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Abstract

The multiple mapping conditioning (MMC) approach is applied to two non-

piloted CH4/H2/N2 turbulent jet diffusion flames with Reynolds numbers of Re=15,200

and Re=22,800. The work presented here examines primarily the suitability of MMC

to simulate CH4/H2 flames with varying Re numbers. The equations are solved in

a prescribed Gaussian reference space with only one stochastic reference variable

emulating the fluctuations of mixture fraction. The mixture fraction is considered as

the only major species on which the remaining minor species are conditioned. Fluc-

tuations around the conditional means are ignored. It is shown that the statistics of

the mapped reference field are an accurate model for the statistics of the physical

field for both flames. A transformation of the Gaussian reference space introduced

in previous work on MMC is used to express the MMC model in the same form

as CMC. The most important advantage of this transformation is that the con-

ditionally averaged scalar dissipation term is in a closed form. The corresponding

temperature and reactive species predictions are generally in good agreement with

experimental data. The application to real laboratory flames and the assessement

of the new conditional scalar dissipation model for the closure of the singly condi-

tioned CMC equation is the major novelty of this paper. The results are therefore

primarily examined with respect to changes of the conditionally averaged quantities

in mixture fraction space.

Key words: turbulent diffusion flame, modelling, scalar mixing, multiple mapping

conditioning

Preprint submitted to Elsevier Science 22 May 2008



1 Introduction

The primary focus of new model development in turbulent reacting flows is

the accurate description of the coupling between reaction and molecular mix-

ing and the associated closure problems for the terms representing these two

processes. The closure of the chemical reaction rates is one of the most compu-

tationally challenging problems that arises. The non-linearities of the chemical

reaction rates lead to terms involving correlations of the fluctuations that can

be as large as those involving the average quantities. Consequently, attempts

to express the average rates of reaction in terms of average values of the

scalars have proved inadequate and species concentrations, which depend on

reactions, cannot be predicted by unconditional averaging. Another impor-

tant term is the turbulent mixing term. Bilger [1] showed that for the fast

chemistry limit, reaction rates are strongly related to the scalar dissipation.

Unfortunately, the dissipation appears as an unclosed term in most commonly

used approaches.

The most recent advance in turbulent non-premixed combustion modelling is

the Multiple Mapping Conditioning (MMC) method [2,3,4] that suggests a

logical combination of Probability Density Function (PDF) [5,6] and Condi-

tional Moment Closure (CMC) [7,8,9] approaches. The principle idea of MMC

is the division of all turbulent fluctuations (and scalars) into ”major” and

”minor” groups. Fluctuations of major scalars are not restricted. Fluctuations

of minor species are correlated to the fluctuations of major species and their

evolution is determined by conditional methods.

MMC, as its name implies, employs the concept of the mapping closure (MC)

[10,11,12]. Mapping functions map the quantities of interest (usually species
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mass fraction) between a reference space with known distribution and the

physical composition space whose distribution is unknown. The dimension-

ality of the reference space is determined by the number of major scalars.

The chemical source terms are modeled with first-order moments and are con-

ditioned on the reference variables. In the simplest formulation, the mixture

fraction can be selected as the only major species and then MMC is equivalent

to singly conditioned CMC but with the advantage that the conditional dissi-

pation term appears in closed form. If all scalars in the composition space are

selected as being major then MMC is equivalent to the joint PDF method.

Therefore, it is clear that MMC is not a specific model, it is a generalised

modelling approach. Depending on the actual implementation of the MMC

principles, other models result as special cases of MMC.

The MMC model has been successfully tested in homogeneous, isotropic, de-

caying turbulence [13,14,15] and direct numerical simulation (DNS) has been

used for validation. The current work deals with the extension to inhomoge-

neous laboratory flames. Mixture fraction is chosen as the only major species.

The model is tested against experimental data for two non-piloted CH4/H2/N2

flames studied at the Deutsches Zentrum fur Luft- und Raumfahrt (DLR)

[16,17] and at Sandia Laboratories [18,19]. The two flames named as DLR A

(Re=15,200) and DLR B (Re=22,800) are convenient for the present imple-

mentation since they have different Re numbers but at the same time neither

presents considerable levels of local extinction and re-ignition. Predictions of

doubly-conditioned MMC are necessary for flames with higher Re numbers,

however, single conditioning will be sufficient for the present case since singly

conditioned approaches have been proved successful in the past for flames with

similar levels of extinction.
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Despite the fact that DLR A and B are well characterised experimentally

through extensive velocity and scalar measurements, only few modelling at-

tempts have been performed. Pitsch [20] modelled the flame DLR A by com-

bining a k − ε model with an unsteady flamelet approach. Kempf et al. [21]

applied a three dimensional Large Eddy Simulation (LES) for DLR A as well.

Although the overall agreement of their results with experimental data is good,

there is a clear tendency to radial diffusion close to the nozzle. More recently,

Kim et al. [22] computed flame DLR B with a second order CMC for the

reaction step, improving considerably NO predictions. Ozarovsky et al. [23]

implemented a joint PDF approach closed at the joint scalar level for DLR A

and DLR B and explored different methods of flame ignition. They also re-

ported problems in predictions at the nozzle where steep gradients in mixture

fraction necessitate accurate scalar dissipation estimates.

In the next section we introduce a deterministic MMC model with reference

variable for mixture fraction. In Section 3, the numerical implementation is

briefly described. Results for the mixture fraction are presented in Section 4.

Finally, Section 5 focuses on the closure of the scalar dissipation term and its

effect on the reactive species predictions.

2 The MMC model

The MMC equation given by [2]

∂XI

∂t
+ U∇XI + Ak

∂XI

∂ξk
−Bkl

∂2XI

∂ξkξl
= WI (1)

is solved in the reference space ξ(x, t) = (ξ1, ξ2, ..., ξmajor) for the the mapping

functions XI. The upper case subscript I stands for all scalars. The lower case

5



subscripts k and l are for the major scalars only. It is notable that a single

equation governs the evolution of the mapping functions of all scalars of inter-

est, without differentiating between major and minor groups. We emphasise

that although the mapping functions simulate the evolution of the physical

quantities of interest (i.e. species mass fraction), the reference field ξ does not

represent by itself a direct model for any of the physical variables involved in

combustion process. It is used only as a source of the stochastic behaviour of

the modelling variables. It is noted here that the PDF of the reference field

therefore can have an arbitrary shape, but previous work on mapping closure

methods showed that a Gaussian reference space is mathematically convenient

without limiting the generality of the method. The choice of the reference field

however, affects the modelling of the parameters U, Ak and Bkl that appear

in Eq. (1) since models need to be consistent with the evolution equation of

the reference PDF.

A standard Gaussian reference PDF, that is invariant in space and time, leads

to a relatively simple form of the velocity, the drift and the diffusion coeffi-

cients, U, Ak and Bkl. They are given by

U = U(ξ; x, t) = U(0) + U
(1)
k ξk (2)

Ak = −∂Bkl

∂ξl
+Bklξl +

1

ρ
∇ρU(1)

k (3)

U(0) = ṽ (4)

U
(1)
k 〈ξkXI〉 = ṽ′X

′
I (5)

where ρ is the Reynolds average density, v is the velocity vector, the tilde

denotes Favre averages and angular brackets denote averages over reference

space ξ.
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The model proposed for the conditional velocity is linear (see Eq. (2)). It is

based on a joint Gaussian distribution of the velocity and the scalar fields,

and it is similar to the model commonly used in CMC computations. Joint

Gaussianity is certainly questionable for velocity and mixture fraction, but it

may hold for the joint distribution of velocity and the reference variable ξk.

For the Favre turbulent fluxes ṽ′X
′
I , the gradient diffusion hypothesis is ap-

plied.

ṽ′X
′
I = −Dt〈∇XI〉 (6)

The correlation 〈ξkXI〉 is given by

〈ξkXI〉 =
∫
ξkXIPξkdξk. (7)

Eq. (2) to (5) imply that the diffusion coefficient can be treated as an inde-

pendent coefficient. Bkl can be chosen as any reasonable function of (x, ξ) and

then from Eq. (3) Ak can be determined so that a corresponding transport

equation for the reference space PDF, Pξ is satisfied [2]. However, from its in-

terpretation as a diffusion coefficient which guarantees the consistency of the

PDF of XI with the joint species PDF transport equation, Bkl should satisfy

the following relation [2]:

Bkl

〈
∂XI∂XJ

∂ξk∂ξl

〉
= ÑIJ (8)
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3 The MMC implementation

3.1 Case configuration

In the current study MMC is implemented for the modelling of two CH4/H2/N2

turbulent jet diffusion flames (DLR A and DLR B). The fuel composition for

both fuels is 22.1% CH4, 33.2% H2, and 44.7% N2 by volume. The burner

geometry features an axisymmetric fuel jet with diameter of 8mm and a sur-

rounding nozzle with a dimeter of 140mm. The exit velocity of the cold jet is

42.2± 0.5 m/s for flame DLR A (Re = 15,200) and 63.2± 0.8 m/s for DLR B

(Re = 22,800).

3.2 Numerical procedure

In the present study mixture fraction is chosen as the only major species and

a standard Gaussian distribution of the reference variable is mapped to the

mixture fraction field. The governing Eq. (1) then reduces to

ρU∇XZ + ρA
∂XZ

∂ξ
− ρB∂

2XZ

∂ξ2
= 0 (9)

where ξ represents the one-dimensional reference space emulating mixture

fraction XZ . Time derivatives have been neglected due to the steady nature

of the flow under investigation. The conservative form of Eq. (9) is:

∇ρUXZ + ρA
∂XZ

∂ξ
− ρB∂

2XZ

∂ξ2
= XZξ∇ρU(1) (10)

Eq. (10) is discretised using a finite volume technique. The grid is staggered

such that velocity is determined at the cell boundaries and scalars at the cell
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centre. The computational domain extends to 100 diameters downstream and

19 diameters in radial direction and is discretised by 185 x 50 cells in the

axial and radial directions, respectively. It is refined near the fuel port. For

the reference variable ξ, 50 cells are used that cover the interval ξ ∈ [-4,4].

A first-order upwinding scheme is used for spatial transport and a hybrid

scheme is applied for discretising transport in ξ-space. This hybrid scheme

changes from central differencing to first order upwind differencing when the

Peclet number exceeds 2. Boundary conditions are defined in both physical and

ξ-space. In the ξ-plane, the two boundary cells are calculated using the con-

stant gradient assumption. The reader is referred to reference [24] for boundary

conditions in physical space.

In the current implementation, Eq. (10) is solved for mixture fraction and

coupled to an axisymmetric elliptic CFD code [24]. The solver uses the Bi-

conjugate gradient method and produces results for all spatial and ξ-space

locations at one time. Values for U, A, and B are computed explicitly, based

on the solution of the previous iteration.

4 Mixture fraction modelling

The solution of Eq. (10) provides the evolution of mixture fraction in refer-

ence space if WI is set to zero, and the mapping function represents mixture

fraction, Z = XZ(ξ, x, r). The relationship between the reference PDF, the

mapping function and the mixture fraction PDF, PZ , is given by [11]

PZ = Pξ

(
∂XZ

∂ξ

)−1

. (11)
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The local mixture fraction mean and its rms can then easily be recovered by

integration across reference space.

Figures 1 and 2 present the mean and the rms of Z as functions of radius at

several downstream locations for flame DLR A and DLR B, respectively. It is

shown that the predicted mean and variance of mixture fraction are in very

good agreement with the experimental data for both flames. The variance is

slightly under predicted further downstream. For better comparison, results

from ’conventional’ RANS computations for mean mixture fraction and rms

are also included in these figures. The term ’conventional’ refers to the solu-

tion of two transport equations for Favre averaged mixture fraction and its

variance [25,26]. The quality of MMC and conventional RANS predictions is

comparable and differences may be attributed to the different representation

of the turbulent flux term. MMC predictions for the mean are better down-

stream than the corresponding RANS calculations. Both models predict the

jet spreading reasonably well and are qualitatively similar to earlier RANS [23]

and LES studies [21].

Figure 3 compares the predicted mixture fraction PDFs (solid lines) with the

experimental data (squares) at three radial locations for x/D = 20. Further

comparison is performed with the corresponding β-PDF profiles with mean

and variance from the RANS calculations (dashed line). Agreement with ex-

perimental data is very good and predictions of MMC are improved in com-

parison to the β-PDF on the rich side (r/D < 1). The shapes of the two PDFs

are very similar. It is well known that the β-PDF approximates the mixture

fraction PDF very well and we may conclude that MMC leads to accurate

predictions for the PDF. MMC does not, however, restrict the PDF shape

and may therefore be useful in cases where we are interested in the joint PDF
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of more than one scalar that cannot be easily presumed.

5 Chemical species predictions

A 35 species, 219 reaction mechanism has been employed [27] to simulate the

chemical kinetics, and radiation losses were considered. In principle, Eq. (10)

can be solved for all conditioning (here mixture fraction) and conditioned

species (here all the reactive scalars). In the case of one reference variable

however, a simple transformation [3,4] yields the singly conditioned moment

closure (CMC) transport equations for the conditioned (reactive) species. The

latter, i.e. the CMC equations, are solved here for convenience due to the

existing CMC implementation in the code [24]. Conditional moment closure

methods require closure of the mixture fraction PDF and of the conditional

scalar dissipation rate. The current MMC implementation provides new clo-

sures for these terms, and the remainder of this paper will largely focus on

scalar dissipation modelling and its effects on the reactive species predictions.

5.1 Scalar dissipation modelling

The MMC equation for the minor species is transformed using a coordinate

transformation [3] from the Gaussian mixture fraction reference space, ξ, to

the actual mixture fraction sample space variable η. Similar to Eq. (8), the

conditional scalar dissipation can be obtained from

〈N |η = Z(ξ)〉 ≈ B

(
∂XZ

∂ξ

)2

(12)
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A simple integration of Eq. (12) over the reference space yields the mean scalar

dissipation

Ñ =
∫
B

(
∂XZ

∂ξ

)2

Pξdξ (13)

It is important to note that the mean scalar dissipation modelled as

Ñ =
ε

k
Z̃ ′2, (14)

links the turbulent flow field with the mixture fraction evolution and deter-

mines the diffusion coefficient B according to Eq. (8). The proposed MMC

implementation provides a model for the conditional scalar dissipation and is

fully closed. The modelling of the conditional scalar dissipation does not rely

on pre-assumed PDFs for mixture fraction and is therefore distinctly different

from existing closures [28,29].

Figure 4 compares the computed values of mean scalar dissipation obtained

from MMC (solid lines) and conventional Favre averaged mixture fraction

variance transport equations (dashed lines). General trends are similar for

the two models, however, peak values are lower for the MMC model. The

differences in unconditional dissipation are directly proportional to differences

in variance predictions according to Eq. (14), and lower variances result in

lower dissipation rates.

Figure 5 displays the radial profiles of conditional scalar dissipation at two

downstream locations for flame DLR B. Solid lines represent the MMC predic-

tions, the dash dotted lines show modelled dissipation values using an inverse

error function as a shape function [30] and mean dissipation values that are

based on the variance from the Favre averaged variance transport equation.
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We will denote the latter model in the remainder of this paper ’error function

model’ (or erf). Not surprisingly, MMC yields lower predictions at all times

due to lower mean dissipation rates. Some distinct differences can be observed

with respect to the dissipation’s distribution in mixture fraction space. The

inverse error function gives always peak values at Z = 0.5. This is certainly

not correct at all times and locations, and MMC does not impose any restric-

tions on the shape of the conditionally averaged dissipation values. Indeed, the

peak at x/D = 5 varies with radial position. In addition, MMC predicts zero

conditional scalar dissipation in zero probability regions as can be observed

for high mixture fraction values at large radial positions.

5.2 Reactive scalar results

Figure 6 shows the conditional averages of temperature, CO and OH at three

downstream locations and r/D = 1 for flame DLR B. MMC predictions (solid

lines) are compared with experiments (symbols) and a second set of CMC

computations using a presumed β-PDF for mixture fraction and the ’error

function model’ for its conditional scalar dissipation (dashed dotted lines). It

can be seen that the general behaviour is quite well reproduced for both mod-

els. The temperature is well predicted at all locations. For OH predictions,

the MMC approach seems to offer considerably better predictions downstream

(x/D = 20 and further on). However, close to the nozzle it is overpredicted,

which can probably be an indication of underprediction of scalar dissipation

(cf. Fig. 5). In contrast, the CO predictions are somewhat lower than the ex-

perimental data for the MMC approach and the error function model seems

to capture peak CO concentrations at x/D = 20 and x/D = 60 more accu-

rately. However, if figure 6 is seen in conjunction with figure 2, it is clear that
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in regions of high probability (η = 0.3 at x/D = 5, η = 0.48 at x/D = 20

and η = 0.26 at x/D = 60), MMC is qualitatively similar to the inverse error

function model. We should also bear in mind, the relatively large measurement

uncertainties of up to 25% for CO as reported in Meier et al. [18].

The conditional profiles of major species such as CO2 and H2O are in good

agreement with the experimental data for both flames. Differences between the

predictions using different models of conditional scalar dissipation are quite

small and results are therefore not shown.

Figure 7 shows radial profiles of unconditional temperature for DLR A and

DLR B at three downstream locations. Good agreement is observed with the

experimental data. The overprediction of temperature for radial locations with

r/D > 1 at x/D = 5 can be associated with the early jet break up that is

also noticeable in the mixture fraction profiles (Fig. 2). Generally, MMC leads

to slightly improved temperature predictions, especially for flame DLR A, at

x/D = 5 where the width of the high termperature region is less overpredicted

in comparison to the error function model. The differences between the models

reduce further downstream due to reduced differences in predicted values for

conditional scalar dissipation.

6 Conclusion

The present work is the first deterministic application of the MMC approach

to inhomogeneous reactive flows. For simplicity the MMC equation for only

one major species has been solved and this major species represents mixture

fraction. The MMC equation is solved with a Gaussian reference field and

successful modelling for the PDF of the mapping function has been achieved.
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It is demonstrated that the method is capable of simulating the structure of

turbulent, non-piloted, diffusion flames with different levels of turbulence since

trends for the first two moments of mixture fraction are very well reproduced.

MMC provides an implicit closure for the conditionally averaged scalar dissi-

pation and the mixture fraction PDF which are needed for CMC, and MMC

is therefore closed. These closures have been used for the prediction of reac-

tive species and temperature and comparison with measurements shows good

agreement and demonstrates the feasibility of this new method. Results are

qualitatively similar to corresponding computations using more conventional

closures based on transport equations for Favre averaged mixture fraction and

its variance, but MMC provides a more consistent closure for the conditional

dissipation, no assumptions on the shape of the PDF are required and its use

may therefore be preferred in more complex geometries where standard as-

sumptions on the shape of the PDF and the conditional dissipation may not

hold. More detailed examination of the performance of the MMC model would

require extra experimental data for the spatial profiles of the conditional scalar

dissipation which are hoped to be available in the future.

The current study has demonstrated the feasibility of MMC to describe the

evolution of the mixture fraction PDF. The suggested approach is, however,

not limited to only one major scalar, and two or more major scalars will be

needed for the accurate modelling of flames with moderate to significant local

flame quenching. Modelling strategies for jet flames with extinction may be

based on recent studies on scalar mixing in isotropic turbulence [15].
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8 List of Figure Captions

Figure (1): Radial profiles of mixture fraction and mixture fraction rms at

three axial locations for DLR A. Solid lines represent MMC predictions, dashed

lines represent RANS and symbols represent experiments.

Figure (2): Radial profiles of mixture fraction and mixture fraction rms at

three axial locations for DLR B. Solid lines represent MMC predictions, dashed

lines represent RANS and symbols represent experiments.

Figure (3): PDF profiles of mixture fraction at x/D = 20. Squares represent

experimental data, solid lines represent MMC predictions and dashed lines

β-PDF.

Figure (4): Radial profiles of mean scalar dissipation at three axial location

for DLR B. Solid lines represent MMC predictions and dashed lines repre-

sent predictions from conventional Favre averaged mixture fraction variance

transport equation.

Figure (5): Conditional scalar dissipation at x/D = 5 (left) and x/D = 20

(right) for various radial positions in flame DLR B. Solid lines represent MMC

predictions and dashed dotted lines inverse error function.

Figure (6): Conditional profiles of T, CO and OH at r/D = 1 at three down-

stream locations. Squares represent experimental data, solid lines represent

MMC predictions and dashed dotted lines CMC predictions with the inverse

error function model for the conditional scalar dissipation.

Figure (7): Radial profiles of temperature at three axial locations for DLR A

and DLR B. Solid lines represent MMC predictions, dashed dotted lines CMC
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predictions with the inverse error function model for the conditional scalar

dissipation and symbols represent experiments.
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9 Figures

Fig. 1. Radial profiles of mixture fraction and mixture fraction rms at three axial
locations for DLR A. Solid lines represent MMC predictions, dashed lines represent
RANS and symbols represent experiments.

Fig. 2. Radial profiles of mixture fraction and mixture fraction rms at three axial
locations for DLR B. Solid lines represent MMC predictions, dashed lines represent
RANS and symbols represent experiments.
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Fig. 3. PDF profiles of mixture fraction at x/D = 20. Squares represent experimental
data, solid lines represent MMC predictions and dashed lines β-PDF.

Fig. 4. Radial profiles of mean scalar dissipation at three axial location for DLR B.
Solid lines represent MMC predictions and dashed lines represent predictions from
conventional Favre averaged mixture fraction variance transport equation.
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Fig. 5. Conditional scalar dissipation at x/D = 5 (left) and x/D = 20 (right) for
various radial positions in flame DLR B. Solid lines represent MMC predictions and
dashed dotted lines inverse error function.

Fig. 6. Conditional profiles of T, CO and OH at r/D = 1 at three downstream
locations for DLR B. Solid lines represent MMC predictions and dashed dotted
lines CMC predictions with the inverse error function model for the conditional
scalar dissipation.
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Fig. 7. Radial profiles of temperature at three axial locations for DLR A and DLR
B.Solid lines represent MMC predictions, dashed dotted lines CMC predictions with
the inverse error function model for the conditional scalar dissipation and symbols
represent experiments.
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