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Abstract 

In this work we present the methodology for the development of the EMBalance diagnostic Decision Support 

System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed 

using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses 

various data, ranging from demographic characteristics to clinical examination, auditory and vestibular 
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tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general 

practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations 

for the appropriate information and data to be requested at each step of the diagnostic process. Detailed 

results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the 

reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts. 

 

Index Terms. Balance disorders, data mining, decision support systems, vestibular system  

 

I. INTRODUCTION 

Human balance requires vision, joint and muscle proprioception and the vestibular system. The integration of the 

above input and motor output to the visionary and muscle systems are required in order to achieve balance. If one 

of the three above mentioned systems or their integration fails, this could lead to several different pathologies that 

can cause balance disorders. The reasons that can cause balance disorders can be many and different [1]. In 

approximately 5%, the causes are mainly neurological; in 5% are medical; in 15% are psychological; in more than 

50% the causes are related to diseases of the inner ear while in the rest 25%, the causes are multiple. Balance 

disorders can lead to falls [2], which can subsequently lead to other complications  

The diagnosis of balance disorders is challenging, sometimes even for the expert otolaryngologists or expert 

neurologists [3]. A systematic history taking, followed by appropriate clinical examinations chosen on a patient and 

symptom specific basis are the cornerstones of diagnosis and are tasks where a Decision Support System (DSS) 

could be of great help, facilitating the diagnostic process, especially for medical practitioners with less expertise in 

balance disorders such as GPs. Only a few DSS have been developed in the past regarding the diagnosis of 

vestibular disorders. Mira et. al. [4] proposed an automated diagnosis system, VERTIGO, which is based on rules. 

CAMISEL is another DSS [5], which is based on a two-step approach for reaching a diagnosis. In the first step, the 

system suggests a potential diagnosis based on initial evidence, while in the second step the system confirms or 

rejects the diagnosis, taking into account information from the patient’s history and clinical examinations. Galactica 

is a machine learning approach [6, 7] which learns and develops diagnostic decision rules using data from 564 

patients with vertigo, with as primary diagnoses Menière’s disease, vestibular schwannoma, traumatic vertigo, 
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sudden deafness, benign paroxysmal positional vertigo (BPPV) and vestibular neuritis. OtoNeurological Expert 

(ONE) [8,9] developed diagnostic rules using 815 neuro-otology patients, which included the same diagnosis as 

Galactica and subsequently tested for 1030 cases, including cases with benign recurrent vertigo, vestibulopathia and 

central lesion. The best total classification accuracies using the combined knowledge bases with machine learning 

knowledge and experts’ knowledge, classified 82.5–84.7% of cases correctly within the first and second diagnostic 

suggestion. NetSet has been developed using 815 patient cases with the same primary diagnoses [10]. NetSet 

showed a sensitivity, specificity, positive predictive value and total accuracy for all six diagnostic classes 85%, 83%, 

96% and 95%, respectively. 

Miettinen and Juhola [11], employed Bayesian probabilistic models for the diagnosis of six otoneurological 

diseases. Additional experiments with the ONE diagnostic system were also presented in [12,13], using different 

machine learning methods, such as the k-nearest neighbor method, the Naïve Bayes classifier and Support Vector 

Machines. Finally, Dong et al. [14] developed a diagnostic system, through dynamic uncertain causality graphs. The 

graphs were developed using medical knowledge and validated in 60 patient cases, resulting in an average accuracy 

ranging from 81.7 to 88.3%.  

A newly developed diagnostic DSS is part of an integrated system, EMBalance (http://www.embalance.eu/), which 

is a system for the management of patients with balance disorders in terms of diagnosis, treatment and disease 

evolution. The EMBalance diagnostic platform goes beyond current state of the art in several directions. All 

previous works focus only on the development of data mining models for classifying patients in different 

diagnostic categories. The proposed methodology aims to provide a recommendation tool which is able to guide the 

GPs and experts in requesting the appropriate information for reaching the diagnosis. Another innovative feature of 

the proposed DSS is that due to the several data mining models developed for each one of the diagnoses, it can 

provide more than one diagnosis for each patient. An additional benefit of the EMBalance DSS is that while in 

previous systems, the patients’ data used for training and testing the algorithms contained approximately 10-240 

features, the EMBalance repository characterizes patients using approximately 350 features. This exhaustive 

patient characterization coupled with extensive experiments with feature selection algorithms enables the 

EMBalance DSS to identify the critical information needed for the diagnosis of the different pathologies. Finally, 

the proposed DSS has two different modules, one for expert use and the other for GP use, which utilize different 

http://www.embalance.eu/
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features which are determined by the access that each of the two groups (GPs and experts) has to specialized 

equipment and tests. Previous systems assumed only experts usage, judging on the features used by them for 

diagnosis. 

 

II. MATERIALS AND METHODS 

A. Dataset 

Data from 985 patients were collected from the National Hospital of Neurology and Neurosurgery, Queen Square, 

UK, the 1
st
 Otolaryngology University Clinic of Athens, Greece, the University of Antwerp, Belgium and the 

University Clinic of Freiburg, Germany. These data contained more than 350 features (variables), including 

epidemiological information, detailed medical history, disease related history, clinical findings and laboratory 

examination results (http://www.embalance.eu/). Furthermore, detailed information on different balance related 

types of symptoms together with symptom duration, symptom free intervals, association between symptoms and 

relevant triggers was collected, since these are important features for the diagnosis of vestibular disorders. It should 

be noted that in the GP case, only features corresponding to personal disease history, symptoms and clinical 

examinations were utilized, whereas in the expert case, all the above mentioned features were used. Diagnostic 

outcomes were classified into more than 100 diagnoses, using the standard ICD10 code, as well as additional, not 

as yet specified in the ICD code, diagnostic categories based on the Bárány Society proposed International 

Classification of Vestibular Disorders (see http://www.jvr-web.org/Barany-feedback.html). The study has been 

approved by the respective ethics committees of each Institute according to local/national regulations. Following 

numerous experiments and detailed analysis and collaboration with medical experts, 12 diagnostic categories 

shown in Table I, along with the corresponding recommendation for specific features are supported by the 

proposed DSS. Diagnostic categories with a very small number of patients (i.e. less than 20) were excluded 

because it was not feasible to be analysed. The proposed DSS is based on the above described dataset and provides 

diagnosis for 12 different diseases as they are described in Table I.  

 

http://www.embalance.eu/
http://www.jvr-web.org/Barany-feedback.html
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B. Methods 

B1. Training 

To develop the DSS for the diagnosis of 12 balance disorders, a three stage methodology was implemented which 

is shown in Fig. 1. In the first step, preprocessing of the dataset was performed; this included the removal of 

features with more than 50% missing values and the development of the datasets per class. Due to the large number 

of target classes (12), 12 different binary classification models have been developed instead of a 12-class 

classification model. A different dataset was thus prepared per diagnostic category; each dataset per class contained 

all records from the target class and randomly the same number of records from the rest of the database.  

In the second step, feature selection was performed. Two different data mining frameworks have been tested for 

each diagnostic category (Fig. 1). In the first (upper part of Fig. 1), feature selection was applied separately in each 

category of features (Personal disease history, symptoms, vertigo-instability symptoms, tinnitus symptoms, clinical 

examinations, auditory tests, video-nystagmography, questionnaires, vestibular tests, imaging data) and selected 

features were collected at the end for the diagnostic process. In the second category (lower part of Fig. 1), feature 

selection was applied in all features from all categories and the optimal subset was used for the diagnostic process. 

Feature selection was applied on the training set of each diagnostic category (10 times since 10-fold cross 

validation was used). In our case, we employed feature subset selection methods, that consider the overall set of 

features collectively, compared to feature ranking methods that assess each feature independently. Further to that, 

feature subset selection methods can be classified into two categories: the filter [15], where the feature subset 

selection is independent of the training algorithm and removes irrelevant and high correlated features and the 

wrapper [16], where the feature subset selection is applied as a wrapper with the training algorithm and the optimal 

feature subset is identified based on its accuracy with the specific training algorithms. 

Finally, in the third step, classification algorithms were applied. The reduced subset of features from the second 

step is used as input to predict the target class. The best results were obtained using the second data mining 

framework (overall feature subset selection in all available features) with the combination of wrapper feature 

selection (second step) and decision trees enhanced with a boosting algorithm, Adaboost (third step). Wrapper 

feature selection performs an exhaustive search within the space of available features, targeting the optimization of 

the accuracy of the selected classification algorithm. Decision trees are one of the most common data mining 
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techniques, employed in several different domains, including clinical applications [9]. A key element of the 

decision trees that makes their usage appealing in the medical domain is that they can be transformed to rules and 

provide transparency and interpretation in the decisions made (in contrast for example to neural networks or 

support vector machines). Given an initial dataset, with instances characterized by features, there are exponentially 

different decision trees that can be induced. For the development of diagnostic models for each of the diagnoses, 

decision trees were used as basic models, induced using the C4.5 algorithm. The C4.5 algorithm for decision tree 

induction creates a tree structure form with nodes, edges and leaves. The nodes correspond to features, the edges to 

different values or ranges of values of the features of the nodes and the leaves are the decisions of the tree. 

In order to identify which feature to have in which node and in which values to divide this feature, the notion of 

information gain was considered. Details can be found in [17,18]. After the induction of the decision tree, the tree 

is pruned in order to avoid overfitting in leaves where only a small number of instances applies. Boosting is a 

procedure performed in an iterative manner and is used to change the distribution of the training instances so that 

the base classifier, in our case the decision tree induced using the C4.5 algorithm, focuses more on examples that 

are difficult to classify correctly. Boosting assigns weight to each training instance and then tunes the weight of all 

instances; instances easily classified receive a reduced weight, while instances not classified correctly receive an 

increased weight. 

The assigned instance weights are then used in the sampling distribution in order to draw a set of bootstrap sample 

from the original dataset. A specific type of boosting is the algorithm Adaboost, which works as follows: Let 

                  denote the set of N training instances, where    are the features characterizing record j and    

is the class. Adaboost assigns different weights in the base classifiers   , depending on the error rate of each 

classifier, given as: 
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where        if part p is true and 0 otherwise. i is the number of base of classifier. The weight of the    is given 
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which is used to define also the weight of the training instances as follows: 
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where    is the normalization factor that ensures that ∑   
     

   . The weight equation (Eq. 3) increases the 

weight of the instances classified incorrectly and decreases the weight of those instances that are classified 

correctly. After the definition of the weights of the instances and of the base classifiers, the classification is 

performed according to the weight of each base classifier. In this way, base classifiers with low accuracy rate 

receive less weight and are used less in the classification. 

 

It should be noted that several different combinations of classification schemes were tested prior to the resulting 

wrapper-decision trees and Adaboost approach. Besides wrapper, also filter based approaches were tested for 

feature selection. Due to the requirement of the collaborating clinicians and vestibular experts to provide the ability 

for interpretation for the decisions made, several classification methodologies were not selected (artificial neural 

networks, support vector machines, k-nearest neighbors) or due to their reduced reported results compared to 

decision trees and Adaboost (ripper algorithm [19], ridor algorithm [20], naïve Bayes algorithm). Moreover, 

instead of Adaboost, bagging and random forests were also tested. Additionally, due to the large number of classes, 

the 12 binary classification models approach was selected compared to the multiclass classification problem. An 

additional advantage to select binary diagnostic models was the nature of the vestibular diagnosis problem; several 

subjects present with more than one pathology at the same time. A multiclass classification setting would not be 

able to address this requirement and assign two or more classes at the same time for a subject. The utilization of 

binary diagnostic models allows addressing this, by providing more than one diagnosis at the same time. For the 

C4.5 algorithm, the initial settings for pruning were set to 0.25 pruning factor and minimum instances per leaf to 5. 

The second value was tuned in each of the diagnostic categories. Adaboost was set to 10 different iterations and 

thus resulted in the generation of 10 decision trees per category. 

 

B2. Testing 

Fig. 2 shows the diagnostic (test) process which involves: (a) a recommendation tool that guides the GPs and 

experts in requesting the appropriate information (features), and (b) the diagnostic DSS, which has a different 
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model/tree for each one of the 12 diagnoses. The recommendation system, based on the identified informative 

features for each diagnosis, recommends to the GP/Expert which parameter, clinical examination, and/or test to 

request in order to continue the diagnostic process. Specifically, the recommendation system proposes to the 

GP/Expert the feature identified in the respective path of the decision tree that is needed each time for the 

continuation of the tree parsing until the diagnosis is reached (Table I). 

 

III. RESULTS 

The 10-fold cross validation was used to evaluate the DSS. Sensitivity, specificity, positive predictive value, 

negative predictive value and accuracy were estimated for each diagnosis. Table II presents the results obtained for 

each different diagnosis considered, for both GPs and experts (since experts have access to specialized equipment 

and thus additional information compared to GPs). The first line of the results corresponds to the results obtained 

for the GPs, while the second line corresponds to the results for the experts. Also, the two columns, Features for 

GPs, Features for Experts, correspond to the resulting reduced subset of features identified for each diagnosis, for 

GPs and experts, respectively. This is due to the fact that GPs usually do not have access to the necessary 

equipment to perform specific tests (e.g. videonystagmography, auditory tests and vestibular tests). For this reason, 

the first column (Features for GPs) contains only features made available to the GPs during the diagnostic process. 

The second column (Features for experts), contains additional features that can be acquired using sophisticated 

equipment, available only to expert settings. It should be noted that these two DSS modes were obtained and 

finalized after a series of experiments with different algorithms and different parameters. The reported results range 

in terms of all metrics in the different diagnoses taken into consideration, as well as, in terms of the features used. 

Overall, the metrics used for GPs are quite lower from the corresponding results of the experts. This is an expected 

finding, since the DSS developed for the experts, contains more sophisticated features (audiological and vestibular 

tests, imaging). When these test features are added, the corresponding metrics, as well as the diagnostic abilities, 

are improved in almost all cases.  

The developed EMBalance DSS addresses the 4 most prevalent balance disorders (Migrainous vertigo, Typical 

Benign paroxysmal positional vertigo, Vestibular Neuritis and Menière’s disease), as well as another 8 less 

prevalent (Possible Benign paroxysmal positional vertigo, Unilateral Peripheral Dysfunction/Failure, Psychological 
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Disorders, Bilateral Vestibular failure/dysfunction, Cerebellar/Pontine lesion, CPA Acoustic neuroma, Chronic 

Subjective Dizziness Persistent Postural-Perceptual Dizziness, Vestibular Paroxysmia). For the 4 most prevalent 

diseases except Vestibular neuritis, quite high results have been reported, both for the GP and expert DSS modules. 

The best results were reported for Menière’s disease, reaching an accuracy of 92.1% for the experts, while the 

lowest ones were reported for Unilateral Peripheral Dysfunction/Failure, with an accuracy of 59.3% for the GPs. 

Based on the different number of records for each of the 12 classes, the classification framework used (feature 

subset selection, boosting, training of decision trees), required maximum 1 minute (in the case of Migrainous 

Vertigo, expert model). Regarding the testing time, decision trees are efficient classification structures and the 

testing time for a new record is negligible. 

IV. DISCUSSION 

The diagnosis of balance disorders is a difficult task, not only for the GPs but also for the experienced medical 

professionals which include otolaryngologists, audiovestibular physicians, neurologists, and audiologists. For those 

lacking the specialised medical training and the long clinical experience, the diagnostic process of vestibular 

disorders can be fraught with difficulties, and it may not be possible to gather all necessary information or to 

interpret such information meaningfully in order to conclude in the correct diagnosis. A DSS that would 

successfully address diagnosis of such disorders would address a significant public health need. The impact of this 

achievement includes better diagnostic outcomes and consequently improved quality of life for a large patient 

group, reduction of falls and fall related injuries, equity in health services access and cost reduction via referrals 

and follow up assessment decrease.  

In this work we have presented the EMBalance diagnostic DSS for balance disorders, which includes one GP and 

one expert module, which reflect the availability of sophisticated tests and equipment in primary vs. 

secondary/tertiary clinical setups. According to Table II, for the unilateral peripheral dysfunction/failure, the 

diagnostic accuracy results for the GP mode are quite low. However, the diagnostic accuracy results are increased 

substantially in the expert module when the audiological test characteristics, which are very informative for 

unilateral diseases are added to the diagnostic process. Since audiological equipment is usually not available for the 

GPs, audiometry tests were not taken into consideration in this specific analysis for the GP DSS module. In the 
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case of psychological disorders, the same simple models have been developed both for the GP and for the expert 

module, taking into consideration anxiety and/or depression validated questionnaire score levels and the existence 

or not of visual vertigo symptoms. For the Bilateral Vestibular failure/dysfunction case, the same models with quite 

accurate results have been developed for both GPs and experts, taking into consideration the same simple clinical 

history and examination features. In the Cerebellar/Pontine lesion case, the addition of vestibular tests improves the 

results from the GP to expert case, proving that vestibular tests are quite essential for this diagnosis. When 

considering the cerebellopontine angle (CPA) acoustic neuroma case, in the GP module, the sensitivity obtained 

was quite low, which was increased substantially in the expert module, when the results of imaging tests are added. 

According to the medical expert module results, imaging and especially magnetic resonance imaging (MRI) is 

required to clearly identify a CPA acoustic neuroma. Nevertheless, in the GP module, results show that even with 

more easily acquired features, CPA lesions can be identified with satisfactory sensitivity. For Chronic Subjective 

Dizziness Persistent Postural-Perceptual Dizziness (PPPD), the results for GPs and experts are quite similar. 

Furthermore, the addition of the Videonystagmography (VNG) caloric test (canal paresis) category (a laboratory 

examination which is not available to the GPs) increases the accuracy for the identification of this diagnosis. In the 

vestibular neuritis case, the results are quite low in both modules. Still it can be seen that the addition of the VNG 

caloric test canal paresis category, improves the results for this diagnosis. In Menière’s disease, quite high results 

are reported both for GPs and experts. Still, the addition of some auditory test results (low frequency 250-500 Hz 

hearing loss) increases the accuracy of the DSS for Menière’s disease. Migrainous vertigo (vestibular migraine) is 

an important balance disorder, not addressed by most of the previous DSS in the literature [9-13]. For this 

diagnosis, the same model was developed and used for GP and expert DSS modules. 

The diagnostic accuracy results for Vestibular paroxysmia are quite low in the case of the GPs, however those are 

substantially increased in the expert module, especially with the addition of the imaging results which are a key 

diagnostic feature for this disorder. Finally, the results for the posterior canal BPPV, both typical and atypical have 

been presented. The differentiation between typical and atypical BPPV depends on the existence or not of 

nystagmus in the Dix Hallpike examination. With a positive Dix Hallpike, i.e. typical posterior BPPV, the obtained 

results are quite satisfactory both for GPs and experts. In the case of the negative Dix Hallpike and the atypical 

posterior BPPV, the two modules report the same results. 
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Our work goes beyond the state of the art in many ways: A much more detailed feature vector has been formulated, 

accounting for more than 350 features including parameters regarding the medical history, symptoms, clinical 

examinations, audiological and imaging findings, questionnaire and, posturography results. In addition, an 

advantage compared to the previously developed DSSs is that the EMBalance diagnostic DSS harnessed several 

different data mining models with a different model developed for each disease, which allowed the extraction of 

more than one diagnosis for each patient, since this is often required for patients with balance disorders. Through 

the decision tree based diagnostic DSSs, the medical professionals are thus able to obtain decision support in two 

tasks: (i) acquisition of patient’s data, through the recommendation tool that has been developed based on the 

parsing of the decision trees, by requesting the specific features and in the correct order and, (ii) interpretations for 

the decisions made due to the decision tree based nature. More specifically, for each diagnosis made through the 

diagnostic decision support system, the corresponding rules that were applied for each patient case are presented to 

the medical expert.  

Table III presents a summary of the current and of previous related works reported in the literature for the diagnosis 

of balance disorders including detailed accuracy for the common diagnosis (Benign Paroxysmal Positional Vertigo, 

Vestibular Neuritis and Menière’s Disease) and high risk diagnosis (Vestibular Schwanoma-CPA acoustic 

neuroma). A direct comparison cannot be performed due to the different datasets and different methodologies 

(ranging from expert systems developed using expert knowledge [12] to more sophisticated modelling of 

knowledge with dynamic uncertain causality graphs [14], Bayesian networks analysis [11], artificial neural 

networks [10] etc.) that were employed by the different research groups. However, as it can be seen in Table III, 

the strength of the EMBalance DSS compared to DSSs presented in the literature include: (i) the number of 

different features used to inform the diagnostic process, allowing for a more detailed analysis of all available 

features and identification of the most informative ones per pathology. All previous works started their analysis 

from a smaller set, not taking into consideration several important features that the proposed DSS and analysis 

does. (ii) The number of different diagnostic classes considered. The proposed DSS can provide diagnosis for 12 

different pathologies. All previous works reach up to 9 pathologies, limiting the exploitation of the DSS by a 

vestibular expert. An exception is the methodology presented in [14], which, however, was tested in a limited set of 

60 patient cases, limiting its credibility in larger populations. Apart from the larger number of classes considered, 
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the proposed DSS can provide simultaneously two or more diagnosis, which is typical for several patients suffering 

from vestibular disorders. (iii) The comparable number of patient cases. As it is presented in Table III, the number 

of patient cases range from 60 to 1283; the 985 cases, using 10-fold cross validation used in our approach allows to 

consider the reported results credible and the DSS reliable.  (iv) The availability of both GP and expert modules. 

This is an innovative point of the proposed DSS, compared to previous works that consider only usage by experts. 

In several healthcare systems, GPs are the first point of patient access for diagnosis; the GP mode of the proposed 

DSS allows GPs to perform the diagnostic process, helping them also during data acquisition.  

In the future, the EMBalance DSS will be clinically evaluated in a multi-centre proof of concept clinical trial that 

will be conducted on a minimum of 200 prospective patients. Additionally, since in some of the diagnostic 

categories (Bilateral Vestibular failure/dysfunction, CPA Acoustic neuroma, Chronic Subjective Dizziness 

Persistent Postural-Perceptual Dizziness and Vestibular Paroxysmia), the number of available records was 

relatively small and the data highly skewed, in the future, when the EMBalance DB increase in terms of samples in 

these categories, retraining will be performed. Moreover, techniques for oversampling will be tested (e.g. Wilcoxon 

signed-rank, Friedman’s, Iman-Davenport post hoc tests, Synthetic Minority Oversampling Technique) in order to 

address the relatively small number of records in the specific cases. 

 

V. CONCLUSIONS 

A methodology based on data mining techniques (feature selection, boosting algorithms, decision trees) has been 

employed for the development of a recommendation tool and a diagnostic DSS for 12 balance disorders, to assist 

GPs and experts, firstly in requesting the necessary information from the patients to reach a potential diagnosis and 

secondly to support the diagnosis of balance disorders. The reported results in most of the cases are satisfactory and 

the features used for each diagnosis are in line with clinical knowledge and guidelines. An increase in overall 

accuracy is presented, from the GP to the expert module, which is attributed to the additional and more 

sophisticated features used by the experts. Further application of the diagnostic DSSs in real clinical settings could 

reveal the potential of the proposed approach. 
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Fig 1: The building blocks of the methodology for developing the diagnostic models. The two data mining 

frameworks that were used are also shown. In the first, feature selection is applied to each different source of 

features and then the results are summarized in order to train the classification algorithms for balance disorders. 
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Fig 2: The interaction between the recommendation tool, which utilizes the features encountered in the paths of the 

decision trees, and the diagnostic decision support system, which is composed by the 12 different decision trees, 

one for each diagnosis as shown above. The outcome is the list of the recommended diagnosis.  
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TABLE I: DIAGNOSES CONSIDERED IN THE EMBALANCE DSS AND THE CORRESPONDING NUMBER OF CASES 

A/A Diagnosis 
# of 

cases 

1 
Unilateral Peripheral 

Dysfunction/Failure 
134 

2 Psychological Disorders 40 

3 
Bilateral Vestibular 

failure/dysfunction 
23 

4 Cerebellar/Pontine lesion 43 

5 CPA Acoustic neuroma 34 

6 

Chronic Subjective Dizziness 

Persistent Postural-Perceptual 

Dizziness (PPPD) 

35 

7 Vestibular Neuritis 89 

8 Menière’s disease 127 

9 
Migrainous vertigo (Vestibular 

Migraine) 
222 

10 Vestibular Paroxysmia 30 

11 
Typical Posterior Benign Paroxysmal 

Positional Vertigo (Typical BPPV) 
156 

12 

Possible Posterior Benign 

Paroxysmal Positional Vertigo 

(Atypical BPPV)
1
 

52 

 Total 985 

 

 

 

 

 

  

 
1 As possible BPPV cases were considered those cases with a consistent history but negative Dix Hallpike examination. 
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Table II: Results for the 12 different diagnoses in terms of sensitivity, specificity, positive predictive value, 

negative predictive value accuracy and features used for the GPs and the experts are presented. The first line in 

the reported results are the measurements for the GPs and the second line for the experts 

 
SE 

(%) 

SP 

(%) 

PPV 

(%)  

NPV 

(%) 

ACC 

(%) 

Features for GPs Features for Experts 

Unilateral 

Peripheral 

Dysfunction/ 

Failure 

58.2 

 
76.1 

60.4 

 
74.6 

59.5 

 
75.0 

59.1 

 
75.8 

59.3 

 
75.4 

[patient_sex] [patient_age] 
[patient_ability_to_work] 

[patient_smoking] [symptoms_fall] 

[symptoms_hearing_loss] 
[symptoms_hearing_loss_evolution] 

[vertigo_instability_symptoms] 

[vertigo_instability_symptom_duration_ 
time_interval] 

[vertigo_symptom_type_bundle_name] 

[symptom_type_anxiety_and_or_depression] 
[symptom_type_difficulty_walking_ 

in_darkness] 

[symptom_type_headache] 
symptom_type_tinnitus] 

[vertigo_trigger_head_movement] 

[symptom_type_dizziness] 

[vestibular_test_sinusoidal_rotation] 

[auditory_test_PTA_250_AC_right] 

[auditory_test_PTA_8000_AC_right] 
[auditory_test_PTA_250_AC_left] 

[auditory_test_PTA_500_AC_left] 

[auditory_test_hearing_right_manual] 
[auditory_test_hearing_left_manual] 

[caloric_observational_test_canal_ 

paresis_category] 
[caloric_vng_canal_paresis_category] 

[questionnaire_dizziness_emotional_subscore] 

[vertigo_instability_symptom_symptom_type] 
[symptom_type_anxiety_and_or_depression] 

[symptom_type_drunken_feeling] 

[vertigo_trigger_head_movement] 

[vertigo_trigger_standing_up_rapid_ascents] 

[symptom_type_dizziness] 

Psychological 

Disorders 

75.0 
 

75.0 

85.0 
 

85.0 

83.3 
 

83.3 

77.3 
 

77.3 

80 
 

80 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_visual_vertigo] 

[symptom_type_anxiety_and_or_depression] 

[symptom_type_visual_vertigo] 

Bilateral 

Vestibular 

Failure/ 

dysfunction 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

82.6 

 

82.6 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_difficulty_walking_ 

in_darkness] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_oscillopsia] 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_difficulty_walking_in_ 

darkness] 
[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_oscillopsia] 

Cerebellar/ 

Pontine lesion 

79.1 

 

88.4 

79.1 

 

83.7 

79.1 

 

84.4 

79.1 

 

87.8 

79.1 

 

86.1 

[patient_age] [patient_smoking] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 
[clinical_examination_romberg] 

[clinical_examination_gait] 

[personaldisease_bundle_name] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_drunken_feeling] 

[symptom_type_headache] 
[symptom_type_tinnitus] 

[symptom_type_visual_vertigo] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 
[clinical_examination_gait] 

[vestibular_test_sinusoidal_rotation] 

[vertigo_instability_symptom_symptom_type] 

[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 

[symptom_type_headache] 
[symptom_type_tinnitus] 

CPA Acoustic 

neuroma 

79.4 

 

85.3 

91.2 

 

91.2 

90 

 

90.6 

81.6 

 

86.1 

85.3 

 

88.2 

[clinical_examination_gaze_test] 
[clinical_examination_head_thrust] 

[symptoms_hearing_loss] 

[personaldisease_bundle_name] 
[tinnitus_symptom_tinnitus_symptom_type] 

[tinnitus_symptom_frequency] 

[vertigo_symptom_type_bundle_name] 
[symptom_type_cervicalgia] 

[symptom_type_headache] 

[symptom_type_hearing_loss] 
[symptom_type_lightheaded] 

[symptom_type_tinnitus] 

[vertigo_trigger_head_movement] 
[vertigo_trigger_rolling_over_in_bed] 

[clinical_examination_gaze_test] 

[clinical_examination_head_thrust] 

[symptoms_hearing_loss] 
[imaging_imaging_result] 

[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 
[symptom_type_lightheaded] 

[symptom_type_tinnitus] 

[vertigo_trigger_head_movement] 

Chronic 

Subjective 

Dizziness 

PPPD 

77.1 
 

77.1 

68.6 
 

71.4 

71.1 
 

73.0 

75.0 
 

75.8 

72.9 
 

74.3 

[patient_sex] [patient_age] 

[clinical_examination_head_thrust] 
[clinical_examination_romberg] 

[clinical_examination_tandem_gait] 

[symptoms_hearing_loss] 
[tinnitus_symptom_tinnitus_symptom_type] 

[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 
time_interval] 

[vertigo_symptom_type_bundle_name] 

[preceding_event_bundle_name] 
[symptom_type_headache] 

[symptom_type_muscle_weakness] 

[symptom_type_phonophobic] 

[patient_sex] [clinical_examination_romberg] 

[clinical_examination_tendency_to_fall] 
[caloric_vng_canal_paresis_category] 

[questionnaire_hospital_anxiety_subscore] 

[symptom_type_anxiety_and_or_depression] 
[symptom_type_headache] 

[symptom_type_tinnitus] 

[symptom_type_dizziness] 
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[symptom_type_dizziness] 

Vestibular 

Neuritis 

69.7 

 
73.0 

74.2 

 
79.8 

72.9 

 
78.3 

71.0 

 
74.7 

71.9 

 
76.4 

[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 
time_interval] 

[vertigo_instability_symptom_frequency]  

[vertigo_symptom_type_bundle_name] 
[preceding_event_bundle_name] 

[caloric_vng_canal_paresis_category] 

[symptoms_hearing_loss] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[vertigo_instability_symptom_frequency] 

[preceding_event_bundle_name] 

Menière’s 

disease 

88.2 

 
89.8 

91.3 

 
94.5 

91.1 

 
94.2 

88.5 

 
90.2 

89.8 

 
92.1 

[symptoms_hearing_loss] 

[symptoms_hearing_loss_evolution] 

[vertigo_instability_symptom_duration_ 
time_interval] 

[vertigo_symptom_type_bundle_name] 
[symptom_type_dizziness] 

[auditory_test_PTA_250_AC_right] 
[auditory_test_PTA_500_AC_left] 

[symptoms_hearing_loss] 

[symptoms_hearing_loss_evolution] 
[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_dizziness] 

Migrainous 

vertigo  

82.9 

 

82.9 

82.9 

 

82.9 

82.9 

 

82.9 

82.9 

 

82.9 

82.9 

 

82.9 

[clinical_examination_romberg] 
[symptoms_hearing_loss] 

[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 

[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[preceding_event_bundle_name] 

[symptom_type_anxiety_and_or_depression] 
[symptom_type_cervicalgia] 

[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 
[symptom_type_headache] 

[symptom_type_lightheaded] 

[symptom_type_phonophobic] 
[symptom_type_scotoma] 

[symptom_type_tinnitus] 

[vertigo_trigger_complex_visual_ 
environments] 

[clinical_examination_romberg] 
[symptoms_hearing_loss] 

[personaldisease_bundle_name] 

[tinnitus_symptom_frequency] 

[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[preceding_event_bundle_name] 

[symptom_type_anxiety_and_or_depression] 
[symptom_type_cervicalgia] 

[symptom_type_difficulty_walking_ 

on_uneven_surfaces] 
[symptom_type_headache] 

[symptom_type_lightheaded] 

[symptom_type_phonophobic] 
[symptom_type_scotoma] 

[symptom_type_tinnitus] 

[vertigo_trigger_complex_visual_ 
environments] 

Vestibular 

Paroxysmia 

60.0 

 

80.0 

76.7 

 

86.7 

72.0 

 

85.7 

65.7 

 

81.3 

68.3 

 

83.3 

[personaldisease_bundle_name] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

caloric_vng_directional_preponderance_ 

category] 
imaging_imaging_result] 

vertigo_instability_symptom_symptom_type] 

vertigo_instability_symptom_duration_ 
time_interval] 

vertigo_symptom_type_bundle_name] 

preceding_event_bundle_name] 
symptom_type_hearing_loss] 

vertigo_trigger_standing_up_rapid_ascents] 

Typical 

Posterior 

Benign 

Paroxysmal 

Positional 

Vertigo 

86.5 
 

86.5 

87.8 
 

89.1 

87.7 
 

88.8 

86.7 
 

86.9 

87.2 
 

87.8 

[patient_sex] 
[clinical_examination_dix_hallpike] 

[personaldisease_bundle_name] 

[tinnitus_symptom_tinnitus_symptom_type] 
[vertigo_instability_symptom_symptom_type] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[symptom_type_hearing_loss] 

[symptom_type_motion_sickness] 
[symptom_type_tinnitus] 

[vertigo_trigger_head_movement] 

[patient_sex] 
[clinical_examination_dix_hallpike] 

[vestibular_test_sinusoidal_rotation] 

[vestibular_test_smooth_pursuit] 
[caloric_vng_canal_paresis_category] 

[caloric_vng_directional_preponderance_ 

category] 
[symptoms_hearing_loss] 

[symptoms_hearing_loss_evolution] 

[diagnosed_nystagmus_nystagmus_direction] 
[personaldisease_bundle_name] 

[vertigo_instability_symptom_duration_ 

time_interval] 
[vertigo_symptom_type_bundle_name] 

[preceding_event_bundle_name] 

[nystagmus_type_bundle_name] 
[vertigo_trigger_bending_over] 

[symptom_type_dizziness] 

Atypical 

posterior 

Benign 

Paroxysmal 

Positional 

Vertigo 

82.7 

 
82.7 

82.7 

 
82.7 

82.7 

 
82.7 

82.7 

 
82.7 

82.7 

 
82.7 

[patient_sex]  

[clinical_examination_dix_hallpike] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[vertigo_trigger_bending_over] 

[vertigo_trigger_rolling_over_in_bed] 

[patient_sex] 

[clinical_examination_dix_hallpike] 

[vertigo_instability_symptom_symptom_type] 
[vertigo_instability_symptom_duration_ 

time_interval] 

[vertigo_symptom_type_bundle_name] 
[vertigo_trigger_bending_over] 

[vertigo_trigger_rolling_over_in_bed] 
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Table III: Comparison of previous works for the diagnosis of balance disorders 

Refere

nce 

Results (Accuracy %) 

Method 

# of 

feat

ures 

# of 

cla

sse

s 

# of cases 
Evaluatio

n method 

Vestibular 

Schwanno

ma (CPA 

Acoustic 

neuroma) 

Benign 

Paroxysmal 

Positional 

vertigo 

Meniere

’s 

Disease 

Vestibul

ar 

Neuritis 

[9] 
95.4% (128 

cases) 

99.5% (59 

cases) 

94.1% 

(243 

cases) 

99.5 (60 

cases) 

Decision trees 

(C4.5 and 

C5.0 

algorithms) 

123 6 564 

10 fold 

cross 

validation 

[10] 

92% 

(130+1 

cases)  

88% 

(147+27 

cases) 

84% 

(313+37 

cases) 

95% 

(120+37 

cases) 

Artificial 

neural 

networks 

38 6 815+116 

10 fold 

cross 

validation, 

independe

nt testing 

[11] 
98% (130 

cases) 

96% (146 

cases) 

94% 

(313 

cases) 

98% 

(120 

cases) 

Bayesian 

probabilistic 

models 

40 6 815 

10 fold 

cross 

validation 

[12] 
78.9% (131 

cases) 

64.9% (173 

cases) 

 

13.8% (80 

new cases) 

95.9% 

(350 

cases) 

 

78.9% 

(128 

new 

cases) 

80.5% 

(157 

cases) 

 

30% (20 

new 

cases) 

66.9-

80.5 

Expert 

knowledge, k-

nearest 

neighbours, 

fitness values 

optimization 

266 9 1030+253 

10 fold 

cross 

validation, 

independe

nt testing 

[13] 

1 vs 1 

approach 

95% (131 

cases) 

1 vs all 

90.7%  

1 vs 1 

approach 

79% (173 

cases) 

1 vs all 

78.6%  

1 vs 1 

approac

h 93.1% 

(350 

cases) 

1 vs all 

91.5%  

1 vs 1 

approac

h 88.2% 

(157 

cases) 

1 vs all 

85.4%  

k-nearest 

neighbours 

and support 

vector 

machines (1 vs 

1 and 1 vs all) 

94 9 1030 

10 fold 

cross 

validation 

[14]  - 91.7% Overall 81.7-88.3% 

Clinical 

knowledge 

modelled with 

Dynamic 

Uncertain 

Causality 

Graphs 

249 18  60 
60 cases 

for testing 

This 

work 

88.2% (34 

cases) 

82.7% (52 

cases)-

87.8% 

(156 cases) 

92.1

% 

(127 

cases) 

76.4 (89 

cases) 

Wrapper 

based feature 

selection, 

Adaboost and 

decision trees 

(C4.5 

algorithm) 

350 12 985 

10 fold 

cross 

validation 

 

 

 




