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Abstract. This paper presents our pattern-based ap-
proach to run-time requirements monitoring and threat 
detection being developed as part of an approach to 
build frameworks supporting the construction of secure 
and dependable systems for ambient intelligence. Our 
patterns infra-structure is based on templates. From 
templates we generate Event-Calculus formulas express-
ing security requirements to monitor at run-time. From 
these theories we generate attack signatures, describing 
threats or possible attacks to the system. At run-time, we 
evaluate the likelihood of threats from run-time observa-
tions using a probabilistic model based on Bayesian net-
works. 
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1. Introduction 
The vision of Ambient Intelligence (AmI) [1] poses 

many technological challenges. The European research 
project SERENITY1 tries to contribute to the realisation 
of this vision by developing an approach to construct 
AmI ecosystems that are both secure and dependable. 
The SERENITY effort proposes an architecture to con-
struct design and run-time frameworks for AmI [2].  

In SERENITY, patterns have a pivotal role. They fac-
tor expertise and can be used in a variety of contexts. Our 
role in SERENITY is run-time systems monitoring. In 
particular, we are concerned with checking that security 
and dependability (S&D) solutions emerging from 
SERENITY frameworks satisfy their S&D requirements 
at run-time. 

Like the whole run-time SERENITY framework, its 
run-time monitoring component needs to adapt to a vari-
ety of contexts following a pattern-based approach. For 
this purpose, we use a very concrete form of pattern: 
templates.  Our run-time monitoring component com-
prises a catalogue of security monitoring specification 
templates that are instantiated to provide S&D monitor-
ing solutions in a variety of contexts. The aim of this 
template infra-structure is two-fold: (a) factor and reuse 
expertise in building monitoring specifications; (b) en-
able automation so that monitoring specifications are 
automatically generated from other artefacts of the 
SERENITY framework.  

Due to their distributed nature, AmI systems are vul-
nerable to attacks: the attacker can be anywhere and 
                                                                 
1 http://www.serenity-project.org 

choose the easiest entry [3]. One of the aims of the 
SERENITY run-time framework, of which our monitor-
ing component is part of, is to be able to detect attacks 
and predict threats (the possible occurrence of attacks).  

Previously, we developed a system to monitor re-
quirements of service-based systems [4] where require-
ments are expressed in Event Calculus. We have also 
advocated an approach to security monitoring based on 
patterns in the context of SERENITY [5, 6].  

This paper takes this work further and presents part of 
our concrete approach to S&D run-time monitoring in 
SERENITY. In particular, it presents: 
• The approach driving the generation of EC formulas 

used for requirements monitoring and threat detec-
tion, which includes the mechanism underlying the 
transition from design and architectural models to a 
specific monitoring theory.  

• The approach to detect threats to security and de-
pendability requirements at run-time. 

The following starts by giving some background on 
the languages Event Calculus and FTL. Section 3 pre-
sents the example that is used to motivate and illustrate 
our approach. Section 4 gives a brief overview of our 
overall approach to security monitoring and threat detec-
tion from templates. Section 5 presents shows how moni-
toring specifications are generated from monitoring tem-
plates. Section 6 shows how attack signatures are gener-
ated from a monitoring specification. Section 7 shows 
our approach to calculate the probability of threats at 
run-time. The remaining sections discuss the results pre-
sented in this paper, compare our approach with related 
work and take the conclusions of the paper. 

2. Background 
Our approach needs a way to express security moni-

toring specifications and templates of these specifica-
tions. This is done using the Event Calculus and the 
Formal Template Language (FTL). 

2.1 The Event Calculus 
The Event Calculus (EC) [7] is a language based on 

first-order predicate-calculus that is designed to represent 
and reason about action and change. The basic ontology 
of EC comprises events, fluents and timepoints. An event 
represents an action that may occur in the world. A fluent 
represents a time varying property of the world. A time-
point represents an instance of time. C includes a set of 
basic predicates to describe happening of events, their 
effects and the state of fluents. 
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The basic predicates of EC are as follows: 
• HoldsAt (f, t) says that fluent f is true at time-point t. 
• Happens (e, t, R(t1, t2)) says that event e may occur 

at time-point t within time range t1 … t2. 
• Initiates (e, f, t) says that if event e occurs at time 

point t, then fluent f is true after t. 
• Terminates (e, f, t) says that if event e occurs at time 

point t, then fluent f is false after t. 
• InitiallyP (f) says that fluent f holds at timepoint 0. 

2.2 FTL 
To express templates we use the Formal Template 

Language (FTL) [8, 9], a generic formal language for 
expressing templates of any target language. A key char-
acteristic of FTL is that it is generative; FTL describes 
sentences of some target language (here we use EC) and 
can generate sentences when provided with an instantia-
tion. The main constructs of FTL are placeholders, lists 
and choice.  

To illustrate FTL, suppose the following FTL tem-
plate of an EC predicate, which specifies a number of 
event preconditions associated with the template event E: 
 (∀ t : Time) Happens(〈E〉, t, R(t, t)) ⇒ [HoldsAt(〈F〉, t)] 

This template includes two placeholders and one list 
term. It basically says that a number of pre-conditions 
(HoldsAt predicate inside the list with placeholder F) 
may be associated with some event (E placeholder in 
Happens predicate). The template can be instantiated to 
give: 
 (∀ t : Time) Happens(Eat, t, R(t, t)) ⇒  
 HoldsAt(IsHungry, t)∧ HoldsAt(DinnerServed, t) 

3. Motivating Example 
To illustrate the approach presented here, we use a 

case study of an e-health care system used in the 
SERENITY project [10]. Our simple e-health care sys-
tem enables doctors to access the medical data of patients 
by digital means; its requirements are summarised in Ta-
ble 1. Essentially, this system provides an operation to 
access the full contents of a patient’s medical file (R1), 
and an operation to access the partial contents of a pa-
tient’s medical file (R2). 
R
1 

A patient’s medical file may be seen by the doctor 
of the patient only. 

R
2 

All doctors may see partial pieces of information 
belonging to a patient's medical file in a way that 
preserves requirement R1. 

Table 1: The requirements of the e-health care 
system (based on [10]). 

Requirement R1 is a confidentiality security require-
ment protecting the privacy of patients. The functionality 
introduced by requirement R2, however, may conflict 
with R1. R2 says that there are indirect means to access 
the information of a patient's medical file, but this must 
be done with care in order not to breach R1. 

Dr Jones

Dr Smith

Anderson’s 
medical file

HasAccessTo

Mr Anderson
Owns

IsDoctor

Partial Data 1 Partial Data 2 Partial Data n
. . .

HasAccessTo

Has not direct 
access to

 
Figure 1:  A scenario of the e-health care sys-
tem, where Dr Smiths infers the medical file of 

someone else’s patient. 
Figure 1 depicts two scenarios illustrating the simple 

e-health care system and its security requirements. We 
have doctor Jones, his patient Mr Anderson, and another 
doctor, Smith, who is not Anderson's doctor. According 
to R1, Dr Jones has direct access to Anderson's medical 
file, but Smith does not because he is not Anderson's 
doctor. Figure 1 also illustrates how R2 may impact on 
R1. We can see that Dr Smith, although not Anderson’s 
Doctor, is able to infer Anderson's medical file by indi-
rect means breaching requirement R1.  This indirect way 
of accessing confidential data is an instance of the infer-
ence attacks [11]. 

4. Overview of the approach 
Security requirements aim to protect some system 

from malicious attacks. Our approach checks that such 
requirements are preserved at run-time by monitoring the 
satisfaction of EC formulas that formalise them. This is 
done by observing the system at run-time and checking 
observations against specified system behaviour trying to 
detect deviations from what is specified. There are two 
different types of EC formulas: monitoring rules and 
assumptions. Monitoring rules are those formulas whose 
satisfaction is checked at run-time. Assumptions specify 
rules on how to derive information about the state of the 
system that is being monitored based on observations of 
its behaviour. A collection of these EC formulas is called 
monitoring specification. 

A monitoring specification effectively describes the 
security policy of the system. When an attack takes place, 
we consider that the security policy is violated and, there-
fore, a monitoring rule is breached. This means that our 
requirements monitoring approach is capable of detecting 
immediate attacks to the system, or, what is referred in 
the security literature as  intrusions [12-14]: some moni-
toring rule is breached and our tool detects this. A threat, 
however, is a possible attack to the system [13]; to detect 
them our approach needs to be one-step-ahead and fore-
see future violations of monitoring rules. 

Attackers are constantly looking for new ways of at-
tacking systems. We somehow need to devise a strategy 



to prevent this. Our strategy is based on the security con-
cept of an asset. Assets are the resources that a system 
must protect from incorrect or unauthorised use [15]. 
They are attack targets; the motivation of an attack to the 
system. Our security templates are designed to protect 
some system asset. 

The following discusses the process involved in the 
generation of monitoring specifications and attack signa-
tures, and overviews our approach to threat detection. 

4.1 The Generation process 
In SERENITY, every EC formula used for threat de-

tection is generated from a security template expressed in 
FTL, which expresses a basic security property, namely, 
confidentiality, integrity and availability. As violations of 
these properties would breach system security, we use the 
templates to derive possible attack signatures over assets. 

The whole process of generation of a monitoring spe-
cification is triggered by the pair 〈Security Objective, 
Asset〉. The whole process, depicted in Figure 2, is as 
follows: 
1. The template is selected from the security objective 

(refers to template name). 
2. The system asset is used to select a set of 

SERENITY artefacts that refer to it. 
3. Information derived from selected artefacts are used 

to instantiate the selected monitoring template, re-
sulting in the generation of monitoring specification. 

4. The attack signature is generated from the monitor-
ing specification. 

5. Finally, the threat probabilistic model is generated 
from the attack signature. 

Initial Specification

SERENITY 
Artefacts

Monitoring 
Templates

Monitoring 
Specification

instantiates

generates

Security 
Objective

selectsFrom
Templates 
Catalogue

selects

System 
Asset selects

Attack 
signature generates

Threat 
Probabilistic 

Model

generates

 
Figure 2: Generation of Monitoring specification, 
attack signature and threat probabilistic model. 

4.2 A threat is a possible violation of a moni-
toring rule 

Our approach to threat detection starts from an EC 
monitoring specification. Since a threat is a possible vio-
lation of a security monitoring rule, we try to predict this 
in advance by using AI planning techniques [16, 17]. We 
derive an abstract plan describing all possible sequences 
of events in which the monitoring rule is violated. We 
call this abstract plan an attack signature, a formula de-

scribing all possible attacks that lead to the violation of 
the security monitoring rule. 

An actual attack is a sequence of events that have 
been observed, something that happened. A threat is a 
possible attack, a sequence of events that has not yet 
happened but that may happen. In our approach, we 
compute the attack signature at startup (before monitor-
ing starts). At run-time, all observed sequences of events 
that match the signature constitutes either a threat (the 
sequence partially matches the sequence) or an attack 
(the sequence of events totally matches the sequence). 

It is uncertain whether a threat is going to materialise 
itself as an attack or not. To evaluate how likely it is that 
a threat is going to materialise itself as an attack we re-
sort to probability theory. We use a probabilistic model 
based on the Bayesian theory of probability [18]. Ini-
tially, when some event that matches the attack signature 
is observed then this constitutes a possible threat and its 
likelihood is evaluated. As more observations are gath-
ered, the likelihood of threats may be confirmed and be-
come stronger or refuted and become weaker; these 
evaluations are performed using the Bayesian rule of 
conditional probability. 

5. Generation of monitoring specifications 
This section presents a scheme for the generation of 

monitoring specifications by instantiating templates. The 
following introduces a confidentiality monitoring tem-
plate, and illustrates the generation process from this 
template using a design model of our case study. 

5.1 Confidentiality Monitoring Template 
The core confidentiality monitoring template, given 

in Figure 3, comprises one monitoring rule (formula 1) 
and assumptions (formulas 2–3).  Formula 1 says that an 
agent may be exposed to some asset provided he is 
authorised to do so. Formula 2 says that the template 
event “〈Authorise〉” initiates (sets to true) template fluent 
“Authorised〈Asset〉”. Formula 3 says that the template event 
“〈Disclose〉” initiates template fluent “Exposed〈Asset〉”.   

The template for confidentiality with inference, which 
extends the core template to allow indirect access to the 
asset, is given in Figure 4. This template is made entirely 
of template assumptions. In the template, formula 4 says 
that the template event “〈DiscloseP〉” initiates the template 
fluent “KnowsPD〈Asset〉”. Formula 5 says that event “〈Disclo-
seP〉” initiates the template fluent “Exposed〈Asset〉” provided 
the agent already knows all partial pieces of the medical 
file except the one being accessed (by event 〈DiscloseP〉). 
Finally, template formula 6 specifies which actual partial 
pieces of data are available for some asset (template flu-
ent availablePD〈Asset〉). 
〈Confidentiality〉def ==  
(∀ ag : 〈Agent〉; a: 〈Asset〉;  t : Time)  
 HoldsAt (Exposed〈Asset〉 (ag, a), t)  
 ⇒ HoldsAt (Authorised〈Asset〉(ag, a), t) 

(1) 

(∀ ag : 〈Agent〉; a: 〈Asset〉;  t : Time)  
  Happens(〈Authorise〉 (ag, a), t, R (t, t)) 
 ⇒  Initiates(〈Authorise〉 (ag, a),  

(2) 



 Authorised〈Asset〉  (ag, a), t) 
(∀ ag : 〈Agent〉; a: 〈Asset〉;  t : Time)  
 Happens(〈Disclose〉 (ag, a), t, R (t, t))  
 ⇒ Initiates (〈Disclose〉 (a, ag),  
 Exposed〈Asset〉 (ag, a), t) 

(3) 

Figure 3: Core confidentiality template. 
〈Confidentiality.Inference〉def ==   
〈Confidentiality〉ref  
∀ ag : 〈Agent〉; a: 〈Asset〉; pdt : 〈PDT〉; t : Time)  
 Happens(〈DiscloseP〉 (ag, a, pdt), t, R (t, t)) 
 ∧ HoldsAt(AvailablePD〈Asset〉 (pdt, t) 
 ⇒  Initiates (〈DiscloseP〉  (ag, a, pdt),  
 KnowsPD〈Asset〉 (ag, a, pdt), t)  

(4) 

(∀ ag : 〈Agent〉; a: 〈Asset〉; pdt : 〈PDT〉; t : Time)  
 Happens (〈DiscloseP〉 (ag, a, pdt), t, R (t, t)) 
 ∧ HoldsAt(AvailablePD〈Asset〉  (pdt), t) 
 ∧ ((∀ pdt2 : 〈PDT〉) pdt ≠ pdt2 
  ∧ HoldsAt(AvailablePD〈Asset〉 (pdt2), t) 
    ⇒ HoldsAt(KnowsPD〈Asset〉 (ag, a, pdt2), t)) 
  ⇒  Initiates(〈DiscloseP〉 (ag, a, pdt),  
 Exposed〈Asset〉 (a, ag), t)  

(5) 

[InitiallyP(AvailablePD〈Asset〉(〈PD〉))] (6) 

Figure 4: Extension to core template for moni-
toring access to partial data. 

5.2 Generation from security objective and 
template instantiation 

We now show how the templates of Figure 3 and 
Figure 4 are instantiated to produce a monitoring speci-
fication. We start from the object/asset pair: 

〈Confidentiality.Inference, Patient〉 

This says that we want to monitor the “Confidentiali-
ty.Inference” security property over the “Patient” asset. 
The first element of the pair (security property) results in 
the selection of the template of Figure 4. The second 
element of the pair (Patient asset) would result in the 
selection of a set of design models that specify properties 
of the asset. For this effect, we introduce the simple de-
sign UML class model of Figure 5. 

«Agent»
Doctor

«Authorise» AuthoriseAccess()

AccessControl

0..*

1

Controls

«Disclose» GetMF()
«DiscloseP» GetPD(in pdtype : PDType)

«Asset»Patient

0..1

0..*

IsDoctorOf

«PDT»
PDType

0..* 1

AvailablePD

 
Figure 5: A simple system for doctors and their 

patients. 
The class model of Figure 5 introduces the classes 

Doctor, Patient, PDType and AccessControl. This is used 
to instantiate the template; the link is established through 
stereotypes: each stereotype corresponds to the name of a 
placeholder.  

The class model above enables the automatic genera-
tion of the EC theory of Figure 6, where the template is 
instantiated with the substitution set: 

{Agent  a  ``Doctor”, Asset  a  ``Patient”, Disclose   a  ``GetMF”, 
Authorise  a  ``AuthoriseAccess”,  

PDT  a  ``PDType”, DiscloseP   a  ``GetPD”,  
PD  a 〈“PD1”, “PD2”, “PD3”〉} 

As it can be seen, this substitution set is derived from the 
information contained in the diagram.  
(∀ ag : Doctor; a: Patient;  t : Time)  
 HoldsAt (ExposedPatient (ag, a), t)  
 ⇒ HoldsAt (AuthorisedPatient(ag, a), t) 

(7) 

(∀ ag : Doctor; a: Patient;  t : Time)  
  Happens(AuthoriseAccess(ag, a), t, R (t, t)) 
 ⇒ Initiates (AuthoriseAccess(ag, a),  
 AuthorisedPatient  (ag, a), t) 

(8) 

(∀ ag : Doctor; a: Patient;  t : Time)  
 Happens(GetMF (ag, a), t, R (t, t))  
 ⇒ Initiates (GetMF (a, ag), ExposedPatient (ag, a), t) 

(9) 

∀ ag : Doctor; a: Patient; pdt : PDType; t : Time)  
 Happens (GetPD (ag, a, pdt), t, R (t, t)) 
 ∧ HoldsAt(AvailablePDPatient (pdt), t) 
 ⇒ Initiates (GetPD (ag, a, pdt),  
 KnowsPDPatient (ag, a, pdt), t) 

(10) 

(∀ ag : Doctor; a: Patient; pdt : PDType; t : Time)  
 Happens(GetPD(ag, a, pdt), t, R (t, t)) 
 ∧ HoldsAt(AvailablePDPatient(pdt), t) 
 ∧ ((∀ pdt2 : PDType) pdt ≠ pdt2 
 ∧ HoldsAt(AvailablePDPatient (pdt2), t)  
    ⇒ HoldsAt(KnowsPDPatient (ag, a, pdt2), t)) 
 ⇒ Initiates(GetPD(ag, a, pdt), ExposedPatient (a, ag), t) 

(11) 

InitiallyP(AvailablePDPatient(PD1)) (12) 
InitiallyP(AvailablePDPatient(PD2)) (13) 
InitiallyP(AvailablePDPatient(PD3)) (14) 

Figure 6: Event Calculus monitoring specifica-
tion generated by instantiating monitoring tem-

plate with information coming from the class 
diagram of Figure 5. 

6. Generation of attack signatures 
Attack signatures are generated from a monitoring 

theory by using AI planning techniques [16, 17]. Classi-
cal planning derives a concrete sequence of actions to 
achieve a goal. Our task does, however, differ slightly 
from the work on classical planning. We need both con-
ditional and partial-order plans, not just a sequence of 
actions. Conditional because not all the information is 
available when we derive the plans and we may have to 
consider different branches [17]. Partial-order because 
we want to obtain plans with a partial-order on actions 
[16]. 

We intend to use an abductive strategy towards plan-
ning [17]. In particular, we intend to adapt the algorithm 
of [19] that was designed for diagnostics to planning. 

Our proposed approach is as follows: 
• We negate the security monitoring rule of the EC 

monitoring specification (there is only one). 
• We derive a plan signature given the monitoring 

specification, and the goal.  



Given the EC theory of Figure 6, we start by deriving 
the goal, which is obtained by negating equation 7: 
(∃ ag : Doctor; a: Patient;  t : Time)  
 HoldsAt (ExposedPatient (ag, a), t)  
 ∧ ¬HoldsAt (AuthorisedPatient(ag, a), t) 

This says that the goal is a state where the patient’s 
medical file is exposed and the doctor accessing it is not 
authorised.  
An attack signature is a conditional or partial order plan 
describing how the goal may be achieved. Given the goal 
above, we follow an abductive planning approach 
(backwards from goal) to generate the signature: 
(∃ ag : Doctor; a : patient, t1, t2, t3, t4, t5, t6 : Time)  
 (Happens(GetMF(ag, a), t1)  
 ∧¬Happens(AuthoriseAccess(ag, a), t2) ∧ t2 < t1) 
 ∨ (Happens(GetPD(ag, a,PD1), t3)  
 ∧ Happens(GetPD(ag, a, PD2), t4)  
 ∧ Happens(GetPD(ag, a, PD3), t5)  
 ∧¬Happens(AuthoriseAccess(ag, a), t6)  
 ∧ t6 < t3 ∧ t6 < t4 ∧ t6 < t5)  

This EC formula is a disjunction, where each disjunct 
is one possible attack. This formula identifies two at-
tacks: 
• Either an unauthorised user accesses the medical file 

directly through the operation GetMF,  
• or a user accesses the medical file indirectly through 

the operation GetPD (Inference). 

7. Calculating the probability of threats 
Our probabilistic model for threat evaluation is set in 

the framework of Bayesian Networks (BNs) [18].  We 
assemble a generic BN from the attack signature, and use 
this network at run-time to evaluate the likelihood of 
threats. When some event is observed the probability that 
an attack is likely to materialise is updated using Bayes’s 
rule of conditioning. 

The following explains how we can assemble a BN 
for the attack signature derived above, and illustrates the 
network in calculating probabilities of threats from run-
time observations. 

7.1 Assembling the Bayesian network 
Figure 7 presents the generic BN assembled from the 

attack signature above. The node Attack in the BN meas-
ures how likely it is that an attack will materialise. Our 
attack signature (see above), identifies two possible at-
tacks: direct access and inference. These two attacks are 
represented with a node in the BN, and they are con-
nected to the Attack node: an Attack is either caused by 
DirectAccess or by Inference. An instance of these at-
tacks occurs when we observe the events identified in the 
signature. These are represented in the BN with a causal 
arrow from the specific attack to the events that make it 
happen. For instance, there are two events that drive the 
occurrence of the direct access attack: GetMF and Au-
thoriseAccess. Note that AuthoriseAccess is a negative 
event; an instance of DirectAccess or Inference happens 

provided AuthoriseAccess is not observed. This is re-
flected in the prior probabilities (see below) 2.  

 
Figure 7. The Bayesian network for the two 

possible attacks: direct access and inference. 
We assume that the DirectAccess (DA) and Inference 

(I) attacks are equally likely: P(DA) = P(I) = 0.1. The 
prior probability of Attack (A) conditioned on both DA 
and I — P (A| DA, I) — is given in Table 2.  If either 
DA or I are true then A is also true with probability 1; if 
both are false, then A is true with probability 0 (an attack 
does not take place). Table 3 gives the probability of 
event AuthoriseAccess (AU) given DA and I — 
P(AU|DA, I). If either DA or I have materialised (they 
are true) then it is certain that AU must not have hap-
pened (false has probability 1). If they have not material-
ised, then there is a probability of 0.1 that AU has hap-
pened. Table 4 presents the prior probability of the event 
GetMF given DA. If DA has materialised then GetMF 
must have been observed — P(GetMF = true | DA = true) 
= 1 —, otherwise there is a marginal probability of 0.01 
that GetMF  has been observed. The prior probabilities of 
GetPD1, GetPD2, and GetPD3 conditioned on I are as 
Table 5. 

 DA true false 

 I true false true false 

A 
true 1 1 1 0 

false 0 0 0 1 

Table 2. The probabilities of an attack (A) condi-
tioned on DA and I: P(A | DA, I). 

 DA true false 

 I true false true false 

AU true 0 0 0 0.1 

false 1 1 1 0.9 

Table 3. The probability of the event Authori-
seAccess (AU) conditioned on DA and I: P (AU | 

DA, I). 
 DA true false 

GetMF true 1 0.01 

false 0 0.99 

Table 4. The probability of the event GetMF con-
ditioned on DA: P(GetMF | DA).  

 I true false 

GetPDi true 1 0.1 

                                                                 
2 We use the term GetMF to denote the observation Happens 

(GetMF(d, p), t, R(t, t)) for some doctor d, patient p and time 
point t. Likewise for the other events. 



false 0 0.9 

Table 5. The probability of  events GetPDi condi-
tioned on I: P(GetPDi | I ). 

7.2 Calculating threat probabilities at run-
time 

Given the tables and network above, we calculate the 
probabilities of an Attack and each specific attack (direct 
access or inference) from run-time observations.  

In the scenario of Figure 1, suppose that Jones is in 
the system. At this point, an attack coming from Jones 
has a probability 0.19 (P(A)=0.19, P(DA) = P(I) = 0.1). 
But if Jones requests authorisation to access Anderson’s 
medical file: 

Happens (Authorise (Jones, Anderson), 1, R (1, 1)) 

The probability of an attack from Jones now drops dra-
matically (P(A) = P(DA) = P(I)=0). Now suppose that we 
observe Smith’s activity in the system: 

Happens (GetPD (Smith, Anderson, pdt1), 2, R (2, 2)) 

This results in an increase in the probability of an attack 
coming from Smith — P(A) = 0.5737 and P(I) = 0.5263. 
If Smith obtains another piece of data:  

Happens (GetPD (Smith, Anderson, pdt2), 3, R (3, 3)) 

Then the probability of an attack from Smith increases 
even further — P(A) = 0.9174, P(I) = 0.9257. If Smith 
gets the third piece of data: P(A) = 0.9920, P(I) = 0.9911.  

8. Discussion 
Section 5 showed how EC formulas can be generated 

by using a simple UML class model. Our approach is 
also applicable to other kinds of descriptions. We have 
suggested the use stereotypes to link template placehold-
ers to user models, but other schemes are possible. Pro-
vided the monitoring component receives an appropriate 
substitution set for some template, it is capable of gener-
ating EC formulas for monitoring. In our simple exam-
ple, it would be possible to generate EC formulas auto-
matically from a stereotyped UML diagram. This, how-
ever, is not always possible to achieve; and sometimes 
more sophisticated and complex means are required to 
enable an automatic transition from design models to 
run-time monitoring.   

The concept of a security asset gives some flexibility 
to our approach to threat detection. Our attack signature 
does not come from some library of known attacks; in-
stead it is generated by predicting what attackers will try 
to do from a specification of the system to monitor (the 
monitoring specification). Monitoring specifications 
come from security templates designed to protect generic 
system assets. 

As illustrated in section 7, our probabilistic model 
handles negative evidence. The probability of an attack 
dropped dramatically when the event AuthoriseAccess 
was observed. The model also accounts for the cumula-
tive effect of a sequence of observations that constitute 
positive evidence. In our example, the probability of an 
attack increases as more pieces of data are gathered. 

Some of the prior probabilities of our probabilistic 
model may seem arbitrary, in particular those probability 

values that are neither 0 nor 1. We intend to improve this 
by using techniques to estimate conditional probabilities 
[20]; in particular techniques that learn conditional prob-
abilities from new events [20]. 

We are trying to make our probabilistic model more 
accurate by considering further evidence. The idea is to 
associate extra criteria with our monitoring templates for 
the purpose of assessing the likelihood of threats. This 
would be just another collection of EC predicates that are 
monitored at run-time and that constitute evidence in 
favour or against the hypothesised threats. 

9. Related Work 
Our FTL-based approach brings our previous work 

on security monitoring patterns [6] into a fully formal 
setting. [6] proposes templates for confidentiality, avail-
ability and integrity. Here, we show how confidentiality 
templates can be described in FTL.  

FTL is a formal language designed to represent and 
generate formulas of some target formal language, bring-
ing pattern representations and their instantiation into a 
fully formal setting. This clearly contrasts to other ap-
proaches to security based on patterns, such as [21], 
which do not use formal representations of patterns. 
Other more formal approaches to notations for patterns 
and templates (see [8]) have less constructs than FTL and 
they are not generative.  

Our approach  and motivating example shares many 
similarities with the OrBAC approach to access control  
[22, 23]. OrBAC proposes a dynamic and flexible ap-
proach to security policy specification based on the con-
cept of a context that is motivated by the health-care do-
main. It proposes a language based on first-order logic to 
express such security policies. Our security policies are 
expressed in the EC, a temporal logic based on first-order 
logic. Many ideas of OrBAC, including the notion of 
context, are expressible in EC. In addition, EC gives a 
temporal dimension that is explored in ORBAC, but 
lacks the level of sophistication that EC gives. Like Or-
BAC, our approach also follows the principle of adaption 
to a context, we introduce an extra level to allow this: 
templates. We adapt specifications to a context by instan-
tiating templates.  

Our approach to threat detection is related to intru-
sion detection [12-14]. Most intrusion detection systems, 
however, only detect malicious actions that have already 
happened (intrusions), which is what our requirements 
monitoring approach does (by detecting deviations from 
security requirements). Our approach to threat detection 
tries to be one-step ahead and predict malicious actions.  

Approaches to intrusion detection are classified as 
anomaly-based or misuse-based [12]. Anomaly-based 
approaches [14, 24, 25] assume that attacks involve, 
somehow, abnormal behaviour of the system, and threats 
and intrusions are detected as deviations from normality. 
Misuse-based approaches [26-28], on the other hand, are 
based on models of known attacks. The threat detection 
approach presented here is essentially anomaly-based. In 
particular, it is model or specification-based [24, 25]: 
threats and intrusions are detected as deviations from a 



model of the normal behaviour of the system; it shares 
with [25] the concern of protecting system assets and in 
building security policies with the goal of protecting 
them. Our approach also has, however, characteristics of 
misuse-based techniques (we detect attacks from an at-
tack signature, which effectively constitutes an attack 
model) and in particular statistical approaches based on 
Bayesian networks such as [28]. 

Our approach shares many similarities with [29]. In 
particular, the use of security specification patterns se-
lected from some security goal and which are instantiated 
with information coming from object models, and the 
derivation of attack representations (called  attack trees in 
[29]) from security specifications. The most striking dif-
ference, however, is that [29] is a design approach; feed-
back coming from attack analysis is fed back into the 
design. Our approach detects threats to S&D require-
ments at run-time. Other differences include the formal-
isms being used, and the fact that we use a probabilistic 
model to deal with uncertainty.  

10. Conclusions 
We have presented part of our approach to security 

monitoring in the context of the SERENITY approach. In 
particular, we showed how we can represent templates 
using the formal language FTL, and how this representa-
tion is amenable to automation: given an instantiation set 
we are able to generate an EC monitoring theory. We 
also presented our approach to threat detection where we 
use planning to compute an attack signature off-line (be-
fore monitoring starts), and how we use this signature to 
evaluate the likelihood of threats at run-time using a 
probabilistic model based on Bayesian networks. 

Our approach was illustrated with a simple health-
care system. We showed how we could generate a moni-
toring theory from a confidentiality template and a design 
model. We then used this modelling theory to compute 
an attack signature that would violate the monitoring 
rule. Finally, we showed how we could evaluate the 
probability of threats given run-time observations by 
building a Bayesian network from the attack signature. 
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