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Abstract. Modeling and forecasting extreme co-movements in financial market is im-

portant for conducting stress test in risk management. Asymptotic independence and

asymptotic dependence behave drastically different in modeling such co-movements. For

example, the impact of extreme events is usually overestimated whenever asymptotic de-

pendence is wrongly assumed. On the other hand, the impact is seriously underestimated

whenever the data is misspecified as asymptotic independent. Therefore, distinguish-

ing between asymptotic independence/dependence scenarios is very informative for any

decision-making and especially in risk management. We investigate the properties of the

limiting conditional Kendall’s tau which can be used to detect the presence of asymp-

totic independence/dependence. We also propose nonparametric estimation for this new

measure and derive its asymptotic limit. A simulation study shows good performances

of the new measure and its combination with the coefficient of tail dependence proposed

by Ledford and Tawn (1996, 1997). Finally, applications to financial and insurance data

are provided.

Keywords and phrases: Asymptotic dependence and independence; Copula; Extreme

co-movement; Kendall’s tau; Measure of association.
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1. Introduction

An important task in risk management is to understand the reliability of the proposed model in the

presence of adverse scenarios, known as stress testing. For example, the assessment of the capital ade-

quacy in banking and insurance industries is based on quantifying the impact of extreme events on the

solvability of financial and insurance conglomerates. Harmonized regulatory methodologies, such as the

implementation of stress testing, have been imposed in the banking industry (known as Basel III; see,

Basel Committee on Banking Supervision, 2010), and insurance industry within the European Union

(known as Solvency II; see, European Commission, 2009) and in Switzerland (known as Swiss Solvency

Test; see, Swiss Solvency Test, 2006). It is generally accepted that Extreme Value Theory provides the

appropriate technology to address the quantitative side of the problem (see for example, Aragones et al.,

2001 and Longin, 2010). Since multiple sources of risks are competitive contributors to the calculations

of the level of capital requirements, a holistic approach is to characterize such co-movements of extremes

and then to effectively extrapolate data into tail region, which can naturally be done under the umbrella

of Multivariate Extreme Theory as explained below.

Let (X1, Y1), · · · , (Xn, Yn) be independent and identically distributed random vectors with distribution

function F and marginal distributions F1 and F2, i.e. F1(x) = F (x,∞) and F2(y) = F (∞, y). Bivariate

Extreme Value Theory assumes that there are constants an > 0, cn > 0, bn ∈ R, dn ∈ R such that

lim
n→∞

P
(
an

(
max
1≤i≤n

Xi − bn

)
≤ x, cn

(
max
1≤i≤n

Yi − dn

)
≤ y

)
= G(x, y), (1.1)

for all continuous points (x, y) of G. In this case, G is called an extreme value distribution and F is

said to belong to the domain of attraction of G. It follows from (1.1) that the following dependence

convergence holds:

lim
t→0

t−1
{
1−F

(
(1−F1)

−(tx), (1−F2)
−(ty)

)}
=−logG

(
(− logG1)

−(x), (− logG2)
−(y)

)
:= l(x, y) (1.2)

for all x, y ≥ 0, where G1(x) = G(x,∞), G2(y) = G(∞, y) and (·)− denotes the left continuous inverse

function. Here, l(x, y) is called the tail dependence function (see Huang, 1992). It is easy to check that

l(ax, ay) = al(x, y) for all a, x, y ≥ 0 and x ∨ y ≤ l(x, y) ≤ x + y. This homogeneous property has been

employed to extrapolate data into a tail region so that extreme events can be predicted (for details, see

for example, de Haan and Ferreira, 2006). However, when l(x, y) = x+ y, equation (1.2) implies that

lim
t→0

t−1P(1− F1(X1) < tx, 1− F2(Y1) < ty) = 0, (1.3)

which makes extrapolation, i.e. statistical inference, impossible for concomitant extreme sets. In this

case, F is said to have the asymptotic independence property, and a different convergence rate condition

in (1.3) is needed for predicting joint extreme events. In other words, extreme value condition (1.1) is

not enough for predicting extreme events in case of asymptotic independence. If the limit in (1.3) is not

identical to zero, then F is said to have the asymptotic dependence property. It is known that a bivariate

normal distribution with correlation coefficient less than 1 is asymptotically independent, i.e. (1.3) holds

(for details, see Sibuya, 1960).

Estimation of multivariate extreme becomes possible if the presence of asymptotic dependence/independece

is known, and therefore, distinguishing between the two properties plays an important role in predicting
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extreme events. A mathematical formulation of this problem is made in Ledford and Tawn (1996, 1997),

where the coefficient of tail dependence, 0 < η ≤ 1, is introduced by assuming that

P(1− F1(X1) ≤ t, 1− F2(Y1) ≤ t) = t1/ηs(t), (1.4)

where s(t) is a slowly varying function, i.e. limt→0 s(tx)/s(t) = 1 for all x > 0. Note that 0 < s(t) ≤ 1

for all 0 ≤ t ≤ 1 due to the facts that 0 < η ≤ 1 and

P(1− F1(X1) ≤ t, 1− F2(Y1) ≤ t) ≤ P(1− F1(X1) ≤ t) = t,

provided that F1 is continuous, which is the case since both marginal distributions are assumed to be

continuous throughout this paper. Under condition (1.4), when η = 1 and limt→0 s(t) = c ∈ (0, 1],

the asymptotically dependent property holds, while either η < 1 or η = 1 and limt→0 s(t) = 0 implies

asymptotic independence. Therefore, η and the limit behavior of function s(t) can be used to distinguish

between asymptotic dependence and asymptotic independence. Nonparametric inference for η can be

found in Peng (1999) and Draisma et al. (2004). Recently, Goegebeur and Guillou (2012) considered an

asymptotically unbiased estimator for η in the case of η < 1, i.e. asymptotic independence. Nonparamet-

ric tests for the tail dependence function and asymptotic dependence are available in Einmahl, de Haan

and Li (2006) and Hüsler and Li (2009).

It is known that testing asymptotic dependence is extremely challenging due to limited observations in

the tail region, and so it is always desirable to have some alternative measures and competitive statistical

methods. Our proposal appeals to a robust measure of association that is appealing to a wide audience,

and we find that most of the extreme scenarios are characterized by our method in order to elaborate

an alternative way to characterize the asymptotic independence and asymptotic dependence. In factual

terms, we investigate the relationship between tail dependence and the conditional version of a classical

measure of association, namely Kendall’s tau. While estimating the univariate extreme events has become

a standard procedure, dealing with multivariate extreme events is a more complicated problem, and it is

of general interest in many papers with particular focus on financial and insurance applications (see for

example, Frees and Valdez, 1998 and Breymann et al., 2003).

Some useful background is now provided for a reader that is less familiar with the justifications we made.

Dependence or association is fully characterized by the copula due to the Sklar’s Theorem (for example,

see Sklar, 1959), and for a bivariate random vector, (X1, Y1), is given by the joint distribution function

of
(
F1

(
X1

)
, F2

(
Y1

))
, whenever the marginal distribution functions are continuous. Since (1.4) concerns

the upper tail dependence, it is natural to study the survival copula

C(x, y) := P
(
1− F1(X1) ≤ x, 1− F2(Y1) ≤ y

)
. (1.5)

Although the dependence is fully described by its copula or survival copula, it is sometimes difficult

to explain the chosen model. The problem becomes more acute when extreme events are concerned.

Instead of fully exploring the associated copula, a practical methodology is to focus on some measures of

association that provide sufficient information to understand which model would be more appropriate.

There are various measures of association proposed in the literature, and one of them is the Kendall’s
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tau which is closely related to tail dependence and is defined as

τ = P
(
(U1 − U2)(V1 − V2) > 0

)
− P

(
(U1 − U2)(V1 − V2) < 0

)
,

where Ui = 1 − F1(Xi) and Vi = 1 − F2(Yi) for i = 1, 2. It is well-known that this measure is scale-

invariant, and therefore robust, marginal-free whenever the marginal distributions are continuous, and is

based on the concept of concordance and discordance (for more details, see Nelsen, 2006). As a result of

such appealing properties, Kendall’s tau has been found useful in various fields, such as risk management

(see McNeil et al., 2005). However, if one is interested in evaluating the strength of dependence in the

lower tail of (Ui, Vi) (i.e., the upper tail of (Xi, Yi)), when concomitant extreme events are plausible, then

the conditional Kendall’s tau is more sound, which is defined as follows:

τ(u) = P
(
(U1−U2)(V1−V2) > 0|U1, U2, V1, V2 ≤ u

)
−P
(
(U1−U2)(V1−V2) < 0|U1, U2, V1, V2 ≤ u

)
. (1.6)

Study of conditional Kendall’s tau for a fixed level u is relatively known in the literature (see Venter, 2001

and Gijbels et al., 2011). However, it remains unknown whether there exists some relationship between

the limit of this conditional measure and asymptotic dependence, and how to estimate the limit.

In the next section, we shall show that θτ := limu→0 τ(u) are positive for a subclass of asymptotic

dependence and non-positive for a subclass of asymptotic independence. We found that all well-known

examples indicate a positive limit for the case of asymptotic dependence. It is known that testing for

asymptotic dependence against asymptotic independence becomes quite challenging when η is close to one.

Since θτ > 0 may be a bit far away from zero in case of asymptotic dependence, testing for θτ = θ0 against

θτ ≤ 0 becomes much easier in the case of asymptotic dependence, where θ0 is a given positive value.

That is, intervals of θτ are useful in distinguishing asymptotic dependence from asymptotic independence.

On the other hand, when the data has the asymptotic independence property, a test based on θτ is less

efficient than a test based on η since θτ may be zero, while the true value of η, say η0, is less than one,

which can be used to effectively test for η = η0 against η = 1. In other words, an interval of η is quite

informative when the data has the asymptotic independence property. Given the above arguments, we

argue that interval estimation of θτ +η can be effective in distinguishing between asymptotic dependence

and asymptotic independence since θτ + η is larger than one in case of asymptotic dependence and less

than one in case of asymptotic independence. Similar phenomena appeared in Doksum and Samarov

(1995) for nonparametric regression and in Zhang el a. (2011) for testing independence.

We organize this paper as follows. Some nonparametric estimators for the limit of this conditional measure

and its asymptotic distribution are derived in Section 2. A set of examples, a simulation study and some

empirical analyses are given in Sections 3, 4 and 5, respectively. Finally, all technical proofs are relegated

in Section 6.

2. Main Results

A summary of our initial assumptions needed to develop our results is that {(Xi, Yi)}ni=1 are independent

and identically distributed with distribution function F , continuous marginal distribution functions F1

and F2, and survival copula C as defined in (1.5).
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2.1. Conditional Kendall’s tau. First, we derive the limits of the conditional Kendall’s tau defined

in (1.6) by assuming the following multivariate regular variation, which has been found useful in charac-

terizing tail behavior of a random vector. Some recent references on multivariate regular variation are

Basrak et al. (2002), Hua and Joe (2011, 2013), and Mikosch and Wintenberger (2014).

We define h(x, y) = ∂2

∂x∂yH(x, y), H1(x, y) =
∂
∂xH(x, y), H2(x, y) =

∂
∂yH(x, y), H11(x, y) =

∂
∂xH1(x, y)

and H22(x, y) =
∂
∂yH2(x, y), whenever the partial derivatives exist.

Assumption 2.1. There exist a constant δ > 0 and a function H(x, y) such that C(u, u) > 0 for all

u ∈ (0, δ) and

H(x, y) := lim
u↓0

C(ux, uy)

C(u, u)

for all (x, y) ∈ D := [0, 1]2. In addition, H(x, y) is continuous on {(x, y) : xy = 0}.

Theorem 2.1. Under Assumption 2.1, we have

θτ = 4

∫ 1

0

∫ 1

0

H(x, y)dH(x, y)− 1. (2.1)

Remark 2.1. The above limit in (2.1) is indeed a proper Kendall’s tau, which measures the association

between two random variables with joint distribution function given by H. Moreover H has continuous

marginals, hence one can extract the associated copula, CH , as a result of Sklar’s Theorem, and (2.1) can

be rewritten as follows:

θτ = 4

∫
D
CH(x, y) dCH(x, y)− 1 = 1− 4

∫
D

∂

∂x
CH(x, y)

∂

∂y
CH(x, y) dx dy

(see Theorems 5.1.1. and 5.1.5 of Nelsen, 2006). Finally, if H admits partial derivatives, then one may

show that

θτ = 1− 4

∫
D
H1(x, y)H2(x, y) dx dy.

Note that Assumption 2.1 implies that the next weak convergence

µu(·) := P
(
(U/u, V/u) ∈ ·|U, V ≤ u

) w→ µ(·) (2.2)

holds on D as u → 0, where the (probability) measure µ is given by µ
(
[0, x] × [0, y]

)
:= H(x, y). In

addition, H(x, y) is a homogeneous function with an order larger than or equal to one (see de Haan and

Resnick, 1979 and Resnick, 1987). Next, we show that the limit of the conditional Kendall’s tau is positive

for a subclass of asymptotic dependence and non-positive for a subclass of asymptotic independence as

follows:

Assumption 2.2. There exist a constant c ∈ [0, 1] and an η ∈ (0, 1] such that

H(ax, ay) = a1/ηH(x, y) and lim
u↓0

u−1C(u, u) = c ∈ [0, 1]

for all a > 0 and (x, y) ∈ D.

Assumption 2.3. H(x, y) =
m∑
i=1

cix
αiyβi for some positive c′is and some nonnegative α′

is, β
′
is with

αi + βi = 1/η for i = 1, · · · ,m and
m∑
i=1

ci = 1.
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We first investigate the properties of a bivariate distribution function H : D → [0, 1], for which all first

and second partial derivatives exist, satisfying the homogeneity property

H(tu, tv) = tH(u, v) for all t > 0 and (u, v) ∈ D. (2.3)

Let H be the collection of all such H. Define F(ξ), for 0 < ξ < 1, the set of all pairs (fX , fY ) of density

functions on (0, 1) such that both fX and fY are non-increasing (hence almost everywhere differentiable)

and ∫ x

0

fX(u) du ≥ x,

∫ y

0

fY (v) dv ≥ y, lim
x→1

fX(x) = ξ, lim
y→1

fY (y) = 1− ξ.

We also define F =
∪

0<ξ<1

F(ξ). The next proposition shows that there is a one-to-one correspondence

between H and F .

Proposition 2.1. i) Let H ∈ H and define fX(x) = H1(x, 1), fY (y) = H2(1, y), h(x, y) = H12(x, y).

Then, (fX , fY ) ∈ F and for all (x, y), (u, v) ∈ D we have

h(x, y) = − x

y2
f ′
X

(
x

y

)
Ix<y −

y

x2
f ′
Y

(y
x

)
Iy<x and H(u, v) = vFX

(u
v

)
Iu<v + uFY

( v
u

)
Iv≤u. (2.4)

ii) Let (fX , fY ) ∈ F . Define h(x, y) by (2.4) and H(u, v) =
∫ u

0

∫ v

0
h(x, y) dy dx. Then, H is a bivariate

distribution function with marginal densities fX and fY and satisfies (2.3).

Proposition 2.1 allows us to identify a sharp lower bound for θτ , which is given as Theorem 2.2.

Theorem 2.2. Under Assumptions 2.1 and 2.2, if η = 1, c > 0, and ∂2

∂xi∂yj H(x, y) exists for all

(x, y) ∈ D, i, j = 0, 1, 2 and i+ j = 2, then θτ ≥ − 1
2 + 1

log(2/c) . Therefore, θτ > 0 if c > 2e−2.

Theorem 2.3. If Assumption 2.3 holds, then lim
u↓0

τ(u) ≤ 0.

Remark 2.2. It is clear that asymptotic dependence holds under Assumptions 2.1 and 2.2 with η = 1

and c > 0. Although Theorem 2.2 gives a lower bound on c to ensure a positive limit for the conditional

Kendall’s tau, a study of some common copulas indicates the limit is positive for all c ∈ (0, 1] in the case

of asymptotic dependence (see Section 3 below). Therefore it remains interesting to find a subclass of H,

which includes all c ∈ (0, 1] and gives a positive limit.

Remark 2.3. Note that H(x, y) ≤ min{x, y}/c for all (x, y) ∈ D due to the fact that C(ux, uy) ≤
umin{x, y}, where c is defined in Assumption 2.2. If Assumption 2.3 holds with η = 1 and c > 0

given in Assumption 2.2, then
∑m

i=1 ci(y/x)
βi ≤ c−1 and

∑m
i=1 ci(x/y)

αi ≤ c−1 for all (x, y) ∈ D,

which can not be true by taking either x or y small enough. Therefore, Assumption 2.3 does imply the

asymptotic independence. Whenever the limiting function H is not absolutely continuous, Example 3.4

with α = β ∈ (0, 1) from Section 3 illustrates that limu↓0 τ(u) may be positive for the case of asymptotic

independence. Although we conjecture that limu↓0 τ(u) ≤ 0 for the case of asymptotic independence when

H(x, y) is absolutely continuous with second order partial derivatives, Theorem 2.3 only shows that this

is true for a subclass of asymptotic independence, as defined in Assumption 2.3.



7

Remark 2.4. Example 3.4 with α = β ∈ (0, 1) from Section 3 has some positive mass along the diagonal

line y = x, which gives a positive value for limu↓0 τ(u) for this situation of asymptotic independence.

However, if one slightly modifies the definition of Kendall’s tau as follows

τ̃(u) = P
(
(U1 − U2)(V1 − V2) > 0, U1 ̸= V1, U2 ̸= V2|U1, U2, V1, V2 ≤ u

)
−P
(
(U1 − U2)(V1 − V2) < 0, U1 ̸= V1, U2 ̸= V2|U1, U2, V1, V2 ≤ u

)
,

then it can be shown that θτ ≤ 0 for this example. Obviously, this modification does not affects the limit

of the original definition of conditional Kendall’s tau when C has a continuous density.

2.2. Estimation procedure. Theorems 2.2 and 2.3 show that the limit of conditional Kendall’s tau

may give a good insight on whether the underlying distribution is asymptotically independent or asymp-

totically dependent. Hence, estimating the limit is useful in applying Extreme Value Theory to predict

extreme co-movements in financial markets.

Define F̂1(x) =
1

n+1

∑n
i=1 I(Xi ≤ x), F̂2(y) =

1
n+1

∑n
i=1 I(Yi ≤ y), Ûi = 1− F̂1(Xi), V̂i = 1− F̂2(Yi), and

put θτ = limu↓0 τ(u). Then, we propose to estimate θτ by

θ̂τ (k) =

∑
1≤i<j≤n sgn

{(
Ûi − Ûj

)(
V̂i − V̂j

)}
I

(
max

(
Ûi, Ûj , V̂i, V̂j

)
≤ k/n

)
∑

1≤i<j≤n I

(
max

(
Ûi, Ûj , V̂i, V̂j

)
≤ k/n

) ,

where k = k(n) → ∞ and k/n → 0 as n → ∞. The following theorem shows the consistency of the

proposed estimator.

Theorem 2.4. Under Assumption 2.1, k = k(n) → ∞, k/n → 0 and nC
(
k
n ,

k
n

)
→ ∞ as n → ∞, we

have θ̂τ (k)
p→ θτ as n → ∞.

As usual in Extreme Value Theory, if one is interested in deriving the asymptotic limit of θ̂τ (k), a rate

of convergence in (1.5) is needed, which controls the asymptotic bias of the studied estimator. Here, we

employ the following second order condition.

Assumption 2.4. There exist a regular variation A(u) → 0 with index ρ̃ ≥ 0, i.e. lim
u→0

A(ux)/A(u) = xρ̃

for x > 0, functions Q(x, y) and q(x, y) such that

lim
u↓0

C(ux,uy)
C(u,u) −H(x, y)

A(u)
= Q(x, y) and lim

u↓0

u2C12(ux,uy)
C(u,u) −H12(x, y)

A(u)
= q(x, y) (2.5)

for all (x, y) ∈ D and uniformly on {(x, y) : x2 + y2 = 1}, where H12 and C12 are the densities of H and

C, respectively.

Remark 2.5. The second condition in (2.5) implies the first one when some mild integrability conditions

are satisfied.

Theorem 2.5. Under Assumption 2.4, lim
u↓0

u−1C(u, u) = c ∈ [0, 1],

k = k(n) → ∞, nC

(
k

n
,
k

n

)
→ ∞ and

√
nC

(
k

n
,
k

n

)
A

(
k

n

)
→ λ ∈ (−∞,∞)
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as n → ∞, we have √
nC

(
k

n
,
k

n

){
θ̂τ (k)− θτ

} d→ N
(
λbτ , σ

2
τ

)
(2.6)

as n → ∞, where

bτ = 4

∫ 1

0

∫ 1

0

Q(s, t)H12(s, t) dtds+ 4

∫ 1

0

∫ 1

0

H(s, t)q(s, t) dtds,

σ2
τ = 4{σ2

1 − (θτ )2 + σ2
2 + σ2

3 + 2σ2σ3c}, (2.7)

with 

σ2
1 = 16

∫ 1

0

∫ 1

0
H2(x, y) dH(x, y)− 16

∫ 1

0

∫ 1

0
H(x, 1)H(x, y) dH(x, y)

−16
∫ 1

0

∫ 1

0
H(1, y)H(x, y) dH(x, y) + 8

∫ 1

0

∫ 1

0
H(x, y) dH(x, y)

+8
∫ 1

0

∫ 1

0
H(x, 1)H(1, y) dH(x, y)− 1

3

σ2 =
√
c(2
∫ 1

0
H(1, t)H12(1, t) dy −H1(1, 1))

σ3 =
√
c(2
∫ 1

0
H(s, 1)H12(s, 1) ds−H2(1, 1)).

(2.8)

Remark 2.6. When C(u, u) = d1u
1/η and A(u) = d2u

ρ̃, a theoretical optimal k for θ̂τ (k) can be chosen

to minimize the asymptotic mean squared error b2τA
2
(
k
n

)
+

σ2
τ

nC( k
n , kn )

, which gives the optimal choice of k

as

kτ0 =

(
σ2
τ

2ηb2τd
2
2d1ρ̃

)1/(2ρ̃+1/η)

n(1/η−1+2ρ̃)/(1/η+2ρ̃).

Remark 2.7. A consistent estimator for σ2
τ can be obtained by replacing c, H(x, y) and H12(x, y) in

(2.7) and (2.8) by

ĉ =
1

m

n∑
i=1

I
(
1− F̂1(Xi)

m

n
, 1− F̂2(Yi) ≤

m

n

)
,

Ĥ(x, y) =
1

mĉ

n∑
i=1

I
(
1− F̂1(Xi) ≤

m

n
x, 1− F̂1(Yi) ≤

m

n
y
)
,

Ĥ12(x, y)=
n∑

i=1

I
(
1−F̂1(Xi) ≤ m

n x, 1−F̂1(Yi) ≤ m
n y
)

mĉ
G

(
n
m

(
1−F̂1(Xi)

)
−x

q

)
G

(
n
m

(
1−F̂2(Yi)

)
−y

q

)
,

respectively, where m = m(n) → ∞, m/n → 0 as n → ∞, G is a smooth distribution function and

q = q(n) > 0 is the bandwidth satisfying that q → 0 and qm → ∞ as n → ∞. One can also use the

corresponding estimators in Draisma et al. (2004). In the simulation study, we employ the bootstrap

method to estimate the asymptotic variance. Theoretical justification of the proposed bootstrap method

can be shown in a similar way to Peng and Qi (2008).

Remark 2.8. The usual approach to construct confidence intervals for θ is to choose k = o(kτ0 ) so that the

asymptotic bias is negligible, where kτ0 is the theoretical optimal choice given in Remark 2.6. Motivated

by the choice of sample fraction for the Hill estimator in terms of coverage probability in Cheng and

Peng (2001), we propose to choose k = O
(
n(1/η−1+ρ̃)/(1/η+ρ̃)

)
for interval estimation of θτ based on the

asymptotic limits of θ̂τ (k).
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Remark 2.9. As argued in the introduction, when the data is asymptotically independent, θτ may be zero,

hence the interval may not be effective in distinguishing the asymptotic independence from the asymptotic

dependence. In this case, one may use the quantity θτ +η. For estimating θτ +η, one can easily combine

θ̂τ with the estimator η̂ for η proposed in Draisma et al. (2004), and the asymptotic distribution of

θ̂τ + η̂ can be derived by using expansions as given in the proof of Theorem 2.5 and those in Draisma et

al. (2004), but we skip these derivations. For constructing an interval for θτ + η based on the normal

approximation of θ̂τ + η̂, we simply employ the bootstrap method as we do in Section 5.

3. Examples

This section shows that some well-known copulas satisfy the conditions from Theorems 2.2 and 2.3 for

which the limit of the conditional Kendall’s tau is also derived. If C∗ is a copula with corresponding

survival copula C defined in (1.5), then C(u, v) = C∗(1− u, 1− v) + u+ v − 1 for all (u, v) ∈ D.

Example 3.1. Consider the Gumbel copula C∗(u, v) = exp
{
−
(
(− log u)α + (− log v)α

)1/α}
where

α ∈ (1,∞). Then, Assumption 2.2 holds with η = 1, c = 2− 21/α and cH(x, y) = x+ y − (xα + yα)1/α.

Figure 3.1 below plots the values of θτ against different α, which shows that the limit is positive. It is

easy to show that H1(x, 1) increases in α for x ∈ (0, 1] and so is the limit of conditional Kendall’s tau.

By limα→1 H1(x, 1) =
ln(1+x)
2 ln 2 and ln (1 + x) ≤ x√

1+x
for x > 0, we have

limu→0 θ
τ ≥ 4

∫ 1

0
limα→1 xH

2
1 (x, 1)dx− 1

= 1− 4
∫ 1

0
limα→1 H1(x, 1)H1(1, x)dx

= 1−
∫ 1

0
ln(1+x) ln(1+x−1)

(ln 2)2 dx

≥ 1−
∫ 1

0

x√
1+x

x−1√
1+x−1

(ln 2)2 dx

≥ 1− 1√
6(ln 2)2

> 0.

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

alpha

th
e
ta
^
ta
u

Gumbel Copula

Figure 3.1. The limit of conditional Kendall’s tau is plotted against parameter for

Gumbel copula from Example 3.1.



10

Example 3.2. Consider the t copula

C∗(u, v) =

∫ t−ν (u)

−∞

∫ t−ν (v)

−∞

1

2π(1− ρ2)1/2

{
1 +

x2 − 2ρxy + y2

ν(1− ρ2)

}−(ν+2)/2

dxdy,

where |ρ| < 1, ν > 0 and tν denotes the distribution function of a t distribution with ν degrees of freedom.

Let (U∗
1 , V

∗
1 ) be a bivariate random vector with distribution C∗. Since t−ν (1 − s) ∼ ds−1/ν for some

constant d > 0 as s → 0, we have

lim
s→0

1− C∗(1− su, 1− sv)

s

= u lim
s→0

P
(
V ∗
1 ≤ 1− sv|U∗

1 = 1− su
)
+ v lim

s→0
P
(
U∗
1 ≤ 1− su|V ∗

1 = 1− sv
)

= u lim
s→0

P
(
t−ν (V

∗
1 ) ≤ t−ν (1− sv)|t−ν (U∗

1 ) = t−ν (1− su)
)

+v lim
s→0

P
(
t−ν (U

∗
1 ) ≤ t−ν (1− su)|t−ν (V ∗

1 ) = t−ν (1− sv)
)

= u lim
s→0

tν+1

 t−ν (1− sv)− ρt−ν (1− su)√
1− ρ2

(
ν + 1

ν +
(
t−ν (1− su)

)2
)1/2


+v lim

s→0
tν+1

 t−ν (1− su)− ρt−ν (1− sv)√
1− ρ2

(
ν + 1

ν +
(
t−ν (1− sv)

)2
)1/2


= utν+1

((
(v/u)−1/ν − ρ

)√
ν + 1√

1− ρ2

)
+ vtν+1

((
(u/v)−1/ν − 1

)√
ν + 1√

1− ρ2

)
.

Consequently, Assumption 2.2 holds with η = 1, c = 2− 2tν+1

(√
(1−ρ)(ν+1)

1+ρ

)
and

cH(x, y) =x

{
1−tν+1

((
(y/x)−1/ν−ρ

)√
ν + 1√

1−ρ2

)}
+ y

{
1− tν+1

((
(x/y)−1/ν−ρ

)√
ν + 1√

1− ρ2

)}
.

Figure 3.2 below plots the values of θτ against various ρ and ν, which shows that the limit is indeed

positive.
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v= 1

v= 5

v= 10

v= 15

Figure 3.2. The limit of conditional Kendall’s tau is plotted against parameters for t

copula from Example 3.2.
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Example 3.3. Consider the elliptical copula Z
d
= GAU , where G > 0 is a random variable with a survival

function, Ḡ(·), that satisfies Ḡ(tx)/Ḡ(t) ∼ x−α as t → ∞ for all x > 0, A is a deterministic 2× 2 matrix

with AAT =

1 ρ

ρ 1

 with |ρ| < 1, U is uniformly distributed on {z ∈ ℜ2 : zT z = 1} and independent of

G. Put

λ(x, y) =

x

∫ π/2

g
(
(x/y)1/α

)(cosϕ)α dϕ+ y

∫ π/2

g
(
(x/y)−1/α

)(cosϕ)α dϕ∫ π/2

−π/2

(cosϕ)α dϕ

, (3.1)

where g(t) = arctan
(
(t−ρ)/

√
1− ρ2

)
. Then it follows from Klüppelberg et al. (2008) that Assumption 2.2

holds with η = 1, c = λ(1, 1) and H(x, y) = λ(x, y)/λ(1, 1). Figure 3.3 below plots the values of θτ against

various ρ and α, which shows that the limit is indeed positive. A rigorous verification goes as follows.

First it is easy to check that g(t) + g(t−1) = arccos ρ, for t > 0

cos(g(t)) = (1 + ( t−ρ√
1−ρ2

)2)−
1
2 =

√
(1− ρ2)

1
2 g′(t) = t−1 cos(g(t−1)) for t > 0

(3.2)

where g′ is the derivative of g with respect to t. Taking the partial derivatives of λ(x, y), by (3.2), it

follows that 
∂
∂xλ(x, y) =

{∫ π/2

g(( x
y )

1
α )
(cosϕ)αdϕ

}
×
{∫ π/2

−π/2
(cosϕ)αdϕ

}−1

,

∂
∂yλ(x, y) =

{∫ π/2

g(( x
y )−

1
α )
(cosϕ)αdϕ

}
×
{∫ π/2

−π/2
(cosϕ)αdϕ

}−1

.
(3.3)

Define D(t, ρ) =
√
1− ρ2

∫ π/2

g(t)
(cosϕ)αdϕ for t > 0, then D(t, ρ) is strictly decreasing in t and has the

following properties: 
D′(t, ρ) = d

dtD(t, ρ) = −(cos(g(t)))α+2,

D(t, ρ) =
∫∞
t

(cos(g(s)))α+2ds =
∫ t−1

0
sα(cos(g(s)))α+2ds,

D(t, ρ) < D(0+, ρ) = limt→0+ D(t, ρ) < ∞,

D(t, ρ) > D(∞, ρ) = limt→∞ D(t, ρ) = 0.

(3.4)

Further

H1(x, 1) = H2(1, x) =
D(x

1
α , ρ)

2D(1, ρ)
. (3.5)

Since the elliptical copula is symmetric, we also have H1(1, x) = H2(x, 1). Put them into (2.1) we have

limu↓0 τ(u) = 4
∫ 1

0

∫ 1

0
H(x, y)dH(x, y)− 1

= 2
∫ 1

0
xH2

1 (x, 1)dx+ 2
∫ 1

0
yH2

2 (1, y)dy − 1

= 4
∫ 1

0
xH2

1 (x, 1)dx− 1

= 4( 12 −
∫ 1

0
H1(x, 1)H2(x, 1)dx)− 1

= 1− 4
∫ 1

0
H1(x, 1)H1(1, x)dx

= 1−
∫ 1

0
D(x

1
α ,ρ)D(x− 1

α ,ρ)
D2(1,ρ) dx.

(3.6)

Hence, to show the limit is positive, it is equivalent to show that∫ 1

0

D(x
1
α , ρ)D(x− 1

α , ρ)dx < D2(1, ρ).
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which is sufficiently implied by

D(t, ρ)D(t−1, ρ) < D2(1, ρ) for 0 < t < 1. (3.7)

By (3.4), for 0 < t < 1 we have

D(t, ρ)D(t−1, ρ) =
(
D(1, ρ) +

∫ 1

t
(cos(g(s)))α+2ds

)(
D(1, ρ)−

∫ t−1

1
(cos(g(s)))α+2ds

)
= D2(1, ρ) +

( ∫ 1

t
(cos(g(s)))α+2ds−

∫ t−1

1
(cos(g(s)))α+2ds

)
D(1, ρ)

−
∫ 1

t
(cos(g(s)))α+2ds

∫ t−1

1
(cos(g(s)))α+2ds.

(3.8)

Put a =
∫ 1

t
(cos(g(s)))α+2ds and b =

∫ t−1

1
(cos(g(s)))α+2ds =

∫ 1

t
sα(cos(g(s)))α+2ds, let a′, b′ be the

derivatives of functions a and b with respect to t. It follows that a > b > 0 and a′ < b′ < 0, and thus

(3.7) is equivalent to

D(1, ρ) <
ab

a− b
, (3.9)

and taking the derivative of the left side of (3.9), we have

d

dt

( ab

a− b

)
=

a2b′ − a′b2

(a− b)2
>

a2a′ − a′a2

(a− b)2
= 0. (3.10)

Therefore,
ab
a−b ≥

∫ 1
0
(cos(g(s)))α+2ds

∫∞
1

(cos(g(s)))α+2ds∫ 1
0
(cos(g(s)))α+2ds−

∫ ∞
1

(cos(g(s)))α+2ds

= D(0,ρ)−D(1,ρ)
D(0,ρ)−2D(1,ρ)D(1, ρ)

> D(1, ρ),

(3.11)

which implies the limit of conditional Kendall’s tau is positive.
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Figure 3.3. The limit of conditional Kendall’s tau is plotted against parameters for

elliptical copula from Example 3.3.

Example 3.4. Assume that the survival copula is given by the Marshall-Olkin copula. That is, we have

C(u, v) =

 u1−αv if uα ≥ vβ ,

uv1−β if uα < vβ ,
(3.12)
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where 0 < α, β < 1. Simple calculations yield that Assumption 2.1 holds with

H(x, y) =


xy1−β if α > β,

x1−αy if α < β,

xy
(
max{x, y}

)−α
if α = β.

Therefore, Assumption 2.3 holds with η =
(
2 − min{α, β}

)−1
, m = 1, and θτ = 0 for α ̸= β. When

α = β, η = (2 − α)−1, H(x, y) has a positive mass along the line y = x and Assumption 2.3 does not

hold. In this case, some straightforward computations lead to P(U = V ≤ z) = α
2−αz

2−α for 0 ≤ z ≤ 1,

θτ = 4
4−2α − 1 = α

2−α > 0, where (U, V ) has the distribution C(u, v) given in (3.12).

Example 3.5. Consider the bivariate normal copula

C∗(u, v) =

∫ Φ−(u)

−∞

∫ Φ−(v)

−∞

1

2π(1− ρ2)1/2
exp

{
−x2 − 2ρxy + y2

2(1− ρ2)

}
dydx, |ρ| < 1,

where Φ denotes the distribution function of the standard normal random variable. Then, it follows from

Example 2.1 of Draisma et al. (2004) or Theorem 5.3 of Juri and Wüthrich (2003) that Assumption 2.3

holds with H(x, y) = (xy)1/(1+ρ) and η = (1 + ρ)/2. Thus, Assumption 2.3 holds with m = 1, and

θτ = 0. Interestingly, a more general result can be found for the class of elliptical copulas, as defined

in Example 3.3, where Ḡ(·) satisfies Ḡ
(
t + a(t)x

)
/Ḡ(t) ∼ e−x and a(ty)/a(t) ∼ y−α as t → ∞ for

all x ∈ ℜ and y > 0. In has been shown in Asimit and Jones (2007) that H(x, y) = (xy)1/2η where

η =
(
2/(1+ρ)

)(α−1)/2
. Note that the Gaussian copula is a special case of this last result and it holds with

α = −1, which confirms the earlier finding. Once again, Assumption 2.3 holds with m = 1, and θτ = 0.

Example 3.6. Consider the Farlie-Gumbel-Morgenstern copula

C∗(u, v) = uv
{
1 + ξ(1− u)(1− v)

}
with ξ ∈ [−1, 1].

Simple computations yield that Assumption 2.1 holds with

H(x, y) =

 xy if ξ ∈ (−1, 1],
xy(x+y)

2 if ξ = −1.

Hence, Assumption 2.3 holds with (η,m) = (1/2, 1) for ξ ∈ (−1, 1] and (η,m) = (1/3, 2) for ξ = −1.

Further, θτ = 0 for ξ ∈ (−1, 1], and θτ = − 1
18 for ξ = −1.

4. Simulation study

In this section, we examine the finite sample behavior of the proposed estimator θ̂τ (k) for estimating the

limit of conditional Kendall’s tau by drawing 1, 000 random samples with size n = 1000 from Examples 3.2,

3.5 and 3.6 given in Section 3. For estimating the asymptotic variance of θ̂τ (k) we simply employ

the bootstrap method with 1, 000 re-samples. Based on these random samples, we have estimators

θ̂
(i)
τ (k) and the corresponding bootstrap variance estimator σ(i)(k) for i = 1, · · · , 1000. In Figures 4.1–

4.4 we plot the estimator 1
1000

∑1000
i=1 θ̂

(i)
τ (k), the bias 1

1000

∑1000
i=1 (θ̂

(i)
τ (k) − θτ ), the mean squared error

1
1000

∑1000
i=1 (θ̂

(i)
τ (k)− θτ )2 and the ratio of asymptotic variance to its bootstrap estimator

1000∑
i=1

θ̂(i)τ (k)− 1

1000

1000∑
j=1

θ̂(j)τ (k)

2

/
1000∑
i=1

σ(i)(k)
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against k = 21, · · · , 300. These figures show that the estimator and its bootstrap variance estimator work

well for k around 150. Without doubt, more research on choosing the tuning parameter k in estimating

θτ , θτ + η, and corresponding bias reduced estimators is needed in the near future.
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Figure 4.1. The estimator θ̂τ (k), its bias, mean squared error and ratio of asymptotic

variance to the bootstrap estimator are plotted against k = 21, · · · , 300 for t copula with

ρ = 0.5 and ν = 1 given in Example 3.2 of Section 3.
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Figure 4.2. The estimator θ̂τ (k), its bias, mean squared error and ratio of asymptotic

variance to the bootstrap estimator are plotted against k = 21, · · · , 300 for normal copula

with ρ = 0.5 given in Example 3.5 of Section 3.
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Figure 4.3. The estimator θ̂τ (k), its bias, mean squared error and ratio of asymp-

totic variance to the bootstrap estimator are plotted against k = 21, · · · , 300 for Farlie-

Gumbel-Morgenstern copula with ξ = −1 and given in Example 3.6 of Section 3.
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Figure 4.4. The estimator θ̂τ (k), its bias, mean squared error and ratio of asymp-

totic variance to the bootstrap estimator are plotted against k = 21, · · · , 300 for Farlie-

Gumbel-Morgenstern copula with ξ = 1 and given in Example 3.6 of Section 3.
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5. Real data analysis

In this section, we analyze the tail dependence of the following three data sets by estimating η, θτ , θτ + η

by η̂(k), θ̂τ (k), θ̂τ (k) + η̂(k), respectively, where η̂(k) is the Hill estimator based on the largest k order

statistics of {
Ti = min{ n+ 1

n+ 1−RX
i

,
n+ 1

n+ 1−RY
i

}
}n

i=1

with RX
i being the rank of Xi among X1, · · · , Xn and RY

i being the rank of Yi among Y1, · · · , Yn. More

details on η̂(k) can be found in Draisma et al. (2004). For constructing confidence intervals for η, θτ ,

θτ + η via corresponding estimators, we simply employ the bootstrap method with 1, 000 replications.
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Figure 5.1. Sea level and wave height. Estimators η̂(k), θ̂τ (k), θ̂τ (k) + η̂(k), and their

intervals with level 0.9 and 0.95 are plotted against k.

First, we consider the sea level and wave height measured at the Eierland station, 20 km off the Dutch

coast from 1979 through 1991; see the left upper panel in Figure 5.1. The right upper panel depicts the

η̂(k) and its intervals, which may suggest asymptotic independence by looking at k near 50 as argued in
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Draisma et al. (2004). However, the left lower panel may well suggest θτ > 0 by looking at the range

of 50 < k < 100, i.e., the data set is asymptotically dependent. The right lower panel do not claim that

θτ + η < 1, i.e. asymptotic independence, even when one chooses a smaller k. Therefore, it is reasonable

to assume asymptotic dependence and so it is recommended to employ the asymptotic dependent classical

Extreme Value Theory to predict extreme co-movements.
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Figure 5.2. Danish fire losses. Estimators η̂(k), θ̂τ (k), θ̂τ (k)+ η̂(k), and their intervals

with level 0.9 and 0.95 are plotted against k.

Next, we consider the non-zero losses to building and content in the Danish fire insurance claims; see the

left upper panel in Figure 5.2. This data set is available at www.ma.hw.ac.uk/∼mcneil/, which comprises

2,167 fire losses over the period 1980 to 1990. The right upper panel may prefer η < 1, i.e., asymptotic

independence. However, the lower panels can neither claim asymptotic independence nor asymptotic

dependence. Therefore one may claim asymptotic independence for this data set. On the other hand,

given the fact that distinguishing asymptotic behavior is extremely challenging, one has to take a caution
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of making the claim of asymptotic independence since this claim is not confirmed by the two new measures

θ̂τ (k) and θ̂τ (k) + η̂(k).
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Figure 5.3. Log returns of exchange rates. Estimators η̂(k), θ̂τ (k), θ̂τ (k) + η̂(k), and

their intervals with level 0.9 and 0.95 are plotted against k.

Finally, we consider the log-returns of the exchange rates between Euro and US dollar and those between

British pound and US dollar from January 3, 2000 until December 19, 2007; see the left upper panel

in Figure 5.3. The right upper panel may well suggest η < 1, i.e., asymptotic independence. The

left lower panel may prefer θτ > 0, i.e., asymptotic dependence. The right lower panel can neither

claim asymptotic independence nor asymptotic dependence. Therefore, it remains cautious to claim the

asymptotic behavior for this data set, which calls for more effective methods.

In summary, the proposed new measure of tail dependence and its combination with the coefficient of tail

dependence are useful in distinguishing between asymptotic dependence and asymptotic independence,

so as to ensure a sound application of multivariate Extreme Value Theory to the study of extreme co-

movements in financial markets and so to predicting extreme events.
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6. Proofs

Proof of Theorem 2.1. Since

P
(
U1 > U2, V1 > V2|max(U1, U2, V1, V2) ≤ u

)
+ P

(
U1 > U2, V1 < V2|max(U1, U2, V1, V2) ≤ u

)
= P

(
U1 > U2|max(U1, U2, V1, V2) ≤ u

)
= 1

C2(u,u)

∫ u

0
C(t, u)P(U1 ∈ dt, V1 ≤ u)

= 1
2 ,

it follows from (1.6) that

τ(u) = 2P
(
U1 > U2, V1 > V2|max(U1, U2, V1, V2) ≤ u

)
− 2P

(
U1 > U2, V1 < V2|max(U1, U2, V1, V2) ≤ u

)
= 4P

(
U1 > U2, V1 > V2|max(U1, U2, V1, V2) ≤ u

)
− 1.

(6.1)

Next, we define the following probability measure

νu(·) := P
((

U1/u, V1/u, U2/u, V2/u
)
∈ ·|U1, U2, V1, V2 ≤ u

)
on E := [0, 1]4. Thus, due to equation (2.2) and the independence assumption between (U1, V1) and

(U2, V2), we have that

νu(·)
w→ ν(·) (6.2)

holds on E as u → 0, where the measure ν is given by

ν
(
[0, x1]× [0, y1]× [0, x2]× [0, y2]

)
:= H(x1, y1)H(x2, y2).

Let A := {0 ≤ x2 < x1 ≤ 1, 0 ≤ y2 < y1 ≤ 1}. Therefore, relation (6.2) leads to

P
(
U1 > U2, V1 > V2|max(U1, U2, V1, V2) ≤ u

)
= νu(A) → ν(A) =

∫
D
H(x, y) dH(x, y), as u ↓ 0 (6.3)

as long as ν(∂A) = 0, which remains to justify. Note that

ν(∂A) ≤ ν
(
x1 = x2, y1 ≥ y2

)
+ ν
(
x1 ≥ x2, y1 = y2

)
+ ν

(
x1 ≥ x2, y1 ≥ y2, x1y1 = 0 or x1 = 1 or y1 = 1

)
+ ν

(
x1 ≥ x2, y1 ≥ y2, x2y2 = 0 or x2 = 1 or y2 = 1

)
.

The first two terms are equal to zero since no mass is put by the measure ν over the lines x1 = x2 and

y1 = y2 due to the independence between (U1, V1) and (U2, V2). The last two terms are also negligible

and due to symmetry, it is sufficient to justify only one of them. Denote B =
{
(x1, y1) : x1y1 = 0 or x1 =

1 or y1 = 1
}
and note that

ν
(
x1 ≥ x2, y1 ≥ y2, x1y1 = 0 or x1 = 1 or y1 = 1

)
≤
∫
B

µ
(
dx1, dy1

)
= 0,

since H continuous on {(x, y) : xy = 0} (due to Assumption 2.1) and the fact that µ(x1 = 1) = µ(y1 =

1) = 0, where the measure µ is defined in (2.2). The later is true, since otherwise we find a contradiction
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as follows

µ(x1 ≥ y1 > 0) ≥ µ

 ∪
q∈Q

∩
(0,1]

{x1 = q, y1 ≤ q}


=

∑
q∈Q

∩
(0,1]

µ
(
{x1 = q, y1 ≤ q}

)
= µ

(
{x1 = 1}

) ∑
q∈Q

∩
(0,1]

qa = ∞,

where a ≥ 1 is the homogeneous order of H. Therefore, (2.1) follows from equations (6.1) and (6.3). □

Proof of Proposition 2.1. i) Clearly,
∫ u

0
fX(x) dx = H(u, 1) ≥ H(u, u) = uH(1, 1) = u. Similarly, one

may get the mirror result for fY . Differentiating (2.3) with respect to t in the case η = 1, we have

H1(tu, tv) + H2(tu, tv) = H(u, v), and therefore, fX(1) + fY (1) = 1 is true. Now, differentiating (2.3)

with respect to u (respectively v), we have

H1(tu, tv) = H1(u, v) (respectively H2(tu, tv) = H2(u, v)).

Let us first look at the case x < y. By setting v = 1, t = y, u = x/y in the above equation, we have

H1(x, y) = H1

(
x

y
, 1

)
= fX

(
x

y

)
,

and in turn, differentiating with respect to y gives h(x, y) = − x
y2 f

′
X

(
x
y

)
. Note that the left-hand side

of the latter equation is a bivariate density function, and thus, it is non-negative. In addition, it follows

that f ′
X ≤ 0. The same procedure can be applied in the case y < x in order to justify (2.4).

Suppose that u ≤ v. Now,

H(u, v) =

∫ u

0

dx

∫ v

0

dy h(x, y)

= −
∫ u

0

dx

{∫ x

0

dy
y

x2
f ′
Y

(y
x

)
+

∫ v

x

dy
x

y2
f ′
X

(
x

y

)}
= −

∫ u

0

dx

{∫ 1

0

dwwf ′
Y (w) +

∫ 1

x
v

dz f ′
X(z)

}

= −
∫ u

0

dx

{
[wfY (w)]

1
0 −

∫ 1

0

dw fY (w) + fX(1)− fX

(x
v

)}
= −

∫ u

0

dx
{
(1− ξ)− 1 + ξ − fX

(x
v

)}
=

∫ u
v

0

dw vfX(w)

= vFX

(u
v

)
.

Again, the same procedure can be applied for u > v, and thus part i) is justified.

ii) The function h is certainly non-negative, since fX and fY are non-increasing functions. In addition,

the integration procedure to derive H from h has been accomplished above. Moreover, it is elementary

to check that H(u, 1) = FX(u) and H(1, v) = FY (v). Finally, part ii) is concluded due to

H(tu, tv) = Itu<tvtvFX

(
tu

tv

)
+ Itu≥tvtuFY

(
tv

tu

)
= tH(u, v).
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□

Proof of Theorem 2.2. Since H(tx, ty) = tH(x, y), by taking derivatives with respect to t at both sides,

we have xH1(tx, ty) + yH2(tx, ty) = H(x, y), i.e., txH1(tx, ty) + tyH2(tx, ty) = tH(x, y) = H(tx, ty),

which implies that

xH1(x, y) + yH2(x, y) = H(x, y) for all (x, y) ∈ D. (6.4)

By taking the derivative with respect to x in (6.4), one may show

xH11(x, y) + yh(x, y) = 0 for all (x, y) ∈ D. (6.5)

Similarly, yH22(x, y) + xh(x, y) = 0 holds for all (x, y) ∈ D. By (6.4), we can write∫ 1

0

∫ 1

0

H(x, y)h(x, y) dxdy =

∫ 1

0

∫ 1

0

xH1(x, y)h(x, y) dxdy +

∫ 1

0

∫ 1

0

yH2(x, y)h(x, y) dxdy. (6.6)

It follows from (6.5) that∫ 1

0

∫ 1

0

xH1(x, y)h(x, y) dxdy (6.7)

=

∫ 1

0

∫ y

0

xH1(x, y)h(x, y) dxdy +

∫ 1

0

∫ x

0

xH1(x, y)h(x, y) dydx

=

∫ 1

0

∫ 1

0

xyH1(xy, y)h(xy, y)y dxdy +

∫ 1

0

∫ 1

0

xH1(x, xy)h(x, xy)x dydx

=

∫ 1

0

∫ 1

0

xyH1(x, 1)h(x, 1) dxdy +

∫ 1

0

∫ 1

0

xH1(1, y)h(1, y) dydx

=
1

2

∫ 1

0

xH1(x, 1)h(x, 1) dx+
1

2

∫ 1

0

H1(1, y)h(1, y) dy (6.8)

=
1

2

∫ 1

0

xH1(x, 1)h(x, 1) dx+
1

4
H2

1 (1, 1)

= −1

2

∫ 1

0

x2H1(x, 1)H11(x, 1) dx+
1

4
H2

1 (1, 1)

= −1

4

∫ 1

0

x2 dH2
1 (x, 1) +

1

4
H2

1 (1, 1)

=
1

2

∫ 1

0

xH2
1 (x, 1) dx.

Following the same steps as above, we can show that∫ 1

0

∫ 1

0

yH2(x, y)h(x, y) dxdy =
1

2

∫ 1

0

yH2
2 (1, y) dy. (6.9)

Now, Theorem 2.1 together with relations (6.6)–(6.9) yield

θτ = 2

∫ 1

0

xH2
1 (x, 1) dx+ 2

∫ 1

0

yH2
2 (1, y) dy − 1. (6.10)

Note that

H(x, 1) = lim
u→0

C(ux, u)

cu
≤ x

c
and H(x, 1) ≥ H(x, x) = xH(1, 1) = x. (6.11)
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The first step is to find a decreasing density function f with support (0, 1) and an associated distribution

function F in such a way as to minimize the objective function

J =

∫ 1

0

xf2(x) dx

subject to the constraints that c−1x ≥ F (x) ≥ x for all 0 ≤ x ≤ 1 (due to (6.11)) and that lim
x→1

f(x) = ξ,

where c ≤ 1 and ξ ∈ (0, 1) are constants. We regard this as a problem of finding the minimal-cost

trajectory from x = 0, F = 0 to x = 1, F = 1, which we approach by a Dynamic Programming argument.

Denote by V (x, F ) the following minimum

V (x, F ) = inf
f∈F

{∫ 1

x

yf2(y) dy subject to

∫ 1

x

f(y) du = 1− F

}
.

Suppose we are starting from position (x0, F0). Further, consider a strategy which sets f(x) = u for

x0 ≤ x < x0 + h and uses the optimal strategy for x0 + h ≤ x ≤ 1. The cost of this strategy is∫ x0+h

x0

xu2 dx+ V (x0 + h, F0 + uh) = x0u
2h+ V (x0, F0) + hV1(x0, F0) + uhV2(x0, F0) + o(h).

If we choose u optimally, we now have an optimal strategy from x0 to 1; in other words,

V (x0, F0) = inf
u∈A(x0,F0)

{
V (x0, F0) + (x0u

2 + V1(x0, F0) + uV2(x0, F0))h+ o(h)
}
,

where V1 and V2 represent the partial derivatives of V and where A(x0, F0) represents the set of values

u is permitted to take. This consists of [0, f(x0)] if (x0, F0) is in the interior of the accessible region,

[1, f(x0)] if it is on the right-hand boundary, [0, c−1] if on the left-hand boundary.

As we let h → 0, it can be seen that

inf
u∈A(x0,F0)

{
x0u

2 + V1(x0, F0) + uV2(x0, F0)
}
= 0,

which is the optimality equation.

Minimizing over u, the optimal value u∗ satisfies u∗(x0, F0) = − 1
2x0

V2(x0, F0), as long as u∗ ∈ A(x0, F0),

in which case we conclude that V1(x0, F0) =
1

4x0
V 2
2 (x0, F0).

Let f be a feasible strategy and denote by V f the associated value function V f (x0, F0) =
∫ 1

x0
xf2(x) dx.

If V f satisfies the optimality equation and the associated boundary conditions, then f is the optimal

strategy and V = V f . Our approach, then, is to display the optimal strategy and to check that the

optimality equation and boundary conditions are satisfied.

Define k = −(1− ξ)/ log(cξ) and we show now that the optimal trajectory starting from (0, 0) is

f(x) = 1/c and F (x) = x/c if x < ck,

f(x) = k/x and F (x) = k + k log x− k log(ck) if ck ≤ x ≤ k/ξ,

f(x) = ξ and F (x) = 1− ξ(1− x) if k/ξ < x ≤ 1.

(6.12)

Let D denote the triangular region bounded below by F = x and above by F = x/c and F = 1−ξ(1−x).

D therefore represents the set of points which are accessible from (0, 0) and from which (1, 1) is accessible

without violating the restrictions. We divide D into sub-regions as follows:

• A is the region bounded below by F = x and above by the curve F = 1 + ξ log x.

• B is the region bounded above by F = x/c, below by F = x and to the right by the curve

F = k − k log(ck) + k log x, where k = −(1− ξ)/ log(cξ).
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• C = D ∩ (A ∪B)c.

In order to fully justify (6.12), the following claims will be shown:

(i) For (x0, F0) ∈ A, the trajectory which minimizes J , and the associated optimal value function,

are 1− F (x) = (1− F0)
log x
log x0

and V (x0, F0) =
(1−F0)

2

− log x0
, respectively;

(ii) For (x0, F0) ∈ B, the optimal strategy is to follow the trajectory F (x) = F0 +
xL

c log
(

x
x0

)
until

it hits the point (xL, xL/c), after which it follows the trajectory presented in (6.12). In addition,

xL is the solution of the equation

xL = cF0 + xL log(xL/x0), (6.13)

and the optimal value function in region B is given by

V (x0, F0) =
x2
L

c2
log

(
xL

x0

)
− x2

L

2c2
+ k(1− ξ) +

1

2
ξ2.

(iii) For (x0, F0) ∈ C, the optimal strategy is to follow the trajectory F (x) = F0 + ξxU log
(

x
x0

)
until

it hits the point
(
xU , 1− ξ(1− xU )

)
, after which it follows the trajectory presented in (6.12). In

addition, xU is the solution of the equation ξxU +1−F0 − ξ = ξxU log(xU/x0), and the optimal

value function in region C is given by V (x0, F0) = ξ2x2
U log

(
xU

x0

)
+ 1

2ξ
2(1− x2

U ).

First of all, claim (i) does not claimed that the strategy is optimal. This is because the natural trajectory

from (x0, F0) to (1, 1), which is the one given in (6.12), arrives at (1, 1) with f(1−) > ξ. In order to fit the

criteria for acceptable trajectories, a small adjustment is required in the region of 1 so that f(1−) = ξ.

The scale of the adjustment can be as small as desired, but it means that there is no optimal strategy,

only a collection of ϵ-optimal strategies for any ϵ.

We first show claim (i). We begin by verifying that V and the proposed strategy satisfy the optimality

equation. Note that

∂V

∂F0
= −2

1− F0

− log x0
,

∂V

∂x0
=

(1− F0)
2

(− log x0)2
· 1

x0
,

so that V 2
2 = 4xV1, as required. One can check that dF

dx

∣∣
x=x0

= − 1
2x0

∂V
∂F0

. f∗ is non-increasing, since it

takes the form constant/x.

Finally, we need to check that the optimal value of f is at least equal to 1 when (x0, F0) lies on the lower

boundary of A, i.e., when F0 = x0. In this case f∗ = 1−x0

−x0 log x0
= y−1(ey − 1) if we write x = e−y. Since

we know that ey > 1 + y, this is fine.

The proof of claim (ii) is less straightforward, as the quantity xL, which features in the statement of the

optimal strategy, is defined by an implicit equation (6.13). However, we have

1

c

∂xL

∂F0
= 1 +

1

c
log(xL/x0)

∂xL

∂F0
+

1

c

∂xL

∂F0
, so that

∂xL

∂F0
= − c

log(xL/x0)
,

and
1

c

∂xL

∂x0
=

1

c
log(xL/x0)

∂xL

∂x0
+

1

c

∂xL

∂x0
− xL

cx0
, so that

∂xL

∂x0
=

xL/x0

log(xL/x0)
,

Now, ∂V
∂F0

= 2xL

c2 log
(

xL

x0

)
∂xL

∂F0
= −2xL

c and ∂V
∂x0

= 2xL

c2 log
(

xL

x0

)
∂xL

∂x0
− x2

L

c2x0
=

x2
L

c2x0
, and it is apparent

that the optimality equation is satisfied. In addition, f is decreasing over this range and, at x = x0,

dF
dx

∣∣
x=x0

= xL

cx0
= − 1

2x0

∂V
∂F0

. On the lower boundary, where x0 = F0, we need to show that f∗ ≥ 1. But
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f∗ = xL/(cx0), and c < 1, x0 ≤ xL, so that is fine. On the upper boundary, where F0 = x0/c, xL is by

definition equal to x0, and − 1
2x0

V2 = 1/c, as required.

The proof of claim (iii) is very similar to the proof of claim (ii). We have

ξ
∂xU

∂F0
− 1 = ξ log(xU/x0)

∂xU

∂F0
+ ξ

∂xU

∂F0
, so that

∂xU

∂F0
= − 1

ξ log(xU/x0)
,

and

ξ
∂xU

∂x0
= ξ log(xU/x0)

∂xU

∂x0
+ ξ

∂xU

∂x0
− ξxU

x0
, so that

∂xU

∂x0
=

xU/x0

log(xU/x0)
,

Now, ∂V
∂F0

= 2ξ2xU log
(

xL

x0

)
∂xU

∂F0
= −2ξxU and ∂V

∂x0
= 2ξ2xU log

(
xU

x0

)
∂xU

∂x0
− ξ2

x2
U

x0
= ξ2

x2
U

x0
, and it is

apparent that the optimality equation is satisfied. The checks on the boundaries proceed as before.

We have demonstrated the optimal strategy throughout the region D, and can therefore state that

V (0, 0) =

∫ ck

0

c−2x dx+

∫ k/ξ

ck

k2

x
dx+

∫ 1

k/ξ

ξ2x dx

=
k2

2
− k2 log(cξ) +

1

2
(ξ2 − k2)

=
ξ2

2
− (1− ξ)2

log(cξ)
.

This quantity represents the minimal value of
∫ 1

0
xH2

1 (x, 1) dx under the restrictions that x ≤ H(x, 1) ≤
x/c and H1(1−, 1) = ξ. For

∫ 1

0
xH2(1, x) dx we perform the same minimization, with the exception that

ξ is replaced by 1− ξ. This shows us that

θτ ≥ −1 + 2 inf
ξ∈(0,1)

{
ξ2

2
− (1− ξ)2

log(cξ)
+

(1− ξ)2

2
− ξ2

log(c(1− ξ))

}
.

The minimum occurs at ξ = 1
2 , giving a minimal value of

−1 + 2

(
1

4
− 1

2 log(c/2)

)
= −1

2
− 1

log(c/2)
.

□

Proof of Theorem 2.3. Clearly,∫ 1

0

∫ 1

0
H(x, y)h(x, y) dxdy

= 1
4

∑m
i=1

∑m
j=1 cicjαjβj

1
(αi+αj)(βi+βj)

=
∑m

i=1
c2i
4 +

∑
i̸=j cicjαjβj

1
(αi+αj)(βi+βj)

=
(
∑m

i=1 ci)
2

4 −
∑

i̸=j
cicj
4 +

∑
i ̸=j cicjαjβj

1
(αi+αj)(βi+βj)

= 1
4 +

∑
i ̸=j cicj

4αjβj−(αi+αj)(βi+βj)
4(αi+αj)(βi+βj)

= 1
4 +

∑
i ̸=j cicj

2αiβi+2αjβj−(αi+αj)(βi+βj)
4(αi+αj)(βi+βj)

= 1
4 +

∑
i ̸=j cicj

(αi−αj)(βi−βj)
4(αi+αj)(βi+βj)

= 1
4 +

∑
i ̸=j cicj

−(αi−αj)
2

4(αi+αj)(βi+βj)

≤ 1
4 .

Thus, the latter and Theorem 2.1 illustrate that θτ ≤ 0. □
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Proof of Theorem 2.4. Put



θn = E
{
sgn
(
(U1 − U2)(V1 − V2)

)
I
(
max(U1, V1, U2, V2) ≤ k

n

)}
,

h̃(u1, v1, u2, v2) = sgn
(
(u1 − u2)(v1 − v2)

)
I
(
max(u1, v1, u2, v2) ≤ k

n

)
− θn,

h̃1(u1, v1) = E
{
sgn
(
(u1 − U2)(v1 − V2)

)
I
(
max(u1, v1, U2, V2) ≤ k

n

)}
− θn,

S1n =
∑n

i=1 h̃1(Ui, Vi),

S2n =
∑

1≤i<j≤n

{
h̃(Ui, Vi, Uj , Vj)− h̃1(Ui, Vi)− h̃1(Uj , Vj)

}
,

Zn = 2
n(n−1)

∑
1≤i<j≤n

{
sgn
(
(Ui − Uj)(Vi − Vj)

)
I
(
max(Ui, Vi, Uj , Vj) ≤ k

n

)
− θn

}
.

Then it follows from the Hoeffding decomposition (Hoeffding (1948) or Lemma A from page 178 of Serfling

(1980)) that

Zn =
2

n
S1n +

2

n(n− 1)
S2n. (6.14)

In addition, Lemma A from page 183 of Serfling (1980) leads to

EZ2
n =

4(n− 2)

n(n− 1)
Eh̃2

1(U1, V1) +
2

n(n− 1)
Eh̃2(U1, V1, U2, V2). (6.15)

It is straightforward to check that

θn/C
2

(
k

n
,
k

n

)
→ θτ (6.16)

and

h̃1(u1, v1) = 2P
(
u1 > U2, v1 > V2,max(u1, v1, U2, V2) ≤ k

n

)
+2P

(
u1 < U2, v1 < V2,max(u1, v1, U2, V2) ≤ k

n

)
−P
(
max(u1, v1, U2, V2) ≤ k

n

)
− θn

= 4P
(
u1 > U2, v1 > V2,max(u1, v1, U2, V2

)
≤ k

n )

−2P
(
u1>U2,max(u1,v1,U2,V2)≤ k

n

)
−2P

(
v1>V2,max(u1,v1,U2,V2) ≤ k

n

)
+P
(
max(u1, v1, U2, V2) ≤ k

n

)
− θn

= 4C(u1, v1)I
(
max(u1, v1) ≤ k

n

)
− 2C

(
u1,

k
n

)
I
(
max(u1, v1) ≤ k

n

)
−2C

(
k
n , v1

)
I
(
max(u1, v1) ≤ k

n

)
+ C

(
k
n ,

k
n

)
I
(
max(u1, v1) ≤ k

n

)
− θn.
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Thus, it follows from Assumption 2.1 that

Eh̃2
1(U1,V1)

C3
(

k
n , kn

)
= C−3

(
k
n ,

k
n

)
E

{
16C2(U1, V1)I

(
max(U1, V1) ≤ k

n

)
+4C2

(
U1,

k
n

)
I
(
max(U1, V1) ≤ k

n

)
+ 4C2

(
k
n , V1

)
I
(
max(U1, V1) ≤ k

n

)
+C2

(
k
n ,

k
n

)
I
(
max(U1, V1) ≤ k

n

)
+ θ2n

−16C(U1, V1)C
(
U1,

k
n

)
I
(
max(U1, V1) ≤ k

n

)
−16C(U1, V1)C

(
k
n , V1

)
I
(
max(U1, V1) ≤ k

n

)
+8C(U1, V1)C

(
k
n ,

k
n

)
I
(
max(U1, V1) ≤ k

n

)
+8C

(
U1,

k
n

)
C
(
k
n , V1

)
I
(
max(U1, V1) ≤ k

n

)
−4C

(
U1,

k
n

)
C
(
k
n ,

k
n

)
I
(
max(U1, V1) ≤ k

n

)
−4C

(
k
n , V1

)
C
(
k
n ,

k
n

)
I
(
max(U1, V1) ≤ k

n

)
−2θn

(
4C(U1, V1)I

(
max(U1, V1) ≤ k

n

)
− 2C

(
U1,

k
n

)
I
(
max(U1, V1) ≤ k

n

)
−2C

(
k
n , U1

)
I
(
max(V1, U1) ≤ k

n

)
+ C

(
k
n ,

k
n

)
I
(
max(V1, U1) ≤ k

n

))}
→ 16

∫ 1

0

∫ 1

0
H2(x, y) dH(x, y)− 16

∫ 1

0

∫ 1

0
H(x, 1)H(x, y) dH(x, y)

−16
∫ 1

0

∫ 1

0
H(1, y)H(x, y) dH(x, y) + 8

∫ 1

0

∫ 1

0
H(x, y) dH(x, y)

+8
∫ 1

0

∫ 1

0
H(x, 1)H(1, y) dH(x, y)− 1

3

(6.17)

and

Eh̃2(U1, V1, U2, V2)

C2
(
k
n ,

k
n

) =
θn

C2
(
k
n ,

k
n

) + o(1) → 1. (6.18)

By equations (6.15), (6.17) and (6.18), and the fact that nC
(
k
n ,

k
n

)
→ ∞, we have

E

(
Zn/C

2

(
k

n
,
k

n

))2

→ 0,

which in turn implies that Zn/C
2
(

k
n ,

k
n

)
p→ 0. Hence, (6.16) allows us to conclude that

2

n(n−1)C2
(
k
n ,

k
n

) ∑
1≤i<j≤n

sgn
(
(Ui − Uj)(Vi − Vj)

)
I

(
max(Ui, Vi, Uj , Vj) ≤

k

n

)
p→ θτ . (6.19)

Denote Gn1(x) =
1

n+1

∑n
i=1 I(Ui ≤ x) and Gn2(y) =

1
n+1

∑n
i=1 I(Vi ≤ y). Note that

sgn
(
(Ûi − Ûj)(V̂i − V̂j)

)
I
(
max(Ûi, V̂i, Ûj , Ûj) ≤ k

n

)
= sgn

(
(Ui − Uj)(Vi − Vj)

)
I
(
max(Ui, Uj) ≤ G−

n1(
k
n ),max(Vi, Vj) ≤ G−

n2(
k
n )
)
,

n
kG

−
n1

(
k
n

) p→ 1 and n
kG

−
n2

(
k
n

) p→ 1. These properties, equation (6.19) and the continuity of H yield

2

n(n−1)C2
(
k
n ,

k
n

) ∑
1≤i<j≤n

sgn
(
(Ûi − Ûj)(V̂i − V̂j)

)
I

(
max(Ûi, V̂i, Ûj , V̂j) ≤

k

n

)
p→ θτ . (6.20)

Similarly, we can show that

2

n(n− 1)C2
(
k
n ,

k
n

) ∑
1≤i<j≤n

I

(
max(Ûi, V̂i, Ûj , V̂j) ≤

k

n

)
p→ 1. (6.21)

Therefore, it follows from (6.20) and (6.21) that θ̂τ (k)
p→ θτ . □
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Proof of Theorem 2.5. It is worth mentioning that the current proof follows the same notations defined

in the proof of Theorem 2.4. In addition, we define

βn1(x, y) = 2

n(n−1)C2
(

k
n , kn

) ∑
1≤i<j≤n

sgn
(
(Ui − Uj)(Vi − Vj)

)
I
(
max(Ui, Uj) ≤ k

nx
)
I
(
max(Vi, Vj) ≤ k

ny
)

and

βn2(x, y) =
2

n(n− 1)C2( kn ,
k
n )

∑
1≤i<j≤n

I

(
max(Ui, Uj) ≤

k

n
x

)
I

(
max(Vi, Vj) ≤

k

n
y

)
.

Now, Assumption 2.4 leads to

A−1
(
k
n

) {
Eβn1(x, y)− 4

∫ x

0

∫ y

0
H(s, t)H12(s, t) dtds+H2(x, y)

}
→ 4

∫ x

0

∫ y

0
Q(s, t)H12(s, t) dtds+ 4

∫ x

0

∫ y

0
H(s, t)q(s, t) dtds− 2H(x, y)Q(x, y)

(6.22)

and

A−1

(
k

n

){
Eβn2(x, y)−H2(x, y)

}
→ 2H(x, y)Q(x, y). (6.23)

By (6.14), (6.15), (6.17), (6.18) and the fact that nC
(
k
n ,

k
n

)
→ ∞, we have

√
nC

(
k

n
,
k

n

){
βn1(1, 1)− Eβn1(1, 1)

}
=

2σ1√
n

n∑
i=1

h̃1(Ui, Vi)√
Eh̃2

1(U1, V1)
+ op(1), (6.24)

where σ2
1 is defined in (2.8). Similarly,

√
nC
(k
n
,
k

n

)
{βn2(1, 1)− Eβn2(1, 1)} =

2√
n

n∑
i=1

ĥ1(Ui, Vi)√
Eĥ2

1(U1, V1)
+ op(1), (6.25)

where ĥ1(u1, v1) = I
(
max(u1, v1) ≤ k

n

)
−C

(
k
n ,

k
n

)
. Using H(1, 1) = 1 and Q(1, 1) = 0, and (6.22)–(6.25),

we have √
nC
(
k
n ,

k
n

){βn1(1,1)
βn2(1,1)

− θτ
}

=
√

nC
(
k
n ,

k
n

){βn1(1,1)−Eβn1(1,1)
βn2(1,1)

− (βn2(1,1)−Eβn2(1,1))Eβn1(1,1)
βn2(1,1)Eβn2(1,1)

}
+
√

nC
(
k
n ,

k
n

){Eβn1(1,1)
Eβn2(1,1)

− θτ
}

= 2σ1√
n

n∑
i=1

h̃1(Ui, Vi)√
Eh̃2

1(U1, V1)
− 2θτ√

n

n∑
i=1

ĥ1(Ui, Vi)√
Eĥ2

1(U1, V1)

+λ
{
4
∫ 1

0

∫ 1

0
Q(s, t)H12(s, t) dtds+ 4

∫ 1

0

∫ 1

0
H(s, t)q(s, t) dtds

}
+ op(1).

(6.26)
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Further, we have√
nC
(
k
n ,

k
n )
{
θ̂(k)− θτ

}
=

√
nC
(
k
n ,

k
n

){βn1

(
n
k G−

n1

(
k
n

)
,nk G−

n2

(
k
n

))
βn2

(
n
k G−

n1

(
k
n

)
,nk G−

n2

(
k
n

)) − 4
∫ n

k G−
n1

(
k
n

)
0

∫ n
k G−

n2

(
k
n

)
0 H(s, t)H12(s, t) dtds

+H2
(

n
kG

−
n1

(
k
n

)
, n
kG

−
n2

(
k
n

))}
+4
√
nC
(
k
n ,

k
n

){ ∫ n
k G−

n1

(
k
n

)
0

∫ n
k G−

n2

(
k
n

)
0 H(s, t)H12(s, t) dtds

−
∫ 1

0

∫ 1

0
H(s, t)H12(s, t) dtds

}
−
√
nC
(
k
n ,

k
n

){
H2
(

n
kG

−
n1

(
k
n

)
, n
kG

−
n2

(
k
n

))
−H2(1, 1)

}
=

√
nC
(
k
n ,

k
n

){βn1(1,1)
βn2(1,1)

− θτ
}

+4
√
c
√
k
{

n
kG

−
n1

(
k
n

)
− 1
} ∫ 1

0
H(1, t)H12(1, t) dt

+4
√
c
√
k
{

n
kG

−
n2

(
k
n

)
− 1
} ∫ 1

0
H(s, 1)H12(s, 1) ds

−2
√
c
√
k
{

n
kG

−
n1

(
k
n

)
− 1
}
H1(1, 1)

−2
√
c
√
k
{

n
kG

−
n2

(
k
n

)
− 1
}
H2(1, 1) + op(1).

(6.27)

It is not difficult to find that

E

{
h̃1(Ui,Vi)√
Eh̃2

1(U1,V1)

ĥ1(Ui,Vi)√
Eĥ2

1(U1,V1)

}
=

θn−θnC
(

k
n , kn

)
σ1C2

(
k
n , kn

)(
1+o(1)

) → θτ

σ1

E

{
h̃1(Ui,Vi)√
Eh̃2

1(U1,V1)

I
(
Ui≤ k

n

)
− k

n√
k/n

}
=

θn− k
n θn

σ1C2
(

k
n , kn

)√n
kC
(
k
n ,

k
n

)
{1 + o(1)} → θτ√c

σ1

E

{
h̃1(Ui,Vi)√
Eh̃2

1(U1,V1)

I
(
Vi≤ k

n

)
− k

n√
k/n

}
=

θn− k
n θn

σ1C2
(

k
n , kn

)√n
kC
(
k
n ,

k
n

)
{1 + o(1)} → θτ√c

σ1

E

{
ĥ1(Ui,Vi)√
Eĥ2

1(U1,V1)

I
(
Ui≤ k

n

)
− k

n√
k/n

}
=

C
(

k
n , kn

)
− k

nC
(

k
n , kn

)
C
(

k
n , kn

) √
n
kC
(
k
n ,

k
n

)
{1 + o(1)} →

√
c

E

{
ĥ1(Ui,Vi)√
Eh̃2

1(U1,V1)

I
(
Vi≤ k

n

)
− k

n√
k/n

}
=

C
(

k
n , kn

)
− k

nC
(

k
n , kn

)
C
(

k
n , kn

) √
n
kC
(
k
n ,

k
n

)
{1 + o(1)} →

√
c

E

{
I
(
Ui≤ k

n

)
− k

n√
k/n

I
(
Vi≤ k

n

)
− k

n√
k/n

}
=

C
(

k
n , kn

)
−
(

k
n

)2
k/n → c.

Consequently, using the Cramér-device, we can show that(
1√
n

∑n
i=1

h̃1(Ui,Vi)√
Eh̃2

1(U1,V1)
, 1√

n

∑n
i=1

ĥ1(Ui,Vi)√
Eĥ2

1(U1,V1)
,
√
k(nkG

−
n1(

k
n )− 1),

√
k(nkG

−
n2(

k
n )− 1)

)T

=
(

1√
n

∑n
i=1

h̃1(Ui,Vi)√
Eh̃2

1(U1,V1)
, 1√

n

∑n
i=1

ĥ1(Ui,Vi)√
Eĥ2

1(U1,V1)
,

− 1√
k

∑n
i=1(I(Ui ≤ k

n )−
k
n ),−

1√
k

∑n
i=1(I(Vi ≤ k

n )−
k
n )
)T

+ op(1)

d→ N(0,Σ)

(6.28)

as n → ∞, where

Σ =


1 θτ

σ1
− θτ√c

σ1
− θτ√c

σ1

− θτ

σ1
1 −

√
c −

√
c

− θτ√c
σ1

−
√
c 1 c

− θτ√c
σ1

−
√
c c 1

 .

Therefore, it follows from equations (6.26)–(6.28) that (2.6) holds. □
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