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Abstract

This paper proposes a test to verify whether the k-th moment of a random variable

is �nite. We use the fact that, under general assumptions, sample moments either

converge to a �nite number or diverge to in�nity according as the corresponding

population moment is �nite or not. Building on this, we propose a test for the null

that the k-th moment does not exist. Since, by construction, our test statistic diverges

under the null and converges under the alternative, we propose a randomised testing

procedure to discern between the two cases. We study the application of the test

to raw data, and to regression residuals. Monte Carlo evidence shows that the test

has the correct size and good power; the results are further illustrated through an

application to �nancial data.
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1 Introduction

An assumption common to virtually all studies in statistics and econometrics is that the

moments of a random variable are �nite up to a certain order. Existence of population

moments is naturally required when computing sample moments. Moment restrictions are

also routinely assumed in the various statements of the Law of Large Numbers (LLN) and

of the Central Limit Theorem (CLT), thus playing a crucial role in estimation and testing

- we refer to Davidson (2002), inter alia, for a comprehensive treatment of asymptotic

theory. In addition to statistics and econometric theory, several applications in economics

and �nance require the calculation (and, therefore, the �niteness) of moments. However, a

well-known stylised fact, e.g. when using high frequency �nancial data, is that heavy tails

are often encountered (see e.g. Phillips and Loretan, 1994, and a recent contribution by

Linton and Xiao, 2013; see also the references therein). Hence the importance of verifying

whether assumptions on the �niteness of moments are satis�ed.

In order to formally illustrate the problem, letX be a random variable with distribution

F (x), and consider the functional �kX (t) �
R a
�t jxj

k dF (x) +
R t
a jxj

k dF (x), where a 2

(�t; t) is �nite and the two integrals exist for any a. Then the raw absolute moment of

order k is de�ned as

E jXjk � �k = lim
t!1

�kX (t) : (1)

It is well known that, when the support of X is not bounded, the integral in (1) needs

not be �nite, which entails that the k-th moment (and of course also moments of order

higher than k) does not exist. Testing procedures to check for the existence of moments

are available, although not always employed. A typical approach (see e.g., in the context

of testing for covariance stationarity, Phillips and Loretan, 1991, 1994 and 1995) is based

on estimating the so-called �tail index�. This usually requires some assumptions on F (x)

- typically, it is assumed that the tails of F (x) can be approximated as L (x)x� , where

L (x) is a slowly varying function. The parameter  is referred to as the �tail index�, and
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it is related to the highest �nite moment of X - formally, this means that

lim
t!1

�kX (t)

8><>: =1

<1
according as

k � 

k < 
: (2)

Hence, one could use an estimate of  in order to test for the null hypothesis that  > k,

which is tantamount to testing for H0 : E jXjk < 1. A routinely employed technique

is the Hill estimator (Hill, 1975), or some variants thereof; we refer to Embrechts, Klup-

pelberg and Mikosch (1997) and de Haan and Ferreira (2006) for excellent reviews which

also consider several improvements of the original Hill estimator. In general, however,

estimation of  is fraught with di¢ culties. Considering the Hill estimator as a leading

example, it is well known that its rate of convergence may be relatively slow: indeed,

this is a common feature to all tail index estimators. Moreover, the quality of the Hill

estimator depends crucially on selecting the appropriate number of order statistics - see

Section 3.2, for details, and in particular the discussion after equation (21). If this is not

chosen correctly, the Hill estimator can yield very poor inference; Resnick (1997) provides

an insightful discussion of the main pitfalls of the Hill estimator, and also several possible

variants to overcome such pitfalls.

Hypotheses of interest and the main result of this paper

In this paper, we propose a test for the null that the k-th raw moment of X does not

exist; formally, we develop a test for

8><>: H0 : limt!1 �kX (t) =1

HA : limt!1 �kX (t) <1
: (3)

We base our analysis on the divergent part of the Strong LLN (SLLN). De�ning the k-th

sample moment, based on the sample fxigni=1, as

�̂k �
1

n

nX
i=1

jxijk ; (4)
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as n!1 it holds that, almost surely

�̂k !

8><>: 1

<1
according as

limt!1 �kX (t) =1

limt!1 �kX (t) <1
: (5)

Based on (5), we use �̂k to test for H0 : limt!1 �kX (t) =1 in (3).

The literature has proposed several contributions that use (5), both for the purpose

of estimating  and for conducting hypothesis testing. As far as the former is concerned,

Meerschaert and Sche er (1998; see also the related contribution by McElroy and Politis,

2007, and the references therein) exploit the generalised version of the CLT to propose a

moment-based estimator of . As far as the latter issue (hypothesis testing) is concerned,

Fedotenkov (2013; see also the related papers by Fedotenkov, 2015a and 2015b) develops

a bootstrap-based methodology whose main idea is closely related to the contribution of

the present paper. In particular, Fedotenkov (2013) proposes comparing two statistics:

the full-sample estimator of �k, and a subsample based one. Under the null hypothesis

that �k is �nite, both statistics would converge to �k by virtue of (5). Conversely, under

the alternative that �k is not �nite, the two statistics diverge at a di¤erent rate. Building

on this, the test proposed by Fedotenkov (2013) is essentially based on comparing (by

means of the bootstrap) the two statistics, checking whether their di¤erence is bounded

or diverges.

In the context of this paper, (5) is employed in order to test for the null hypothesis

that �k does not exist. From a technical point of view, however, (5) is not used directly;

rather, the main results in the paper hinge on a version of the Law of the Iterated Loga-

rithm (LIL) for random variables that do not admit a �nite �rst absolute moment, known

in the literature as the �Chover-type LIL� (Chover, 1966). Thus, an ancillary contribu-

tion of this paper is the development of a Chover-type LIL for dependent data. From a

methodological point of view, the results in this paper share, with the works cited above,

the (desirable) feature of not having to determine an optimal number of order statistics

to carry out inference, which is one of the main problems of the Hill estimator. However,

note that, under the null hypothesis of an in�nite k-order moment, there is no random-
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ness in (5): the statistic �̂k does not converge to any distribution (it diverges to positive

in�nity), and it cannot be used directly in order to conduct the test. Consequently, we

employ a randomised testing procedure, which builds on a contribution by Pearson (1950).

From a conceptual point of view, such approach is based on the idea that, when a statistic

does not have randomness under the null (e.g. because it diverges) or when it has a non

standard limiting distribution, randomness can be added by the researcher. Corradi and

Swanson (2006) and Bandi and Corradi (2014) have recently employed randomised testing

procedures. In particular, Bandi and Corradi (2014) propose a test to evaluate rates of

divergence, which, albeit in a very di¤erent context, is essentially the same problem inves-

tigated in this paper. As far as conducting inference is concerned, we follow the approach

used in Corradi and Swanson (2006), where randomisation is employed in conjunction

with sample conditioning. This entails adding randomness to the basic statistic, and then

deriving the asymptotics conditional on the sample, showing that limiting distribution and

consistency hold for all samples save for a set of zero measure. Such approach is somehow

akin to bootstrap based inference, which is also carried out conditional on the sample -

although using bootstrap in this context would be problematic, e.g. due to the di¢ culties

in extending the theory to the case of data with in�nite �rst moment (see Cornea-Madeira

and Davidson, 2014). A key di¤erence with bootstrap-based inference is the interpretation

that the notion of test size has in this context. Indeed, it is well known that, in a classical

hypothesis testing context, the level � of a test means that, if a researcher applies the test

B times and the null is valid, then (s)he will reject the null with frequency � - that is,

(s)he will be wrong �B times. Conversely, as illustrated by Corradi and Swanson (2006),

in this context � is interpreted thus: out of J researchers who apply the test, �J of them

will reject the null when this is true. Despite such interpretational di¤erence, as we show

in Section 2, using this approach we overcome the issue of �̂k diverging under the null,

and we obtain a test statistic which, for a given level �, rejects the null with probability

� when true, and with probability 1 when false.

The remainder of the paper is organised as follows. In Section 2, we discuss the test,

its theoretical properties (null distribution and consistency), and possible extensions to
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regression residuals (Section 2.1). Section 3 contains, in addition to a set of guidelines on

how to use the test (Section 3.1), a Monte Carlo exercise (Section 3.2), and an application

(Section 3.3). Section 4 concludes. Proofs are in Appendix.

NOTATION We denote the ordinary limits as �!�; convergence in distribution as

� d!�; convergence in probability and almost surely as � p!� and �a:s:!� respectively. We

use �a.s.� as short-hand for �almost surely�, �i.o.� for �in�nitely often�, and ��� for

de�nitional equality. Finite constants that do not depend on the sample size are denoted

as M , M 0, ..., etc. Other relevant notation is introduced in the remainder of the paper.

2 The test

This section contains a description of how the test statistic is constructed, and its theoret-

ical properties (reported in Theorems 1 and 2). In Section 2.1, we study the application

of the test to regression residuals.

We start by reporting the testing procedure as a four step algorithm.

Step 1 Compute �̂k.

Step 2 Randomly generate an i.i.d. N (0; 1) sample of size r, say
�
�j
	r
j=1
, and de�ne the

sample
np

e�̂k � �j
or
j=1
.

Step 3 Generate the sequence
�
�j;n (u)

	r
j=1

as

�j;n (u) � I
hp

e�̂k � �j � u
i
; (6)

for all j, where u 6= 0 is any real number and I [�] is the indicator function. The

values of u can be selected from a density ' (u) on a bounded support U = [u; �u].

Step 4 For each u 2 Un f0g, de�ne

#nr (u) �
2p
r

rX
j=1

�
�j;n (u)�

1

2

�
; (7)
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and the test statistic

�nr �
uZ
u

#2nr (u)' (u) du: (8)

The following remarks contain comments on the speci�cations of the test, and a heuris-

tic preview of how the test works; the choice of the arti�cial sample size, r, de�ned in Step

2, is discussed after Theorems 1 and 2, and in Section 3.1.

Note also that the statistic �̂k is bound to be sensitive to the unit of measurement;

thus, a scale invariant transformation thereof should be employed instead - for the sake of

a concise discussion, we assume henceforth that �̂k is scale-free; in Section 3.1, we explore

ways in which scale invariance can be obtained.

2.1 A heuristic description of the main idea of Step 3 is the following. Under the null

hypothesis H0 that E jXjk does not exist, as n ! 1,
p
e�̂k � �j should follow a

normal distribution with mean zero and in�nite variance. This entails that, under

H0 with n!1, for any real number u, the random variable �j;n (u) has a Bernoulli

distribution with P
�
�j;n (u) = 1

�
= 1

2 . Therefore, under H0 as n ! 1, �j;n (u) has

mean 1
2 and variance

1
4 . Conversely, under the alternative that E jXj

k < 1, e�̂k

converges to a �nite value. Hence,
p
e�̂k � �j should follow a normal distribution

with mean zero and �nite variance, so that, for any u 6= 0, E
�
�j;n (u)

�
6= 1

2 .

2.2 Step 4 follows directly from Step 3, and it is an application of the CLT. It can be

expected that, under the null with n!1 and r !1, #nr (u)
d! N (0; 1) for every

choice of u. Conversely, under the alternative that E jXjk <1, the �j;n (u)s do not

have mean 1
2 and therefore a CLT does not apply to (7). Given that in (7) there

is a sum involving a sequence with non-zero mean, it can be expected that #nr (u)

diverges at a rate
p
r. This ensures the consistency of the test under HA.

2.3 In Step 3, we consider the possibility that several values of u could be tried. The

de�nition of �nr in Step 4 is based on combining a continuous set of values of #nr (u),

attaching a di¤erent weight to each u according to some density ' (u). Monte Carlo
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evidence (Section 3.2) shows that choosing U = f�1; 1g with equal probability works

well under any scenario. From a theoretical point of view, it can be expected that

the width of U is positively related to both power and size: as it increases, the power

versus the alternative that E jXjk <1 will increase, but there will also be some size

distortion under the null.

We now lay out the main assumptions on dependence and tail behaviour. Prior to that,

recall the de�nition of uniform mixing (see e.g. Davidson, 2002, p. 209). Let (
;F ; P ) de-

note the probability space on which fxigni=1 is de�ned, and let F
j+k
j � � (Xi; j � i � j + k)

and the sets A 2 Fk1 and B 2 F1k+m; �nally, de�ne

�m � sup
k2N

jP (BjA)� P (A)j : (9)

Then, fxigni=1 is said to be uniformly mixing if �m = 0 as m!1.

Consider the following assumption.

Assumption 1. (i) fxigni=1 is a uniformly mixing sequence with mixing numbers

�m = Mm�� for some � > 0; (ii) the xis have common distribution F (x) which belongs

in the domain of attraction of a stable distribution with tail exponent  2 (0; k], viz.

1� F (x) = c1 (x) + o (1)

x
L (x) and F (�x) = c2 (x) + o (1)

x
L (x) ; (10)

as x ! 1, with: L (x) � 0 slowly varying at in�nity in the Karamata sense, ci (x) � 0

and c1 + c2 > 0 where ci = limx!1 ci (x) for i = 1; 2.

Part (i) of the assumption imposes some structure on the dependence of the data -

having � > 0 is a very mild requirement on the amount of memory allowed in the data. As

mentioned in the Introduction, the main tool employed in the proofs - which is also one of

the contributions of this paper - is a Chover-type LIL for uniformly mixing sequences. In

addition to considering dependence (with a quite �exible amount of memory, since only

� > 0 is required) uniform mixing a¤ords great analytical tractability. Other forms of
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dependence could also be considered, as long as Chover�s LIL holds - see e.g. the results

in Trapani (2014) for the case of strongly mixing data.

Part (ii) of the assumption contains the null hypothesis, represented by having  � k.

The exact speci�cation of the slowly varying function L (x) is not required, and thus,

basically, part (ii) is needed only to ensure that some moments of X exist.

De�ning P � as the probability law of
�
�j;n (u)

	r
j=1

conditional on the sample, let �d
�
!�

denote convergence in distribution according to P �.

The limiting distribution of �nr under the null is given in the following Theorem.

Theorem 1 Let Assumption 1 hold. Under H0 : limt!1 �kX (t) =1, as (n; r)!1 with

r

exp
�
n
k

�1
ln

k
 n
� ! 0; (11)

it holds that �nr
d�! �21 a.s. conditionally on the sample.

Theorem 1 stipulates that �nr has, under the null, a chi-squared distribution with one

degree of freedom, as can be expected from the discussion above. Convergence to the null

limiting distribution requires both n!1 and r !1. As far as the latter is concerned,

r needs to pass to in�nity subject to (11), in order to ensure that a CLT holds. Since the

test statistic is based on an i.i.d. sequence of uniformly distributed random variables, it

can be expected that convergence should be quite fast, and therefore in practice r is not

needed to be too large.

We now consider the consistency of the test versus the alternative that the k-th moment

exists.

Theorem 2 Let Assumption 1 hold with  = k+ " for some " > 0 in part (ii). De�ne c�

as P � [�nr � c�] = � under H0. Under HA : limt!1 �kX (t) <1, as (n; r)!1 with the

restriction (11), it holds that P � [�nr > c�] = 1 a.s. conditionally on the sample if

lim
(n;r)!1

r

exp (�k)
=1: (12)
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Theorem 2 states that tests based on �nr have non trivial power versus the alternative

that E jXjk exists. In the proof, we show that, under HA, #nr (u) has a non-centrality

parameter proportional to
q

r
exp(�k)

, whence (12).

2.1 Application to regression residuals

We now turn to discussing the application of the test to regression residuals. Indeed, this

is a natural application, since the existence of moments up to a certain order is routinely

assumed for the error term in the regression model

yi = �+ �0xi + �i; (13)

for example, a typical assumption in (13) is that the �is have �nite second moment, i.e.

E j�ij2 < 1. In order to verify the validity of this (and similar) assumptions, we show

under which conditions the test developed above can be applied to the OLS residuals

computed from (13).

Henceforth, we denote the distribution of �i as F� (x), and de�ne the OLS residuals �̂i.

Also, let k � 1 and �k� (t) �
R a
�t jxj

k dF� (x) +
R t
a jxj

k dF� (x) with both integrals existing

for any �nite a 2 (�t; t); we propose to test for

8><>: H0 : limt!1 �k� (t) =1

HA : limt!1 �k� (t) <1
; (14)

by using

�̂�k �
1

n

nX
i=1

ĵ�ijk ;

or a scale invariant transformation. Using
p
e�̂

�
k , we de�ne the corresponding test statistics

as ��nr.

Consider the following extension of Assumption 1.

Assumption 1*. (i) Assumption 1 holds for f�igni=1, with tail index �; (ii) Assump-

tion 1 holds for fxigni=1, with tail index x = k + "x for some "x > 0; (iii) fxigni=1 and
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f�igni=1 are two mutually independent groups; (iv) xi 6= 0 a.s. for 1 � i � n.

It holds that:

Corollary 1 Let k � 1. Under H0 : limt!1 �k� (t) = 1, if Assumption 1*(i) holds,

then as (n; r) ! 1 with (11), it holds that ��nr
d�! �21. Under the alternative HA :

limt!1 �k� (t) <1 - corresponding to the case � = k+ "� with "� > 0 - if Assumption 1*

holds, then, as (n; r)!1 with (11) and (12), it holds that P � [��nr > c�] = 1.

Corollary 1 shows that the test can be extended to regression residuals, with the

same null distribution and consistency properties as above. The only proviso is that the

regressors have enough moments: in essence, the corollary requires that E jxijk < 1. As

shown in the proof, this is needed in order for the test to have power: the regression

residuals �̂i contain xi, and therefore even when E j�ijk < 1, if E jxijk = 1 this may

entail that �̂�k diverges, thereby yielding zero power. From a methodological point of view,

therefore, the test ought to be applied to residuals after checking whether E jxijk =1 or

not.

Note that the test is designed for k � 1 only. When k < 1, the test may still work, but

this depends on the maximum moments of both xi and �i; the reason why the test may

fail is that, under the alternative, the OLS estimator of � in (13) may be inconsistent, and

even diverge to positive in�nity - this is e.g. the case if E jxij2+" <1 for some " > 0; see

also Cline (1989).

3 Applying the test: guidelines, simulations and empirical

applications

In this section, we study three inter-related issues concerning how to apply the test. Firstly,

we discuss how to make the test statistic scale invariant - Section 3.1. Secondly, we evaluate

the properties of our test through a simulation exercise, also proposing some guidelines as

to how to choose some of the test speci�cations - Section 3.2. Finally, we illustrate the

implementation of the test and the interpretation of its results by means of an application

to �nancial data - Section 3.3.
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3.1 Scale invariance

As pointed out in Section 2, the raw absolute moment of order k, �̂k, cannot be employed

directly as it is not scale invariant. Hence, the need for a re-scaling of the statistic �̂k:

although several alternatives can be proposed, as a general rule it is necessary to have a

scaling factor that does not diverge (or diverges at a slower rate than �̂k) under the null,

and is bounded under the alternative.

Several choices are possible; in particular, based on Lemma 1 in Appendix, we propose

the following family of scaling factors

�̂ =
1

n

nX
i=1

jxij ; (15)

where  is chosen such that  2 (0; k); thence, the re-scaled test statistic is

�̂�k =
�̂k

�̂
k= 
 

: (16)

The test could then be carried out exactly as in Section 2, using �̂�k instead of �̂k. Although

in principle any choice of  2 (0; k) can be employed, �natural�choices are  = 1 or  = 2

(i.e., using the variance of the data) - in the simulations, we employ  = 2, which proves to

be a good choice in terms of empirical rejection frequencies; only minor changes are noted,

anyway, when setting  = 1. Whilst �̂�k ful�lls the purpose of making �̂k scale invariant,

in the simulations we also found that, at least in �nite samples, better results are achieved

by further rescaling �̂�k by the value it would have if X were normally distributed. Letting

�
(N)
k be the k-th absolute moment of a standard normal, the test statistic is thus based

on

�̂��k = �̂�k �

h
�
(N)
 

ik= 
�
(N)
k

: (17)

The rationale for employing �̂ can be illustrated as follows. Based on Lemma 1 in
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Appendix, and modulo a slowly varying function, it holds that, under H0

�̂ =

8><>: Oa:s: (1)

Oa:s:

�
n
 

�1
ln

 
 n
� according as

 < 

 � 
;

therefore

�̂
k= 
 =

8><>:
Oa:s: (1)

Oa:s:

�
n
k
 

�
 

�1
�
ln

k
 n

� according as
 < 

 � 
:

As can be seen, in either case the rate of divergence of the scaling factor �̂k=  is always

smaller than that of �̂k. Since, under H0, �̂k = Oa:s:

�
n
k

�1
ln

k
 n
�
, we have

�̂�k =

8><>: Oa:s:

h
n
k

�1
ln

k
 n
i

Oa:s:

h
n
k
 
�1
i according as

 < 

 � 
; (18)

and the same holds for �̂��k . Under the alternative, �̂ is bounded by the SLLN, so that

�̂�k is also bounded.

Finally, we return to the issue of selecting the size of the arti�cial sample, r. Equations

(11) and (18) can be combined in order to choose r; after standard algebra, it can be veri�ed

that it must hold

r

exp

�
n
k
�1 ln

k
 n

� ! 0

r

exp

�
n
k
 
�1
� ! 0

according as
 < 

 � 
: (19)

When k > , any choice such that r is a polynomial function of n will be appropriate.

The case k =  is of special interest: in such case, (19) boils down to requiring r
n ! 0.

Thus, choosing r = o (n) always satis�es (19).
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3.2 Monte Carlo simulations

We generate n+ 1000 datapoints from an ARMA(1; 1) process, discarding the �rst 1000

observations to avoid dependence on initial conditions:

yi = �yi�1 + �i + ��i�1; (20)

with (�; �) = f(0; 0) ; (0:5; 0) ; (0; 0:5) ; (0;�0:5)g; the sample sizes considered are n 2

f100; 250; 500; 1000; 10000; 100000g.

The innovation �i is generated according to two schemes. In the �rst set of experiments,

we generate data according to a Student t distribution with � degrees of freedom (t�);

such distribution is often found to be good at capturing the features of �nancial data (see

e.g. Hurst and Platen, 1997; and Markowitz and Usmen, 1996a, 1996b), and therefore the

results from this experiment should provide a set of guidelines for the applied user; indeed,

we analyse the impact, on the test, of several speci�cations under this distributional design.

We also consider a second set of experiments, where �i is generated as having a power law,

as a robustness check to assess how the test responds to a di¤erent distribution; data are

generated according to standard procedures, and we refer to e.g. Clauset, Shalizi and

Newman (2009).

As far as the testing problem in concerned, without loss of generality, we consider

testing for the existence of the fourth moment, viz.

8><>: H0 : limt!1 �4X (t) =1

HA : limt!1 �4X (t) <1
:

Let  denote the degree of freedom of the Student t distribution data are drawn from

in the �rst set of experiments; and the tail index of the power law from which data are

generated in the second set of experiments. We set  2 f2; 3; 4; 5; 6g: the �rst three values

are used to assess the size of the test, and the last two values are used in order to assess

the power.

Based on Corollary 1, we apply the test to pre-whitened data, by �tting an AR (7)
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model to yi and then applying the test to the residuals; unreported simulations show that,

when applying the test directly to the raw data, this results in a massive oversizement

when there is dependence - hence, a guideline is that the test ought to be applied to pre-

whitened data. In order to make the test statistic scale invariant, we use, as suggested in

Section 3.1

�̂��4 =
1

3
� �̂4
�̂22
:

As far as the test speci�cations are concerned, on account of Theorems 1 and 2, it

can be expected that the empirical rejection frequencies will be a¤ected by the size of the

arti�cial sample, r, and by the values of u employed (that is, by the set U). As regards the

former, in the proof of Theorem 2 we show that, under the alternative, the test statistic has

a noncentrality parameter proportional to
q

r
exp(�k)

: thus, a large r is bound to increase

the power of the test. This is in a trade-o¤ with (11), which indicates that a large value of

r will yield size distortion; of course, this is valid for �nite samples, since asymptotically

the test will have the correct size as long as (11) is satis�ed. Similarly, the width of U

also has an impact on power and size. Indeed, as shown in the proof of Theorem 2, under

the alternative the test has a noncentrality parameter which increases as the width of U

increases: hence, using large values of u should boost the power, at the expense of size.

In order to analyse the impact of r and U on the size and power of the test, we run four

di¤erent experiments for the leading case of Student t data. In the �rst, benchmark case,

we set r = n
4
5 and U = f�1; 1g, with each value drawn with equal probability of 12 ; this

proved to be the best choice for all cases considered. We also consider the cases r = n
1
2

and U = f�1; 1g, and r = n
4
5 and U = f�2; 2g. In the former case, the test is expected

to be less powerful, whereas in the latter higher power should be observed, in presence of

size distortion, at least for small samples. Finally, we also report the empirical rejection

frequencies for the intermediate case r = n
1
2 and U = f�2; 2g. Results should look similar

as n ! 1, and in this respect having n = 100000 in the simulations should shed some

light on the asymptotic performance of the test.

By way of comparison, we also report a set of experiments to determine the size and

power of a test for H0 :  � 4 based on a direct estimate of the tail index . Based on Hill
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(1975), the estimator of , say ̂Hill, is calculated as

̂Hill =

"
1

h

hX
i=1

ln
�̂(n�h+i)
�̂(n�h)

#�1
; (21)

where �̂(s) denotes the s-th order statistic (in descending order) of the sample of the

absolute values of the residuals from �tting an AR (7) model to the yis, i.e. from fĵ�ijgni=1.

The estimator is applied to the residuals of the AR (7) model, rather than directly to the

data: according to Embrechts, Kluppelberg and Mikosch (1997; see in particular Figure

5.5.4 on p. 270), this is an e¤ective way of attenuating the impact of serial dependence in

the data. As far as the threshold h is concerned, we use h =
�
n3=4= lnn

�
. We found this

to be the best choice for h; note that, in the second set of experiments, data are generated

according to a strict Pareto model for the tails, and therefore in that case we can expect

the Hill estimator to be unbiased. Alternatively, one could employ data-driven rules to

select the optimal h - we refer to e.g. Drees and Kaufmann (1998) and the references

therein. Since the data can be expected to be still dependent even after pre-whitening, we

base the test on the statistic
p
h ̂Hill�4s , where s2 is the inverse of the long-run variance

estimator proposed in Hill (2010); we refer thereto for details on the implementation,

and point out here that we have employed the Bartlett kernel, and set the bandwidth to

b =
�
n1=5

�
, based on the condition b = o

�
hn�1=2

�
. Under the null, it holds that

p
h
̂Hill � 4

s

d! N (0; 1) : (22)

We point out that the test based on ̂Hill is not meant to be the only possible alternative

to our approach. Indeed, the performance of the Hill estimator can be quite poor, and

various improvements have been suggested - see de Haan and Ferreira (2006). Rather, we

would suggest to interpret the test based on ̂Hill as a naive benchmark. It is however

worth noting that the applied literature customarily uses this approach to verify whether

the data have �nite moments of a certain order or not (e.g. Phillips and Loretan, 1991,

1994 and 1995).

Tables 1a-1c contains empirical rejection frequencies for the cases of data having a
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Student t and a power law distribution, respectively. The number of simulations has been

set equal to 1000, so that, when evaluating the size of the test, the empirical rejection

frequencies should lie in the interval [0:036; 0:064].

[Insert Tables 1a-1c somewhere here]

The e¤ect of pre-whitening (in both cases: Student t and, as shown in Table 1c below,

power law) is that the test is nearly una¤ected by the presence of serial correlation: size

and power almost do not change across the various combinations of (�; �).

As far as size is concerned, consider �rst the benchmark case where r = n
4
5 and

U = f�1; 1g - Table 1a. The test has the correct size in both non-boundary cases  = 2

and  = 3. As could be expected, the test exhibits higher empirical rejection frequencies

when  = 4; this, however, attenuates when n � 500, with the test having the correct

size again in all cases considered. Turning to the power (cases  = 5 and  = 6), this is

higher than 50% for all cases considered when n � 500, and anyway higher than the 50%

threshold for n � 250 in the non-boundary case  = 6: the power increases monotonically

with n and , both features being in line with what can be expected. As mentioned

above, these speci�cations (for r and U) correspond to the best results under all scenarios

considered: thus, a guideline from Table 1a and, in general, from this section is to choose

r quite close to n, and use U = f�1; 1g.

The other cases, displayed in Table 1b, complement the conclusions above. Results

were rather similar across the various combinations of (�; �), and therefore only the case

with no serial dependence is reported for all three set-ups. The results in the table are in

line with the theory: chie�y in the case  = 4, decreasing r reduces the empirical rejection

frequency. The power, on the other hand, is reduced quite substantially, and the test has

power higher than 50% only for n � 10000. Conversely, increasing the width of U boosts

the power, but the test appears massively oversized, especially for the case of  = 4, where

the correct size is attained only when n � 100000. The intermediate case r = n
1
2 and

U = f�2; 2g is the most similar to the case of r = n
4
5 and U 2 f�1; 1g, although the

power is slightly lower and the size, when  = 4, is never correct unless n � 10000.
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Turning to the case of data following a power law (Table 1c), there are few instances

of oversizement when n is small (n = 100) and  is equal to 3, but such tendency is

relatively infrequent and it disappears for larger sample sizes. When  = 4, the empirical

rejection frequencies are higher than in the Student t case, with oversizement attenuating

when n � 1000. Further, as far as power is concerned, the test is less powerful, for large

samples, than with Student t data. This can be further considered in conjunction with

the high rejection rates when  = 4.

Note, �nally, that tests based on the Hill estimator have lower power, even for relatively

large n - the power does increase above 50% for n � 10000 when data follow a Student t

distribution, whereas it tends to be lower when the data follow a power law.

3.3 Application

In this section we illustrate how the test works through an empirical application to �nancial

data. We consider daily returns from 3rd January, 2008, until 30th September, 2013, which

corresponds to a sample size of n = 1499. We consider two groups of stocks from the FTSE

100: the banking sector (5 stocks) and the �nancial services sector (4 stocks), for a total

of 9 stocks. A list of the constituents is in Tables 2a-2b.

We test for the existence of the �rst, second, third and fourth moment. In particular,

letting yj;i be the return on stock j at day i, we use the following test statistics to verify

the existence of the �rst four moments

�̂1;j =
1

n

nX
i=1

jyj;ij ;

�̂��2;j =

 r
2

�

!2
�

1
n

Pn
i=1 y

2
j;i�

1
n

Pn
i=1 jyj;ij

�2 ;
�̂��k;j =

1

�
(Y )
k

�
1
n

Pn
i=1 jyj;ij

kh
1
n

Pn
i=1 y

2
j;i

ik=2 ; for k = 3; 4:
Based on the results from the simulations, the test is applied to pre-whitened data, using

U = f�1; 1g.

Results are reported in Tables 2a-2b:
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[Insert Tables 2a-2b somewhere here]

Tables 2a-2b contain, in addition to the tests, the �rst four sample moments for each

stock, showing large values of the kurtosis for all the stocks considered. We also report an

estimate of the tail index  based on (21). The point estimate, ̂Hill;j is generally around

3, with some exceptions (Ashmore and Standard Chartered) for which it is higher. In

view of the poor performance of tests based on ̂Hill;j (as appears from the Monte Carlo

exercise), we report ̂Hill;j only as a preliminary indicator: its computation is conducted

in the same way as in the Monte Carlo section. Based on the ̂Hill;js, it can be expected

that all series have �nite variances, whilst further testing is required for the third and

fourth moments.

Tests are reported in the lower halves of Tables 2a and 2b. The tables show that,

for all stocks considered, mean and variance exist, which is consistent with other studies

in the literature (see e.g. Phillips and Loretan, 1991). As far as higher moments are

concerned, all stocks in the banking sector have in�nite third (and, therefore, fourth)

moment. Results are less clear-cut for the �nancial sector. Two stocks appear to have

�nite third moment (Aberdeen and Ashmore), although the null that the fourth moment is

in�nite is accepted. Indeed, in both cases there is not an overwhelming amount of evidence

in favour of the null (e.g., in the case of Aberdeen, the null is accepted at 5% level, but

it would be rejected at 10%). Heuristically, this is in line with the descriptive statistics:

both stocks have kurtosis around 9, which (were one to assume a Student t distribution

for the data) would correspond to a degree of freedom of 5, thus admitting �nite fourth

moments. The other stocks in the �nancial sector have the same behaviour as observed

for the banking sector, namely in�nite third moments. Again, these results are reinforced

by the estimated values of the kurtosis, which are similar to the ones found in the banking

sector.
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4 Discussion and conclusions

This paper proposes a test for the null that the k-th moment of a random variable does

not exist. The test uses the SLLN, which stipulates that sample moments diverge or

converge according as their population counterparts are in�nite or �nite. Since, under the

null, sample moments diverge to in�nity and therefore have no randomness, we propose

a randomised testing procedure. From a methodological point of view, this approach to

testing for the �niteness of moments avoids having to estimate the tail index, which is

known to be fraught with di¢ culties. Our simulations show that the test has the correct

size and good power. It is important to point out that the test can be applied to verify

the existence or not of any moment, including fractional moments - i.e., the case where k

in E jXjk is not an integer number. This is bound to prove useful e.g. when evaluating

estimators or predictors which are of in�nite variance, and whose properties, therefore,

cannot be studied in terms of the customarily employed L2-norm or its derivatives (details,

and a comprehensive literature review, can be found in Matsui and Pawlas, 2015).

A natural question that stems from this paper is whether it is possible to derive an

estimate of . This contribution is focused on providing a test for the null that E jXjk does

not exist - this can be of relevance e.g. when computing descriptive statistics; or when

employing a theory that requires the existence of moments up to a certain order. It would

be possible to use a sequential approach, based on testing for the existence of consecutive,

(possibly) integer values of k, although in general this methodology would have to take

into account the risk of a high procedure-wise rejection frequency (see in particular a very

insightful paper by Fedotenkov, 2015b). On the other hand, the approach proposed in

this paper complements the estimator of  suggested by Meerschaert and Sche er (1998),

who propose
1

̂
=
ln
Pn

i=1 x
2
i

2 lnn
;

showing that it is consistent, albeit at the slow rate Op
�
1
lnn

�
.

Finally, a word of warning on the meaning of the hypothesis testing framework is in

order. Indeed, testing whether a quantity is passing to in�nity, when samples are naturally
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�nite, is bound to be conceptually unclear. In order to understand the rationale of the

test, note that the null hypothesis is tested for by evaluating the rate of divergence of a

sample moment (or, rather, of a scale invariant transformation thereof) - this lends itself

to being put into an asymptotic setup. However, despite such asymptotic characterisation,

the purpose of the analysis is to test for the magnitude of a sample moment, rather than

for its actual behaviour at in�nity. In this respect, the approach suggested in this paper

is strongly related to the contribution of Bandi and Corradi (2014), who also propose a

test for rates of divergence: as the authors put it, �evaluating magnitudes is essential

to a variety of econometric problems�. Thus, the purpose of this paper is to propose a

procedure to allow the researcher to decide whether the moments of a random variable

are �small enough� to be able to assume that the underlying distribution admits such

moments, or not.
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Appendix: Proofs and Derivations

Recall that P � is the probability law of the
�
�j
	r
j=1

conditional on the sample; hence-

forth, we let E� and V � denote the expected value and the variance calculated with respect

to P �.

We start with a preliminary Lemma, which contains a Law of the Iterated Logarithm

(LIL).

Lemma 1. Under Assumption 1, it holds that

lim sup
n!1

 
1

n
k


nX
i=1

jxijk
!1= ln lnn

= e
k
 a.s.

Proof. The result in the lemma is a LIL for -stable processes, and it is also known

as a Chover-type LIL (Chover, 1966). Several results on Chover-type LILs are available

in the literature (see e.g. Cai, 2006; Wu and Jiang, 2010; Trapani, 2014); thus, when

possible, passages in the proof are omitted to save space.

Let yi = jxijk; on account of Assumption 1(i) and of Theorem 14.1 in Davidson (2002,

p. 210), the non negative sequence yi is also uniformly mixing with mixing numbers of

the same size. De�ne also y(n)i = yi I [jyij < an], and an = [nL (n) f (n)]k= with f (n) a

function such that

lim sup
t!1

sup
0�t0�t

f (t0)

f (t)
<1:

Further, de�ne Sj =
Pj

i=1 yi and S
(n)
j =

Pj
i=1

h
y
(n)
i � E

�
y
(n)
i

�i
.

We start by showing the upper half of the LIL, i.e.

lim sup
n!1

�Pn
i=1 yi

nk=

�1= ln lnn
� e(1+�)k= a.s.; (23)

for every � > 0. This requires showing that

1X
n=1

1

n
P

�
max
1�j�n

jSj j > "an

�
<1; (24)
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for some " > 0. The passages are very similar e.g. to those in the proof of Theorem 2.3 in

Cai (2006). Indeed

P

�
max
1�j�n

jSj j > "an

�
� P

�
max
1�j�n

yj > an

�
+P

"
max
1�j�n

���S(n)j

��� > "an � max
1�j�n

����� 1n
jX
i=1

E
�
y
(n)
i

������
#
:

(25)

Under Assumption 1, as n!1 we have

1

an
max
1�j�n

����� 1n
jX
i=1

E
�
y
(n)
i

������ = 0; (26)

the proof is in Cai (2006). Combining (25) and (26)

1X
n=1

1

n
P

�
max
1�j�n

jSj j > "an

�
�

1X
n=1

1

n

nX
j=1

P [yj > an] +
1X
n=1

1

n
P

�
max
1�j�n

���S(n)j

��� > "0an

�
;

for some 0 < "0 < " and n large enough. Assumption 1(ii) entails that
Pn

j=1 n
�1P [yj > an]

< 1. Finally, consider

1X
n=1

1

n
P

�
max
1�j�n

���S(n)j

��� > "0an

�
�M

1X
n=1

1

na2n
E

�
max
1�j�n

���S(n)j

���2� 1
a2n
�M 0

1X
n=1

1

na2n

nX
i=1

E

��
y
(n)
i

�2�
;

which follows from Markov�s inequality and Rosenthal�s inequality (see Lemma 1.3 and

Theorem 2.1 in Xuejun, Shuhe, Yan and Wenzhi, 2009). Hence, exploiting the de�nition

of an

1X
n=1

1

n
P

�
max
1�j�n

���S(n)j

��� > "0an

�

� M 00
1X
n=1

1

a2n
E

��
y
(n)
i

�2�
=M 00

1X
n=1

1

a2n

Z
jxj�a1=kn

jxj2k dF (x)

= M 00
1X
n=1

nX
h=1

1

a2n

Z
a
1=k
h�1<jxj�a

1=k
h

jxj2k dF (x) �M 000
1X
h=1

a2h

2664 Z
a
1=k
h�1<jxj�a

1=k
h

dF (x)

3775 1X
n=h

1

a2n

� M 0000
1X
h=1

h

2664 Z
a
1=k
h�1<jxj�a

1=k
h

dF (x)

3775 �Mv

1Z
1

dx

xf (x)
<1:
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This completes the proof of (24). Equation (23) follows from (24) upon choosing fn =

ln1+� n - see e.g. the proof of Corollary 2.4 in Cai (2006).

We now turn to the lower half of the LIL, i.e.

lim sup
n!1

�Pn
i=1 yi

nk=

�1= ln lnn
� e(1��)k= a.s., (27)

for any � 2 (0; 1). This requires showing that if, for some sequence bn of positive numbers,P1
n=1 P [yn > bn] =1, then

lim sup
n!1

j
Pn

i=1 yi � dnj
bn

=1 a.s.; (28)

for any non decreasing sequence dn of positive numbers. To show this, recall that the

sequence fyig is uniformly mixing of the same size as xi. Hence, the second Borel-Cantelli

Lemma holds - see Lemma 1.1.2 in Iosifescu and Theodorescu (1969). Thus, a 0/1 law

can be shown, yielding P [yn > bn i.o.] = 0 or 1 according as
P1

n=1 P [yn > bn] < 1 or

= 1; see e.g. Lemma 4(ii) in Wu and Jiang (2010). Hence, equation (28) can be shown

by contradiction. Assuming that (28) does not hold when
P1

n=1 P [yn > bn] = 1, this

entails stating that there is a d0 2 [0;+1) such that lim supn!1 b�1n j
Pn

i=1 yi � dnj

= d0 almost surely. Clearly lim supn!1 b�1n jyn � (dn � dn�1)j � 2d0 + lim supn!1

b�1n jdn � dn�1j. However, since b�1n yn
p! 0, we also have lim supn!1 b�1n jdn � dn�1j =

0, so that lim supn!1 b�1n yn � 2d0 a.s.; hence, P [yn > Mbn i.o.] = 0 for some M �

2d0 < 1. By the Borel-Cantelli Lemma, this entails that
P1

n=1 P [yn > Mbn] < 1.

But this contradicts the initial statement. Thus, (28) holds for any sequence dn. Now,

given a non decreasing sequence of positive numbers fn, by Assumption 1(ii) we haveP1
n=1 P

h
yn > (nfn)

k=
i
=1, as long as

P1
n=1 (nfn)

�1 =1. In such case, it follows that

lim supn!1 (nfn)
�k=Pn

i=1 yi = 1 a.s.; hence, equation (27) can be proved following

exactly the same passages as in the proof of Theorem 2 in Wu and Jiang (2010), setting

fn = ln
1�� n. Combining (23) and (27), the Lemma follows. QED

Proof of Theorem 1. We prove the theorem for a more general set-up, de�ning

Q (�̂k) be a continuous, positive, monotonically increasing transformation of �̂k, with
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limt!+1Q (t) = +1. By Lemma 1, under H0 we have �̂k = Oa:s:

�
nk=�1 lnk= n

�
; thus,

by continuity, Q (�̂k) = Oa:s:

h
Q
�
nk=�1 lnk= n

�i
. Henceforth, the proof of Theorem 1

is based on a similar logic to the proof of Theorem 5 in Bandi and Corradi (2014), and

we only report the main passages. Let &j;n � Q1=2 (�̂k) �j ; conditional on the sample,

&j;n � N [0; Q (�̂k)]. De�ne now the set


n �
(
! :

Q (�̂k)

Q
�
nk=�1

� > " > 0

)
;

for any " > 0. Lemma 1 entails that, under H0, P [limn!1
n] = 1. All the passages

below are reported conditional on ! 2 
n. For each u we have

#nr (u) =
2p
r

rX
j=1

�
�j;n (u)� E�

�
�j;n (u)

�	
+

2p
r

rX
j=1

�
E�
�
�j;n (u)

�
� 1
2

�
(29)

= I + II;

with

E�
�
�j;n (u)

�
=
1

2
+

1p
2�T (�̂k)

uZ
0

exp

�
�1
2

t2

Q (�̂k)

�
dt; (30)

where we consider the case of u > 0 without loss of generality. Consider �rst II in (29);

based on (30), we have

II � 2
p
r

1p
2�T (�̂k)

uZ
0

exp

�
�1
2

t2

Q (�̂k)

�
dt (31)

� 2
p
rp
2�

u=
p
Q(�̂k)Z
0

exp

�
�1
2
s2
�
ds �M

r
2

�

r
r

Q (�̂k)
;

where the third inequality is based on Taylor�s expansion around up
Q(�̂k)

. By Lemma 1,

it follows that II in (29) is Op
h
rT�1

�
nk=�1 lnk= n

�i
; this is op (1) uniformly in u if (11)

holds.

Turning to I in (29), note that ��j;n (u) � �j;n (u) � E�
�
�j;n (u)

�
is an i.i.d. sequence
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with mean zero; it holds that

V �

24 2p
r

rX
j=1

��j;n (u)

35 = 4E�

241
r

rX
j=1

rX
k=1

��j;n (u)
��k;n (u)

35 = 41
r

rX
j=1

E�
h
��
2
j;n (u)

i

= 1 +Op

"
1

Q
�
nk=�1

�# ;
where the second equality comes from the fact that ��j;n (u) is generated independently

across j, and the last equality comes from (30) and the passages thereafter. This holds

uniformly in u by the same passages as above. Thus, a CLT can be applied to I, so

that, as (n; r) ! 1, I d�! N (0; 1). Putting everything together, as (n; r) ! 1 with

(11), #nr (u)
d�! N (0; 1) uniformly in u. This entails that limn;r!1 �nr = limn;r!1R u

u #
2
nr (u)' (u) du

d�!
R u
u �

2
1' (u) du = �21. QED

Proof of Theorem 2. Under Assumption 1, with part (ii) modi�ed so as to allow for

 = k + ", it holds that E [jY j ln jY j] < 1. Since uniform mixing implies strong mixing,

we can apply a SLLN for strong mixing sequences (e.g. Rio, 1995): thus, �̂k
a:s:! �k <1,

so that Q (�̂k)
a:s:! Q (�k) <1. Similarly to the proof of Theorem 1, de�ne


+n � f! : Q (�̂k) < M <1g ;

such that under HA we have P [limn!1
+n ] = 1. All the passages below are reported

conditional on ! 2 
+n .

Consider (29). Term I still satis�es a CLT by construction, so that, under HA, I
d�!

N (0; 1). As far as II in (29) is concerned, by (30) we have (considering the case of u > 0)

II = 2
p
r

1p
2�T (�̂k)

uZ
0

exp

�
�1
2

t2

Q (�̂k)

�
dt �M

r
r

Q (�̂k)
: (32)

Note that the non-centrality parameter II increases with the width of U . These passages

entail that #nr (u) has a non-centrality parameter proportional to
q

r
Q(�k)

; therefore, �nr

has a noncentrality parameter that diverges under (12), giving the desired result. QED
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Proof of Corollary 1. The proof is based on combining the proofs of Theorems 1 and

2. De�ne the n-dimensional vectors � � [�1; :::; �n]0 and �̂ � [̂�1; :::; �̂n]0. By construction,

�̂ = M�, with M � In �W (W 0W )�1W 0, with In the n-dimensional identity matrix and

W the design matrix.

In order to study the behaviour under the null, it su¢ ces to show that when E j�1jk =

1, Lemma 1 holds for �̂�k. Let kbkk denote the Lk-norm of an n-dimensional vector b,

i.e. kbkk =
hPn

j=1 jbj j
k
i1=k

; we can write �̂�k = n�1 k�̂kkk = n�1 kM�kkk. Based on Lemma

2.2 in Grcar (2003), there exists a �nite and strictly positive constant, say CM , such that

n�1 kM�kkk � CMn
�1 k�kkk, so that �̂�k � CMn

�1 k�kkk. By applying Lemma 1, n�1 k�k
k
k =

Oa:s:

�
nk=�1 lnk= n

�
under H0. The same arguments as in the proof of Theorem 1 yield

the asymptotics under the null of ��nr.

As far as the behaviour of ��nr under alternatives is concerned, it su¢ ces to show that,

under HA, �̂�k converges to a �nite limit as n!1. Let �̂ � � =
�Pn

i=1 x
2
i

��1
[
Pn

i=1 xi�i];

by applying the Cr-inequality we have

1

n

nX
i=1

ĵ�ijk � 2k�1
1

n

nX
i=1

j�ijk + 2k�1
����̂ � ����k 1

n

nX
i=1

jxijk = 2k�1 (I + II) :

As far as I is concerned, using Assumption 1*(i) under the alternative, the SLLN entails

that n�1 k�kkk converges a.s. to a �nite limit, so that I = Oa:s: (1). Further

II =

"
1

n

nX
i=1

x2i

#�k "
1

n

nX
i=1

xi�i

#k "
1

n

nX
i=1

jxijk
#

� M

"
1

n

nX
i=1

jxijk
#"
1

n

nX
i=1

xi�i

#k
�M 0

"
1

n

nX
i=1

jxijk
#"
1

n

nX
i=1

jxi�ij
#k
;

note that it is not important whether n�1
Pn

i=1 x
2
i converges or not in order to prove that

II is bounded: what matters is that it is bounded away from zero - part (iii) of Assumption

1* rules this out. By virtue of Assumption 1*(ii), the SLLN yields n�1
Pn

i=1 jxij
k =

Oa:s: (1). Consider the remaining term; by virtue of the independence between xi and �i,

the sequence fxi�igni=1 is also �-mixing (see Theorem 5.2 in Bradley, 2005). Under the

alternative that � > k, and on account of Assumption 1*(ii), the SLLN can be employed
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again, yielding n�1
Pn

i=1 jxi�ij = Oa:s: (1); this is not necessarily the sharpest bound, but

it su¢ ces for our purposes. Hence, II = Oa:s: (1); this yields that, under the alternative,

�̂�k = Oa:s: (1). The proof henceforth is the same as in Theorem 2. QED
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(�; �) (0; 0)
n � 2 3 4 5 6

Test speci�cs

100

r = n1=2; U 2 f�1; 1g
r = n4=5; U 2 f�2; 2g
r = n1=2; U 2 f�2; 2g

0:031 0:026 0:027 0:077 0:104
0:088 0:124 0:254 0:444 0:493
0:031 0:048 0:069 0:307 0:412

250

r = n1=2; U 2 f�1; 1g
r = n4=5; U 2 f�2; 2g
r = n1=2; U 2 f�2; 2g

0:039 0:039 0:044 0:232 0:351
0:059 0:094 0:123 0:587 0:716
0:039 0:046 0:082 0:426 0:464

500

r = n1=2; U 2 f�1; 1g
r = n4=5; U 2 f�2; 2g
r = n1=2; U 2 f�2; 2g

0:060 0:049 0:062 0:367 0:432
0:062 0:082 0:097 0:696 0:841
0:061 0:054 0:086 0:473 0:597

1000

r = n1=2; U 2 f�1; 1g
r = n4=5; U 2 f�2; 2g
r = n1=2; U 2 f�2; 2g

0:059 0:061 0:070 0:395 0:526
0:041 0:076 0:091 0:783 0:895
0:059 0:061 0:072 0:565 0:668

10000

r = n1=2; U 2 f�1; 1g
r = n4=5; U 2 f�2; 2g
r = n1=2; U 2 f�2; 2g

0:032 0:051 0:055 0:512 0:651
0:042 0:057 0:079 0:898 1:000
0:032 0:051 0:063 0:584 0:680

100000

r = n1=2; U 2 f�1; 1g
r = n4=5; U 2 f�2; 2g
r = n1=2; U 2 f�2; 2g

0:055 0:048 0:054 0:584 0:874
0:055 0:055 0:061 1:000 1:000
0:055 0:048 0:045 0:687 0:995

Tab le 1 b . Em p ir ic a l r e je c t io n freq u en c ie s a t a n om in a l 5% va lu e ; d a ta a re g en e ra ted a s S tu d en t t w ith � d eg re e s o f fr e ed om fo r

th e c a se (�; �) = (0; 0). Fo r e a ch sam p le s iz e , th e en t r ie s re fe r to : ( a ) th e c a se w h e re r = n
1
2 an d U = f�1; 1g; (b ) th e c a se

r = n
4
5 an d U = f�2; 2g; ( c ) th e c a se r = n

1
2 an d U = f�2; 2g.
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C om p any B a r c la y s H S B C L loy d s R B S S td . C h a r t .
D esc r ip t ive S ta t is t ic s

M ea n �0:0004 �0:0001 �0:0008 �0:0016 0:0000
S td . D e v . 0:0418 0:0216 0:0438 0:0516 0:0297
S k ew n e s s 1:2506 �0:3093 �0:8238 �6:7949 0:3129
K u r t o s i s 28:675 14:691 24:156 145:216 13:395
̂Hill 3:008 3:486 3:546 2:256 6:226

Tes t s

�1
2:61 � 10�2

[0:000]
1:40 � 10�2

[0:000]
2:70 � 10�2

[0:000]
2:87 � 10�2

[0:000]
1:90 � 10�2

[0:000]

�2
17:46 � 10�4

[0:000]
4:68 � 10�4

[0:000]
19:22 � 10�4

[0:000]
26:66 � 10�4

[0:001]
8:81 � 10�4

[0:000]

�3
277:27 � 10�6

[0:316]
30:24 � 10�6

[0:107]
318:74 � 10�6

[0:225]
1152:87 � 10�6

[0:554]
77:78 � 10�6

[0:139]

�4
8736:86 � 10�8

[0:485]
321:95 � 10�8

[0:233]
8945:16 � 10�8

[0:555]
103630:23 � 10�8

[0:420]
1040:76 � 10�8

[0:597]

Tab le 2 a . R e su lt s fo r c om p an ie s in th e b an k in g se c to r - th e s to ck s c o n s id e red a re , r e sp e c t ive ly, B a rc lay s p lc , H SB C H o ld in g s
p lc , L loy d s B an k in g G rou p p lc , T h e R oya l B an k o f S c o t la n d G rou p p lc , S ta n d a rd C h a rte red p lc . Fo r e a ch s to ck , w e rep o r t th e

m ean , th e s ta n d a rd d ev ia t io n (c om pu ted a ft e r a d ju s t in g fo r th e d eg re e o f fr e ed om ) , th e skew n e s s a n d th e k u rto s is (b o th
u n ad ju s ted ) . H il l e s t im a to r o f th e ta i l in d ex h a s b e en com pu ted b a sed o n (2 1 ) , u s in g th e sam e sp e c i�c a t io n s a s in th e M onte
C a r lo s e c t io n . In th e �Te s t s� se c t io n , w e rep o r t th e va lu e s ta ken by th e k- th a b so lu te sam p le m om ent ; num b e r in sq u a re

b ra cke t s a re p -va lu e s .
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C om p any A b e rd e e n A shm o r e IC A P S ch r o d e r s

D esc r ip t ive S ta t is t ic s

M ea n 0:0001 0:0002 �0:0004 0:0005

S td . D e v . 0:0238 0:0264 0:0304 0:0268

S k ew n e s s 0:3224 �0:1938 �0:0941 �0:0649

K u r t o s i s 8:946 9:179 13:467 22:357

̂Hill 3:393 5:434 3:043 2:472

Tes t s

�1
1:63 � 10�2

[0:000]

1:75 � 10�2

[0:000]

1:99 � 10�2

[0:000]

1:75 � 10�2

[0:000]

�2
5:65 � 10�4

[0:000]

6:98 � 10�4

[0:000]

9:22 � 10�4

[0:000]

7:15 � 10�4

[0:000]

�3
32:93 � 10�6

[0:034]

46:81 � 10�6

[0:041]

81:21 � 10�6

[0:282]

64:52 � 10�6

[0:284]

�4
286:11 � 10�8

[0:098]

446:85 � 10�8

[0:111]

1146:78 � 10�8

[0:424]

1143:70 � 10�8

[0:707]

Tab le 2 b . R e su lt s fo r c om p an ie s in th e �n an c ia l s e rv ic e s s e c to r - th e s to ck s c o n s id e red a re , r e sp e c t ive ly, A b e rd e en A sse t

M an a g em ent p lc , A shm o re G rou p p lc , IC A P p lc a n d S ch ro d e r s p lc . Fo r e a ch s to ck , w e rep o r t th e m ean , th e s ta n d a rd d ev ia t io n

(c om pu ted a ft e r a d ju s t in g fo r th e d eg re e o f fr e ed om ) , th e skew n e s s a n d th e k u r to s is (b o th u n ad ju s ted ) . H il l e s t im a to r o f th e

ta i l in d ex h a s b e en com pu ted b a sed o n (2 1 ) , u s in g th e sam e sp e c i�c a t io n s a s in th e M onte C a r lo s e c t io n . In th e �Te s t s� se c t io n ,

w e rep o r t th e k- th a b so lu te sam p le m om ent ; num b e r in sq u a re b ra cke t s a re p -va lu e s .
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