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Pension Funding and the Actuarial Assumption

Concerning Investment Returns

M. Iqbal Owadally

Cass Business School, City University, London

Abstract

An assumption concerning the long-term rate of return on assets is made by actuaries when

they value defined-benefit pension plans. There is a distinction between this assumption

and the discount rate used to value pension liabilities, as the value placed on liabilities does

not depend on asset allocation in the pension fund. The more conservative the investment

return assumption is, the larger planned initial contributions are, and the faster benefits

are funded. A conservative investment return assumption, however, also leads to long-term

surpluses in the plan, as is shown for two practical actuarial funding methods. Long-term

deficits result from an optimistic assumption. Neither outcome is desirable as, in the long

term, pension plan assets should be accumulated to meet the pension liabilities valued at

a suitable discount rate. A third method is devised that avoids such persistent surpluses

and deficits regardless of conservatism or optimism in the assumed investment return.

Keywords: Actuarial valuation, funding method, intervaluation gains and losses.
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1 Introduction

Actuaries periodically value defined benefit pension plans to recommend suitable contri-

bution rates. A number of valuation assumptions are made for this purpose concerning

various uncertain factors affecting the value of pension obligations and the funding for these

obligations. This set of valuation assumptions is usually called the valuation basis. Dif-

ferent bases may be required for different purposes. For example, in certain jurisdictions,

technical solvency bases may be specified by regulation. There may also be a different

set of projection assumptions, usually scenario-based or stochastic, to investigate pension

benefit amendments, asset-liability management or other issues.

Actuarial valuations for funding purposes, that is, with the objective of recommending

a contribution rate are considered in this paper. A deterministic valuation basis is typically

employed. Factors of a demographic nature about which assumptions are made include the

mortality of plan participants at various ages, as well as their disability and withdrawal

rates from the plan. Assumptions about economic factors such as price and wage inflation

are also required when pensions are a function of final or career-average salary and when

they are indexed with price inflation. An assumption about investment returns on the

pension plan assets is also made.

If the pension liability exceeds the plan assets, then an unfunded liability (or deficit)

exists. The unfunded liability varies over time as actual experience generally does not

unfold exactly according to actuarial valuation assumptions. Suitable methods of pension

funding generate a schedule of contributions that satisfies two objectives. First, unfunded

liabilities must be paid off and there must be enough funds to pay benefits as and when

they are due. Second, the contributions that are required from the sponsor and members

of the plan must be stable over time.

In this paper, we investigate the effect on pension funding of deviation of actual expe-
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rience from the actuarial investment return assumption. The relevance of this assumption

is discussed in section 2. A simple model is described in section 3. It is used to investi-

gate pension funding under two common funding methods, in sections 4 and 5, and under

a variation described in section 6 which has the useful property of yielding full funding

independently of the investment return assumption. Finally, a numerical example is given

in section 7.

A list of important symbols is given here for ease of reference:

AL actuarial liability

B benefit paid every year

Ct pension contribution paid at start of year (t, t + 1)

Ft market value of pension plan assets at time t

i actual rate of return on plan assets

iA actuarial assumption for rate of return on plan assets

iL actuarial assumption for rate to discount pension liabilities

K parameter in spreading of gains and losses (equation (20))

K1, K2 parameters in modified spreading of gains and losses (equation (36))

Lt actuarial intervaluation loss in year (t− 1, t)

m amortization period for gains and losses in section 4 (equation (13))

n amortization period for initial unfunded liability (equation (10))

NC normal cost or normal contribution rate

Pt payment for initial unfunded liability at time t (equation (10))

St supplementary contribution paid at the start of year (t, t + 1)

u, uA, uL 1 + i, 1 + iA, 1 + iL respectively

Ut unamortized part of initial unfunded liability at time t (equation (11))

ULt unfunded liability = AL− Ft

v, vA, vL (1 + i)−1, (1 + iA)−1, (1 + iL)−1 respectively
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2 Investment Return Assumption

The actuarial investment return assumption, henceforth denoted by iA, is an assumption

concerning the long-term rate of return on pension plan assets. Funding for pension benefits

involves the substitution of contribution income (from plan participants and sponsor) by

investment income from accumulated assets. It is well-known that the choice of iA (and

indeed of other valuation assumptions) affects the incidence of contribution payments and

pace of funding: see for example Berin (1989, p. 93) and Trowbridge and Farr (1976,

p. 27). The more optimistic the investment return assumption is, the larger the investment

return is assumed to be in any given year, and the smaller the contribution that is initially

required. If insufficient assets are eventually accumulated compared to the pension liability

(that is, if a deficit emerges), then higher contributions than otherwise necessary will

eventually be required. Conversely, the more conservative iA is, the larger the contribution

that is initially required and, if surpluses emerge, smaller contributions than otherwise

necessary, will eventually be required. Thus, the schedule of contribution payments is

accelerated the more iA is conservative, and it is slowed down the more iA is optimistic.

The actuarial choice of iA is therefore a means of controlling the pace of funding in the

pension plan (Daykin, 1976; Trowbridge and Farr, 1976, p. 27).

Another key actuarial valuation assumption is the interest rate assumption (iL) used

to discount pension liabilities. As pension liabilities are not generally traded, they must be

priced by comparison with similar asset cash flows. In theory, pension liabilities should be

valued using market discount rates, suitably risk-adjusted, or at the rates implied in asset

portfolios that are dedicated or matched by cash flow to these liabilities. In practice, more

approximate methods are used. Pension liabilities have a long duration and are usually

discounted at a single term-independent discount rate which is typically based on corporate

bond yields to reflect the risk of default from the sponsor.
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In classical actuarial valuation methodology (for example, Trowbridge and Farr, 1976),

iA and iL are identical. More recent actuarial practice distinguishes between the two

assumptions: see for example Actuarial Standard of Practice No. 27 of the Actuarial

Standards Board (1996) in the United States. The U.S. pension accounting standard

FAS87 also distinguishes between the liability discount rate and the assumption for the

“expected long-term rate of return on plan assets”. Thornton and Wilson (1992) refer to

a “dual-interest” valuation method, used in the United Kingdom, whereby iA is a “best-

estimate assumption” of investment return on the actual asset portfolio and iL is a “prudent

estimate” of investment return based on a hypothetical asset portfolio that matches pension

liabilities.

The distinction between the pension liability discount rate assumption and the invest-

ment return assumption is often blurred in practice because it is assumed that they are

numerically equal. Actuarial Standard of Practice No. 27 of the U.S. Actuarial Standards

Board (1996) states that “generally, the appropriate discount rate is the same as the in-

vestment return assumption”. This presumes that the pension fund is invested in assets

that closely match or hedge or immunize the pension liability so that approximately equal

discount rates apply to both asset and liability cash flows. In practice, asset allocation may

involve a mismatch between assets and liabilities. For example, asset managers may have

a rate-of-return objective involving a benchmark portfolio or index set without reference

to the liabilities (McGill et al., 1996, p. 659). It is also generally difficult to hedge pension

liabilities perfectly with normal market instruments, because of the risk of default from

the plan sponsor and because final-salary pensions are related to economic wage inflation.

In this paper, the assumed rates on assets and liabilities (iA and iL respectively) are

taken to be conceptually distinct (although they could be numerically equal). The aim of

this paper is to investigate the effect on pension funding of actual investment returns being

different from the assumed investment return on assets.
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3 Model

A simplified model of a defined benefit pension plan is used here. For details of the

model, refer to Dufresne (1988, 1989) and Owadally and Haberman (1999). A stationary

pension plan population is assumed, with fixed mortality and withdrawal rates at different

ages. The only benefit that is provided in the model plan is a final-salary pension paid

at normal retirement age. There is no inflation on salaries and it is also postulated that

actuarial valuation assumptions remain unchanged over time. This leads to a significant

simplification in that the payroll, the pension benefit B paid out every year, as well as the

combination of actuarial liability AL and normal cost NC generated by a given actuarial

cost method, are constant. Trowbridge (1952) shows that an equation of equilibrium holds:

AL = (1 + iL)(AL + NC −B), (1)

where iL is the interest rate used to discount pension liability cash flows. (Alternatively,

one may assume that benefits in payment are indexed with wage inflation so that, when

measured net of wage inflation, the payroll as well as B, AL and NC are all constant. All

quantities must then be considered net of wage inflation.)

Assuming that contributions Ct and benefits B are paid at the start of year (t, t + 1),

the value of the pension fund Ft at time t follows a simple recurrence relation:

Ft+1 = (1 + i)(Ft + Ct −B), (2)

where i is the actual rate of return earned on the pension plan assets. The unfunded

liability is defined as the excess of actuarial liability over assets:

ULt = AL− Ft. (3)

It is assumed that all actuarial valuation assumptions, other than iA, are borne out by

experience. In other words, demographic and economic experience unfold in accordance
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with actuarial valuation assumptions, except that the actual investment rate of return i

may differ from the assumed investment rate of return iA.

An intervaluation loss Lt during year (t, t + 1) is the change in unfunded liability

as a result of actual experience deviating from actuarial valuation assumptions (Dufresne,

1989). A gain is defined as a negative loss. More specifically, an asset loss is the unexpected

increase in unfunded liability that is attributable to the actual investment return being less

than the investment return assumption. The contribution that is paid at the start of year

(t, t + 1) is equal to the normal cost NC plus a supplementary contribution St which is

paid to amortize past intervaluation losses and any initial unfunded liability:

Ct = NC + St (4)

Letting vL = (1 + iL)−1, it follows from equations (1)–(4) that

ULt+1 = AL + (1 + i)(ULt − St − vLAL). (5)

Actual experience does not deviate from actuarial assumptions except possibly in in-

vestment returns. Therefore, only asset gains or losses occur. An expression for the asset

loss is obtained by Dufresne (1989) as follows. Had a rate of return of iA been earned on

the plan assets (instead of the actual rate of return i), the unfunded liability at the end of

year (t, t + 1) would have been ULA
t+1 = AL + (1 + iA)(ULt − St − vLAL), by comparison

with equation (5). Therefore the intervaluation loss in year (t, t + 1) is

Lt+1 = ULt+1 − ULA
t+1 (6)

= ULt+1 − AL− (1 + iA)(ULt − St − vLAL) (7)

= (i− iA)(ULt − St − vLAL). (8)

Equation (8) shows that the asset intervaluation loss Lt+1 in year (t, t + 1) arises because

the actual return on assets in that year (i) is different from the assumed return (iA).
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Equation (7) may be rewritten as

ULt+1 − uAULt = Lt+1 − uA(St − (vA − vL)AL), (9)

where uA = 1 + iA and vA = (1 + iA)−1.

The supplementary contribution St in equation (4) pays off over time past intervaluation

losses as well as any initial unfunded liability at time 0. The initial unfunded liability may

arise because of past service liabilities, or because of a change in the valuation basis or an

amendment to benefit rules.

Assume henceforth that Lt = 0 for t ≤ 0, ULt = 0 for t < 0, and that the initial

unfunded liability UL0 is amortized over a finite period of n years at rate iA by means of

payments

Pt =





UL0/än|, 0 ≤ t ≤ n− 1,

0, t ≥ n.

(10)

In equation (10), än| = (1−vn
A)/(1−vA) denotes the present value of an annuity-certain of

term n payable in advance and calculated at rate iA. The unamortized part of the initial

unfunded liability at time t is

Ut =





UL0än−t|/än|, 0 ≤ t ≤ n− 1,

0, t ≥ n.

(11)

Observe that

uAUt − Ut+1 = uAPt. (12)

4 Amortizing Gains and Losses

Dufresne (1989) describes a funding method whereby the supplementary contribution St,

in equation (4), is calculated to amortize past intervaluation gains and losses. His analysis

may be extended by allowing for a distinction between the liability valuation rate (iL)
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and the investment return assumption (iA), as well as by explicitly amortizing the initial

unfunded liability:

St =
m−1∑
j=0

Lt−j

äm|
+ (vA − vL)AL + Pt. (13)

In equation (13), äm| = (1 − vm
A )/(1 − vA) is the present value of an annuity-certain

over m years payable in advance and calculated at assumed rate iA. The supplementary

contribution consists of level amortization payments for intervaluation losses over the past

m years, an adjustment for the difference between assumed rates on assets and liabilities,

as well as an amortization payment for the initial unfunded liability.

Replacing St from equation (13) into equation (9) and using equation (12) yields

(ULt+1 − Ut+1)− uA(ULt − Ut) = Lt+1 − uA

m−1∑
j=0

Lt−j

äm|
. (14)

The unfunded liability at the end of the year is therefore the accumulation of the un-

funded liability at the start of the year plus the loss that emerges during the year less the

accumulated value of payments made in respect of past losses.

It is easily verified that the solution of equation (14) is

ULt − Ut =
m−1∑
j=0

äm−j|
äm|

Lt−j. (15)

For details of this solution, see Dufresne (1989). Note also equation (12) for the initial

unfunded liability and recall that the annuities are valued at rate iA.

When the funding method in equation (13) is used, a unit loss that emerged j years

ago is completely paid off if j ≥ m, but further payments of 1/äm| for the next m − j

years are outstanding if 0 ≤ j ≤ m− 1. The present value of these payments is äm−j|/äm|.

Equation (15) shows that the unfunded liability is the present value of the payments

that remain to be made in respect of losses that are not yet paid off, together with the

unamortized part of the initial unfunded liability.
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As in Dufresne (1989), replace St from equation (13) and ULt from equation (15) into

equation (8), and use equation (12), to obtain:

Lt+1 = (i− iA)

[
m−1∑
j=0

Lt−j

(
äm−j| − 1

)
/äm| − vA(AL− Ut+1)

]
. (16)

If the actual rate of return on plan assets in a given year is the same as the assumed

rate of return (that is, if i = iA), no intervaluation loss emerges in that year (Lt = 0 ∀ t

from equation (16)) and the unfunded liability consists only of the unamortized part of the

initial unfunded liability (ULt = Ut for t ≥ 0 from equation (15)).

Dufresne (1989) obtains a sufficient condition for the convergence of {Lt}, {ULt} and

{St} as t →∞. The following result is due to Dufresne (1989).

Result 1 Provided that |i− iA|
∑m−1

j=0 (äm−j| − 1)/äm| < 1,

lim
t→∞

Lt =
−(i− iA)vAAL

1− (i− iA)
∑m−1

j=0 (äm−j| − 1)/äm|
, (17)

lim
t→∞

ULt =
m−1∑
j=0

äm−j|
äm|

lim
t→∞

Lt, (18)

lim
t→∞

St =
m

äm|
lim
t→∞

Lt + (vA − vL)AL. (19)

The only differences between equations (17)–(19) and the results of Dufresne (1989) are

that the annuities are valued at rate iA here and there is an explicit term for the difference

between iA and iL in equation (19). Equations (17)–(19) follow from equations (16), (15)

and (13). (Recall that Ut = 0 for t ≥ n from equation (11) since the initial unfunded

liability is amortized over a finite period n.)

Corollary 1 Assume that |i− iA|
∑m−1

j=0 (äm−j| − 1)/äm| < 1.

If iA = i, then lim ULt = 0. If iA > i, then lim ULt > 0. If iA < i, then lim ULt < 0.

Corollary 1 confirms the observations made in section 2: if the actuarial investment

return assumption is optimistic (that is, iA > i), then a persistent deficit occurs (lim ULt >
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0); on the other hand, if the investment return assumption is conservative (that is, iA < i),

then a persistent surplus occurs (lim ULt < 0). Note also that, if iA 6= i, lim ULt depends

on the period m over which gains and losses are amortized.

5 Spreading Gains and Losses

Dufresne (1988) discusses another funding method that is used to determine contributions.

This method is widely used in the United Kingdom and is also implicit in actuarial cost

methods such as the Aggregate and Frozen Initial Liability methods (Trowbridge and

Farr, 1976, p. 85). The equations in Dufresne (1988) may also be extended to allow for the

distinction between the rate at which liabilities are discounted and the investment return

assumption, as well as for the separate treatment of the initial unfunded liability.

The supplementary contribution paid in year (t, t + 1) is

St =
∞∑

j=0

(1−K)Kjuj
ALt−j + (vA − vL)AL + Pt, (20)

where 0 ≤ K < vA. In this alternative method, a unit loss is paid off by means of a

sequence of exponentially declining payments, {(1−K)Kjuj
A, j = 0, 1, . . .}, the unit loss

being paid off in perpetuity since
∑∞

j=0(1 −K)Kjuj
A · vj

A = 1. The larger the parameter

K, the slower the loss is paid off. The loss is never completely defrayed, except in the

limit as t → ∞, but Trowbridge and Farr (1976) point out that this is not a weakness as

intervaluation losses occur randomly in practice and are never completely removed. This

funding method is commonly referred to as “spreading” gains and losses, by contrast with

the method in section 4 which involves amortizing gains and losses (McGill et al., 1996,

p. 525; Berin, 1989, p. 18; Dufresne, 1988).

Replacing St from equation (20) into equation (9) and using equation (12) yields

(ULt+1 − Ut+1)− uA(ULt − Ut) = Lt+1 − uA

∞∑
j=0

(1−K)Kjuj
ALt−j. (21)
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Recall that Lt = 0 for t ≤ 0, ULt = 0 for t < 0, and UL0 = U0. It is easily verified, from

equation (21), that

ULt − Ut =
∞∑

j=0

Kjuj
ALt−j. (22)

Compare equation (15) when losses are amortized to equation (22) when losses are spread.

Equation (22) is sensible since, for a unit loss that emerged j years ago, the following

sequence of payments is outstanding: {(1−K)K lul
A, l = j, j + 1, . . .}. The present value

of these payments is
∑∞

l=j(1 − K)K lul
A · vl−j

A = Kjuj
A. Equation (22) thus shows that,

at any time t, the unfunded liability is the present value of payments yet to be made in

respect of all past and present losses, together with the unamortized part of the initial

unfunded liability.

The supplementary contribution St in this method may be calculated directly as a

proportion 1−K of the unfunded liability, together with an adjustment for the difference

between assumed rates on assets and liabilities and for the separate amortization of the

initial unfunded liability. Comparing equations (20) and (22),

St = (1−K)(ULt − Ut) + (vA − vL)AL + Pt. (23)

For simplicity, Dufresne (1988) disregards the separate treatment of initial unfunded li-

ability and the distinction between iA and iL and considers only St = (1 − K)ULt.

Dufresne (1988) also states that the parameter K is usually calculated as K = 1− 1/äM |.

M is typically between 1 and 10 years in the United Kingdom. Thus, if M = m, the first

payment made in respect of a unit loss is 1/äm| under both the amortization and spreading

funding methods (equations (13) and (20) respectively).

Replace St from equation (20) and ULt from equation (22) into equation (8), and use

equation (12), to obtain:

Lt = (i− iA)

[ ∞∑
j=0

Kj+1uj
ALt−j − vA(AL− Ut+1)

]
. (24)
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Compare equation (16) when losses are amortized to equation (24) when losses are spread.

If the actuarial assumption as to the rate of investment return on plan assets equals the

actual rate of return (that is, if i = iA), then no loss emerges (Lt = 0 ∀ t from equation (24))

and the unfunded liability consists only of the unamortized part of the initial unfunded

liability (ULt = Ut for t ≥ 0 from equation (22)).

From equation (24),

Lt+1 − uAK Lt = (i− iA) [K Lt − vA(AL− Ut+1) + K(AL− Ut)] , (25)

which is a first-order linear difference equation that simplifies to

Lt+1 − uK Lt = −vA(i− iA) [(AL− Ut+1)− uAK(AL− Ut)] . (26)

Recall from equation (11) that Ut = 0 for t ≥ n. Provided |uK| < 1, it follows from

equation (26) that

lim
t→∞

Lt = −AL(i− iA)vA
1− uAK

1− uK
. (27)

In equation (20), K was defined to be such that 0 ≤ K < vA. Provided |uK| < 1, the

right hand side of equation (22) is also absolutely convergent and

lim
t→∞

ULt = (1− uAK)−1 lim
t→∞

Lt. (28)

lim St may be found from equations (23) and (28). This is summarised in the following

result.

Result 2 Provided |uK| < 1,

lim
t→∞

Lt = −AL(i− iA)v
vA −K

v −K
, (29)

lim
t→∞

ULt = AL
v − vA

v −K
, (30)

lim
t→∞

St = AL(1−K)
v − vA

v −K
+ AL(vA − vL). (31)
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In contrast with Dufresne (1988), we have allowed for separate amortization of the

initial unfunded liability and also for the possibility that the actuarial assumptions iA and

iL are different, and we have also derived equations pertaining to the intervaluation loss

Lt. Result 2 may alternatively be obtained, as in Dufresne (1988), by substituting St from

equation (23) into equation (5) giving a first-order difference equation

(ULt+1 − Ut+1)− uK(ULt − Ut) = (1− uvA)(AL− Ut+1), (32)

which solves to

ULt − Ut = (1− uvA)
t−1∑
j=0

(uK)j(AL− Ut−j). (33)

Corollary 2 hereunder follows directly from equation (30):

Corollary 2 Assume that |uK| < 1. If iA = i, then lim ULt = 0. If iA > i, then

lim ULt > 0. If iA < i, then lim ULt < 0.

Compare Corollary 1 with Corollary 2. Under both amortization and spreading, the

choice of the actuarial investment return assumption iA affects the long-term funding status

of the pension plan. Note also from equation (30) that, when iA 6= i, lim ULt depends on

the parameter K that is used to spread gains and losses.

6 Modified Spreading of Gains and Losses

If the actual investment return deviates from the actuarial investment return assumption,

then persistent underfunding or overfunding will occur in the long term, as shown in

Corollaries 1 and 2 in both of the preceding methods. Persistent deficits jeopardize the

security of pension benefits for plan members since, in the event of sponsor insolvency,

there will not be enough funds to meet benefit obligations. On the other hand, excessive

surpluses are also undesirable as funds are being diverted from productive activity in the
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company. Plan participants may also demand that surpluses be distributed to them in the

form of improved benefits (McGill et al., 1996, p. 592–4).

In practice, the emergence of persistent surpluses or deficits causes actuaries to revise

their actuarial valuation assumptions. Nevertheless, it is of interest to devise a funding

method that avoids systematic surpluses and deficits.

Suppose that a constant stream of intervaluation losses of size ` > 0 occurs in the

pension plan. If losses are being amortized as in the method of section 4, then a positive

unfunded liability (that is, a deficit) occurs since, from equation (15) and for t ≥ n,

ULt = `

m−1∑
j=0

äm−j|
äm|

> 0. (34)

Likewise, a deficit occurs if losses are being spread, as in section 5, since, from equation (22)

and for t ≥ n,

ULt = `/(1− uAK) > 0. (35)

This suggests a variation on the spreading of losses. Consider a new funding method,

which is referred to henceforth as “modified spreading of gains and losses”, where sup-

plementary contributions are calculated to pay off intervaluation losses and the initial

unfunded liability as follows:

St =
∞∑

j=0

(α1K
j
1 − α2K

j
2)u

j
ALt−j + (vA − vL)AL + Pt (36)

where

α1 = (1− uAK1)(1−K1)/uA(K2 −K1), (37)

α2 = (1− uAK2)(1−K2)/uA(K2 −K1), (38)

and where 0 ≤ K1 < vA and 0 ≤ K2 < vA and K1 6= K2.

In this method, a unit loss is liquidated by means of an infinite sequence of payments
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{(α1K
j
1 − α2K

j
2)u

j
A, j = 0, 1, . . .} and is paid off in perpetuity since

∞∑
j=0

(α1K
j
1 − α2K

j
2)u

j
A · vj

A =
α1

1−K1

− α2

1−K2

= 1. (39)

Replacing St from equation (36) into equation (9) and using equation (12) yields

(ULt+1 − Ut+1)− uA(ULt − Ut) = Lt+1 − uA

∞∑
j=0

(α1K
j
1 − α2K

j
2)u

j
ALt−j. (40)

Now define

β1 = (1− uAK1)/uA(K2 −K1), (41)

β2 = (1− uAK2)/uA(K2 −K1). (42)

Noting that α1 = β1(1−K1) and α2 = β2(1−K2) and β1 − β2 = 1, the right hand side of

equation (40) may be rewritten as

Lt+1 + uA

∞∑
j=0

(β1K
j+1
1 − β2K

j+1
2 )uj

ALt−j − uA

∞∑
j=0

(β1K
j
1 − β2K

j
2)u

j
ALt−j

= uA

∞∑
j=−1

(β1K
j+1
1 − β2K

j+1
2 )uj

ALt−j − uA

∞∑
j=0

(β1K
j
1 − β2K

j
2)u

j
ALt−j

=
∞∑

j=0

(β1K
j
1 − β2K

j
2)u

j
ALt+1−j − uA

∞∑
j=0

(β1K
j
1 − β2K

j
2)u

j
ALt−j, (43)

which, upon comparison with the left hand side of equation (40), yields

ULt − Ut =
∞∑

j=0

(β1K
j
1 − β2K

j
2)u

j
ALt−j. (44)

Compare equations (15), (22) and (44).

Under the method of equation (36), for a unit loss that emerged j years ago, the

following sequence of payments is yet to be made: {(α1K
l
1 − α2K

l
2)u

l
A, l = j, j + 1 . . .}.

The present value of these outstanding payments is therefore

∞∑

l=j

(α1K
l
1 − α2K

l
2)u

l
A · vl−j

A =

[
α1K

j
1

1−K1

− α2K
j
2

1−K2

]
uj

A = (β1K
j
1 − β2K

j
2)u

j
A. (45)
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Equation (44) thus shows that, at any time t, the unfunded liability is the present value

of payments yet to be made in respect of all past and present losses, together with the

unamortized part of the initial unfunded liability.

The following proposition is proven in the Appendix.

Proposition 1 Provided that

min(i, iA) > −100%, (46)

i− iA < 100% + iA, (47)

0 ≤ min(K1, K2) < max(K1, K2) < min(v, vA), (48)

then

lim
t→∞

Lt = −AL(i− iA)v, (49)

lim
t→∞

ULt = 0, (50)

lim
t→∞

St = AL(v − vL). (51)

The sufficient conditions (46)–(48) in Proposition 1 are not very restrictive. (Necessary

and sufficient conditions are discussed in the Appendix.) Condition (46) is easily satisfied

under normal economic conditions. Condition (47) also holds in practice. Long-run eco-

nomic growth means that the actuarial assumption iA as to the long-term rate of return on

plan assets is positive (iA > 0). Condition (47) then requires that the actuarial investment

return assumption iA does not underestimate the actual return on assets i by 100% or

more. Condition (48) is also easily met in practice. For example, if max(i, iA) = 15%,

then 0 ≤ K1 < 0.87 and 0 ≤ K2 < 0.87 with K1 6= K2 means that condition (48) holds.

Corollary 3 Assume that conditions (46)–(48) hold. Then, lim ULt = 0, irrespective of

whether iA = i or iA > i or iA < i.
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Compare Corollaries 1, 2 and 3. Corollary 3 states that, under the modified spreading

funding method described by equation (36), the pension plan is fully funded in the long

term, irrespective of the deviation of the investment return assumption from the actual

return on the pension plan assets (provided that the mild conditions (46)–(48) hold).

Furthermore, lim ULt is independent of the funding method parameters K1 and K2.

The choice of iA affects the progression of funding in the short term, but iA does not

affect the funding position asymptotically. In fact, one could arbitrarily set iA = iL as

under the classical actuarial valuation methodology described in section 2 and effectively

dispense with an investment return assumption iA that is distinct from the rate iL at which

the pension liability is valued.

Corollary 3 may be explained as follows. Suppose that a constant stream of intervalu-

ation losses of size ` > 0 occurs in the pension plan. Recall that this results in a persisting

deficit when losses are being either amortized or spread: see equations (34) and (35) re-

spectively. By contrast, under the method of equation (36), a constant stream of losses of

size ` 6= 0 results in zero unfunded liability because, from equation (44) and for t ≥ n,

ULt = `

∞∑
j=0

(β1K
j
1 − β2K

j
2)u

j
A = `

[
β1

1− uAK1

− β2

1− uAK2

]
= 0, (52)

where we use equations (41) and (42).

It was shown that the spreading method of equation (20) could be calculated more

directly in terms of the unfunded liability, in equation (23). This may also be achieved

here. The following proposition is proven in the Appendix.

Proposition 2 The funding method described in equation (36) is equivalently achieved

by calculating supplementary contributions as follows:

St = λ1(ULt − Ut) + λ2

∞∑
j=0

(ULt−j − Ut−j) + (vA − vL)AL + Pt, (53)

where λ1 = 1− uAK1K2 and λ2 = vA(1− uAK1)(1− uAK2).
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Trowbridge and Farr (1976, p. 62) state that “easy computations” are a desirable char-

acteristic of a funding method. Equation (53) provides a straightforward way of computing

contributions from year to year as only the historic sum of unfunded liabilities need be

stored and updated.

Compare equations (23) and (53). The second term on the right hand side of equa-

tion (53) represents a historic sum (without interest) of past unfunded liabilities. Con-

tributions are therefore paid until surpluses and deficits cancel each other out and the

unfunded liability is zero. Modified spreading of gains and losses, in the representation of

equation (53), is similar to a method described by Balzer (1982) in the context of a general

insurance system (see also Taylor, 1987). Balzer (1982) refers to a summation term similar

to the second term on the right hand side of equation (53) as supplying an “integral action”

which adjusts for a “persisting stream of unpredicted claims”.

7 Numerical Example

An illustration of the previous results is given here and is based on the following:

Demographic projections: Mortality: English Life Table No. 12 (males). Plan population:

stationary with single entry age of 20 and single retirement age of 65.

Salary: Constant throughout working lifetime.

Benefit: A level pension at age 65 paying 2/3 of annual salary.

Economic projections: No inflation. Assets earn a constant rate of return of 4.5%.

Initial unfunded liability: Zero. (Alternatively, assume that UL0 is being separately amor-

tized as in equation (10) and that ULt − Ut, rather than ULt is evaluated below.)

Actuarial valuations: Frequency: yearly. Actuarial cost method: unit credit.
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Actuarial assumptions: Fixed with valuation assumptions iL = 4%, iA = 1%, 4.5% and

6%. Other valuation assumptions are identical to projection assumptions.

Valuation data: Number of entrants and payroll are calculated such that the yearly benefit

outgo B is normalized to 1. Actuarial liability AL = 16.94, normal cost NC = 0.3486,

both expressed as a proportion of B.

Funding method parameters: Amortization: m = 5. Spreading: K = 1 − 1/ä5|. Modified

spreading: K1 = K, K2 = 0.8.

When i = iA = 4.5%, numerical work (not shown here) shows that neither gain nor loss

arises and the funded ratio (that is, ratio of fund value to actuarial liability) remains at

100%, while the contribution paid is equal to the normal cost, for all three methods. This

accords with Corollaries 1, 2 and 3 when iA = i.

When i = 4.5% and iA = 6%, the investment return assumption is optimistic. Fund

values (as a percentage of actuarial liability) and contributions (as a percentage of normal

cost) over time are exhibited in Table 1. See also Figure 1. A contribution that is equal to

11.8% of normal cost is required initially under all three methods. Under amortization, the

required contribution levels off at 86.6% of normal cost and an unfunded liability of 4.3%

of actuarial liability remains. Under spreading, the contribution rises steadily to 93.3%

of normal cost and an unfunded liability of 7.5% of actuarial liability is left eventually.

Under modified spreading, the required contribution stabilizes at about 78% of normal

cost with the plan being fully funded eventually. This therefore agrees with Corollaries 1,

2 and 3 when iA > i: long-run deficits occur under amortization and spreading, but not

under modified spreading. Furthermore, numerical experiments suggest that the long-run

unfunded liabilities that occur under amortization and spreading are larger, the larger the

deviation between actual and assumed returns.
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Note that the pension fund is ultimately in balance under all three methods. For

example, under amortization, using units of yearly benefit outgo, a fund of 95.7%×16.94 =

16.21 yields investment income of 16.21 × 4.5% = 0.7295 at the end of the year. At the

start of the year, the present value of this income is 0.7295/1.045 = 0.698. Contribution

income is 86.6% × 0.3486 = 0.301. Total income is 0.698 + 0.301 = 1 which balances

the benefit of 1 that is paid out. The balance occurs at different levels under the three

methods. Under modified spreading, the fund is eventually in equilibrium in such a way

that the pension plan is fully funded.

When i = 4.5% and iA = 1%, a conservative investment return assumption is being

made. See Table 2 and Figure 2. A large contribution (more than double the normal cost)

is required initially under all three funding methods. Intervaluation gains lead initially to

falling contributions under all three methods (at about the same rate). Ultimately, the

lowest contribution (at only 35% of normal cost) is generated when spreading is used, but

this is at the expense of a large surplus in the pension fund of 20% of actuarial liability.

On the other hand, the surplus is only 5% of actuarial liability within 10 years, and under

1% within 20 years, when modified spreading is used. This also agrees with Corollaries 1,

2 and 3 when iA < i.

8 Conclusion

The investment return assumption made by actuaries when valuing defined benefit pension

plans and its relevance to the pace of funding for pension benefits was discussed in section 2.

It was argued that this assumption is theoretically distinct from the discount rate that is

used to value pension liabilities, although they may be equal in practice. A simplified model

pension plan was posited in Section 3, where actuarial liability, normal cost and benefit

outgo were constant. The only intervaluation gains and losses allowed in the model resulted
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from actual investment return deviating from the actuarial investment return assumption.

Two practical funding methods were described in sections 4 and 5 and it was shown, in

both cases, that a conservative investment return assumption leads to a long-term surplus

whereas an optimistic investment return assumption leads to a long-term deficit. Both long-

term surpluses and deficits were deemed to be undesirable. Surpluses may entail expensive

demands for benefit enhancements from plan members during wage negotiations and also

involves the diversion of capital away from projects within the sponsoring corporation.

Deficits may endanger the security of pension benefits should the plan sponsor become

insolvent. A funding method was devised and described in section 6 that avoids such

persistent surpluses and deficits, under mild stability conditions, independently of the

conservatism or optimism in the actuarial investment return assumption. A simple way

of implementing this funding method was derived in terms of the historic sum of past

unfunded liabilities. A numerical illustration of these results was provided in section 7.

The analysis in this paper yielded closed-form mathematical solutions but this required

simplistic modelling assumptions. Future research should relax these restrictive assump-

tions. First, only asset gains and losses were considered. Mortality, withdrawal, inflation

and other factors are also variable and should be incorporated in the model. Second,

these factors are uncertain and intervaluation gains and losses are random. A stochastic

approach following Dufresne (1988, 1989) and Owadally and Haberman (1999), who in-

vestigate pension funding with random investment returns, should be illuminating. It will

enable a more realistic comparison of the various funding methods to be made in terms of

the variance of fund values and contributions. The efficient choice of parameters K1 and

K2 under modified spreading of gains and losses can also then be investigated.
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Appendix

Proof of Proposition 1

It is easy to show, from equations (37), (38), (41) and (42) that

α1 − α2 = 1 + vA −K1 −K2, (54)

α1K2 − α2K1 = vA −K1K2, (55)

β1 − β2 = 1, (56)

β1K2 − β2K1 = vA. (57)

Replace St from equation (36) and ULt from equation (44) into equation (8), and use

equation (12), to obtain:

Lt+1 = (i− iA)

[ ∞∑
j=0

[
(β1 − α1)K

j
1 − (β2 − α2)K

j
2

]
uj

ALt−j − vA(AL− Ut+1)

]
. (58)

This may be rewritten using the lag or backward shift operator B as follows:

B−1Lt = (i− iA)

[
β1 − α1

1− uAK1B
Lt − β2 − α2

1− uAK2B
Lt −B−1vA(AL− Ut)

]
. (59)

Note from equations (54)–(57) that

(β1 − α1)− (β2 − α2) = K1 + K2 − vA, (60)

(β1 − α1)K2 − (β2 − α2)K1 = K1K2. (61)

Multiply both sides of equation (59) by (1 − uAK1B)(1 − uAK2B)B and use the two

equations above:

(1− uAK1B)(1− uAK2B)Lt = (i− iA)

[
(K1 + K2 − vA)B Lt − uAK1K2B

2Lt

− (1− uAK1B)(1− uAK2B)vA(AL− Ut)

]
. (62)
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Collect terms in Lt on the left hand side to obtain a second order linear difference equation

for Lt:

{
1−B [uK1 + uK2 − uvA + 1] + B2[uuAK1K2]

}
Lt

= −(1− uAK1B)(1− uAK2B)vA(i− iA)(AL− Ut). (63)

Difference equation (63) has a quadratic characteristic equation,

P (z) = z2 − z[uK1 + uK2 − uvA + 1] + uuAK1K2 = 0, (64)

whose roots must be less than one in magnitude for {Lt} to converge as t → ∞. Nec-

essary and sufficient conditions for this for a general quadratic equation are given by

Marden (1966):

|P (0)| < 1 ⇒ |uuAK1K2| < 1, (65)

P (1) > 0 ⇒ uvA(1− uAK1)(1− uAK2) > 0, (66)

P (−1) > 0 ⇒ uvA[2uA(v + uAK1K2)− (1− uAK1)(1− uAK2)] > 0. (67)

It is now shown that inequalities (65)–(67) follow from the sufficient conditions in

Proposition 1. Note first that condition (46) may be rewritten as 0 < min(u, uA) ≤
max(u, uA). Conditions (46) and (48) thus imply that

0 ≤ min(u, uA) min(K1, K2) < max(u, uA) max(K1, K2) < 1. (68)

Hence, inequality (65) follows from sufficient conditions (46) and (48).

Next, note from the inequalities (68) that

0 < 1−max(u, uA) max(K1, K2) < 1−min(u, uA) min(K1, K2) ≤ 1, (69)

and therefore that

0 < (1− uAK1) ≤ 1 and 0 < (1− uAK2) ≤ 1. (70)
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Hence, inequality (66) follows from sufficient conditions (46) and (48).

Finally, condition (47) may be written as u < 2uA or 2uAv > 1, by virtue of condi-

tion (46). It follows from inequalities (70) that

(1− uAK1)(1− uAK2) ≤ 1 < 2uAv ≤ 2uAv + 2u2
AK1K2 (71)

⇒ 2uA(v + uAK1K2)− (1− uAK1)(1− uAK2) > 0. (72)

Hence, inequality (67) follows from sufficient conditions (46), (47) and (48).

Let the roots of the characteristic equation (64) be ν1 and ν2. If ν1 6= ν2, Lt in

equation (63) has a solution of the form Lt = Aνt
1 + Bνt

2 + L, where A, B, L ∈ R. If

sufficient conditions (46)–(48) hold, then |ν1| < 1 and |ν2| < 1, the sequence {Lt} converges

to L and, furthermore, the series
∑∞

j=0(Lj − L) is absolutely convergent.

Assuming convergence, it is clear from equation (63) that

L = lim
t→∞

Lt =
−(1− uAK1)(1− uAK2)vA(i− iA)AL

1− [uK1 + uK2 − uvA + 1] + [uuAK1K2]

= −AL(i− iA)v
vA(1− uAK1)(1− uAK2)

vA(1− uAK1)(1− uAK2)
= −AL(i− iA)v, (73)

which proves equation (49).

The limit in equation (51) is obtained by resorting to equation (36):

St =
∞∑

j=0

(α1K
j
1 − α2K

j
2)u

j
A(Lt−j − L) +

∞∑
j=0

(α1K
j
1 − α2K

j
2)u

j
AL

+ (vA − vL)AL + Pt. (74)

As t → ∞, the first sum on the right hand side of equation (74) vanishes since both

∑∞
j=0(α1K

j
1 − α2K

j
2)u

j
A and

∑∞
j=0(Lj − L) are absolutely convergent and their Cauchy

product is also absolutely convergent. As t → ∞, the second sum on the right hand side

of equation (74) converges to

(
α1

1− uAK1

− α2

1− uAK2

)
× L = vA ×−AL(i− iA)v = −AL(vA − v), (75)
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where use is made of equations (37) and (38). Pt also vanishes as t →∞ from equation (10).

Hence, limt→∞ St = −AL(vA − v) + AL(vA − vL) = AL(v − vL).

Finally, the limit in equation (50) is obtained by taking limits on each term on the right

hand side of equation (44) which may be rewritten as follows:

ULt − Ut =
∞∑

j=0

(β1K
j
1 − β2K

j
2)u

j
A(Lt−j − L) +

∞∑
j=0

(β1K
j
1 − β2K

j
2)u

j
AL. (76)

As t → ∞, the first sum on the right hand side of equation (76) vanishes since both

∑∞
j=0(β1K

j
1 − β2K

j
2)u

j
A and

∑∞
j=0(Lj − L) are absolutely convergent and their Cauchy

product is also absolutely convergent. As t → ∞, the second sum on the right hand side

of equation (76) converges to zero since

∞∑
j=0

(β1K
j
1 − β2K

j
2)u

j
A =

β1

1− uAK1

− β2

1− uAK2

= 0, (77)

where use is made of equations (41) and (42). Hence, limt→∞ ULt = 0. 2

Proof of Proposition 2

Rewrite equation (44) in terms of the lag or backward shift operator B:

ULt − Ut =

[
β1

1− uAK1B
− β2

1− uAK2B

]
Lt

=
(β1 − β2)− (β1K2 − β2K1)uAB

(1− uAK1B)(1− uAK2B)
Lt. (78)

Using equations (56) and (57), the numerator on the right hand side of the above equation

simplifies and

ULt − Ut =
1−B

(1− uAK1B)(1− uAK2B)
Lt. (79)

Likewise, rewrite equation (36) in terms of the backward shift operator B and use
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equations (54) and (55) to simplify:

St =

[
α1

1− uAK1B
− α2

1− uAK2B

]
Lt + (vA − vL)AL + Pt

=
(1 + vA −K1 −K2)− (vA −K1K2)uAB

(1− uAK1B)(1− uAK2B)
Lt + (vA − vL)AL + Pt. (80)

Cancel Lt from equations (79) and (80) and simplify:

St − (vA − vL)AL − Pt

=
(1 + vA −K1 −K2)− (vA −K1K2)uAB

1−B
(ULt − Ut)

=

[
1− uAK1K2 +

vA(1− uAK1)(1− uAK2)

1−B

]
(ULt − Ut)

= (1− uAK1K2)(ULt − Ut) + vA(1− uAK1)(1− uAK2)
∞∑

j=0

(ULt−j − Ut−j), (81)

which is equation (53). 2

References

Actuarial Standards Board (1996). Actuarial Standard of Practice No. 27: Selection

of Economic Assumptions for Measuring Pension Obligations. Pensions Committee of the

Actuarial Standards Board, American Academy of Actuaries, Washington, DC.

Balzer, L.A. (1982). Control of insurance systems with delayed profit/loss-sharing feed-

back and persisting unpredicted claims. Journal of the Institute of Actuaries 109, 285–316.

Berin, B.N. (1989). The Fundamentals of Pension Mathematics. Society of Actuaries,

Schaumburg, Illinois.

Daykin, C.D. (1976). Long-term rates of interest in the valuation of a pension fund.

Journal of the Institute of Actuaries 21, 286–340.

Dufresne, D. (1988). Moments of pension contributions and fund levels when rates of

return are random. Journal of the Institute of Actuaries 115, 535–544.

27



Dufresne, D. (1989). Stability of pension systems when rates of return are random.

Insurance: Mathematics and Economics 8, 71–76. British Actuarial Journal 3, 835–966.

Marden, M. (1966). The Geometry of Polynomials, 2nd ed. American Mathematical

Society, Providence, Rhode Island.

McGill, D.M., Brown, K.N., Haley, J.J. and Schieber, S.J. (1996). Fundamentals

of Private Pensions, 7th ed. University of Pennsylvania Press, Philadelphia, Pennsylvania.

Owadally, M.I. and Haberman, S. (1999). Pension fund dynamics and gains/losses due

to random rates of investment return. North American Actuarial Journal 3(3), 105–117.

Taylor G.C. (1987). Control of unfunded and partially funded systems of payments.

Journal of the Institute of Actuaries 114, 371–392.

Thornton, P.N. and Wilson, A.F. (1992). A realistic approach to pension funding.

Journal of the Institute of Actuaries 119, 229–312.

Trowbridge, C.L. (1952). Fundamentals of pension funding. Transactions of the Society

of Actuaries 4, 17–43.

Trowbridge, C.L. and Farr, C.E. (1976). The Theory and Practice of Pension Fund-

ing. Richard D. Irwin, Homewood, Illinois.

M. Iqbal Owadally

Faculty of Actuarial Science and Statistics

Cass Business School

City University

106 Bunhill Row, London EC1Y 8TZ, England

Email: iqbal@city.ac.uk

28



Time Fund value (%) Contribution (%)

A S MS A S MS

0 100.0 100.0 100.0 11.8 11.8 11.8

2 97.4 97.4 97.6 42.5 39.7 55.6

4 96.0 95.8 96.7 72.5 58.1 78.2

6 95.7 94.6 96.6 87.0 70.1 88.8

8 95.7 93.9 96.8 86.6 78.1 92.9

10 95.7 93.4 97.2 86.6 83.3 93.4

12 95.7 93.1 97.7 86.6 86.7 92.3

14 95.7 92.9 98.1 86.6 89.0 90.5

16 95.7 92.8 98.4 86.6 90.5 88.4

18 95.7 92.7 98.8 86.6 91.4 86.5

20 95.7 92.6 99.0 86.6 92.1 84.8

25 95.7 92.6 99.5 86.6 92.9 81.7

30 95.7 92.5 99.7 86.6 93.2 79.8

35 95.7 92.5 99.8 86.6 93.3 78.8

40 95.7 92.5 99.9 86.6 93.3 78.3

45 95.7 92.5 100.0 86.6 93.3 78.0

50 95.7 92.5 100.0 86.6 93.3 77.8

Table 1: Fund value (per cent of actuarial liability) and contribution (per cent of normal

cost) when iA = 6% and i = 4.5% for amortization (A), spreading (S) and modified

spreading (MS).
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Time Fund value (%) Contribution (%)

A S MS A S MS

0 100.0 100.0 100.0 238.8 238.8 238.8

2 106.3 106.3 105.7 169.1 175.9 124.1

4 110.2 110.7 107.5 96.5 132.3 66.3

6 111.2 113.8 107.3 57.1 102.2 41.7

8 111.2 115.9 106.3 54.6 81.3 35.2

10 111.3 117.3 105.1 54.1 66.9 37.7

12 111.3 118.3 103.8 54.1 56.9 44.0

14 111.3 119.0 102.8 54.1 50.0 51.2

16 111.3 119.5 102.0 54.1 45.3 57.8

18 111.3 119.9 101.3 54.1 42.0 63.4

20 111.3 120.1 100.9 54.1 39.7 67.7

25 111.3 120.4 100.3 54.1 36.6 74.2

30 111.3 120.5 100.1 54.1 35.3 76.7

35 111.3 120.6 100.0 54.1 34.9 77.5

40 111.3 120.6 100.0 54.1 34.7 77.7

45 111.3 120.6 100.0 54.1 34.6 77.7

50 111.3 120.6 100.0 54.1 34.5 77.7

Table 2: Fund value (per cent of actuarial liability) and contribution (per cent of normal

cost) when iA = 1% and i = 4.5% for amortization (A), spreading (S) and modified

spreading (MS).
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Figure 1: Fund value (per cent of actuarial liability) and contribution (per cent of normal

cost) against time (years) when iA = 6% and i = 4.5% for amortization, spreading and

modified spreading.
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Figure 2: Fund value (per cent of actuarial liability) and contribution (per cent of normal

cost) against time (years) when iA = 1% and i = 4.5% for amortization, spreading and

modified spreading.
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