On equivalences for cohomological Mackey functors

Linckelmann, M. (2016). On equivalences for cohomological Mackey functors. Representation Theory, 20, pp. 162-171. doi: 10.1090/ert/482

[img]
Preview
Text - Accepted Version
Download (260kB) | Preview

Abstract

By results of Rognerud, a source algebra equivalence between two p-blocks of finite groups induces an equivalence between the categories of cohomological Mackey functors associated with these blocks, and a splendid derived equivalence between two blocks induces a derived equivalence between the corresponding categories of cohomological Mackey functors. We prove this by giving an intrinsic description of cohomological Mackey functors of a block in terms of the source algebras of the block, and then using this description to construct explicit two-sided tilting complexes realising the above mentioned derived equivalence. We show further that a splendid stable equivalence of Morita type between two blocks induces an equivalence between the categories of cohomological Mackey functors which vanish at the trivial group. We observe that the module categories of a block, the category of cohomological Mackey functors, and the category of cohomological Mackey functors which vanish at the trivial group arise in an idempotent recollement. Finally, we extend a result of Tambara on the finitistic dimension of cohomological Mackey functors to blocks.

Item Type: Article
Subjects: Q Science > QA Mathematics
Divisions: School of Engineering & Mathematical Sciences > Department of Mathematical Science
URI: http://openaccess.city.ac.uk/id/eprint/13979

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics