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Abstract

This thesis presents aeatendshe Jvalue frameworkor assessing expenditure on
risk mitigation and then applies the methada comparative risk assessment of UK
electricity generating systems.

The thesis is split into two volumes. The first volume contains part one, in which the
Jvalue framework is introduced and develop&de loss of life expectancy is a key
parameter inhte framework, and generaisk modelsfor calculating this parameter

are developedh terms of exposures and responsgsecific examples of radiation

and pollution models are also present@d HHazardElimination Premium” LV DOVR
introduced as a usefabmmon metric for risk comparisons.

Part one also contains an assessment of the uncertainty et/aéhgeJand its input
parameterand it is found that thevaluehas an internal accuracy of around 3%, but
that other, context dependant parameters cgnade this accuracy. A sensitivity
analysis of the-¥alue framework also found that thevdlue waseasonably robust
against random variatioof the input parameteras well as againsthe use of
simplifying assumptions used ihe developmenof the Jvalue

The second volume contaipars two and threeParttwo describes the comparative

risk analysis of the electricity generating systehtge analysiss carried out on

nuclear, coal, natural gas, onshore wind and offshore viihd analysis assesse

human mortality impacts arising from therrent anduture plants over the sixty

year period from 2010 to 2070 for the entire fuel chain. The results indicate that
nuclear genlly has the lowest impacts, while gas, onshore and offshore wind have
indicative impacts that are about an order of magnitude greater, although the
estimates for both wind technologies carry considerable uncertainty. Coal power was
found to present higimpacts compared with the other technologies, mainly as a
result of pollution emissions. Total nuclear impacts were found to be sensitive to
assumptions regarding the use of collective dose and the assumptions which are then
used to calculate impacts. Rbe most pessimistic case, when world exposures are
taken, total nuclear impacts increase by about an order of magnitude, which would
render the risks from nuclear generation comparable with those from gas and wind
generation.

Part three presents the carsions, further work, bibliography and appendices.
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Nomenclature

List of Roman Symbols

Symbol Meaning Units
A Assets £
Ap Productivity constant
a Age year
Arec Recruitment age year
Aret Retirement age year
B Cost of risk mitigation system £
Bo Risk-neutral maximum reasonable |£
spend on risk mitigation system
b Constant exposure rate additional deaths/year
ba Normalised cost of risk mitigation
system
Beoll Collective exposure rate additional mardeaths/year
b; Discrete value ohormalisedcost of
risk mitigation system
Prmax Maximum normalised reasonable
spend on risk mitigation system
b(x) Exposure rate at time additional deaths/year
Biot(X) Total individual exposure
C Cost of accident £
c(a) Earnings per year at age £lyear
Ca Normalised cost of accident
Cr Total dose risk coefficient for Sieverts'
radiation exposures
D Difference in expected utiliis
Da Number of deaths at age
Dy Linearised discount factor
D(t) Probability of dying before age
D(up,uz| 9 | Difference in initial and final utility a
JLYHQ ULVN DYHUVLR
da Number of life table deaths at age
d:(X) Annual radiation dose Sieverts/year
E Emission rate JV
=0 Number of deaths calculated from
) survival proababilitis based on
specific model
E(uy) Initial expected utility
E(up) Final expected utility
€a Life expectancy at discrete age year
F Expected remaining free time year
F(a) Expected remaining free time at ag|year
f Average free time fraction
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fo

Optimal free time fraction chose by
society as a whole

f4(t) Probability density for death year'
fmale Fraction of population that is male
fu(y) Probability density that the excess |year"
mortality resulting from a given
exposure occurs at tinye
fr(2 Total probability density for death a|year"
time 2
G GDP per person £lyear
Gc National GDP £lyear
g(b, 0 |[Derivative of reluctance to invest
g(x) Probability densitfor deathat timex |year"
from given exposure
gd(t[a) Probability densitfunction for death|year"
at aget given survival to age.
Ow fraction of time spent working for
average person in work
ow(t) Fraction of time spent working for
average person of ageand in work
H Population atropy
Hr Total manhours worked irall hours
populations
Hu(t) Total manhours worked at age hours
h(a) Hazard rate at age year
hw(t) Individual hours worked at ade hours
J Judgement value
Jo(X) Jump function for response to
exposure
Jr Total judgement value
J Second judement value
K Capital investment per person £
Kc National capital investment £
k Expected number of accidents as u
in the Poisson distribution
Krad Distributed radiation risk coefficient|year"
Kool Pollution risk coefficient IJ'm?
Ky Constamn
ko Constant
Lc National labour supply manyear
la Number of lifetables survivors to ag
a
148 Discrete central rate of mortality at
agea
my" e Male central rate of mortality at age
m.°™@€  |Female central rate of mortality at g
a
Miow Low value of risk multiplier
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M max Maximum risk multiplier
N Number of people affected by
protection system
Nc Number of people in a country
Npop Total size of ajivenpopulation
Npy Annual persoryears worked
Na Mid-year population at age
n(a) Size of population at age
Ny (t) Number of people working at age
O Electrical energy output Gigawattyear GWa)
pL Price of labour £lyear
p(a) Population density at age year
Psw(tla) Probability for being employed at a{year"
t given surwal to agea
Pw Average probability of being in worl
for all persons of working age
Pu(t) Probability for being employed at a{year”
t
pY Probability density of accidents
occurring with frequency
P1 Initial no-accident probability
P2 Final neaccident probability
Q Life-quality index
Qr Life-quality index in terms of incom
and free time fraction
Qrd Discounted lifequality index in terms
of income and free time fraction
ij Constant value of lifguality index
on an indifference curve
Qx Life-quality index in terms of incom
and life expectancy
Q_ Constant value of life quality dex
X on an indifference curve
Q1 Version of lifequality index
Q2 Version of lifequality index
q Elasticity parameter
Oa Probability of death at age
R(a) Expected utility for individual of age
a
R Restoration requirement
R.(a) Restoratiorrequirement at age
Ri20a Reluctance to invest
r Net discount rate year
rq Discount rate year
ry Growth rate year
Sa) Survival probability to age
Stla) Survival probability to agegiven
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survival to age.
T Random age of death year
Tr Release Period year
t Age, time year
tav Average age in a population year
tay Average square age in a populatior] year
tav Average cubdage in a population |year
ta+.ave Average age of those above age |year
tw.av Average working age year
U(G) Utility of income,G
Uo( 0 ,QLWLDO XWLOLW\ DV
Vb(Xq) Value of a delaying a fatality by £
years
Vo(a) Value of temporarily preventinga |£
fatality for someonef agea
Vo Value of temporarily preventinga |£
fatality for soneone of unknown age
Vp.av Average value of temporarily £
preventing a fatality
W(a) Cumulative hazard rate at age
w work-time fraction
Wo Optimal worktime fraction chosen
society as a whole.
X Average life expectancy year
X4 Average disconted life expectancy |year
X(a) Life expectancy at age year
Xq(a) Discounted life expectancy at age |year
X Time year
Xd Discounted delayed time until deatlyear
Y Random number of accidents
y Time elapsed since induction year
Yw Work-lif e expectancy year
Yu(@) Work-life expectancy at age year
Z, Normal quantile function
Z\(tla) Fraction of time someone of age,
can expect to be working at age,
List of GreekSymbols
Symbol Meaning Units
1 Constant
Constant
Constant
= Step size for normalised cost of
protection system
/ BX) Increase in concentration levels J P
Lis Discrimination limit
/* Maximum reasonable change in a |£/year
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person's income as a result of speng
on a health and safety scheme that
extendhis life

I *N

Maximum reasonable change in a
groupofN SHRSOHYV LQFH
of spending on a health and safety
scheme

£lyear

I Kodt]a)

Absolute change in hazard rate at &
given survival to age.

year

I Ka(tla)

Relative change indzard rate at age
given survival to age.

year

I'%

Maximum reasonable spend on a
protection system fdx people who
will experience a gain in life

expectancy of &

£

0

Actual spend on protection system.

I~ ()

Change in cumulative hazard rate af
aget given survival to aga

of

Actual spend on risk protection systg
that protects against physical and
financial risks

£

/ scoll

Collective loss of life expectancy

manyear

/4

Change imverage discounted life
expectancy

year

/;4(a)

Change in average discounted life
expectancy at age

year

I w

Maximum reasonable spend on
financial risk mitigation systems

£

&

Actual spent on financial risk
mitigation system

£

/0

Step size for risk aversion

/ %)

Change in random life to come at ag
a

year

Risk aversion coefficient

Q1ax

Maximum risk aversion

4

Permission point

Elasticity of free time fraction with
respect to income

MU

Elasticity of marginal utilly with
respect to income

Elasticity of life expectancy with
respect to income

Share of wages in the GDP

X

Number of deaths at time

Hazard rate when deatlare
exponentially distributed

year

Deposition velocity

ms
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d(Xq) Value d a discounted lifeyear £
ave Average value of a lifgear £
E Initial accident probability
E Final accident probability
! Population density persons/m
g Correlation coefficient between
parameter§ andg
1 Standard deviation for paramefe units off
2 Age year
R(y) Response function year'
$ Random life to come when age is |year
unknown
%a) Random life to come at age year
2 Chi-square test statistic with +1
k1 degrees of freedom
-(p) |Inverse normal amulative distributior]
at valuep
%(X) Prolonged response function
%(X) Integrated prolonged response funct
%(X) Twice integrated prolonged respons
function
Duration of long exposure year
& Time to start of response to exposur year
& Time to end of response to exposurdyear
List of Abbreviations
COE Compensation of Employees £lyear
GDP Gross Domestic Product £lyear
Ml Mixed Income £lyear
MRS Marginal rate of substitution
RR Relative risk
VODLY |Value of a discounted lifgear £
VODLYA Average value of a discounted life |£
year
VTPF |Value of temporarily preventinga |£
fatality




Chapter 1 Introduction

1.1 Statement of Problem

The purpose of the research contained in this thesisusetdhe Jralue framework
to assess ancbmpare the risks fromiversemethodsof electricity generatin in the
UK.

1.2 Aimsand Objectives

The aims of thisesearch are:
1. Validate the Jvalue framework as a suitablend robusttool for risk
assessment and analysis
2. Compare, in a consistent mamn the risks posed by various electricity
generating systems in the UK using thealue framework.

It is intended that these aims will be achieved through the following objectives:

1. Extending the existing framework laycorporating more general risk masle
in the loss of life expectancy calculations, amwhducting uncertainty and
sensitivityanalyses.

2. Use the dvalue framework to develop a common metric that can be used to
comparethe risks from electricity generating systenos a consistent basis,
i.e. in such a manner that does not bias the results towards any particular
electricity generating system.

3. Develop a framework for theomparative risk analysis that will incorporate
all relevant risks involved in the generation of electricity for each system i

manner that will ensure a fair and valid comparison

1.3 Structure

To achieve the aims and objectives set out abibVegs beemecessary to separate
the comparative risk analysis from the development of tha&luke frameworkThe
thesis thus has ke parts. Part one is the valuation of health and safety, in which the
Jvalue is presented and developddhe first chapter in part one considers the



historical context anexisting literature in this field. The subsequent chapters then
describe in dethathe concepts and methods used in deriving talde and develop
them further Areasin which the existing framework gevelopedurtherinclude

X A newderivation of the Valuethrough consideration dhetradeoffs made
at an individual and socidtizvel.

X Generalisedelative and absolute riskodek of the loss of life expectancy
following any given exposure and sponse patternThis model isalso
applied to the specific case of pollution risks.

X A more rigorous treatment of tineeasuremerdand eimation procedurefor
the parameters us@uthe Jvalue framework, including an assessment of the
tolerances to be placed on each parameter.

X Introduction of theconcept of aHazardElimination PU H P L Ri¢h is the
maximum reasonable amount to spemdampletely eliminate a hazarthe
HEP isused extensively in the second part of the thesis.

X A sensitivity analysif the Jdvalue framework, in which theobustness of
the Jvalue given thenitial assumptionand uncertainty of some of the input

parameers is assessed.

The Jvalue has been recently extendgdThomas et 2009 2010 [190], [191],

[192] to include mitigation of financial risks in addition to physdicisks. These

concepts come together to formaVRWDO MX G JHPRNOQUA/THheD@deH™ RU -
behind this extension is shown, and the computational methods employed to
calculate some ofstoutputs are also present&art one then concludes with some

example calculations.

The second partof the thesisapplies the methad laid out in part ondn a
comparative risk analysis diK electricity generating system3he analysisis

carried out on five electricity generating systems in the biclear, coal, atural

gas, onshore wind and offshore wirahd uses the hazard elimination premium to
compare each technology on an equal footifigs sectionopens witha literature

review, before discussing the technical procedures of the report, such as scope and
the assumed boundaries of the assessed systems. This is followed by the analysis of
risks from nuclear, fossil fuels, and the wind technolodgiest twoconcludes with



the overall results comparisons with other studiemnd a discussiorof the

significance ad limitations of the results

The third and final part of the thesis considers the overall conclysiodswhether
the aims and objectives have been ineanswering the researgiroblem Areas
requiring further work are alsoedtified and discusse@art three also contairise

bibliographyand appendices.



Part 1 Valuing Health and Safety

Individuals have always traded risks to their health and life in order to obtain other
benefits. These trades reflect how the individual values hireotife. In a modern
democratic society, it is necessary to make decisions about public safety that
invariably affects the health and the wealth of many individuals. There is now
widespread consensus that any such method used to aid the decision niesg pr
regarding public safety should reflect as faisggossible the preferences which the
individuals in a society place upon their safety. Any such method must be fully
consistent in the way that risks are valued, and should also be transparentlyCurren

the most widespread method used for valuing risks are stated preference techniques
XVHG WR HOLFLW DQ LQGLYLGXDOYV ZLOOLQJQHVV W
The advantages and disadvantages of this method have been summarised in the
precedingsection. The purpose of this thesis is to describe a relatively new technique

IRU YDOXLQJ ULVNYDNGOQOREZQPBWKRKGE GHYHOQRSH G E\ 7K
[182], [183], and (2009]188].

The Jvalue method values risks by using the Life Quality In@eQl), which is an

indicator for measuring the development of nations, and was developed by Pandey,
Nathwani and Lind1997)[137], (2004)[157] and (2006)158], as a means to test

the efficiency of risk management decisions. The cemoatulate of the LQI
PHWKRGRORJ\ LV WKDW WKH WZR SULPDU\ GHWHUPLQTL
how much free time he can expect to enjoy from now on, and how much he will have
available to spend over this period. The relative importance eéttveo factors is

WKHQ GHWHUPLQHG E\ XVLQJ ODERXU PDUNHW GDWD
how it allocates its time. It is assumed that an individual can choose how much time

he wishes to work for, and accordingly how much free time he has. The mo
importance heplaces uponrhis free time, the less time he will spend in work.
Conversely, if his preferences are for more money available for consumption, he will
spend more time in work. Thus, the proportion of time which the average individual

will choose to spend in work from now on can be used to weight the two factors
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appropriately. A value for risk can then be inferred by insisting that any decision that
FKDQJHVY D VRFLHW\YV DYHUDJH OLIH H[SHFWDQF\ DQC
person) must aleast preservehe initial LQI, and preferably increase it, i.e. the
change in the LQI must not be negative. If a protection system is known to afford a
given increase in life expectancy to a group of individuals, thendhstraint on the
change in the QI places an upper bound on the amount of money that should be
spent on implementing the scheme. This maximum value can then be taken as
representing the societal cost of risk. If the actual cost of the protection system is
known, then the-Yalue istheratio of this cost to the societal cost. Thealue is
therefore a dimensionless positive numbevallies of less than unity indicate that

the protection system costs less than the maximum theoretical cost of risk, and so
represent good value for monelynplementing these schemes will result in an
increased LQI. -Yalues greater than unity indicate that the cost of the protection
system is greater than the theoretical maximum, and hence should not be
implemented. The-Jalue can be seen to be a scale ticivsafety projects and risk
policies may be judged. The scale is universal, in the sense that it is not specific to
any single industry, and all the input parameters are fully objective quantities, most
of which are derived from reliable national anduacial statistics. The-alue, being

a single dimensionless number, is also transparent and easily interpreted.

The Jvalue framework has also been extended recd@th0) [192] to include
financial risks toassets. This is formulated around an expected utility model, which
can be used to determine objectively the risk preferences of the individual or
organisation facing the risk, which can then be used to determine the maximum

reasonable spend on eliminatiting risk.

Chapter 3describe the conceptual foundations of theva@lue method in depth, and
shows how the Jdvalue can be derived based on considerations of the-aftsle
individuals make between their freéene and income, and the trad# between

sakty spend and life expectancy improvemethapters 4 to @hen introduce the
methods and techniques required for calculation of the actuarial parameters: the life
expectancy; the change in life expectancy and the Jiferlexpectancy. It is also
shown howthe latter parameter can be used in calculating the-tosk fraction: a

key parameter in thevhlue frameworkChapter escribes how thevialue can be
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used to infer common metrics of the value of life, namely the value of temporarily
preventing a fality (VTPF), and the value of a discounted-year(VODLY), and

DOVR LQWURGXFHV WKH 3*+D]DUG (OLPLQDWLRQ 3UHF
extensively in part 2 of this thesi€hapter8 presents the measurements of all the
necessary input parameters the Jvalue, and alsgrovidesan assessment of the

tolerance limits of the-Yalue.In chapter9 a sensitivity analysis is performed to

assess the robustness of thallie to the underlying assumptio@hapterl0 gives

an introduction to the,Jand 3-values, and describes how the maximum reasonable

spend on financial risks can be determined. Finallyapterll presents some

example calculations, demonstrating the general nature and applicability of the J, J

and 3-value methods.



Chapter 2 Historical Context and Existing Literature

The valuation of health and safety schemes, proposals or policies must also reflect

the value to be placed on physical risk, and consequently, the value placed on human
lifespan.In this section, ame of the historical and more recent literatafesuch

valuations will be reviewed. Particular focus will be given to therious
methodologies that have been used to véheserisks. It is common practice to

express risk valuations in terms of how rmushould be spent on avoiding one
VWDWLVWLFDO IDWDOLW\ D P haué XflhsiatBtR&IRRM)ORW QR Z
W K ¥#alué of preventing af D W D CHoWéver, he latter term is somewhat
misleading, as preventing a fatglis in the long run impssible xall individuals will

eventually die. It is for this reason that, for the purposes oftligisis the term

39DOXH RI 7THPSRUDULO\ 3UHYHQWL QJAGEhouphwiere LW\~ 9°
are many ways to calculateet VTPFE one of the most commomethodsis the

following: if it has been determingtiat each member of a population of sités

willing to pay £/ to eliminate a risk that has a probability oN1géf killing each

member, theran amount totalling v is willing to be spent on eliminatina risk

that is expected to kill one persdrherefore, th&/TPF = £Nv. The VTPF is usually

an input into health and safety decision making. However, this is not the case in J

value analysistthe risk valuation technique that is the main concern ofthieisis +

where the VTPF is an output that can be calculated if so required.

The earliest known valuations of human life can be found in the Babylonian Code of
Hammurabi (ca. Y00 BCE) and the Book of Leviticus of the Hebrew Bible (ca.

1,400 BCE). The faner decreed compensation values to be paid by a man that
assaulted or killed another individual, which were based on the relative social status
between the offender and thectim. For example, if one man accidentally killed

another man as the result ofaigument, then the offender should pay half a mina to

WKH YLFWLPYV IDPLO\ LI WKH YLFWLP ZDV D IUHHERU
man had been a slave but was now free. Using extremely crude calculation methods,

the VTPF for the free born man £206, whilst the VTPF for the former slave is

£137, in 2011 prices [91]. In the Book of Leviticus, values were assigned to

consecrated individuals based upon the indiviliuaioductivevalue to society, wit



males of ages between 20 and 60 being deemed the nhaeblea at 50 shekels of
silver. Females of these ages were valued at thirty shekels. This woulc i@
of £412 and £247 respectivelysing the same calculations as befdnelividuals
outsice this age group had lower valuations.

The first formal research into the value of life came some three thousand years later,
but used largely the same methods of valuation. The method of valuing human life in
WHUPV RI DQ LQGLYLG X 2@ifedrningsvcirdeo Hé IR msvthey L W \
SKXPDQ FDSLWDO”™ PHWKRG 6RPH RI WKH ILUVW DXWK
Adam Smithin 1776[176], and Ernst Engeh 1883[74]. A more in depth historical

review of human life valuation is provided by Dublin and Lo¢k830) [68], who

also provide a calculation of a VTPF using this approach. They calcuateeth

future earnings of an individual to be approximately $9,802, in 1930 prices, or a
VTPF of about £8,000 in 201 prices. This approach suffers from some serious
ethical problems, such as the zero value of retirees or those who do not work.
Children are alsoassigned a relatively small valuation, due to the traditional
economic method of discounting future earnings. According to Sctil®8e)[174],

the early attempts at applying this method to vale&lth ad safety programs:

3+DYH JLYHQ HFRQRPLVWYV D 3EODFN H\H" IRU VXSSR\
human lives could be valued as the lost economic productivity associated with a
VKRUWHQHG OLIH VSDQ"~

These problems have meant that there have been rildgvwe modern attempts at
valuing physical risk using this method, the most notable being (R8&7)[169],

who used this approach to value the cost to society of illness, disability and death. A
follow up to this study was published ten years later by Cooper and Fagé)[41].

Lave and Seski(l1970)[127] have also used this method to value the societdlaf

air pollution.

The human capital approach is an example of one methodology that has been used as
a procedure for valuing mortality risks in a consistent manner. Another important
methodology that is now widely used is thdllingness topay” (WTP) method. At

the foundation of this method is the belief that public sector decisions regarding how
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to mitigate risks to society should reflect the degree to which the individuals are
willing to pay to do so. Precisely how much an individual is willing &y pust be

determined through techniques that can be eth8&V HLWKHU SUHYHDOHG SU
SVWDWHG SUHIHUHQFH"

6WDWHG SUHIHUHQFH WHFKQLTXHV LQYROYH HOLFLYV
questioning, and can be further sGLYLGHG CtaOQtWgBntWIKAIHXBWLRQ™ &9
PHWKRG DQiGeWXHUEPHQW ™ &( PHWKRG 7KH &9 PHWKF
asking a representative sample of individuals how much they would be willing to

pay to reduce a particular risk, whilst the CE method involves indirectlyoitegian
LQGLYLGXDOTYfV :73 E\ SUHVHQWLQJ KLP ZLWK D VHL
scenarios, which the individual then orders in terms of his preference. This
SUHIHUHQFH RUGHULQJ WKHQ DOORZV WKH H[SHULPI
marginal rateof substitution (MRS) between risk and wealth, which can then be used

WR GHWHUPLQH WKH LQGLYLGXDOYV :73 IR999) JLYHQ
[16] published a report that tested the consistentliiefCV method, finding that the

results were dependent upon the way in which the questions were asked. Carthy et al
(1999)[29] published a follow up study that sought to improve the consistency of

the resits by using a CE method instead, eventually concluding that a VTPF for

road fatalities of £1 million was most appropriate (abfut3 million in 201

prices). The CV and CE approaches have also been employed by various UK
regulatory bodies to determinefaty policy. In a report for the UK Health and

Safety Executive (HSE), Chilton et €000)[32] used both the CV and the CE
DSSURDFKHV WR HVWDEOLVK D :73 3WD#tHosé fre\RU ULVN
roads and other public transport, fires, hazardous substances in the workplace,
nuclear power, genetically modified organisms and sport and leisure. The HSE then
commissioned a follow up study, published by Burton €2@01)[22] following the

Ladbroke Grove rail accident of October 1999, in order to assess how individual
attitudes towards risk changed following a major accident. The procedures used in

this study were essentially the same as in the puswime. A report by Covest al

(2008)[44] for The Rail Safety and Standards Board also used the CE approach to
determine how to value risks that involved multiple fatalities, track worker fatalities,

child and adult trespasser fatalities, and adult suicides.
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Stated preference techniques have the advantage that they can be used to estimate the
value of any type of risk. There are, however, a number of drawbacks. These include

the tendency for the respondernto give inconsistent answers. For example,

briefly mentioned above, the same question can elicit different responses, depending

RQ KRZ WKH TXHVWLRQ ZDV DVNHG 7KLV LV NQRZQ D\
DOVR XVXDOO\ KDYH WR UAHRIHE\WRHVERQBPIQQVTV |
removed from the sample if the experimenter judges them to be either inconsistent or

not representative of the sample as a whole. This process violates the ethical and
GHPRFUDWLF SULQFLSOH W teb stiolddth@ccohed forvdtkx DO TV S
equal weight, and also undermines the fundamental principle that the VTPF should
reflect the willingness to pay of societiyerhaps the most severe drawback of the

stated preference technique is that there is little red8dd8 VXVSHFW WKDW DQ L
preferences for safety, when elicited in an isolated environment devoid of the vast

array of factors that are confronted in everyday life, will be representative of how the

individual makes decisions about his safety initgal

5HYHDOHG SUHIHUHQFH WHFKQLTXHV LQYROYH LQIHU
from his or her behaviour. The two most popular methods of doing so are the
SFRPSHQVDWLQJ zZDJH™ PHWKRG DQG WKH 3DYHUWL
compensating wage methoahich is the most widely used of all WTP methods,

uses data from the labour market to assess the wage differentials for jobs with
varying health and safety risks. dssumes that employees understand the nature and
magnitude of the risks involved, and keainformed choices that reflect their
preferences for physical risk. Viscusi and Aldg003) [198] published a
comprehensive review of compensating wage studies, showing that there was quite a
large dispaty in the VTPF, from around £3 million to £55 million, in 2Dfrices.

Avertive behaviour methods use price data of various risk reducing items, such as
smoke detectors and seatbelts to determine WTP. It is assumed that the cost of
buying one extra itensiequal to the value of the associated risk reduction. Viscusi
(1993)[197] reviewed seven such studies th&trred a value of risk from cigarette

smoking, property prices in less polluted areas, andegrf inherently safer
automobiles. The VTPF calculated using this method ranged from £0.6 million to £4
million, in 2011 prices. The advantages of the revealed preference techniques are

that they use fairly reliable data, which accounts for the behawbumany
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individuals, and much of which is freely available. The techniquesrafect to

some degree decisions based on-weald choices, as opposed to the isolated
decisions elicitedby the stated preference techniques discussed above. The
disadvantags of these techniques are that the assumptregsrding wage
differentials being caused bydiffering levels of safety and the price of a risk
reducing itembeing equal to the value of the riskre implausibleClearly, many

factors can affect wage ldgeand prices. The assumption that employees make
considered decisions about whether to take a job based only on wage and safety
considerationss alsodoubtful. The difficulties of these assumptions are borne out

by the large range of the VTPF calculatedhis manner.

Another method of valuing physical riskat has been developaécently isbased

on the Life Quality Index (LQImethod first developed in 1998y Nathwan] Lind

and Pande)f137], [157]. The LQI is a summary indicator that can be used to
measure the development @hation, based on its Gross Domestic Product (GDP)
per person, and its average kepectancyBY insisting that anprotection systemat

least maintains the initial LQI, a maximuraasonablecost for thesystemcan be
determined. This cost is then the societal value of the given rikictien. The
calculation involves using labour market data to infer how individuals prefer to
distribute their time between working, in which income is raised, and leisure, in
which the income is consumed. In this sense, the LQI method can b&odeem

revealed preference technique for determining the societal WTP for risk reductions.

More recently, the.QI method has been expandeg Thomaset alin 2006 [182],

[183] ZKR LQWURGXFHGXMKHHHWKRG”™ IRU XVH LQ ULVN
assessment, and which is the central concetini®thesis The Jvalue is the ratio of

the actualcost of a given risk reduction scheme, to the maximum cost of the risk

given by the LQI method, and is therefore dimensionless:vAluk of less than

unity indicates that the risk reduction scheme costs an acceptable amount, and should
therefore be implemented, whilst asdlue of greater than unity indicates that the

scheme s WRR H[SHQVLYH DQG ZRXOG LPSDFW VRFLHW\T\
method can also be used to calculate a VTPR@&ffillion in 2011 prices, and with

a 2.5%per annundiscountrate This method has been used to value and assess risks

from a divese range of sources, such as railway protection systems, the cost
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effectiveness of drugs, and radioactivity abatement systelmsh of the initial J

value research centred around radiation protectiaonwhich the exposure to
radiation and subsequemtortdity responsevas stochastically modelled in order to
determine the loss of life expectancy from a given exposure to ionising radiation, see
Thomas et al (200§184], (2007)[185] and (2009]186], [187].

Further recent developments of thevalue method incluel an extension of the
method to include valuation of environmental rigR810)[192], and an analysis of

the tolerance of thenalug2010)[123]. The main advantages of thealue method

are that the input parameters are objective, bestighnated from actuarial or national
statistics. The method is also transparent, the output being a simple dimensionless
number that is easy to interpret. It is also consistent, offering a simple scale by which
risks can be assessed. The disadvantagebeoimethod are that it only values
mortality risks, and cannot be used to assess morbidity, efatalnrisks. Nor does

the method account for thgain or sufferingwhich may be experienced ovtre
LQGLYLGXDOYV UHPDLQLQJ OLIHQ®bAdUBReH LHEDPSOH
<HDUV’ ™ 43/<aké usdddibedlth economics.

The various methods of valgmmortality risks are summarisedTablel.



Method |Examples ofMajor |VTPF Advantages |Disadvantages
Publications (2011 £)
Human Dublin and Lotkg68] |~82,000 |Can be easily|Severe ethical
Capital Rice,[169] cdculated problems. Those
Cooper and Ricd41] from labour |who do not work
market data. |have no value.
WTP = Beattie et al[16] 1,300,000 |Can be used t Vulnerable to
Stated Carthy et al[29] value any type framing effects.
Preference Chilton et al[32] of risk. The practice of
SWULPPLQJ
ethical issues.
The answers of th|
respondents are 0
of everyday
cortext and may
therefore not be
representative of
true preferences.
WTP = |Viscusi,[197] 600,000+ |Uses reliable |Assumption about|
Revealed |Viscusi and Aldy, 55,000,000 labour market|the wage
Preference[198] data that differential
accounts for |[reflecting the risk
large numbers level is
of people. implausible.
Data accounts Assumption that
for behaviours the price of a risk
in everyday |reducing
context. commodiy is
equal to the value
of the risk is also
implausible.
LQI/ Pandey and Nathwar 2,600,000 |Input Does not account
JValue |[157][158] parameters ar for morbidity risks
Thomas et al, objective. or QALYSs.
[182][183] National and
actuarial data
is used that
accounts for
millions of
people.
Output is
transparent.

Table 1 Summary of literature on valuation of mortality risks.
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Chapter 3 Conceptual Foundationsof the J-Value

3.1 The Life Quality Index

It is impossible to determine each and every factor required to ensureethagltbst

quality of life may be enjoyed by all individuals. There are a vast amount of
YDULDEOHY WKDW LQIOXHQFH DQ LQGLYLGXDOYV ZHO
high quality of life is entirely subjective. Any rational analysis of such a complex

and indeterminate concept must attempt to make an appropriate simplification by
identifying the key factors which underlie the concept of quality of life. It is
postulated that the quality of life of an individual can be distilled into two
fundamental fators: how long an individual can expect to live from now on, and

KRZ PXFK WKH LQGLYLGXDO KDV DYDLODEOH WR VSHQ
luxuries. The first of these factors is encapsulated in the life expecténefpich is

measured in year This factor may be distilled further by recognising that
individuals generally enjoy their life during time that they are free to dispose of as

they wish, in contrast to time that is spent working.

For many people, the distinction between working tand free time is an arbitrary

one, as people often engage in productive work even though they are not compelled
to do so. Nevertheless, individuals will generally wish to retain flexibility over how
they choose to spend their time. The productivenesssoti@ty may be viewed as

the result of a complex tradef that each individual makes between working time
and free time. In this tradaff the benefit gained from extra income obtained by
working longerhoursis balanced against the cost of loss of fiset This suggests

that a more precise indicator of quality of life can be obtained by replacing the life
expectancy with the remainirayeragdree time,F, where:

(3.1)

in whichw is the average fraction of time spent working froow on. The amount
available to an individual to spend oconsumptiorcan be represented by a summary
measure of average income. This is taken as the Gross Domestic Product (GDP) per

person G (£/year). This figure is chosen for ethical reasons, nametyetrexryone



within the nation is treated equally with regards to incoffteus, free time and

average incomare taken as being the two main inputs contributing to the single

output of quality of life In economic theory, inputs are related to outputs thraug
3SSURGXFWLRQ IXQFWLRQ~
[117]).

function, (see e.g. Johason (1991)

WKH edmvwudkeRPRRDNR |

If the output is denotedQ;, and

UHSUHVHQWYV D 3 @tLdrHaveErade @érsitheb@dbdH are related t@;

by:

whee .;, and are dimensionless positive constants. A property of the Cobb

(3.2)

Douglas function is that any monotonic increasing functio@ofvill also suffice as

ZKLF

a life quality index. This property is then used to define a second life quality index,

Q2:

whereq = / is a dimensionless positive constant, and wheereation

(3.3)

(3.1) has

been used in the last step. It may also be noted that the work time fraction is the

complement bfree time fractionf:

which allows equatic1(8.3 to be recast as:

(3.4)

(3.5)

whereQ is used instead d@., as this is the most general form for the bigality

index, and will be used in much of the following derivation. Equ&{oh

expresses

three important considerations for an individulabw long he will live for, the

fraction of his remaining e which is free for him to dispose of as he wishes, and
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the amount of money available to spend over this time. The potential forofifade
between these three factors will now be considered. Firstly, it is assumed that free
time fraction and life expeatay cannot be substituted. However, there are some
very low values off which would be associated with a reduced level of life
expectancy due to overwork. This presumably is not an issue for most individuals. It
therefore seemeeasonabldéo assume thatand X are independent of one another.
Two important tradeffs remain, however. These are the tratffean individual can

make between income and free time fraction, i.e. betw@andf, and the tradeff
between income and life expectancy, i.e. betw&eand X, which occurs when
spending on a risk reducing protection scheme, or indeed, accepting compensation

for a reduced life expectancy (for example via higher wages in a high risk job).

Consideration of these trawdfs leads to the concept of a maximueasonable
spend on safety and protection systeiss thenallows a judgement or-Jalueto
be assigned to such a systemhich can bexpressed assngleequation Although
the Jvaluehas been derived before from different principles (e.g. see Theina

(2006) [[182]), the following is a new derivation based upon standard economic

theory. The independence éfand X means that the two tradeoffs described above

can be considered separately, as will be done in theviolipsections.

3.2 The TradeOff between Free Time Fraction and Income

In exploring the free time fractiemcome tradeoff, it is assumed that any such trade
GRHV QRW DIIHFW WKH LQGLYLGXDOYV OLIH H[SHFWD(
index, Q;, can be formed by dividing the original life quality index, equati®5

by X, without loss of generality:

(3.6)

This new life quality index is introduced in order that the Uezd of the tradeff

can be explored explicitly. It is apparent from equa(@®)that it is possible for an

2 Much of this chapter is based upon a paper published by Thomas, Jones and the present author, see
Thomas Jones and Kearrf2010
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individual to exchange his income for free time, whilst still retaining his original life

quality index. The set of values @& andf that will render a constant level of life

quality, which will be denoted aQ_f LYV NQRZQ DV DQ B*LQGLIIHUHQF
assumed that the individual is indifferent to how his level ofdiielity is attained.

The indifference curve must satisfy:

(3.7)

which can be solved fdror G. Here it will be solved fo6, to obtain:

(3.8)

One property of equatiq(8.8)[is that there are an infinite humber of indifference

curves, with each one representing a different level of life quality. Also, none of
these indifference curves intersemhe arother. The indifference curve is also
convex, meaning that ¢hfunction will always lie below a straight line drawn
between any two points on the line. Convexity of indifference curves directly implies
a diminishing marginal rate of substitution (MRS) of free time fraction for income.
This is the amount of incomeahmust be exchanged for a unit of free time fraction,

and is given as:

(3.9)

Equation(3.9)|clearly shows that the MRS diminishes with increasing levels of free

time fraction. Thamplication of a diminishing MRS is that the higher the free time
fraction enjoyed by the individual, the less willing the individual will be to give up

some income in order to increase free time fraction further.

The amount of income generated by theolabmarket may also be formally linked
WR QDWLRQDO DYHUDJH IUHH WLPH IUDFWLRQ E\ PRG

-41-



This is done by again using a Cebbuglas production function, following Pandey
et al (2006)[158]| The output in this instance is the national GDP, denot&g:-as
and the factors of production are the national capital investiiengind the annual

supply of labour within the countrizc:

(3.10)

where Ap is a produtivity constant, that accounts for other factors affecting
production, such as technological advancements and education level. The other
parameter is the fraction of the GDP paid to workers as wages, as will now be

shown:

The price of labourp,, is the marginal GDP with respect to labour supply, at
constant levels of productivity and capital, i.e.:

(3.11)

so that:

(3.12)

The numerator in equatif{8.12) which is the product of the price of labour and the
labour supply, is the total wages paid to employees. Thus ec11(®ﬂxﬁj shows that
is the wage share of the GDP.

Furthermore, the supply of labour may be seen to be equal to the total population of
a countryNc, multiplied by the populaticaveraged workime fraction:

(3.13)

-42-



where equatio|t03.4) has been used in the last step. Substituting into eqU&ibd

gives:

(3.14)

The GDP per persof, is then:
(3.15)

whereK is the capital investment per person.

Equatiorf(3.15 shows that average income is related both inversely andmearly

to the free time fraction. This curve is a constraint that is determyethe
FROOHFWLYH DFWLRQV RI LQGLYLGXDOV ZLWKLQ D VR
income to his free time fraction. It will now be assumed that these collective actions

of a society will be such that the life quality is maximised for the averafjadual,

subject to the above constraint. The maximisation occurs when the indifference

curve defined by equati¢(3.8)is tangent to the constraint curve defined by equation

(3.15) This situation is demonstrated|kigure 1| which presents data relevant to

UK conditions in 2007This figure shows the downwards curving income constraint,
and the convex indérence curves. These three curves represent different levels of
the life quality index,Q:. The highest curve gives the highest quality of life. This
curve, however, is unobtainable as it always lies above the constraint line. The
lowest curve has partkadt lie within the constraint, but any individual on this curve
can increase his quality of life within the constraint. Hence the curve that maximises
life quality subject to the constraint is tangent to the constraint line. The condition of
tangency is mewhen the derivatives of the two curves are e@ also

shows shaded regions where low values of free time fraction or very low income
OHYHOV PD\ FRPSURPLVH WKH LQGLYL Ga&d.dfiaseKHDOW
levels are not precisely defined. It is sufficient for these purposes that thetirade

occurs outsidéhese shadedegiors.



If the point of tangency is located &, (Go), then the derivative of the indifference

curve is given by thaegative of equatiq(8.9)| evaluated at these points:

(3.16)
The derivative of the constraint line of equal{(8riL5)is:

(3.17)
Matching the derivatives [{B.16)and(3.17)gives:

(3.18)
which can be solved fay, the only unknown grameter. This gives:

(3.19)

where, clearlyfo = 1 +wp. The meaning of the parametgmay be further explored

by rearranging equatif(3.9)to give:

(3.20)

which is valid fordG/df > 0. Theparameter ; is the income elasticity of free time
fraction. Elasticity is a measure of the sensitivity of relative changes in a variable
following a relative change in another variable. The paranggtaus emerges as the

modulus of this elasticity parameter.



3.3 The TradeOff between Income and Life Expectancy

The second tradeff investigated is between income and free time fraction. The
nature of this tradeff is different from the first tradeff, which was determied by

a collective bargaining process made at a societal level. Thedfadetween
income and life expectancy occurs when health and safety schemes are being
considered. Such a health and safety scheme can be expected to improve life
expectancy by a cein amount, but at a cost. This cost may be borne by each
individual in society, even if the individual does not directly benefit from the health

and safety improvement, in line with the compensation notions of K&li$i#9)

[120]| and Hicks (1939)|[92]| (see also Boadway and Brug&984)|[21]| and

Johanssoi1991)[117]).

The incomélife expectancy tradeff is assumed to be independent of the-free
fraction. This means that a new life quality ind€, may be formed, in a similar

manner to equatict(B.G) by dividing the general life quality index given by equation

(3.5)by f, which is now being treated as a constant, ratherabkarvariable Hence

(3.21)

As is the case with the §it tradeoff, it is possible for an individual to give up some
income for additional life expectancy, whilst still retaining his initial level of life
quality. It is also clear that excessive spend on life expectancy improvement will
UHGXFH WK lifleQu@Gality, .whikstDsOithbly small spends will increase life
quality. Thus the maximum reasonable spend for a health and safety scheme defines

the indifferene curves for this tradeff. The set of values dd and X thatdefine the

indifference curve a constant level of life qualitglenotedas , must satisfy:

(3.22)

which can be solved fd®, to obtain:



(3.23)

Equation(3.23)is analgous to equati(1|(13.8) except the variabl¥ is now used in

place of the variablé Hence, this equation is also convex in ¥a& plane. This
means that the MRS of life expectancy for income is alsoinihing with

increasing life expectancy, and is given as:
(3.24)

Intuitively, this means that the higher the life expectancy the individual enjoys, the
less willing he will be to give up income in order to raise life expectanciieurt
Equatior[(3.24 can be rearranged to give:

(3.25)

Here-dG s taken as the infinitesimal amount of income which should be exchanged
for an infinitesimal increase in life exgaacy,dX. In practice, these infinitesimal

changes are replaced by small changes in income and life expectancyawfd /X

respectively. Thus, equatig8.25)becomes:

(3.26)

where the value off has been calculated from equat{@19) Thus, the first trade

off is used to determine the elasticity paramegtexhich is then used in calculating

the maximum reasonable income iadividual should give up to achieve a given

increase in life expectancy. It may be noted that eqyéi@4)can be rearranged to

give:

(3.27)



which is valid fordG/dX > 0. Equaibn|(3.27)is analogous to equatif{8.20) Here,

the parameter x is the income elasticity ofife expectancy Comparing equations

(3.20)and(3.27) it is obvious that x = . The reason why this is may be seen by

considering the expected free time from now on:

(3.28)
The totl differential of(3.28)is:

(3.29)
so that:

(3.30)

In the first tradeoff, it was assumed that was held constant, so théX = 0. Under
this condition therelative change in the free time fraction is equal to the relative

change in the expected free time remaining:
(3.31)

while in the second tradeff, the assumption was thitvas constant, so thdf = 0.
Here, it is the relative chge in life expectancy that is equal to the relative change in

the expected free time remaining:
(3.32)

Thus equatioﬁS.ZO may be reexpressed as:
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(3.33)

while equatiof(3.27)may be rewritten as:

(3.34)

Equation$(3.33)and(3.34)demonstrate that the income elasticity of expected free

time remaining is the same in both instances. This suggests that the two considered
tradeoffs are specific instances of a more fundamental todideetween income

and expected free time remaining.

3.4 Utility and Discounting in the Life Quality Index

In each of the life quality indices derived above, one constant feature wé&s the
term. For0 <q WKLV WHUP KDV WKH IRUP RI D XWLOLW\ |
XWLOLW\" I XWI(G) théh\thie tilBy b inROMeiS

(3.35)

The notion of utility expresses the personal value derived from the consumption of
goods. The bounds on the valuegare necessary to preserve the law of diminishing
marginal utility. The economic law is based on the observation that individuals

value extra gains in commodities more highly when the commodity is scarce than
when it is plentiful. This law, when applied to t& term, which represents the

utility of income, means that thedt amount of earnings will give the individual the

greatest value, as he will be able to afford such essentials as food and clothing.
Subsequent increases in earnings will then be valued at an ever diminishing rate, as

the individual will then begintoSHQ G PRUH RQ OLIHTV OX[XULHV 7

is:

(3.36)



which decreases with increasing income, hence, diminishing marginal utility. An
important economic parameter derived from utility theory is the income elasticity of
margina utility, wu. This is given by:

(3.37)

The negative value of this quantity (which is more useful because it is positive) has

been studied extensively, and is used by the Treasury to determine how to

appropriately discount future effts, seg95][ This negative elasticity has also been
VKRZQ WR EH LGHQWLFDOO\ HTXDO WR D SDUDPHWHU
ULVN DYHUVLRQ " RU SU[_'LYZ]\iI[ldSn} This \parBnaeter | destribek B U W
SHUVRQYTY DWWLWXGH WRZDUGYV ULVN I D SHUVRQ K
GHVFULEHG DV 3ULVN QHXWU D O 'ndiedte)tidil tHe wdiv@iXaHV R U|
is willing to pay greater amounts in insurance to protect against risk. If the risk

aversion is denoted d3then it is given as:

(3.38)

As risk is the central focus of this research, the risk aversianader is judged to
be a more relevant way of describing and assessing risk, and will replace the

elasticity parameteny. The bounds on the risk aversion and the elasticity parameter

are a consequence of the use of the power utility function of eqU@&ti8d} The

upper bound on the risk aversion can be removed by instead aisimoye general
utility function first introduced by Atkinson(1970) for the study of income

inequality[13]{ TheAtkinson utility functionis defined as:

(3.39)



This utility function thus allows for risk aversions greater than unity, and so is a
more general function than the power utility. If this utility function weredaibed

to derive the Jalue, it would be necessary to substitute this into theqlifity

index, and apply the traetfs of sectior3.2 and3.3. However, the amount to spend

in order to remain on the indifference curve, whicls the maximum reasonable
amount an individual should be prepared to spend to achieve a given increase in life
expectancy, is unaffected by the use of this alternative utility function. In fact, it may
be shown that the maximum spend is unaffected bysheof a more general class of

utility functions given by:

(3.40)

7KHVH XWLOLW)\ IXQFWLRQV DUH NQRZQ DV 3DIILQH W
function. The proof of the invariance of the maximum spend under affine
transformatios of the utility function is given in Appendix.AAs the maximum

reasonable spend is independent of the type of utility function used, the more simple

power utility function will be retained in the rest of the development here.

Substitutirg the risk aversionQ as given by equatiq(8.38)into equationf(3.19

which relates the elasticity parameter to measurable and observable quantities, gives:

(3.41)

The utility interpretation allows the life quality index to be viewed as the summation
of the annual utilities over the whole of the future lifetime of the average individual.
This interpretation provides a mechanism for extending fieequality index to

include discounting.

It is widely accepted that individuals will prefer commodities that are available for
consumption at the present time to commodities which can only be consumed

sometime in the future. This concept may be applietetermine the utility of future
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income, which can be discounted back to the present value using a chosen discount

rate.

Let the earnings per year averaged across all individuals & lage(a) (E/year). If
all individuals have the same utility functioso that for each person, the utility for
WKDW \HDUYV HDUQLQJV ZLOO EH

(3.42)

If the income is growing at a real, compound rageso that the income at a later

age, 2will be given by:

(3.43)

and the utility of this income will be:

(3.44)

The utility attained at future ag@may be discounted back to the present aby

multiplying by , Wherery is the real rate of time preference, which will

also be termethe S=GLVFRXQW UDWH"™ 7KXV WKH QHW SUHVHQW
a of the income he will generate later in the age inte@tad 2is:

(3.45)

wherer is the net disaant rate, given by:

(3.46)
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Clearly, however, the individual will only be able to benefit from a utiBtya years
later if he is still alive at age This aspect may be included by considering survival
probabilities. The probabiltof an individual surviving to age€given that he has
already survived to age is denoted a§( 2 ).Ohis is also the probability that the

utility given by equatiof{3.44)will be achieved.

The expeted valueR(a), of the future discounted utility for an average individual of

age a, is found by multiplying the discounted utility of equat{¢®45) by the

probability that the utility is achievedy 2 ) D and integrating over all possible

lengths of life to come:

(3.47)

Equatior[(3.47 may be interpreted in lighbf the equation for life expectancX(a),

for an individual ofagea, namely:

(3.48)

which will be derived in more detail ichapter4. Comparing equatig(8.48) with
the integral on the right hand side of equaﬁ@rﬂ? it is apparent that the latter
LQWHJUDO PD\ EH UHJDUGHG DV R@GLVFRXQWHG OLIH

(3.49)

Clearly, equation3.48) and|(3.49)are equal when the discount rate is zero. The

relationship between life expectancy and discounted life expectancy is shown

graphically inFigure 2| which usesnortality data from the ONEL45]| and uses a
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net discount rate of 2.5%ubstituting(3.49)into|(3.47) and assuming a constant

income i.e.c(a) =c, the expected value of future discounted utility is:
(3.50)

For a group of individuals with varying ages, the average value of discounted utility
is found by multiplyingR(a) by the probability density for agep(a), for the

individuals within the group, and integrating over the appropriate age range:
(3.51)

whereXj is the average life expectancy for a group of individuals of ages between

anda,. If the popudition being considered is the general public, then the integration
limits area; =0anda, ' ,I WKH SRSXODWLRQ XQGHU FRQVLGH
then the limits of integration a® ~ 18 anda, ~ 65. The parametec, is now set

equal to the natimal average income, rather than the income of the group. This is

done as a result of an ethical decision in order to avoid different treatments of high
earning and low earning income groups with regard to safety spend. The national
average income is estimeal by the GDP per person, and so in setting G,

equatiovli_(3.51 can be seen to be a discounted life quality index of the form given by

equation(3.6)

(3.52)

The same procedure as laid out in secB@may be followed to derive the effect of
discounting on the incordde expectancy tradeff. The discounted MRS of life

expectancy for income is:

(3.53)



Following equationg3.25)and[(3.26) the maximum amount of income/ *, that

should be given up to achieve in increase in discounted life expectdqcig then:

(3.54)

This maximum discounted payment can then be used to derive the maximum amount
a group should be willing to pay for a protectiostsyn, which is then used to derive

the Jvalue.

3.5 The JValue

The results of the two tradwfs will now be used to derive thevalue. Equation

(3.54)relates the maximum reasonable amount of ahmecome to give up/*, in

exchange for an increase in discounted life expectabgy]f the benefits of the risk
reduction are experienced by a population of di;ghen the maximum reasonable
annual amount the population should be willing to pay, which is denotéd\ass

the product of the population size and the individual maximum reasonable payment:

(3.55)

This figure is the maximum annual spend for achieving the given discounted life
expectancy improvement. This annual spend can be relatadsitagle lump sum

spend, by noting that the average length of time over which the cost is paid is equal
WR WKH SRSXODWLRQTV EDYV Ky Ghug fHe X&pi&¥ ldfGniuall H H[S

payments can be discounted back to the present time in a similaentarequation

(3.45) except the period over which the discounting is applied is now equdl to

From equatiof(3.55) the maximum amount that isasonable to spend on a health

and safety measure to protétpeople between timeésanddt is:

(3.56)



which will have a value discounted back to tirhe,0, of:

(3.57)

The maximum amount of money9,, a group ol people would then be reasonably
expected to spend on a protection measure that affords them an improved discounted
life expectancy of /X4, expressed as an 4fyont lump sum, can be found by
integrating equatiol@from the time of installation of the measure, which is set

to be at timet = 0, to the life expectancy of the group at the time of installation,

namely,t = Xg:
(3.58)
which applies whemg > 0. For the case wheg = 0, it is noted tha¢” :  +yasy
+HQFH
(3.59)
asry : +HQFH WKH JHQHUDO H[SUHVVLRQfroR WMy KH PD]JL
sum spend on the safety system is:
(3.60)

The final step in deriving thevAalue is achieved byrking the maximum reasonable

spend to the actual cost of any such protection system that improves life expectancy.



If the upfront cost, which will be denoted a@?, is known, then the-value is the

ratio of the known cost to the maxim reasonable cost:

(3.61)

For safety schemes with costs greater than what is the maximum reasdnaltle,
indicating that the scheme offers poor value for money, and will result in a reduction
in life quality for the affected popation. Schemes that cost less than the maximum
reasonable amount will have< 1, which means that the scheme offers good value
for money, and will result in an improved life quality for the affected population.
Schemes that have a calculatedallie of uity will preserve the initial life quality.

This can be represented as an indifference curve iXiBeplane, as shown in

Figure 3| This figure uses data from the Office for National Statiftid®]{|[149]

The point marked on the graph is the average income and life expectancy (with no
discounting) for the population. A move to any other point on the curve would
preserve the life quality index, and so has\allie of unity. A move into the area
above the curve would increase the life quality index, either by increasing life
expectancy or income, and so such a move would hawakd of less than unity.
Conversely a move into the area below the curve would have a corresponding J

value of greater than unity.

The Jvalue is thus a dimensionless indicator of the -effgictiveness of safety
schemes. Aside from the net discount rate, which is usually chosen tddreO8i

per annum, or 2.5% per annum, all the input parameters are fully objective and easily
measurable from reliable statistics. The following thceapterswill describe the

technigues and methods needed to estimate these input parameters.



Figure 1 Indifference curves of quality of life against the income constraint.
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Figure 2 Discounted life expectancy versus life expectanay=a.5% pa, based ddNSfigures
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Chapter 4 Fundamental Relationships between Parameters Used

in Life -Expectancy Calculations

4.1 Characterising and Modelling the Survival of Populations

In this section the technical details required for the calculation of life expectancy are
presented. Life expectancy can be calculated in two wdlys first being through a
general probabilistic theory of survival, where the central concepts are the hazard
rateand the survival probability, which are dependent upon age. These concepts then
allow the agespecific life expectancy to be determined. The second way is through
the life table method, in which a theoretical cohort is exposed to rates of mortality
experienced by a general population, and followed to extinction. The relationships
between these two methods are also descriliesltheoretical framework of survival

models and life tables now well establisheffor example, see Chiar{968)[31]),

and this chapter giwan overview of the relevant concepitiese concepts are used
extensively inchapter5, and to a lesser extent in subsequent chaptersq@amity
that has received little attention in the literature is the pdpmnsaveraged life
expectancy (although Keyfitg1985) has briefly discussed thiseg[126]). This

chapterwill thus show how this quantity is calculated, and give some useful

approximationsThe discounted life expectancyaitso describet

In order to calculate the average life expectancy, knowledge of the age distribution
of the population is required. It is shown that this distribution can be determined
from the survival probabilities when it is assumed that the popnol&ia a steady

state, such that the number of births each year is always equal to the annual number
of deaths. This special population is also known assth@onarypopulation. A
different age distribution is required if the average life expectascyoi be
determined for a workforce. Here it is assumed that the distribution is uniform
between the age of recruitment and the age of retirement, and zero outside these

ages.

“The GHULYDWLRQ RI WKH DYHUDJH OLIH H[SHFWDQF\ DQG LWV GL
appendices of Thomas et(@D06c)[184]| although some new relations are derived here.
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4.2 The Hazard Rate and the Survival Probability
Suppose the probability of dying between agesdt + dt is fy(t)dt. Here age is
treated as a continuous variable, so that someone aged 20 and three months has
20.25 years. The paramefg(t) is then the probability density for the random age of
death,T. The cumulative distribution functiom(t), is then the probability of dying
at any point from birth to age so thatT " t, andis the integral of the probability

density function from age zero to age
(4.2)

The cumulative distribution function is also related to the probability density by:
4.2)

For any age, any given indiwdl must have either died or survived. Hence the
probability of either dying or surviving from birth to ageust be equal to unity:

(4.3)

Where St) is the probability of surviving from birth to age This is also the
probability d dying after agd, which may be related to the probability density of
death by:

(4.4)

Differentiating equatioﬁ4.2 gives:

(4.5)

so that:
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(4.6)

Theimmediate hazard faced by an individual of agethe probability thatl will be
betweent andt + dt, given that he has survived so far. The immediate hazard is

denotedh(t)dt, whereh(t) is the hazard rate, and is given formally by:

(4.7)

The conditional probability can be written in terms of the joint probability:

(4.8)

Because the evehk T "t + dt guarantees that the evéint t occurs, the equation is

reduced to:

(4.9)

The probability that death occurs between agesdt + dt is fy(t)dt, and the
probability that death occurs after age St), so that:

(4.10)

and substituting in equatiA.6)

(4.11)

Equatior{(4.11 can be integrated to give:

-62-



(4.12)

where:

(4.13)

is the cumulative hazard rafehe probability that an individual will survive to age
given that he has already survived to agé denotedStla), and is given formally

as:

(4.14)

Becausg surviving to ageé guarantees that the individual will have survived to age

this equation simplifies to:

(4.15)

This conditional probability of surviving to adegiven that age has already been

reached can be expressed in ®ohthe hazard rate as:

(4.16)

or.

(4.17)



WhereW(t|a) is the conditional cumulative hazard rate.

4.3 The Survival Probability and Life Expectancy

The life expectancy is the expected value of the futuretdifeome, which is a
random variable. For an individual of ageghe random life to come is denoted as
%a). This is related to another random variable, the age of debth

(4.18)

The probability density will be the probability aath in the interval to t + dt,
given that the individual has survived to agend will be denoted(tja). Following

the arguments of equatiq(¥ 7)to[(4.10) this will be:

(4.19)

It can be readily verified that the integral of this quantity of all valuésisfequal to
unity, as would be expected from a probability density function. The quantity
gq(t|a)dt is therefore th probability that the random variablga) = T *a will take

the value { +a), for those that have survived to agelhe expected value of the life

to come, given that agehas already been attained is the life expectaX@), given

as:

(4.20)

where equatioﬁ4.4) has been used in the last step. The integral on the right hand

side can be integrated by parts. For the integral:

-64-



put:

using:

then:

because& '’

substituting int

WKLV UHGXFHV WR

(4.20

gives:

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)



4.4 Relationship to the Life Table Functions

The life table presents data on mortality rates andheoigife for individuals within

a population. The life table in its usual form delineates individuals by gender and
age. In the Yalue model individuals are usually not delineated by gender, which is
achieved via a simple averaging process. Howevéreiproblem requires gender to

be delineated (for example a particular workforce may be mostly male), then this can
be easily achieved. In the UK, the life tables are published by the Office for National
Statistics, seim The life table consists of five functions, each of which can be
determined from two pieces of information: the mg&hr populationn,, at agea,

and the number of people who di&, at agea. The life table functions are discrete
variables, which is a consequence of the fact that each individual is grouped
according to his present (discrete) age. The relationship between the life table

functions and the hazard rate and survival probabilities will now be explored.

The first function 6 the life table is the central rate of mortality,. This is the

average death rate over the interfagla + 1), and is defined as:

(4.27)

The second function ig,, which is the conditional probability that someone aged
exactlya will survive to agea + 1. This is the number of people who die at age
divided by the number of people who have reachedaadote that the number of
people who have reached agés not the same as the mydar population because
there will be a numbeof people who will reach age but will have died before the
population estimate is made. If it is assumed that deaths are distributed uniformly
throughout the intervala( a + 1), then the number of people who will have died
before the population estate is made will b®,/2. Thus the number of people who
reach agais n, + D4/2, andg, is given by:

(4.28)



Alternatively, if deaths are distributed exponentially over the inteeyal € 1), then

Oa is related to the central ratg:b

(4.29)

The next function in the life table is the number of survivors at eacHadée life
table uses a hypothetical cohort of individuals which are followed through to
extinction as they experience the observed mortalitysrak@e initial size of the
cohort,lo, is known as the radix, and is usually taken to be 100,000. Theshe
number of this initial 100,000 who have survived to ag# |, is known, ther .1

can be determined from:

(4.30)

Thel, 1V FDQ DOVR EH UHODWHG WR WKH UDGL]J[ E\

(4.31)

The fourth function in the life table is the number of deaths in the hypothetical
cohort at each agé,, given by:

(4.32)

The last function in the life table ibe life expectancy at age which is usually
denotede,. Note that the life expectancy defined in the previous section, which is
denotedX(a), is a continuous function based on general survival probabilities, whilst
€, Is a discrete function describingetlaverage length of life for the hypothetical life
table cohort. The relationship betweéfa) ande, will be discussed below. The life
expectancy, is given by:

(4.33)
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The correspondences between the life table functions and thabdrstic survival
functions may now be explored. The survival probability may be immediately related
to the number of survivors. The ratio of the number of survivors to the size of the
initial cohort, I4/lo, is the probability of surviving from birth tagea. This is the
survival probability,S@). Thus, in the context of the life table functions, the survival

probability may be given by:

(4.34)

It is important to note tha§@) is a general function describing the probability of

suvival, whilst thel, fV DUH VSHFLILF RQO\ WR WKH OLIH WDEO
slightly awkward, in that§@) is continuous, whilst thé&;fV DUH GLVFUHWH IX
only defined at specific ages. Nevertheless, this awkwardness can be avoided by
usng interpolation methods to estimate the life table functions inside the interval,

e.g. allar10.

The conditional survival probability(t | a) is given by:

(4.35)

The hazard ratb(a) can be given either by the conditional prabgbof death, s,

or by the central rate of mortalitgy,, depending on the assumption made regarding
how the deaths are distributed in the inter@ah(+ 1). This can be shown by noting
thatqa is:

(4.36)

which can be written as

(4.37)



The probability that death occurs between agasda + 1 is equal to the difference
between the probability of surviving to agend the probability of surviving to age
a+1,ie.:Sa) t§atl). This means thag can k& written as:

(4.38)
If deaths are distributed uniformly over the intenala + 1), then:
for0< /D" (4.39)
The survival probability over the interval is:
for0< /D" (4.40)
So that:
(4.41)
Substitutian4.41 into[(4.38)gives:
(4.42)

where equation4.10) has been used in the last step. Hence, when deaths are

uniformly distributed over the interval, then the hazard rateequal to the
conditional probability of dying in the interval. If, however, the deaths are
distributed exponentially over the interal a + 1), then the hazard rate is equal to
the central rate of mortalityn,. This can be seen by noting that ttentral rate is

given by:



(4.43)

where the denominator is the average survival probability over the intayaat (1).
If deaths are exponentially distributed, then:

(4.44)

The survival probability is:

(4.45)

So that the hazard ratie(a), is equal to, a constant over the interval. Substituting

(4.45)into|(4.43)gives:

(4.46)

Thus, when deaths are exponentially distributed, the hazard rate is equal to the

central rate of mortality.

It is worth noting that, for most populations, the conditional probability of death is
generally very small for most ages. This means that the central rate is approximately
equal to the conditional probability of death, as cawvérified from equatior@
and(4.29) This means that:

formy<<1 (4.47)



This approximation is not valid at very young or old ages. Apprakingahe hazard

rates by thel fV LV JHQHUDOO\ PRUH UHDOLVWLF DV D XQL
more reasonable assumption than an exponential assumption. However, using the
exponential assumption, which means that the hazard rate is constardrogéaes,

does enable simpler calculations, and is often preferred.

Finally, the continuous life expectanc¥a), as given by equatipf.26) is equal to

the discrete life expectancg,, of equatior{(4.33 This can be seen by-veriting

(4.33)as:

(4.48)

where equatioﬁ3.35 has been used. This summation is equal to the integraéof th
conditional survival probability from=atot ' ZKHQ WKH WUDSH]LXP P

used for numerically evaluating the integral. This meang(thdB8)can be written

as:

(4.49)

Thus, the life expectancy based on general survival probabilitiesilds be

numerically equal to the life expectancy of the life table cohort, when the trapezium

method is used to evaluate the integrgldo26)or|(4.49

4.5 Calculation of Life Expectancies in the dValue Model

In the Jvalue modelthe hazard rates are assumed to be equal to the central rates of

mortality, m,, which are obtained from the latest UK life tables, publish&aually

by the ON3[145]| Separate tables are published for males and females, and so the

male and female central rates can be averagedlbylating

(4.50)
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wherefnae is the proportion of the population that is male, so thaifiae is the

proportionthat is female. For public hazards, it is usually assumed that male and

female numbers are equal, so thiafc = 0.5, whereas for industrial occupational

hazards, a value &f,e= 1 may be more suitable.

The hazard rates are then integrated to givectimulative hazard rate of equation

(4.13) As the central rates of mortality are used for the hazard rates, the hazard rates

are midinterval values. This means that the integration can be performed by simply

summing he hazard rates:

(4.51)

However, there is a problem with the final age interval, since not everybody will be

predicted to die by the end of it. This is remedied by adding an open age interval

after the last one which approximates thertality of the remaining cohort. The UK

life tables provide data up tbe age interval (100, 101), and so the additional age
LQWHUYDO LV IRU ’ 7KLV DSS(@BIORTBWNRQ LV GX
assumes thahe mortality rate of the final interval considered continues indefinitely,

and shows that the final hazard rdt@,01), is:

(4.52)

So that the final cumulative hazard rate is:

(4.53)

The cumulative hazard rateare then used to calculate the survival probabilities,

using equatio

(4.12

The survival probabilities can then be integrated using the

trapezium rule to determine the life expectancy:
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(4.54)

The reason that this method is used to calculate life expectancies, rather than simply
taking them from the life tables, is that this method allows the change in life
expectancy to be easily calculated following a change in the hazard rate. The life
expectancies calculated using this method compare well with the life vahles

Exactly how well they correspond is statistically testecclapter 9 where the
sensitivities of the life expectancy calculations to the assumptions regarding the

hazard rates and the methods of integration are assessed.

In the Jvalue model, the populatiesveraged life expectancy is usually required.
The method for averaging over the population will now be described.

4.6 The Steady State Population Distribution

It is assumed that within the general population, the annual number of births is
always equal to the annual number of deaths, so that the total population size is
always constant. Such a population has a fixed age distribution, and is known as the
SVWHDMGEDWH RU 3SVWDIMRERQDU\Y SRSXODWLRQ

Suppose that the population density at age n(a), implying that the number of
people between agesanda + dais n(a)da. The numben(a) may also be regarded
as the rate athich members of the population are reachingagghis number will

be equal to the birth rate(0), multiplied by the probability of surviving to age
Sa):

(4.55)

The total number in the populatiddye, is the integral ofi(a) over all ages:

(4.56)



From equatioﬁ4.26 it is noted that:

(4.57)

is the life expectancy at birth. This means @ may be rearmnged to give the
birth rate:

(4.58)
Substituting the birth rate in{@.55

(4.59)
andso the populatiodensity,p(a), is:

(4.60)

This is the age structure of the steady state population. It is constant and can be

calculated readily. This distribution is shownRigure4{ which is based on UK data
from 2007 to 2009. Also shown in this figure is the actuakidistion for the UK

population in this time period. There is clearly some difference between the two
distributions. However, as is discussed in more detathapter 9 the population
averaged parameters needed fomllie calculations are reébeely insensitive to the
exact distribution used. The steastpte distribution is therefore a simple but

powerful distribution which can give sufficiently accurate results.

The death rate between agasnda + da, is given by the number of people hat
age range multiplied by the probability of dying in that interval, given survival to
age,a, i.e. the hazard ratb(a):



(4.61)

where equatio|r(14.10 has been used the last step. The total death rate is found by

integrating over all ages:

(4.62)

which is equal to the birth rate, given by equaiﬂd;r58 as is expected in a stha

state population.

4.7 The Average Life Expectancy

The average life expectancy, for the general population is given as:

(4.63)

where the aga@listribution is given by equatig(¥.60) Although the average life

expectancy can be readily calculated from this equation, it is also possible to gain
further insight into the average life expectancy by noting that:

(4.64)



where equatiof{4.26) has been used. The order of integration may be reversed to

give:

(4.65)

So that:

(4.66)

wheret,, is the mean age in the population. Thus, in the steady state population, the

mean life to come isqgial to the mean life already experienced.

In the dvalue model, it is also necessary to evaluate the average life expectancy for
the workforce, as discussed in sect®h. In this situation it is inappropriate to use

the general population age dibtrtion. If data is available regarding the age
structure of the workforce under analysis, then this data may be used. However, the
age distribution of a general workforce may be approximated by a simple but

realistic uniform distribution that does not va@ any input data. This is given by:

for arec<a ” ayet

4.67
otherwise ( )

where ac and a.; are the age of recruitment into the workforce and age at

retirement, respively. The average life expectancy is:

(4.68)

For the UK, appropriate recruitment and retirement ages are 20 and 60, respectively.

Although employment does occur outside these ages, the proportion of these workers
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is relatively smd] and so can be disregarded for the purposes of the uniform
distribution model. The general population average life expectancy is usually close
to the working population average life expectancy. For UK data from 2007 to 2009,
the corresponding figures wer1.17 years and 41.16 years for populations with an

equal gender ratio.

4.8 The Effect of Discounting on Life Expectancy

In section3.4 it was noted that a discounted life expectancy could be derived as:

(4.69)
wherer is the dscount rateThis can be rewritten as:

(4.70)
where§;(t) is the discounted survival probability:

(4.71)
where equatiorre4.12 and(4.13)have been usednd where:

(4.72)
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is the discounted cumulative hazard rate (although in this case the effect of
discounting is to increase the cumulative hazard rate, rather than decrease it, as the
WHUP 3GLVFRXQWLQJ  PD\ VXd thehay alsp be tefifeB XsQ WH G K

(4.73)

SO that:

(4.74)

Hence all the variables required for life expectancy calculations can be viewed as
having a discounted counterpart.

The discounted average life expectargy i

(4.75)
This can be developed as:

(4.76)
the order of integration can be reversed to give:

(4.77)



the exponential terroan be expanded as:

substituting int

477

where equatio

{4.66

(4.78)

gives:

(4.79)

has been used, and whefg is the mearsquare age in the

population. Equatic1|(\4.79 thus linearly relates the discounted life expectancy to the

undiscounted life expectancy and the discount rate.
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Chapter 5 Calculations for the Change in Life Expectancy

Following a Hazard Perturbation

5.1 Modelling Changes in Life Expectancy

Perhaps the most important parameter of thalde equation ishe change in life
expectancy caused bgxposure to aisk, or resulting from its mitigation. This
parameter is especially important when considering the effects of risks that do not
become manifest until many years after the initial exposure to therchazhe
calculation of this parameter requires some detailed and technical explanation, which

will be given in this sectionThis section is partly based on Thomas et al (2D06

[184] who derived equations for the change infel expectancy followinga

prolongedradiation exposutencluding the effectsn individuals entering or leaving
the exposed populatiofere a morgeneral model is presented, in which exposures
can result in immediate or delayed respongagposures tharesult in absolute or
relative hazard perturbations (igerturbations where the magnitudandependent
or dependent on the initial hazard redeg also modelledhir pollution risks are also

modelled explicitly.

The fundamental concepts for undarsting the effects of hazards are those of
exposure and response. Both of these are characterised by probability density
functions. The response of an exposure to a hazard is of particular importance, as it
relates the exposure to the resulting increasgrobability of death. In many
situations, exposure to the hazard is characterised by an immediate increase in
mortality rates, which then return to normal when the exposure has stopped. An
example of this would be industrial accidents. There is onlykaofisleath from an

accident at the workplace during the time spent at work. After an individual leaves
work, he is no longer at risk from this hazard. A hazard with this type of response
PD\ EH FDOOHG DQ :LPPHGLDWH" KD]DU Gubstahteg FRQ W L
such as particulate matter, radiation or other carcinogens, where the resulting
increase in mortality occurs some years after the initial exposure. Such types of
UHVSRQVH PD\ EH FDOOHG 3GHOD\HG® KD]DUGV (DFK
response following exposure. The general methodology for modelling the exposures

and response, and the consequent change in life expeatathopw be discussed.
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5.2 Exposures

Suppose that the exposure to a hazard begins atim@ and lasts untiime x =

Tr. Let the rate of exposure felt by an individualld§e). The units of thigjuantity

are (additional deathsersonyear), although the additional deaths may not occur

until many years in the future. In order to clarify what is meant by this, iénmill

be presented for two types of hazard: immediate risks and delayed radiation risks.
JRU LPPHGLDWH ULVNV WKH 3H[SRVXUH" LV VLPSO\ W|
there is an elevated chance of death. For example, this may be working from a
height, where there is some chance of experiencing a fatal fall. It may also be
travelling in a car or a train, where there is some risk of being in a fatal crash. In

these situations, death occuegher during orshortly after the initial exposure

period, ZKLFK LV WKH UHDVRQ ZK\ WKH\ DUH UHIHUUHG
additional number of fatalities per year from a given hazard(x in an exposed

population ofN (assumed constant), then the individual exposure rate is:

forO<x "Tgr
(5.1)

otherwise

This is shown schematically [lrigure 5| For delayed radiation risks, the exposures

are in terms of the annual amount of radiation dose received by an indiddxal,
measured in Sieverts per year (®a#). In order to relate the dose to the additional
numberof deaths, this is multiplied by the total dessk coefficient,cr (SV%). The

individual exposure rate for radiation is then:

for0 <x "Tr
(5.2)
otherwise
The total individual exposuré, is the integral of the exposure rate:
(5.3)
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This is the additional fatalities per person exposed to the hazard) whadso the
probability of death resulting from the exposure. The fraction of all fatalities caused
by the exposure in the intervalo x + dx will then beb(x)dx/by:, implying that the

probability density for causing death from exposure wiljpe, given by:

(5.4)

5.3 Responses

$V ZDV GLVFXVVHG DERYH ULVNV FDQ EH WKRXJKW RI
The response is the period of time over which excess mortality is assumed to occur
following an exposure, expressed a probability density function. Suppose that

fu(y)dy is the probability that the excess mortality resulting from the exposure occurs

between timey andy + dy. The variabley is the time that has elapsed between the

time of inductionx, and the cuent time, 2so thaty = 2+x. This is shown ifFigure

EI The probability that both an exposure occurs between tmex + dx, and an

excess mortality is observed between timmasady + dy, will be:
(5.5)
But dedh at time 2could have resulted from exposure over the preceding possible

times, x. The total probability density for death at timgfr( 2, resulting from
exposure from any time, is the integra|(5f5 from the starof the exposure to the

current time, 2

(5.6)

5.4 Increase in Hazard Rate +Absolute and Relative Models

An individual who is exposed to some hazard will experience an increased

probability of death. This is modelled mathemadlycay perturbing the hazard rate,
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h(a), for an individual of aga&. The perturbation can be modelled in two ways: by
XVLQJ DQ 3DEVROXWH ULVN" PRGHO RU E\ XVLQJ D 33U
risk model, the additional hazard rate is independéit WKH LQGLYLGXDOTV
probability of death, whilst in a relative risk model the additional hazard rate is

proportional to the initial hazard rate.

The probability density given if5.6) is based on the assumptidhat excess

mortality is certain to occur. In an absolute risk model, the probability density that an
individual will die at time 2as a direct result of the exposure, is the product of the
probability of death from the exposui®s, and the probabilitgensity for death at
time 2f1( 2 This is then the additional hazard rate faced by the individual. If the
individual is ageda at the start of the exposure, then af@ears his age will be

t = a + 2 The additional hazard rate faced by anvidiial of aget, given initial

exposure at age is denoted/ K{t|la), where:

(5.7)

In a relative risk model, the increase in the hazardfaated by an individual of age

t, given initial exposure at age /he(tla), is proportional to the hazard raué).

Since the hazard rate is the probability density of immediate death, this parameter
replaces the excess mortality probability density functiQfy). However, it is still
necessary to retain some waynoddelling the distribution of the excess mortalities.
This is done by introducing the functioi(y), which plays a similar role t(y),

except that it is not a probability distribution. It is also dimensionless, which is

required for consistency. Theaviunctions are related to each other by:

(5.8)



The integral in the denominator can thus be thought of as the number of effective

mortality years experienced following an exposure. The perturbed hazard rate is
then:

(5.9)

5.5 Increase in Cumulative Hazard Rate

Following a perturbation in the hazard rate, the cumulative hazardVéjeyill be
increased to:

(5.10)

where the lower bound dhe second integral has been changed om0 tou = a,
as the change in the hazard rate only occurs at ages equal to or greater than the
present aga. This means that:

(5.11)

where /: (t|a) is the increase in the cumulative hazeate at agd, following an
exposure at aga, and / K) refers to either the absolute or relative change in hazard

rate, depending on the risk model used.

5.6 Decrease in Life Expectancy

From equation$4.12)and(4.26) the life expectancy can be written as:

(5.12)



Following a perturbation in the hazard rate, the life expectancy decreases by an

amount:

(5.13)

So that:

(5.14)

For small changes in the cumulative hazard rate, the exponential term can be

approximated, using’e§ #x. The change in life expectancy at age then:

(5.15)

5.7 Decrease in Average Life Expectancy

The change in average life expectancy following a hazard rate perturbation can then
be calculated by averaging the change ge-dependent life expectancy over the

required population distribution:

(5.16)

where the population age distributions are determined for the general public and the

workforce, as described in sectidry.

Thus, in order to calculatthe change in average légpectancy all thas required is
knowledge of the distribution of the exposure rdt€), and of the mortality
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response distributiorfy(y). Some simple, limiting distributions of these functions
will now be explored, and ¢ corresponding change in life expectancy will be

calculated.

5.8 Limiting Exposure and Response Distributions

Although equationg5.7)[to|(5.16) allow for the calculation of thehange in life

expectancy following a hazard perturbation, it is instructive to investigate some of
the limiting distributions of the exposure and response functions, and the consequent
behaviour of the perturbed hazard rate and associated functions.infibiegl
distributions are when the exposures and responses are either very short or

indefinitely long, and maintained at a constant level throughout. There are therefore

four limiting distributions which may be investigated. These are shoyiralite 2

which lists the exposure distribution, the excess mortality distribution, the change in
hazard rate, and the change in cumulative hazard rate for absolute and relative risk
models. One result of note is that the change in hazarforadeshort exposure and

long response is the same as for a long exposure with a short response in the relative

risk model. The change in cumulative hazard rate and thus change in life expectancy

will therefore also be the same. For the absolute risk mtigeshort exposure/long

response hazard perturbation is only different from the long exposure/short response
KD]DUG SHUWXUEDWLRQ E\ D VFDOLQJ IDFWRU ZKL
response lasts for following a single exposure.

Once the cumative hazard rates are calculated for the limiting exposures, the

associated change in life expectancy and average life expectancy can be calculated,

using equatiorjss.15)and(5.16) However, some of these limiting distributions may

be developed further to give a simple expression for the changes in life expectancy.

These will now be shown.

Firstly, the shortest hazard rate perturbation will arise when there is a point exposure
atx = 0, with an immediate response, with no delayed component. This will occur,
for example, following an explosion, which lasts for a short period of time, and will
only cause fatalities at that instant. Although in reality any event must have a finite

duration, for the purposes of modelling, the exposure can be modelled as only
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occurring at a single point. The exposure distribution and the response distribution

are therefore defined only at a single point, as givefahle 2| These will be

repeated below, for clarity:

forx=0
(5.17)
otherwise

and:

fory=0
(5.18)
otherwise

so that, for the absolute risk model:

(5.19)
fort=a

otherwise

For the relative risk model, the dimensionldg(y) function is used instead &fi(y):

fort=a (5.20)

otherwise

The change in the cumulative hazard rate is:

fort «a (5.21)

for the absolute risk model, and:



fort ea (5.22)

for the relative risk model. The change in life expectancy is then:

(5.23)

for absolute risks. This means the change in life expegtandirectly proportional
to the initial life expectancy, with the constant of proportionality equal to the excess
mortality rate. For relative risks, the change in life expectancy is given by:

(5.24)

The change in average life expatcy in the absolute risk model is then:

(5.25)
For relative risks, the change in average life expectancy is:

(5.26)
This can be further developed by noting that:

(5.27)

the order of intedition can then be reversed to give:



(5.28)

the integral in equatid(b.26)thus emerges as the populatewveraged cumulative

hazard rate. This can be developed still further, by noting that:

(5.29)

whereH is known as the population entropy, as defined by Ke{#85)[126]| The

change in life expectancy is then:

(5.30)

Although the developments efquation$(5.20)to|(5.30)are only strictly true for

exposures to the general population, it is also possible to define related measures for
exposures to the working population, evl instead of having an integral with
bounds from zero to infinity; the bounds will be the age at recruitment and the age of
retirement. The two measures will be similar, however, and so the above will usually
be a satisfactory approximation for the waoikipopulation as well. Thus, for the

simple limiting distribution of a point exposure with immediate response, the change

in average life expectancy is given by the simple equal{6ri&5) and|(5.30

although these only apply to small exposure rates, so that the linear approximation

used irf(5.15 will be valid. For larger exposure rates, the more accurate exponential

version in(5.14)should be used. Doing so would not present any difficulties, but

would not result in the simple formulas just presented.



In the absolute risk model, the other limiting exposures may also be developed
further into simple expressis. As has already been discussed, the hazard rate
perturbation following a short exposure with long response will be equal up to a
scaling factor to the perturbation following a long exposure with a short response.

Table2|givesthe change in cumulative hazard rate as:

(5.31)

ZKLFK LV D JHQHUDOLVHG YHUVLRQ RI WKH WZR OLPL'
the length of duration of the response following a single exposure. For a short

exposure withaprdR QJHG GXUDWLRQ D YDOXH RI ZRXOG
IRU D SURORQJHG H[SRVXUH ZLWK D VKRUW UHVSRQVH

resulting change in life expectancy is:

(5.32)

The change in average life expectancy is then:

(5.33)

Reversing the order of integration gives:
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(5.34)

wheret?,, is the meassquare ageThus in the limiting case when either there is a
short exposure with long response duration, or a long exposure with a short response
duration, the change in average life expectancy is directly proportional to the mean

square age of the population, @andhe exposure rate.

A similar, related expression for the change in life expectancy following a prolonged

exposure to a hazard that has a long response duration may also be derived for the

absolute risk modgTable2|gives theincrease in the cumulative hazard rate for such

an exposure as:

(5.35)

The associated change in life expectancy is:

(5.36)

The change in average life expectancy is:
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(5.37)

Reversing the oeet of integration gives:

(5.38)

wheret®,, is the mearcube ageThus in the limiting case when there is a prolonged
exposure with long response duration, which represents the maximum limiting case,
the change in average life expeutq is directly proportional to the meanbe age

of the population, and to the exposure rate.

Although the change in life expectancy can be calculated for the relative risk model

from equationg5.15)and(5.16) and from the change in the cumulative hazard rate

given inTable2[for these limiting distributions, there are no such simple expressions

for the change in average life expectancy as there atbdabsolute risk model. It

is also worth noting that the above equations have been developed under the
assumption that the exposed population is the general population. When the working
population is considered, the equations will not be valid as thgratien limits will

need modifying. Also, prolonged exposures experienced whilst at work will only be
felt until the age of retirement at the latest. This means that the change in cumulative
hazard rate would need to be modified accordingly.



5.9 Modelling the Effects of Radiation and Pollution
The general framework for estimating changes in life expectancy laid out above may

now be used to model more specific risks, namely, those from exposures to radiation

and pollution.

The effects of exposure to liation are modelled by following the treatment of Lord
Marshall et a1982)[134]| and Thomas et #2006 +07)|[118]|{[184]||[185]f These
treatments recognise the fact that, following an exposure to radiation there is a

substantial period in which no effects are seen. After this there are stochastic effects
for a long duration in which increased mortality will resulthaligh these stochastic
effects will eventually die out. This effect can be modelled by assuming that the
additional fatalities occur between timé&s and & after exposure, where reasonable
values are& = 10 years and& = 40 years. It is also assumed ttltlae excess
mortality period is uniform between these years. All previous treatments have
assumed that the effects of radiation follow the absolute risk framework, and this is
also assumed by the International Commission on Radiological Protection (ICRP),
who recommends internationally recognised radiation risk values which are used in

setting safety levels worldwide. The excess mortality distribution is therefore given

by:

for & "y< &
(5.39)

otherwise

where = & * & is the duration of the latent stochastic effects following a single
exposure, which will be taken as 30 years. This distribution may also be modelled

more conveniently using step or jump functiodi$x), given as:

forx e
(5.40)
forx<0

The mortality distribution is then given by:
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(5.41)

It may be observed from equatj(;8)that:

(5.42)

as:

(5.43)

Thus the effects of a short exposure to radiation are modelled as having no effect for

ten years, before increasinuprtality risk for a thirty year period, whence all effects

die out. This distribution is shown|Figure7

As has been discussed above, exposures to radiation are expressed in terms of the
annual amount of radiation dose rewmel by an individual, which is measured in
Sieverts per year (Swegf'). Radiation doses are related to the additional number of
deaths by multiplying the annual dose by the ehisle coefficient,cr (Sv'). The
doserisk coefficient is determined from éh2007 ICRP recommendati@
ZKR UHFRPPHQG D SGHWULPHQW DGMXVWHG" OLIHWLP
for the general population, and 0.041'Ser those of working age. These detriment

adjusted figuresniclude norfatal effects of radiation. However, in life expectancy
calculations, the required risk coefficient must only refer to fatal effects, and so the
above figures are inappropriate. Although the required figures are not given
explicitly by the ICRPthey can be calculated from data they present, which is 0.041
Sv'* for the general population, and 0.082* for the working population. However,

if these figures were applied to the change in life expectancy calculations, they
would underestimate thetaal loss of life expectancy experienced by individuals in
the population. This is because not all individuals would experience the full effect of
the delayed risk, as they may die before the effects have occurred. In order to

accommodate for those who dot experience the full risk, the ICRP nominal risk
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figure needs to be adjusted upwards. The method for doing this is given in Thomas

and Jong§l87]| who show that the ICRP risk coefficients need to be multiplied by a

compensating factor. Using the latest data, the compensating factor is given as 1.43
for the general population and 1.32 for the working population. The appropriate dose
risk coefficient,cr, is then the product of the ICRP figure and the compensating

factor,for both the general and the working population. This is:

for the general population
(5.44)
for the working population

It has been assumed in the above discussion that the working population is entirely
composed of males. If the workforce is assumed to be composed of equal amounts of
men and women, then the compensating factor is decreased to 1&7ianeduced

to 0.041. For a working population entirely composed of femdies;ampensating

factor 5 1.23 and the risk coefficient is 0.039. These values are shpvabie3

The exposure rate(x), is given by:

(5.45)

whered,(X) is the annual dose received (:a§'). One further issue which needs

nating is that the ICRP also recommend that if any individual were to be exposed to
SDUWLFXODUO\ KLJK GRVHV RU KLJK GRVH UDWHV Wk
IDFWRU” "'5() VKRXOG EH DSSOLHG WR WKH ULVN HYV
for DDREF is 2. It is assumed that this applies to doses greater than 100 mSv.
Therefore, the exposure rate is more accurately given as:

ford, ”

(5.46)
ford, > 0.1

However,the event ofan individual receiving a dose of this magnitude would be

exceedingly rare in normal circumstances, and so this effect will not be considered in



the rest of this section, but witle considered at a later stage when assessing the

impacts of a large nuclear accident.

For a uniform exposure to a radiation dosedoS6ieverts lasting foifr years, the
exposure rate is given as:

(5.47)

The hazard rate increasetli&n equal to:

(5.48)

wherekgg=¢r LV WKH ULVN FRHIILFLHQW SHU \HDU DOVR

coefficient. It can be seen that any valueg ofTr will not contribute to the integral.

This means thgb.48)can be rewritten as:

(5.49)

The variable of integration can now be changed. Put:

(5.50)

Hence:
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(5.51)

where %(t *a) is the prolonged hazard perturbation pattern, following the notation
of Thomas eal|[118][|[184]}|[185]} This can be written out in full as:

(5.52)

The perturbed hazard rate can then be usatketermine the perturbed cumulative
hazard rate, and consequently the change in life expectancy and average life
expectancy using the equations shown above. The perturbed cumulative hazard rate

is:

(5.53)
Proceeding again by changithe variable of integration, by putting:
(5.54)
so that:
(5.55)



where %t xa) is the integrated prolonged hazard rate pattegain following the

notation of Thomas e&tl. This can bevritten out in full as:

(5.56)
The change in life expectancy, by equ%ﬁdS is then:

(5.57)
and the change in average life expectascy i

(5.58)
for the general population, this can be developed as:

(5.59)
reversing the order of integration gives:

(5.60)



The variable of integration can be changed, tyipg:

(5.61)

Hence:

(5.62)

where %(t) is the twiceintegrated prolonged hazard rate pattern, which can be

written out in full as:

(5.63)

the average change in life expectancy is thus:

(5.64)

The integral can be readily evaluated using life table data, and by sé&itmdlL0

years and& = 40 years, for any given exposure duratign Although the above
equation only applies to the general population, an equivaleatlaabn could
readily be made for the working population from equ@
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The effects of pollution can be modelled in a similar manner to those of radiation. It
has long been recognised that inhalation of pailstaan increase mortality. Most of

the data used for modelling pollution effects have been based on the 2009
Committee on the Medical Effects of Air Pollutants (COMEAP) recommendations

[39]] The main difference between paion risks and radiological risks are that

pollution risks are presented as relative risks, in contrast to the absolute risk model of

radiation effects.

The COMEAP report discusses the fact that pollution has been observed to cause
immediate effects,ra so it is assumed that there is no incubation period. The report
did not discuss the duration of time for which these effects are observed, and so to
estimate this, data regarding the effects of cigarette smajunich results in

exposures to similar kds of pollutantsyvere usedseeKawachi et al (1993)122]

and Kenfield et al (2008)[125]| The studies have found that, upon cessation of

smoking, risks begin decreasing immediatelthaugh it can take over twenty years

for the risks to return to those that have never smoked. However, the authors note
that other studies have found evidence supporting both much shorter and much
longer time periods than this. The studies also finddhat 75% of the risk decrease
occurred before the T5/ear of cessation. It was therefore decided to use 15 years as
the time taken for stochastic effects of a short exposure to pollution to die out. As for
radiation risks, a rectangular excess mortdiityction will be used to model the
distribution. Although such a rectangular function will overestimate the risks as they
decrease up to the I5ear, the function will also underestimate the excess risks
which still remain after the f5year. These twdeatures will tend to cancel each
other out, so that on average, the rectangular function does not lose too much
accuracy. However, a better model would be to fit a parametric curve to the observed
data, which would be a linear or exponential decline. &liesues remain for further
work. As the relative risk framework is being used, the excess mortality distribution

is given by the dimensionleds(y) function:

(5.65)
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where in this case& =15 years (and& = 0 years, so thal,(y + &) = 1 for ally).

This distribution is shown |n

Figure8

The COMEAP report also recommattithat the best indicator for pollution effects

was exposure to PM2.5 particulate matter (particles with diameter less than or equal

W R P DQG WKDW H[SRVXUH WR RWKHU ODUJHU
pollutants such nitrogen dioxide, carboomoxide and ozone are not associated with
significantly increased mortality when the effect of PM2.5 is accounted for. The
report finds evidence suggesting that sulphur dioxide does increase mortality, but
decides against recommending quantification oedireffects of this pollutant,

noting that there were difficulties in separating the effects of particulate matter and
sulphur dioxide exposure. Thus, the hazard rate perturbation for pollution is
expressed in terms of exposures to increases in the coatomntof PM2.5

particulate matter, which is measured in units of midroDPV SHU FXELF PHW.
m®). The exposure rate(x) is then given by:

(5.66)

where koo is the exposurJ LVN FRHIILFLHQWR BndS RDIOKAW LR Q 4
LQFUHDVH LQ F R Q)rads0adistecDmthiRItant knitssions at tim&he

&20($3 UHSRUWYV PDLQ UHFRPPHQGDWLRQ LV WKDW
LQFUHDVH LQ 30 F R Q FAv@IWeJsBoWThdRrElative risk isirefated

to the exposure risk coefficient by:

(5.67)

see, for examplf166] 6LQFH D FRQFHQWUDW1iea@s to@Rtve DVH R
risk increase of 6%, theRR = 1.06 when/F J P The exposure sk

coefficient can thus be determined as:

J'm? (5.68)
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The 95% confidence limits for the relative risk are given in the COMEAP report as
2% to 11%, meaning that the 95% confidence limits for the pollution expdskre
coefficient ae (2.0 +10.4) x10° J'm°. It is also worth mentioning that this risk
coefficient does not need adjusting in the manner described for radiation risks above,

as the coefficient does not express the lifetime at risk as the radiation coefficients do.

For auniform exposure to a pollution concentration bf( J B) lasting for Tr

years, the exposure rate is given as:

(5.69)

the hazard rate perturbation is then:

(5.70)

This can be developed in a similar manneioasadiation exposures above, to give:

(5.71)

where %(t *a) is as given above, except withh set equal to zero. Writing out in
full:

(5.72)

The hazard rate perturbation can then be used to calculate thasendre the
cumulative hazard rate, and hence the change in life expectancy and change in
average life expectancy. However, because of the presence of the hazh( nate

the calculations, there does not exist any simple solutions involving the ietkégrat
hazard rate patterng4(t) and %(t).
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Estimating the increase in concentratidif; presents some difficulties, as thistum

is not usually published. However, data will normally be available for the emission
rate of the pollutant. In order to determine concentrati@nease from emission
rates, it is necessary to model the dispersion mechanisms of the plume of pollution.
The ExternE project has employed some sophisticated models in order to determine

concentration increases, and the impacts on the popL[zif@nlt has been noted

that it is possible to simplify the calculations considerably with a simple model

which nevertheless gives good approximations to the more complex model. This
model was developed by Rabl et(2005)[80]] DQG LV NQRZQ DV WKH 3XQ
PRGHO" ,Q WKLV PRGHO WKH FROOHFWLYH LQFUHD\
emission rat&  J Y via the following equation:

(5.73)

In which !is the populatin density of the area over which the pollution is dispersed,

and is taken as 80 peoplé’nwhich is the value for central Europe, including both

land and sgf80]| The parameteris the deposition velocity of pollutiomd is taken
as 0.0027 miSfor PM2.9[178]

As equatio(5.73)gives the collective increase in concentration experienced by the

entire population affected, the resulting calculatiolh give the collective change in
average life expectancy. The collective change in average life expectancy is equal to
N/; and so, for the purposes of determiningalues, an estimation of the actual
number of exposed people is not required. One fugbgnt is that strictly speaking,

the change in life expectancy calculation should be performed using European
mortality rates. However, this has not been done here, as only UK data was used.
Using UK mortality rates will, nevertheless, give conservateselts, as the UK has

lower mortality rates than the rest of Europe taken as a WRo&}| so that the life

expectancy is higher. Changes in life expectancy are broadly proportional to the

initial life expectancy, for exaple, see equatig{d.25) Consequently the calculated

change in life expectancy for widely circulated PM2.5 emissions will be an
overestimate of the more accurate figure that would be determined if European

mortality qatistics were used.
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5.10 Accounting for those Entering and Leaving the Population during

a Prolonged Exposure

The above analysis of the change in life expectancy following a prolonged exposure
has, up until now, been assuming that those exposed twattzed are alive at the

start of the exposure. A more accurate calculation would account for members who
enter and leave the population during a prolonged exposure. For the general public,
only those entering the population by being born in the midsh ekposure need to

be accounted for. Members of the public who might not experience the full
prolonged exposure because of death are already accounted for in the method laid
out above. For the working population, individuals may enter the population kthroug
recruitment, and may leave through retirement. There may be other processes by
which people enter and leave the exposed population, such as relocation, redundancy
or through injury, but these including these processes would require a more

sophisticatedraalysis than is warranted here.

The methods for calculating the effects of exposure to members of the public born
during a prolonged exposure, and to members of the workforce who are recruited

and who retire during a prolonged exposure, are given by Thetal(2009)[186]

[185](and Jones et §2007][118]| These methods will be briefly outlined below.

Members of the public who are born immediatelieathe start of the prolonged
exposure which lasts fofg years will be subject to an exposure that lastsTfor
years. If it is assumed that the exposure rate is constant, and if the response is
modelled with a step function, as was done for radiatiah @ollution, then the
increase in hazard rate will be proportional to the prolonged hazard perturbation

pattern:

(5.74)

where %(2) is given by:
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(5.75)

see equatio|t05.51 The dependence on the exposure tifaean be made explicit

by writing . The member born immediately after the start of the prolonged

exposure will have age= 0. The hazard rate perturbation will then be proportional
to:

(5.76)

If the other factors, such as exposure rate and whether the hazard follows the
absolute or relative risk model, are known, then the hazard rate perturbation at future
aget for an individual of initial age zero can be determined. Thistlcan be used to
determine the cumulative hazard rate and hence the change in life expectancy at age

zero.
An individual borni years after the exposure will not experience the full prolonged

exposure. Instead, he well experierige i years of the expose. His initial age

will still be zero, and so his hazard rate perturbation can be modelled as:

(5.77)

where the dependence of the hazard rate perturbation on the number of years since

the initial exposurd, has been made explicind where, for clarity:

(5.78)

The hazard rate perturbation will then lead to a change in life expectancy at age zero
of , Where again, the dependendsas been made explicit. Individuals born

LQ WKH UIDQIg ®ill cdntinue to experience the prolonged hazard, but an

individual bornTg years or more after the exposure will face no exposure. Under the
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assumption of a steady state population, the number of individuals being born each
year is constant. The aege loss of life expectancy for all members still to be born,

which will be denoted a$ ;pom, Will then be:

(5.79)

The total number of individual$y,, who will be born in the period of the exposure,

Tr, is simply the product of the steady state biette,n(0), given by equatig.58
andTg:

(5.80)

The total population that experiences the exposure will be the sum of the existing

population and those born during the time of exposure:

(5.81)

The average loss of life expectancy for tgisup of people, which will be denoted
as / ;a1 will then be the weighted average of the loss of life expectancy of those

already alive during the exposure and those who will be born during it:

(5.82)

Modelling the recruitment and retirement of a working population can be itoa

similar manner. For example, the recruitment process can be seen as being similar to
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the birth process, but the initial age will bg, i.e. about 20, rather than zero for

those born, so they will have a hazard rate perturbation of:

(5.83)

which can then be used to calculate the change in life expectancy, , aslong

as the exposure rate, and whether the hazard is an absolute or a relatiygeriske

known. The change in average life expectancy is:

(5.84)

The retirement process does pose some additional complications, in that individuals
need to be partitioned according to the amount of time they will be exposed to the
prolonged hazard, with individuals who are about to retire geaone of the
prolonged hazard, whilst those workers who are belowaagetTr, whereay is

about 60, will experience the full exposure. Puttagg as the maximum age an

employee can have and still see the full exposure:

(5.85)

The hazard rate perturbation for an individual aggd+ i at the start of the

prolonged exposure will be:

(5.86)

which can be used to calculate the change in life expectancy, , and the

average change in life expgancy of those retiring will be:
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(5.87)

Finally, the group of workers in the age rarsge ” D ‘v, Who experience the full

prolonged exposure will have a hazard rate perturbation of:

(5.88)

for 0 " L (aw tawed). This can then be used to calculate the change in life

expectancy, . The average chaagn life expectancy of this group will

be:

(5.89)

The average change in life expectancy for the entire workforce experiences

some of the prolonged perturbation will be the weighted average:

(5.90)

5.11 The Effect of Discounting on the Hazard Rate Perturbations

It was shown in sectiod.7 that the effect of discounting was to modify the hazard
rate to:

(5.91)

wherer is the discount rate. This discounted hazard rate thewsathe discounted

cumulative hazard rate, discounted survival probability, discounted life expectancy,
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and discounted average life expectancy to be determined from the associated
calculations. In the absolute risk model, the perturbed hazard rate pemuat of

the initial hazard rate, and so discounting has no effect:

(5.92)

The associated change in the cumulative hazard rate will also be unaffected by the

discount rate. The change in life expectancy will be:

(5.93)

which is dependent on the discount rate. The discounted average change in life
expectancy is then calculated in the usual manner. For the relative risk model, the

discounted hazard rate perturbation is:

(5.94)

The associatedhange in the cumulative hazard rate will also be dependent on the

discount rate:

(5.95)

which can then be used to calculdtg(a) and / ;4, in the same manner as discussed

above.
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Figure 5 Exposure rateh(x), over timex.

fm(y)

Figure 6 Probability density for the mortality periog,
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Figure 7 The excess mortality probability distribution for radiatioduced cancer.
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Figure 8 The excess mortality distribution for pollutiémduced mortality.
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Exposure | Response |b(x) fm(y)/ ! Kpdt|a)/ /: (ta)
Type Type ! Ka(t|a) (abs/rel)
Short Short =laty=0 = b/ bh(t) fort = | =b/ bh(a) fort
= 0 otherwise| a ca
=bforx=0 = 0 otherwise
Short Long =0 otherwisgf /1 =b /bh(t) =bt-a /
IRUY ” fort ea b(W(t)- W(a))
fort ea
Long Short =laty=0 =b/ bh(t) fort « | =b(t-a)/
= 0 otherwise| a b(W(t)- W(a))
=bforx e fort -a
Long Long n =b Yt-a)/ =b  Yt-a)¥
IRUYy " bh(t)(t-a) b lefu)(u-a)du)
fort «a fort ea

Table 2 Hazard rate perturbations for limiting exposure and responsdigins, assumed to be
uniform over the specified period KH SDUDPHWHU LV WKH OHQJWK RI WLPH ZKI
UHVSRQVH ODVWYV IRU )RU D ORQJ UHVSRQVH ODVWLQJ IRU WKH |
~ 100 years would be appropsaat

Population Type Compensating Factor DosleRisk Coefficient, ct
(SV)

General Population 1.43 0.058

Working Population, 1.32 0.042

100% Males

Working Population, 50:5/1.27 0.041

Gender Split

Working Population, 1.23 0.039

100% Females

Table 3 Values of the compensating factor and dadsk coefficient for different populations, using
latest data.
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Chapter 6 Fundamental Relationships for the Calculation of
Work -Life Expectancy and the WorkTime Fraction

6.1 Characterising Working Time Behaviour

The preceding two sections described the technical details required for calculating
the average length of time remaining for a population, knowledge of which is
required in the-Yalue framework. It is also necessary to caleuthe average length

of workingtime remaining for a population. This is needed to determine the average
work-time fraction,wp, which is required for the calculation of the risk aversion
coefficient in the J/alue, agiscussedn section3.2. The average workime fraction

is the average fraction of time the population will spend in work from now on.
Related to this parameter is its complement, the average free time fraction,
fo = 1 +wp. This section describes the methodologydalculating these parameters,
which are related to the life expectancy calculationshapter4. Indeed, it is shown

that the average life expectancy is required to calcugieAlso needed is the
average workife expectancy, which is the polation average length of working

time remaining.

6.2 The Work-Time Fraction

Consider an individual of aga in a population with age probability distribution
p@ 7KH LQGLYLGXD O TXaPThiglis thpkpEdtedv@lka ok s life to
comefrom now on. If the individual expects to work fgg(a) years from now on,
which will be termed the workfe expectancy, then his average free time remaining

from now onF(a), will be:

(6.1)

Averaging over the entire populatioivgs the average free time remainitkg,in

terms of the average life expectancy and the averagelf@expectancyy,:
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(6.2)

which may also be expressed as:
(6.3)

Comparing this equation Wi@.l it is clear that the average wetikne fraction in

the populationw, is given by:

(6.4)

In section3.2 it was explained how the wetkne fraction relates to the elasticity
parameterg, which is usedo describe the tradeffs that are made in maximising

the life TXDOLW\ LQGH|[ ,W ZDV DVVXPHG WKDW RQ DYH
working will be such that the traddf between income and free time is opted

for life-quality. This then allowedhe optimal worktime fraction,wp, to be defined,

which was assumed to be equal to the average-timaekfraction for the population,

so thatwg = w.

In order to calculatew, the average workfe expectancy needs to be estimated. The

method for doinghis will now be presented.

6.3 Work-Life Expectancy
It will be assumed that both the population and the job market are in a steady state.
The probability psw(tja), of the average individual of agebeing in work at a future
aget, is the probability hat he will have survived to that ad&t|a), multiplied by
the probabilitythat a person of agg,is in work,pu(t):

-115



(6.5)

If the average person of ageworks for a fraction of the time,(t), when in work,
then the fractiorf time, z\(t|a), someone of agecan expect to be working at future

aget, is:

(6.6)

Thus the amoundf time that such a person can expect to work between tages
t + dt will be z,(t|Ja) / Wand the total time that someone of age;an expect to work
from now on,y.(a), may be found by integrating from the current age over all

possible future ages to the end of life:

(6.7)

In the simplest case, the probability tleaperson of ageis in work, py(t), and the
fraction of the time the average person of that age spends in gydtk,may be

regardechs uniform over the working age, and zero outside it:

(6.8)

and:

(6.9)

wheret,. is the starting age for work, whitg; is the retirement age, so that
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(6.10)

Substituting from equatic{(ﬁ.lo into equatiof(6.7)gives:

(6.11)

The assumption of a uniformly distribution for the employment probabpiit),

and hours of workg,(t), is somewhat simplistic. The sensitivity of the wirke
parameters to the type of distribution is assessexhapter9, where the uniform
distribution is compared to observed data for the UK, which appears more normally
distributed.

When using the more general equal{én/) the average workfe expectancy is

then given by:

(6.12)

This expression can be simplified first by noting tHietm equatiof(4.60

(6.13)

The employment rate,(t), can be written as:
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(6.14)

whereny(t) is the number of people working at agjeandn(t) is the number alive at

aget. The fraction of time spent working is:

(6.15)

whereh,(t) is the weekly hours workeat aget, and 168 is the number of hours in a

week. The average wotle expectancy is then:

(6.16)

where equatio[{4.60)hasagainbeen usedo substitutep(t)/n(t) for 1/Npo, Where

Npop iS the total population sizend whereH,(t) = ny(t)hw(t) is the total person
hours worked per week at ag&he order of integration can be reversed to give:

(6.17)

If the simple case of uniformly distributed working hours between the age of

recruitmentt.ec and he age of retirement,,, is used, then:

(6.18)
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whereHr is the total person hours worked per weekhe populationa figure which
can be readilpbtainedfrom national statistics, as will be described in more detail in
chapter8. The average workfe expectancy is then:

(6.19)

where the ratiotf: + tec) / 2 is the average working age in the populatiQn,,
underthe uniform distribution assumption.

6.4 Approximations for the Work -Time Fraction

The average workime fraction can then be estimated, from equitod) as:

(6.20)

where equatioi4. as been used. It may be noted that the geenarking age is
h io4.66)has b d. | b d that th Ki [

generally very close to the average population age. It was mentioned in ge¢tion
that the average age using 2082009 UK data was around 41.2 years. The average
age working age of a uniformly distributed working population is 4érsieTheir
ratio is thus close to unity. This means that the average-tvoekfraction may be

approximated as:
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(6.21)

The two quantities can be estimated readily from national population and labour
market statistics, as will be desxd in chapter8. In practice the more accurate

(6.20) is used in the estimation. Although the above equations are suitable for

measuringn, more insight can be gained into this parameter by ndtiaigthe ratio
H+1/168 is the total hours worked in the average week divided by the number of hours
in a week. This quantity is therefore the number of pevgeeks worked per week.

This can be scaled up by multiplying the numerator and denominator burtiteen

of weeks in a year. The scaled up quantity is then the annual peramworked,

Npy, and so

(6.22)

The average workime fraction thus emerges as the annual per capita pgesos
worked within the population. This is efteely the procedure advocated by Pandey
et al(2006)[158]
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Chapter 7 The Value of Life and Life-Years

7.1 The Value of Delaying a Fatality

The methods for using thevalue framework to derive more commonly used
valuations of human life will now be presented. The starting point is deriving the
value of delaying an immediate fatality by some nominal amount. The maximum

reasonable value to spend on increasing life expectancy is given by edBeﬁ@

This would be such that thevalue was unity. This can be generalised to other
situations inwhicll « E\ PXOWLBO\LQJ E\

(7.1)
The value, , of delaying an imminent threat of dedtyrxy discounted years
is found by integratinE?.l) from to , Where indicates the fact
that death is imminent but has not actuallygeped
(7.2)

If only one individual is concerned, théh= 1 in equatiof(7.2) and using the

notation , then:

(7.3)
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The integral in eqation|(7.3) has no closed form solution, but can be evaluated

numerically. In order to retain accuracy, the integral is expressed as a series sum,

which is much easier to evaluate. This is done by first making the eempdst:

(7.4)
so that:

(7.5)
The Taylor series expansion fof is:

(7.6)
so that:

(7.7)
and:

(7.8)
The integral therefore becomes:

(7.9)
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As the integral of a sum is equal to the sum of an integral, equ@i®jcan be

written as:

(7.10)

substituting intg(7.5

(7.11)

which can be readily evaluated numerically. The sum converges to the correct
solution very rapidly. After two terms, the error is about 2%, and after three terms,
the error is about 0.3%, for typical values@andxy. Even for high valuesf rq and

Xq, the error is still less than 1% after three terms.

7.2 The Value of Temporarily Preventing a Fatality, VTPF

The above analysis of the value of delaying a fatalitydoyears may be extended to

the case where the immediate threat to isfeompletely eliminated, returning the

individual back to his initial state. The more common term for this value is the VPF

tthe value of preventing a fatality. However, this phrase is a circumlocution, as it is
impossible to prevent a fatalityall individuals will eventually die. Hence the phrase
DGRSWHG KHUH LV WKH 3YDOXH RI VWHPFPBRWIRZNLO\ SUF

acknowledges this problem.

The maximum number of years an individual can gain from having an immediate
threat to his life remad is his initial discounted life expectancy in the absence of

the threat. If the age of the individual is known, then this maximum value is thus
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Xq(a). If the age of the individual is unknown, then the average discounted life
expectancy,Xq, Will be the lest estimate of the number of years gained from
temporarily preventing the fatality. Thus the VTPF may be writteN§X(a)), or

more simplyVp(a), for when age is known, where:

(7.12)

or when the age is unknown:

(7.13)

The VTPF when age is unknown may be used as an indicator of the population
averaged VTPF. Another way of averaging would be to integrate theepgmdent
VTPF over the population distribution:

(7.14)

when the discount raie zero, these two methods of averaging are identicak.qFor
0, the values are still close, with the agdependent VTPF being slightly higher.

7.3 The Value of a Discounted LifeYear, VODLY

The value of a discounted life yeag(xy), is the amounthat should be paid to
extend life by one year. This is equal to the difference in the value of a delayed
fatality between a delay of + 1 years andy years:

(7.15)
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So that:

(7.16)

The integral may be evalteal by noting that it can be developed as a sum, following
the same method as was shown in sectidn except with the limits of integration

changed. This means the sum will be altered to:

(7.17)

Sincery/Z = 1/xg will typically be small, the bracketed term may be approximated as:

(7.18)

substituting back in1()7.17 gives:

(7.19)

Comparinglx7.19) with|(7.7) it is apparent that:
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(7.20)

and so the VODLY is:

(7.21)

The VODLY is thus dependent upon the length of the achieved delay, but only at
high discount rates and large delays. For loscalunt rates or delays, the VODLY is
approximately constant.

7.4 An Alternative Model of the VODLY, the VODLYA
An alternative characterisation tife VODLY, which will be calledthe VODLYA,

would be the average value ofiscountedife-year,v,,, acheved by returning the
individual to his or her normal life expectanchhis is simply equal to the ratio of
the VTPF to the initial life expectancy of an individug{a):

(7.22)

or, when age is not known:

(7.23)

By comparing the above equation with equat{¢nhd2)and(7.13) it can be seen
that the VODLYA is equal to the VODLY when the discount rate is zero. They are

also close for noizeo discount rates.
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7.5 The Hazard Elimination Premium, HEP
The VTPF, VODLY and VODLYAall provide a valuation fothe extersion oflife

by a certain amount of timé. is also possible tdefine a value for a givelevel of

risk reduction and it is nattal tofirst considerthe value of completely eliminatiray

givenrisk. In such a situation, an individual or a population would be exposed to

some detrimentahazardthat is causing a reduction in life expectancy. Upon
elimination of thehazard thelife expectancy is returnetd the average valder the

general publicSuch a measure thus provides a maximum reasonable amount to be
spent on completél HOLPLQDWLQJ D JLYHQ ULVN DQG LV WHU|
SUHPLXP" RU +(3

This measure hasiseful applicatios in the field of compaative risk analysisin
which differentrisk-exposing systems will produ@®sts omnan exposeghopulation
and the best systeis the one which minimisdhis cost for a given outputhe HEP
calculatesthe total improvement in life expectancy in absence of the risk, and

monetisesit to produce acommonmeasure of thicost. The HEP is given by
equatiorl\:(7.1) repeated below

(7.1)

where here the change in discounted life expectangy,is the life expectancy
gained fromcompleteelimination of the hazard The maximum reasonable HEP
occurs whenJ = 1. For a comparative risk analysis to be consistent, then the same
value ofJ should be used for each system studied. Howeliere may be various
practical constraints wherehysing differentvalues ofJ would be warranted. For
example, safety regulations may requéredisproportion factor to be incorporated
into cost considerations for certain systems. The factdraoiuld then be used for

this disproportion factor.
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The HEP is anovel concept introducdaere for use in the second part of this thesis,
in which a comparative risk analysis of UK electricity generating systems is
performed. Here the systems under scrutiny laeeentire fuel chains involved with
various methods of electricity generation, from fuel extraction to waste disposal.
These produceosts to the publi@and workersin terms of extra mortality from
pollution andradiationexposure, as well froraccidents Using the tools prented in

the preceding chapterse. those ofthe life quality index and Jdvalug which
incorporatemodels of survival and mortalitgndmodels of working time behaviour

the risks involvedwith the electricity generation systems undemparisoncan be

objectively measured’hese can then bmmbinedusingequatiovﬁ?.l) to producea

set of HEPs for each electricitygenerating system, in terms of the maximum
reasonable amount to spend on risk elimination per unit of electricity generated
which can then be used to compare the different aspects of risk posed by each

system.
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Chapter 8 Measurement of the Parameters Required for J/alue

Analysis and their Tolerances

8.1 Quantifying Parameters and their Uncertainty

The preceding sections have laid out the methods and procedures necessary for the
calculation of the parameters required in theallle model. In this section the
estimates of each of these paedensis presented. The methods for estimating the
uncertainty of the parameters is also discussed and where possible, the 95%

tolerance limits are showrSome of the work contained in this chapter has been

previously published by the author, see Kear®d(}[123]| However,the majority

is either new or is a further extension of the previous work.

The Jvalue, as given by equatif{8.61) is comprised of seven parameters. These

are also dpendent upon further parameters. Other parameters extraneous o the J
value, such as the VTPF and VODLY may also be calculated from these quantities.

Five of the severd-value parameters can be objectively measured from reliable
statistics, a dfining feature of the -Value. The only parameters which are not
objectively measured are the discount rate,and the net discount rate, The

former parameter is usually fixed so that the latter parameter is equal to either 0%

per annum or 2.5% penaum, but can also be varied to assess sensitivities, as will

EH GHVFULEHG ODWHU 7KH UHPDLQLQJ SDUBPHWHU\
GHSHQGHQW  SDUD-RIQWHSW QRGH TR Q B/H) Wiegemlanty V. 7K H
parameters are those which depemndthe specific nature of the protection system,

and so cannot be determined priori. These parameters aréhe change in

discounted life expectancy,;q; the number of individuals affected by the protection
system, N; and the actual cost of the protecticystem, . The context

independent parameters are those which are constant for each protection system, and
can be evaluated without knowledge of the protection system. Theshea@DP

per persong; the risk aversion coefficienf)the average life expectancy, and the

growth rateyy. These parameters, in turn, are dependent upon other parameters, such
as the age distributiom(a), the survival probabilityS(a), the worktime fraction,

Wp, etc. Each parameter will now be dissed in turn, and the estimate will be

presented.
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It is also important that some attempt is made to quantify the uncertainty associated
with these measurements. The uncertainty is presented in terms of the tolerance
limits. The methods for doing this Wwialso be discussed. Although many of the

parameters can be assessed for uncertainty, it is not possible to do this for each one.

In particular, those that are not used directly in twalde equation will not have

their uncertainty quantified. Importattt the uncertainty analysis is the consideration

of the propagation of uncertainty conditions, which relates the uncertainty on a
particular variable to the uncertainty of some function of that variable. These
considerations allow the tolerance limits dme tJvalue to be estimated. The
propagation of uncertainty is determined by a weighted sum of squares method. If a
function,f, is dependent updavariables, denoted &g fori =1, 2, ...k, so that:

(8.1)

and if the variance ofach of the TV G H Q R WdideknBmwhthenthe variance

off, ,is given by:

(8.2)

DQG WKH VWDQGDUG GHYLDWLRQ LV WKH VTXDUH
represents the conbution to the uncertainty when two or more variables are
correlated with each other. For example, if the variaklesmdx, are correlated with

correlation coefficient , but all other variables are independent of each other,

then thecorrelations term would be equal to:

(8.3)

Once the standard deviation has been obtained, the last remaining piece of

information required for knowledge of the tolerance limits is the distribution. As will
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be discussed, many of tiparameters have normal distributions. The 95% tolerance
limits for such distributions then lie at approximately + two standard deviations from

the mean.

8.2 Gross Domestic Product per PersorG

The Gross Domestic Product (GDP) of a country is a measigeonomic activity.
It is the value of all goods and services produced within the country over the year.

The GDP per person is the GDP divided by the total population of the country

(8.4)

In the UK, these figures are publishedhaally by the Office for National Statistics
216 LQ D SXEOLFDWLRQ HQWLWOHGNE8TheWBIHEG .LQJG
% R {M9]| Thelatestvalue ofG, as taken from the Blue Book R0 is £22,538.

In order to assess the uncertainty@nit is first necessary to estimate the standard
deviation of the estimates of the GDP and the population. These uncertainties will

then be related to the standard deviabar® by:

(8.5)

so tha

(8.6)
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where is the correlation coefficient between the populatsire and the

GDP. The valuesf the GDPandNpg, are also given in the Blue Book. For 2008
GDP was £139 trillion andNpop, was 61.8 miilon.

The uncertainty on the GDP measurement is estimated[fré4j which gives data

on the subsequent revisions in the estimates o&GEin a previous publication of

the Blue Book. It is assumed that the most up dte dralue of theSDP will be
subject to similar revisions, and that this is the major source of uncertainty on the
GDP estimate. The total revisions after the initial Blue Book publication give the
relative standardeviation, or coefficient of variatiomn the GDP as 0.1%.

The uncertainty on the population can also be estimated from data published by the
ONS. An analysis performed by the ONS of 2001 Census data showeideti®&o
confidence interval for the 2001 population estimate for England and Walkes

+0.2% of the mean estim:ﬁtb43] The relative standard deviation is then 0.2%/1.96

= 0.1%.Had data for the whole of the UK been pooled, rather than just for England
and Wales, the error would have been smahldthough this estimate was for the
2001 population, it will be assumebat the uncertainty is also applicable to the

present day population estimate.

The final estimate required to calculate equg(@s6)is the correlation coefficient

between the GDP and the population. This can be estimated from ONS time series

data|[153]| which provides the historical values of the GDP and the national

population from 188 to 2008.It is then possibledetermine how the two vary

together, and hence obtain Performing this calculation gives= 0.94:The time

series data is shown|kigure10

Using the above values in equati@b)gives the relative standard error on the GDP

per person,k/G as 003%. The estimates of the GDP and the population are made
by summing a large number of independent records, and so, by the demtral |
theorem, the uncertainty on each of the estimates will be normally distributed. Thus,
G is the ratio of two normally distributed and correlated random variables with

different means and standard deviations. The uncertainG tben follows the ratio
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distribution, seg94]| This distribution, which cannot be expressed simply, is shown

in|Figure 9| The distribution is not normatit is much more sharply peakedhd

associated distribution if the uncertainties were normally distributed is also shown in
this figure for reference. It is not known what the 95% tolerance limits are for such a
distribution, but they will be closer to the mean than for the normal distib

ZKHUH WKH OLPLWYV DUH DW DURXQG “ 1 ZKLFK

interval will be smaller.

8.3 Net Discount Rater , Discount Raterq and Growth Rate, rg

In orderto discount the life expectancy and the change in life expectancy,
necessary to evaluate tmet discount rater. The net discount rate is a linear

combination of thaliscount rate (or real rate of time preferencg)and the annual

growth ratery, as given in equatiq(8.46) The growth rate can be evaluated from

the Treasury Green BofR5]| who usery = 2% per annum. The discount rate can

then be chosen to set the net discount rate to be either 0% or 2.5% anehtbe two
discount rates usually used irvdlue analysis, although higher discount rates may
also be used. In order to get 0%, then it is necessary to sgt= (1- ) xrg =0.3%

per annum. To gat = 2.5% it is necessary to puf = 2.8% per annm. Different

values of the discount rate can also be used to assess the sensitivity of the life
expectancy and theualue to discounting. As the net discount rate is not a directly

measured quantity, it will be assumed that there is no uncertainty grathrseter.

8.4 Discounted Average Life Expectancy,Xq, and Other Related

Actuarial Parameters

The method for calculating the life expectancy and the other related variables is
presented inchapter4. The fundamental variable in these chldtons is the age
dependent hazard ratie(a). All other actuarial parameters can be calculated once
these are known. As was discussed in secigh the way the hazard rate is
determined is dependent upon whether deaths are assumed to be uniformly or
exponentially distributed over the interval &+1). Sectiond.5 discussed the current

assumption used in-vhlue calculations, which is to assume that deaths are
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exponentially distributed, so that the central rate of mortality is used for the hazard

rate. The sensitivity of the results to this assumption is assesseajiter.

The central rates of mortality for the UK population are available in the Office for
IDWLRQDO 6WDWLVW U[EABY These atdJdrdzeriletiHh t2inE Of khsle

and female mortality rates, which can then be combined using eq|(4t

Section4.5 also describes the end correction used to accoutttefanortality of the

final age group of the population.

Section4.6 details the method used to calculate the population distribytja);,
under the assumption the population is in a steady state. Again, all that is required to
calculate this distribudn are the hazard rates. This steady state population

distribution is shown iingure4 along with actually observed UK population

distribution. The effect of using the simplified distribution on the resultssessed

in Chapter 9. The probability distribution is also used in calculating other
parameters, such as the moments of the distribution. The first mattieatmean

age, was shown in sectioh7 to be equal to the average (undiscounted) life
expectancy. The value of this parameter is discussed in the next paragraph. In
sections4.8 and 5.8, it was shown how the second moment can be used in
approximating the effect of the discount rate on the average life expectancy, and also
the value of tb change in life expectancy for prolonged exposures st
responsesand vice versa The third moment was also found to be useful for
calculating the change in life expectancy for prolonged exposures and prolonged
responsesAs the population is assuméal be in a steady state, these moments are
constant over time for the population. The second moment of the distribution, which
is the mearsquare age, is equal B304 years The third moment, the meabe

age, is equal to 147,311 year®ne other pameter which can bealculatedfrom

the distribution is the population entropy, derived in equatio@ as a key

parameter in the change in life expectancy resulting from a short relative risk
expasure. For most populations, the population entropy lies between zero and unity.
Populations that have constant mortality rates over all, agethat the distribution
declines exponentiallyyill have a population entropyf unity, whilst populations in

which the majority of deaths occur within a narrow age range will have a low

entropynear zerpfor example, see the discussion by Goldman and Lord ({[38p)
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The trend is thus for populations to reduce rtreitropy as they become more
developedver time For the UK for 20072009, the population entropy wasl 3

The discounted life expectancyg(a), and discounted average life expectarXy,

are shown ifFigure 11jfor discount rates of 0% and 2.5%. Life expectancy at birth,

X4(0), is 79.6 and 34.0 years respectively. The average life expectancy is 41.2 and
22.9 years respectively. These numbers are for the general population, and assume
that there is a 50% malefhale split at all ages. For a working population distributed
uniformly between ages 20 and 60, and which is composed entirely of males,
average life expectancies are 39.5 and 23.9 years for discount rates of 0% and 2.5%

respectively.

As the discounted a&vage life expectancy is an important parameter in Wedug

equation, as given Ip§B.61) the tolerance limits will be analysed for this parameter.

This is done using the following method

Suppose and individual seleced at random from the population as a wholbe
individual will be of random ageA'. If we know the value of this random age, such
thatA" = a (which is taken to man that the age is betwearmnda+1), then we may
categorise the individual intan age categyt. The selected individual will have a
random life to come,%a), but that life to come, even though random, will be

conditioned by the fact the individuah$ agea. The relationship is defined formally
by:

(8.7)

where $is the unconditioned random life to conTée expected value(a), of the
life to come of an individual of age, is the average value of the expected life to

comefor all n(a) individuals of age in the population:

(8.8)
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However, if we do not know the age of the randomly selected individual, our best

estimate of his life to come will be the weighted, average vXluever all ages:

(8.9)

The arguments advanced for treating random life to copeansfer ondo-one to
the case of the random square of life to come, Hence the random square of life
to come, given that the individufilage is, is:

(8.10)

while the expected value of the square of idecome of an individual of age, is

given formally by

(8.11)

Then, if we do not know the age of the randomly selected individual, our best
estimate of the square of his life to come will be the weighted, average value over all

ages

(8.12)

The variance of random life to come for individuals selected at random in the

population will be , given by:
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(8.13)

which may be expanded using equatj9)and(8.12

(8.14)

But formally, the variance of random life to come, given that the person isaged,

given by

(8.15)

Moreover, it is known, by equation (DL8) of Thomas, Jones and Keal({2910)

[189] that the variance of random life to come for an individual of age,

(8.16)
where, from equation (D.15) op. cit, , is theaverage age of those above age,
a

(8.17)
Comparing equation@.15)and(8.16)shows that

(8.18)

Substituting from equatic{(8.18 into equatiof(8.14)gives
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(8.19)

This may be developed further, by noting that:

(8.20)

where equation$8.17)|(4.26)and|(4.60)have been used in the development. The

order of integration can be reversed to give:

(8.21)

wheret%,, is the mearsquare age of theopulation, as discussed above. This means
that:

(8.22)

The square of the random life to come averaged over all ages of death and over the
population is therefore equal to theeansquareageof the population It has also
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been estabdhed, via equatiq(4.66) that the average life expectancy, which is the

random life to come averaged over all ages of death and over the population (see

equatior[(4.20 , IS equalto the mean age in the population. Thus, both the first and

second moments of the distribution of the life to come averaged over all ages of
death and all ages are equal to the first and second moments of the age distribution.
In fact, this may be shown tae true for all moments, a proof of which is given in
Appendix B Thus the general result is that, under steady state conditions, the

moments of life to come are equal to the moments of life lived.

Substituting into equatic{(8.19

(8.23)

where equatio[{4.66) has been used, and where the expectation opdfpjonas

been introduced to avoid confusion. Thus the variance of the life to conageaser

over all ages is therefore equal to the variance of the age distribution.

Using latest UK datathe standard deviation for an individual picked at random,

without knowledge of the individu& agejs about 24 years.

In order to derive the variaa®f the average life expectancy for a whole population
of size Npgp, it is assumed that the age distribution of the population is unknown.

Each individual can then be treated as having a random life to come of$vethieh

has mean valuX and variance, , as given by equatiq(8.23) By the Central

Limit Theorem, for largeNpo, the average of thdlpg, random variables will be

approximately normally distributewith meanX and variance . Hence

the variance of average life expectancy for a whole population is:

(8.24)
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For the UK,var[$ = 609 year§ Dividing bythe population size of 61.8 million, the

variance of the arage life expectancy is approximately10® year$, and the

standard deviation is 0.003 yeaFor the normal distribution, the 95% tolerance
OLPLWV OLH DW * 1 ITURP WKH PHDQ 7KH WROHUL
expectancy is therefore 464 +41.177 years.

8.5 Share of Wages in the GDP

The wage share of the GDP,, which was introduced in sectid2, needs to be

estimated in order to estimate the risk aversion coeffici@ras given by equation

(3.41) The wage sharmay be determined from national statistics. In the UK, the

ONS publish this daim in many publications.Here, data from the monthly
S3(FRQRPLF /IDER XU O[RR0ONAHIWe 6dddMheZ éstimating, there

exists a problem of defining exactly what constitutes wages. Most national accounts
XVH WK donwdnsatonrfoEPSOR\HHYVY" WR UHIHU WR ZDJHV SDL
employees. The ONS defined Bmpensation ofemployees DV \AT&t&l

remuneration pgable to employees in cash or in kind. Includes the value of social

contributions payable by the employgt49]| The main drawback of this definition

is that t neglects the income of the self employed,jolthin some countriesan

represent a large fraction of the GDP.

It will be recalled that the wage share was defined in se8trequatiof{3.10)in a
3SSURGXFWLRQ IXQFWLRQ" D IXQFWDR®YRVWKDRI SHE®GWF

to the output produced. In this case, the factors of production were labour and

capital, and the output was the Gross Domestic Product. The production function
defined in equatiof(3.10ywas of aVSHFLDO W\SH NQRRXQJIM®DINVD 3&|

production function, in which the two factors of production are exponentially

weighted and formed into a produétconsequence of the Colidnuglas production

for GDP is that the share of wages should remain consiaer time and across
countries. This is because if wage rates were to rise relative to capital irnbeme,
industrieswould employ fewer people in order to minimigee loss ofprofit. If

wages were to fall relative to capital, industries could employenpeople for the

same profit. Thus the wage rate and the employment rate are always engaged in a

tradeoff, and this tradeff renders approximately constant. For further details of
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this process, se#&/olfson (1978)[205]} Using the definition of wages as being equal

to only the compensation of employeesioes not appear to be constagither over

long periods of time or across countries, as shown by G@EMN02)|[88]| Gollin

attributes these discrepancies to the practf neglecting the income of the self
employed in the definition oages. Changing the definition of wages to incltide

self employed as well as compensation of employees gives new estimates of the
wage share that are remarkably consistent with the predictions of theDooighas
theory. It is for this reason that tircome of the self employed iscluded with the

compensation of employegscalculating for use in dvalue analysis.

The ncome of the seléemployed can be very difficult to measure in some countries.

In the UK, the ONS provide estimates of self empltb income under the term
SPLI[HG LQFRPH" 7KH 21 &h&hakine)y itévrKdn theDgeneration of
income account for unincorporated businesses owned by households. The owner or
members of the same household often provide unpaid labour inputs boigimess.

The surplus is therefore a mixture of remuneration for such labour and return to the

owner as entrepreneun[149]} The last sentence of this quote highlights the

difficulty with using mixed incane for the selemployed contribution to the GDP
This is that the UK national accounts do not determine how much of the self
employed income is taken as a wage, and how much is fed back into the

unincorporated business, which would count as capital fowmarthis problem has

been noted by the ONS, $d®3]| who solve the problem by assuming the share of

mixed income taken as profit is equal to the share of the GDP paid as compensation
of employees. For exnple, if compensation of employees is 60% of the total GDP,
then one should assume that 60% of the mixed income is taken by tbenpifyed

as wages, with the rest going as capital formation. Henee estimated from the

national accounts as:

(8.25)

where COE stands fofcompensation of employeesand MI stands fordmixed

income’, both of which are published in the Economic & Labour Market Review

[150]| This publication also gives historical data.
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Figurel2|shows for the UK from 1955. The average value over this time period is

0.603, and the standard deviation is 0.032. However, as can be clearly seen, there is a

ODUJH SHDN DW ZKLFK EHJDQ LQ WKH HDUO\
GXULQJ WK Hperiofi ¢orrédpands to a period of great industrial unrest in the
UK. The period from 1984 to present is more stable, and is judged to be a better
indicator of the future than the period 1955 to present. Consequently it will be this
time series that will & used to calculate The average value for this period is 0.573
and the standard deviation is 0.012, as sho@ The coefficient of

variation, or relative standard deviation, fois thus 2%.

8.6 Work -Life Parameters and Risk Aversion, O

Chapter6 discussed the methods for determining the average-M@mxpectancy,

Yw, and the work time fractionwp. The only required parameters for estimatyag
were the total hours worked per week in the population, thedsize of the
population. The total time worked per week can be estimated from the ONS
SXEOLFDWLRQ 3/D E R X|{146]pnhishH3/Nublidh&dwegWMal Batd for
2009 indicate that there we®d.3 million hours worked per week, on average. The

size of the population has already been discussed as being 61.8 million. Using

equation|(6.19) the average workfe expectancy is 3.5 years. The wotikne

fraction is then this number divided by the average life expectancy. However, rather
than using a present value, the wairke fraction is time averaged over the same
period as for . This is because this parameter has remained remarkably constant

over recentdecades. Historical data from Labour Market Statistics and the Interim

Life Tables can be used to estimate the past values. Life expectancy has increased

linearly over this period, whilst the average wdif& expectancy has fluctuated
between 3.40 3.8 years. The average value for the wiarie fraction for the period
from 1984 to present is 0.091, and the standard deviation is 0.002, so that the

coefficient of variation is about 2%. The time series is shoy#igare13

The risk aversion coefficient) can then be calculated from equa[(andfl As time

series data for bothyy and have been determined, the corresponding risk aversion

figures can o be determined over this period. These values are shgvigurel13
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The risk aversion appears to be quite stable, with a mean value of 0.825, and a
standard deviation of 0.005. The coefficient of variatiotherefore 0.6%. As the

risk aversion is used in thevdlue equation, the tolerance limits will be analysed for
this parameter. As the standard deviation is known, all that is required in order to
place these limits is the distribution. A null hypothesifarmed that the data is

distributed normally. This hypothesis is then tested using a najuaattile plot.

A normal quantile plot compares the observed dataset against the data that would be
seen if it were normally distributed. The observed datass $orted by rank order,
and the cumulative proportion is then calculated. The cumulative proportion is

denotedp. This is then plotted against the quantile functndefined as:

(8.26)

: KH U HYp} is the inverse cumulative distribution function of the normal
distribution, and is the value that would be observed atpthequantile for a
normally distributed random variable with mean of zero and standard deviation of
X Q L W) is hencedefined as:

(8.27)

To test whether # null hypothesis can be rejected, a relevant test statistic is

computed, which can then be compared to a critical value at a given level of
significance. If the test statistic is less than thigcat value, the null hypothesis may

be confidently rejected. The relevant test statistic in this case is the correlation
coefficient, which measures how closétg data and the, value change together. If

the correlation coefficient were unity, the tdisution would be perfectly normal.

Table 4{shows the results obtained with the observedseattor therisk aversion

from 1984 to present. The correlation coefficient is76.9he significance level for
this test is 5%and the critical valuat this levelis 0.%7, meaning that correlation
coefficients below this value would be sufficient to reject the null hypothesis of

normally distributed dataHence,as the correlation coefficient was found to be

-143



greater than theritical value so the null hypothesis may not be rejected. Therefore,

it may be inferred thaherisk aversionis distributed normally, with a probability of

less than 5% that the distributi@ccurred by changdable5|presers theseresults

Thenormatquantile plot is shown |Rigurel14

JRU WKH QRUPDO GLVWULEXWLRQ WKH WROHUDQF
The 95% tolerance interval for the risk aversion is then 608835.

8.7 Change in Discounted Life Expectancy/Xqg

As discussed in sectidhl, the Jvalue parameter6§ DQ EH FODVVHG DV HLWK
GHSHQGHQW™-LRUG RIBRIQQWHRQW -~ ZLWK WKH IRUPHU UHIH
cannot be determined without prior knowledge of the specifics of the safety system,

and the latter referring to those that can. Up until ndws section has been
concerned with the estimates of the coniagependent parameters. The change in
discounted life expectancy, however, is an example of a cedémendent
parameterChapter5 details the methods that can be used in adaestimate this

parameter. The unknown variables for these calculations are the exposure rate at
time x, b(x), the length of time which the exposure lasts Tag,and the probability

density of the response of the exposwyrgears after the exposuréy(y). Also

required is knowledge of whether the risk causes an absolute or relative increase in

the initial hazard rate. In section VRPH 3OLPLWLQJ GLVWULEXWLRC(
in order to provide some simplified calculations. The limiting distrdng used

were when the exposure and response functions were short, and when they were long

and uniform. The shortest change in life expectancy, which follows from a short

exposure with a short response, was found to be:

(8.28)

Thesemay also be discounted following the procedure laid out in sebtibh For
similar values ob, therelative risk equation will be smaller than for absolute risks,
asH < X (see sectiol.4). However, smaller change in life expectancies may also be

achieved when the response is delayed, for example with radiation risks, where the
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response does not become active until ten years after the initial exposure. Upper
limits of the change in life expectancy would correspond to long exposures and long
responss. It was shown in sectioh.8 that, for such situations, the change in life
expectancy is proportional to the second and third moment of the population
distribution. However, an upper limit for the change in life expectancy may more

easily be defined ake initial life expectancy itself, i.e.:

(8.29)

This is because, in the worst case situation, when instant death occurs, the group of
individuals will lose all their life expectancy they had remaining. In such situations,

it may beinappropriate to use the equations of secid@) becausé wasassumed

that the exposure ratdyx), was small enough so that the additional survival
probability could be approximated with a linear expansion. In situations where there
is large I®s of life, this assumption will no longer be appropriate, and so the original
equations must be used. The loss of accuracy in the life expectancy calculations from
using in the linear expansion, for different exposure rates, is investigatbdpter

9.

Thus, although it is not possible to give exact calculations of the change in life
expectancy following a hazard exposure without the specific details of the risk, it is
possible to give indicative ranges of what the change in life expectaagyen A
lower bound of/; for situations in which there is an immediate -@fieexposure

with an immediate short response (which may correspond to being in the vicinity of

some large explosion, for example), is given by equdB8®B) However, if the risk

will result in a response with some delay, such as is the case with radiation
exposures, then the change in life expectancy may be lower than this bound. If the
delay is sufficiently long enough, there will be nomrgea in life expectancy at all, so

that the lower bound for delayed risks is zero. The upper bound for the change in life
expectancy is simply the initial life expectanc{, Introducing discounting can be
done as described in sectibrill, but does notgse any additional complications.

For example, the upper bound is reduced f¥ota Xy.
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It is also not possible to determine the tolerance limits exactly for the change in life
expectancy, unless information of the specific risk is available. Neverthéléss

DOVR SRVVLEOH WR GHWHUPLQH D SOLPLWLQJ XQFHU\
few assumptions. The assumptions are conservative, so that the uncertainty will tend

to be overestimated, rather than underestimated. The method for determising thi
SOLPLWLQJ XQFHUWDLQW\" ZLOO QRZ EH GHVFULEHG

Let the frequency of the accident beper year. The Poisson distribution gives the

probability, , ofysuch accidents occurring in the tinméerval of lengthT, as:

(8.30)

where Y is the random number of accidents, dnds the expected number of

accidents in the interval:

(8.31)

From(8.30)and(8.31) the probability of no accidents in the interval (so thaty =
0) is:

(8.32)

Hence the probability of one or more accidents in the interval is givér(gys

where:

(8.33)

Let us assum that the probability of experiencing an early death as a result of the
accident among the exposed group isVery often , especially when the

group is large. For an individual in the exposed group, therefagyrobability of

early death as a result of the accident is because the probabilities are
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independent. This combined probability may be called the probability of being

affected,

(8.34)

For simplicity, consider a protection system that eliminates completely the chance of
the accident. Let the improvement in lifetime for an individual of agbrought

about by the protection system be . Clearly, will depend on many random
hazards the individual faces apart from the specific accident being prevented, and so

will be a random number. It may not be a small quantity: its value could be 80 years

or more when an infant is being protected.

Let us considean accident where death, if it is to occur, is immediate, coincident
with the accidentThis could apply to an explosion on a petrochemical plant, for
example. This risk would be described by a point response function with an instant
response, as wassgussed in sectiob.8 and previously in this section. In such a
case, the installation of the protection system will have the effect of restoring the life
to come amongst those who would otherwise experience immediate death to its value
in the absencefdhe accidentln this first group of potentially affected people, an

individual of agea, will experience a change in life to come:

(8.35)

where the notation follows that used in sec@of, i.e. where , andA” are

random numbers.
The second group of unaffected people will contain some members who have the

same agea, and who would have survived the accident unscathed. For them, there

is no change in life to come, and so:

(8.36)
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7KH H[SHFWHG YDOXH RI WKH ILUVW JURXSYV FKDQJH I
(8.37)

ZKLOH WKH H[SHFWHG YDOXH RI WKH VHFRQG JURXSTV
(8.38)

Any given individual in the potentiallgxposed cohort of people (for example those

living near a factory producing toxic chemicals) will have a probability, of
being in the first group and a probability, , of being in the second group. This

probabilty is also equal to the ratio of number of eventual deaths from the accident,
, to the total number of people exposed to the accifdgnte.: /N. This quantity
may also be seen to be the integrated exposurebratef equatior{(S.B which is

the probability of death following an exposure. In this situation, where the exposure
occurs at a single point, the integrated exposure rate is equal to the single exposure
rate,b. Therefore the expected value, , of the life to come of an individual of

agea, is given by:

(8.39)

which is the same as the change in life expectancy found in the limiting case of a

point exposure and short response found in se&t®nequatiof(5.23) However, if

we do not know the age of the randomly selected individual, our best estimate of his

change in life to come, , will be theweighted, average value, , over all ags:
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(8.40)

which confirms equatiq(b.25

The same arguments apply to the square of change in life to come. Individuals in the
first group of potentially people who have agewill experience aquared change in
life to come:

(8.41)

Individuals of the same age in the second group of unaffected people, who would
have survived the accident unscathed, experience no change in life to come. Hence,

for those of age, the changenilife to come and its square will both be zero:

(8.42)

7KH H[SHFWHG YDOXH RI WKH ILUVW JURXSYTV VTXDUHC

(8.43)

while the expected value of the second group's squared change in lifeg¢ds;of

course zero.

(8.44)

The expected value of the square of life to come of an individual o&,agegiven

by:
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(8.45)

If we do not know the age of the randomly selected individual, our best estimate of
the square of his change life to come, , will be theweighted, average value

over all ages:

(8.46)

where equatio||Q8.12 has been used. The variance of random change in life te com

for individuals selected at random in the population will be |, given by:

(8.47)
Using equation$8.40)and(8.46) we may write:
(8.48)
By equation(8.13
(8.49)
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Hence:
(8.50)

In many cases, , and so:
(8.51)

where equatio|r08.23 has been used. The fact thawill be nonnegative means that

for all possible values of , will be bounded above by:

(8.52)

In the case where the protection systerts do avert a reduction in life to come
rather than averting immediate death, once again there will be an affected group,
Group 1, whose life to come would have been reduced in the absence of the
protection system, and an unaffected group, Group 2, wHede come would not

have been affected whether or not the protection system was in place. The
probability of being in Group 1 ips and the probability of being in Group 2 is

1 +pasr. If the risk being averted is still a point exposure, tthenexposure raté,is

still equal topas, but the exposure now refers to some delayed risk, for example,
radiation, in which casdy = crd,, wherecy is the risk coefficient, and, is the dose

received, see equati@h.45

Consider those of age, in Group 1. The installation of the protection system will
avert their loss of part of their life to come, so that:

(8.53)

whereR, may be termed the restoration requirement, and will be a randarbar
bounded in (0,1):
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(8.54)

The life to come will be conditioned by the ageand so, in the most general case,
will the restoration requirement. For example the same dose of toxin might reduce
the life to come of people of diffent ages by the same absolute amount, leading to a
different fractional reduction in life to come. The restoration requirement has the
same numerical value as that fractional reduction, and so would be different for
people of different ages in this casélowever, once age, is specified the two
parameters may reasonably be regarded as independent of eachnothercase
considered, it is asserted that sensitivity to the same toxin amongst individuals of the
same age would not be related generalhhoov long those individuals will live,
which will be conditioned by a very large range of independent factors: occupation,

marital status, hobbies, consumption of alcohol etc. Hence:

(8.55)
where is the restoré&n requirement appropriate for age
Hence:

(8.56)

The expected value of change in life to come for those oh agéhe first group is:

(8.57)

while the expected value of the second group's change in Gifane is:

(8.58)
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The expected value, , of the life to come of an individual of aga, is given

by:

(8.59)

However, if we do not know the age of the randomly selected individual, our best

estmate of his change life to come, , will be theweighted, average value, |,

over all ages:

(8.60)

For the square of the change in life to come, individuals in the first group of people

who hawe agea, will experience a squared change in life to come given by:

(8.61)

since the squares of independent random variables will also be independent.

Meanwhile, those of the same age in the second group of unaffected people will
experience no change in life to come. Hence, the square of change in life to come for

them is zero, whatever their age:

(8.62)
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The expected value of the first group's squared change in life to come may be

written:

(8.63)

while the expected value of the second group's squared change in life to come is, of

course zero.

(8.64)

As the probability of being in the affected group is, the expected value of the

square of life to comef an individual of age, is given by:

(8.65)

If we do not know the age of the randomly selected individual, our best estimate of
the square of his change life to come, , will be theweighted, average value

overall ages:

(8.66)

The variance of random change in life to come,, for individuals selected at

random in the population will be , given by equatigg8.47

Using equation$8.60)and(8.66) we may write:
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(8.67)

Now the variance, , Is given by:

(8.68)
so that:

(8.69)
An analogous route leads to:

(8.70)
Substituting from equatiof(8.67)and(8.69)into equatiof(8.70)gives:

(8.71)

For the case where the protection system averts immediate death for those in the
affected, first group, the restoration requirement is equal to unity, since all life to

come is restored:

for all a (8.72)

This is deterministic, with:
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(8.73)

In this case, equati@ﬁ? defaults to equatid(8.50) as we would expect. Since

the last term in equatig®.71)must be positive, we may conclude that:

(8.74)

Because is bounded on (0,1), it follows that the absolute maximum value of

IS, see Jacobsen (19@ This is based on the distribution being

bimodal, and concentrated at the extreme values. The same paper demonstrates that

the maximum variance of a unimodal distribution on (0,1) is. Meanwhile, it is

immediately clear that the maximum value of and hence is 1.0.

Using these figures makes it clear that is bounded abovéor all possible
probability distributons for restoration requirement, , for all values of ageq,

by:

(8.75)
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where equatiql(\8.23 has been used in the last step. If the probability distribution for

the restoratin requirement is unimodal, then the upper bound condition is replaced

by a slightly smaller value:

(8.76)

The condition§8.75)and(8.76)bear a strong simildy to conditior{(8.52)on the

upper bound for when the protection system is preventing an accident that

would cause only immediate deaths if it occurred.

Because of the small increase that ctiad|(8.75) brings over either of the other

possible condition$(8.76) it will be sufficient for most purposes to use the most

conservative estimate of the limiting upper bound liegbby condition(8.75) for

ZKLFK ZH VKDOO XVH WKH WHUPLQRORJ\ 3

(8.77)

Thus using values calculated in secti®d, i.e.,t’%, = 2,304 year§ the limiting
variance onthe change in random life to come i8&b year$. This may be
compared with Z60b year$ if a unimodal distribution is used. Moreover, if
immediatedeath equatiolgTil is used then the variance on the change ndaoe

life to come is B04b years. Clearly the three figures are similétealth and safety

regulations state that, in the workplaces girobability of being killed in an accident
must be no larger than 2@er year, but the figures are usually of thage 1C to

10* per year. Using these figures, fivaiting variance on the change in life to come
ranges fron0.003to 3 year$. The variance on the change in average life expectancy

is then this variance divided by the number of people affected byahard. A

typical workforce will number between 100 and 1,000. The variance in the change in
life expectancy, var[;], then ranges from 3x10to 0.003 years The standard
deviation then ranges from 0.002 to 0.2 years. Compared to the ¢chidiage iife
expectancy calculated from such hazard rates, these numbers are large. The
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coefficient of variation is around 400 tq080%. The distribution will also be
normal, as the figures are determined from summing together the change in life to
come of a numlyeof people. However, because the numbers presented here are only
illustrative, no tolerance limits will be placed on the change in average life
expectancy parameter. It is sufficient to note that, unless there are a very large
number of people affected ye hazard (in excess of 100,000), the tolerance
interval will be relatively wide, when compared to the central change in life
expectancy. However, in absolute terms, the interval will usually be fairly small.

8.8 Other Context-Dependent Parameters

In addition to the change in average life expectancy, there are two other parameters
which are dependent upon the specific nature of the safety system. These are the

number of people benefitting from the systelj,and the cost of the protection

system,

In Jvalue analysis it is often the case that the number of people affected by the
safety system does not need estimation. This is because the change in life expectancy
is proportional to the hazard rate, which itself is inversely ptapwl to the number

of people affected, as shown, for example, in equaitﬂﬁris) and|(5.25) Thus the

product of the number of people affected and the change in life expectancy is
approximately independent bif This parameter therefore will usually not contribute
any significant uncertainty to thevalue.

The cost of the safety system is assumed to be provided in the details of the safety
systemitself. An alternative formulationhowever, may be to investigate the range

of acceptable costs that would still givealues less than or equal to unity. Little can

be said about the uncertainty of the cost of the safety system, except that it is
unbounded, being potentially very lardiels therefore important when conducting J
value analyses that some kind of indication of how variation in the cost would affect
the results is given. Alternatively, an indication can be given for the permitted

variation in the cost estimate that woulidl snaintain a reasonablevilue.
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8.9 The J-Value

The Jvalue is given by equati¢3.61) repeated below:

(3.60)
This can be simplified by noting that, for smal

(8.78)
putting:

(8.79)
allows the Jdvalue to be ravritten as:

(8.80)

Which is valid for allrg, andDf LV WHUPHG WKH 3OLQHDULVHG GL
methods and results of measuring each of the parametersahdbe equation have

been laid out in the preceding sections. The uncertainties, which result from either

the measurement process itself, or from the natural variation of the parameters, have
also been quantified as far as is possible. These individuaktamties will then

propagate through thevélue calculation to give an uncertainty on thellie itself.

As has been discussed, it is not possible to determine the uncertainty from the
contextdependent parametetghe change in life expectancy, thenmber of people

affected, and the cost of the safety systeatthough an indication of the magnitude
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of the uncertainty on the change in life expectancy was given in s&toi full

analysis of the uncertainty of thevdlue therefore cannot be givevithout details of

WKH SURWHFWLRQ V\VWHP +RZHYHU LW LV SRVVLEOH
XQFHUWD L QWalle. RThiswKtHe uncertainty resulting from the context
independent parameters. This is then a minimum level of uncertaaitwill always

be present in any-Vialue estimate, which will increase once knowledge of the
uncertainties of the contegependent parameters is achieved. Intrinsic uncertainty

on the Jvalue will result from uncertainty on the estimate of the GDRppeson G,

the risk aversion and the discount factobs, which itself results from uncertainty

on the discounted average life expectanGy,The standard deviation on thevdlue

is then given by the weighted stofirsquares method:

(8.81)

which can be written as:

(8.82)

note the presence of thef0 term in the denominator of the first term on the right
hand side of the equation. This equation therefore gives the coefficient of variation,
or the relative tandard deviation of thevhlue. In order to place tolerance limits, it

is necessary to determine the distribution of tvalde. However, this has not been
possible, as the uncertainty results from the product of three variables, two of which
are takeras having a normal distribution, and the third of which is taken as having
the ratio distribution. The variables all have different means and standard deviations.
The distribution of such a random product does not appear to have been studied
before. It wold be possible to infer a distribution via simulation, but this has not
been attempted, and remains for further work. Instead, it will be assumed that 95%
coverage of the distribution can be achieved with £2 standard deviations about the

mean, i.e. assungnthat the distribution approximates the normal distribution.
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The uncertainty on the discount factor can be expressed as:

(8.83)

It was shown in sectioB.4 that the standard deviation on the life expectancy was
0.003 years. The sitount rate is not assumed to contribute any uncertainty, and so
this value will also be true of the discounted life expectancy. For a valy®b5%,
which represents amaximum discount ratehat would beused, thestandard
deviation onDy is then 8x10. The associated coefficient of variation is 0.004%,
which is clearly small. The minimum value is whenis zero, in which case the

discount factor is also zero, and there is no uncertainty.

The above results can then be used to determine the unityedairthe Jdvalue.
Because of the fact that uncertainties are combined in eosguares manner, the
sum is dominated by the largest value, which in this case is the risk aversion term.
The GDP per person and the discount factor both produce uncestaimiiteare
negligible, and so can be disregarded from the calculation. The uncertainty en the J

value is then:

(8.84)

7KH 3 LQWHUQDO D¥Vahux bad fhus heénWwknd te be 2.86%. The 95%
tolerance interval, which is takes awo standard deviations, is +5.7%. However, the
other case dependent input parameters may also contribute to this uncertainty. If it is
possible to assess the uncertainty of the change in life expectancy, then the
correlation between this parameter ahé initial life expectancy (which will be
present in the -Yalue equation for nemero discount rates), also needs to be
accounted for. The method for accounting for correlations has already been
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discussed in sectiod.1. As the change in life expectansyapproximately linearly

dependent upon the initial life expectancy (c.f. equg({®25), the correlation

coefficient between these two parameters is unity.

8.10The VTPF, VODLY and VODLYA

Chapter7 shaved how the Jalue framework could be used to derive wadilons of
human lifespan. This was done by first deriving the value of delaying a fatality by
some arbitrary number of years. The value of temporarily preventing a fatality
(VTPF) is then a specifimstance of this, when the delay is set equal to the life
expectancy of the individual concerned. This then corresponds to a situation in
which a hazard that will cause immediate death to an individual is permanently
eliminated, so that the individual @&&gs his or her initial life expectancy. The
VTPF, which is therefore agdependent, is denoted &%(a), and is given by
equatio@ It will be assumed in this section thist 1 is used in the vahtions.

It was also shown that two average values of the VTPF may be derived, one

evaluated aKgy(a) = Xy, which may be the case when age is not known, and another

one in which theVp(a) values are averadeover the population, as given by

equationg(7.13) and|[(7.14) These two averages were shown to be equalCdb

discount rate. Using the numbers presented throughout this section, the average
VTPF & a 0% discount rate is calculated as about £5.30Ma 25% discount rate,
the average VTPF when age is not known is £2.54M, and the poptdatoaged

VTPF is £2.49M. These two average measureshereforeclose{Figure 15(shows

the average values of the VTPF, and the age dependencies at these two discount

rates.

Also derived was the value of a discounted-¥igar (VODLY), and a related

measure, the VODLYA, which is the average value of a discountegdédeover an
indviGXDOTV UHPDLQLQJ OLIH )RU JHUR GLVFRXQW UDW
are equal and constant, valued simplyG#l + §, which is about £129,000. For
non|]HUR GLVFRXQW UDWHV WKH 92'/< GHSHQGV RQ ZKL
being saved. Forxample, if it is the next year of life that will be saved, then the

value is simply equal to the undiscounted VODLY. HoweMVethe year of life that

will be saved is some time in the future, then the value will be discounted, and so
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will be slightly lessthan the firstyear value. The VODLYA is also agkependent if
the discount rate is nexero. At age zero, the VODLYA has the smallest value, as
there are the maximurpossiblenumber of years over which to discount. The
VODLYA returns to the undiscounteglue by the maximum age, when there are no

more lifeyears to discount over. These values are shopkigurel16

As the VTPF, VODLY and VODLYA are not inputs to thevdlue, no analysis of

the associated tolerance limits hasio@erformed. However, the largest contribution

to the uncertainty will come from the risk aversion coefficieggs it did with the-J
value, with the other parameters contributing a negligible uncertainty. Hence, the
coefficient of variation for each of the three valuations of life described above will
be 2.87%. As with the-Jalue, the distribution is not knowand so the tolerance

interval cannot be set.

The values of lathe parameters described above are summarigtahie6
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Figure 9 Probability distribution of the GDP per person estimate. Also shewunat the distribution
would look like if it were normal.
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Figure 10 Historical data showing how the UK GDP and population size are correlated. Both i
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million. At unity, the GDP is about 1.3 billionnd the population is about 62 million.
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Figure 11 Life expectancyXy(a), and average life expectangy, for discount rates of 0% and 2.5%.
Assumed 50% male female split at all ages. Averagedifeaancies are 41.2 and 22.9 years at 0%
and 2.5% discount rate respectively.
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Figure 12 Historical data showing the variation in the wage share of the GO#&, the UK from

1955. Note the large peak at 1975, during a pesfabnsiderable industrial unrest. During this

period the mean wage share was 0.603, or about 60%, and the standard deviation was 0.032, so that
the coefficient of variation is about 5%.
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Figure 15 Values of the age dependent VTPF, and theaageaged/TPF, for discount rates 0% and
2.5%. The average values of the VTPF are £5.3 million and £2.5 million, respectively. These are
evaluated af = 1.
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Cumulative

Sorted | Proportion,

Data p Zy
0.8127 0.0385| -1.7688
0.8152 0.0769| -1.4261
0.8176 0.1154| -1.1984
0.8183 0.1538, -1.0201
0.8199 0.1923| -0.8694
0.8208 0.2308| -0.7363
0.8217 0.2692| -0.6151
0.8218 0.3077| -0.5024
0.8240 0.3462| -0.3957
0.8249 0.3846| -0.2934
0.8252 0.4231| -0.1940
0.8259 0.4615| -0.0966
0.8260 0.5000/ 0.0000
0.8262 0.5385| 0.0966
0.8266 0.5769| 0.1940
0.8267 0.6154| 0.2934
0.8276 0.6538| 0.3957
0.8277 0.6923| 0.5024
0.8279 0.7308, 0.6151
0.8279 0.7692| 0.7363
0.8280 0.8077| 0.8694
0.8287 0.8462| 1.0201
0.8301 0.8846/ 1.1984
0.8335 0.9231] 1.4261
0.8346 0.9615/ 1.7688

Table 4 Data for the normadjuantile plot to test the risk aversion for normality.

Correlation Coefficient

&ULWLFDO 9DOXH

0.98

0.957

The null hypothesis mayot be rejected at this level of significance.

Table 5 Results of the normajuantile plot.
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Parameter

Value (95% Tolerance
Limit)

GDP per Persort; (£Ely)

22,538(22,531 +22,545)

Discount Ratetq (/y)

0.3% /2.8%

Growth Raterq (ly)

2.0%

Net Discount Rate, (/y)

0% / 2.5%

Life ExpectancyX (years)(general populatior
distribution, 50% male/female ratio, 0%
discount rate)

4117 (41.166+41.177)

Mean square agd“a, (year$) (general 2,304
population distribution, 50% mafemale

ratio, 0% discount rate)

Mean cube aget’,, (years) (general 147,311
population distribution, 50% male/female

ratio, 0% discount rate)

Population entropy- 0.13
Theta, 0.573
Work-Time Fractionwg 0.091

Risk Aversion,0

0.825 (0.84 +0.835)

The Jvalue Q)

N/A (£5.7%)

VTPF, Ve (£), (general population distributio| 5,300,000
50% male/female ratio, 0% discount rate)
VODLY/VODLYA (£), (0% discount rate) 129,000

Table 6 Values of parameters
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Chapter 9 Sensitivity Analysis of the JValue Framework

9.1 The Purpose of Sensitivity Analysis

The sensitivity of the -Jalue framework to the inherent variability of the input
parameters and to the numerous explicit and implicit assumptions necessarily used in
deweloping the model may now be analysed. Such analyses give indications of areas
in which the assumptions may need to be used carefully. They may also indicate
areas where perhaps lessemay be required than had previously been suspected. A
sensitivity amlysis can also be used to add strength to conclusions, or highlight areas

that require further development.

A benefit of the dvalue framework is that there is only one key output, thalJe

itself. This is dependent upon a number of input paramefenshermore, these

input parameters can be objectively determined. These factors mean that assessing
the Jvalue framework for sensitivities can be done in a fairly straightforward

manner, as will now be described.

9.2 The Sensitivity Coefficients of tke JValue
The initial step in assessing sensitivities is to calculate the sensitivity coefficients of
the Jvalue. Although not yet apparent, this has already been partially done in section

8.9. The sensitivity coefficients of an output with a numbenpiits are simply the

partial derivatives of the output with respect to each of the inputs. Eq|{8t&i)

relates the uncertainty of thevdlue to the uncertainty of the contemtiependent
parameters. This can be panded further by including all the-value input

parameters:

(9.1)

The sensitivity coefficients are then these partial derivatives. The derivatives can be

evaluated readily. As theualue is a product of factors, all the partialidatives
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will be proportional toJ, and this can be divided out of the equation to give the
coefficient of variation on the-value in terms of the new sensitivity coefficients,

and the uncertainties of the input parameters: it will also be assumethdciy,

that there is no correlation between the change in life expectancy and the discount

factor, Dy.

(9.2)

These sensitivity coefficients then weight the variances of the input parameters. As
each coefficient is the reciprocaf the input parameter, it follows that the smaller
the input parameter, the greater the sensitivity coefficient. The uncertainty on the
number of people affected by the risk reductidy, does not contribute much
uncertainty, as the-ialue is approximatg independent of this parameter. Therefore
this term and its coefficient may be disregarded from the equation. The GDP per
person has been shown to have a relatively small coefficient of variation. Its
sensitivity coefficient will also be small, as the BIper person is a large term in the
Jvalue. This will also usually apply to the cost of the safety system, which usually is
at least of the order of £10,000, and can be many orders of magnitude larger than
this. Thus, although the uncertainty over thigufe may be considerable, the
sensitivity coefficient will usually mean that this uncertainty carries little weighting
onto the uncertainty of theuhlue. However, the possibility that the uncertainty on
the cost of the safety system is sufficiently latgelominate the-¥alue can never

be ruled out.

The sensitivity coefficient for the discount factor is only defined for-zeno
discount rates, as the uncertainty Dnis zero for a 0% discount factor. For a
discount rate of 2.5%, the discount factsr about 1.5, so that the sensitivity
coefficient is 0.67. While this is larger than the coefficients of the GDP per person
and the cost of the safety system, it is still relatively small when compared to the

remaining coefficients of the risk aversion ahé change in life expectancy. The
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sensitivity coefficient of the risk aversion is different from the other parameters in
that it is the reciprocal of the complement of the risk aversiof,Olhat appears in

the equation. AsO= 0.825, the complement exjual to 0.175, and the reciprocal is
5.7. The final factor is the change in life expectancy. Although this parameter is
contextdependent, and as such cannot be deternargtbri, an indication can be
given of its magnitude. Although the maximum poksilaverage loss of life
expectancy is the initial life expectanc}, = 41.2 years, situations where the
protection system offers this kind of benefit are rare. Typical values of the change in
life expectancy are from TOto 10° years. The sensitivity céfecient can then be

large compared to the others.

Thus, an analysis of the sensitivity coefficients of theldie indicates that the J

value is most sensitive to the uncertainties and assumptions regarding the risk
aversion and the change in life ex@euty. Therefore the assumptions made in
calculating these parameters will be analysed and tested to see how the calculations
compare when more realistic data is used. As the change in life expectancy is closely

related to the initial life expectancy, (esge equatigfb.25), the assumptions made

in calculating this parameter will also be analysed.

9.3 Sensitivity Analysis of the Life Expectancy Calculations

Calculating the change in life expectancy requires detetmon of many of the
same parameters as the calculation of the initial life expectancy. Indeed, the
calculation is actually performed by first calculating the initial life expectancy, and
then perturbing the hazard rates. Therefore, analysing the signsitithe change in

life expectancy parameter will require an analysis of the sensitivity of the initial life

expectancy. In this section, such a sensitivity analysis is presented.

Chapter 4 has already presented the methods required to dalctite life

expectancy. The method can be broken down into a series of steps:

1. Calculate the hazard ratéga),
2. Calculate the cumulative hazard ratéfa),

3. Calculate the survival probabibs, Sa),
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4. Calculate the life expectaies X(a),
5. Calculate the bability densies p(a),
6. Calculate the average life expectanxy,

The effect of discounting does not need to be considered here, and so it will be
assumed throughout that the discount rate is zero. In these steps, there are a number
of assumptions thaneed to be made in order to perform the calculation. These
assumptions can be varied, and consequently different life expectancies will be
produced. The question therefore arises as to which life expectancy is the most
accurate. This question can be aldWHG E\ DVVXPLQJ WKDW WKH
expectancies are the ones given by the ONS in their life tables. The method that best
approximates the ONS life tables is therefore judged to be the most accurate life
expectancies. The discrepancy between the mMpdel FDOFXODWLRQ DQG
calculation can be tested statistically. The test can answer whether the difference is
statistically significant or not. A null hypothesis is therefore formed that the ONS
OLIH WDEOH GDWD DUH GLVW Unethotd\W keGedD peRdtre@ IsQJ WR

3 HD UV RQddredlgdt. The test statisti ,, is determined from the summed
squared difference between the number of deaths associated in a cohort facing the

calculated survival probabilities, denotasl E? and the number of deaths from the

life table functiond,, from equatiof(4.32

(9.3)

where:

(9.4)

and wherek - 1 is the number of degrees oté&dom, see, for examplepndon

(1997][132]| As there are 101 ages in the life table (from age 0 to 100)kthéi®1
and the number of degrees of freedom is 100. The paramé&tethe sample size,

which is the assumaeditial size of the cohort that is subject to the hazard rates. This

is also equal to the radik, of the standard life table, and is taken as 100,000. The

-177-



are the survival probabilities estimated from the model. If fie test statistic is

greater than some critical value, then the null hypothesis may be rejantegper

onesidedtest is performed at the 5% significance level. The critical value of the
upper tail £, statistic at this levels the value at which theomplement of the

cumulative distribution function of the ebguare distribution with 100 degrees of
freedom is equal to 5%. This can be computed from tables, and is approximately
equal to 124. If the value of the test statistigreater than this value, then the null
hypothesis is rejected in favour of the alternative hypothesis, namely, that the ONS
data is not distributed according to the model under test. The lower the value of the
test statistic, the closer the ONS dat@oithe model. The model that produces the
lowest value will be accepted as representing the most accurate life expectancy

calculations.

There are a number of assumptions which can be tested. The first is the assumption
about the correct value to use the hazard ratdy(a). In chapterd it was argued that

either of two functions could be used to approximate the hazard rate. These were the
central rate of mortalityn,, which was shown to be correct if deaths are distributed
exponentially throghout the intervaldg, a + 1), and the probability of deaths,

which was shown to be correct if deaths are distributed uniformly over the interval
(a, a+ 1). These two approximations can then be tested. In addition to these, two

other approximations tihe hazard rate are also tested. These are:
(9.5)

which also assumes that deaths are distributed exponentially throughout the interval,
and should therefore give similar results to the approximation wifah is
approximated bym,. Another approximation is given by a quintic polynomial
representation of the hazard rate, deaberman (199@ andMcCutcheon (1983)

[135]f In this approximation, the hazard rate is gibsy:
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(9.6)

with:

(9.7)

and:

(9.8)

andqp is as given in the life table. Although the quintic polynomial approximation to
the hazard rate is complex and cumbersome, it will also be teghaustathe life

table data.

Another assumption that can be tested is the integration method for the cumulative
hazard rate functionM@). As was discussed in sectidrb, when the central rates of
mortality are used as the hazard rate, the cumulatzartd rate can be can be
calculated by summing up the hazard rates. However, in more general circumstances
this assumption may not be applicable. Therefore, different methods of integration
are also tested against the empirical data. These other metleotise @arapezium
method of integration, with the step length taken as one year. This is equal to the

sum, but with the endpoints only contributing half the weight of the other points, i.e.:

(9.9)
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The cumulative hazard rate can beraeatied in an iterative manner through:

(9.10)
and wherewW $QRWKHU PHWKRG RI LQWHJUDWLRQ LV
approximates the integral as a quadratic polynomial:

(9.11)
The cumulative hazard ratetlsen estimated by:

(9.12)

&OHDUO\ anekhBdréqu)&svthat the hazard rate is evaluated ataagés.
ElandtJohnsor(1980)[70]|gives a general approximation as:

(9.13)

which can then be used to evaluate the integral.

One final assumption that is tested against empirical data is the use of the final age
EDQG DV DQ *HQG FRUUHFWLRQ™ WR DFFRXQW IRU Wtk
than 101. This correction was discedsfurther in sectiodt.5. Here the effect of

including such a correction will be tested.
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The tests then include four hazard rate approximations, three numerical integral

approximations, and two approximations that do and do not include the end
correctdbn. There are therefore 24 separate tests. For each of thesg, tisatistic

can be calculated and tested against the critical value. These 24 tests are shown in

Figure 17| The most immediate result is the pamtance of the use of the end

correction. All the tests performed without the end correction Had values in

excess of the critical value, and therefore had their null hypothesis rejected in favour

of the alternative hypothesigthat the life table data did not match up with the

model. Another result is that the trapezium rule is generally a poor fit for the data,

with three of the four hazard rate tests with the end correction being rejected. This
compares with two tests for the suldWLRQ PHWKRG DQG QR WHVW
PHWKRG $OWKRXJK DOO RI WKH KD]DUG UDWHYVY WHV\
than the critical value, they were not the tests that were closest to the empirical data.

The most accurate tests were those that tleedummation method and the hazard

rates equal ton, and-In(1-g,). The use ofj, for the hazard rate was not found to be
accurate. Surprisingly, theuintic polynomial approximation also performed poorly,

except in the case when the Trapezium methodusad. The overall conclusion of

these tests is that the end correction should be used, and that the hazardliméte of

Ja) and the trapezium method of numerical integration for the cumulative hazard rate
should be used for most accuracy. However, utiegcentral rate of mortalityn,

for the hazard rate does not degrade this accuracy very much, and is easier to
calculate, as it is given directly in the life tables. Therefore this variable is
recommended for use as the hazard rate. These tests tldatev#tie assumptions

used in sectio.5, where the procedures used in calculating thalue were

explained.

Another feature of the change in life expectancy calculations that can be tested is the

validity of the linear approximation used in approximg the effect of a hazard rate

perturbation on the life expectancy, as used between equéi@dgand(5.15) The

linear approximation is unbounded in the additional hazard wéiést the true value

is bounded, so that the change in life expectancy is never greater than the initial life

expectancyFigure 18|shows the difference between the two methods. They are very

close for low additional hazard e, but begin to diverge at an additional hazard rate
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of 0.1 year*. At this hazard rate the percentage difference is 5% and the change in
life expectancy is about 4 years. This is judged to be the upper limit of practicability
for the linear approximationThe calculations rapidly diverge after this. At an
additional hazard rate of 0.%§f, the difference is about 30%. These calculations
apply to the situation where there is a single exposure resulting in a risk of
immediate death. Prolonged risks widisult in higher changes in life expectancy,

and hence greater divergences between the linear and true calculations at lower
additional hazard rates. Therefore, any calculations of an individual change in life
expectancy of about 4 years or greater basethe linear model should instead be

done using the true calculations.

9.4 Sensitivity Analysis of the Risk Aversion Calculations

Section9.2 discussed that the two variables with the highest sensitivity coefficients
were the change in life expectgnand the risk aversion coefficient. The previous
section has investigated a number of the assumptions which were made in the
calculations of the life expectancy and the subsequent change in life expectancy
following a perturbation of the hazard rate. Hére assumptions underlying the risk

aversion calculations will be investigated.

The risk aversion is dependent upon the share of wages in the GRRd the

optimal work time fractionwy, see equatio[{3.41) The value of was taken

directly from observed data, and so there were few assumptions made in the
calculation. The calculation ofvy, however, requirethat a number of simplifying
assumptions be made, as was describetiapter6. It was shown that the work time
fraction is equal to the ratio of the welife expectancy to the life expectancy, as
given by equatio@ In calculating these two parameters, it was assumed that a),

the population is in a steady state, and b) that time spent working is distributed
uniformly between recruitment and retirement ages. These two assumptions may

now be examined in fther depth.

Throughout most of the development so far, it has been assumed that the population
is in a steady state, so that the number of people born each year is equal to the

number of people dying each year. This assumption produces a certain papulati
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distribution that can be readily calculated from the survival probabilities. This
distribution is described in more detail in sectd6. However, actual populations

are rarely in a steady state, as they are affected by varying fertility rates,
immigration, emigration and health care improvements which reduce mortality. It
therefore is pertinent to compare the results of the calculations of population
averaged values that are based on the steady state assumption with the values

obtained when actual palation figures are used. Data for the actual population size

at each age is available for the UK from the QJii&8]f from which the probability

distribution can be readily estimated.

The other assumption was made iniwlag the worklife expectancy, where it was
assumed that the time spent working was uniformly distributed over working
lifetime, which was taken to start at age 20 and end at age 60. This can be compared
against empirical data on time spent working atheage and employment rates,
which again is available from the ONS, gER46]|and[147]| These then allow the

parameterg),(t) (the fraction of time avorker spends in work at current agyeand

pw(t) (the probability of being employed at afjdo be determined, which can then

be used to calculatg(a) andy,, from equationg6.7)and(6.12) The distribution of

aw(t), pw(t) and their producy(t)pw(t), are shown irlFigurelg andFigure20|for the

uniform assumption and the actual data. As can be seen, the actual data appears m
bell-shaped, with people beginning work before age 20, and retiring after age 60.
This data allows a comparison of the calculationsygpfobtained under each
circumstance. Becausg, is also a population averaged parameter, it will also
depend on thessumption used for the population distribution. There are then four

values ofy,, that will result from the different assumptions.

The parameters tested for sensitivity to these assumptions are the average life
expectancyX, the worklife expectancyy,, the worktime fraction,wo, and the risk
aversion, 0 Four values are determined for the two population distributions and two

working time distributions (although the life expectancy is not affected by the

working time distribution). The results are showom|Table 7|{to|Table 10, Note

that the data used was from 2008, so that the steady state and uniform working time
assumption will not be the same as those presented earlofrapter8, as moe

recent data was used in estimating those figures.
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The tables show that the effect of using the actual population distribution increases
the life expectancy by about 2%. For the other parameters, the largest difference
from the simple steady state pogida and uniform working distribution
assumptions is when both actual distributions are used. The actual distributions
increase the workfe expectancy by about 5%, while the wasike fraction
increases by about 3%. The effect on the risk aversion tsttisareduced by less

than 1%. Thus, the use of actual observed distributions does not affect the risk
aversion by much. Furthermore, the simpler distributions lead to a greater risk
aversion estimate. In the context of thealue, this will mean thatlightly higher
spending on safety will be allowed. The simple distributions are therefore more
conservative than the actual distributions.

The risk aversion is thus insensitive to changes in the underlying assumptions about
the population and working timé&Jsing the simpler distributions is computationally
easier and more efficient, and produces slightly more conservative results. The

sensitivity analysis therefore validates the use of the simplifying distributions.

The conclusion of the sensitivity anags is that the uncertainty on thealue is

most sensitive to the uncertainty on the life expectancy and the risk aversion, as
these parameters were found to have the greatest sensitivity coefficients. The change
in life expectancy was assessed for desi by testing the underlying life
expectancy calculations against ONS life table data. This allowed the assumptions to
be picked in order to minimise the difference in the calculations between the model
output and the ONS data, thus optimising the wmu of the life expectancy
calculations in the model. The linear approximation used in perturbing the hazard
rate for the calculation of the change in life expectancy was also assessed. It was
found that for changes life expectancies less than aroundaré, yihe difference
between the linear approximation and the true value was less than 5%, which was
judged to be acceptable. However, if the linear model produced a change in life
expectancy greater than this, then it would be necessary to recalculatatwiité

linear approximation in order to retain accuracy. Testing the underlying assumptions
of the risk aversion showed that use of the simplified population and working time

distributions was justified, as they did not affect the risk aversion by modhalso
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produced more conservative results, in addition to being simpler to calculate. Thus, it
is concluded that the-\vhlue is reasonably robust to the use of such simplifying

assumptions.
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Figure 17 5HVXOW R 3HdddvevéesiJdr 24 ekt of: 1. three methods of integrating the
cumulative hazard rate (sum, trapezium and Simpson). 2. four different approximations to the hazard
rate €, m, -In(1-g) and a quintic polynomial), and 3. the effect of using the end comnefctiahe final

age band. The lower the ebfuare value, the closer the empirical data is to the model. The tests that
are greater than the critical value (red line) can be rejected.

-186-



50 -

45
40 e
35 4////,
30 1’///'

N / -=="
—’——

20 ’,."

15 ="

Change in Average Life Expectan

l”
’&
10 i
Cd
5 -
0 T T T T 1
0 0.2 0.4 0.6 0.8 1

Hazard Rate

Approximate === Exact

Figure 18 Difference between the linear apgimation and the exact calculation of the change in life
expectancy, as a function of the hazard rate. The difference between the two is around 5% at a hazard
rate of 0.1 gar’, and is nearly 30% at a hazard rate of @&fY

-187-



0.9

0.8

0.7

o o e e e

0.6

0.5

0.4

0.3

0.2

0.1

work fraction, g(t)

Age

=== p(®*9(®)

= == probability of working, p(t)

Figure 19 Rectangular distribution®r g, (t), pw(t) andpy(t)gu(t)

-188




0.9
0.8 e "
' |
0.7 l ==
iy '

0.6 |

| |
0.5 I
0.4 ' -

| |
0.3 I }

I |
02 i l' - e PSP

T “’“‘—T
0.1 d =

rl

0
0 20 40 60 80 100
Age
work fraction, g(t) === p(t)*g(t) = = probability of working, p(t)

120

Figure 20 Actual distributions calculated from UK ddtar 2009 forg,,(t), pw(t) andpy(t)gw(t)

-189




Life Expectancy, X
(years)

Steady State
Population

Actual Population

41.04

41.82

Table 7 Life expectancy under different population distributions.

Work -Life Expectancy, | Steady State Actual Population
Yw (years) Population

Uniform Working Time 3.43 3.53

Actual Working Time 3.48 3.59

Table 8 Work-life expectancy under different population and working time distributions.

Work -Time Fraction,

Steady State

Actual Population

Wo Population
Uniform Working Time | 0.083 0.084
Actual Working Time 0.085 0.086

Table 9 Work-time fraction under different population and working time distributions.

Risk Aversion, 0

Steady State

Actual Population

Population
Uniform Working Time | 0.838 0.836
Actual Working Time 0.835 0.833

Table 10 Risk aversion under different population and working time distributions. The wage share
is taken as 0.563, which was calculated for 2008 data.

-190-




Chapter 10 Extending the JValue Framework to Include

Mitigation of Financial Risks

10.1 The J; and Jr-Values
So far, the focus of this thesis has been on introducing and developing the concepts
underpinning the valuation of health and safety using thalue framework. The

risks concerned have been physical rigkhose that affect human lif&kecently,

however, the -Yalue framework has been extended by Thomas €0dl0)[190]

[191]{|[192]} to include valuation of financial risks. These are risks to either an

LQGLYLGXDO RU DQ RUIJDQLVDWLRQYY DVVHWYV WKDW

been developed that enables the maximum amount that should be spent on mitigating
a given risk to be detarined. If the amount that the individual or organisation has
actually allocated to spend on mitigation is known, then the ratio of the actual spend
to the maximum theoretical spend can be calculated. This ratio of financial risks is
then the gvalue. It 5 then straightforward to generalise to the case where both
physical and financial risks are mitigated. If a scheme is being considered that will
reduce both risks to assets and risks to life, then the maximum amount that should be
spent on the scheme igual to the sum of the maximum amount that should be
spent on reducing physical risk and the maximum amount that should be spent on
reducing risks to assets. The ratio of the actual amount spent on the scheme to this
theoretical amount is ther-¥alue, or S\ WRWDO MXGJHPHQW YDOXH’
methods for determining the maximum spend shall be briefly laid out. Full details of

the methods are described in the above references.

10.2 The Baseline, Risk Neutral Spend on Risk Reduction

In order to intoduce some of the concepts, a simple case will be presented where the
organisation is assumed to be risk neutral. If the probability and cost of the accident
are known, then the amount that should be spent on reducing the risk can be
determined easily. Thirisk neutral cost is then the baseline cost. In the following
sections, it will be shown how the effect of Hakerse decision making increases the
cost above this baseline value. Risk aversion is represented in the form of a utility

function. In chapter3, the utility of income,U(G), was introduced. It was also
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discussed that there are various types of utility functions that can be used, but that

two particularly important ones are the power utility function and the Atkinson

utility function, which allows O« 1 to be used. These are given by equal(8r35

and|(3.39) respectively. Inchapter 3, the simpler power utility functio was

favoured. However, in this section, the Atkinson utility will be used instead. Another
change is that the utility of assets,will used, rather than utility of income. The

utility of assets is then given by:

(10.1)

Risk neutraty corresponds td= 0, in which case the utility is:

(10.2)

which is thus the difference between current assets and one unit of the asset. In most
casesA>> 1, andU(A &, so that the utility of assets is just the assets itself. In this
situation the amount to spend on reducing a risk to the assets can be easily
determined. If there is a probabilit@; that the original asset&, will be reduced by

an amountC, so that the final assets aexC, then the expected value of the assets

will be:

(10.3)

and the expected loss @. If there is a scheme that can completely eliminate the
risk, but will cost an amounB, to implement, so that total assets wouldAbe:B,

thenit would only be reasonable to implement the sol@ndoing so increasear at

least maintainethe expected value of the assets in absence of the scheme. Thus, it

must satisfy:

(10.4)

Therefore the maximum amount that should be spent on the scligms;
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(10.5)

The maximum value to spend on mitigation is therefore equal to the expected loss
resulting from the risk. If the scheme does not completely eliminate the risk
altogether, but instead reduces the probability fr@ato & then the maximum

amount to spend is instead:

(10.6)

which again is the expected value of the loss. Thus, in the risk neutral case, the
decisions are made based on expected monetary losses. However, if preferences for
risk ale considered, then spends must be based on expected loss of utility, rather than
loss of assets. This (usually) entails an additional premium, which can be expressed
LQ WHUPV RI D 3PD[LPXP ULVN PXOWLSOLHU ™ RI WKH
M max If the maximum reasonable spend on mitigating risks is denotgdhen it is

given by:

(10.7)

The method for calculating the maximum risk multiplier will be shown in the

following section.

10.3 Accounting for Risk Aversion Using the ABCD Model

The ABCD model draws together four importanpexts of decision making when
regarding risk, three of which were introduced in the previous section. The
organisatior(or individual) is assumed to haassetsA (for the UK measured ifi),

and faces accident cost€; (£) with probability, &= 1 *p; (where p; is the
probability of no accident occurringfhe affected partys considering spendingn
amountB (£) on an environmental protection system that will reduce the probability
of incurring those accident costs fro@o & 1 +p,, for the commorcase where

" This section largely folloWEL99]]
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@&Es already smaltKH FKRLFH RBWWR GHWRWH WKH FRVW RI
V\VWHP PD\ EH UHIJDUGHG DV D CEIDrou@stdn@3Thel[SHQGL'
expected utilities beforeE(u;), and after,E(up), the risk-mitigating system is

introduced are calculated using the Atkinson utility funcfi@?39) The final

element is thelifference in expected utilifyD:

(10.8)

where dependence on the rkersionhas been madexplicit, and where:

(10.9)

and:

(10.10)

The protection system should be installed onlpifs negative or, in the limiting

caseD = 0.
W LV FRQYHQLHQW WR GHILQH DQRWKH the ¥adtyL DEOH

systemRiom DV WKH FKDQJH LQ WKMB nerohdlEe@to vhe WilityR Q TV XW
of the starting assetsy( ) = U(A):

(10.11)

whereq = 1 + Q and the lowerase letterd, and c, indicate normalised costs:
b, = B/A is the cost of the safety system norrsadi to the assets, = C/A is the

accident cost normakd to the assets.
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A value ofRp20a = 1 corresponds to a 100% reluctance to invebke case where the
cost of the safety system reduces to zeroettpecte utility of the organisationA
positive reluctance to invedd € Rioa < 1) indicates that the system is poor value for
money, whereas a negative reluctariRgd < 0) corresponds to a desire to invest in

the system. lthas beenshown|[190]|that as riskaversion increases, the absolute

value of the relatance decreases towards zé&xascheme that is good value @t 0

and a second scheme that would be rejected outright=aQ, because of its poor

value, bothconverge toward&;,n = O atlarge values of rislaversion.Hence the

risk-averse decision maker is unable to discriminate between the merits or demerits

of the two schemes at large 7KLV LV WKH 3SRLQW RI LQGLVFULTF
occurs whereRiom| = /gis, With /gis~ 10° being the discrimination limit. This gives

an upper limit to the value of the riskrersionwhich is denoted aghax

As was shown in the previous section, when the risk aversion is zero, then decisions

are made irpurely finarcial terms,and the maximum that should be spent on the
protection system is equal to the reduction in the expected cost of an accident

(10.12)

or equivalently:

(10.13)

The risk multiplier,m, is defined as theatio of the actua{normalised)cost of the
protection schemeb, to the expected monetary savings it will produce:

my = ba/bo °

Thomas et a(201M)[191]|have also showthat for a given protection scheme, the

reluctance to invest exhibits minimum valugand this minimunmoccurs at a risk
aversion of 0= @, called the ermisson point”. This corresponds to the point of
maximum desire to invest in the protection scheme.cdloulate the permission

pointa lower bounds set at@, = 0, since only rislaverse decisions are considered
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and not riskseeking behaviour. There is apper bound atQ, = GaxWhere @uaxis

the riskaversion at the point of indiscriminate decision. Within these bounds, the
minimum of Ry, follows three distinct patterns, iIIustratﬂt@ Patten (1):

there is a positive reluctance to invest at zero-aiskrsion which decreases

monotonically with increasing ris&version until the permission point meets the
point of indiscriminate decision &, = Gax Pattern (2): the reluctance to invesais
(negative) minimum afg, = 0, corresponding to the case when the safety system is
justified on purely financial grounds, afd,q increases monotonically with risk
aversion until the point of indiscriminate decision. Pattern (3): if the reluctance to
invest is close to (positive or negative) zero at zeroavsksion, then there is a
minimum in theRioe function at 0 <@, < @ax These three different patterns are
important to keep in mind when evaluating the optimum-aigérsion below.

Calculatingthe optimum riskaversion requires the numerical computation of the
risk-aversion and the normalised safety spend at the permission (@iand by,
respectively), together with their maximum values which occur at the point of
indiscriminate decision §ax andbnay. The latter can also be expressed in terms of

WKH 3PD[LPXP UL ViinaP givety 8x@ak # bhadlbo, with by defined
above.

The riskaversion at the permission poiry, is defined at the minimum d®;20a.
Differentiating Ri,gn With respect toq yields the objective functiong(b,, 0.

Recalling thag = 1 + Qthe objective function is given as

(10.14)

whereRy,p is the reluctance to invest in the safety scheme assuming a power utility

function:

(10.15)

and its derivative is:
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(10.16)

e roots of equati .14}yield the desired rislaversion, gp.
Th f i9(10.14)yield the desired rislaversi o

Graphical analysis of the variation gfb,, Q with b, for fixed Q shows that the
function has two different regimes whe< 1 and when0> 1. For 0< 1, the

objective function has two roots on the positive and negative going slopes of the

function as shown ‘lPFigureZZ andFigure23| As discussed in more detail later, the

first of these roots are sought out. F@* 1, there is only one root, nearlig= 1

Figure 24{and Figure25}. Finding the roots is made difficult at high valuescdfy

the rapid change in slope as shov%rﬁiigureZB andFigure25

Equatior)(10.14) cannot be solved analytically, and so must be solved numerically.

Two distinct approaches to these computations have been taken which were
developed independently so that results from the two methods could be compared
andused to increase confidence in their accuracy. The first approach was to use the
secant method. This naturally follows on from the referred derivative method used in

[191]{ but it uses a finite differenagproximation for the derivative ¢t,0a rather

than an analytical expression. The permission poft,is incremented as the
independent variable toward$, = @ax Yielding values ob,, andbmax The second
DSSURDFK ZDV D WHFKQLTXH ZKLFK zZzDV QDPHG WKH
minimum in theRy2ea function is found using a Golden Section Seamshhout

recourse to an analytical derivative. The independent variable is takyrratber

than Q incrementing toward®,, = bmax The point of indiscriminate decision is
evaluated using the Bisection Method, yielding values @gx and bmax The very

different nature of this algorithm promotes useful diversity in the calculations.

Equation|(10.14) can be solved for the objective function usithgg method of
referred dewvatives (see Thomas (199[[181]|and (1999@, which was usedh
Thomas et al (2010{191]( and which lends itself to computation in a spreadsheet

format. The computation caalsobe extended to more accurate and robust software

based algorithms. The initial approach to solving equgtiénl4)for the objective
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function that will be presented hemonsisted of applying the secant methaa
modification of theNewtoniRaphsoniterative method that uses a finite difference

approximationsee e.g. Press (19&@}55] . In the iteration the roots of the objective

function are solved holding constant, and solving for the value lmf= by, at the

permission point for a given value 6fThe iterative procedure for thisgsven by

(10.17)

with the iteration continuing untig( (bis1) < 10° and where/ E= 10° is a small

increment inb;. Each solution of equatig(l0.17) for increasing values of) will

give thepermission pair,kp, @p).

The procedure progresses by first finding a valuebfgrO= 0). Here we usb as a
seed value in the iteration. The corresponding value of the risk multipligis
denoted bymyiow = bpp(0)/bo. This then proceeds to highvalues ob, = by( 0+ /)

by adding fixed increments|Q up to 0= Qax Where, at some point the desire to
invest, -Rioe, Will become smaller thar/gis, and the procedure will stop with

0= gp: Ghax Da = bpp = Bnaxandm, = Mmax.

The above analysis caters for normalised costs for the protection system in the range
Bop ba 7 bpp( Bax), With the corresponding risk multipliers in the ramgg,, " m

" Mmax It is assumed that a normalised cost less tgA), is not possible forisk-

averse decision makers, although modifying this assumption to include risk seeking
decision makers would be a topic for further research.

The Golden Section Search meth@#e Press (1998165]) for determining the

permission point pairs @, ,by) finds the minimum in theR;,e function without

requiring derivatives of the function. Tladgorithm first looks for an approximate
value of @, by evaluatingR;>o at discrete values obwith a step size of 0= 0.1,
over the range ofup to he point where the absolute valueRafn is less than the
value, /4, at the point of indiscriminate decision. If a local minimum is identified
then a more accurate estimate@fis obtained by applying a golden section search

in the region of the mimum, which ensures that the minimum is found. If there is
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not a local minimum in the approximate solutiaior example, if the minimum is
too close to0= 0 (i.e. 0 < 2/ ) +then an iterative approach is taken by decreasing
the step size and recalcutadi @, in the region of the minimum, repeating the
procedure until the required accuracy is achieved.

An approximate value of the riskversion at the point of indiscriminate decision,

@ax Was found as above, by evaluatiRga at discrete intervals o This value

was refined by applying the Bisection met{j@@5](to evaluate the roots ¢R;oe| *

lsis = 0 about the approximate solution.

Thus, a brief overview of the methods for calculating the mamnnisk multiplier

M max have been laid out. This parameter then allows the maximum reasonable
spend on mitigating financial to be determined, as will be described below. No
analytical solution for the maximum risk multiplier can be determined. Indked, t
value is dependent upon the probability of occurrence and the consequence of the
risk faced, as well as the initial assets of the organisation (or individual). For further
details of the computational methods used in calculating the limits to riskaners
seeWaddington et afforthcoming)[199]

10.4 The Maximum Reasonable Spend and the New\Values

Once the maximum risk multiplier has been determined through numerical methods,

the maximum reasonablspend can be computed, from equg(ib7) repeated

below:

(10.7)

The valueBy is the expected monetary loss resulting from the risk. However, the

expected monetary loss may c@mplicated by factors such as the possibility of the

accident occurring multiple times, and the growth of the organisation. These issues

are more fully addressed ithomas and Jones (201[a0P2]| Nevertheless, treating

Bo asbeing equal to the expected monetary loss will be a good approximation in the

case of low accident probability and low growth rates.
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The 3-value (or second judgement value) is then the ratio of the actual amount spent

on mitigating the risk, denotexs &, to the maximum reasonable spend:
(10.18)

If a system protects against both risks to human life as well as to assets, and will cost

&L to implement, then it is also possible to calculaBVdRW DO MXGIHPHQW YI
(10.19)

where / 9, is the maximum reasonable spend on protecting human life, as given by
equatior[(3.60 The Jr-value may be interpreted in a similar manner to thalde,

in that }-values in the range from zero tmity will be deemed as cebeneficial,
while J-values in excess of unity indicate that the scheme offers poor value for
money, and should not be implemented. Thus theallie provides a new and full
criterion for the adoption or otherwise of a protestscheme to guard against both

financial and human costs.

This concludes the exposition and development of the theory and methods required
by the Jvalue framework for the valuation of health and safety, as well as the more
recent addition of financialisks. This framework provides original and objective
techniques for decision making that encompass a wide variety of types of risk yet
still retains an output that is transparent and simple to interpret, and more
importantly, provides consistency to aldien which decisions regarding sensible
levels of expendituren a given benefitan vary by eleven orders of magnitydee

Tengs et al (199§180]).

The final chapterof part 1 will provide some exampl calculations in order to

illustrate to broad applicability of the techniques.
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Figure 21 Response of the reluctance to invd¥b4,) with increasing risk aversion)( for different
normaleed costs of the safety systefl.( < b < 0.6). AssetsA) are £180,000, normaéd accident
cost €) is 0.995, and the probabilities b accident with and without the safety system@re 1 and
p: = 0.9 respectively.
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Figure 22 The derivative of the reluatae to invest wherf= 0.5 andc = 0.9, illustrating the two
roots of the objective functiog( Qb) = 0. The assets afe= £180,000 and all accident probabilities
are considered.
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Figure 23 The derivative of the reluctance to invest whan0.9andc = 0.999, illustrating the two
roots of the objective functiog( Qb) = 0. Other parameters are the same as Figure 22. Note the steep
gradient in the region around the second root.
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Figure 24 The derivative of the reluatae to invest wherd= 1.5 andc = 0.9, illustrating the single
root of the objective functiog( Qb) = 0. Other parameters are the same as Fidlire 2
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Figure 25 The derivative of the reluctance to invest whgnl.5 andc = 0999, illustrating the single
root of the objective functiog( @b) = 0. Other parameters are the same as Figur@&e the steep
gradient in the region around the root.
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Chapter 11 Example Calculations

11.1 Example Calculations for the JValue

In this section some example calculations will be shown in order to demonstrate the
broad applicability of the-¥alue. The next three sections will provide calculations
for the Jvalue by considering impact assessments for various health and safety
schemesFollowing this will be a calculation of the dnd 4 value of a protection
scheme to mitigate the risk of a large nuclear accident. Finallyalué analysis of

the ancient VTPF will be provided.

112 +6(YfV ,PSDFW $VVHVVPHQW RI 9DWLRXV

Occupational Exposures to Respirable Crystalline Silica

A review by the HSE of occupational exposure to respirable crystalline silica (RCS)
found that workers were exposed to unacceptable risks. They produced a regulatory

impact assessment of fouroposed exposure limitsee HSE (200%101]{ These

limits were: i) 0.3 mg.i, which then was the current limit, but would have been
more strictly enforced, as it was suspected that a substantial numvbarkefs were
exposed to concentrations in excess of these limits; ii) 0.1 Thgii;n0.05 mg.m®,
and iv) 0.0Img.ni°.

The benefits of these limits were calculated in the document as reduced numbers of
deaths from silicosis and lung cancer. Althoughréhevere also other benefits
assessed in the document, such as prevented disabilities, medical costs and lost
output, these are not included here, as only mortality effects are relevanalteJ
analysis. It is estimated that policy i) would result inl88s lung cancer deaths.
Policy ii) would reduce lung cancer deaths by 185 while iii) reduced them by 300,
and iv) reduced deaths by 455. The number of reduced deaths from silicosis was
taken to be the same as for lung cancer. In order to convert thesesfigto a loss

of life expectancy, it was necessary to use national mortality st*&ﬁdﬁ which

give data on the age of death from those diseases, from which the average loss of life
expectancy perahth can be determined. The standard deviation of the loss of life

expectancy can also be calculated from the data. These statistics show that lung
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cancer deaths cause, on average, 13.8 years of lost life per death, whilst silicosis
deaths results in 7.3ewrs of lost life. These numbers can then be multiplied by the

number of avoided deaths to arrive at the total improvement irexpectancy

afforded by the regulation, which is equalNd ;. These are listed jfiable11] The

HSE document also lists costs associated with each option. Maximum and minimum

cost estimates are given, and these can be averaged to determine a mean cost. J

values can thenebdetermined with the values of the parameters as giy€ahie6

The costs of the scheme and thealues are shown [ihable12 along with the 95%

confidence limits. Ircalculating the tolerance limits, it was assumed that the low and
high estimates of the cost of the scheme represented 95% confidence limits, which
then allows the standard deviation to be determined. No discounting will be
presented here.

As can be seerthe only scheme which has-&alue less than unity is option i), that

is, the option to more strictly enforce current limits. However, it is worth noting that
there will likely be additional uncertainties associated with the number of deaths
avoided bythe regulations, as cancer and silicosis involve latent effects, making it
difficult to assess the effects of exposures with much accuracy. Given that there will
likely be further uncertainties, it seems reasonable to view option ii), which has a J
value $ightly greater than thd = 1 threshold, as an acceptable figure. Also, when
other factors, such as disability costs etc. are considered alongsidevdhees]
option ii) would be viewed with further favour. To summarise, option i) gives the
best value dr money, but option ii) may also be considered acceptable given the

uncertainty.

The conclusions of the HSE document agreed to some extent withviilael
analysis. It was found that only option i) offered value for money. However, the HSE
consideredte occupational risks with this option as unacceptable, and so rejected

this option, instead favouring option ii).
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113 '"HSDUWPHQW RI +HDOWKfV 3URSRVDO WR 51

Unnecessary CT Scans

The Department of Health (DH) has recently publishedegulatory impact

assessment that investigated the use of Computed Tomography (CT) scans in

asymptomatic individualssee Department of Health (201/68]{ These scans can

help in detecting conditions, but@se patients to ionising radiation, which carries

health risks, and as such, needs to be justified. The Committee on Medical Aspects

of Radiation in the Environment (COMARE) has provided some recommendations

which would reduce the risks if implemented. B LPSDFW DVVHVVPHQW L
FRVWY DQG EHQHILWY RI HQIRUFLQJ &20%$5(fV UHFRPPI

The report assumes that there are approximately 3,000 individuals who have scans
every five years between the age of 40 and 70. Each scan is taken as deliveeng to
individual a dose of 10 mSv, so that a 40 year old will receive an additional dose of
70 mSv from the extra scans over his or her lifetime. This information alone is
sufficient to calculate the loss of life expectancy resulting from these scans. The

exposure can be modelled as a series of short exposures, as is ind@

The effect of a single radiation exposure on the additional risk is discussed in section
5.9, which assumes that no responsk vd observed for the first 10 years, due to

the latency of cancer development. There will then be a step change which lasts for
30 years, before the risk response returns to zero. When a series of these responses,
which are delayed by five years eacle added together, the overall response is a

pyramid shape, shown|ifigure27| The averaging is performed over the population

that is at least age 40. The average life expectancy of this cohort is 22.3 years.

The cost of implementing the recommendations is given in the assessment as
£45,000 per annum. This is based on 3,000 scans each costing £300, total cost
£0.9m, and assuming 5% of this is takersaplus(presumably after deducting for

the costs of oprating the scanner and staff costs). The undiscounted present value

over the remaining lifetime of the individuals is then £45,000%22.3 = £1,003,500.

The 3YDOXH IRU WKLV VFKHPH LV PHDQLQJ WKDW
recommendations will give good @ for money. This was also the conclusion of

'+V LPSDFW DVVHVVP HQW@ [ Etalnly egtirRED L Q
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are available for the cost of the scheme or the number of people. The tolerance limit
is therefore only calculated from the parameters in which the uncertainty is already
known. The tolerance limits are therefore small in this case. Again, discounting is

not considered.

114 'HSDUWPHQW RI +HDOWKTV 3URSRVDO WR 5HG)>
Inf ections
Another regulatory impact assessment by the DH, which was published in 2009,
reviewed proposals to reduce the number of MRSA infections and deaths in NHS
hospitals see Deparment of Health (20@ Although the number of MRSA

infections had decreased by 74% since 2003, it was felt that there was still

substantial variation across hospitals, and the DH believed that there was scope for
further reductions. In the impact assessment, two options eduction were
considered. Option i) involved setting targets based around the median. Hospitals
with infection rates above the median were required to reduce either to the median or
by 20%, whichever was greater. Hospitals below the median were requieztlite

by either 20% or to the lower quartile, whichever was least. Option ii) was for all
hospitals with rates above the lower quartile to reduce to the lower quartile.

The report assumes that i) would lead to a reduction in MRSA deaths of 86.3 per
year, whilst option ii) would reduce MRSA deaths by 109.3 per year. The ONS
UHSRUW WKDW GHDWK UDWHYV IRU 05%2) altHough JKHV W
MRSA can affect people of all ages. It will be asgdl that the average age of death

for MRSA is then 85 years. The life expectancy of an 85 year old is about 5.6 years.
Thus is will be assumed that each MRSA death causes a loss of life expectancy of
5.6 years.

The assessment assumes that option i) woeddllt in extra staff costs of £7.5
million whilst option ii) would result in extra staff costs of £19.08 million. It was
also noted that these costs should be multiplied by 2.4 to account for lost opportunity
costs associated with not being able to sghrsdmoney in other areas. There would
also be some reduction in costs associated with avoided treatments of those who

would otherwise have been infected. For option i) these benefits were £1.95 million
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per annum, whilst for option ii) these benefits wE&47 million per annum. The
total cost of i) was then £16.05 million, whilst for ii) the total cost was £43.32

million per annum. These details are then sufficient to calculate-théud of the

two options. The data is presented/Tiable 14 In assessing the tolerances, no

attempt has been made to account for uncertainty on the cost of the scheme, as the

data was not available. Equat|77)was used to estiate the standard deviation

on the change in life expectancy. This calculation requires knowledge of the
probability of being affected by MRSA, This is given if{62]|as 6.3x10, resulting
from 3,211 MRSAcases in 2008. The standard deviation on the total change in life

expectancyN/ ;, can then be calculated as 0.65 years for option i), and 0.82 years

for option ii).

As can be seen froﬁable 14f both options have-values less than unity, and so

offer good value for money. However, optigrhas the lower-¥alue and so would

be the preferred option. This was the same conclusion as in the impact assessment.

11.5 Example Calculations for the 3 and Jr-Value: Mitigating Large

Nuclear Accidents

This example uses notional, but realistic figg for a protection system that

mitigates the risk of a large nuclear accident. The example is taker[IQfj]

Suppose an organisation with assets of £10 billion owns a nuclear power plant that
has a lietime of 50 years. It is considering installing a protection system that will
reduce the frequency of large accidents from 2i€r year to 5x18 per year. The

new protection system would last the life of the plantaodld cost ,

a sum thatwould include all finance and maintenance costs. A risk analysis has

shown that if an accident were to occur, then 5 workers would be killed immediately,

while 40 would be exposed to a eo# dose of 300 mSv. Moreover, 500 members

of the genal public living in a small town close to the plant would receive aafhe

dose of 200 mSv, while the remaining 5000 inhabitants of the same town would
receive a single dose of 150 mSv. In addition, there would be environmental costs of
£5 bn, covering eacuation, relocation, business disruption, decontamination and

clean up, amongst others. Should the protection system be installed?
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First, it is necessary to determine the average loss of life expectancy resulting from
the accident. The dose to the mensbafreach group, and their respective loss of life

expectancy, is given ‘ﬂ' able 15 where it is shown that the average loss of life

expectancy for all those exposed is 0.4 years. These calculations assume a 0%

discount rate. The collective loss of life expectancy is then 2,218 years. It was shown

in Jones and Thomas (200f)19]| that the average change in life expectancy

following a reduction in accident frequencyeo the lifetime at risk is approximately
equal to the product of the average loss of life expectancy following a single
accident, the lifetime and the change in frequency. Performing this calculation, the
average change in life expectancy over the lif¢hef plant with the given accident
reduction is then 3.99xT0years, and the collective change in life expectancy is 2.2
years. The maximum reasonable spend on protection is/then£284,939.

The justifiable spend at risk neutrality can be determined from eqU@io8) as:
Bo = £3,165,746. It was shown Tthomas et al (2010§)91](andThomas and Jones
(2010)[[192]| that the maximum risk multiplier in this situation ng max = 1.34.
Hence from equatiq(i0.7) / &= £4,242,100.

If it is assumed that the cost of the protection system can be partitioned into human
costs and environmental costs, then it is possible to calculate-vladud. Suppose

that, of the total amount , an amount 3¥9 has been apportioned to human
protection, where the factor of three may arise because of considerations of societal

risk or gross disproportion. The-Value is then:

(11.1)

and thus, based on financial considerations alone, the scheub@ represent good
value for money. However, for g-¥alue analysis, it is necessary to consider all

costs. Thegvalue is then:

(11.2)
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Thus, 3 <1 and installation of the protection system would be justified.

11.6 J-Value Analysis of the Ancient VTPF

In chapter 2 it was noted that civilisations have been valuing life for millennia. The

earliest known valuations of life date back to ca. 1700 BCE, with the Babylonian

Code of Hammurabi, and 148TE, with the Book of Leviticus. It was found, using
HIWUHPHO\ FUXGH FDOFXODWLRQV WKDWEAMKIHVH $QFL
current prices. It is possible to perform a rudimentamalde analysis of these
valuations to determine the ceasffediveness of the health and safety policies of

ancient civilisation. Of course, the analysis will not have a high degree of accuracy,

but it may nevertheless prove to be informative.

The Jvalue of the VTPF is given by a rearranged version of either &t 3)or

(7.14) Discounting will not be included, and so these equations will be identical.

Therefore:

(11.3)

whereVp will be taken to lie in the range £18800. Estimates of the worl@DP

per person have been made for times stretching back to 1 Million|[BQEFor
1600 BCE (the closest date to the VTPF estimates), the global GDP per jgerson

given as $121, the units of currency are 1990 international dollars. International
dollars are dollars that have been adjusted for purchasing power parity (PPP). This
can be converted into 1990 UK pounds by multiplying by the ratio of current UK
GDP to UK GDP measured in international dollars, which is givently IMF
(2011)[114]| This ratio is about 0.645. The figure can then be adjusted for inflation

using ONS time series data on the G[@B3]| which amounts to multiplying by
2.26, to give the world GDP per person in 1600 BCE in 2010 UK pounds. This value
is £177. It will be assumed that the world GDP per person in 1600 BCE is a

sufficiently good estimator of the GDP per person @ Mesopotamian and Eastern

Mediterranean region around this time.
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In order to estimate the average life expectancy, life table data from ancient Rome

was obtaine¢[194]| It is assumed the mortality experience in ancieomB was

similar to that of the civilisations being assessed. The data gives both life expectancy
and the population distribution, from which the average life expectancy can be
calculated. This was found to be 29 years, although the figure is stronghtgdfigc

infant mortality.

The final parameter that needs estimating is the ancient risk ave@siangstimate

this, it is necessary to first estimate the ancient wionk fraction,w, and the ancient
wage share of the GDP, In section8.5, it was oted that the wage share is
predicted to be constant over time and across countries. It was also noted that this
has been experimentally verified. It will be assumed, then, that this constant wage
share can be extrapolated back to ancient civilisationshd$JK wage share was
found to be about 58%, it will be assumed that the ancient wage share is similar to
this. A rounded figure of 60% will therefore be used. The work time fraction is
estimated by assuming that individuals would spend the majority e f tifie
working, and so would have little free time. If it is assumed that an individual will
commence work at age 8, and will work for the rest of his life, until age 50, and that
he will work for one hundred hours a week, then his worle fraction wil be 0.5.
Similar figures would also apply to most individuals in the society, so that this figure
would be appropriate as an average work time fraction. This then enables the risk

aversion to be calculated. However, this raises an immediate problem.

With the figures given above, the risk aversion is abOWut, i.e. it is negative,

indicating risk seeking behaviour. So far, it has been assumed that the fraction of

time spent working will be low enough to give risk averse behaviour, which in turn

is requred if the law of diminishing marginal utility is to be satisfied. This law, that
successive amounts of a commodity will be valued at a diminishing rate, is one of

the most well established laws in utility theory. However, in the situation where
considera®H SURSRUWLRQV RI DQ LQGLYLGXDOTfV OLIH ZF
aversion is negative, and the marginal utility increases with the amount of
commodity. Thus, in order to proceed with this analysis this law must be given up

here. However, the effedf long working hours being associated with risk seeking
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behaviour and increasing marginal utility is an interesting result which may be

considered further in the future.

Thus, the Jralue of the ancient VTPF may now be calculated:

(11.4)

thus, for values oW¥p in the range £100 £400, the Jalue of the VTPF is in the

range 0.03x0.13. If the worktime fraction is varied up to a high value of 0.8, then

the Jvalue is still considerably less than unity, at 0.52. Thus, this faidyrentary
DQDO\WLV LQGLFDWHYV WKDWDbeéfielaDQFLHQW 973)YV ZHL
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Figure 26 Dose received by individual of agevho is undergoing scams future aget.
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Response
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t-a

Figure 27 The response of the adidnal risk faced by an individual of current agat future age,

following an exposure type given|Figure 26|
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Regulatory Lung Silicosis Lung Silicosis Total Life
Exposure Cancer Deaths Cancer Life-Years| Years
Limit (mg. Deaths Avoided Life- Gained Gained,
m>) Avoided Years N/; (#1
Gained S.D)
i) 0.3 36 36 497 262 759
(£29.2)
i) 0.1 185 185 2,553 1,348 3,900
(x150)
iii) 0.05 300 300 4,139 2,186 6,325
(x243)
iv) 0.01 455 455 6,278 3,315 9,593
(x369)

Table 11 Deaths avoided and lifgears gained fortheR XU H[SRVXUH OLPLWYV IURP +6(fV I
methods to reduce occupational exposures to respirable crystalline silica.

Regulatory Exposure Average Cost of Scheme | J-value (95%

Limit (mg.m ) (EM) (1 S.D) Tolerance Limit
- ¢ 39)

i) 0.3 5.2(x0.05) 0.050 (0.048
0.058)

i) 0.1 644.0(+3.06) 1.3(1.21.4)

i) 0.05 3,528.0(+38.3) 4.3 (3.94.8)

iv) 0.01 13,343.5+673.2) 11 (9.312)

Table 12 Cost of scheme andvalues usingf able11|data.

Proposal to Individual Initial Life Cost, = J-Value (N
Implement change in Expectancy, | 45,000%X | = 3,000)
&20$5(TV Average Life| X (years) (E) (95%
Recommendations| Expectancy, Tolerance
/; (years) Limit - +2
IN))
8.3x10° 22.3 1,003,500 0.31(0.30
0.33)

Table13 'DWD IRU '+V SURSRVDO WR LPSOHPHQW &20%$5(fVY UHFRPPH

Proposal to Annual Cost (£) Annual Life J-Value (95%
Reduce Years Gained, Tolerance
Number of 1/; (years) Limit - “  3J)
MRSA Deaths

)] 16,050,000 479.0 0.26 (0.250.28)
ii) 43,320,000 606.6 0.55 (0.520.59)

Tablel4DatalRU '+fV SURSRVDO WR UHGXFH WKH QXPEHU RI 056% GHD
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Group Group Size Dose (Sv) Loss of Life
Expectancy per
Person (year)

Public 5000 0.15 0.354

Public 500 0.2 0.472

Plant Operators| 5 Killed 38.795

immediately

Plant Operators| 40 0.3 0.401

Average bss of life expectancy per persah, (years) 0.400

Collective loss of life expectancyy, / ; (years) 2,218

Table 15 Loss of life expectancy to public and workers following a notional large nuclear accident.
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