Local and global centrality measures can be generalized to weighted measures by replacing

the adjacency matrix with the weights matrix. In the empirical analysis we consider both the

unweighted and weighted versions of the centrality measures described above (see Appendix I for

the mathematical definitions of all these measures). In all cases centrality is a directed measure.

Tables 2 and 3 show the summary statistics for the network centrality variables used in the

regression models below.

Figure 2 illustrates the average and quantiles of indegree of borrower and outdegree of lender

for three phases of 2007-2008 financial turmoil. Both variables show a higher inter-quantile range

before Lehman’s collapse than after. There is, however, a sharp decrease in the upper quantile of

both measures during the second phase. Figure 3 shows the average and quantiles betweenness

centrality over the time. Betweenness centrality of banks decreases during the second and third

phase of the 2007-2008 financial turmoil, a trend that is similar to the local degree centrality

3Another novel measure of systemic importance inspired by centrality is Debtrank, introduced by Battiston et
al. (2012). Since our dataset that does not include banks’ balance sheet information, we cannot compute this
measure. Other popular measures of centrality that we considered but did not include in the analysis are closeness,
eigenvector centrality and Bonacich centrality. These measures were not included because they are better suited to
fully connected network and directed cyclic graphs which is not always the case in the e-Mid interbank networks
(see discussion in Appendix I).
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measures. Figure 4 shows no clear trend in the quantiles of the eigenvector-based centrality

measures but some of the distributions appear to become more right skewed towards the end of

the analyzed period.

Global centrality measures tend to correlate with local centrality measures as, by construction,

high degree can lead to high centrality. To quantify the importance of this effect, we regress

the nodes’ global InCentrality (OutCentrality) versus their Indegre (Outdegree) and plot the

coefficients of the pooled OLS regressions, for each quarter separately, in Figure 5. The plots

show interesting dynamics: while correlations decrease over time for Pagerank, they have a

non-monotonous behavior for betweenness. We do not explore in this paper what consequences

such dynamic change may have in terms of the banking system stability, but we do control for

these correlations when assessing the effect of global centrality on interbank spreads.

3.4 Other control variables

In our analysis, in addition to centrality measures, we also control for other variables that may

affect interest rate spreads.

The identity of the banks trading in the e-MID is unknown to us and replaced by a unique

identifier in our dataset. This makes it impossible to match e-MID trading data with balance

sheet or other banks’ specific data. Other studies (see Angelini et al., 2011) have shown that banks

characteristics such as credit ratings, capital ratios, or profitability remained roughly unchanged

during the precrisis and crisis period. Neither borrower or lender liquidity nor their shortage of

capital correlate with e-MID market spreads in Angelini et al. (2011) study. Of course, since credit

ratings lost credibility as the crisis unfolded we do not know if banks used rating agencies’ scores

to inform their choices of counterparty. Neither we know what other private or public information

was available to banks. For this reason we also include time varying measures of aggregate volumes

of O/N trading by both the lender and borrower as a proxy of banks’ characteristics. The intuition

is that participation in terms of volume captures all unobserved factors that may be relevant to

explain banks’ spreads. We also include transaction concentration, Transaction Ratio (%), that

measures the ratio of the number of transactions between each pair to all transactions that takes

place in the same period. This variable captures the overall importance of the pair within the

network structure.
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Another key determinant of O/N rates is the time of a transaction. While Angelini (2000)

using hourly e-MID data shows no intraday pattern of interest rates, Baglioni and Monticini (2008)

and Gabbi et al. (2012) find a decreasing trend in the O/N rate as the trading day progresses.

The intraday slope becomes more pronounced with the financial crisis and, in particular, after the

Lehman Brothers collapse. The intraday term structure of interest rate is due to the maturity of

O/N deposits which are expected to be reimbursed at 9 am of the day following the trade. The

increase in the slope of the yield curve after the default of Lehman apparently creates a risk-free

profit opportunity. Baglioni and Monticini (2008) suggest that this opportunity is not arbitraged

away for two main reasons: uncertainty about availability of liquidity late in the afternoon and

an increase in the implicit cost of collaterals. Similar to Baglioni and Monticini (2008), we also

examine the effect of the time interval of the transaction performed. Instead of dividing the day

into hourly segments, we use only two slots: morning (8 am - 1 pm) and afternoon (1 pm - 6

pm). Morning-Afternoon (AM/PM Ratio) is the fraction of the difference between number of

transactions that occur during morning and afternoon to all transaction of each pair at a given

period. In the interbank market, participants must repay the loans by 9 am the next trading

day of the transaction. Hence, morning interest rates have a premium to account for the longer

maturity period than those transactions in the afternoon.

While the e-MID market is not affected by search frictions and lack of transparency, trading

in the electronic segment of the interbank market is affected by its own specific micro-structure

features. Gabbi et al. (2012) and Temizsoy et al. (2015) have shown that due to a bid-ask spread

effect, better rates are obtained, both by lenders and borrowers, when they act as quoters rather

than as aggressors. A credit institution that first comes to the market with a proposal to lend

or borrow is called quoter, while the bank that picks a quote and exercises a proposal is called

aggressor. Aggressors, by choosing their counterparts, may have more power than quoters in a

pair relationship. Thus we control for variations in rates that are explained by the bid-ask spread

effect by separately studying quoters and aggressors. Then we control for the ratio of the difference

between number of transactions of a pair that occurs when lender is a quoter and when a lender

is aggressor, divided by all transactions of the pair at a given quarter (Quot/Agg Ratio).
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4 Econometric model

In order to investigate the effect of network characteristics on the interbank market we consider

the following econometric model. Let

Sij,t = β0 + β1Aij,t + β2Bi,t + β3Cj,t + uij,t,

uij,t = µij + δt + eij,t,

where i, j denotes bank pairs (bank i lends to j), t indexes time, Sij,t is the spread, Aij,t, Bi,t and

Cj,t represent pair, lender, and borrower related variables, respectively, µij is the pair-specific

effect, δt a time-specific effect, and eij,t is the unobserved residual. We estimate the model

above using fixed-effects (FE) at bank pair level and time dummies. We also compute robust

standard errors clustered at the bank pair level which allows us to control for the time-varying

bank heterogeneity. We run the same model for three time spans, phase I, phase II, phase III of

the latest financial turmoil, and for all pooled periods.

All analyses are done conditional on bank pair ij FE, and therefore, the effect of the variables

should be interpreted as conditional on the existence of that particular link i→ j. We cannot claim

that network characteristics cause spreads. Feedback effects between network positioning and

prices are possible, with network characteristics leading to better prices and more favorable prices

reinforcing network effects. This feedback loop makes it difficult to establish the causality of the

effect. Temizsoy et al. (2015) shows that such feedback effects are small. Spreads do not determine

survival of a bank pair into the following months once relationship indexes are controlled for, while

relationship lending has an effect on spreads. Previous studies (see Hatzopoulos et al., 2015) have

also shown that, when controlling for banks heterogeneity in trading activity, the matching process

in the e-MID market is fairly random. This suggests that links are not preferentially formed with

banks that offer lower rates or that are more trustworthy. Rather banks appear to be more likely

to selected as trading partners because they trade more often. This points to a causal effect of

relationship on prices rather than the other way around. In this paper we do not model the entry

and exit decisions of banks and their matching patterns. What we show is that network variables,

once formed, possibly at random, persists and are important for explaining prices and can play

an important role also within a transparent market such as the e-MID.
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Network variables are introduced one at a time in different specifications, together for both

lender and borrower. The reason is that while they are intended to describe different features

of the network they are highly correlated with each other. For global measures, we consider

all specifications controlling for the local network counterparts (local unweighted centrality in

all cases) because local and global measures are correlated (see Figure 5). Network variables are

considered in logarithm form, and as such, regression coefficients should be interpreted as the effect

of doubling network centrality on spreads, in basis points. Finally, we report a set of regressions

using unweighted and another using weighted measures of centrality.

For each centrality measure we consider two specifications. First, we include the in and out

measures for both lenders and borrowers. Second, we add to the previous model the interactions

in× out separately for both lenders and borrowers. In this case we only report the coefficients of

the interaction and omit the coefficients of the free standing variables.

All specifications include a set of baseline covariates given by Transaction Ratio (%), AM/PM

Ratio, Quot/Agg Ratio, Reciprocity Ratio, O/N Trading Amount of Lender, O/N Trading Amount

of Borrower, described in Section 3.4. The inclusion of these covariates is to isolate the effect

of network characteristics on transaction spreads from bank- and pair-specific variables that

contribute to spreads (see Temizsoy et al. (2015) for a description of the effect of these variables

on spreads).

5 Results

5.1 Local network measures

As a first approximation to the effect of network centrality on the interbank market we evaluate

the effect of local centrality measures (in logs) on spreads. Table 4 shows the effect of degree

centrality on interbank spreads. The model present a specification with lenders (L) and borrowers

(B), indegree and outdegree. The results show that B with high indegree pay higher spreads,

and this effect increases in magnitude as the financial crisis evolves. The pooled effect determines

that doubling borrowing links (i.e. increasing the logarithm of the indegree centrality measure by

1 unit) increases interest rate by 1.437 basis points in all pooled periods, which corresponds to

0.653, 0.929, and 3.849 in phases I, II and III, respectively, for the unweighted measures. Results
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for the weighted measures are smaller but have the same sign and statistical significance. That

is, B pay a premium to be able to get more partners in the interbank network, and this increases

when systemic risk increases. We might thus speculate that financial uncertainty directs banks

towards looking for better connections within the established network structure and they paid a

premium for the number of links.

L have no clear pattern regarding outdegree network centrality measures. L outdegree has a

non-significant effect for all pooled periods, positive for phases I and II, and negative (although

not significant) for phase III. This shows that L were able to obtain better rates for having more

links within the network before Lehman’s collapse, but the effect reverses after it. L thus pay a

price for diversification when systemic risk increases. Possibly this suggests that in the presence of

systemic risks, banks diversify their transactions, and incur in worse interest rates. Diversification

may in turn increase uncertainty as well established information flows with a few partners are

reduced (see Temizsoy et al., 2015).

The results show that L (B) who engage in a well-connected borrowing (lending) activity benefit

by obtaining better rates. Overall this suggests that network effects depend on the joint lending

and borrowing activities of the banks. In order to explore this further we add the interaction

terms indegree by outdegree, separately for L and B, to the previous specification (as stated above

we only report the regression coefficients of the interactions). Considering all pooled periods, L

obtain higher rates and B lower rates when they engage in both lending and borrowing activities.

The same effects appear in phase I, although they are not present in phases II and III.

Two potential situations should be mentioned for systemic risk. The first case corresponds

to banks who lend to few counterparties (small outdegree of L) that in turn borrow from many

(large indegree of B). L in this case are highly exposed to the B (as L do not diversify) and if

these B default they may spread the distress to several L. Note that while the proportion of L

with few counterparties increased, B had less and less counterparties. This indicates that this case

has not been observed in our sample. The second case corresponds to banks who lend to many

counterparties (large outdegree of L) who in turn borrow from few banks (small indegree of B).

If such lender exits the market or default they may generate a liquidity crisis as their borrowers

may find it difficult to satisfy their liquidity needs unless they create new links in the market,

i.e. substitutability. The e-MID interbank market seems to be very prone to this second kind of
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systemic risk, provided that the overall outdegree of B reduces while there appear to be some L

that attract many links to themselves.

5.2 Global network measures

Global network measures show the positioning of a bank and its relationship to the interbank

system. In contrast to local measures, these variables tend to identify if the bank is located in a

particular position with a particular flow of money going through it.

For all the centrality measures considered, the in version capture the importance of a bank as

a borrower and the out version captures the importance of a bank as a lender. If we are interested

in systemic risk it is the InCentrality version of the centrality measures that is more relevant. B

are likely to be systemically more important if their L are also systemically important B as in this

case distress can propagate farther through the network. On the contrary banks characterized by

a high OutCentrality are likely to be important liquidity providers as, by lending to other central

L, they can contribute more effectively to the overall liquidity of the market.

Our choice of weights for weighted centrality measures captures the relative importance of

a borrower for a lender, for InCentrality, and of a lender for a borrower, for OutCentrality.

The reason is that InCentrality is transmitted via lending and OutCentrality is transmitted via

borrowing. This is because if a lender is also a potentially systemic borrower (as measured by its

high InCentrality), its main B, by defaulting, may trigger this lender default and, as such, become

systemically important themselves (inheriting a larger proportion of their lender InCentrality).

Similarly if a borrower is also a central lender (as measured by its high OutCentrality), its own

main L become important liquidity providers themselves (inheriting a larger proportion of their

borrower OutCentrality).

Consider first the effect of betweenness in Table 5. Recall that betweenness measures a

bank’s access to the interbank liquidity. For the unweighted measures, when all pooled periods

are considered, InBetwenness has a negative effect for both L and B, and OutBetweenness has

a positive significant effect for B. Weighted measures have in general the same sign but with

less statistical significance. Calculations for betweenness with weighted paths result in unstable

measures, and we believe this is the cause of the lack of statistical significance in our regression

models, and we prefer the unweighted measures. For B, the effects increase in absolute value as
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the financial crisis evolves (i.e. the largest effect is in phase III). For L, the largest effect appear in

phase III, where InBetweenness has a large negative effect while OutBetweenness is positive and

significant (significant only for unweighted). When both in and out measures are interacted B

obtain a negative effect, which is significant for all pooled periods and for phase II. The fact that L

coefficients are not significant suggests that the effect is not driven by market power, as otherwise

both L and B would benefit from it, but by a ‘too-interconnected-to-fail’ perception of the B that

benefit of lower spreads because the market participants believe highly connected borrowers will

be bailout in case of default to avoid systemic effects. Then network interconnectedness were

perceived as an asset for B during the crisis (i.e. phase II), and this vanishes after Lehman’s

collapse.

Eigenvector type centrality measures how well connected the nodes to which that bank is

connected to. It does not only measure how a bank is connected to the network, but it also

indicates connectedness of its neighbors. Three different measures are used in the regression

models (see the definitions in Appendix I): Pagerank, Sinkrank and Katz, in Tables 6, 7 and 8,

respectively. For each pair of banks and a particular direction, we can consider the in and out

centrality of both L and B in different specifications. Moreover, we construct both unweighted

and weighted centrality measures.

The eigenvector network variables have similar and consistent effects across measures. They

show that for all pooled periods L receive lower rates for higher out-centrality (doubling out-centrality

reduces spreads by 0.65 basis points for Pagerank and Sinkrank) while B pay higher rates for higher

in-centrality (doubling in-centrality increases funding rates by 0.9 basis points for Pagerank and

Sinkrank). These effects increase in absolute value across the financial crisis, with the pooled effect

driven by phase III for B (where the effect increases up to 3 basis points) and by phase II or III

for L. Katz centrality measures show much larger effects on the same direction.

The opposite edge measures, i.e. out for B and in for L, have an overall non-statistically

significant effect. The exception is the out-centrality measures for B that appear with a positive and

significant effect in phase III. That is, B who have a high global centrality in lending obtain lower

rates for their borrowing. In order to explore this further, we consider the in- and out-centrality

interaction. B obtain a significant discount on their funding rates, suggesting that B receive better

(i.e. lower) rates when engage in both lending and borrowing. L, however, have a non-statistically
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significant effect for all pooled periods. The largest interaction effects appear in phase II for B,

and in phase III for L, the latter with a negative effect.

5.3 Robustness analysis I: Instrumental variables

As argued above the regression model may not be able to capture the causal effect of centrality

on rates but rather the correlation between these two provided that feedback effects cannot be

ruled out. A particular concern is that banks self-select partners according to unobservable

characteristics, not captured by individual effects (i.e. pair intrinsic characteristics) or the rich set

of observables described in Section 3.4 (including volume transaction of both L and B). As argued

by an anonymous referee this is a potential problem if network characteristics are considered as

credit risk indicators, a point that we emphasize in this paper.

In order to solve this endogeneity problem we implement an instrumental variables (IV)

strategy for each specification. In particular, we use centrality in t−1 as instrument for centrality

in t. If we assume that the error term is conditionally serially uncorrelated, lagged centrality

measures will be uncorrelated with error terms in t. Moreover, bank centrality is a persistent

measure across time (first-stage results are available from the Authors upon request). Since

all our centrality measures are potentially endogenous, we use one-period lagged values of all

centrality measures as instruments for all of them. The model with interaction terms also requires

to instrument the interactions, and for that we include the corresponding lagged interactions as

additional instruments. The IV estimators are thus exactly identified.

The IV results appear Tables 9-13 for each centrality measure (unweighted and weighted). The

results partially confirms the results discussed above.

For local centrality (see Table 9) the IV method reduces statistical significance. This could

indicate that degree centrality is correlated with the unobserved balance sheet. An interesting

result is that while in-B centrality has a negative effect before the financial crisis (phase I), pointing

out that borrowers with more links obtained lower rates, this becomes positive in phase III. The

interaction of in and out for B also confirms that they obtain lower rates if they simultaneously

engage in lending and borrowing with many partners.

For global centrality (see Tables 10-13), in general, the results corresponding to all pooled

periods have a similar sign and magnitude of those of the regression models without instrumenting,
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although many coefficients are not robust. Of particular stability across specifications are the

coefficients of out-L, confirming that lenders pay a premium for centrality. Moreover, the negative

value is also large and significant for phase III. The other results that stand out are the positive

effects of in-B in phase III (Sinkrank and Katz), which highlights the higher interest rates B paid

after the crisis.

5.4 Robustness analysis II: Bank-specific time-varying fixed-effects

Following an anonymous referee suggestion, we implement an alternative FE model with the

intention of evaluating the potential effect of bank-specific time-varying latent causes of both

centrality and spreads. Because our network centrality measures are bank and quarter specific

we cannot simultaneously include centrality it or jt measures and it and jt FE. However, as a

robustness check, we use jt B specific network centrality measures together with it L FE (Table

14), and it L specific network centrality measures together with jt B FE (Table 15). The results

are similar in terms of magnitude and statistical significance to the baseline results (Tables 8-8)

for B centrality (controlling for L×quarter FE) and L centrality (controlling for B×quarter FE)

when we study the effect of global centrality measures (Pagerank, Sinkrank and Katz) but there

are differences in significance levels for local (i.e. degree) and betweenness measures. Overall,

however, the baseline models regression coefficients show that centrality measures are robust to

counterparty specific time-varying shocks.

6 Discussion and concluding remarks

Local and global measures of centrality are used to identify different features of how the network

characteristics affect the interbank market funding rates. Local measures show that having more

links increases borrowing costs for borrowers and reduces premia for lenders. We interpret this

effect as a premium paid by lenders to diversify counterparty risk, and by borrowers to reduce

funding risk. Our constructed global eigenvector-based measures of centrality are in general in line

with the local measures of centrality when looked at in isolation. That is, for banks being central

is a cost. Note that, in general, the highest effect in absolute value corresponds to either phases

II or III. In fact, the coefficient sign for all pooled periods is either dominated by that of phase

II or phase III. The higher spreads paid by both lenders and borrowers with high in-centrality
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measures suggests the market associates InEigenvector centrality with higher credit risk.

To disentangle the role of local factors (degree) on global centrality measures in the analysis,

we control for local degree in our global centrality regressions. The fact that global effects remain

statistically significant after controlling for the local network effects suggests that overall global

and local network effects operate on a different level in the e-MID market.

A node is important from a global network perspective if it is pointed by, or points to, other

important nodes. In our case, borrowers are important if their lenders are important borrowers

as well, as this configuration is more likely to propagate distress further through the network and

generate systemic risk. In turn lenders are important if there borrowers are also important lender

as this configuration allows a more effective redistribution of liquidity through the network.

Eigenvector-based centrality measures may be dominated by the degree of the nodes as, by

construction, high indegree produces high in-eigenvector centrality. In-eigenvector centrality can

be large for banks that are liquidity sinks, that is, banks that borrow from many (and borrow a

lot), but that are rather peripherical to the network and as such do not spread distress beyond

their direct creditors. A visual inspection of local vs. global measures indeed confirms this fact,

that is, there is a high correlation between local and global measures, but several banks stand out

as being characterized by high centrality and low degree. These are the banks that inherits their

centrality from their lenders and are the potential spreader of systemic risk.

Betweenness, on the other hand, is high, and different from zero, for banks that both lend and

borrow, and it increases as the intermediation role of banks increase. This measure is thus probably

large for the banks in the core and small for those in the periphery. The negative coefficient for

InBetweenness for both lenders and borrowers suggest the market participants perceive borrowers

who are central according to this measure as too connected to fail, likely to be bailout in case of

default to avoid systemic effects, and as such offer them a discount. The betweenness regression

results, however, are not robust across specifications, while eigenvector measures show similar

results for unweighted and weighted. We thus prefer eigenvector-based measures.

This interpretation is confirmed by the negative coefficient observed for borrowers when the

in and out Pagerank and Sinkrank centrality measures are interacted, indicating again that large

borrowers that are central in both directions obtain lower funding rates. However, lenders do not

benefit from high betweenness or the joint in and out global network centrality. The fact that
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only borrowers, and not lenders, benefit from joint centrality point to a ‘too-interconnected-to-fail’

hypothesis rather to a broker or intermediation effect. As such, these borrowers get better deals

for funding in the interbank markets, and this is probably due to the market perception of their

network positioning. This effect is the largest in phase II, when banks became affected and/or

aware of systemic risk. For lenders, the market perception about their network positioning (i.e.

fragility) dominates their strategic location for intermediation (as in Gabrieli and Georg, 2014).

From a policy perspective monitoring how funding cost advantages, associated to the perceived

systemically importance of financial institutions, can be an important tool to assess the effectiveness

of the regulatory reforms. Banks perceived as more likely to receive taxpayer support may benefit

from lower funding costs. This implicit subsidy this can create moral hazard and provide an

incentive to take on additional risk, exacerbating system fragility. Regulators thus have the

objective to eliminate the perception that some financial institutions are too big to fail or, in

our case, ‘too-interconnected-to-fail’. Monitoring how funding cost advantages evolve over time

may provide a way to measure the effectiveness on regulatory policy to reduce systemic risk on

one side and act as an early warning indicator of systemic risk on the other.

Favorable rates obtained by more central banks do not necessarily reflect lower credit risk owing

to any implicit government guarantee against default. It could also reflect higher bargaining power

and/or lower credit risk through more diversified portfolios. Disentangling these effects is difficult

in the case of OTC markets where market participants actively search for counterparties. When

counterparties meet, they negotiate terms privately, often ignoring prices available from other

potential counterparties and with limited knowledge about trades recently negotiated elsewhere

in the market. Thus better connected banks may have better access to liquidity and benefit from

better rates in compensation of their intermediation role. But the e-MID is a fully transparent

trading platform. There is little scope for intermediation in this market. Search frictions and

lack of information on rates offered by alternative lenders cannot be responsible for the observed

cross-sectional dispersion of O/N rates in this market.

Nonetheless our analysis does not allow to identify why centrality affects banks terms of trade

in a financial network. Some banks probably choose to create more local links or have to because

they cannot satisfy their needs trading with fewer counterparties. Some may choose to act as

intermediaries. While in a fixed network one can expect centrality to deliver positive effects to
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both lenders and borrowers, either because information or market power effects, in the case of

endogenous and dynamic networks this is less obvious. The theoretical literature does not help

us in this respect. While several theoretical papers have analyzed how the incentives of single

agents to form linkages affect the resulting network topology ( Goyal and Vega-Redondo (2007),

Babus (2015a,2015b), van der Leij and Kovarik (2012)) leading in some cases to a core-periphery

structure (in ’t Veld et al. (2014), Lux and Farboodi (2013)), they do not provide any insights

on the benefit of centrality in terms of prices. Our empirical results thus indicate that further

theoretical work should be done to explore this issue.
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Appendix I: Mathematical definition of centrality measures

Let A be an adjacency matrix where aij = 1 if bank i lends to bank j (in a given quarter), and
0 otherwise. We denote as AT the transpose of the adjacency matrix. We use A to compute the
out-centrality measures and AT to compute the in-centrality measures.

Let W in be a weighted&directed network whose elements are W in
ij =

Vij
V l
i

where Vij represents

the value of the loans made by bank i to bank j (over a quarter) and V l
i is the total volume lent

by bank i (over the same quarter).

Let W out be a weighted&directed network whose elements are W out
ij =

Vij
V b
j

where Vij again

represents the value of the loans made by bank i to bank j (over a quarter) and V b
j is the total

volume borrowed by bank j (over the same quarter).

We will use AT and A for unweighted in-centrality and out-centrality measures, and W in and
W out for weighted in-centrality and out-centrality measures. Our choice of weights for weighted
centrality measures captures the relative importance of a borrower for a lender, for InCentrality,
and of a lender for a borrower, for OutCentrality.

Indegree and Outdegree centrality are defined as

IndegreeCentrality(i) =
1

n− 1

∑
j

aji,

OutdegreeCentrality(i) =
1

n− 1

∑
j

aij ,

where A is the adjacency matrix and n is the number of nodes in the network.

Betweenness centrality is computed, for each node, by adding up the proportion of times a
node fall on the shortest (geodesic) pathway between other pairs of nodes and is normalized by
expressing it as a percentage of the maximum possible betweenness that a node could have:

InBetweenness(k) =
1

(n− 1)(n− 2)

∑
i,j

σin(i, j|k)

σin(i, j)
,

OutBetweenness(k) =
1

(n− 1)(n− 2)

∑
i,j

σout(i, j|k)

σout(i, j)
,

where σin(out)(i, j) is the number of shortest in (out) paths from node i to j and σin(out)(i, j|k)
is the number of such in (out) paths passing through the bank k. The definition of weighted
betweenness is analogous but the length of each link in a path is given by the inverse of the link’s
weight. We find however that weighted betweenness is not a stable measure, and this could explain
the lack of statistical significance in the rgression models.

Eigenvector centralities are based on the idea that the centrality of a node depends on the
centrality of the nodes that link to it, InEigenvector centrality, or on the centrality of the nodes it
links to, OutEigenvector centrality. According to the original definition, Eigenvector centralities
are given by

InEigenvector(i) =
∑
j

aji InEigenvector(j),

OutEigenvector(i) =
∑
j

aij OutEigenvector(j),

27



where InEigenvector and OutEigenvector are vectors of centrality scores4. In matrix form, this
can be expressed as

InEigenvector = AT InEigenvector,

OutEigenvector = A OutEigenvector.

Thus the centralities are given by the elements of the eigenvector of A or AT corresponding
to an eigenvalue of 1, which in general has no non-zero solution. One way to make the equations
solvable is to normalize the rows (columns) so that each adds up to 1 and A and AT become a
stochastic matrix.

The definitions of the weighted eigenvector centrality measures, given our choice of weights,
are

wInEigenvector(i) =
∑
j

Vji
V l(j)

wInEigenvector(j),

wOutEigenvector(i) =
∑
j

Vij
V b(j)

wOutEigenvector(j).

In matrix form, this can be expressed as

wInEigenvector(i) = (W in)T wInEigenvector(j),

wOutEigenvector(i) = W out wOutEigenvector(j).

An alternative definition, first suggested by Bonacich (1972), is to assume that each individual’s
status is proportional (not necessarily equal) to the weighted sum of the individuals to whom she
is connected, in which case the equation can be rewritten as

InBonacich(i) = 1/λ
∑
j

aji InBonacich(j),

OutBonacich(i) = 1/λ
∑
j

aij OutBonacich(j),

so that the centrality measure is given by the eigenvector associated to the largest eigenvalue of
AT . If the graph is strongly connected the Perron-Frobenius theorem guarantees that there is
unique and positive eigenvector.

The volume weighted version of Bonacich is defined as

wInBonacich(i) = 1/λ
∑
j

Vji
V l(j)

wInBonacich(j),

wOutBonacich(i) = 1/λ
∑
j

Vij
V b(j)

wOutBonacich(j).

A practical problem with eigenvector centrality is that it works well only if the graph is
(strongly) connected, i.e. if each node is reachable from every other node in the network. Real
undirected networks typically have a large connected component. However, real directed networks
do not. If a directed network is not strongly connected, only vertices that are in strongly connected
components or in the out-component and in-component of the strongly connected components can
have non-zero eigenvector centrality. This happens because nodes with no incoming edges have,

4In undirected networks AT = A and the two measures coincide.
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by definition, a null InEigenvector centrality score, and so have nodes that are pointed to only
by nodes with a null InEigenvector centrality score (and the analogous for the OutEigenvector
centrality).

Thus when a node is in a directed acyclic graph, centrality becomes zero, even though the node
can have many edges connected to it. A way to work around this problem is to give each node a
small amount of centrality for free, regardless of the position of the vertex in the network. It can be
shown that the approach above is equivalent to a measure proposed by Katz (1953) who suggested
that influence could be measured by a weighted sum of all the powers of the adjacency matrix A
(or AT ). Powers of A (or AT ) provide the number of directed walks of length given by that power.
As a result, eigenvector centrality can be interpreted as a distance between nodes measured by
unrestricted walks of any length, rather than by paths or geodesics. Giving higher powers of A
less weight, via an attenuation factor α, would index the attenuation of influence through longer
paths. The infinite sum over all paths converges, so for example InKatz = (I − αAT )−1 · 1 as
long as the attenuation factor α < 1/λ1, where λ1 is the maximum value of an eigenvalue of AT .
Given this convergence Katz centrality can be expressed as

InKatz(i) = α
∑
j

aji InKatz(j) + β,

OutKatz(i) = α
∑
j

aij OutKatz(j) + β,

with β = 1.The volume weighted version of Katz is defined as

wInKatz(i) = α
∞∑
l=1

Vji
V l(j)

wInKatz(j) + β,

wOutkatz(i) = α
∞∑
l=1

Vij
V b(j)

wOutKatz(j) + β.

Katz centrality is the eigenvector centrality we use in our regressions.

A popular commercialization of eigenvector centrality is Google’s Pagerank algorithm (Page et
al., 1999), which also can be computed for asymmetric networks. Unlike Katz’s centrality, where
a node passes all its centrality to its out-links, or inherit all the centrality from its incoming links,
with PageRank each connected neighbor gets a fraction of the source node’s centrality

InPagerank(i) =
1− β
N

+ β
∑
j

aji
OutDegree(j)

InPagerank(j),

OutPagerank(i) =
1− β
N

+ β
∑
j

aij
InDegree(j)

OutPagerank(j),

where β the damping factor (that is the parting of Pagerank that is transferred by a node). For
β = 1 Pagerank converges to eigenvector centrality (normally β = 0.85 is used). Pagerank can be
reformulated in matrix format as InPagerank(j) = (I − βATD−1)−1 · δ1 where D is a diagonal
matrix of out-degrees and δ = (1 − β)/n. As a result of Markov theory, it can be shown that
Pagerank is the steady state probability distribution of a random walk with a restart probability
δ. Thus PageRank can be interpreted as the fraction of time that a random walk(er) will spend
at a node over an infinite time horizon. The restart probability allows the random process out of
dead-ends (dangling nodes). Pagerank (as well as Sinkrank below) can be generalized to weighted
networks by replacing the adjacency matrix with the weights matrix and the nodes’ degrees with
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their strengths. The weighted versions of Pagerank are defined as

wInPagerank(i) =
1− β
N

+ β
∑
j

Vji
V l(j)

wInPagerank(j),

wOutPagerank(i) =
1− β
N

+ β
∑
j

Vij
V b(j)

wOutPagerank(j).

Two recently-developed centrality measures are Acemoglu et al. (2015) harmonic distance and
Soramaki (2013) Sinkrank.

The harmonic distance from bank i to bank j is defined as

Harmonic(i, j) = θi +
∑
k 6=j

(yik/yi)CH(k, j)

where yik represents the value of the loans borrowed by bank k from bank i and yi all loans given
by bank i. The centrality of the node can then be measured by the increase of the sum of the
harmonic distance of a node from all other nodes in the network5.

Acemoglu et al. (2015) shows that the matrix Q, whose elements are qij = yij/yi, is a stochastic
matrix and hence can be interpreted as the transition probability matrix of a Markov chain. For
this Markov chain, one can define the mean hitting time from i to j as the expected number of
time steps it takes the chain to hit state j conditional on starting from state i. Acemoglu et al.
(2015, p.588) show that the harmonic distance from bank i to j is equal to the mean hitting time of
the Markov chain from state i to state j. Acemoglu et al. (2015) argues that “various off-the-shelf
(and popular) measures of network centrality (such as eigenvector or Bonacich centralities) may
not be the right notions for identifying systemically important financial institutions. Rather, if the
interbank interactions exhibit non-linearities similar to those induced by the presence of unsecured
debt contracts, then it is the bank closest to all others according to our harmonic distance measure
that may be ‘too-interconnected-to-fail.’ ” (pp. 566-567)

Similar to Acemoglu et al. (2015) measure Soramaki’s Sinkrank is based on absorbing Markov
chains. SinkRank is defined as

Sinkrank =
n−m∑
i

∑
j qij

where m is the number of absorbing states and n −m the number of non-absorbing states and
qij the element of the matrix Q = (I − S)−1 and S is the matrix of transition probability for
non-absorbing states. S is defined in terms of the A matrix for the unweighted measures and in
terms of the W in and W out matrices for the weighted measure. Q is a matrix whose elements give
the number of times, starting in state i a process is expected to visit state j before absorption,
that is the total number of visits a process is expected to make to all the non-absorbing states.
Sink distance can only be calculated when a directed path exists between the absorbing node and
the non-absorbing node being considered, thus it is most useful as a centrality metric for networks
that are strongly connected. It can be generalized to networks that are not strongly connected by
adding a small constant to the zero elements of the transition matrix, equivalent to the random
jump probability used in the PageRank algorithm, in which case the transition probabilities become
pij = β

sij∑
j sij

+ 1−β
n . We compute both the in and out versions of the Sinkrank centrality, where, as

for the other centrality measures, the in version is obtained from the transpose of the connectivity
matrix, and is also known as Sourcerank. While Sinkrank identify liquidity sinks, Sourcerank

5Acemouglu’s Harmonic distance is, in our terminology an out − centrality measure, and the corresponding in
version could also be defined.
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identifies liquidity providers.
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Figure 1: Bank Pair Spread over Time
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Note: All figures shown in graphs above are averaged to quarterly values.

Table 1: Phases of the Financial Crisis and Subsamples

Period Description Key date No. of Quarters
1-Jan-06 - 30-Jun-07 Phase I Two Bear Stearns’ hedge fund bankruptcy (31-Jul-07) 6
1-Jul-07 - 30-Sep-08 Phase II Lehman Brother’s collapse (15-Sep-08) 5
1-Oct-08 - 31-Dec-09 Phase III - 5
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Figure 2: Quantile Analysis of Degree
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Note: All figures shown in graphs above are averaged to quarterly values.

Figure 3: Quantile Analysis of Betweenness
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Figure 4: Quantile Analysis of Pagerank, Sinkrank, Katz
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Figure 5: Global InCentrality (OutCentrality) vs their Indegre (Outdegree)
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Note: Bold data points reflect coefficients significant at 10% significance level. All global and degree measures are in
logarithmic form.
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Table 2: Summary Statistics

Variable Obs Mean Std. Dev. Min Max
Bank Pair Spread 37872 -.434 8.422 -114.934 82.004
lndegree of L 37872 20.076 22.968 0 108
Outdegree of L 37872 30.361 15.18 1 89
Indegree of B 37872 43.775 23.78 1 108
Outdegree of B 37872 20.365 15.931 0 89
OutBetweenness of L 37872 .01 .018 0 .14
InBetweenness of L 37872 .01 .01 .001 .066
OutBetweenness of B 37872 .013 .019 0 .14
InBetweenness of B 37872 .006 .008 .001 .066
OutPagerank of L 37872 .009 .006 .002 .039
InPagerank of L 37872 .006 .007 .001 .147
OutPagerank of B 37872 .007 .005 .001 .039
InPagerank of B 37872 .013 .012 .001 .147
OutSinkrank of L 37872 .004 .003 .001 .022
InSinkrank of L 37872 .005 .005 .001 .056
OutSinkrank of B 37872 .003 .003 .001 .022
InSinkrank of B 37872 .01 .007 .001 .056
OutKatz of L 37872 .087 .012 .058 .127
InKatz of L 37872 .078 .018 .057 .146
OutKatz of B 37872 .079 .012 .058 .127
InKatz of B 37872 .097 .019 .057 .146
Reciprocity Ratio 37872 .566 3.842 0 422
AM/PM Ratio 37872 .036 .81 -1 1
Quot/Agg Ratio 37872 -.537 .714 -1 1
Transaction Ratio 37872 .034 .066 .004 6.44
ON Trading Amount of Lender 37872 14.471 18.901 .007 154.421
ON Trading Amount of Borrower 37872 20.029 22.487 .002 154.421

Logarithmic Form of Network Measures
ln(Indegree of L) 30052 2.644 1.272 0 4.682
ln(Outdegree of L) 37872 3.263 .608 0 4.489
ln(Indegree of B) 37872 3.575 .739 0 4.682
ln(Outdegree of B) 36094 2.687 1.02 0 4.489
ln(OutBetweenness of L) 29960 -5.577 1.859 -13.341 -1.967
ln(InBetweenness of L) 37872 -5.012 .825 -6.574 -2.723
ln(OutBetweenness of B) 36056 -5.244 1.611 -13.341 -1.967
ln(InBetweenness of B) 37872 -5.453 .797 -6.578 -2.723
ln(OutPagerank of L) 37872 -4.844 .581 -6.447 -3.232
ln(InPagerank of L) 37872 -5.586 .967 -6.957 -1.916
ln(OutPagerank of B) 37872 -5.24 .65 -6.515 -3.232
ln(InPagerank of B) 37872 -4.566 .729 -6.938 -1.916
ln(OutSinkrank of L) 37872 -5.59 .574 -7.014 -3.811
ln(InSinkrank of L) 37872 -5.834 .974 -7.033 -2.886
ln(OutSinkrank of B) 37872 -5.987 .653 -7.033 -3.811
ln(InSinkrank of B) 37872 -4.819 .726 -7.014 -2.886
OutKatz of L 37872 -2.447 .142 -2.842 -2.067
InKatz of L 37872 -2.575 .213 -2.871 -1.926
OutKatz of B 37872 -2.547 .153 -2.852 -2.067
InKatz of B 37872 -2.356 .195 -2.861 -1.926
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Table 3: Summary Statistics (cont.)

Variable Obs Mean Std. Dev. Min Max
Weighted lndegree of L 37872 .746 1.561 0 18.424
Weighted Outdegree of L 37872 1.43 1.657 0 9.953
Weighted Indegree of B 37872 2.445 2.834 0 18.424
Weighted Outdegree of B 37872 .807 1.29 0 9.953
Weighted OutBetweenness of L 37872 .019 .037 0 .307
Weighted InBetweenness of L 37872 .03 .054 0 .444
Weighted OutBetweenness of B 37872 .038 .052 0 .307
Weighted InBetweenness of B 37872 .026 .048 0 .444
Weighted OutPagerank of L 37872 .01 .01 .001 .066
Weighted InPagerank of L 37872 .005 .01 .001 .17
Weighted OutPagerank of B 37872 .006 .008 .001 .066
Weighted InPagerank of B 37872 .014 .022 .001 .17
Weighted OutSinkrank of L 37872 .005 .005 .001 .037
Weighted InSinkrank of L 37872 .003 .006 .001 .07
Weighted OutSinkrank of B 37872 .003 .004 .001 .037
Weighted InSinkrank of B 37872 .009 .011 .001 .07
Weighted OutKatz of L 37872 .084 .014 .07 .153
Weighted InKatz of L 37872 .076 .012 .068 .235
Weighted OutKatz of B 37872 .079 .011 .07 .147
Weighted InKatz of B 37872 .089 .023 .068 .235

Logarithmic Form of Weighted Network Measures
ln(Weighted Indegree of L) 30052 -1.841 2.454 -11.258 2.914
ln(Weighted Outdegree of L) 37872 -.342 1.377 -10.064 2.298
ln(Weighted Indegree of B) 37872 .095 1.552 -11.258 2.914
ln(Weighted Outdegree of B) 36094 -1.416 1.991 -10.064 2.298
ln(Weighted OutBetweenness of L) 20358 -4.357 1.819 -10.254 -1.181
ln(Weighted InBetweenness of L) 25481 -4.182 1.857 -10.254 -.812
ln(Weighted OutBetweenness of B) 31477 -4.011 1.79 -10.254 -1.181
ln(Weighted InBetweenness of B) 26995 -4.443 1.883 -10.254 -.812
ln(Weighted OutPagerank of L) 37872 -5.012 .825 -6.574 -2.723
ln(Weighted InPagerank of L) 37872 -5.954 .927 -6.99 -1.775
ln(Weighted OutPagerank of B) 37872 -5.453 .797 -6.578 -2.723
ln(Weighted InPagerank of B) 37872 -4.939 1.104 -6.99 -1.775
ln(Weighted OutSinkrank of L) 37872 -5.739 .806 -7.033 -3.306
ln(Weighted InSinkrank of L) 37872 -6.268 .905 -7.033 -2.653
ln(Weighted OutSinkrank of B) 37872 -6.181 .778 -7.033 -3.306
ln(Weighted InSinkrank of B) 37872 -5.274 1.056 -7.033 -2.653
ln(Weighted OutKatz of L) 37872 -2.493 .146 -2.663 -1.874
ln(Weighted InKatz of L) 37872 -2.585 .134 -2.687 -1.447
ln(Weighted OutKatz of B) 37872 -2.55 .12 -2.663 -1.917
ln(Weighted InKatz of B) 37872 -2.441 .218 -2.687 -1.447
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Table 4: All O/N Loans - Local Network Measures as Determinants of Interest Rate Spread

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

FE
Unweighted Weighted

Outdegree(L) -0.000 0.731** 0.766 -0.773 0.078 0.282** 0.274 -0.032
(0.235) (0.329) (0.528) (0.732) (0.096) (0.133) (0.184) (0.275)

Indegree(B) 1.437*** 0.653*** 0.929 3.849*** 0.739*** 0.336*** 0.689*** 2.036***
(0.235) (0.217) (0.718) (0.684) (0.092) (0.077) (0.242) (0.267)

Indegree(L) 0.171** -0.114 -0.218 0.604*** 0.068* -0.056 -0.086 0.499***
(0.078) (0.096) (0.150) (0.190) (0.041) (0.048) (0.077) (0.119)

Outdegree(B) -0.107 0.065 -0.726*** -0.363 -0.002 0.033 -0.216*** 0.070
(0.085) (0.088) (0.184) (0.247) (0.038) (0.042) (0.080) (0.096)

Degree(L)(in*out) 0.212* 0.322* 0.438 -0.936* 0.014 0.108*** 0.041 -0.301***
(0.124) (0.170) (0.267) (0.568) (0.028) (0.036) (0.047) (0.093)

Degree(B)(in*out) -0.279** -0.299* -0.121 -0.645 -0.139*** -0.003 -0.048 -0.150*
(0.134) (0.173) (0.387) (0.484) (0.031) (0.023) (0.076) (0.087)

Table 5: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Betweenness)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

FE
Unweighted Weighted

InBetweenness(L) -0.639*** 0.079 -0.858*** -1.444*** -0.122 0.018 -0.557*** -0.960***
(0.161) (0.133) (0.293) (0.436) (0.088) (0.135) (0.189) (0.312)

InBetweenness(B) -0.148 -0.156 -0.410 -0.152 -0.038 -0.140* -0.222 0.405**
(0.126) (0.153 (0.253) (0.405) (0.070) (0.074) (0.161) (0.182)

OutBetweenness(L) 0.012 -0.131 0.196 0.413** -0.027 -0.122 0.245 0.056
(0.066) (0.081) (0.124) (0.184) (0.064) (0.081) (0.157) (0.221)

OutBetweenness(B) 0.332*** 0.011 0.233 0.424** 0.007 0.001 -0.058 -0.021
(0.095) (0.095) (0.230) (0.169) (0.071) (0.093) (0.162) (0.172)

Betweenness(L)(in*out) 0.024 -0.018 0.209* -0.565*** 0.009 0.013 0.032 0.044
(0.045) (0.050) (0.114) (0.195) (0.028) (0.036) (0.081) (0.102)

Betweenness(B)(in*out) -0.313*** -0.179** -0.354* -0.031 -0.011 -0.037 0.100 -0.012
(0.062) (0.084) (0.198) (0.275) (0.027) (0.028) (0.128) (0.056)

Table 6: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Pagerank)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

FE
Unweighted Weighted

OutPagerank(L) -0.629*** -0.425* -0.409 -1.264** -0.622*** -0.111 -0.636** -1.169**
(0.217) (0.255) (0.382) (0.575) (0.156) (0.174) (0.284) (0.459)

OutPagerank(B) 0.309* -0.054 -0.085 0.479 0.006 -0.236 -0.239 0.479
(0.160) (0.192) (0.297) (0.477) (0.252) (0.202) (0.403) (0.746)

InPagerank(L) -0.166 -0.160 0.322 1.024** -0.219* -0.100 0.014 -0.073
(0.152) (0.185) (0.316) (0.452) (0.118) (0.140) (0.208) (0.369)

InPagerank(B) 0.871*** 0.536** 0.156 3.317*** 0.659*** 0.244 0.140 2.681***
(0.213) (0.242) (0.520) (0.530) (0.169) (0.179) (0.405) (0.406)

Pagerank(L)(in*out) -0.007 0.376** -0.110 -1.934*** -0.190 0.236 0.154 0.266
(0.140) (0.154) (0.243) (0.480) (0.207) (0.256) (0.405) (0.578)

Pagerank(of)B(in*out) -0.866*** -0.137 -1.177** -0.666 0.427* -1.034*** 0.062 -1.382***
(0.175) (0.187) (0.462) (0.462) (0.220) (0.265) (0.511) (0.532)
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Table 7: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Sinkrank)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

FE
Unweighted Weighted

OutSinkrank(L) -0.645*** -0.443* -0.414 -1.298** -0.663*** 0.007 -0.700** -1.374***
(0.226) (0.262) (0.408) (0.592) (0.158) (0.133) (0.294) (0.473)

OutSinkrank(B) 0.310* -0.058 -0.095 0.476 0.070 -0.123 -0.226 -0.258
(0.161) (0.194) (0.301) (0.486) (0.121) (0.143) (0.234) (0.412)

InSinkrank(L) -0.178 -0.171 0.326 1.037** -0.135 -0.120 0.191 0.925**
(0.153) (0.187) (0.319) (0.461) (0.111) (0.149) (0.231) (0.363)

InSinkrank(B) 0.915*** 0.539** 0.167 3.311*** 0.805*** 0.312** 0.930*** 2.519***
(0.233) (0.250) (0.534) (0.570) (0.134) (0.134) (0.302) (0.418)

Sinkrank (L)(in*out) -0.177 0.382** -0.102 -1.778*** 0.041 0.272*** -0.348* -0.897**
(0.156) (0.158) (0.266) (0.465) (0.096) (0.097) (0.188) (0.349)

Sinkrank (B)(in*out) -0.674*** -0.123 -1.621*** -0.896* -0.577*** -0.060 -0.686*** -0.634**
(0.173) (0.178) (0.453) (0.480) (0.087) (0.083) (0.220) (0.304)

Table 8: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Katz)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

FE
Unweighted Weighted

OutKatz(L) -6.082*** -2.367 -1.642 -2.117 -2.707*** -1.918** -1.533 -6.650***
(2.179) (3.285) (4.801) (8.415) (0.822) (0.861) (1.533) (2.571)

OutKatz(B) 5.091*** -1.449 -5.999** -2.083 -0.838 -1.719 -1.599 7.809***
(1.101) (1.489) (2.749) (5.436) (0.860) (1.213) (1.816) (3.002)

InKatz(L) -2.074** -0.053 1.680 10.446*** -0.784 -0.504 0.907 6.760**
(0.992) (1.164) (2.428) (3.593) (1.010) (1.765) (2.097) (3.380)

InKatz(B) 11.440*** 5.734*** 1.794 20.817*** 2.027*** 1.287 4.016*** 20.323***
(1.685) (1.829) (4.158) (7.224) (0.748) (0.848) (1.539) (2.160)

Katz (L)(in*out) 2.171 5.585 2.994 -72.430*** 6.273* 10.190 -9.404 -44.933***
(3.107) (3.600) (7.642) (18.962) (3.700) (6.308) (7.337) (13.359)

Katz (B)(in*out) -21.570*** -9.325*** -18.767** 17.921 -33.118*** -10.485** -28.942*** 18.829*
(3.375) (3.347) (9.541) (17.987) (5.098) (4.706) (10.205) (10.166)

Table 9: IV-FE - Local Network Measures as Determinants of Interest Rate Spread

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

IV-FE
Unweighted Weighted

Outdegree(L) -0.338 -0.103 -1.295 4.102 0.063 0.188 -0.215 0.686
(1.100) (1.248) (1.951) (3.903) (0.327) (0.372) (0.551) (1.097)

Indegree(B) 0.694 -2.322*** 1.370 7.596** 0.143 -0.581* 0.022 3.745**
(1.205) (0.883) (2.592) (3.451) (0.464) (0.342) (0.907) (1.636)

Indegree(L) 0.309 0.265 -0.054 0.408 0.187 0.083 0.142 -0.044
(0.232) (0.256) (0.480) (0.407) (0.127) (0.152) (0.211) (0.364)

Outdegree(B) 0.272 0.331 0.587 -0.686 -0.138 0.241** -0.040 -0.839**
(0.222) (0.233) (0.382) (0.739) (0.088) (0.103) (0.139) (0.344)

Degree(L)(in*out) -0.522 0.480 -1.863 0.083 -0.195** 0.126 -0.306** -0.450**
(0.586) (0.516) (1.284) (1.111) (0.083) (0.097) (0.149) (0.229)

Degree(B)(in*out) -1.318** -0.561 -0.927 -1.834 -0.036 -0.086 0.051 0.007
(0.563) (0.406) (1.602) (1.281) (0.099) (0.110) (0.164) (0.416)
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Table 10: IV-FE - Global Network Measures as Determinants of Interest Rate Spread (Betweenness)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

IV-FE
Unweighted Weighted

InBetweenness(L) -0.752 -0.611 -1.226 -0.682 -0.454 0.025 -1.992*** 2.047
(0.535) (0.592) (0.908) (2.064) (0.389) (0.449) (0.764) (1.456)

InBetweenness(B) -0.553 0.196 -0.296 -6.941*** 0.046 0.088 0.408 -1.013
(0.365) (0.306) (0.628) (2.160) (0.291) (0.368) (0.539) (1.265)

OutBetweenness(L) 0.022 -0.100 0.180 -0.165 0.143 -0.312 1.351* -0.068
(0.189) (0.211) (0.350) (0.548) (0.287) (0.331) (0.726) (0.598)

OutBetweenness(B) 0.371 0.216 0.753 1.697*** -0.726*** -0.399 -1.434** 0.177
(0.227) (0.209) (0.672) (0.558) (0.280) (0.378) (0.617) (0.689)

Betweenness(L)(in*out) -0.214 -0.109 -0.174 -0.548 0.030 0.045 -0.046 -0.035
(0.157) (0.144) (0.325) (0.503) (0.130) (0.214) (0.282) (0.287)

Betweenness(B)(in*out) -0.355 -0.391** -0.313 1.371 -0.147 -0.081 -0.367 -0.146
(0.218) (0.189) (0.521) (0.889) (0.102) (0.143) (0.231) (0.266)

Table 11: IV-FE - Global Network Measures as Determinants of Interest Rate Spread (Pagerank)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

IV-FE
Unweighted Weighted

OutPagerank(L) -0.460 -0.380 0.287 -1.784* -0.355 -0.585 0.191 -0.896
(0.388) (0.419) (0.715) (0.919) (0.328) (0.398) (0.501) (0.889)

OutPagerank(B) -0.137 0.156 0.425 -3.290*** 0.658*** 0.140 1.351*** 0.480
(0.258) (0.235) (0.398) (1.002) (0.252) (0.202) (0.403) (0.746)

InPagerank(L) 0.070 -0.070 0.523 -1.106* -0.154 -0.179 0.252 -1.020**
(0.232) (0.270) (0.357) (0.598) (0.143) (0.159) (0.211) (0.440)

InPagerank(B) -0.191 -0.744** -0.290 1.338 0.058 0.056 -0.232 -0.323

(0.379) (0.368) (0.717) (1.013) (0.327) (0.362) (0.721) (0.673)

Pagerank(L)(in*out) -0.384 0.707** -1.836*** -0.200 -0.577** 0.919*** -1.066*** -0.992*
(0.275) (0.327) (0.465) (0.832) (0.245) (0.331) (0.395) (0.590)

Pagerank(B)(in*out) -0.345 -0.125 -1.014 -0.021 -0.035 0.665 -0.957 0.246
(0.401) (0.357) (0.874) (0.915) (0.376) (0.475) (0.835) (0.686)

Table 12: IV-FE - Global Network Measures as Determinants of Interest Rate Spread (Sinkrank)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

IV-FE
Unweighted Weighted

OutSinkrank(L) -0.425 -0.380 0.317 -1.593* -0.716** -0.485 -0.136 -2.087**
(0.392) (0.416) (0.727) (0.963) (0.325) (0.367) (0.511) (0.963)

OutSinkrank(B) -0.161 0.156 0.446 -3.652*** -0.224 0.302 0.068 -4.790***
(0.259) (0.237) (0.401) (1.024) (0.232) (0.227) (0.324) (1.277)

InSinkrank(L) 0.088 -0.067 0.540 -1.083* 0.024 -0.143 1.303** -1.847***
(0.234) (0.273) (0.360) (0.604) (0.290) (0.326) (0.533) (0.618)

InSinkrank(B) -0.231 -0.749** -0.292 1.888 -0.005 -0.351 -0.657 2.767***
(0.390) (0.367) (0.711) (1.217) (0.299) (0.307) (0.599) (0.757)

Sinkrank (L)(in*out) -0.455 0.475 -1.747*** -1.222 0.737 2.170 -0.396 2.529
(0.395) (0.451) (0.188) (1.349) (0.877) (9.100) (1.477) (1.828)

Sinkrank (B)(in*out) 0.173 0.071 -1.484* 1.505* -0.774 -1.386 0.627 -0.895
(0.371) (0.327) (0.797) (0.885) (0.681) (1.659) (0.825) (1.257)
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Table 13: IV-FE - Global Network Measures as Determinants of Interest Rate Spread (Katz)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

IV-FE
Unweighted Weighted

OutKatz(L) -5.688* -0.465 -12.223* 6.237 -4.165* -4.983 -0.242 -3.980
(3.103) (2.981) (6.752) (11.524) (2.507) (3.089) (4.017) (6.548)

OutKatz(B) 2.138 -1.569 4.853* -18.979** 2.956 3.578 8.938** -50.795***
(1.669) (1.655) (2.719) (8.242) (2.953) (3.051) (3.688) (18.023)

InKatz(L) 2.064 3.274* 2.773 -6.934 -0.310 -0.956 7.090 -38.791**
(1.901) (1.699) (3.718) (4.722) (3.532) (3.244) (4.999) (17.243)

InKatz(B) -1.023 -10.061*** -7.705 26.048*** 3.684* -0.416 -4.186 21.776***
(2.797) (2.929) (4.989) (7.138) (2.119) (2.083) (3.995) (5.133)

Katz (L)(in*out) -17.882 3.064 -76.379** 67.812 -20.789 76.856 -100.362* 280.215
(11.489) (8.340) (30.148) (59.021) (30.166) (73.314) (56.382) (243.773)

Katz (B)(in*out) -22.798** -10.022 -22.419 -106.164** -23.890 -185.303*** 0.217 111.772*
(10.295) (8.551) (19.404) (53.860) (20.074) (64.873) (24.436) (61.590)

Table 14: All O/N Loans - Network Measures as Determinants of Interest Rate Spread (Lender)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

Lender × Quarter and Borrower FE
Unweighted Weighted

Indegree(B) 1.286*** 0.610*** 1.464** 3.211*** 0.689*** 0.423*** 0.858*** 1.870***
(0.205) (0.161) (0.675) (0.528) (0.080) (0.078) (0.225) (0.204)

Outdegree(B) -0.117 0.025 -0.648*** -0.425** 0.010 0.055 -0.201*** 0.148*
(0.075) (0.096) (0.172) (0.188) (0.033) (0.047) (0.070) (0.078)

Degree (B)(in*out) -0.292** -0.219 -0.227 -0.952*** -0.103*** -0.004 -0.024 -0.224***
(0.114) (0.136) (0.362) (0.331) (0.025) (0.022) (0.078) (0.070)

InBetweenness(B) 0.144** -0.022 -0.273* 0.962*** -0.054 -0.102** -0.323** 0.555***
(0.073) (0.069) (0.139) (0.118) (0.055) (0.048) (0.125) (0.125)

OutBetweenness(B) 0.285*** 0.087 -0.216 1.217*** 0.064 -0.024 0.163 0.018
(0.075) (0.070) (0.142) (0.126) (0.055) (0.045) (0.142) (0.096)

Betweenness(B)(in*out) -0.099*** -0.037*** -0.083*** -0.243*** -0.043* -0.017 0.011 -0.116***
(0.012) (0.012) (0.023) (0.039) (0.023) (0.019) (0.074) (0.036)

InPagerank(B) 0.593*** 0.590*** -0.595 3.641*** 0.507*** 0.361*** 0.235 2.541***
(0.190) (0.225) (0.572) (0.464) (0.123) (0.139) (0.295) (0.338)

OutPagerank(B) 0.304* -0.002 0.017 0.020 0.128 -0.044 -0.023 -0.419
(0.166) (0.199) (0.281) (0.387) (0.115) (0.146) (0.232) (0.324)

Pagerank(B)(in*out) -0.774*** -0.050 -1.094** -0.911*** -0.656*** -0.140 -0.643*** -1.088***
(0.156) (0.161) (0.426) (0.333) (0.084) (0.087) (0.217) (0.225)

InSinkrank(B) 0.607*** 0.609*** -0.594 3.670*** 0.662*** 0.422*** 0.521 2.337***
(0.209) (0.231) (0.588) (0.491) (0.130) (0.142) (0.318) (0.346)

OutSinkrank(B) 0.303* -0.004 0.014 -0.017 0.130 -0.044 0.014 -0.340
(0.168) (0.201) (0.284) (0.400) (0.117) (0.150) (0.239) (0.350)

Sinkrank (B)(in*out) -0.606*** -0.028 -1.351*** -1.149*** -0.476*** -0.044 -0.608*** -0.875***
(0.163) (0.149) (0.424) (0.343) (0.083) (0.081) (0.208) (0.248)

InKatz(B) 8.825*** 4.348*** -3.954 23.883*** 1.771*** 2.226** 1.669 17.885***
(1.507) (1.552) (3.788) (4.789) (0.663) (0.922) (1.654) (1.712)

OutKatz(B) 3.902*** -1.213 -3.249 -0.665 -1.389* -0.937 -3.194* 5.538**
(1.093) (1.441) (2.818) (4.879) (0.792) (1.177) (1.661) (2.585)

Katz (B)(in*out) -19.212*** -6.897** -20.376** -6.186 -30.248*** -8.295* -33.790*** 11.213
(2.815) (2.913) (8.635) (14.342) (5.019) (5.013) (10.678) (8.146)
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Table 15: All O/N Loans - Network Measures as Determinants of Interest Rate Spread (Borrower)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

Borrower × Quarter and Lender FE
Unweighted Weighted

Indegree(L) 0.035 -0.200* -0.045 0.396*** 0.044 -0.084 0.007 0.315***
(0.058) (0.113) (0.139) (0.153) (0.032) (0.055) (0.069) (0.099)

Outdegree(L) 0.360* 0.683** 1.630*** -0.632 0.227*** 0.283** 0.563*** -0.116
(0.207) (0.335) (0.527) (0.525) (0.085) (0.134) (0.194) (0.209)

Degree(L)(in*out) 0.309*** 0.241 0.686*** -0.617* 0.043* 0.091** 0.070 -0.241***
(0.102) (0.207) (0.257) (0.321) (0.023) (0.040) (0.046) (0.059)

InBetweenness(L) -0.068 -0.073 -0.084 0.129 -0.147** -0.024 -0.414** -0.666***
(0.055) (0.068) (0.101) (0.145) (0.074) (0.112) (0.167) (0.253)

OutBetweenness (L) 0.005 -0.116** 0.137* 0.231* -0.075 -0.089 0.056 0.119
(0.050) (0.052) (0.082) (0.126) (0.049) (0.065) (0.110) (0.175)

Betweenness(L)(in*out) 0.007 0.004 0.020 -0.088* 0.003 0.019 0.063 0.010
(0.013) (0.022) (0.031) (0.046) (0.025) (0.032) (0.087) (0.072)

InPagerank(L) -0.150 -0.021 0.039 0.551 -0.025 0.002 0.065 0.547*
(0.133) (0.182) (0.283) (0.397) (0.101) (0.139) (0.190) (0.313)

OutPagerank(L) -0.539*** -0.288 -0.624* -0.759 -0.411*** 0.045 -0.796*** -0.819**
(0.189) (0.246) (0.344) (0.532) (0.126) (0.126) (0.257) (0.383)

Pagerank(L)(in*out) 0.085 0.182 0.000 -1.771*** 0.142* 0.209** -0.230 -1.242***
(0.118) (0.195) (0.217) (0.393) (0.078) (0.100) (0.159) (0.304)

InSinkrank(L) -0.175 -0.039 0.029 0.514 -0.059 -0.044 0.090 0.583*
(0.134) (0.184) (0.286) (0.399) (0.103) (0.143) (0.205) (0.323)

OutSinkrank(L) -0.551*** -0.314 -0.658* -0.797 -0.431*** 0.033 -0.876*** -0.941**
(0.197) (0.253) (0.369) (0.544) (0.132) (0.128) (0.278) (0.418)

Sinkrank (L)(in*out) 0.027 0.241 0.133 -1.517*** 0.088 0.158* -0.188 -1.105***
(0.131) (0.195) (0.230) (0.383) (0.081) (0.094) (0.162) (0.295)

InKatz(L) -2.292*** 0.857 2.459 2.116 0.236 0.658 0.486 0.939
(0.790) (1.194) (2.119) (3.375) (0.860) (1.651) (1.875) (2.955)

OutKatz(L) -4.391*** -0.222 -3.298 -0.521 -1.287* -1.099 -2.323* -3.745*
(1.687) (3.097) (4.862) (5.796) (0.657) (0.896) (1.403) (2.079)

Katz (L)(in*out) 6.893** 5.712 8.579 -47.745*** 6.669* 7.280 -8.672 -29.229***
(2.784) (3.995) (7.401) (14.125) (3.499) (8.233) (7.067) (10.246)
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