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Abstract.  It has previously been shown that the use of two-phase screw expanders in power 

generation cycles can achieve an increase in the utilisation of available energy from a low 

temperature heat source when compared with more conventional single-phase turbines.  

However, screw expander efficiencies are more sensitive to expansion volume ratio than 

turbines, and this increases as the expander inlet vapour dryness fraction decreases.  For single-

stage screw machines with low inlet dryness, this can lead to under expansion of the working 

fluid and low isentropic efficiency for the expansion process.  The performance of the cycle 

can potentially be improved by using a two-stage expander, consisting of a low pressure 

machine and a smaller high pressure machine connected in series.  By expanding the working 

fluid over two stages, the built-in volume ratios of the two machines can be selected to provide 

a better match with the overall expansion process, thereby increasing efficiency for particular 

inlet and discharge conditions.  The mass flow rate though both stages must however be 

matched, and the compromise between increasing efficiency and maximising power output 

must also be considered.  This research uses a rigorous thermodynamic screw machine model 

to compare the performance of single and two-stage expanders over a range of operating 

conditions.  The model allows optimisation of the required intermediate pressure in the two-

stage expander, along with the rotational speed and built-in volume ratio of both screw 

machine stages.  The results allow the two-stage machine to be fully specified in order to 

achieve maximum efficiency for a required power output. 

1.  Introduction 

 

The Organic Rankine Cycle (ORC) provides a means of recovering useful energy from low 

temperature heat sources.  In comparison with conventional high temperature steam Rankine cycles, 

the low temperature of these heat sources means that the attainable cycle efficiency is much lower, 

while the required surface area of the heat exchangers per unit power output is much higher.  The 

lower latent heat of evaporation of organic fluids relative to steam also means that the feed pump work 

required in ORCs is a significantly higher proportion of the gross power output.   

 

For low source temperatures, the power generation cycle normally considered is that where the 

working fluid enters the expander as dry saturated vapour, as shown in Figure 1.  However, in most 

cases, this leads to the working fluid leaving the expander with some superheat, which must be 

removed before condensation begins. 
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Figure 1: Illustrative T-s diagrams showing conventional ORC with dry saturated vapour at the 

expander inlet, and TFC with wet saturated vapour at the expander inlet 

 

 

Maximising net power output from the cycle is a compromise between increasing the mean 

temperature of heat addition (which, in accordance with Carnot’s principle, can increase cycle 

efficiency) and increasing the amount of heat extracted from the source, which requires a lower 

evaporation temperature. 

 

This can be achieved in a Trilateral Flash Cycle (TFC) which expands the working fluid from a 

saturated liquid state as shown in Figure 1.  Although this system has been considered for many years, 

to date, no large scale demonstration unit of it is known to have been built. This is because of the lack 

of suitable two-phase expanders with adiabatic efficiencies approaching those of dry vapour turbines. 

 

By the use of a screw expander, instead of the more conventional turbine, it is possible to admit the 

working fluid to the expander as wet vapour and thereby eliminate both the need to desuperheat the 

vapour after expansion and simultaneously to raise the evaporation temperature, thus improving the 

cycle efficiency.  The potential cost and performance benefits of using screw expanders in ORC 

systems have been extensively studied for geothermal applications [1-3]. 

 

In the fields of geothermal and waste heat recovery systems, there is growing interest in generating 

power from heat sources with initial temperatures in the 170-200°C range.  At these temperatures, 

simple ORC systems are less attractive, as the method recommended for their use under these 

circumstances is to operate two such systems in a cascade arrangement. The first would operate over a 

higher temperature range and the condenser of this unit would act as the evaporator of the second unit 

with different working fluids in each closed loop. Alternatively, Kalina type systems, which require at 

least three heat exchangers, may be suitable. In the light of the relative complexities of these systems, 

the authors re-examined the possibility, first considered some thirty years ago, of using a TFC system 

for power recovery from higher temperature resources. 

 

At resource temperatures in the 170-200°C range, a suitable working fluid for a TFC system is pure 

n-pentane. With such a working fluid, the expansion process involves a volume ratio of expansion of 

the order of 160:1, which, using twin-screw machines, requires a two stage expander to achieve 

efficient expansion.  The problem, therefore, lies in the design of the first and second stage expanders, 

to admit saturated liquid and wet vapour respectively.  While previous work has studied the 

performance of combined twin-screw and turbine systems [3], recent progress in developing and 

validating a computational twin-screw model has allowed the performance of single and two-stage 

systems to be investigated in greater detail.  This model allows the optimisation of the expander 
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parameters for a particular application, and can be incorporated with other detailed component models 

to allow multi-variable optimisation of low temperature heat recovery systems. 

2.  Twin-screw expander model 

 

A full thermodynamic model of the expander has been created for investigating the performance of 

two-stage expanders. This is based on the quasi one dimensional analysis of twin-screw machines as 

described by Stosic and Hanjalic [4,5], which has been extensively validated for compressors for a 

wide range of working fluids and operating conditions.  For expanders, the model has been validated 

for expansion of low dryness fluid (including saturated liquid) using the refrigerant R113 [6], and 

more recently for the expansion of high dryness wet steam [7].  Using this procedure, machine 

geometry and rotor profiles have been optimised for a particular set of operating conditions 

representative of those considered in this paper, and have been fixed for the purposes of the current 

study.  The City University ‘N’ rotor profile described in Figure 2 has been used in the current 

analysis, as this geometry is known to have benefits including greater throughput and a stiffer gate 

rotor than is possible using alternative profiles with similar blow-hole area and sealing line lengths [8]. 

 

 

 

Figure 2:  Description of the City University ‘N’ rotor profile for positive displacement screw 

machines 

 

In principle, the screw machine geometry optimisation can be integrated with the expander analysis 

described here to ensure the best profile is used for the required operating conditions, but this would 

be very computationally intensive and is not expected to significantly affect results.  Furthermore, 

from a manufacturing perspective it would be prohibitively expensive to produce an optimised 

machine for every different application.  For a specified geometry, the characteristics of the twin-

screw machine such as the curve of working chamber volume against angular position (illustrated in 

Figure 3), sealing line lengths, blowhole area and axial/radial clearances between the rotors and the 

casing are defined as fixed inputs for the expander model.  An important machine parameter in the 

built-in volume ratio, BIVR, defined as the ratio of working chamber volumes at discharge port 

opening and suction port closing.  Figure 3 illustrates how increasing the BIVR for a particular 

machine increases the volume of working fluid admitted through the suction port per revolution.  For a 

particular rotational speed of the machine, the volumetric and mass flow rates can be determined. 
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Figure 3: Schematic diagram of working chamber volume as a function of rotor angle 

 

 

For single stage screw machines, the inlet dryness fraction and the pressures at the inlet and 

discharge are defined by the requirements of the cycle.  The variable input parameters required for the 

expander model are then limited to the expander size, main rotor speed and BIVR.  Two approaches 

can be taken to match the machine operation to the required cycle conditions: 

 

i. The BIVR is specified and iterations are performed to find the rotor speed required to match 

the mass flow rate of expander to that of the working fluid required in the cycle – no limits are 

imposed on rotor speed, which in some cases can become impractically high. 

ii. The rotor speed is fixed and iterations are performed to find the value of the BIVR required to 

match the mass flow rate – if the BIVR is greater than the limit for the chosen screw machine 

geometry then the expander cannot meet the requirements of the cycle conditions. 

 

For two-stage machines, the intermediate pressure between the two stages is an additional input 

parameter.  There is also an additional constraint, as the mass flow rate through both the high pressure 

(HP) and low pressure (LP) stages must be the same.  While the mass flow rate of the HP stage is 

largely dependent on the inlet conditions and the size and BIVR of the HP machine, it is also 

dependent on the intermediate pressure, as this affects leakage flows in the machine.  To characterise 

the performance of a two-stage expander for particular conditions, the following iterative approach is 

therefore required: 

 

i. Specify the size, speed and BIVR of both stages. 

ii. Estimate the intermediate pressure, and calculate the mass flow rates of the HP and LP stages. 

iii. While the difference between the HP and LP mass flow rates is greater than an allowable 

error, repeat step ii. 

iv. While the difference between the converged and required mass flow rates is greater than an 

allowable error, repeat steps i-iii, fixing either the speed or BIVR of the two stages as 

required. 

 

The single or two-stage expander efficiency calculated using these approaches can be used in a 

thermodynamic cycle model to calculate overall cycle performance for specific operating conditions.  

It is possible to then apply an iterative numerical procedure to identify the optimum operating 

conditions for the cycle.  However, the focus of this paper is to illustrate how the optimum expander 

parameters can be selected for specified cycle conditions. 
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3.  Modelling of single and two-stage expanders for TFC application 

 

The analysis presented in this paper has been performed for a simple heat recovery application from a 

single phase source fluid, defined as follows; 

 

Assumptions:  

Heat Source Inlet Temperature   190°C 

Heater Pinch Point Temperature Difference  5°C 

Available Cooling Water Temperature    20°C 

Cooling Water Temperature Rise in Condenser   5°C 

Condenser Pinch Point Temperature Difference   5°C 

 

For the proposed TFC system, in view of the fact that expansion must begin from the saturated 

liquid condition, a suitable working fluid for this case is n-pentane, which has a critical temperature of 

196.6°C.  The pressure of the working fluid in the condenser was constrained to be greater than or 

equal to atmospheric, so as to prevent air leaking into system.  An initial cycle analysis program was 

used to identify suitable operating conditions for the expander; 

 

Expander Inlet dryness fraction   0 (i.e. saturated liquid) 

Expander Inlet Temperature    175°C 

Condensing Temperature    36°C 

 

Rather than specify the heat input to the cycle, and thereby determine a required mass flow rate for 

the working fluid, it is useful to characterise the performance of a range of single and two-stage 

expanders as a function of mass flow rate at these conditions.  Standard twin-screw machine sizes, 

with main rotor diameters ranging from 145-408mm, have been analysed in order to illustrate what is 

achievable with practical single and two-stage expanders.  To identify the maximum mass flow rates 

possible with these machines, and to ensure high efficiency, the performance has been considered at 

maximum allowable rotational speeds corresponding to a main rotor tip speed of 60m/s. 

4.  Results of TFC expander modelling 

 

For the application specified above, a two-stage machine requires a relatively small HP machine in 

comparison with the size of the LP machine, due to the much higher density of the fluid at the HP 

inlet.  A combination of a 145mm HP machine with a 408mm LP machine has been found to achieve 

good overall performance with well-matched expansion in both stages.  The mass flow rate, overall 

adiabatic efficiency, required intermediate pressure and total shaft power are all dependent on the 

BIVRs of the HP and LP machines.  The overall performance of the two-stage machine has therefore 

been calculated over a range of BIVR values, and contour maps of the key results are shown in 

Figures 4 and 5. 

 

The results in Figure 4 show that mass flow rate is, as expected, very strongly dependent on the 

BIVR of the HP stage.  Figure 5 shows that the maximum overall adiabatic efficiency occurs at BIVR 

values of 3.4 and 3.6 for the HP and LP stages respectively.  This corresponds to an intermediate 

pressure of 6.9 bar(abs), mass flow rate of 9.9 kg/s and total shaft power of 520 kW.  For a fixed HP 

BIVR, it can be seen that the required intermediate pressure increases as the LP BIVR increases.  The 

maximum efficiency point corresponds to the case when the BIVRs of both stages are well matched to 

the expansion, but at lower values of LP BIVR, the intermediate pressure falls, leading to under 

expansion for the HP stage and over expansion for the LP stage.  Conversely, at higher values of LP 

BIVR the rise in intermediate pressure leads to over-expansion for the HP stage and under-expansion 
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for the LP stage.  In conclusion, the circular efficiency contours are a result of over and/or under 

expansion in one or both of the expander stages. 

 

Power output can be increased by moving away from the maximum efficiency point, but it is 

important to choose the BIVR values so as to ensure that efficiency is maximised for a particular 

power output.  Figure 5 shows that maximum power for any HP BIVR occurs at a constant LP BIVR 

value of around 3.6, and that this closely corresponds to the maximum efficiency possible for a 

particular value of HP BIVR.  It is therefore possible to plot curves showing the maximum values of 

shaft power and adiabatic efficiency as functions of the mass flow rate.  These are shown in Figure 6 

along with the corresponding performance of single stage expander for the same application.  In all 

cases, the curves show the full range of performance achievable within the practical range of BIVR 

values. 

 

 
 

Figure 4: Contour maps showing a) mass flow rate (kg/s) and b) intermediate pressure (bar) of  

two-stage expander 

 

 
 

Figure 5: Contour maps showing a) adiabatic efficiency and b) total shaft power (kW) of two-stage 

expander 
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Figure 6: Performance comparison of single and two-stage expanders 

 

The results in Figure 6 show that for single stage expanders, increasing the BIVR increases the 

efficiency, while reducing the mass flow rate through the expander.  For all of the single stage 

expanders considered, the maximum efficiency is well below 50% due to the large degree of under 

expansion.  This is a result of the limited BIVR being much lower than the actual specific volume ratio 

of the working fluid over the expansion process. 

 

The two-stage machine achieves a much greater combined BIVR, and is therefore able to better 

match the overall expansion.  The peak of the efficiency curve in Figure 6 shows the point where the 

expansion in the two-stage machine is best matched to the operating conditions; at higher mass flow 

rates the efficiency falls due to over expansion of the working fluid in the HP stage, while at lower 

mass flow rates it falls due to over expansion in the LP stage.  Interestingly, the results in Figure 6 

suggest that a two-stage machine may be viewed as equivalent to the LP machine operating as a single 

stage but with a BIVR higher than the practical limit; this is illustrated by the fact that the shaft power 

and efficiency curves for the two-stage 145/408 machine are essentially extensions of the performance 

curves for the single 408 machine, covering a lower range of mass flow rates.  It is also worth noting 

that, as the mass flow rate of the two-stage machine is largely a function of the BIVR of the HP stage, 

this range of achievable mass flow rate is very close to that of the single 145 machine.  In summary, 

compared to the LP stage operating alone, the addition of the HP stage can be seen to increase 

efficiency, but only by reducing mass flow rate and hence power output. 

5.  Effect of expander selection on TFC performance 

 

The efficiency and mass flow rate of the expander affect the required power input and net power 

output of the TFC system.  Two important measures of the overall system performance are the 

conversion efficiency, defined as the net power output divided by the available heat input, and the 

cycle efficiency, defined as net output power divided by the actual heat input.  The following 

component efficiencies have been used in order to estimate the performance of both the TFC and a 

conventional saturated vapour ORC (see Figure 1). 

 

Assumed component efficiency: 

Feed pump 0.7 

Motor 0.9 

Generator 0.95 

Turbine 0.82 
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For the TFC system, net power output is dependent on the mass flow rate, as this affects both the 

expander efficiency and work done in the feed pumps.  Using the above component efficiencies, the 

net electrical power output of the system is shown in Figure 7, and the resulting cycle and conversion 

efficiencies are shown in Figure 8. 

 

 

  
Figure 7: Net power output from TFC system using single and two-stage expanders 

 

 

 
Figure 8: Achievable TFC cycle and conversion efficiency using single and two-stage expanders 

 

 

Using the same operating conditions and component efficiencies in a thermodynamic cycle model, a 

simple saturated vapour ORC without recuperative feed heating, operating under the same conditions, 

was optimized in order to achieve maximum net power output.  This was found to occur with cycle 

and conversion efficiencies of 12.5% and 8.8% respectively.  The results from Figure 8 suggest that in 

the range of system sizes covered by the TFC with two-stage expander (250-1200kWe), the 

conversion efficiency is always greater than that which can be achieved in a simple saturated vapour 

ORC, largely due to the greater recovery of available heat from the source fluid. 
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6.  Conclusions 

 

The study presented in this paper shows that two-stage screw expanders can match the required 

volume ratio for the expansion of saturated liquid in waste heat recovery applications, and achieve 

high overall adiabatic efficiency.  The design parameters for the two-stage machine can be optimised 

in order to maximize shaft power output for a given mass flow rate, and the possible range of 

operation of the two-stage machine has been mapped out.  This allows a direct comparison of the 

performance of different single and two-stage machines operating under the same conditions.  In the 

application discussed in this paper, the TFC using a two-stage expander is predicted to achieve a 

higher overall conversion efficiency than a conventional saturated vapour ORC. 
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