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Non-overshooting stabilization via state and output feedback

G. Halikias1, A. Papageorgiou1 and N. Karcanias1

Abstract: The concept of “strong stability” of LTI systems has been introduced in a recent paper
[KHP2]. This is a stronger notion of stability compared to alternative definitions (e.g. stability in
the sense of Lyapunov, asymptotic stability), which allows the analysis and design of control systems
with non-overshooting response in the state-space for arbitrary initial conditions. The paper reviews
the notion of “strong stability” [KHP2] and introduces the problem of non-overshooting stabilization.
It is shown that non-overshooting stabilization under dynamic and static output feedback are, in a
certain sense, equivalent problems. Thus, we turn our attention to static non-overshooting stabilization
problems under state-feedback, output injection and output feedback. After developing a number of
preliminary results, we give a geometric interpretation to the problem in terms of the intersection of an
affine hyperplane and the interior of an open convex cone. A solution to the problem is finally obtained
via Linear Matrix Inequalities, along with the complete parametrization of the optimal solution set.

Keywords: Non-overshooting stabilization, state-feedback, output feedback, convex programming,
Linear Matrix Inequalities (LMI)

1. Introduction

The concept of “strong stability” for autonomous internal LTI system descriptions was introduced in
[KHP2]. This is a stronger version of stability compared to the standard definitions of asymptotic and
Lyapunov stability [B], [HJ], [K], [MM], [HP], [H]. These two notions of stability are clearly necessary
for bounding these variables in some sense, but do not guarantee that these physical variables do
not overshoot. In contrast, strong stability characterizes the case where there is non-overshooting
transient response for arbitrary initial conditions taken from a given hyper-sphere in the phase-space.
Non-overshooting behavior is a desirable property in certain applications and can be considered as a
special case of constrained control.

In [KHP2], three different notions of strong stability were introduced for the linear time-invariant
autonomous system

S(A) : ẋ(t) = Ax(t), x(t0) = x0 (1)

and these were related to properties of the state matrix A. (The relevant definitions and properties
are briefly reviewed in section 2 below). In addition, the dependence of the strong stability property
on general coordinate transformations was examined and the existence of special coordinate systems
incompatible with strong stability was established. It was further shown that the strong-stability
property is invariant under orthogonal transformations, which led to the use of the Schur canonical
form as the basis for investigating further the parametrization of strongly stable state matrices. Finally,
it was shown that the skewness of the eigen-frame of A is an important indicator of the violation of the
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strong stability property. Bounds on the eigen-frame skewness were derived (both for diagonalizable
and non-diagonalizable matrices), for which asymptotic stability and strong stability are equivalent
properties. The results indicate that there is a link between loss of strong stability due to eigen-frame
skewness and reduced robustness of stability to parameter variations.

In this work we address non-overshooting stabilization problems under various feedback regimes (state-
feedback, output injection and output feedback) for state space system descriptions defined in terms
of physical state variables. Thus, the main problem addressed in the paper is the following: Given an
LTI system of the form (1), does there exist an appropriate state or output feedback matrix for which
the resulting (“closed-loop”) state matrix is strongly stable?

The layout of the paper is as follows. Section 2 introduces the notation and section 3 reviews the notion
of strong stability introduced in [KHP] and [KHP2]. In section 4 the non-overshooting stabilization
problem is defined for general MIMO systems. It is first shown that a linear system is non-overshooting
stabilizable) by output feedback if and only if it is non-overshooting stabilizable by static output
feedback. Moreover, if a static output feedback can be found for which the closed-loop system is
strongly stable, then dynamic non-overshooting stabilizing compensation schemes of arbitrary state-
dimension can also be obtained. Thus non-overshooting stabilization is essentially a static feedback
problem.

In section 5 general geometric conditions for z.o. stabilizability are derived under static state and
output feedback, in terms of the intersection of an affine hyperplane and a convex cone. A solution
to the problem is obtained in section 6 via convex programming/Linear Matrix Inequalities (LMI).
Connections with asymptotic stabilization and the Kalman decomposition are also established. Section
7 gives a complete parametrization of the families of state and output feedback matrices which solve
the z.o. stabilization problem. Finally, section 9 contains the main conclusions of the paper and
discusses future research directions related to this work.

2. Notation and Background Results

The notation is mostly standard and is included here for completeness. Rn×m denotes the space of all
n ×m matrices over the field R. For a set Ω ⊆ Rn×m, Ω̄ denotes its closure in Rn×m (with respect
to a suitable norm) and ∂Ω = Ω̄\Ω. The interior of a set Ω in denoted by int(Ω). The distance of
A ∈ Rn×m to Ω is defined as dist(A, Ω) = infX∈Ω ‖A−X‖ where ‖ ·‖ denotes a suitably defined norm.
A set Ω ⊆ Rn×m is called convex if whenever ω1 ∈ Ω and ω2 ∈ Ω, λω1 + (1 − λ)ω2 ∈ Ω for every
λ ∈ [0, 1]. A set Ω ⊆ Rn×m is said to be a cone if whenever ω ∈ Ω, λω ∈ Ω for every λ > 0. The
cone generated by a set Ω ⊆ Rn×n is defined as cone[Ω] = {x ∈ Rn×n : x = λω, ω ∈ Ω, λ > 0}. A set
Ω ⊆ Rn×n is called a convex invertible cone (cic) if it is a convex cone and ω ∈ Ω ⇒ ω−1 ∈ Ω.

The spectrum (set of eigenvalues) of a matrix A ∈ Rn×n is the set of eigenvalues λ(A) =
{λ1(A), λ2(A), . . . , λn(A)}. ρ(A) := max{|λ1(A)|, |λ2(A)|, . . . , |λn(A)|} is the spectral radius of A.
The (column) range and (right) null-space of A ∈ Rm×n are denoted as R(A) and N (A), respectively.
The trace of A, trace(A), is defined as the sum of the diagonal elements of A. The set of all real
n × n real symmetric matrices (A = A′) is denoted as Sn and the set of all n × n real skew-
symmetric matrices (A = −A′) is denoted as An. If A ∈ Sn the eigenvalues of A are denoted as
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λi(A) indexed in non-increasing order of magnitude. In this case, we define the inertia of A as the
triplet In(A) = (π(A), δ(A), ν(A)) of positive, zero, and negative eigenvalues of A, respectively, counted
according to their algebraic multiplicity. The spectral decomposition of a matrix A ∈ Sn is given by
A = UΛU ′ where Λ = diag(λ1, λ2, . . . , λn) is the eigenvalue matrix of A and U is the eigenvector
matrix of A which satisfies UU ′ = U ′U = In. For A ∈ Sn we denote by [A]+ ([A]−) the matrix that
results by setting all negative (positive) eigenvalues in the spectral decomposition of A to zero. An
n×n symmetric positive-definite (positive semi-definite) matrix A is denoted by A > 0 (A ≥ 0), while
a negative-definite (negative semi-definite) matrix A is denoted as A < 0 (A ≤ 0). The set of all n×n

positive-definite (positive semi-definite) matrices is denoted by Sn
+ (S̄n

+) while Sn− (S̄n−) denotes the
set of all n×n negative-definite (negative semi-definite) symmetric matrices. It follows easily that the
sets Sn

+ (and Sn−) are convex invertible cones.

The spectral norm of A ∈ Rn×n is denoted as ‖A‖ or σ̄(A), where σ̄ is the largest singular value of
a matrix. The Frobenius norm of A is defined as ‖A‖2

F = trace(AA′) =
∑n

i=1

∑n
j=1 |aij |2. In matrix

distance problems the convenience of using the Frobenius norm arises from the fact that it is induced
by an inner product in Rn×n, 〈A, B〉 = trace{B′A}, with ‖A‖2

F = 〈A, A〉. Thus the space (Rn×n,R)
equipped with the Frobenius norm becomes an inner-product space (actually a Hilbert space due to
completeness). Since any A ∈ Rn×n can be written (uniquely) as the sum of a symmetric matrix
1
2(A+A′) ∈ Sn and a skew-symmetric matrix 1

2(A−A′) ∈ An, Rn×n can be written as the direct sum
of the two subspaces Rn×n = Sn ⊕An of dimensions n(n + 1)/2 and n(n− 1)/2, respectively. It can
be easily seen that these two subspaces are orthogonal.

Given A ∈ Rn×m define vec(A) : Rn×m →Rnm as the column vector:

vec(A) =
(

a11 a21 . . . an1 a12 a22 . . . an2 . . . a1m a2m . . . anm

)′

It is straightforward to show that vec(·) defines an isometric isomorphism between the spacesRn×n and
Rn2

, so that ‖A‖F = ‖vec(A)‖ for every A ∈ Rn×n, where ‖·‖ denotes the usual Euclidian norm. Note
also that, vec(Sn) = {vec(A) : A ∈ Sn} ⊆ Rn2

is a linear subspace of Rn2
of dimension r = n(n+1)/2.

Let {w1, w2, . . . , wr}, be an orthonormal basis set for vec(Sn) and define WS = [w1 w2 . . . wr]. For
each A ∈ Sn the column vector of co-ordinates of vec(A) with respect to {w1, w2, . . . , wr} is denoted
by vecS(A). Clearly, we have that: vec(A) = WSvecS(A) ⇒ vecS(A) = W ′

Svec(A) where also,
W ′
SWS = Ir, R[W ′

S ] = Rr and R[WS ] = vec(Sn).

The characterization of positive semi-definiteness in [All] is based on the fact that A ∈ S̄n
+ can be

written (e.g. via its spectral decomposition) as A = αB2 for some B = B′ and α ≥ 0. Let:

US := {B ∈ Rn×n : B = B′ and ‖B‖F = 1} ⊆ Sn

Also define:
ΨS := {vec(B2) : B ∈ US} ⊆ Rn2

and ΩS = conv[ΨS ]

Then the following result is proved in [All]:

Lemma 2.1 [All]:

(i) vec(S̄n
+) = cone[ΩS ] with vec(Sn

+) = int cone[ΩS ].
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(ii) vecS(S̄n
+) = cone[W ′

SΩS ] with vecS(Sn
+) = int cone[W ′

SΩS ].

(iii) ΨS is a compact set, ΩS is a non empty convex compact set with dist(0,ΩS) = 1/
√

n and
cone[ΩS ] is a nonempty closed convex cone. ¤

The Kronecker product of two matrices A ∈ Rm×n and B ∈ Rp×q is denoted as A⊗B ∈ Rmp×nq. A
useful identity involving the vectorization of three matrices of compatible dimensions is vec(ABC) =
(C ′ ⊗A)vec(B) (see [HJ]). We will also make use of the following result:

Lemma 2.2 [HJ]: Let m, n be given positive integers. There is a unique matrix P (m,n) ∈ Rm×n

such that:
vec(X ′) = P (m,n)vec(X) for all X ∈ Rm×n

This matrix P (m,n) depends only on the dimensions m and n and is given by

P (m,n) =
m∑

i=1

n∑

j=1

Eij ⊗ E′
ij = [Eij ]

j=1,...,n
i=1,...,m

where each Eij ∈ Rm×n has entry 1 in position (i, j) and all other entries are zero. Moreover P (m, n)
is a permutation matrix and P (m,n) = P ′(n,m) = P (n,m)−1. ¤

A matrix A ∈ Rn×n is said to be strongly stable iff A + A′ ∈ Sn− (see [KHP], [KHP2] and section 3
below). The set of all strongly-stable matrices of dimension n × n is denoted by Kn and is a convex
invertible cone in Rn×n [CL], [L]. Given A ∈ Rn×n we define the Lyapunov cone of A as the set
PA = {P ∈ Sn

+ : −AP − PA′ ∈ Sn
+}. Lyapunov’s stability theorem for LTI systems states that A is

asymptotically stable if and only if PA is non-empty [B], [BS], and that A is strongly stable if and
only if In ∈ PA. It is straightforward to verify that PA is also a convex invertible cone (cic) in Rn×n.

3. Strong Stability: Definitions and basic results

We start by giving the two standard definitions of Lyapunov and asymptotic stability [B], [K]:

Definition 3.1: For a linear system: S(A) we define:

1. S(A) is Lyapunov stable iff for each ε > 0 there exists δ(ε) > 0 such that ‖x(t0)‖ < δ(ε) implies
that ‖x(t)‖ < ε for all t ≥ t0.

2. S(A) is asymptotically stable iff it is Lyapunov stable and δ(ε) in part (1) of the definition can
be selected so that ‖x(t)‖ → 0 as t →∞. ¤

Remark 3.1: Note that asymptotic stability is here taken to mean that the origin is the unique
equilibrium point and that it is asymptotically stable (in the sense of Definition 3.1 part 2). ¤

In the paper we use a refined version of stability which characterizes systems with non-overshooting
behavior in the (Euclidian) norm of their state trajectories for arbitrary initial conditions in phase-
space (with the exception of the origin). We refine this notion by introducing the following definitions
(see [KHP2] for details):

Definition 3.2: For the LTI system S(A) we define:
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1. The system S(A) is strongly Lyapunov stable iff ‖x(t)‖ ≤ ‖x(t0)‖, ∀t > t0 and ∀ x(t0) ∈ Rn.

2. The system S(A) is strongly asymptotically stable w.s. (in the wide sense), iff ‖x(t)‖ <

‖x(t0)‖, ∀t > t0 and ∀ x(t0) 6= 0.

3. The system S(A) is strongly asymptotically stable s.s. (in the strict sense, or simply strongly
asymptotically stable) iff d‖x(t)‖

dt < 0, ∀t ≥ t0 and ∀ x(t0) 6= 0. ¤

Remark 3.2: The three definitions of strong stability introduced above make precise the notion of
non-overshooting responses. Thus, strong Lyapunov stability does not allow state trajectories to exit
(at any time) the (closed) hyper-sphere with center the origin and radius the norm of the initial state
vector r0 = ‖x(t0)‖ (although motion on the boundary of the sphere ‖x(t)‖ = r0 is allowed, e.g. an
oscillator’s trajectory). Strong asymptotic stability (strict sense) requires that all state trajectories
enter each hyper-sphere ‖x(t)‖ = r ≤ r0 from a non-tangential direction, whereas for systems which
are strongly asymptotically stable (wide-sense), tangential entry is allowed. ¤

Remark 3.3: Strong Lyapunov stability implies Lyapunov stability and strong asymptotic stability
(in either sense) implies asymptotic stability. Moreover, strong asymptotic stability (s.s.) implies
strong asymptotic stability (w.s.) which in turn implies strong Lyapunov stability. For concrete
examples of each type of strong stability see [KHP] and [KHP2]. ¤

The characterization of the properties of LTI systems for which we may have, or can avoid, overshoots
is a property dependent entirely on the matrix A. Necessary and sufficient conditions for each type of
strong stability are stated below:

Theorem 3.1 [KHP2]: For the system S(A), the following properties hold true:

(i) S(A) is strongly asymptotically stable (s.s.) if and only if A + A′ < 0. ¤

(ii) S(A) is strongly asymptotically stable (w.s.) if and only if one of the following two equivalant
conditions hold:

(a) A + A′ ≤ 0 and A is asymptotically stable.

(b) A + A′ ≤ 0 and the pair (A,A + A′) is observable.

(iii) S(A) is strongly Lyapunov stable, if and only if A + A′ ≤ 0.

Remark 3.4: In the remaining parts of the paper we consider only strong asymptotic stability in
the strict sense (s.s.), which will be simply referred to as “non-overshooting”, or in simpler terms as
“strong stability”. ¤

4. Non-overshooting Stabilization: Problem definition and prelimi-

nary results

In this section we consider the general non-overshooting stabilization problem. We first consider
the general dynamic output feedback case and show that, in a certain sense that is made precise
subsequently, dynamic compensation does not offer additional flexibility to static stabilization.
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It should be stressed at this point that the problem of strong stability (and non-overshooting
stabilization) does not have any meaning under general co-ordinate transformations, since the states of
the underlying system realization are assumed to represent physical variables. Further note that, even
for the state-feedback case, the problem of non-overshooting stabilization is qualitatively different from
the corresponding asymptotic stabilization problem. In the later case, a simple necessary and sufficient
condition for state-feedback stabilization of a pair (A,B) is the pair’ stabilizability, i.e. that all C+

eigenvalues of A are controllable. To see that this does not apply for non-overshooting stabilizability,
consider a pair (A, b) in controllable-canonical form. Then we have the following result:

Proposition 4.1: If A ∈ Rn×n is in companion form, then it is not strongly stable. Hence no
pair (A, b) in controllable-canonical form can be non-overshooting stabilizable by state (or output)
feedback.

Proof: State, or output feedback leaves the companion form invariant, i.e. it produces a closed-loop
system in companion form. It has been proved [KHP2] that no companion form can be strongly stable
and this completes the proof. ¤

It is shown next, that dynamic output feedback does not offer any additional flexibility to the problem
of non-overshooting stabilization. Thus, consider the following feedback configuration shown in Figure
1, which is used for the study of dynamic stabilization problems.

SG(A,B,C,0)

-S
K
(Ak,Bk,Ck,Dk)

Figure 1: Feedback Configuration

Definition 4.1: Given a system ΣG(A,B,C, 0) and a dynamic compensator ΣK(Ak, Bk, Ck, Dk) in
the feedback configuration of Figure 1, we say that ΣK is a non-overshooting stabilizer of ΣG if the
natural state-space realization of the closed-loop system (ΣG,Σk) is strongly stable. ¤

Remark 4.1: Note that strong stability of (ΣG,Σk) also implies asymptotic stability and hence it is
also an internal stability condition of the feedback system. ¤

Proposition 4.2: A system ΣG(A,B,C, 0) is non-overshooting stabilizable by output dynamic
feedback if and only if it is non-overshooting stabilizable by static output feedback.

Proof: (a) Necessity is obvious since the set of static controllers is a subset of the set of dynamic
controllers. (b) Assume that the dynamic controller K(s) with state space realization ΣK :

ξ̇(t) = Akξ(t) + Bky(t)

u(t) = −Ckξ(t)−Dky(t)
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is a non-overshooting stabilizer of ΣG(A,B,C, 0). Then the natural state-space realization of the
closed-loop system is:

(
ẋ(t)
ξ̇(t)

)
=

(
A−BDkC −BCk

BkC Ak

)(
x(t)
ξ(t)

)
:= Ac

(
x(t)
ξ(t)

)

Since by assumption ΣK is a non-overshooting stabilizer, Ac is strongly stable, i.e. Ac + A′c < 0. This
implies that

Ac + A′c =

(
A−BDkC + (A−BDkC)′ −BCk + C ′B′

k

BkC − C ′
kB

′ Ak + A′k

)
< 0 (2)

so that, in particular, A−BDkC + (A−BDkC)′ < 0. Thus A−BDkC is strongly stable and Dk is
a non-overshooting stabilizing static output feedback of ΣG(A,B,C, 0). ¤

The above result shows that a LTI system is non-overshooting stabilizable by static output feedback if
and only if it is non-overshooting stabilizable by dynamic output feedback. Next we establish a slightly
stronger result, i.e. if an LTI system is non-overshooting stabilizable by static output feedback, then
it is also non-overshooting stabilizable by dynamic output feedback of arbitrary state-dimension. ¤

Proposition 4.3: If a system ΣG(A,B, C, 0) is non-overshooting stabilizable by output static
feedback then it is also non-overshooting stabilizable by dynamic output feedback of arbitrary state
dimension.

Proof: Suppose ΣG(A,B, C, 0) is non-overshooting stabilizable by output feedback Dk so that
A − BDkC + (A − BDkC)′ < 0. To prove the result it suffices to construct a dynamic controller
Σk(Ak, Bk, Ck, Dk) of arbitrary state-dimension r = dim(Ak) such that equation (2) holds. The result
follows immediately if r = 0. If r > 0, choose any Ak such that dim(Ak) = r and Ak + A′k < 0. Then
a Schur-type argument shows that Ac + A′c < 0 if and only if:

A−BDkC + (A−BDkC)′ − (−BCk + C ′B′
k)(Ak + A′k)

−1(BkC − C ′
kB

′) < 0

or equivalently:

A−BDkC + (A−BDkC)′ −
(

C ′ B
)(

B′
k

−Ck

)
(Ak + A′k)

−1
(

Bk −C ′
k

)(
C

B′

)
< 0

Since A − BDkC + (A − BDkC)′ < 0 and (Ak + A′k)
−1 < 0, a continuity argument shows that the

left-hand side of the above equation can be made negative definite by choosing
∥∥∥
(

Bk −C ′
k

)∥∥∥ ≤ ε

for a sufficiently small ε > 0. ¤.

The two last Propositions show that the design of non-overshooting stabilizers (static or dynamic)
can be reduced to a Linear Matrix Inequality (LMI) condition in terms of the controller parameters
(Dk in the static case or (Ak, Bk, Ck, Dk) in the dynamic case). It is also clear that non-overshooting
stabilization is a static feedback property and there is no need to consider dynamics. In the remaining
parts of the paper we turn our attention to static non-overshooting stabilization problems. We
distinguish three types of such problems:
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P.1 State-feedback non-overshooting stabilization: Given a matrix pair (A,B) with A ∈ Rn×n and
B ∈ Rn×m, find a state-feedback matrix F ∈ Rm×n such that the matrix A + BF is strongly
stable.

P.2 Output injection non-overshooting stabilization: Given a matrix pair (A,C) with A ∈ Rn×n and
C ∈ Rp×n, find an output injection matrix H ∈ Rn×p such that the matrix A + HC is strongly
stable.

P.3 Output feedback non-overshooting stabilization: Given a matrix triplet (A, B,C) with A ∈ Rn×n,
B ∈ Rn×m and C ∈ Rp×n find an output feedback matrix F ∈ Rm×p such that the matrix
A + BFC is strongly stable.

The main objective of the work is to establish necessary and sufficient conditions of non-overshooting
stabilization (for each problem type) and parametrize the set of all non-overshooting stabilizing state-
feedback (resp. output injection, output feedback) matrices.

Remark 4.2: Since a matrix A is strongly stable if and only if A′ is strongly stable, the problem of
non-overshooting stabilization by state feedback is dual to non-overshooting stabilization by output
injection. ¤

It is shown in [KHP2] that strong stability is essentially equivalent to asymptotic stability along with
a “small” degree of eigen-frame skewness. Thus the problem of non-overshooting stabilization is in
principle related to the problem of robust eigen-structure assignment, i.e. assigning the eigenvalues
of the closed loop matrix in the stable region of the complex plane together with the selection of an
eigenvector matrix whose distance from orthogonality is minimal. A number of methods have been
proposed in the literature for achieving this objective, e.g. minimization of the eigenvector’s matrix
condition number [AD], [Su]. Although the two problems are intimately related, in the next section
we follow a direct approach for achieving strong stabilization which is independent of all techniques
related to the robust eigen-structure assignment problem.

5. Non-overshooting Stabilization: Geometric conditions

In this section we consider the general non-overshooting stabilization problem under state or output
feedback via convex optimization. Using a concrete representation of positive semi-definite matrices
in terms of convex cones [All] we give a geometric interpretation of the problem in terms of “conic
sections”; in particular it is shown that the problem is solvable if and only if the intersection of an
affine hyperplane with the interior of a convex cone is non-empty. The technique leads to formulation
of the non-overshooting stabilization problem as a convex feasibility problem which can be efficiently
solved via Linear Matric Inequalities or alternative convex programming techniques [All2], [O], [SW],
[SIG]. These are further developed in sections 6 and 7 to derive easily verifiable necessary and sufficient
conditions for the solvability of the general state and output feedback non-overshooting stabilization
problem and to derive a closed-form parametrization of the solution sets in each case.

We start by giving a geometric interpretation to the problem. This is based on the characterization
of the cone of positive semi-definite matrices [All] summarized in section 2.
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Theorem 5.1: There exists an output feedback matrix F such that A + BFC is strongly stable if
and only if

[α +R(D)] ∩ int cone[ΩS ] 6= ∅ (3)

where α = −vec(A + A′), D = −(C ′ ⊗B)− (B ⊗ C ′)P (m, p) and P (m, p) is defined in Lemma 2.2.

Proof: The closed loop matrix Ac = A + BFC is strongly stable if and only if:

Ac + A′c < 0 ⇔ A + BFC + (A + BDC)′ < 0 ⇔ −A−A′ −BFC − C ′F ′B′ < 0

for some F ∈ Rm×p. Taking Kronecker products, this is equivalent to

[−vec(A + A′)− (C ′ ⊗B)vec(F )− (B ⊗ C ′)vec(F ′)] ∈ vec(Sn
+)

for some F ∈ Rm×p, and using Lemma 2.1, this leads to:

[−vec(A + A′)− (C ′ ⊗B)vec(F )− (B ⊗ C ′)vec(F ′)] ∈ int cone(ΩS)

Now, let P (m, p) be the unique permutation matrix such that vec(F ′) = P (m, p)vec(F ) (see Lemma
2.2). Using the definitions of vector α ∈ Rn2

and matrix D ∈ Rm×n we derive the stated equivalent
condition, by noting that since F varies freely over Rm×p, vec(F ) varies freely over Rmp. ¤

Remark 5.1: R(D) is a subspace in Rn2
and α is a fixed vector in Rn2

. Hence the above Theorem
states that the non-overshooting stabilization problem has a solution if and only if an affine hyperplane
in Rn2

has a nonempty intersection with the interior of a convex cone. Thus, provided the intersection
is non-empty, all solutions are geometrically described in terms of “conic sections” in n2-dimensional
space. ¤

An equivalent result to Theorem 5.1 using the vec(·) operation is given next. This effectively reduces
space-dimensionality (from n2 to r), by taking into account the symmetry constraints of the problem.

Theorem 5.2: There exists an output feedback matrix F such that A + BFC is strongly stable if
and only if: [α̂ +R(D̂)] ∩ int cone[W ′

SΩS ] 6= ∅ where α̂ = −vec(A + A′) and

D̂ =
(

vec(D11) vec(D21) . . . vec(Dm1) . . . vec(Dp1) . . . vec(Dpm)
)
∈ Rr×pm

where r = n(n + 1)/2, the Eij are defined in Lemma 2.2 and

Dij =
[−BEi1E

′
j1C − C ′Ej1E

′
i1B

′] .

Proof: Solvability of the strong stabilization problem by output feedback matrix F is equivalent
to: −(A + A′) +

∑m
i=1

∑p
j=1 fij

[
−BEi1E

′
j1C − C ′Ej1E

′
i1B

′
]

> 0, or equivalently, [−(A + A′) +∑m
i=1

∑p
j=1 fijDij ] > 0. Vectorizing, this leads to: [α̂ +

∑m
i=1

∑p
j=1 fijvec(Dij)] ∈ int cone[W ′

SΩS ]
using Lemma 2.1(ii) and the definition of the Dij ’s, or: [α̂ + D̂vec(F )] ∈ int cone[W ′

SΩS ]. The result
follows again on noting that R(D̂) = {D̂vec(F ) : F ∈ Rm×p}. ¤

In conclusion, the existence of a strongly stabilizing output feedback F can be expressed as follows:

Feasibility Linear Matrix Inequality (LMI) problem: This is defined as:

Find fij such that: D0 +
m∑

i=1

p∑

j=1

fijDij > 0 (4)
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where D0 = −(A + A′) and Dij = −BEi1E
′
j1C − C ′Ej1E

′
i1B

′. The feasibility problem is equivalent
to:

Find fij such that: λmin


D0 +

m∑

i=1

p∑

j=1

fijDij


 > 0

The numerical verification of the above relations involves the maximization of the smallest eigenvalue of
a linear combination of symmetric matrices [All2], [O] and is a standard convex feasibility programme.
For example, if we wish to minimize ‖F‖ subject to non-overshooting stabilization we can enforce the
additional constraint:

γ2I − FF ′ ≥ 0 ⇔
(

γIm F

F ′ γIp

)
≥ 0 (5)

and solve the optimization problem: inf γ subject to the constrains (4) and (5), which is a standard LMI
problem with variables γ = ‖F‖ and {fij}. Additional LMI constraints can be added to enforce other
design objectives, e.g. pole placement in a convex region of the open left half plane, special block-
structure of F for decentralized problems, etc. Additional techniques for solving non-overshooting
stabilization problems are described in sections 6 and 7 of the paper.

6. Non-overshooting stabilization: Convexity and LMI conditions

In this section we analyze the problem of non-overshooting stabilisation under state feedback, output
injection and output feedback, using techniques based on convex programming and the theory of
Linear Matrix Inequalities (LMI’s). First, a number of links between non-overshooting and asymptotic
stabilizability are established. The use of Finsler’s lemma [SIG] and Schur-type arguments allows the
development of solution of the non-overshooting stabilization problem, in the form of easily verifiable
necessary and sufficient conditions and provide a complete parametrization of all strongly stabilizing
solutions of the state feedback, output injection or output feedback type, respectively. A number of
the results presented in this section are based on the theory of Linear Matrix Inequalities [SIG], [SW],
which are reproduced here (with minor adaptations) for continuity of the main arguments.

Before stating the results of this section we make the following remarks:

Remark 6.1: Let (A,B,C) be a state-space realization of a dynamic LTI system. In this section we
are concerned with the problem of non-overshooting stabilization of this system under state feedback,
output feedback and output injection. It will be assumed throughout the section (and the next) that B

has full (column) rank and that C has full (row) rank. These assumptions are standard for well-formed
systems, and although not strictly necessary for our purposes, simplify the presentation considerably.

Remark 6.2: In the later part of the section we refer to the left and right annihilators, respectively,
of the matrices B and C, corresponding to the input and output system matrices, respectively. If
B ∈ Rn×m (with m ≤ n - see Remark 6.1), we define its left annihilator B⊥ ∈ Rnl×n as any matrix
with linearly independent rows such that B⊥B = 0, where nl is the dimension of the left null-space of
B (so that nl = n − ρ with ρ the rank of B). Similarly, we define the right annihilator of C ∈ Rp×n

to be any matrix C⊥ ∈ Rn×nr with linear independent columns such that CC⊥ = 0. Here nr = n− ρ

is the dimension of the right null space of C and ρ is the rank of C. In view of Remark 6.1 above, left
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and right annihilators of B and C, respectively, always exist unless n = m or n = p. In such a case,
we will assume that any statement involving the corresponding annihilator is vacuously satisfied.

Remark 6.3: In some of the proofs in this section, we refer to a “Schur-type argument”. This is an
argument based on the following well-known result (see, e.g. [HJ]): Let A = A′ ∈ Rn×n, partitioned
as

A =

(
A11 A12

A′12 A22

)

with A11 square. Then A > 0 if and only if A22 > 0 and A11 −A12A
−1
22 A′12 > 0. The last term will be

referred to as a “Schur complement” of A. Variants of this result using permutations of the rows and
columns of A will also be used.

Some preliminary results for non-overshooting stabilizability by state feedback are established next:

Lemma 6.1: A necessary condition for (A, B) to be non-overshooting stabilizable via state-feedback
is that the pair (A,B) is stabilizable.

Proof: This is based on the fact that strong stability implies asymptotic stability (see [KHP2]). If
(A,B) is not a stabilizable pair, then A+BF has an eigenvalue in the closed right-half of the complex
plane for every state feedback matrix F ∈ Rm×n. Thus A + BF is not asymptotically stable for any
F ∈ Rp×n and thus (A,B) is not non-overshooting stabilizable by state-feedback. ¤

Lemma 6.2: A necessary condition for (A,B) to be non-overshooting stabilizable by state feedback
is that the pair (A + A′, B) is stabilizable.

Proof: Suppose that (A + A′, B) is not stabilizable; then (A + A′, B) has an uncontrollable mode
s0 ≥ 0. Thus, A+A′+BF has an eigenvalue s0 ≥ 0 for every F ∈ Rm×n and hence 1

2(A+A′)+ 1
2BF

has an non-negative eigenvalue s0
2 ≥ 0 for every F ∈ Rm×n. Defining F̂ = 1

2F , this implies that
1
2(A + A′) + BF̂ has a non-negative eigenvalue s0

2 for every F̂ ∈ Rm×n and thus

[
1
2
(A + A′) + BF̂

]
+

[
1
2
(A + A′) + BF̂

]′
= (A + BF̂ ) + (A + BF̂ )′

is not negative definite for any F ∈ Rm×n, i.e. (A,B) is not non-overshooting stabilizable. ¤

Remark 6.4: It can be shown by straightforward dual arguments that detectability of (A,C) and
(A + A′, C) are (independently) necessary conditions for non-overshooting stabilizability of (A,C)
under output injection. ¤

We next investigate the effect of uncontrollable (unobservable) modes of the pair (A,B) ((A,C))
on non-overshooting stabilizability by state-feedback (output injection). We first state the following
necessary and sufficient condition for non-overshooting stabilizability.

Lemma 6.3: Non-overshooting stabilizability under output feedback is invariant under orthogonal
state-space transformations, i.e. for each orthogonal matrix U , (A, B,C) is non-overshooting
stabilizable by output feedback if and only if (U ′AU,U ′B, CU) is non-overshooting stabilizable by
output feedback.

11



Proof: This follows from the fact that strong stability is invariant under orthogonal transformations
[KHP2]. Suppose (A,B, C) is non-overshooting stabilizable by output feedback. Then there exists a
matrix F such that A+BFC is strongly stable. Hence for every orthogonal matrix U , U ′(A+BFC)U
is strongly stable and hence (U ′AU,U ′B, CU) is strongly stabilizable by output feedback. The reverse
implication is immediate. ¤

Remark 6.5: The Lemma above implies that (A,B) is non-overshooting stabilizable by state feedback
if and only if, for each orthogonal matrix U , (U ′AU,U ′B) is non-overshooting stabilizable by state
feedback. Dually, (A,C) is non-overshooting stabilizable by output injection if and only if (U ′AU,CU)
is non-overshooting stabilizable by output injection. ¤

Proposition 6.1: Given a pair (A,B), the following properties hold true:

(i) There exists an orthogonal transformation V such that:

V ′AV =

(
A11 A12

0 A22

)
, V ′B =

(
B1

0

)
(6)

with (A11, B1) controllable.

(ii) A necessary condition for (A,B) to be non-overshooting stabilizable under state feedback is that:
(i) A22 is strongly stable and (ii) (A11, B1) is non-overshooting stabilizable by state feedback.

(iii) If A22 is strongly stable then the existence of matrices F1 and F2 such that

A11 + A′11 + B1F1 + F ′
1B

′
1 − (A12 + B1F2)(A22 + A′22)

−1(A12 + B1F2)′ < 0 (7)

is necessary and sufficient for the non-overshooting stabilizability of the pair (A,B) by state
feedback.

Proof:

(i) The indicated realization is Kalman’s decomposition into the controllable and uncontrollable
parts of the system. It is well known [B], [HP] that V can be chosen orthogonal.

(ii) Since non-overshooting stabilisation is invariant under orthogonal transformations (see Lemma
6.3 and Remark 6.5), it follows that (A,B) is non-overshooting stabilizable if and only if the
pair ((

A11 A12

0 A22

)
,

(
B1

0

))
(8)

is non-overshooting stabilizable, i.e. if and only if there exists a matrix F = (F1 F2) such that:

Ac + A′c =

(
A11 + B1F1 + A′11 + F ′

1B
′
1 A12 + B1F2

A′12 + F ′
2B1 A22 + A′22

)
< 0 (9)

Thus, a necessary condition for Ac + A′c < 0 is that (A11, B1) is non-overshooting stabilizable
and A22 is strongly stable.

(iii) A Schur argument (see Remark 6.3) establishes the necessary and sufficient conditions given by
(iii).
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Note that the necessary conditions for non-overshooting stabilizability (under state) feedback of the
pair (A,B) given in Proposition 6.1 part (iii) above are not sufficient in general. Necessary and
sufficient conditions for non-overshooting stabilizability are considered next.

Remark 6.6: Alternative necessary conditions for non-overshooting stabilizability under state
feedback can be obtained as follows: Let B⊥

1 be a left annihilator of B1. Multiplying from left
and right equation (7) by B⊥

1 and (B⊥
1 )′, respectively, shows that an alternative set of necessary

conditions for strong stabilizability of (A,B) by state feedback are that: (i) A22 is strongly stable, and
(ii) B⊥

1 [A11+A′11−A12(A22+A′22)
−1A′12](B

⊥
1 )′ < 0. It is shown later in the section (Theorem 6.3) that

this set of conditions is actually both sufficient and necessary for the non-overshooting stabilizability
of (A,B). ¤

Remark 6.7: Left and right annihilators may be easily constructed, e.g. via the singular value
decomposition: Let B ∈ Rn×m be full column rank (see Remark 6.2) so that Rank(B) = m ≤ n.
Then B has a singular value decomposition:

B =
(

U1 U2

)(
Σ

0n−m,m

)
V ′ (10)

where Σ = diag(Σ) ∈ Rm×m is positive definite and matrices [U1 U2] and V are orthogonal. Then, all
left annihilators of B are given as B⊥ = ΘU ′

2 where Θ is an arbitrary (n−m)× (n−m) non-singular
matrix. A dual construction may be followed to generate all right annihilators of matrix C. ¤

Non-overshooting stabilizability of a pair (A,C) by output injection follows by duality:

Proposition 6.2: Given a pair (A,C), the following properties hold true:

(i) There exists an orthogonal transformation V such that:

V ′AV =

(
A11 0
A21 A22

)
, V ′B =

(
C1 0

)
(11)

with (A11, C1) observable.

(ii) A necessary condition for (A,C) to be non-overshooting stabilizable by output injection is that:
(i) A22 is strongly stable and (ii) (A11, C1) is non-overshooting stabilizable by output injection.

(iii) If A22 is strongly stable then the existence of matrices H1 and H2 such that

A11 + A′11 + H1C1 + C ′
1H

′
1 − (A21 + H2C1)′(A22 + A′22)

−1(A21 + H2C1) < 0 (12)

is necessary and sufficient for the non-overshooting stabilizability of (A, C) by output injection.

Proof: Dual to the proof of Proposition 6.1. ¤

Remark 6.8: Let C⊥
1 be a right annihilator of C1. Then multiplying from left and right condition

(12) by (C⊥
1 )′ and C⊥

1 , respectively, shows immediately that an alternative set of necessary conditions
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for the non-overshooting stabilizability of (A,C) by output injection is that: (i) A22 is strongly stable,
and (ii) (C⊥

1 )′[A11 +A′11−A′21(A22 +A′22)
−1A21]C⊥

1 < 0. It is shown in the sequel (Theorem 6.3) that
this set of conditions is actually both sufficient and necessary. ¤

A necessary and sufficient condition for the solution of the non-overshooting stabilization problem
(under state-feedback) is given in Theorem 6.1 below. This follows from a standard result in Linear
Algebra and the theory of Linear Matrix Inequalities [SIG]. Before stating this theorem, we give two
standard preliminary results.

Lemma 6.4 [SIG],[SW]: There exists a symmetric matrix X such that



P11 P12 P13

P ′
12 P22 + X P23

P ′
13 P ′

23 P33


 < 0 (13)

if and only if (
P11 P13

P ′
13 P33

)
< 0 (14)

Lemma 6.5: (Projection Lemma [SW]). Let P be a symmetric matrix partitioned in three block
rows and columns and consider the Linear Matrix Inequality (LMI):




P11 P12 + X ′ P13

P21 + X P22 P23

P31 P32 P33


 < 0 (15)

Then, there exists a matrix X satisfying this LMI if and only if:
(

P11 P13

P31 P33

)
< 0 and

(
P22 P23

P32 P33

)
< 0 (16)

In this case, one particular solution of the LMI is X = P ′
32P

−1
33 P31 − P21.

The results below give necessary and sufficient conditions for non-overshooting stabilization by output
feedback and (dually) by output injection. First, we consider the necessary and sufficient conditions
of non-overshooting stabilization under state feedback.

Theorem 6.1: Let A ∈ Rn×n and B ∈ Rn×m be two given matrices with Rank(B) = m. Then, the
following two statements are equivalent:

(i) There exists a matrix F such that:

A + A′ + BF + F ′B′ < 0 (17)

(ii) B⊥(A + A′)(B⊥)′ < 0, where B⊥ is any left annihilator of B.

Proof: The Theorem is a special case of a more general result which is fully proved below - see
Theorem 6.2. ¤

The more general result involving non-overshooting stabilization via output feedback follows:

Theorem 6.2: Let A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n be given matrices with Rank(B) = m and
Rank(C) = p. Then, the following two statements are equivalent:
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1. There exists a matrix F such that:

A + A′ + BFC + C ′F ′B′ < 0 (18)

2. The following two conditions hold:

(i) B⊥(A + A′)(B⊥)′ < 0.

(ii) (C ′)⊥(A + A′)((C ′)⊥)′ < 0.

where B⊥ is any left annihilator of B and C⊥ is any right annihilator of C.

Proof: The Theorem is a generalization of Theorem 6.1 and its proof is adapted from a parallel result
in [SIG]: Let B⊥ and C⊥ be left and right annihilators of B and C, respectively. Multiplying equation
(18) by B⊥ from the left and by (B⊥)′ from the right gives the first necessary condition. Similarly,
multiplying by (18) by (C⊥)′ from the left and C⊥ from the right gives the second necessary condition.

For proving the reverse implication let S = (S1 S2 S3 S4) be a nonsingular matrix such that the
columns of S3 span Nl(B) ∩ Nr(C), the columns of (S1 S3) span Nl(B) and the columns of (S2 S3)
span Nr(C). Instead of (18) consider the equivalent inequality:

S′(A + A′)S + (S′B)F (CS) + (CS)′F ′(S′B)′ < 0 (19)

It will be shown that provided the two conditions given in part 2 of the Theorem hold, the above LMI
is satisfied for some matrix F . Note that S′B and CS have the structure

S′B =




S′1
S′2
S′3
S′4




B =




0
B2

0
B4




and CS = C
(

S1 S2 S3 S4
)

=
(

C1 0 0 C4

)
(20)

where (B′
2 B′

4) and (C1 C4) have full column rank. Thus (S′B)F (CS) has the structure

(S′B)F (CS) =




0
B2

0
B4




F
(

C1 0 0 C4

)
=




0 0 0 0
Z21 0 0 Z24

0 0 0 0
Z41 0 0 Z44




(21)

Note that the rank properties of (B′
2 B′

4) and (C1 C4) imply that the map

F ∈ Rm×p →
(

B2

B4

)
F

(
C1 C4

)
∈ RRank(B)×Rank(C) (22)

is surjective (onto), since given any

Z =

(
Z21 Z24

Z41 Z44

)
∈ RRank(B)×Rank(C)

we have (
B2

B4

)
(BrZC l)

(
C1 C4

)
= Z
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where Br and C l denote two arbitrary right and left inverses of (B′
2 B′

4)
′ and (C1 C4), respectively.

Thus as F varies over Rm×p, Z21, Z24, Z41 and Z44 are arbitrary matrices. In the new coordinate
system the LMI given in equation (19) can be written as:




Q11 Q12 + Z ′21 Q13 Q14 + Z ′41

Q21 + Z21 Q22 Q23 Q24 + Z ′24

Q31 Q32 Q33 Q34

Q41 + Z41 Q32 + Z ′24 Q43 Q44 + Z44 + Z ′44




< 0 (23)

where Qij = S′i(A+A′)Sj = Q′
ji. Thus, we need to show that this LMI is satisfied for a suitable choice

of Z21, Z24, Z41 and Z44 (which can be chosen freely). On noting that

(SB)⊥ =

(
I 0 0 0
0 0 I 0

)
and (CS)⊥ =




0 0
I 0
0 I

0 0




(24)

are full rank left and right annihilators of SB and CS, respectively, the two conditions given in part
2 of the Theorem can be written as:

(
Q11 Q13

Q31 Q33

)
< 0 and

(
Q22 Q23

Q32 Q33

)
< 0 (25)

Thus, by Lemma 6.5 (“Projection Lemma”) we can find Z21 such that the sub-matrix of (23) consisting
of the first three block rows and columns is negative definite. Fix Z41 and Z24 to arbitrary matrices
(of appropriate dimensions). With Z21, Z41 and Z24 fixed, Z44 can be determined according to Lemma
6.4 so that the left hand side of the inequality in (23) is negative definite. ¤

Using the Theorem above, the following Corollary readily follows:

Corollary 6.1: The linear system S(A,B, C) with B full column rank and C full row rank is:

(i) Non-overshooting stabilizable by output feedback if and only if conditions (i) and (ii) of Theorem
6.2 part 2 hold.

(ii) Non-overshooting stabilizable by state-feedback if and only if B⊥(A + A′)(B⊥)′ < 0.

(iii) Non-overshooting stabilizable by output injection if and only if (C ′)⊥(A + A′)((C ′)⊥)′ < 0.

Proof: Part (i) follows immediately from Theorem 6.2 above. Parts (ii) and (iii) follow from part (i)
by setting C = In and B = In, respectively. ¤

Corollary 6.2: The system (A,B,C) is non-overshooting stabilizable by output feedback if and only
if the following conditions hold true:

(i) (A, B) is non-overshooting stabilizable by state feedback.

(ii) (A, C) is non-overshooting stabilizable by output injection.
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Proof: Sufficiency is immediate. Necessity also follows immediately from Corollary 6.1. ¤

We can also state the following necessary and sufficient conditions for non-overshooting stabilizability
under either state-feedback or output injection:

Theorem 6.3: (i) Given a pair (A,B), there exists an orthogonal transformation V such that:

V ′AV =

(
A11 A12

0 A22

)
, V ′B =

(
B1

0

)

with (A11, B1) controllable. Then, if B has full column rank, a set of necessary and sufficient conditions
for (A,B) to be non-overshooting stabilizable under state feedback is that: (a) A22 is strongly stable,
and (b)

B⊥
1 [A11 + A′11 −A12(A22 + A′22)

−1A′12](B
⊥
1 )′ < 0 (26)

where B⊥
1 is any left annihilator of B1. (ii) Given a pair (A,C), there exists an orthogonal

transformation V such that:

V ′AV =

(
A11 0
A21 A22

)
, V ′B =

(
C1 0

)

with (A11, C1) observable. Then, if C has full row rank, a set of necessary and sufficient conditions for
(A,C) to be non-overshooting stabilizable under output injection is that: (a) A22 is strongly stable
and, (b)

(C⊥
1 )′[A11 + A′11 −A′21(A22 + A′22)

−1A21]C⊥
1 < 0 (27)

where C⊥
1 is any right annihilator of C1.

Proof: Part (i) is proved only; part (ii) follows by duality. First note that since the non-overshooting
stabilizability property is invariant under orthogonal state-space transformations, the pair (A,B) is
non-overshooting stabilizable if and only if

((
A11 A12

0 A22

)
,

(
B1

0

))

is non-overshooting stabilizable. Let B⊥
1 be any left annihilator of B1; then diag(B⊥

1 , I) is a left
annihilator of (B′

1 0)′ and hence according to Theorem 6.2, (A,B) is non-overshooting stabilizable if
and only if (

B⊥
1 (A11 + A′11)(B

⊥
1 )′ B⊥

1 A12

A′12(B
⊥
1 )′ A22 + A′22

)
< 0

Using a Schur argument (see Remark 6.3), the last LMI is satisfied if and only if: (a) A22 + A′22 < 0
(i.e. A22 is strongly stable) and, (b) B⊥

1 [A11 + A′11 −A12(A22 + A′22)
−1A′12](B

⊥
1 )′ < 0 as required. ¤

Remark 6.9: Proposition 6.1 states that conditions, (a) A22 strongly stable, and (b) (A11, B1) non-
overshooting stabilizable (by state feedback) are together necessary for non-overshooting stabilizability
of (A,B) (by state feedback). In the light of Corollary 6.1, condition (ii) is equivalent to
B⊥

1 (A11 + A′11)(B
⊥
1 )′ < 0. Clearly, this is a weaker condition, in general, than the condition

B⊥
1 [A11 + A′11 − A12(A22 + A′22)

−1A′12](B
⊥
1 )′ < 0 given in Theorem 6.3 above, which along with

condition (a), is both necessary and sufficient for the non-overshooting stabilizability of (A,B). ¤
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The following is also an immediate consequence of Theorem 6.2:

Corollary 6.3: The following properties hold true:

(i) Suppose that R(B) ⊆ R(C ′). Then the system (A,B, C) is non-overshooting stabilizable by
output feedback if and only if (A,B) is non-overshooting stabilizable by state feedback.

(ii) Let R(C ′) ⊆ R(B). Then (A,B, C) is non-overshooting stabilizable by output feedback if and
only if (A, C) is non-overshooting stabilizable by output injection.

Proof: (i) If R(B) ⊆ R(C ′), then Nr(C) = Nl(C ′) ⊆ Nl(B) and condition 2(ii) of Theorem 6.2 is
redundant. Thus output-feedback stabilizability is equivalent to state-feedback stabilizability in this
case. Part (ii) follows similarly. ¤

7. Parametrization of all non-overshooting stabilizing solutions

We now assume that the necessary and sufficient conditions for non-overshooting state-feedback
stabilizability (resp. non-overshooting output-injection stabilizability, non-overshooting output-
feedback stabilizability) are satisfied and give a parametrization of all non-overshooting stabilizing
state feedback (resp. output-injection, output feedback) matrices. In general, two separate techniques
are reported in the literature for parametrizing the solutions of LMI’s with simple structure. The first
approach proceeds via Finsler’s theorem [SIG] (see next) and the second via Parrot’s theorem [LGA].
Here we follow the first approach. We first need two preliminary results related to LMI’s.

Lemma 7.1 [SIG]: Suppose that P11 and P22 are two symmetric positive-definite matrices. Then,
there exists a matrix X such that (

−P11 X

X ′ −P22

)
< 0 (28)

if and only if ‖P−1/2
11 XP

−1/2
22 ‖ < 1, where ‖ · ‖ denotes the largest singular value of a matrix. Further,

all solutions of the matrix inequality (28) are parametrized as X = P
1/2
11 ZP

1/2
22 where Z is an arbitrary

matrix satisfying ‖Z‖ < 1 and P 1/2 denotes a symmetric square root of the symmetric positive-definite
matrix P .

Theorem 7.1 (Finsler’s Theorem [SIG]): Let matrices B ∈ Rn×m and Q ∈ Rn×n be given.
Suppose further that Rank(B) = m and Q = Q′. Then the following statements are equivalent.

(i) There exists a scalar µ such that
µBB′ −Q > 0 (29)

(ii) The following condition holds: P := B⊥Q(B⊥)′ < 0 where B⊥ is any left annihilator of B.

If the above two statements hold, then all scalars µ satisfying µBB′ −Q > 0 are given by:

µ > µmin := λmax[B†
l (Q−Q(B⊥)′P−1B⊥Q)(B†

l )
′] (30)

Further, µmin ≤ 0 if and only if Q ≤ 0.
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Proof: The proof is adapted from [SIG] using the simplifying assumption that B has full column
rank. Let T be a square non-singular matrix:

T =

(
B†

l

B⊥

)

By a congruence transformation with T , (29) is equivalent to:
(

µI −B†
l Q(B†

l )
′ −B†

l Q(B⊥)′

−B⊥Q(B†
l )
′ −B⊥Q(B⊥)′

)
> 0

or equivalently,
P := B⊥Q(B⊥)′ < 0 (31)

and
µI −B†

l Q(B†
l )
′ + B†

l Q(B⊥)′P−1B⊥Q(B†
l )
′ > 0 (32)

which proves the necessity of equation (29). Now, to prove sufficiency, suppose that P < 0. Clearly
there exists a µ satisfying equation (32) and all such µ are given by equation (30). Finally to show
that µmin ≤ 0 if and only if Q ≤ 0 note that µmin ≤ 0 if and only if B†

l (Q−Q(B⊥)′P−1B⊥Q)(B†
l )
′ ≤ 0

which is equivalent to TQT ′ ≤ 0 since P < 0. ¤

The following Theorem gives a complete parametrization of all non-overshooting stabilizing state-
feedback matrices F . It is assumed that B has full-column rank. The assumption can be removed, if
required at the expense of a significantly more complex parametrization.

Theorem 7.2: Suppose that (A,B) is non-overshooting stabizable by state-feedback and that B has
full column rank. Then all F such that A + A′ + BF + F ′B′ < 0 are given as:

F = −ρB′ +
√

ρLΩ1/2 (33)

where, L is an arbitrary contraction (i.e. any matrix such that ‖L‖ < 1) and ρ > 0 is any scalar such
that Ωρ = ρBB′ −A−A′ > 0; in particular all such ρ are given as ρ > max(ρmin, 0) where:

ρmin := λmax{B†[A + A′ − (A + A′)(B⊥)′(B⊥(A + A′)(B⊥)′)−1B⊥(A + A′)](B†)′} (34)

Proof: Since Theorem 7.2 is a special case of Theorem 7.4 below, we do not supply a separate proof.
¤

Two properties of the strongly stable “closed-loop” matrix Ac = A + BF corresponding to a non-
overshooting stabilizing state-feedback matrix F are given in the following Theorem. The first property
makes the strong stability of Ac more transparent, while the second property shows that the symmetric
part of all (strongly-stable) matrices Ac which arise from the parametrization of Theorem 7.2 is
constant, when restricted to the range of (B⊥)′ and projected onto the range of B⊥.

Theorem 7.3 Suppose that (A,B) is non-overshooting stabilizable by state-feedback and consider any
strongly stabilizing state-feedback matrix F as given in Theorem 7.2. Denote by Ac the “closed-loop”
A-matrix of the system, i.e. Ac = A + BF . Then:

(i) Ac + A′c = −(Ω1/2
ρ −√ρBL)(Ω1/2

ρ −√ρBL)′ − ρB(I − LL′)B′ < 0 for all ρ > ρmin, and
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(ii) B⊥(Ac + A′c)(B⊥)′ = B⊥(A + A′)(B⊥)′ < 0 independent of ρ > ρmin and L.

Proof: To show (i) note that:

Ac + A′c = (A + BF ) + (A + BF )′ = −ρBB′ − Ωρ +
√

ρΩ1/2
ρ L′B′ +

√
ρBLΩ1/2

ρ

= −(Ω1/2
ρ −√ρBL)(Ω1/2

ρ −√ρBL)′ − ρB(I − LL′)B′ < 0

since ρ > 0 and ‖L‖ < 1. For part (ii) note that

B⊥(Ac + A′c)(B
⊥)′ = −B⊥Ωρ(B⊥)′ = −B⊥(ρBB′ −A−A′)(B⊥)′ = B⊥(A + A′)(B⊥)′ < 0

¤

Our next result illustrates the parametrization of all non-overshooting stabilizing state feedback
matrices given in Theorem 7.2.

Proposition 7.1: Assume that (A,B) is non-overshooting stabilizable by state feedback. Let all
variables be defined as in Theorem 7.2, and denote by

Eρ = {F ∈ Rm×n : ‖(F + ρB′)(ρΩρ)−1/2‖ < 1}

the set of non-overshooting stabilizing state feedback matrices (for fixed ρ). Then Eρ1 ⊆ Eρ2 whenever
ρ2 ≥ ρ1 > ρmin. Thus the set of all non-overshooting stabilizing state feedback matrices Fs ⊆ Rm×n

is given as ∪ρ>ρminEρ = limρ→∞Eρ.

Proof: First note that the set of all non-overshooting stabilizing state-feedback matrices can be
expressed as

Fs = {−ρB′ +
√

ρLΩ1/2 : ρ > ρmin, ‖L‖ < 1}
= {F ∈ Rm×n : ρ > ρmin, ‖(F + ρB′)(ρΩρ)−1/2‖ < 1} = ∪ρ>ρminEρ

Take any pair (ρ1, ρ2) such that ρ2 ≥ ρ1 > ρmin. Since (A,B) is assumed non-overshooting stabilizable
and ρ2 ≥ ρ1 > ρmin, Eρ1 and Eρ2 are non-empty. Let F ∈ Eρ1 be a non-overshooting stabilizing state
feedback matrix. We need to show that F ∈ Eρ2 . First note that:

ρ1 > ρmin ⇒ Ωρ1 > 0 (35)

Further,

F ∈ Eρ1 ⇒ ‖(F + ρ1B
′)(ρ1Ωρ1)

−1/2‖ < 1 ⇒ ρ1I − (F + ρ1B
′)Ω−1

ρ1
(F ′ + ρ1B) > 0 (36)

Equations (35) and (36) taken together imply that
(

ρ1I ρ1B
′ + F

ρ1B + F ′ Ωρ1

)
> 0 ⇒ ρ1Ωρ1 − (ρ1B + F ′)(ρ1B

′ + F ) > 0 (37)

which may be written, using the definition of Ωρ1 , as:

A + A′ + BF + F ′B′ + ρ−1
1 F ′F < 0 ⇒ A + A′ + BF + F ′B′ + ρ−1

2 F ′F < 0 (38)
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since ρ1 ≤ ρ2. Equivalently,

ρ−1
2 (ρ2B + F ′)(ρ2B

′ + F ) < ρ2BB′ −A−A′ = Ωρ2 ⇔
(

−ρ2I ρ2B
′ + F

ρ2B + F ′ −Ωρ2

)
< 0

From Lemma 7.1, F must be of the form: F = −ρ2B
′ +

√
ρ2LΩ1/2

ρ2 for some ‖L‖ < 1. Thus
‖(F + ρ2B

′)(ρ2Ωρ2)
−1/2‖ < 1 and hence F ∈ Eρ2 , so that Eρ1 ⊆ Eρ2 as required. We also conclude

that the set of all non-overshooting stabilizing state feedback matrices, Fs, is equal to the limit set
limρ→∞Eρ. ¤

Remark 7.1: In the single input case m = 1, B := b is a column vector and F := f ′ is a row vector.
In this case, the regions Eρ defined in Proposition 7.1 above can be written as

Eρ = {f ∈ Rn : (f + ρb)′(ρΩρ)−1(f + ρb) ≤ 1}

Since ρΩρ > 0 for every ρ > ρmin, each set Eρ corresponds to the region inside an ellipsoid in Rn. ¤

The following example illustrates the parametrization given in Theorem 7.2 in the light of Proposition
7.1 and Remark 7.1.

Example 7.1: Consider the matrix A = diag(1,−2) and let B =
(

1 0
)′

. Then

B⊥(A + A′)(B⊥)′ =
(

0 1
)(

2 0
0 −4

) (
0
1

)
= −4 < 0

and hence A is non-overshooting stabilizable by Theorem 6.1. Let F = (f1 f2). Since

A + BF + (A + BF )′ =

(
2(1 + f1) f2

f2 −4

)

necessary and sufficient conditions for non-overshooting stabilizability are obtained as f1 < −1
8f2

2 − 1
and f1 < 1. In view of the first condition, the second condition is clearly redundant. Thus, all non-
overshooting stabilizing state feedback matrices are specified by the condition f1 < −1

8f2
2 − 1 which

corresponds to the area below a parabola in the (f2, f1) space shown in Figure 2.

In the notation of Theorem 7.2,

Ωρ = ρBB′ −A−A′ =

(
ρ− 2 0

0 4

)
> 0

which satisfies equation (34) with ρmin = 2. All non-overshooting stabilizing matrices F are generated
(see Theorem 7.2) as

F =
(
−ρ + l1

√
ρ(ρ− 2) 2l2

√
ρ

)
, ρ > ρmin (39)

where l1 and l2 are any two real numbers such that l21 + l22 < 1. For each (fixed) ρ > ρmin, the contour
described by equation (39) can be written as

Eρ =



(f2, f1) :

(
f2

2
√

ρ

)2

+

(
f1 + ρ√
ρ(ρ− 2)

)2

< 1
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and corresponds to the interior of an ellipse in the (f2, f1) space. Figure 2 plots a number of these
ellipses for 20 equally spaced ρ-values between ρ = 2.1 and ρ = 10. It can be seen, in agreement with
Proposition 7.1, that each ellipse corresponding to a specific ρ value contains all ellipses corresponding
to lower ρ-values and that as ρ →∞ the area inside the ellipse tends to the region below the parabola,
effectively covering the entire non-overshooting stabilization region. ¤
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Figure 2: Non-overshooting stabilizing region given in Example 7.1.

A similar parametrization for non-overshooting stabilization by output injection follows by duality:

Theorem 7.4: Suppose that C has full row rank and that (A,C) is non-overshooting stabilizable by
output injection. Then all H such that A + A′ + HC + C ′H ′ < 0 are given by:

H = −%C ′ +
√

%Φ1/2Z (40)

where Z is an arbitrary matrix such that ‖Z‖ < 1 and % is any positive scalar such that Φ =
%C ′C −A−A′ > 0.

Proof: Follows immediately from Theorem 7.2 by identifying H with F ′ and C with B′. ¤

A parametrization of all non-overshooting stabilizing output feedback matrices is given next. This
generalizes Theorem 7.2 and is again adapted from a result in [SIG].
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Theorem 7.5: Suppose that (A,B,C) is non-overshooting stabizable by output-feedback and that
matrices B and C have full column rank and full row rank, respectively. Then all matrices F such
that A + A′ + BFC + C ′F ′B′ < 0 are given as:

F = −ρB′ΦC ′(CΦC ′)−1 + Ψ1/2L(CΦC ′)−1/2 (41)

where, L is an arbitrary contraction (i.e. any matrix such that ‖L‖ < 1),

Ψ = ρI − ρ2B′ΦB + ρ2B′ΦC ′(CΦC ′)−1CΦB

and ρ > 0 is any scalar such that Φ = (ρBB′ − A − A′)−1 > 0; in particular all such ρ are given as
ρ > max(ρmin, 0) where:

ρmin := λmax{B†[A + A′ − (A + A′)(B⊥)′(B⊥(A + A′)(B⊥)′)−1B⊥(A + A′)](B†)′} (42)

Proof: First assume that F satisfies A + A′ + BFC + C ′F ′B′ < 0. We need to show that F can be
written as F = −ρB′ΦC ′(CΦC ′)−1 + Ψ1/2L(CΦC ′)−1/2 for some (ρ,Φ,Ψ, L) as defined above. First
note that the existence of a ρ > 0 (as defined in equation (42)) such that Φ = ρBB′ − A − A′ > 0
follows from Finsler’s theorem and the non-overshooting stabilizability of (A, B,C) (see Theorem 6.2).
Now, since A + A′ + BFC + C ′F ′B′ < 0, there exists a positive scalar ρ (sufficiently large) such that:

A + A′ + BFC + C ′B′F ′ + ρ−1C ′F ′FC < 0

or equivalently,
ρ−1(ρB + C ′F ′)(ρB′ + FC) < ρBB′ −A−A′ = Φ−1

or
(ρB′ + FC)Φ(ρB + C ′F ′) < ρI

This is further equivalent to:

(F + ρB′ΦC ′Φ−1
c )Φc(F ′ + ρΦ−1

c CΦB) < ρI − ρ2B′ΦB + ρ2B′ΦC ′(CΦC ′)−1CΦB = Ψ

where, Φc = CΦC ′, and thus also to:
(

−Ψ F + ρB′ΦC ′Φ−1
c

F ′ + ρΦ−1
c CΦB −Φ−1

c

)
< 0

From Lemma 7.1 above, all F which satisfy the above LMI are given by:

F + ρB′ΦC ′Φ−1
c = Ψ−1/2LΦ1/2

c ⇔ F = −ρB′ΦC ′(CΦC ′)−1 + Ψ1/2L(CΦC ′)−1/2

where, L is an arbitrary matrix such that ‖L‖ < 1) and Φ = (ρBB′ −A−A′)−1 > 0.

Conversely, it is shown that any F given by equation (33) satisfies A + A′ + BFC + C ′F ′B′ < 0. It
suffices to show that:

A + A′ + BFC + C ′B′F ′ + ρ−1C ′F ′FC < 0

or equivalently (for a sufficiently large ρ) that

ρ−1(ρB + C ′F ′)(ρB′ + FC) < ρBB′ −A−A′ = Φ−1
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This is further equivalent to:
(ρB′ + FC)Φ(ρB + C ′F ′) < ρI

or, equivalently, to:

(F + ρB′ΦC ′Φ−1
c )Φc(F ′ + ρΦ−1

c CΦB) < ρI − ρ2B′ΦB + ρ2B′ΦC ′(CΦC ′)−1CΦB = Ψ

for some ρ > 0. Using equation (41) shows that this is further equivalent to the condition:

(Ψ1/2L(CΦC ′)−1/2(CΦC ′)(CΦC ′)−1/2L′Ψ1/2 < Ψ ⇔ Ψ1/2LL′Ψ1/2 < Ψ ⇔ LL′ < I

which is valid since ‖L‖ < 1. ¤

8. Conclusions

The paper extends our previous work [KHP], [KHP2] in the area of strong stability of internal system
descriptions. This is a finer notion of stability compared to classical definitions (stability in the sense
of Lyapunov, asymptotic stability) which is relevant for systems with physical variables that do not
exhibit overshooting behavior in the phase-space for arbitrary initial conditions. It has been shown
in [KHP2] that strong stability is intimately related to the skewness of the eigen-frame of the state
matrix.

In this paper we address the problem of non-overshooting stabilization, i.e. designing a compensation
scheme for which the closed-loop state matrix is strongly stable. It was shown that non-overshooting
stabilization under dynamic and static feedback are, in a certain sense, equivalent problems. A
number of results were developed for the static non-overshooting stabilization problem under state-
feedback, output injection and output feedback, leading to the derivation of easily verifiable necessary
and sufficient conditions and a complete parametrization of the non-overshooting stabilizing matrix
feedback sets, in each case, using convex programming and LMI techniques. Geometric conditions were
also derived, showing that the problem of non-overshooting stabilization is solvable if the intersection
of an affine hyperplane with the interior of a convex cone is non-empty.

Our future work in this area will concentrate on the following topics: (a) Development of robust
zero-overshoot stabilization methods, when the system state model is subjected to uncertainties; (b)
Definition of metrics for characterizing the distance of a matrix from strong stability and their efficient
computation; (c) Extension of the theory to the non-linear case; (d) Applications of strong stability
in the area of switched systems; and, (e) Development of a novel methodology for achieving robust
partial eigen-structure assignment using zero-overshooting stabilization ideas.
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