Integration of discriminative and generative models for activity recognition in smart homes

Fahad, L. G. & Rajarajan, M. (2015). Integration of discriminative and generative models for activity recognition in smart homes. Applied Soft Computing Journal, 37, pp. 992-1001. doi: 10.1016/j.asoc.2015.03.045

[img]
Preview
Text - Accepted Version
Available under License : See the attached licence file.

Download (286kB) | Preview
[img]
Preview
Text (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence) - Other
Download (201kB) | Preview

Abstract

Activity recognition in smart homes enables the remote monitoring of elderly and patients. In healthcare systems, reliability of a recognition model is of high importance. Limited amount of training data and imbalanced number of activity instances result in over-fitting thus making recognition models inconsistent. In this paper, we propose an activity recognition approach that integrates the distance minimization (DM) and probability estimation (PE) approaches to improve the reliability of recognitions. DM uses distances of instances from the mean representation of each activity class for label assignment. DM is useful in avoiding decision biasing towards the activity class with majority instances; however, DM can result in over-fitting. PE on the other hand has good generalization abilities. PE measures the probability of correct assignments from the obtained distances, while it requires a large amount of data for training. We apply data oversampling to improve the representation of classes with less number of instances. Support vector machine (SVM) is applied to combine the outputs of both DM and PE, since SVM performs better with imbalanced data and further improves the generalization ability of the approach. The proposed approach is evaluated using five publicly available smart home datasets. The results demonstrate better performance of the proposed approach compared to the state-of-the-art activity recognition approaches.

Item Type: Article
Additional Information: © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Uncontrolled Keywords: Activity recognition, Smart homes, Assisted living, Pervasive healthcare, Distance minimization, Probability estimation, Support vector machine
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: School of Engineering & Mathematical Sciences > Engineering
URI: http://openaccess.city.ac.uk/id/eprint/13056

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics