An architecture for certification-aware service discovery

Bezzi, M., Sabetta, A. & Spanoudakis, G. (2011). An architecture for certification-aware service discovery. Proceedings - 2011 1st International Workshop on Securing Services on the Cloud, IWSSC 2011, pp. 14-21. doi: 10.1109/IWSSCloud.2011.6049020

[img]
Preview
PDF
Download (230kB) | Preview

Abstract

Service-orientation is an emerging paradigm for building complex systems based on loosely coupled components, deployed and consumed over the network. Despite the original intent of the paradigm, its current instantiations are limited to a single trust domain (e.g., a single organization). Also, some of the key promises of service-orientation - such as the dynamic orchestration of externally provided software services, using runtime service discovery and deployment - are still unachieved. One of the main reasons for this is the trust gap that normally arises when software services, offered by previously unknown providers, are to be selected at run-time, without any human intervention. To close this gap, the concept of machine-readable security certificates (called asserts) has been recently introduced, which paves the way to automated processing about security properties of services. Similarly to current security certification schemes, the assessment of the security properties of a service is delegated to an independent third party (certification authority), who issues a corresponding assert, bound to the service. In this paper, we propose an architecture, which exploits the assert concept to realise a certification-aware service discovery framework. The architecture supports the discovery of single services based on certified security properties (in additional to the usual functional properties), as well as the dynamic synthesis of service compositions, that satisfy the given security properties. The architecture is extensible, thus allowing for a range of domain specific matchmaking components, to cover dimensions related to, e.g., performance, cost and other non-functional characteristics.

Item Type: Article
Additional Information: © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: School of Informatics > Department of Computing
URI: http://openaccess.city.ac.uk/id/eprint/1598

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics