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A NEW FLAT SHELL FINITE ELEMENT FOR THE LINEAR 

ANALYSIS OF THIN SHELL STRUCTURES 
 

 

 

Abstract 

 In this paper, a new rectangular flat shell element denoted 'ACM_RSBE5' is presented. The new 

element is obtained by superposition of the new strain-based membrane element 'RSBE5' and the 

well-known plate bending element 'ACM'. The element can be used for the analysis of any type of 

thin shell structures; even if the geometry is irregular. Comparison with other types of shell elements 

is performed using a series of standard test problems. A correlation study with an experimentally 

tested aluminum shell is also conducted. The new shell element proved to have a fast rate of 

convergence and to provide accurate results.  

 

Keywords: Flat shell element; thin shell; strain based approach; static condensation.  

 

1. Introduction 

 Analytical solutions of practical thin shell structures, particularly those with irregular 

geometrical shapes, are complex and thus a resort to numerical methods when analyzing them 

becomes essential. Early work aimed to study shells of revolution in which closed ring shell 

segments are used [e.g. Jones and Strome, 1966]. The formulation of flat elements 

[Zienkiewics, 1977] and curved rectangular elements [Corner and Brebbia, 1967] followed.  

These elements are based on assumed polynomial displacements with linear representation of 

the in-plane displacements. These elements were found to have a slow rate of convergence, 

thus the development of high order elements received more attention. Meanwhile, a simple 

strain-based alternative approach was proposed by Ashwell and Sabir (1972). In this 

approach, the exact terms representing all rigid body modes and displacement functions 

corresponding to the element strains are determined by assuming independent strain functions 

that satisfy the compatibility equations. This approach was used successfully by Sabir and his 

co-workers (1982, 1985, 1990, 1997) and Mousa and Sabir (1994) to analyze cylindrical, 

hyperbolic and conical shell structures. These elements in general proved to have a faster 

convergence rate compared to other models available in the literature. On the other hand, a 

family of enhanced strain elements, originally developed by Simo and Rifai (1990), were 

proposed. These include one-point quadrature elements developed by Cardoso et al. (2006, 

2008), 4-node exact geometry element proposed by Kulikov and Plotnikova (2010), the 

improved solid-shell elements of Abed-Meraim and Combescure (2009) using physical 

stabilization, of Reese (2007) using hourglass stabilization, and of Schwarze and Reese 

(2009) using reduced integration. 

The proposed strain-based approach was also used to develop rectangular and triangular 

spherical shell elements with five degrees of freedom at each node by Sabir and Djoudi 

(1998) and Mousa (1992) respectively. These spherical elements were found to produce 

excellent results with a fast convergence rate. Recently, this approach, also known as the 

Cardiff Approach, was employed to develop several shell elements, most notably the shallow 

shell finite element for the analysis of cylindrical shells as well as the cylindrical strain–based 

shell element for vibration analysis of shell structures developed by Djoudi and Bahai (2003, 

2004) respectively. The results of these elements show that efficient convergence can be 

obtained. More recently, a spherical rectangular finite element based on shallow shell 

formulation was formulated by Mousa and EL Naggar (2007). This element has six degrees 
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of freedom at each node and proved to yield accurate results even when using very few finite 

elements. We note here that most of the above efficient elements are formulated with the 

appropriate coordinates of the geometrical shape of the structures. Generally, for design 

purposes, shell structures are constructed with very complicated geometrical shapes and 

elements, such as folded plates and edge beams. Additional geometrical problems arise, such 

as when openings, anisotropy, or variation of thickness, are present. However, for practical 

purposes the flat element approximation gives generally adequate results and permits easy 

coupling with edge beams and rib members, a capability usually not present in curved 

element formulations [Zienkiewics and Taylor, 2000]. In flat shell elements, the coupling 

between membrane and bending action is accounted for at the integration points due to the 

varying orientation of the element. For practical analysis of shell structures, such flat plate 

element assumption is typically acceptable, and has the advantage of ease of modeling with 

reasonable accuracy. Further, because the membrane and bending stresses within an element 

are decoupled it is easy to understand and control the behaviour of such elements [Hartmann 

and Kats, 2007]. In this case, the behaviour of a continuously curved surface is represented 

by a surface made up of small flat elements. Intuitively, as the size of the subdivision 

decreases it would seem that convergence must occur as discussed by Zienkiewics and Taylor 

(2000).  

In this paper, a new flat shell element is proposed and is denoted as (ACM_ RSBE5). The 

element is developed by superposition of the new rectangular membrane element R4SBE5 

based on the strain approach and the well-known plate bending element ACM discussed in 

detail in Adini and Clough (1961) and Melosh (1963). The element is characterized by its 

simplicity compared to existing elements, without compromising its numerical robustness. 

The stiffness matrix of the new shell element is obtained by combining the two independent 

membrane and bending stiffness matrices. The displacement field for the strain based 

membrane element RSBE5 used to construct the flat shell element fully satisfies the 

equilibrium equations in addition to the compatibility equations. Also, the technique of static 

condensation of a middle node and the new analytical integration employed in the 

formulation are the new additions that distinguish this element from other flat shell elements 

presented in previously published works [e.g. Ashwell and Sabir, 1972; Sabir and Lock, 

1972; Belarbi, 2000; Batoz and Dhatt, 1992].  

Ashwell and Sabir (1972) developed a cylindrical shell finite element. The element is a 

rectangular one, having twenty degrees of freedom. It uses only external geometrical nodal 

displacement, three linear displacements and two rotations; and its formulation is based on 

strain functions using polar coordinates. The effectiveness of this element has been tested by 

using it for the analysis of pinched cylinder shell and barrel vault problems. The results 

showed rapid convergence for displacement. Sabir and Lock (1972) also developed a curved 

cylindrical shell finite element. They used the standard finite element approach for the 

formulation adopted by Cantin and Clough (1968), but removed the nodal degrees wxy and 

included terms containing trigonometrical functions to develop a rectangular cylindrical shell 

element with 4 nodes and 5 dof/node; which leads to a 20x20 element stiffness matrix. This 

element is found to converge more rapidly than the Cantin and Clough’s model for both 

symmetrical and unsymmetrical loading conditions. The applications of the elements 

developed by Sabir and his co-workers are limited to cylindrical shell structures, while the 

proposed element is a flat shell which can be used for the analysis of general-shape shell 

structures. The present element contains a middle node to enrich the displacement field that is 

subsequently condensed out. The element also uses an analytical integration to evaluate the 

stiffness matrix. 

Belarbi (2000) formulated a flat quadrilateral shell element named ACM-SBQ4, obtained by 

superimposing the standard membrane element SBQ4 with the plate bending element ACM 
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(Melosh, 1963). The SBQ4 element (Strain Based Quadrilateral element with 4-node) is 

based on the strain approach, with three degrees of freedom per node including a drilling 

rotation. The membrane and bending stiffness matrix is obtained by using an analytical 

integration. This element was examined with three essentials shell tests and the results 

obtained are compared with those of the proposed 'ACM_RSBE5 in addition to the reference 

solution. The membrane element SBQ4 contains 4 nodes and 3DOF/node (2 translations and 

one drilling rotation); but the present element RSBE5 contains 5 nodes: 4 corner nodes and a 

middle node with 2 translations/node.  

Batoz and Dhatt (1992) formulated a set of quadrilateral shell elements based on 

displacement formulations ; among them Q4 24 and DKQ24. The first element is based on 

the Mindlin theory formulation, having four nodes with six degrees of freedom per node and 

using numerical integration.  The second is a flat shell element obtained by superposition of 

the well-known classical quadrilateral membrane element Q4 and the plate bending element 

DKQ (Discrete Kirchhoff quadrilateral element with 4 nodes and 3 dof per node). The 

DKQ24 element is based on Kirchhoff theory with four nodes and six degrees of freedom per 

node. These two elements are applied to the numerical analysis of Scordelis-Lo (1969) roof 

test presented in the numerical section in this paper.  The results obtained are compared with 

the reference solutions for both shallow and deep shell theory, in addition to the new 

formulated element 'ACM_RSBE5' and the flat shell element ACM-SBQ4. We should 

mention here that the analytical integration technique is used to compute the element stiffness 

matrices for both elements 'ACM_RSBE5' and ACM-SBQ4. The improved results obtained 

from the numerical simulations clearly prove the advantages of the proposed element. 

In the next section, the formulation of the new element ACM_RSBE5 is presented, 

followed by standard test problems to evaluate its convergence compared to other 

quadrilateral shell elements present in the literature. Finally, a correlation study with an 

experimentally tested elliptical paraboloid shell structure subjected to a uniformly distributed 

load is presented and the results are discussed.  

2. Construction of the New Flat Shell Element ACM_RSBE5 

The proposed rectangular shell element is obtained by the superposition of the new 

formulated element "RSBE5" based on the strain approach and described in the next section, 

and the ACM standard plate bending element. The stiffness matrix of the shell element 

ACM_ RSBE5 is calculated through analytical integration of the membrane and bending 

stiffness matrices. 

2.1. Formulation of the New Membrane Element "RSBE5" 

Figure 1 shows the geometry and nodal displacements of the “RSBE5” element 

(Rectangular Strain Based Element with 5 nodes). The degrees of freedom at each node (i) 

are denoted U i and V i  for the horizontal and vertical displacements respectively. The 

element was developed by Hamadi (2006) and has four nodes at the corner in addition to an 

internal node, each having two degrees of freedom (d.o.f). Through the introduction of an 

additional internal node, the element has proven to be more accurate, even though it requires 

static condensation following the approach of Bathe and Wilson (1976). 

[Fig. 1] 

The strain components at any point in the Cartesian coordinate system are expressed 

in terms of the displacements U and V as follow:  

                         x  =  U,x    (1a) 
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                          y  =  V,y    (1b) 

                          xy  =  U,y+ V,x  (1c) 

If the strains given by equations (1) are equal to zero, the integration of equations (1) 

leads to expressions of the form: 

 

                          U  =  a1     -  a3  y  
  (2a) 

                           V  =  a2   +   a3  x 
(2b) 

Equations (2) represent the displacement field in terms of its three rigid body 

displacements. The strains in equation (1) cannot be considered independent since they must 

satisfy the compatibility equation. This equation can be obtained by eliminating U, V from 

equation (1), hence: 
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              Equation (2) represents the three components of the rigid body displacements through 

three independent constants (a1, a2, a3). Thus seven additional constants (a4, a5… a10) are 

needed to express the displacements due to straining of the element. These seven independent 

constants are used to describe the strains as follow: 
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The strains given by equations (4) satisfy both the compatibility equation (3) and the 

two-dimensional equilibrium equations (5a) and (5b): 
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By integrating equations (4), the displacements are evaluated as follow:  

                       U =  a4 x+ a5 xy  - a7 y
2
 (R +1)/2+ a8 y/2  + a9 (x

2
 – H y

2
)/2          

         
          (6a) 

                      V =  - a5 x
2
(R + 1)/2+ a6 y+ a7 xy  + a8 x/2  + a10 (y

2
 – Hx

2
)/2      

 
     (6b) 

By adding equations (2) and (6); the final displacements representing rigid body modes and 

straining actions are evaluated as follow: 
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                (7) 

The stiffness matrix is then calculated from the well-known expression: 

                          [Ke] = [A
-1 

]
T
 [K0 ] [A

-1 
]                                             (8a) 

                where          [K0] =      dydxQDQ
S

T
.                                             (8b)     

          and  
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For [A] and [K0] see Appendices A and B.  

At the end of the state determination, the 2 additional middle dofs are condensed out. The 

evaluation of the integral in Eq. (8b) follows the approach of Hamadi and Belarbi (2006) 

using an exact and not reduced analytical integration. Such an approach resolves numerical 

problems associated with geometrical distortions of the element. 

 

2.2. Rectangular Plate Element ‘ACM’ 

The displacement fields of the ACM element (Fig.2) are given by the following 

expressions:  

[Fig. 2] 

 

                W(x,y) =  a1 + a2 x  + a3 y+ a4 x
2
  + a5 xy + a6 y

 2 
+ a7 x

3
  + a8 x

2
y  

      + a9 xy
2   

+ a10 y
3
 + a11 x

3
y + a12 xy

3
          

                x  = -(a3 + a5 x  +2 a6 y+ a8 x
2
  + 2a9 xy + 3 a10 y

 2 
+ a11 x

3
  +3 a12 xy

2
)            (10) 

                y  =  a2 + 2a4 x  + a5 y+3a7 x
2
  + 2a8 xy + a9 y

2 
+3 a11 x

2
 y + a12 y

3
    

The shell element ACM_RSBE5 (Fig.3c) is obtained by superposition of the two 

elements RSBE5 and ACM in the following manner:  
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(a) + (b) = (c)  

[Fig. 3] 

3. Numerical Tests 

The performance of the formulated flat shell element is evaluated using the following 

popular test problems:  

3.1. Clamped Cylindrical Shell  

In this test problem, a clamped cylindrical shell (Fig.4 a) is evaluated. This test of thin shells 

(R/h=100) is considered by many researchers as a severe test. It makes it possible to examine 

the aptitude of shell elements to simulate complicated membrane state problems dominated 

by bending. The dimensions, material properties, and loading conditions are shown in Fig.4. 

Due to symmetry, only 1/8 of the shell (region ABCD) is considered in the finite element 

idealisation (Fig.4 b).  

[Fig. 4] 

 

The results obtained for different meshes for both, the proposed ACM_RSBE5 and the 

ACM_SBQ4 of Belarbi (2000), are presented in Tables 1 and 2. 

 

[Tables 1-2] 

 

 The numerical results are compared to the analytical solution based on thin shell 

theories (R/h=100), and given below by Flugge and Fosberge (1966) and Lindberg et al. 

(1969): 

 

                 WC = -WC Eh/P = 164.24    deflection under load P at point C only 

                 VD = -VD Eh/P = 4.11         deflection in the Y direction 

 

Table 1 also summarizes the solution time used in the analysis of the clamped cylindrical 

shell with different meshes. The processor machine used has the following properties: 

Intel(R) Core(TM) i3-2330M CPU@2.2 GHZ RAM: 4.00Go 

 

The results obtained by the present element ACM_RSBE5 for the vertical 

displacement at point C (normalized values) are slightly better than those given by the 

element ACM-SBQ4, and much better than those of the hexahedral element HEX20, the 

standard full-integration solid element reported in Abed-Meraim et al. (2013). It also 

performs better than the 6-node solid-shell element SHB6 (Abed-Meraim et al., 2012), and 

the 8-node solid-shell element SHB8PS (Abed-Meraim and Combescure, 2007) [Table 1]. It 

performs relatively better than the widely used Reduced integration Enhanced strain Solid-

Shell (RESS) element developed by Alves de Souza et al. (2005) [Table 1]. It significantly 

converges more rapidly than both, the standard prismatic elements PRI15 and the solid-shell 

prismatic element SHB15 developed by Abed-Meraim et al. (2013); for example for meshes 

(10x10) the results for these elements are 0.625 and 0.646 respectively,  but for the 

ACM_RSBE5 are 0.955 for a mesh of 8x8 elements only. Even when compared with higher 

order elements, such as the 20-node solid shell element SHB20 developed by Abed-Meraim 

mailto:CPU@2.2
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et al. (2013), its performance is relatively good (0.955 as opposed to 0.979 for a mesh of 

8x8).   

               

The results obtained for both deflections WC and VD for the refined mesh (20x4) of 

the proposed element are in good agreement with the analytical solution.  

Figures 5 and 6 show the convergence curves for the results obtained from elements 

ACM_RSBE5 and ACM-SBQ4 for the deflections at points C and D. From the above 

figures, it is concluded that the ACM_RSBE5 has a good convergence rate. 

[Figs. 5-6] 

 

3.2. Scordelis-Lo Roof 

 In the next test problem, the Scordelis-Lo (1969) roof is considered. The roof 

structure has the geometry shown in Fig.7. The straight edges are free, while the curved edges 

are supported on rigid diaphragms along their plane. The geometry and material properties 

are given in Fig.7. Considering the symmetry of the problem, only one quarter of the roof is 

analysed (part ABCD). The results obtained using the proposed element ACM_RSBE5 are 

compared to the reference values based on the deep shell theory.  

[Fig. 7] 

The analytical solution based on the shallow shell theory is given by Scordelis and Lo (1969), 

which is slightly different from the deep shell theory. The convergence curves are presented 

in Figs.8 and 9 for the vertical displacement at the midpoint B of the free edge and the center 

C of the roof. 

[Figs. 8-9] 

The results are also compared to several other quadrilateral shell elements, namely 

Q4 24, DKQ24 presented by Batoz and Dhatt (1992) and ACM-SBQ4 developed by Belarbi 

(2000). Figures 8, 9, 10, and 11 show the convergence curve for the deflections Wc at point C 

and WB at point B obtained from the quadrilateral shell elements cited above.  

The above results confirm the good convergence of the new formulated shell 

element ACM_RSBE5.  

[Figs. 8-11] 

3.3. Pinched Cylinder with Free Edges 

The pinched cylinder shown in Fig. 12 is one of the most common examples used in the 

literature to test shell elements. Indeed, since 1967 this example served as a test problem to 

assess the performance of new axisymmetric shell elements regarding the rapidity of 

convergence and especially the representation of rigid body modes.  By reason of symmetry, 

only one-eighth of the cylinder is modeled. The symmetry conditions are imposed along AB, 

AD and DC (Fig.12). Two cases of cylinder thickness and applied loads are considered (h1, 

F1 and h2, F2). 

[Fig. 12] 

One-eighth of the cylinder is modeled with different meshes, and the normal displacement 

WC at point C is calculated. The convergence of the new element ACM_RSBE5 is compared 
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with the analytical solution (deep shells theory) and with other elements available in the 

literature; these are models: BOG (Bogner et al. 1967); CAN68 (Cantin and Clough, 1968); 

ASH72 (Ashwell and Sabir, 1972); and SAB72 (Sabir and Lock, 1972). The results obtained 

are presented in Tables 3 and 4, and the convergence curves for different elements are shown 

in Figs. 13 and 14. 

[Tables 3-4] 

[Figs. 13-14] 

The results obtained and presented in Tables 3, 4 and Figs. 13 and 14 confirm the 

excellent performance of the formulated element ACM_RSBE5. The ACM_RSBE5 

converges to deep shell solutions (to WC = - 0.1139 m for h = 0.094m and F= 100 and from 

WC = - 0.02439 m h = 0.01548 m) with only a few elements (9 elements for the first case and 

3 elements for the second case), contrarily to the other elements and slightly better than 

ACM_SBQ4. 

4. Experimental Investigation  

A correlation study with an experimentally tested shell structure is conducted. The 

shell is assumed to be constructed from a perfectly elastic material. Tests on full-scale shell 

structures are scarce due to the associated high cost; hence the experimental work described 

in this study is for a small-scale specimen. The test details are described next. 

4.1. Description of the Elliptical Paraboloid Shell Model (Fig.15) 

The equation for the surface is written in the following manner as discussed by Beles 

and Soare (1975):  
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[Fig. 15] 

The elliptical shape specimen is made of an aluminum alloy and has a constant thickness of 2 

mm with a rectangular projection of 880 mm by 400 mm (Fig. 16). The material properties 

used are: The modulus of elasticity E = 70000 N/mm 2 , the Poisson ratio  = 0.33. The shell 

is free along the long edges, and fixed on a wooden support along the short edges. Due to the 

double symmetry in geometry and loading, the measuring points are located on one quarter of 

the area of the model, at the eight points shown in Fig.17.   

Eight deflections gauges capable of measuring displacements perpendicular to the surface of 

the shell are located under the shell. A further two deflection gauges are mounted to check for 

symmetry (Fig.17).  

 

[Figs. 16-17] 
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4.2. Loading  

 A uniform normal pressure is applied by covering the shell top surface with a 

pneumatic pressure bag. Four different values of loading are applied, 10, 20, 30, and 40 cm of 

water (in which 1 cm of water = 0.0142233 lb/ in
2

 equivalent to 2.5x10
3

 N/mm
2

).  

 

4.3 Numerical and Experimental Results 

 A mesh of 16x8 elements is used for the numerical analysis. The experimental and 

analytically computed vertical deflections for the different loading levels are presented in 

Table 5.  

[Table 5] 

4.4. Comparison between Theoretical and Experimental Results  

In elastic analysis, as the loading was doubled, the deflections were doubled. This was 

not the case in the experimental work. This is due to a few points which could be explained 

as follows: 

One of the main problems with the experiment was the lack of uniformity of the 

distributed load. The air-filled bag did not evenly distribute the pressure because loads 

measured at the four corners were found to be slightly different. 

A further probable cause of inaccuracy was the positioning of the deflection gauges. 

The problem was to ensure that the gauges were perpendicular to the shell surface. Although 

this was easy to achieve in the central position (since it is horizontal), this was note so easily 

achieved near the edges where the shell surface is considerably angled.  

In addition to the various experimental inaccuracies, in the theoretical analysis non 

deflecting support conditions are assumed, which is not strictly the case in the experiments. 

Finally, differences may results from other considerations. However, in general the results 

obtained from the finite element analysis are in reasonable agreement with those measured 

experimentally. 

 

5. Conclusion 

A new strain-based element denoted ACM_RSBE5 is proposed. The element combines the 

new RSBE5 strain-based membrane model with the classical ACM plate model. A series of 

test problems were conducted to evaluate the efficiency of the element compared to other 

elements in the literature. The results obtained confirmed the fast convergence rate of the 

element. Further, a correlation study with an experimentally tested aluminum shell structure 

confirmed the accuracy of the proposed element, in particular in predicting the displacements 

of the inside points. The proposed element has the advantage of being simple in form and 

uses only the five essential degrees of freedom. Further, it can be used for the analysis of thin 

shell structures, even those with complex geometries. The current formulation is for linear 

analysis, but extension to account for both geometric and material nonlinearities is the subject 

of an ongoing investigation that will be published in future work. 
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Notations  

 

ai          Constants in displacement fields  

[A]       Transformation matrix   

[D]        Rigidity matrix  

E, v      Young's modulus and Poisson's ratio, respectively   

h           Shell thickness  

[Ke]      Stiffness matrix 

L           Shell length 

 Q        Strain matrix 

R          Radius of the shell  

U, V     In plane displacement in x and y, respectively   

W         Normal displacement   

X, Y     Cartesian coordinates  

x ,  y  and z    rotations about x, y and z axes respectively 

x, y     Direct strains in the x and y directions    

xy          Membrane shear strain  
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Table Caption 

 

Table 1 Clamped cylindrical shell, convergence of WC (normalized values) 

Table 2 Clamped cylindrical shell, convergence of VD  

Table 3: Pinched Cylinder with free edges, convergence of WC  

Table 4: Pinched Cylinder with free edges, convergence of WC 

Table 5 Vertical Displacements W (mm) Under Different Applied Loadings  
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Figure Caption  

Fig.1. Co-ordinates and nodal points for the rectangular element” RSBE5” 

Fig.2. Co-ordinates and nodal points for the rectangular plate element” ACM” 

Fig.3. The shell element ACM_RSBE5 

Fig.4. Clamped cylindrical shell 

Fig.5. Convergence curve for the deflection Wc at point C 

Fig.6. Convergence curve for the deflection VD at point D 

Fig.7. Scordelis-Lo roof 

Fig.8. Convergence curve for the deflection Wc at point C Scordelis-Lo roof 

Fig.9. Convergence curve for the deflection WB at point B for Scordelis-Lo roof 

Fig.10. Convergence curve for the deflection Wc at point C for Scordelis-Lo roof 

Fig.11. Convergence curve for the deflection WB at point B for Scordelis-Lo roof 

Fig.12. Pinched Cylinder with free edges 

Fig.13. Convergence curve for the deflection Wc at point C for ACM_RSBE5 element              

and other quadrilateral shell elements, Pinched Cylinder with free edges, case 1 

Fig.14. Convergence curve for the deflection Wc at point C for ACM_RSBE5 element                

and other quadrilateral shell elements, Pinched Cylinder with free edges, case 2 

Fig.15. Elliptic paraboloid rectangular on plan 

Fig.16. Elliptical paraboloid shell undergoing the experimental test 

Fig.17. Dial gauge positions; (distance in mm) 
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 Table 1 Clamped cylindrical shell, convergence of WC (normalized values) 

Meshes 

Displacement Wc at point C Solution time 

(Sec) 

ACM_RSBE5 ACM_RSBE

5 

ACM-

SBQ4 
HEX20 SHB8PS RESS 

4 x 4 0.649 0.618 0.140 0.387 0.112 0.10000 

6 x 6 0.842 0.821 0.328   0.17999 

8 x 8 0.955 0.904 0.523 0.754 0.59 0.26999 

20 x 4 0.984 0.956 0.675   0.28845 

16x16    0.94 0.933  

 

Analytica

l solution  

 

164.24  

(1.00 Normalized results) 
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                     Table 2 Clamped cylindrical shell, convergence of VD 

Meshes 
Displacement VD   at point D 

ACM_RSBE5 ACM-SBQ4 

4 x 4 6.206 6.153 

6 x 6 4.837 4.809 

8 x 8 4.521 4.274 

20 x 4 4.179 4.192 

 

Analytical solution  

 

4.11 
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Table 3: Pinched Cylinder with free edges, convergence of WC 

  Case 1: P1=100; h1=0,094 m; L=10,35 m ; R=4,953 m ; E=10,5x10
6
; ν=0,3125 

 Meshes WC  Solution time 

(Seconds) 

ACM_RSBE5 

 

[Bog 67)   

  [29] 

    [CAN 68] 

with   RBM 

[30] 

[CAN 68] 

without 

RBM [30] 

ACM_SBQ4 

[19] 

ACM_RSBE5 

 

1x1 0.0025 - - 0.0860 0.08763 0.006999 

1x3 0.1026 0.0297 0.0009 0.1041 0.1060 0.016999 

1x4 0.1087 - - - 0.1100 0.026000 

1x5 - 0.0769 0.0021 0.1090 0.1116 0.043998 

1x7 - 0.0987 0.0035 0.1102 0.1129 0.049998 

1x8 - - - - 0.1132 0.052000 

1x9  0.1057 0.0051 0.1115 0.1134 0.054000 

Exact  

solution 
0.1139 
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Table 4: Pinched Cylinder with free edges, convergence of WC 

  Case 2: P2 = 0,1; h2 = 0,01548 m; L=10,35 m ; R=4,953 m ; E=10,5x10
6
; ν=0,3125 

 

Meshes 

WC  Solution time 

(Seconds) for 

ACM_RSBE5 

 

[ASH 72] 

     [4] 

 [CAN 

68] 

[30]  

[SAB 72] 

[23] 

ACM_SBQ4 

[19] 

ACM_RSBE5 

 

1x1 0.02301 0.00001 0.00001 0.01922 0.0196 0.0000 

1x3 0.02302 0.00001 0.00001 0.02302 0.02343 0.00999 

1x4 0.02403 0.00074 0.00063 - -  

1x5 - - - 0.02387 -  

1x7 - - - 0.02418 -  

2x4 0.02409 0.00070 0.00064 - -  

3x4 0.02414 0.00068 0.00065 - -  

Exact  

solution 
0.02439 
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Table 5 Vertical Displacements W (mm) Under Different Applied Loadings 

Case  a 

Load =25x10 3  

N/mm 2  

 

Points 3 4 5 6 7 8 

ACM_RSBE5 0.24 0.40 2.01 0.16 0.25 0.41 

Exp.Work 0.19 0.31 1.67 0.13 0.18 0.30 

Case  b 

Load =50x10 3  

N/mm 2  

ACM_ RSBE5 0.48 0.80 4.02 0.32 0.50 0.82 

Exp.Work 0.49 0.80 3.10 0.33 0.47 0.85 

           Case  c     

Load =75x10 3  

N/mm 2   

ACM_ RSBE5 0.72 1.20 6.03 0.48 0.75 1.23 

Exp.Work 0.66 1.09 5.20 0.43 0.63 1.15 

           Case  d     

Load =100x10 3  

N/mm 2  

ACM_ RSBE5 0.96 1.60 8.02 0.65 1.00 1.64 

Exp.Work 1.04 1.70 7.70 0.68 1.00 1.90 
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Fig.1. Co-ordinates and nodal points for the rectangular element” RSBE5” 
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Fig.2. Co-ordinates and nodal points for the rectangular plate element” ACM” 
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Fig.3c. The shell element ACM_RSBE5 
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D 

R 

A 

C 

P/4 = - 0,25 N 

B 

 

Z ,W 

Y ,V 

X ,U 

Clamped  

Sym. 

Sym. 

Sym. 

L/2 

Data: 

L=6

m 
 ;  R=3m  ;  h = 0,03m   ;  E = 3x10 

10   Pa   ;     = 0,3 

             
Symmetry conditions:  

  Boundary conditions:  

               W =   Y  =   X  = 0      at  AB U = W =   Y  = 0            at  AD 

  V =   X  =   Z  = 0       at  BC 

  U =   Y  =   Z  = 0       at  CD 

Rigid diaphragm 
(a) 

(b) 

   Fig.4. Clamped cylindrical shell 
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Fig.5. Convergence curve for the deflection Wc at point C 
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Fig.6. Convergence curve for the deflection VD at point D 

Number of elements 

N
o

rm
a

li
se

d
 r

e
su

lt
s 

V
D
 a

t 
p

o
in

t 
D

 

ACM_RSBE5 

ACM-SBQ4 
Analytical 

 



 29 

 

 
Data: 

  L = 6 m ;  R = 3 m ;  h = 0,03 m ;   = 40° 

  E = 3 x 10
10

 Pa   ;   = 0   ;   fz = -0,625 x 10
4
 Pa 

 Boundary conditions: 

  U = W = Y = 0    for AD 

 Symmetry conditions: 

  U = Y = Z = 0    for CD 

  V = X = Z = 0    for CB 

 Reference value (Deep Shell Theory): 

  WB = -3,61 cm    ;     WC = 0,541 cm 

 Analytical solution (Shallow Shell theory): 

  WB = -3,703 cm    ;     WC = 0,525 cm 

  UB = -1,965  cm     ;     VA = -0,1513 cm 

Fig.7. Scordelis-Lo roof 

Free edge 
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Fig.8. Convergence curve for the deflection Wc at point C for 

Scordelis-Lo roof 
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Fig.9. Convergence curve for the deflection WB at point B for 

Scordelis-Lo roof 
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Fig.10. Convergence curve for the deflection Wc at point C 

   for Scordelis-Lo roof 
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Fig.11. Convergence curve for the deflection WB at point B 

        for Scordelis-Lo roof 
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Data : 

              L=10,35 m ; R=4,953 m ; E=10,5 10
6
 Pa ; =0,3125  

              F1=100 KN; h1=0,094 m; F2=0,1 KN ;  h2=0,01548 m   
 

Fig.12. Pinched Cylinder with free edges 
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      Fig.13. Convergence curve for the deflection Wc at point C for ACM_RSBE5 element  

                  and other quadrilateral shell elements, Pinched Cylinder with free edges, case 1 
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Fig.14. Convergence curve for the deflection Wc at point C for ACM_RSBE5 element  

               and other quadrilateral shell elements, Pinched Cylinder with free edges, case 2 
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Fig.15. Elliptic paraboloid rectangular on plan 
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Fig.16. Elliptical paraboloid shell undergoing the experimental test 
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Fig.17. Dial gauge positions; (distance in mm) 

 

 

 


