

City, University of London Institutional Repository

Citation: Amálio, N. & Spanoudakis, G. (2008). From Monitoring Templates to Security

Monitoring and Threat Detection. 2008 Second International Conference on Emerging
Security Information, Systems and Technologies, 7, pp. 185-192. doi:
10.1109/securware.2008.58

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14405/

Link to published version: https://doi.org/10.1109/securware.2008.58

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

From monitoring templates to security monitoring and threat
detection

Nuno Amálio and George Spanoudakis
Dept. Computing, City University London

London, UK
{nuno.amalio, gespan}@soi.city.ac.uk

Abstract. This paper presents our pattern-based ap-
proach to run-time requirements monitoring and threat
detection being developed as part of an approach to
build frameworks supporting the construction of secure
and dependable systems for ambient intelligence. Our
patterns infra-structure is based on templates. From
templates we generate Event-Calculus formulas express-
ing security requirements to monitor at run-time. From
these theories we generate attack signatures, describing
threats or possible attacks to the system. At run-time, we
evaluate the likelihood of threats from run-time observa-
tions using a probabilistic model based on Bayesian net-
works.

Keywords
Security, patterns, intrusion-detection, run-time monitor-
ing, Event-Calculus.

1. Introduction
The vision of Ambient Intelligence (AmI) [1] poses

many technological challenges. The European research
project SERENITY1 tries to contribute to the realisation
of this vision by developing an approach to construct
AmI ecosystems that are both secure and dependable.
The SERENITY effort proposes an architecture to con-
struct design and run-time frameworks for AmI [2].

In SERENITY, patterns have a pivotal role. They fac-
tor expertise and can be used in a variety of contexts. Our
role in SERENITY is run-time systems monitoring. In
particular, we are concerned with checking that security
and dependability (S&D) solutions emerging from
SERENITY frameworks satisfy their S&D requirements
at run-time.

Like the whole run-time SERENITY framework, its
run-time monitoring component needs to adapt to a vari-
ety of contexts following a pattern-based approach. For
this purpose, we use a very concrete form of pattern:
templates. Our run-time monitoring component com-
prises a catalogue of security monitoring specification
templates that are instantiated to provide S&D monitor-
ing solutions in a variety of contexts. The aim of this
template infra-structure is two-fold: (a) factor and reuse
expertise in building monitoring specifications; (b) en-
able automation so that monitoring specifications are
automatically generated from other artefacts of the
SERENITY framework.

Due to their distributed nature, AmI systems are vul-
nerable to attacks: the attacker can be anywhere and

1 http://www.serenity-project.org

choose the easiest entry [3]. One of the aims of the
SERENITY run-time framework, of which our monitor-
ing component is part of, is to be able to detect attacks
and predict threats (the possible occurrence of attacks).

Previously, we developed a system to monitor re-
quirements of service-based systems [4] where require-
ments are expressed in Event Calculus. We have also
advocated an approach to security monitoring based on
patterns in the context of SERENITY [5, 6].

This paper takes this work further and presents part of
our concrete approach to S&D run-time monitoring in
SERENITY. In particular, it presents:
• The approach driving the generation of EC formulas

used for requirements monitoring and threat detec-
tion, which includes the mechanism underlying the
transition from design and architectural models to a
specific monitoring theory.

• The approach to detect threats to security and de-
pendability requirements at run-time.

The following starts by giving some background on
the languages Event Calculus and FTL. Section 3 pre-
sents the example that is used to motivate and illustrate
our approach. Section 4 gives a brief overview of our
overall approach to security monitoring and threat detec-
tion from templates. Section 5 presents shows how moni-
toring specifications are generated from monitoring tem-
plates. Section 6 shows how attack signatures are gener-
ated from a monitoring specification. Section 7 shows
our approach to calculate the probability of threats at
run-time. The remaining sections discuss the results pre-
sented in this paper, compare our approach with related
work and take the conclusions of the paper.

2. Background
Our approach needs a way to express security moni-

toring specifications and templates of these specifica-
tions. This is done using the Event Calculus and the
Formal Template Language (FTL).

2.1 The Event Calculus
The Event Calculus (EC) [7] is a language based on

first-order predicate-calculus that is designed to represent
and reason about action and change. The basic ontology
of EC comprises events, fluents and timepoints. An event
represents an action that may occur in the world. A fluent
represents a time varying property of the world. A time-
point represents an instance of time. C includes a set of
basic predicates to describe happening of events, their
effects and the state of fluents.

segadm
Text Box
2nd International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2008)

The basic predicates of EC are as follows:
• HoldsAt (f, t) says that fluent f is true at time-point t.
• Happens (e, t, R(t1, t2)) says that event e may occur

at time-point t within time range t1 … t2.
• Initiates (e, f, t) says that if event e occurs at time

point t, then fluent f is true after t.
• Terminates (e, f, t) says that if event e occurs at time

point t, then fluent f is false after t.
• InitiallyP (f) says that fluent f holds at timepoint 0.

2.2 FTL
To express templates we use the Formal Template

Language (FTL) [8, 9], a generic formal language for
expressing templates of any target language. A key char-
acteristic of FTL is that it is generative; FTL describes
sentences of some target language (here we use EC) and
can generate sentences when provided with an instantia-
tion. The main constructs of FTL are placeholders, lists
and choice.

To illustrate FTL, suppose the following FTL tem-
plate of an EC predicate, which specifies a number of
event preconditions associated with the template event E:
 (∀ t : Time) Happens(〈E〉, t, R(t, t)) ⇒ [HoldsAt(〈F〉, t)]

This template includes two placeholders and one list
term. It basically says that a number of pre-conditions
(HoldsAt predicate inside the list with placeholder F)
may be associated with some event (E placeholder in
Happens predicate). The template can be instantiated to
give:
 (∀ t : Time) Happens(Eat, t, R(t, t)) ⇒
 HoldsAt(IsHungry, t)∧ HoldsAt(DinnerServed, t)

3. Motivating Example
To illustrate the approach presented here, we use a

case study of an e-health care system used in the
SERENITY project [10]. Our simple e-health care sys-
tem enables doctors to access the medical data of patients
by digital means; its requirements are summarised in Ta-
ble 1. Essentially, this system provides an operation to
access the full contents of a patient’s medical file (R1),
and an operation to access the partial contents of a pa-
tient’s medical file (R2).
R
1

A patient’s medical file may be seen by the doctor
of the patient only.

R
2

All doctors may see partial pieces of information
belonging to a patient's medical file in a way that
preserves requirement R1.

Table 1: The requirements of the e-health care
system (based on [10]).

Requirement R1 is a confidentiality security require-
ment protecting the privacy of patients. The functionality
introduced by requirement R2, however, may conflict
with R1. R2 says that there are indirect means to access
the information of a patient's medical file, but this must
be done with care in order not to breach R1.

Dr Jones

Dr Smith

Anderson’s
medical file

HasAccessTo

Mr Anderson
Owns

IsDoctor

Partial Data 1 Partial Data 2 Partial Data n
. . .

HasAccessTo

Has not direct
access to

Figure 1: A scenario of the e-health care sys-
tem, where Dr Smiths infers the medical file of

someone else’s patient.
Figure 1 depicts two scenarios illustrating the simple

e-health care system and its security requirements. We
have doctor Jones, his patient Mr Anderson, and another
doctor, Smith, who is not Anderson's doctor. According
to R1, Dr Jones has direct access to Anderson's medical
file, but Smith does not because he is not Anderson's
doctor. Figure 1 also illustrates how R2 may impact on
R1. We can see that Dr Smith, although not Anderson’s
Doctor, is able to infer Anderson's medical file by indi-
rect means breaching requirement R1. This indirect way
of accessing confidential data is an instance of the infer-
ence attacks [11].

4. Overview of the approach
Security requirements aim to protect some system

from malicious attacks. Our approach checks that such
requirements are preserved at run-time by monitoring the
satisfaction of EC formulas that formalise them. This is
done by observing the system at run-time and checking
observations against specified system behaviour trying to
detect deviations from what is specified. There are two
different types of EC formulas: monitoring rules and
assumptions. Monitoring rules are those formulas whose
satisfaction is checked at run-time. Assumptions specify
rules on how to derive information about the state of the
system that is being monitored based on observations of
its behaviour. A collection of these EC formulas is called
monitoring specification.

A monitoring specification effectively describes the
security policy of the system. When an attack takes place,
we consider that the security policy is violated and, there-
fore, a monitoring rule is breached. This means that our
requirements monitoring approach is capable of detecting
immediate attacks to the system, or, what is referred in
the security literature as intrusions [12-14]: some moni-
toring rule is breached and our tool detects this. A threat,
however, is a possible attack to the system [13]; to detect
them our approach needs to be one-step-ahead and fore-
see future violations of monitoring rules.

Attackers are constantly looking for new ways of at-
tacking systems. We somehow need to devise a strategy

to prevent this. Our strategy is based on the security con-
cept of an asset. Assets are the resources that a system
must protect from incorrect or unauthorised use [15].
They are attack targets; the motivation of an attack to the
system. Our security templates are designed to protect
some system asset.

The following discusses the process involved in the
generation of monitoring specifications and attack signa-
tures, and overviews our approach to threat detection.

4.1 The Generation process
In SERENITY, every EC formula used for threat de-

tection is generated from a security template expressed in
FTL, which expresses a basic security property, namely,
confidentiality, integrity and availability. As violations of
these properties would breach system security, we use the
templates to derive possible attack signatures over assets.

The whole process of generation of a monitoring spe-
cification is triggered by the pair 〈Security Objective,
Asset〉. The whole process, depicted in Figure 2, is as
follows:
1. The template is selected from the security objective

(refers to template name).
2. The system asset is used to select a set of

SERENITY artefacts that refer to it.
3. Information derived from selected artefacts are used

to instantiate the selected monitoring template, re-
sulting in the generation of monitoring specification.

4. The attack signature is generated from the monitor-
ing specification.

5. Finally, the threat probabilistic model is generated
from the attack signature.

Initial Specification

SERENITY
Artefacts

Monitoring
Templates

Monitoring
Specification

instantiates

generates

Security
Objective

selectsFrom
Templates
Catalogue

selects

System
Asset selects

Attack
signature generates

Threat
Probabilistic

Model

generates

Figure 2: Generation of Monitoring specification,
attack signature and threat probabilistic model.

4.2 A threat is a possible violation of a moni-
toring rule

Our approach to threat detection starts from an EC
monitoring specification. Since a threat is a possible vio-
lation of a security monitoring rule, we try to predict this
in advance by using AI planning techniques [16, 17]. We
derive an abstract plan describing all possible sequences
of events in which the monitoring rule is violated. We
call this abstract plan an attack signature, a formula de-

scribing all possible attacks that lead to the violation of
the security monitoring rule.

An actual attack is a sequence of events that have
been observed, something that happened. A threat is a
possible attack, a sequence of events that has not yet
happened but that may happen. In our approach, we
compute the attack signature at startup (before monitor-
ing starts). At run-time, all observed sequences of events
that match the signature constitutes either a threat (the
sequence partially matches the sequence) or an attack
(the sequence of events totally matches the sequence).

It is uncertain whether a threat is going to materialise
itself as an attack or not. To evaluate how likely it is that
a threat is going to materialise itself as an attack we re-
sort to probability theory. We use a probabilistic model
based on the Bayesian theory of probability [18]. Ini-
tially, when some event that matches the attack signature
is observed then this constitutes a possible threat and its
likelihood is evaluated. As more observations are gath-
ered, the likelihood of threats may be confirmed and be-
come stronger or refuted and become weaker; these
evaluations are performed using the Bayesian rule of
conditional probability.

5. Generation of monitoring specifications
This section presents a scheme for the generation of

monitoring specifications by instantiating templates. The
following introduces a confidentiality monitoring tem-
plate, and illustrates the generation process from this
template using a design model of our case study.

5.1 Confidentiality Monitoring Template
The core confidentiality monitoring template, given

in Figure 3, comprises one monitoring rule (formula 1)
and assumptions (formulas 2–3). Formula 1 says that an
agent may be exposed to some asset provided he is
authorised to do so. Formula 2 says that the template
event “〈Authorise〉” initiates (sets to true) template fluent
“Authorised〈Asset〉”. Formula 3 says that the template event
“〈Disclose〉” initiates template fluent “Exposed〈Asset〉”.

The template for confidentiality with inference, which
extends the core template to allow indirect access to the
asset, is given in Figure 4. This template is made entirely
of template assumptions. In the template, formula 4 says
that the template event “〈DiscloseP〉” initiates the template
fluent “KnowsPD〈Asset〉”. Formula 5 says that event “〈Disclo-
seP〉” initiates the template fluent “Exposed〈Asset〉” provided
the agent already knows all partial pieces of the medical
file except the one being accessed (by event 〈DiscloseP〉).
Finally, template formula 6 specifies which actual partial
pieces of data are available for some asset (template flu-
ent availablePD〈Asset〉).
〈Confidentiality〉def ==
(∀ ag : 〈Agent〉; a: 〈Asset〉; t : Time)
 HoldsAt (Exposed〈Asset〉 (ag, a), t)
 ⇒ HoldsAt (Authorised〈Asset〉(ag, a), t)

(1)

(∀ ag : 〈Agent〉; a: 〈Asset〉; t : Time)
 Happens(〈Authorise〉 (ag, a), t, R (t, t))
 ⇒ Initiates(〈Authorise〉 (ag, a),

(2)

 Authorised〈Asset〉 (ag, a), t)
(∀ ag : 〈Agent〉; a: 〈Asset〉; t : Time)
 Happens(〈Disclose〉 (ag, a), t, R (t, t))
 ⇒ Initiates (〈Disclose〉 (a, ag),
 Exposed〈Asset〉 (ag, a), t)

(3)

Figure 3: Core confidentiality template.
〈Confidentiality.Inference〉def ==
〈Confidentiality〉ref
∀ ag : 〈Agent〉; a: 〈Asset〉; pdt : 〈PDT〉; t : Time)
 Happens(〈DiscloseP〉 (ag, a, pdt), t, R (t, t))
 ∧ HoldsAt(AvailablePD〈Asset〉 (pdt, t)
 ⇒ Initiates (〈DiscloseP〉 (ag, a, pdt),
 KnowsPD〈Asset〉 (ag, a, pdt), t)

(4)

(∀ ag : 〈Agent〉; a: 〈Asset〉; pdt : 〈PDT〉; t : Time)
 Happens (〈DiscloseP〉 (ag, a, pdt), t, R (t, t))
 ∧ HoldsAt(AvailablePD〈Asset〉 (pdt), t)
 ∧ ((∀ pdt2 : 〈PDT〉) pdt ≠ pdt2
 ∧ HoldsAt(AvailablePD〈Asset〉 (pdt2), t)
 ⇒ HoldsAt(KnowsPD〈Asset〉 (ag, a, pdt2), t))
 ⇒ Initiates(〈DiscloseP〉 (ag, a, pdt),
 Exposed〈Asset〉 (a, ag), t)

(5)

[InitiallyP(AvailablePD〈Asset〉(〈PD〉))] (6)

Figure 4: Extension to core template for moni-
toring access to partial data.

5.2 Generation from security objective and
template instantiation

We now show how the templates of Figure 3 and
Figure 4 are instantiated to produce a monitoring speci-
fication. We start from the object/asset pair:

〈Confidentiality.Inference, Patient〉

This says that we want to monitor the “Confidentiali-
ty.Inference” security property over the “Patient” asset.
The first element of the pair (security property) results in
the selection of the template of Figure 4. The second
element of the pair (Patient asset) would result in the
selection of a set of design models that specify properties
of the asset. For this effect, we introduce the simple de-
sign UML class model of Figure 5.

«Agent»
Doctor

«Authorise» AuthoriseAccess()

AccessControl

0..*

1

Controls

«Disclose» GetMF()
«DiscloseP» GetPD(in pdtype : PDType)

«Asset»Patient

0..1

0..*

IsDoctorOf

«PDT»
PDType

0..* 1

AvailablePD

Figure 5: A simple system for doctors and their

patients.
The class model of Figure 5 introduces the classes

Doctor, Patient, PDType and AccessControl. This is used
to instantiate the template; the link is established through
stereotypes: each stereotype corresponds to the name of a
placeholder.

The class model above enables the automatic genera-
tion of the EC theory of Figure 6, where the template is
instantiated with the substitution set:

{Agent a ``Doctor”, Asset a ``Patient”, Disclose a ``GetMF”,
Authorise a ``AuthoriseAccess”,

PDT a ``PDType”, DiscloseP a ``GetPD”,
PD a 〈“PD1”, “PD2”, “PD3”〉}

As it can be seen, this substitution set is derived from the
information contained in the diagram.
(∀ ag : Doctor; a: Patient; t : Time)
 HoldsAt (ExposedPatient (ag, a), t)
 ⇒ HoldsAt (AuthorisedPatient(ag, a), t)

(7)

(∀ ag : Doctor; a: Patient; t : Time)
 Happens(AuthoriseAccess(ag, a), t, R (t, t))
 ⇒ Initiates (AuthoriseAccess(ag, a),
 AuthorisedPatient (ag, a), t)

(8)

(∀ ag : Doctor; a: Patient; t : Time)
 Happens(GetMF (ag, a), t, R (t, t))
 ⇒ Initiates (GetMF (a, ag), ExposedPatient (ag, a), t)

(9)

∀ ag : Doctor; a: Patient; pdt : PDType; t : Time)
 Happens (GetPD (ag, a, pdt), t, R (t, t))
 ∧ HoldsAt(AvailablePDPatient (pdt), t)
 ⇒ Initiates (GetPD (ag, a, pdt),
 KnowsPDPatient (ag, a, pdt), t)

(10)

(∀ ag : Doctor; a: Patient; pdt : PDType; t : Time)
 Happens(GetPD(ag, a, pdt), t, R (t, t))
 ∧ HoldsAt(AvailablePDPatient(pdt), t)
 ∧ ((∀ pdt2 : PDType) pdt ≠ pdt2
 ∧ HoldsAt(AvailablePDPatient (pdt2), t)
 ⇒ HoldsAt(KnowsPDPatient (ag, a, pdt2), t))
 ⇒ Initiates(GetPD(ag, a, pdt), ExposedPatient (a, ag), t)

(11)

InitiallyP(AvailablePDPatient(PD1)) (12)
InitiallyP(AvailablePDPatient(PD2)) (13)
InitiallyP(AvailablePDPatient(PD3)) (14)

Figure 6: Event Calculus monitoring specifica-
tion generated by instantiating monitoring tem-

plate with information coming from the class
diagram of Figure 5.

6. Generation of attack signatures
Attack signatures are generated from a monitoring

theory by using AI planning techniques [16, 17]. Classi-
cal planning derives a concrete sequence of actions to
achieve a goal. Our task does, however, differ slightly
from the work on classical planning. We need both con-
ditional and partial-order plans, not just a sequence of
actions. Conditional because not all the information is
available when we derive the plans and we may have to
consider different branches [17]. Partial-order because
we want to obtain plans with a partial-order on actions
[16].

We intend to use an abductive strategy towards plan-
ning [17]. In particular, we intend to adapt the algorithm
of [19] that was designed for diagnostics to planning.

Our proposed approach is as follows:
• We negate the security monitoring rule of the EC

monitoring specification (there is only one).
• We derive a plan signature given the monitoring

specification, and the goal.

Given the EC theory of Figure 6, we start by deriving
the goal, which is obtained by negating equation 7:
(∃ ag : Doctor; a: Patient; t : Time)
 HoldsAt (ExposedPatient (ag, a), t)
 ∧ ¬HoldsAt (AuthorisedPatient(ag, a), t)

This says that the goal is a state where the patient’s
medical file is exposed and the doctor accessing it is not
authorised.
An attack signature is a conditional or partial order plan
describing how the goal may be achieved. Given the goal
above, we follow an abductive planning approach
(backwards from goal) to generate the signature:
(∃ ag : Doctor; a : patient, t1, t2, t3, t4, t5, t6 : Time)
 (Happens(GetMF(ag, a), t1)
 ∧¬Happens(AuthoriseAccess(ag, a), t2) ∧ t2 < t1)
 ∨ (Happens(GetPD(ag, a,PD1), t3)
 ∧ Happens(GetPD(ag, a, PD2), t4)
 ∧ Happens(GetPD(ag, a, PD3), t5)
 ∧¬Happens(AuthoriseAccess(ag, a), t6)
 ∧ t6 < t3 ∧ t6 < t4 ∧ t6 < t5)

This EC formula is a disjunction, where each disjunct
is one possible attack. This formula identifies two at-
tacks:
• Either an unauthorised user accesses the medical file

directly through the operation GetMF,
• or a user accesses the medical file indirectly through

the operation GetPD (Inference).

7. Calculating the probability of threats
Our probabilistic model for threat evaluation is set in

the framework of Bayesian Networks (BNs) [18]. We
assemble a generic BN from the attack signature, and use
this network at run-time to evaluate the likelihood of
threats. When some event is observed the probability that
an attack is likely to materialise is updated using Bayes’s
rule of conditioning.

The following explains how we can assemble a BN
for the attack signature derived above, and illustrates the
network in calculating probabilities of threats from run-
time observations.

7.1 Assembling the Bayesian network
Figure 7 presents the generic BN assembled from the

attack signature above. The node Attack in the BN meas-
ures how likely it is that an attack will materialise. Our
attack signature (see above), identifies two possible at-
tacks: direct access and inference. These two attacks are
represented with a node in the BN, and they are con-
nected to the Attack node: an Attack is either caused by
DirectAccess or by Inference. An instance of these at-
tacks occurs when we observe the events identified in the
signature. These are represented in the BN with a causal
arrow from the specific attack to the events that make it
happen. For instance, there are two events that drive the
occurrence of the direct access attack: GetMF and Au-
thoriseAccess. Note that AuthoriseAccess is a negative
event; an instance of DirectAccess or Inference happens

provided AuthoriseAccess is not observed. This is re-
flected in the prior probabilities (see below) 2.

Figure 7. The Bayesian network for the two

possible attacks: direct access and inference.
We assume that the DirectAccess (DA) and Inference

(I) attacks are equally likely: P(DA) = P(I) = 0.1. The
prior probability of Attack (A) conditioned on both DA
and I — P (A| DA, I) — is given in Table 2. If either
DA or I are true then A is also true with probability 1; if
both are false, then A is true with probability 0 (an attack
does not take place). Table 3 gives the probability of
event AuthoriseAccess (AU) given DA and I —
P(AU|DA, I). If either DA or I have materialised (they
are true) then it is certain that AU must not have hap-
pened (false has probability 1). If they have not material-
ised, then there is a probability of 0.1 that AU has hap-
pened. Table 4 presents the prior probability of the event
GetMF given DA. If DA has materialised then GetMF
must have been observed — P(GetMF = true | DA = true)
= 1 —, otherwise there is a marginal probability of 0.01
that GetMF has been observed. The prior probabilities of
GetPD1, GetPD2, and GetPD3 conditioned on I are as
Table 5.

 DA true false

 I true false true false

A
true 1 1 1 0

false 0 0 0 1

Table 2. The probabilities of an attack (A) condi-
tioned on DA and I: P(A | DA, I).

 DA true false

 I true false true false

AU true 0 0 0 0.1

false 1 1 1 0.9

Table 3. The probability of the event Authori-
seAccess (AU) conditioned on DA and I: P (AU |

DA, I).
 DA true false

GetMF true 1 0.01

false 0 0.99

Table 4. The probability of the event GetMF con-
ditioned on DA: P(GetMF | DA).

 I true false

GetPDi true 1 0.1

2 We use the term GetMF to denote the observation Happens

(GetMF(d, p), t, R(t, t)) for some doctor d, patient p and time
point t. Likewise for the other events.

false 0 0.9

Table 5. The probability of events GetPDi condi-
tioned on I: P(GetPDi | I).

7.2 Calculating threat probabilities at run-
time

Given the tables and network above, we calculate the
probabilities of an Attack and each specific attack (direct
access or inference) from run-time observations.

In the scenario of Figure 1, suppose that Jones is in
the system. At this point, an attack coming from Jones
has a probability 0.19 (P(A)=0.19, P(DA) = P(I) = 0.1).
But if Jones requests authorisation to access Anderson’s
medical file:

Happens (Authorise (Jones, Anderson), 1, R (1, 1))

The probability of an attack from Jones now drops dra-
matically (P(A) = P(DA) = P(I)=0). Now suppose that we
observe Smith’s activity in the system:

Happens (GetPD (Smith, Anderson, pdt1), 2, R (2, 2))

This results in an increase in the probability of an attack
coming from Smith — P(A) = 0.5737 and P(I) = 0.5263.
If Smith obtains another piece of data:

Happens (GetPD (Smith, Anderson, pdt2), 3, R (3, 3))

Then the probability of an attack from Smith increases
even further — P(A) = 0.9174, P(I) = 0.9257. If Smith
gets the third piece of data: P(A) = 0.9920, P(I) = 0.9911.

8. Discussion
Section 5 showed how EC formulas can be generated

by using a simple UML class model. Our approach is
also applicable to other kinds of descriptions. We have
suggested the use stereotypes to link template placehold-
ers to user models, but other schemes are possible. Pro-
vided the monitoring component receives an appropriate
substitution set for some template, it is capable of gener-
ating EC formulas for monitoring. In our simple exam-
ple, it would be possible to generate EC formulas auto-
matically from a stereotyped UML diagram. This, how-
ever, is not always possible to achieve; and sometimes
more sophisticated and complex means are required to
enable an automatic transition from design models to
run-time monitoring.

The concept of a security asset gives some flexibility
to our approach to threat detection. Our attack signature
does not come from some library of known attacks; in-
stead it is generated by predicting what attackers will try
to do from a specification of the system to monitor (the
monitoring specification). Monitoring specifications
come from security templates designed to protect generic
system assets.

As illustrated in section 7, our probabilistic model
handles negative evidence. The probability of an attack
dropped dramatically when the event AuthoriseAccess
was observed. The model also accounts for the cumula-
tive effect of a sequence of observations that constitute
positive evidence. In our example, the probability of an
attack increases as more pieces of data are gathered.

Some of the prior probabilities of our probabilistic
model may seem arbitrary, in particular those probability

values that are neither 0 nor 1. We intend to improve this
by using techniques to estimate conditional probabilities
[20]; in particular techniques that learn conditional prob-
abilities from new events [20].

We are trying to make our probabilistic model more
accurate by considering further evidence. The idea is to
associate extra criteria with our monitoring templates for
the purpose of assessing the likelihood of threats. This
would be just another collection of EC predicates that are
monitored at run-time and that constitute evidence in
favour or against the hypothesised threats.

9. Related Work
Our FTL-based approach brings our previous work

on security monitoring patterns [6] into a fully formal
setting. [6] proposes templates for confidentiality, avail-
ability and integrity. Here, we show how confidentiality
templates can be described in FTL.

FTL is a formal language designed to represent and
generate formulas of some target formal language, bring-
ing pattern representations and their instantiation into a
fully formal setting. This clearly contrasts to other ap-
proaches to security based on patterns, such as [21],
which do not use formal representations of patterns.
Other more formal approaches to notations for patterns
and templates (see [8]) have less constructs than FTL and
they are not generative.

Our approach and motivating example shares many
similarities with the OrBAC approach to access control
[22, 23]. OrBAC proposes a dynamic and flexible ap-
proach to security policy specification based on the con-
cept of a context that is motivated by the health-care do-
main. It proposes a language based on first-order logic to
express such security policies. Our security policies are
expressed in the EC, a temporal logic based on first-order
logic. Many ideas of OrBAC, including the notion of
context, are expressible in EC. In addition, EC gives a
temporal dimension that is explored in ORBAC, but
lacks the level of sophistication that EC gives. Like Or-
BAC, our approach also follows the principle of adaption
to a context, we introduce an extra level to allow this:
templates. We adapt specifications to a context by instan-
tiating templates.

Our approach to threat detection is related to intru-
sion detection [12-14]. Most intrusion detection systems,
however, only detect malicious actions that have already
happened (intrusions), which is what our requirements
monitoring approach does (by detecting deviations from
security requirements). Our approach to threat detection
tries to be one-step ahead and predict malicious actions.

Approaches to intrusion detection are classified as
anomaly-based or misuse-based [12]. Anomaly-based
approaches [14, 24, 25] assume that attacks involve,
somehow, abnormal behaviour of the system, and threats
and intrusions are detected as deviations from normality.
Misuse-based approaches [26-28], on the other hand, are
based on models of known attacks. The threat detection
approach presented here is essentially anomaly-based. In
particular, it is model or specification-based [24, 25]:
threats and intrusions are detected as deviations from a

model of the normal behaviour of the system; it shares
with [25] the concern of protecting system assets and in
building security policies with the goal of protecting
them. Our approach also has, however, characteristics of
misuse-based techniques (we detect attacks from an at-
tack signature, which effectively constitutes an attack
model) and in particular statistical approaches based on
Bayesian networks such as [28].

Our approach shares many similarities with [29]. In
particular, the use of security specification patterns se-
lected from some security goal and which are instantiated
with information coming from object models, and the
derivation of attack representations (called attack trees in
[29]) from security specifications. The most striking dif-
ference, however, is that [29] is a design approach; feed-
back coming from attack analysis is fed back into the
design. Our approach detects threats to S&D require-
ments at run-time. Other differences include the formal-
isms being used, and the fact that we use a probabilistic
model to deal with uncertainty.

10. Conclusions
We have presented part of our approach to security

monitoring in the context of the SERENITY approach. In
particular, we showed how we can represent templates
using the formal language FTL, and how this representa-
tion is amenable to automation: given an instantiation set
we are able to generate an EC monitoring theory. We
also presented our approach to threat detection where we
use planning to compute an attack signature off-line (be-
fore monitoring starts), and how we use this signature to
evaluate the likelihood of threats at run-time using a
probabilistic model based on Bayesian networks.

Our approach was illustrated with a simple health-
care system. We showed how we could generate a moni-
toring theory from a confidentiality template and a design
model. We then used this modelling theory to compute
an attack signature that would violate the monitoring
rule. Finally, we showed how we could evaluate the
probability of threats given run-time observations by
building a Bayesian network from the attack signature.

ACKNOWLEDGEMENTS
This work has been funded by the European commission
as part of the project SERENITY (IST-027587). Christos
Kloukinas provided useful feedback on this work.

REFERENCES
[1] Weiser, M., The Computer for the 21st Century.

Scientific American, 265(3). 1991.
[2] Sánchez-Cid, F., et al. Software Engineering

Techniques Applied to AmI: Security Patterns.
In Developing Ambient Intelligence. 108--123.
Springer. 2006

[3] Verbauwhede, I., et al., Security for Ambient
Intelligent Systems. In Ambient Intelligence, W.
Weber, J.M. Rabaey, and E. Aarts, Editors.
2005, Springer. p. 199-221.

[4] Spanoudakis, G. and K. Mahbub, Non Intrusive
monitoring of service based systems. Journal of

Cooperative Information Systems, 15(3): 325-
358. 2006.

[5] Kloukinas, C. and G. Spanoudakis. A pattern-
driven framework for Monitoring Security and
Dependability. In TrustBus'07. 210--218.
Springer. 2007

[6] Spanoudakis, G., C. Kloukinas, and K. An-
droutsopoulos. Towards security monitoring
patterns. In SAC '07: ACM symposium on Ap-
plied computing. 1518--1525. ACM. 2007

[7] Shanahan, M. The Event Calculus Explained. In
Artificial Intelligence Today: Recent Trends and
Developments. Springer. Lecture Notes in Com-
puter Science. 1999

[8] Amálio, N., S. Stepney, and F. Polack. A formal
template language enabling meta-proof. In FM
2006. 252-267. LNCS, Springer. LNCS. 2006

[9] Amálio, N., Generative frameworks for rigorous
model-driven development. PhD Thesis. Dept
Computer Science, Univ of York. 2007.

[10] Campadello, S., et al. S&D Requirements speci-
fication. SERENITY PROJECT, SERENITY
Deliverable, A7.D2.1

[11] Denning, D.E. and P.J. Denning, Data Security.
ACM Comput. Surv., 11(3): 227-249. 1979.

[12] Lazarevic, A., V. Kumar, and J. Srivastava, In-
trusion detection: a survey. In Managing cyber-
threats: issues approaches and challenges., V.
Kumar, J. Srivastava, and A. Lazarevic, Editors.
2005, Springer.

[13] Anderson, J.P. Computer Security Threat Moni-
toring and Surveillance. James P. Anderson Co.,
Technical Report,

[14] Denning, D., An Intrusion Detection Model.
IEEE Transations on Software Engineering,
13(2): 222-232. 1987.

[15] F. Swiderski and W. Snyder, Threat Modeling.
2004: Microsoft Press.

[16] Eshghi, K. Abductive planning with Event Cal-
culus. In 5th International Conference on Logic
Programming. 562--579. MIT Press. 1988

[17] Levesque, H.J. What is planning in the presence
of sensing. In National Conference on Artificial
intelligence (AAAI'96). 1139--1146. 1996

[18] Pearl, J., Probabilistic reasoning in intelligent
systems : networks of plausible inference. 1988:
Morgan Kaufmann.

[19] Console, P., L.a. Terenziani, and D.T. Dupre,
Local reasoning and knowledge compilation for
efficient temporal abduction. IEEE Transactions
on Knowledge and Data Engineering, 14(6):
1230 -1248. 2002.

[20] Niculescu, R.S., T.M. Mitchell, and R.B. Rao,
Bayesian Network Learning with Parameter
Constraints. J. Mach. Learn. Res., 7: 1357-
1383. 2006.

[21] Cheng, B.H.C., et al. Using Security Patterns to
Model and analyze security requirements. In
Requirements for high-assurance systems work-
shop (RHAS'03). 2003

[22] Cuppens, F. and A. Miège. Modelling Contexts
in the Or-BAC Model. In 19th Annual Computer
Security Applications Conference (ACSAC '03).
2003

[23] Kalam, A.A.E., et al. Organization Based Ac-
cess Control. In 4th IEEE International Work-
shop on Policies for Distributed Systems and
Networks (Policy'03). 2003

[24] Ko, C., M. Ruschitzka, and K. Levitt. Execution
monitoring of security-critical programs in dis-
tributed systems: a Specification-based ap-
proach. In SP '97: IEEE Symposium on Security
and Privacy. 175-187. 1997

[25] Chari, S.N. and P.-C. Cheng, Bluebox: a policy-
driven, host-based intrusion detection system.
ACM Trans. Inf. Syst. Secur., 6(2): 173-200.
2003.

[26] Ilgun, K., R.A. Kemmerer, and P.A. Porras,
State transition analysis : a rule-based intrusion
detection system. IEEE Trans. Software Eng.,
21(3): 191-199. 1995.

[27] Kumar, S. and E.H. Spafford. A Pattern Match-
ing Model for Misuse Intrusion Detection. In
17th National Computer Security Conference.
11-21. 1994

[28] Valdes, A. and K. Skinner. Adaptive, Model-
based Monitoring for Cyber Attack Detection. In
Recent Advances in Intrusion Detection (RAID
2000). 80-92. Springer. LNCS. 2000

[29] Lamsweerde, A.v., et al. From system goals to
intruder Anti-goals: attack generation and reso-
lution for security requirements engineering. In
Requirements for high-assurance systems work-
shop (RHAS'03). 2003

