IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Reimers, S. & Stewart, N. (2016). Auditory presentation and synchronization in
Adobe Flash and HTML5/JavaScript Web experiments. Behavior Research Methods, 48(3),
pp. 897-908. doi: 10.3758/s13428-016-0758-5

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/15128/

Link to published version: https://doi.org/10.3758/s13428-016-0758-5

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Behav Res
DOI 10.3758/s13428-016-0758-5

@ CrossMark

Auditory presentation and synchronization in Adobe Flash
and HTMLS5/JavaScript Web experiments

Stian Reimers' - Neil Stewart>

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Substantial recent research has examined the accu-
racy of presentation durations and response time measure-
ments for visually presented stimuli in Web-based experi-
ments, with a general conclusion that accuracy is acceptable
for most kinds of experiments. However, many areas of be-
havioral research use auditory stimuli instead of, or in addition
to, visual stimuli. Much less is known about auditory accuracy
using standard Web-based testing procedures. We used a
millisecond-accurate Black Box Toolkit to measure the actual
durations of auditory stimuli and the synchronization of audi-
tory and visual presentation onsets. We examined the distri-
bution of timings for 100 presentations of auditory and visual
stimuli across two computers with difference specs, three
commonly used browsers, and code written in either Adobe
Flash or JavaScript. We also examined different coding op-
tions for attempting to synchronize the auditory and visual
onsets. Overall, we found that auditory durations were very
consistent, but that the lags between visual and auditory onsets
varied substantially across browsers and computer systems.

Keywords Web - Internet - Audio - Synchronization -
JavaScript

Electronic supplementary material The online version of this article
(doi:10.3758/s13428-016-0758-5) contains supplementary material,
which is available to authorized users.

>4 Stian Reimers
stian.reimers(@city.ac.uk

Department of Psychology, City University London, Northampton
Square, London EC1V 0HB, UK

Department of Psychology, University of Warwick, Coventry, UK

Published online: 15 July 2016

The goal of many experiments in the behavioral sciences is to
present stimuli to participants for a known, accurate amount of
time, and record response times (RTs) to those stimuli accu-
rately. Sometimes, multiple stimuli have to be synchronized or
presented with known, accurate offsets, and multiple re-
sponses, such as sequences of keypresses need to be recorded.
As much research is now conducted online, many researchers
have examined the extent to which experiments requiring ac-
curate presentation durations or RTs are feasible using stan-
dard Web-based technologies such as Adobe Flash and
JavaScript (for an overview of the various ways of running
Web-based RT experiments, see Reimers & Stewart, 2015).

Two broad approaches have generally been used. The first is
to attempt to compare results from human participants complet-
ing an experiment online and in a more traditional lab-based
setting, either by attempting to replicate well-established lab-
based effects online, or by running lab- and Web-based versions
of the same study. Here, the results from lab- and Web-based
versions of a given study have been largely comparable (e.g.,
Crump, McDonnell, & Gureckis, 2013; de Leeuw & Motz,
2016; Reimers & Stewart, 2007; Schubert, Murteira, Collins,
& Lopes, 2013; Simcox & Fiez, 2014), although under some
boundary conditions with short presentation durations and com-
plex learning tasks, Web-based performance has been inconsis-
tent with the lab results (Crump et al., 2013). For a discussion of
this approach and some of its advantages and disadvantages, see
Plant (2016) and van Steenbergen and Bocanegra (2015).

The second broad approach has been to compare directly
the accuracy of browser-based stimulus presentation and RT
recording using specialist software or hardware (e.g., Neath,
Earle, Hallett, & Surprenant, 2011; Reimers & Stewart, 2015;
Schubert et al., 2013; Simcox & Fiez, 2014). In general, visual
stimulus presentation durations are longer than specified in the
code to control their presentation, and show some quantizing,
presumably linked to a monitor’s refresh rate.

@ Springer

http://dx.doi.org/10.3758/s13428-016-0758-5
http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-016-0758-5&domain=pdf

Behav Res

Auditory stimuli through a Web browser

Almost all existing Web-based RT research has used individ-
ual visually presented stimuli. There are several likely reasons
for this. First, it reflects a focus in cognitive psychology di-
rected more toward visual rather than auditory perception and
processing. (To illustrate, in the UK, the core introductory
cognitive psychology textbooks have several chapters on as-
pects of visual processing, but only a few pages on auditory
perception.)

Second, there may have been more practical barriers to
running Web-based experiments with auditory stimuli. The
ability for users to see visually presented stimuli is a given,
as all computers use a visual interface—that is, a monitor—for
interaction. Audio has traditionally been more optional: Early
PCs could only produce simple beeps via the internal speaker,
and only a little over a decade ago, many business PCs includ-
ed sound cards only as an optional extra. A more recent issue
has been user-driven: people do not always have the ability to
listen to sounds presented on their computer, lacking speakers
or headphones. However, the increasing use of the Web to play
video, and applications requiring audio such as skype, is likely
to have made the ability to use audio more widespread.

Third, researchers have legitimate concerns about the un-
controlled environment in which Web-based studies are run
(for a more detailed overview, see Slote & Strand, 2016).
Although the appearance of visual stimuli varies substantially
from system to system, in terms of size, hue, saturation, con-
trast, among other things, the fact that people need to be able
to view a display in order to use a computer means that the
basic properties of a stimulus will be perceived by a partici-
pant. On the other hand, auditory stimuli may be too quiet to
be perceived; they may be distorted; they may be played in a
noisy environment making their discriminability impossible.
They may also be presented monaurally or binaurally, which
can affect perception (Feuerstein, 1992), in mono or stereo
(which would affect dichotic listening tasks), and so on.

Fourth, the presentation of browser-based audio is general-
ly more complicated than the presentation of visual stimuli.
For example, no single audio format is supported by all cur-
rent popular PC browsers, and until the recent development of
the HTMLS5 standards, the optimal methods for playing audio
varied by browser (for an introduction to earlier methods for
presenting audio, see Huckvale, 2011).

Finally, there are concerns regarding the variability in audio
presentation onset times. Most notably, Babjack et al. (2015)
reported substantial variability in the latency between execut-
ing the code to present a sound, and that sound being present-
ed. In their research, a Black Box ToolKit (see below) was
used to measure the latency between pulse generated by the
testing system, which would be detected immediately, and a
sound that was coded to begin at the same time. The results
showed that the mean latency varied substantially across

@ Springer

different hardware and software combinations, from 25 to
126 ms of milliseconds, and that one-off latencies could be
as much as 356 ms.

Existing research

Experiments using auditory stimuli in Web-based studies
started in the very earliest days of internet-mediated research
(Welch & Krantz, 1996). However in the intervening 20 years,
very little published research appears to have presented audi-
tory stimuli over the Web (for overviews, see Knoll, Uther, &
Costall, 2011, and Slote & Strand, 2016), and less still has
examined the accuracy of doing so, systematically.

Some existing research has used long audio files embedded
in a webpage (e.g., Honing, 2006) or downloaded to the user’s
computer (e.g., Welch & Krantz, 1996). Auditory stimuli have
included excerpts of musical performance (Honing, 2006),
unpleasant sounds such as vomiting and dentists’ drills
(Cox, 2008), and speech (Knoll et al., 2011; Slote & Strand,
2016).

In Knoll et al.’s (2011) study, participants listened to 30-
second samples of low-pass filtered speech, spoken by a UK-
based mother (a) to her infant, (b) to a British confederate, and
(c) to a foreign confederate. Participants made a series of af-
fective ratings for each speech clip. The experiment was run in
two conditions: One was a traditional lab-based setup; the
other used participants recruited and tested over the Web.
The pattern of results was very similar across the two condi-
tions, with participants in both conditions rating infant-
directed speech as more positive, more comforting and more
encouraging than either of the two other speech types.

More recently, Slote and Strand (2016) examined whether
it would be possible to measure RTs to auditory stimuli online.
In their Experiment 1, participants were presented with audi-
tory consonant-vowel-consonant words such as “fit.” In the
identification condition, participants had to identify and type
in the word presented with a background babble added. In the
lexical decision condition, participants made speeded word—
nonword judgments to the same words and matched non-
words such as “dak.” The experiment was run both in the
lab and over the Web using JavaScript, with participants re-
cruited through Amazon Mechanical Turk. In the identifica-
tion task, performance was significantly better in the lab con-
dition than the Web condition; however, the correlation be-
tween item-level identification accuracy in the two conditions
was very high (»=.89). (Similar correlations between lab- and
Web-based auditory identification performance with have
been reported by Cooke, Barker, Garcia Lecumberri, &
Wasilewski, 2011.) Most interestingly, the correlation be-
tween lexical decision times across the two conditions was
also very high (» = .86). This was numerically higher than
the split-half correlation within the lab condition, suggesting
that a Web-based methodology was as capable as a lab-based

Behav Res

methodology for discriminating between stimuli of differing
difficulties, as captured in RTs.

To examine the accuracy of RTs to auditory stimuli directly,
Slote and Strand (2016) ran a second experiment, this time
using specialist hardware to generate accurate, known response
times to auditory stimuli. They used two different JavaScript
methods, the Date method and the Web Audio application pro-
gram interface (API; see below), to present auditory sinusoidal
stimuli and record RTs, which they compared against the actual
RTs measured by the specialist hardware attached to another
computer. They found that the recorded RTs were between
54 ms (Web Audio) and 60 ms (Date method) longer than the
actual RTs, presumably reflecting a combination of lag to pre-
sentation and the time taken for a keypress to be detected and
acted upon by JavaScript. Crucially, they also reported that the
standard deviation for these overestimates was generally
small—between 4 and 6 ms. Finally, they found that the Date
method was susceptible to processor load, with variability in-
creasing when substantial extra concurrent processing load was
applied to the system.

Research rationale

The aim of the studies reported here was to extend the existing
work on the use of auditory stimuli in Web-based research. One
aim was to examine variability in the duration of auditory stim-
uli presented through a browser. Given the intrinsic temporal
nature of auditory stimuli, we would expect durations to be
consistent, but we tested this directly. The main aim was to
examine whether it is possible to synchronize auditory and vi-
sual presentation using JavaScript or Flash. Researchers on
many areas have examined cross-modal perception: the influ-
ence of stimuli presented in one modality on perception in an-
other modality. Most famous is the McGurk effect (McGurk &
MacDonald, 1976), in which watching a person articulate /ga/ at
the same time as hearing /ba/ leads to the perception of /da/.
Although some of the best-known effects tend to be based
on complex dynamic visual stimuli like mouthed speech, pre-
sented as video clips, others are based on simpler stimuli. For
example, the ventriloquist effect, in which the perception of the
location of sounds is affected by the location of concurrent
visual stimuli, is examined using simple stimuli such blobs of
light and clicks of sound presented concurrently or asynchro-
nously (e.g., Alais & Burr, 2004). Similarly, emotion judgments
to static monochrome images of faces are affected by the tone
of voice in which irrelevant auditory speech is presented (de
Gelder & Vroomen 2000). Synchronized bimodal presentation
of auditory and visual words is also used to examine language
comprehension processes (e.g., Swinney, 1979), and abstract
stimuli such as tones and visual symbols, varying in synchro-
nization, have been used in research on attention (Miller, 1986).
For many, though not all, of these tasks, tight control must be

kept on the synchronization of auditory and visual stimulus
onset times. For example, the McGurk effect is reduced sub-
stantially if the auditory onset occurs more than 30 ms before
the visual onset (van Wassenhove, Grant & Poeppel, 2007).

For this research, we were primarily interested in the extent
to which control of auditory and visual stimulus onset asyn-
chronies (SOAs) could be maintained over the Web across
different system—browser combinations. We were less inter-
ested in the absolute SOA, because a consistent SOA can be
corrected by adding a delay to the presentation of the stimuli
on one of the modalities. However, substantial variability in
SOAs across computer hardware and software combinations
would be a much more difficult problem to solve.

The second aim was to examine indirectly how accurate
measured RTs to auditory stimuli might be. We had previously
shown the degree to which JavaScript and Flash overestimate
visual RTs, in part as a result of a lag between the instruction
for a stimulus to be presented and the stimulus’s appearance
on the computer monitor. If we attempted to present an audi-
tory and visual stimulus concurrently, we could use the mea-
sured SOAs, combined with the known overestimation of RTs
to visual stimuli that had previously been reported, to calculate
the expected overestimation of RTs to auditory stimuli.

In the studies reported here, we used the two programming
approaches generally used for running RT experiments online:
JavaScript and Adobe Flash. JavaScript, coupled with HTMLS5
and CSS3, is emerging as the standard for running Web-based
RT studies in the behavioral sciences (e.g., Crump et al., 2013; de
Leeuw & Motz, 2016; Hilbig, 2015), and several libraries have
recently been developed to help researchers set up experiments
using JavaScript (e.g., jsPsych: de Leeuw, 2015; psiTurk:
Gureckis et al., 2015; and QRTEngine: Barnhoorn, Haasnoot,
Bocanegra, & van Steenbergen, 2015). Although Flash is, for
many understandable reasons, waning in popularity, it has been,
and is still, used in behavioral research (e.g., Project Implicit,
n.d.; Reimers & Maylor, 2005; Reimers & Stewart, 2007,
2008, 2015; Schubert et al., 2013). Other programming lan-
guages, such as Java, are now only rarely seen in online behav-
ioral research, in part because of security concerns (though see
Cooke et al., 2011, for an example using auditory stimuli). Both
Flash and JavaScript are capable of presenting auditory stimuli.

The basic designs of all studies were identical: We aimed to
present a visual stimulus (a white square) and an auditory
stimulus (a 1000-Hz sine wave') on the screen for 1,000 ms,

! We chose to use a sine wave as our auditory stimulus for simplicity, and
consistency with previous research. With hindsight, we think we should
have used white noise or similar. This would have prevented an audible
“pop” at the end of the stimulus presentation, presumably because the
stimulus finished at an arbitrary—nonzero—point in its sinusoidal cycle,
and the speaker would then have returned to its central zero position. This
may explain why measured stimulus duration was greater than 1,000 ms.
However, the use of a sine wave should not affect measured stimulus
onsets or variability in lags between auditory and visual onsets.

@ Springer

Behav Res

with concurrent onsets of the two stimuli. We would repeat
this 100 times, and then would report, across a series of brows-
er and computer system combinations, the distribution of
SOAs between the visual and auditory onsets, along with the
visual and auditory durations, to see how they deviated from
the desired performance, and, crucially, how much they varied
across different system—browser combinations.

The implementation was designed along lines similar to
those of Reimers and Stewart (2015). We used the Black
Box ToolKit, Version 2 (www.blackboxtoolkit.com; see
also Plant, Hammond & Turner, 2004), to measure
accurately the onsets and durations of visual and auditory
stimuli. To do this, we attached one of the toolkit’s opto-
detectors to the monitor at the location where the white
square would appear, and placed the toolkit’s microphone
next to a set of USB headphones or by the computer’s
speaker. The toolkit recorded the onsets and offsets of au-
ditory and visual stimuli, and detection thresholds were set
at the start of each session.

Study 1

There are several ways of coding and synchronizing auditory
and visual stimulus generation. In Study 1, we used the sim-
plest, unconstrained approach, in which the computer code
essentially simultaneously executed commands to present vi-
sual and auditory stimuli. The basic approach is shown in this
pseudocode:

Begin a new trial with a black screen

Present the white square on the screen

Start a 1,000-ms timer

Play the 1,000-ms sine wave

When 1,000-ms timer completes, hide rectangle
Wait 500 ms, and repeat

S E W=

Thus, here we simply sent practically concurrent requests
for audio and visual stimuli to start. The code was implement-
ed in Flash (using ActionScript 3, passing an embedded mp3
sample to a SoundChannel) and JavaScript (using the HTMLS5
<audio> tag, and the JavaScript play() method). We used two
systems: a reasonably well-powered desktop PC (Dell
OptiPlex 9010 running Win 7, 13-3220, 8Gb, Intel HD 2500,
with Dell P2211H monitor), and an often frustratingly under-
powered touchscreen laptop (Lenovo 14-in. Flex 2 running
Win 10, Pentium 3558U, 4 GB, Intel HD Haswell). On each
system, we tested the three major browsers: Google Chrome,
Mozilla Firefox, and Microsoft Internet Explorer (Microsoft
Edge for the Win 10 laptop). We used an mp3 file for the
audio, because this was the only format compatible with all
browsers in our test.

@ Springer

Results

The means, SDs, and ranges for each of the conditions are
given in Table 1.

Auditory duration The duration of auditory stimuli was very
consistent, both within and across system—-browser—coding
configurations. Across conditions, the mean auditory duration
varied by a maximum of 11 ms, and the SDs within a condi-
tion were generally under 1 ms. Some of the between-
condition variability might also be attributable to trigger
thresholds for the Toolkit’s audio detector. The overall dura-
tion was significantly longer than the 1,000-ms sound dura-
tion. However, we suspect that this may have been due to a
“pop” occurring at the end of the sine wave, which increased
the duration slightly. Overall, this test provided good evidence
that auditory durations are consistent.

Visual duration Visual presentation durations were similar to
those reported by Reimers and Stewart (2015). In nearly all
conditions the visual durations were longer than specified,
generally by around 20 ms, although there was some variabil-
ity on the laptop. For one of our tests we used the same system
tested by Reimers and Stewart (2015), allowing a direct com-
parison to be made. Here we found that mean visual durations
were longer by 19 ms (Flash) and 27 ms (JavaScript). On the
same system, Reimers and Stewart (2015) reported mean du-
rations that were longer than specified by 18 ms (Flash) and
21 ms (JavaScript).

SOA between auditory and visual onset Although the code
for presenting the visual and auditory stimuli was run at es-
sentially the same time, the onsets of the visual and auditory
stimuli were not concurrent. Using JavaScript, the auditory
onset lagged behind the visual onset by between 35 and 61
ms. When we used Flash, the SOA was even more pro-
nounced: between 60 and 104 ms.

Test—retest consistency It was unclear from these results
whether the differences between conditions were due to some-
thing intrinsic to the system—browser combination used or
could have been due to random fluctuation in performance,
depending on which other processes were active at the time of
running the test. In other words, were the differences across
conditions reliable, or were they random noise? We therefore
repeated the tests on one of the machines (the desktop PC).
The results can be seen in Fig. 1. SOAs were fairly consistent
across the tests of both JavaScript and Flash. This suggests
that a substantial proportion of the variability across condi-
tions was due to stable differences in performance in different
browsers and systems.

http://www.blackboxtoolkit.com/

Behav Res

Table1l Deviations from intended stimulus durations and synchronization by browser and system in Study 1, for desktop PC (top) and laptop (bottom)

JavaScript Flash
Microsoft Firefox Chrome Microsoft Firefox Chrome
Desktop

Auditory Duration

Mean (SD) +24.0 (4.1) +19.7 (0.13) +19.7 (0.10) +19.7 (0.09) +19.7 (0.15) +19.7 (0.09)

Range +20, +33 +20, +20 +20, +20 +20, +20 +20, +21 +20,+20
Visual Duration

Mean (SD) +36.1 (3.6) +21.4 (4.3) +23.9 (6.9) +18.9 (5.0) +21.4 (9.6) +17.4 (1.6)

Range +20, +37 +20, +37 +20, +37 +17, +34 +1,+51 +17, +34
SOA (Auditory — Visual)

Mean (SD) +34.5 (4.3) +60.6 (7.2) +31.2 (5.1) +81.8 (10.0) +77.3 (10.2) +104.1 (6.7)

Range +25, +41 +45, +74 +22,+42 +22, +104 +28, +104 +103,+114

Laptop

Auditory Duration

Mean (SD) +21.5 (0.61) +13.2 (5.0) +21.8 (0.77) +21.7 (0.72) +22.0 (0.70) +21.9 (0.69)

Range +21, 423 +0, +16 +21,+24 +21, 423 +21, 423 +21, 423
Visual Duration

Mean (SD) +60.2 (4.5) +48.0 (7.2) +62.3 (15.1) —-11.1 (4.4) +32.1 (0.70) —4.5(10.9)

Range +52, +78 +36, +77 +33,+110 —13,+13 +3,+52 -30, +29
SOA (Auditory — Visual)

Mean (SD) +34.5 (2.1) +60.7 (13.1) +55.9 (10.9) +59.5 (8.6) +98.7 (11.6) +95.4 (15.8)

Range +24, +43 +45, +181 +32,+70 +42, +79 +30, +118 +72, +210

Positive values for SOA indicate that audio lagged behind visual. The default Microsoft browser was used for both systems: internet explorer on the
desktop and edge on the laptop

Discussion consistent, the SOA between visual and auditory stimuli was

at least 35 ms. If this were a consistent SOA, it need not be a
Study 1 provided data on the accuracy of auditory durations problem, because a delay could be introduced in the visual
and auditory—visual synchronization under JavaScript and presentation to bring the two modalities into synch.
Flash. Although presentation duration accuracies were very ~ However, the SOA varied with the system—browser

100
|
100
!

Fig. 1 Cumulative frequency
distribution of stimulus onset
asynchronies (SOAs) in Study 1
across three browsers, showing
test-retest consistency for three
runs of 100 trials on the desktop
PC. The left panel shows
JavaScript performance, and the
right panel shows Flash
performance

80
80

Cumulative Frequency (%)
Cumulative Frequency (%)

20
20

-100 -50 0 50 100 150 -100 -50 0 50 100 150
Lag (ms) Lag (ms)

= Internet Explorer
— Firefox
~— Chrome

@ Springer

Behav Res

combination used, by up to 25 ms under JavaScript, and up to
45 ms under Flash. Furthermore, this variability was not con-
sistently attributable to a single source—say, different
browsers. For example, the SOA under JavaScript and
Chrome was twice as high when running on the laptop as on
the desktop PC, whereas the SOAs for Firefox were very
consistent across systems. As such, it would be hard to com-
pensate for the SOA systematically.

Although the evidence from Study 1 gives some cause for
concern about the synchronization of auditory and visual stim-
uli, there are many different ways of coding the stimulus pre-
sentation, and it could be that whereas the particular approach
used here produced significant variability in SOAs, others
might not. We investigated this now.

Study 2

In this study, we attempted to reduce the variability in SOAs
between auditory and visual stimuli across browsers and sys-
tems, by using a different approach. In Study 1, the code we
wrote merely requested that the auditory and visual stimuli to
be presented concurrently, without monitoring when the stimuli
were actually presented. As we discussed above, previous re-
search suggested that there can be a nontrivial lag between
executing a command to present an audio stimulus and the
stimulus’s onset, so the overall finding of a substantial lag
between visual and auditory onsets was perhaps not surprising.

In Study 2, we used JavaScript or Flash start a sound
playing, and then used an event listener, a procedure that runs
when triggered by an event such as a mouse click or a screen
refresh, to check whether the sound is actually reported as
playing. As soon as it was detected as playing, the visual
stimulus was presented. This gives less control over the pre-
cise point at which a stimulus starts playing, but it may reduce
cross-modal asynchrony. The design is given in the following
pseudocode:

Begin a new trial with a black screen

Play a sine wave mp3 lasting 1,000 ms

Monitor whether a sound is playing

If a sound is playing, make white square visible
Monitor whether a sound is complete

If the sound is complete, make white square invisible
Wait 500 ms, and repeat

Nk W=

In JavaScript, the command to make the square visible was
bound to the “play” event for the sine wave. In Flash, an on-
interframe Event Listener monitored the position of the
playhead in a sound channel. When the playhead’s position
was greater than 0—that is, when the sound was playing—the
square was made visible.

@ Springer

Results

The results can be seen in Table 2, and the cumulative distri-
bution of SOAs can be seen in Fig. 2.

Auditory duration As before, the consistency of the auditory
presentation durations was very good. The results are very
similar to those found in Study 1.

Visual duration The binding of the visual stimulus onset and
offset to the audio onset and offset led to substantial variability
in visual durations. These included presentation durations that
were slightly below the desired 1,000 ms with Flash and some
very large excessive durations under JavaScript.

SOA between auditory and visual onset The SOAs here
were no better than those in Study 1, and variability across
system—browser combinations was higher.

Discussion

In this study, we used event listeners to bind the onset of the
visual stimulus to the presentation of the auditory stimulus.
The aim was to circumvent the well-known issue of unmea-
surable lags between command execution and the actual onset
of an auditory stimulus. It did not work.

This failure is perhaps not surprising: A substantial amount
of sound processing is devolved to a computer’s sound card,
and browser-based code has limited access to system-related
information. As such, it appears that what we monitored was
not the exact onset of the auditory stimulus, but either some
proxy within the JavaScript or Flash environment, which may
not have been related to the actual behavior of the soundcard,
or, at least in some cases, a report from the soundcard that was
subject to delay and variability in the timing of its presentation
to the runtime environment of the JavaScript or Flash code.

It also seems clear, particularly in JavaScript, that the event
triggered by sound completion occurred some time after the
sound had finished, meaning that the visual stimulus stayed on
the screen for substantially longer than it should. Overall,
then, this approach appears to be no better, and may be worse,
than that in Study 1.

Study 3

In Study 3, we tried two further techniques to reduce visual—
auditory SOA variability across browsers and systems. We fo-
cused on JavaScript, which is used more extensively for psy-
chological research, and which has several different methods
for controlling the presentation of audio. The first was to use a
different sound format. In Studies 1 and 2, we chose to encode
our sine wave as an mp3, because it is the only format that is

Behav Res

Table2 Deviations from intended stimulus durations and synchronization by browser and system in Study 2, for desktop PC (top) and laptop (bottom)

JavaScript Flash
Microsoft Firefox Chrome Microsoft Firefox Chrome
Desktop

Auditory Duration

Mean (SD) +25.1 (4.7) +19.7 (0.11) +19.7 (0.09) +19.7 (0.09) +19.7 (0.10) +19.7 (0.09)

Range +20, +34 +20, +20 +20, +20 +20, +20 +20, +20 +20,+20
Visual Duration

Mean (SD) +118.0 (8.1) +224.3 (23.2) +83.0 (7.2) —13.6 (11.7) -12.0 (11.3) +61.7 (8.7)

Range +103, +170 +136, +319 +69, +103 -32,+18 =33, +1 +34, +84
SOA (Auditory — Visual)

Mean (SD) +26.2 (7.2) +71.3 (10.3) +19.5 (6.7) -36.1 (8.7) -36.7 (6.7) +63.5 (6.3)

Range +15, +69 +30, +86 +10, +30 -52,-16 -52,-21 +43, +76

Laptop

Auditory Duration

Mean (SD) +22.6 (4.7) +8.1 (6.5) +22.6 (0.20) +22.3 (0.84) +22.5 (0.75) +22.4 (0.46)

Range +20, +34 -2,+15 +22, 423 +21, +25 +21, +27 +21, 423
Visual Duration

Mean (SD) +159.2 (11.2) +199.0 (21.7) +120.0 (14.4) +24.1 (14.0) -10.4 (10.2) +58.2 (11.9)

Range +138, +188 +153, +271 +98, +220 13, +54 -33,+19 +4, +84
SOA (Auditory — Visual)

Mean (SD) +21.8 (5.1) +86.1 (12.5) +47.1 (13.5) +13.9 (11.2) -15.5(8.8) +80.3 (9.9)

Range +18, +34 +53, +182 +33,+158 21, +36 -36, 13 +25, 498

Positive values for SOA indicate that audio lagged behind visual. The default Microsoft browser was used for both systems: internet explorer on the

desktop and edge on the laptop

compatible with the three major PC browsers tested here.
However, mp3 is a highly compressed format, and the time
taken to decompress an mp3 file before playing it may contrib-
ute to cross-browser or cross-system variability in SOAs.
Furthermore, many mp3 encoders, including the one we used,

Fig. 2 Cumulative frequency
distribution of SOAs in Study 2
across three browsers, two
implementations and two
computer systems. The left panel
shows JavaScript performance,
and the right panel shows Flash
performance. Solid lines show
performance on the desktop PC,
and the dotted lines show
performance on the laptop

40 60 80 100

Cumulative Frequency (%)

20

add a leading 50 ms of silence to an encoded mp3 file. (The
reasons for this are complex, but an overview can be seen here:
http://lame.sourceforge.net/tech-FAQ.txt). Depending on the
codec used to decompress the file, it appears that this initial
50 ms of silence may be stripped out, or, potentially, may

100
!

60
]

Cumulative Frequency (%)
40
|

20
]

Lag (ms)

—— |E/Edge
— Firefox

= Chrome

0 50

Lag (ms)

@ Springer

http://lame.sourceforge.net/tech-FAQ.txt

Behav Res

remain. As such, using a different format may improve
performance. On the downside, this means that it was not
possible to use Microsoft Internet Explorer, because it does
not currently support the playing of wav files via HTMLS
and JavaScript.

The second option we tried, in our attempt to improve
performance, was to use the Web Audio API for JavaScript
to control the sound (see Slote & Strand, 2016, for an
overview). As Slote and Strand noted, Web Audio gives ac-
cess to a computer’s soundcard’s own clock, which may allow
more accurate and less variable timings. Thus, in this study,
we used the Web Audio API, initializing an audio context and
then connecting the sine wave source to the context, before
playing (using code based on that to be found in this tutorial:
www.html5rocks.com/en/tutorials/webaudio/intro/), at the
same time as making the square visible. Visual offset was
triggered by the ending of the audio source. For the full
code, see the supplementary materials. We ran two versions
of this code, one for an mp3 file and one for a wav file.

Results
The full results can be seen in Table 3.

Auditory duration The results were very similar to those
found in Studies 1 and 2, with presentation durations that were
very consistent.

Visual duration Variability was intermediate between the re-
sults found in Studies 1 and 2.

SOA between auditory and visual onset The distribution of
SOAs is given in Fig. 3. It appears that the use of wav files led
to shorter latencies than did mp3 files, and so reduced the
SOA. However, within system—browser variability and be-
tween system—browser variability were similar across the
two formats. Similarly, when we compared the performance
here using Web Audio with that using the very basic coding in
Study 1, although SOAs were overall smaller using Web
Audio, and the variability within system—browser combina-
tions in the laptop condition was lower, variability across sys-
tem—browser combinations was not reduced.

Discussion

We attempted to reduce overall SOAs and, more importantly, the
variability in SOAs across system—browser combinations by (a)
using the wav audio format rather than mp3 and (b) using the
Web Audio APL. We found that using wav format reduced the
overall SOAs but, disappointingly, did not reduce the overall
variability in SOAs across system—browser combinations. The
use of the Web Audio API on average reduced the SOAs slightly
and reduced the within system—browser combination SDs for the

@ Springer

lower-powered laptop. This second finding is comparable to
Slote and Strand (2016) finding that SDs increased less under
high processor load when the Web Audio method was used.

Study 4

In Study 4, we used Web Audio in a slightly different way to
schedule presentation of the stimuli. The basic approach is
shown in the pseudocode below. The system works by looking
ahead at every animation frame to see whether a sine wave
should begin playing in the near future. If playback is due, its
exact time is scheduled using the highly accurate audio
clock. This look-ahead-quite-often-and-schedule-exactly
approach is detailed in www.html5rocks.com/en/
tutorials/audio/scheduling/.

1. Quite often, check to see whether a sine wave is due to be
played soon. This is achieved by using
requestAnimationFrame() to call a custom function sched-
ule(). The method requestAnimationFrame() is designed to
call a custom function before the next repaint of the screen,
which will be 60 times a second for a 60-Hz display. But it is
not run at millisecond-reliable times.

2. [Ifasine wave is due within the next 200 ms:

(a) Create the sine wave using createBufferSource() on
an AudioContext() context object.

(b) Once the sine wave buffer source is created, attach a
callback to hide the square to be run when the sine
wave ends. This is done using the onended() method.

(c) Schedule the sine wave buffer source to play at an
exact time using the audio clock. The sine wave is
scheduled to play at an exact time on the audio-card
hardware using the start() method on the buffer source.

(d) Finally, schedule a callback to display the square at
the same time as the start of the sine wave, using the
main JavaScript clock and the setTimeout() method.
[Tt would be better if an onstart() method existed for
the buffer source, so that the square onset could be
scheduled using the audio clock. Unfortunately, the
onstart() function does not exist.]

Results and discussion

The full results can be seen in Table 4.

Auditory duration The results are very similar to those found
in Study 3, with presentation durations being very consistent.

http://www.html5rocks.com/en/tutorials/webaudio/intro/
http://www.html5rocks.com/en/tutorials/audio/scheduling/
http://www.html5rocks.com/en/tutorials/audio/scheduling/

Behav Res

Table3 Deviations from intended stimulus durations and synchronization by browser and system in Study 3, for desktop PC (top) and laptop (bottom)

JavaScript Web Audio mp3

JavaScript Web Audio wav

Edge Firefox Chrome Edge Firefox Chrome
Desktop
Auditory Duration
Mean (SD) - +19.7 (0.09) +19.7 (0.15) - +19.7 (0.12) +19.7 (0.10)
Range - +20, +20 +20, +21 - +20, +20 +20, +20
Visual Duration
Mean (SD) - +137.0 (8.2) +22.0 (8.5) - +66.5 (8.1) +18.5(9.2)
Range - +117, +151 +1, +34 - +51, +85 +1,+35
SOA (Auditory — Visual)
Mean (SD) - +45.4 (5.1) +16.8 (5.7) - -5.0(5.2) +13.1 (4.7)
Range - +18, +55 42,425 - 20, +5 +4, 421
Laptop
Auditory Duration
Mean (SD) +20.1 (0.13) +20.1 (0.12) +20.1 (0.15) +20.1 (0.13) +20.1 (0.13) +20.1 (0.13)
Range +20, +20 +20, +20 +20, +21 +20, +20 +20, +21 +20, +20
Visual Duration
Mean (SD) +73.8 (8.3) +114.8 (7.0) +16.7 (7.0) +4.7 (7.7) +55.2 (8.1) +16.3 (5.2)
Range +68, +102 +101, +135 +1,+34 0, +34 +50, +85 0, +34
SOA (Auditory — Visual)
Mean (SD) +56.3 (3.9) +32.0 (5.5) +30.6 (5.4) +17.6 (3.7) -5.4(6.3) +33.4(5.3)
Range +50, +82 +23, +44 +14, +42 +13, +47 —-16, +26 +15, +43

Positive values for SOA indicate that audio lagged behind visual

Visual duration The results are again very similar to those
found in Study 3—presentation durations are rather more
variable

SOA between auditory and visual onset The distribution
of SOAs is given in Fig. 4. The results across repeats
of the same system—browser combination are very

consistent, but the discrepancy across browsers and
systems is of comparable magnitude to that found in
Study 3.

Overall, the results of Study 4 are similar to those in Study
3, with variability of around 40 ms in the mean SOAs of
auditory and visual stimuli presented across different browsers
and systems.

100
I

Fig. 3 Cumulative frequency
distribution of SOAs in Study 3
using the Web Audio API. Here,
the left panel shows performance
on the desktop (with no test for
Microsoft Edge), and the right
panel shows performance on the
laptop. Solid lines indicate
performance using mp3, and the
dotted lines indicate performance
using wav

Cumulative Frequency (%)
80
|

20

|

|

1
100

!

80
|

Cumulative Frequency (%)
40

20
|

0 50 100 150 -100 -50 0 50 100 150

Lag (ms) Lag (ms)

—— Edge
= Firefox
— Chrome

@ Springer

Behav Res

Table 4 Deviations from intended stimulus durations and synchronization by browser and system in Study 4, for desktop PC (left) and laptop (right)

JavaScript Web Audio Desktop

JavaScript Web Audio Laptop

Firefox Chrome Edge Firefox Chrome

Auditory Duration

Mean +19.6 (SD) +19.6 (0.60) +25.2 (0.64) +25.7 (0.77) +25.9 (0.87)

Range +18, +20 +18, +23 +24, +27 +25, +28 +25, +28
Visual Duration

Mean (SD) +92.1 (8.6) +24.0 (10.3) +67.8 (8.1) +95.1 (20.8) +22.8 (6.9)

Range +74, +102 +7,+35 +57, +79 +73, +252 +6, +56
SOA (Auditory — Visual)

Mean (SD) +32.7 (6.1) +5.2 (4.9) +47.9 (5.2) +26.3 (6.2) +27.4 (5.1)

Range +11, +45 -3, +11 +37, +59 +3, +38 +10, +36

Positive values for SOA indicate that audio lagged behind visual

General discussion

Across four studies, we examined the accuracy of auditory
stimulus presentation and synchronization between auditory
and visual stimuli over the Web. We used both JavaScript and
Flash, two approaches to synchronizing stimuli, two audio
formats, and two JavaScript methods for controlling presenta-
tion. We also tested three browsers on two computer systems.
Overall, we were not able to synchronize auditory and visual
presentation in a consistent way across different system—
browser combinations. Across the six (3 Browsers x 2
Systems) setups we used, running the same code in a browser
led to substantial variability of mean SOAs. Even in the con-
ditions that were most consistent across system—browser com-
binations, we found that the SOAs varied by 40 ms. We would
expect variability to be higher than this if a wider range of

computers were to be used. As such, these findings should be
treated as a minimum variability to expect across systems.

Implications for cross-modal research

The results presented here pose problems for people wishing to
run cross-modal experiments online. Running the same Flash or
JavaScript code on different system—browser combinations leads
to very different, often nonoverlapping, distributions of SOAs. If
a study requires SOAs to be precise (say, <50 ms), we would
caution against the use of the Web-based procedures we tested
here. We also recommend that lab-based studies verify the SOA
on the specific setup that they are using: Inaccuracies in cross-
modal SOAs are not uniquely a result of testing online, and may
occur to similar degrees in the lab (Babjack et al., 2015).

100
I

Fig. 4 Cumulative frequency
distribution of SOAs in Study 4
using the Web Audio API. Here,
the left panel shows performance
on the desktop (with no test for
Microsoft Internet Explorer), and
the right panel shows
performance on the laptop. Three
lines of a single color show test—
retest consistency

40 60 80
| 1 1

Cumulative Frequency (%)

20
I

o
T S
1“
| —~ 9
—H X @
Il 3
\ g o |
= ©
| o
| o
[| I
Qo
‘ g <Or B |
© |
2 |
| =
“ H O (C\)l -
(1
Il ‘ /_}J
o = =P
T T T T T T T T T T T T
-100 -50 0 50 100 150 -100 -50 0 50 100 150
Lag (ms) Lag (ms)
— Edge
= Firefox
— Chrome

@ Springer

Behav Res

However, there may be ways of using Web-based method-
ologies for cross-modal research. For example, other ways of
coding studies might allow Flash or JavaScript to control the
timing of auditory onsets more accurately, or synching visual
onset to auditory onset more effectively. Also, other ways of
presenting auditory and visual stimuli might not have the same
synchronization issues. Alternatively, the use of video, now
reasonably well-supported in HTMLS5 and Flash, might allow
for more accurate synchronization of auditory and visual stim-
uli. An alternative approach might be to allow participants to
synchronize the auditory and visual onsets themselves—they
might be allowed to adjust the onset of a visual stimulus so
that it appears to them to coincide with the auditory stimulus.
Of course, the researcher would not be able to know whether
this was done accurately.

Finally, it might be possible to tailor the presentation onsets
for a given system—browser combination. For example, a re-
searcher might be able to write code that records the actual lag
between auditory and visual onsets and adjusts the stimulus
presentation to compensate for the lag for a given user on a
given system-browser combination. One low-tech approach
would be, at the start of an experiment, to ask participants to
place their microphone by their speaker or headphones and
have the system record the lag between executing the com-
mand to start the audio and detecting the auditory input via the
microphone. Both Flash and JavaScript Web Audio allow
microphone input, with users’ permission, and this approach
would be particularly effective at minimizing errors when par-
ticipants have to give verbal responses using a voice key.

Implications for auditory response time research

We did not measure directly the accuracy of RT measurements
for auditory stimuli. However, we can estimate it by combining
the results here with those of earlier work. We previously
(Reimers & Stewart, 2015) measured RT accuracy to visual
stimuli using the Black Box Toolkit. We previously found that
the measured visual RTs using Flash or JavaScript were 30—
100 ms longer than the actual RTs. Some of the extra duration
was due to the lag between pressing a key and the keypress
being detected by JavaScript or Flash. However, some of the
extra duration was due to the fact that the timer starts when the
command to present the stimulus is executed, which is several
milliseconds later. Since we now know that auditory stimulus
onsets have an even longer lag than visual stimulus onsets, we
can predict the degree of overestimation of auditory RTs. From
the research presented here, if stimuli were simply set to play,
and a timer to measure RTs were started concurrently, then the
overestimation of RTs would be 70-200 ms. This can be reduced
by an appropriate choice of implementation, such as using
JavaScript rather than Flash, and within JavaScript by using
Web Audio scheduling. Whichever method is used, the variabil-
ity in within-system auditory onset lag will still be relatively low

(SDs of a maximum of 15.1 ms, which includes the variability in
visual presentation onset as well as that for auditory onset). As
we and others have shown (Brand & Bradley, 2012; Damian,
2010; Reimers & Stewart, 2015; Ulrich & Giray 1989), the
effects of small amounts of extra noise such as those seen here
will have minimal effects on the results obtained from typical
multitrial experiments. Furthermore, it appears that variability
and overestimation may be reduced slightly by using the Web
Audio method (as Slote & Strand, 2016, demonstrated), if ex-
perimenters are willing to exclude participants who use Internet
Explorer. As such, the use of auditory stimuli in Web-based RT
research seems feasible.

Author note We are grateful to Josh de Leeuw for suggesting the use of
the Web Audio API, and for other helpful comments on the approach
taken. Part of this work was presented at the annual meeting of the Society
for Computers in Psychology in November 2015.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-
optimal bimodal integration. Current Biology, 14, 257-262.
doi:10.1016/j.cub.2004.01.029

Babjack, D. L., Cernicky, B., Sobotka, A. J., Basler, L., Struthers, D., Kisic,
R.,...Zuccolotto, A. P. (2015). Reducing audio stimulus presentation
latencies across studies, laboratories, and hardware and operating sys-
tem configurations. Behavior Research Methods, 47, 649—665.
doi:10.3758/s13428-015-0608-x

Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R., & van Steenbergen, H.
(2015). QRTEngine: An easy solution for running online reaction time
experiments using Qualtrics. Behavior Research Methods, 47, 918-929.
doi:10.3758/s13428-014-0530-7

Brand, A., & Bradley, M. T. (2012). Assessing the effects of technical
variance on the statistical outcomes of Web experiments measuring
response times. Social Science Computer Review, 30, 350-357.

Cooke, M., Barker, J., Garcia Lecumberri, M., & Wasilewski, K. (2011).
Crowdsourcing for word recognition in noise. Retrieved January 7,
2016, from https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/Speak11To12
/1S110557.pdf

Cox, T. J. (2008). Scraping sounds and disgusting noises. Applied Acoustics,
69, 1195-1204.

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating
Amazon’s Mechanical Turk as a tool for experimental behavioral re-
search. PLoS ONE, 8, €57410. doi:10.1371/journal.pone.0057410

Damian, M. F. (2010). Does variability in human performance outweigh
imprecision in response devices such as computer keyboards?
Behavior Research Methods, 42, 205-211. doi:10.3758/BRM.42.1.205

de Gelder, B., & Vroomen, J. (2000). The perception of emotions by ear and
eye. Cognition and Emotion, 14, 289-311.

de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral
experiments in a Web browser. Behavior Research Methods, 47, 1-12.
doi:10.3758/s13428-014-0458-y

@ Springer

http://dx.doi.org/10.1016/j.cub.2004.01.029
http://dx.doi.org/10.3758/s13428-015-0608-x
http://dx.doi.org/10.3758/s13428-014-0530-7
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/Speak11To12/IS110557.pdf
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/Speak11To12/IS110557.pdf
http://dx.doi.org/10.1371/journal.pone.0057410
http://dx.doi.org/10.3758/BRM.42.1.205
http://dx.doi.org/10.3758/s13428-014-0458-y

Behav Res

de Leeuw, J. R., & Motz, B. A. (2016). Psychophysics in a Web browser?
Comparing response times collected with JavaScript and Psychophysics
Toolbox in a visual search task. Behavior Research Methods, 48, 1-12.
doi:10.3758/s13428-015-0567-2

Feuerstein, J. F. (1992). Monaural versus binaural hearing: ease of listening,
word recognition, and attentional effort. Ear and Hearing, 13, 80-86.

Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant, D., Coenen,
A.,...Chan, P. (2015). psiTurk: An open-source framework for conducting
replicable behavioral experiments online. Behavior Research Methods.
Advance online publication. doi:10.3758/s13428-015-0642-8

Hilbig, B. E. (2015). Reaction time effects in lab- versus Web-based re-
search: Experimental evidence. Behavior Research Methods.
Advance online publication. doi:10.3758/s13428-015-0678-9

Honing, H. (2006). Evidence for tempo-specific timing in music using a
Web-based experimental setup. Journal of Experimental Psychology.
Human Perception and Performance, 32, 780-786. doi:10.1037/0096-
1523.32.3.780

Huckvale, M. (2011). Demonstration of different ways to play a sound from
a Web page. Retrieved December 29, 2015, from http://eric.van-der-
vlist.com/blog/owark/228/

Knoll, M. A., Uther, M., & Costall, A. (2011). Using the Internet for speech
research: An evaluative study examining affect in speech. Behaviour
and Information Technology, 30, 845-851.

McGurk, J., & MacDonald. (1976). Hearing lips and seeing voices. Nature,
264, 746-748. doi:10.1038/264746a0

Miller, J. (1986). Timecourse of coactivation in bimodal divided attention.
Perception & Psychophysics, 40, 331-343. doi:10.3758/BF03203025

Neath, ., Earle, A., Hallett, D., & Surprenant, A. M. (2011). Response time
accuracy in Apple Macintosh computers. Behavior Research Methods,
43, 353-362.

Plant, R. R. (2016). A reminder on millisecond timing accuracy and potential
replication failure in computer-based psychology experiments: An
open letter. Behavior Research Methods, 48, 408-411. doi:10.3758
/$13428-015-0577-0

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating presentation
and response timing in cognitive paradigms: How and why? Behavior
Research Methods, Instruments, & Computers, 36, 291-303.
doi:10.3758/BF03195575

Project Implicit. (n.d.) The Implicit Association Test. Retrieved January 06,
2016 from https://implicit.harvard.edu/

@ Springer

Reimers, S., & Maylor, E. A. (2005). Task switching across the life span:
Effects of age on general and specific switch costs. Developmental
Psychology, 41, 661-671. doi:10.1037/0012-1649.41.4.661

Reimers, S., & Stewart, N. (2007). Adobe Flash as a medium for online
experimentation: A test of reaction time measurement capabilities.
Behavior Research Methods, 39, 365-370.

Reimers, S., & Stewart, N. (2008). Using Adobe Flash Lite on mobile phones
for psychological research: Reaction time measurement reliability and
interdevice variability. Behavior Research Methods, 40, 1170-1176.
doi:10.3758/BRM.40.4.1170

Reimers, S., & Stewart, N. (2015). Presentation and response timing accuracy
in Adobe Flash and HTML5/JavaScript Web experiments. Behavior
Research Methods, 47, 309-327. doi:10.3758/s13428-014-0471-1

Schubert, T. W., Murteira, C., Collins, E. C., & Lopes, D. (2013). ScriptingRT:
A software library for collecting response latencies in online studies of
cognition. PLoS ONE, 8, e67769. doi:10.1371/journal.pone.0067769

Simcox, T., & Fiez, J. A. (2014). Collecting response times using Amazon
Mechanical Turk and Adobe Flash. Behavior Research Methods, 46,
95-111. doi:10.3758/s13428-013-0345-y

Slote, J., & Strand, J. F. (2016). Conducting spoken word recognition re-
search online: Validation and a new timing method. Behavior Research
Methods, 48, 553-566. doi:10.3758/s13428-015-0599-7

Swinney, D. (1979). Lexical access during sentence comprehension:
Reconsideration of context effects. Journal of Verbal Learning and
Verbal Behavior, 18, 645—659.

Ulrich, R., & Giray, M. (1989). Time resolution of clocks: Effects on reaction
time measurement: Good news for bad clocks. British Journal of
Mathematical and Statistical Psychology, 42, 1-12. doi:10.1111
/j.2044-8317.1989.tb01111.x

van Steenbergen, H., & Bocanegra, B. R. (2015). Promises and pitfalls of
Web-based experimentation in the advance of replicable psychological
science: A reply to Plant (2015). Behavior Research Methods. Advance
online publication.. doi:10.3758/s13428-015-0677-x

van Wassenhove, V., Grant, K. W., & Poeppel, D. (2007). Temporal window
of integration in auditory—visual speech perception. Neuropsychologia,
45, 598-607. doi:10.1016/j.neuropsychologia.2006.01.001

Welch, N., & Krantz, J. H. (1996). The World-Wide Web as a medium for
psychoacoustical demonstrations and experiments: Experience and
results. Behavior Research Methods, Instruments, & Computers, 28,
192-196.

http://dx.doi.org/10.3758/s13428-015-0567-2
http://dx.doi.org/10.3758/s13428-015-0642-8
http://dx.doi.org/10.3758/s13428-015-0678-9
http://dx.doi.org/10.1037/0096-1523.32.3.780
http://dx.doi.org/10.1037/0096-1523.32.3.780
http://eric.van-der-vlist.com/blog/owark/228/
http://eric.van-der-vlist.com/blog/owark/228/
http://dx.doi.org/10.1038/264746a0
http://dx.doi.org/10.3758/BF03203025
http://dx.doi.org/10.3758/s13428-015-0577-0
http://dx.doi.org/10.3758/s13428-015-0577-0
http://dx.doi.org/10.3758/BF03195575
https://implicit.harvard.edu/
http://dx.doi.org/10.1037/0012-1649.41.4.661
http://dx.doi.org/10.3758/BRM.40.4.1170
http://dx.doi.org/10.3758/s13428-014-0471-1
http://dx.doi.org/10.1371/journal.pone.0067769
http://dx.doi.org/10.3758/s13428-013-0345-y
http://dx.doi.org/10.3758/s13428-015-0599-7
http://dx.doi.org/10.1111/j.2044-8317.1989.tb01111.x
http://dx.doi.org/10.1111/j.2044-8317.1989.tb01111.x
http://dx.doi.org/10.3758/s13428-015-0677-x
http://dx.doi.org/10.1016/j.neuropsychologia.2006.01.001

	Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments
	Abstract
	Auditory stimuli through a Web browser
	Existing research

	Research rationale
	Study 1
	Results
	Discussion

	Study 2
	Results
	Discussion

	Study 3
	Results
	Discussion

	Study 4
	Results and discussion

	General discussion
	Implications for cross-modal research
	Implications for auditory response time research

	References

