Design of a Compact Polarization Splitter by Using Identical Coupled Silicon Nanowires

Soudi, S. & Rahman, B. M. (2016). Design of a Compact Polarization Splitter by Using Identical Coupled Silicon Nanowires. Journal of Lightwave Technology, 34(17), pp. 4169-4178. doi: 10.1109/JLT.2016.2577341

[img]
Preview
Text - Accepted Version
Download (212kB) | Preview

Abstract

Design of an ultra-compact polarization splitter (PS) based on silicon-on-insulator platform is presented. The design incorporates two simply coupled identical silicon nanowires, which can be easily fabricated by using standard Complementary Metal-Oxide-Semiconductor technology and fully compatible with standard active silicon photonics platforms. It is shown here that a low-loss, 17.90 μm long compact PS, and wide bandwidth over the entire C-band can be achieved. Important waveguide design parameters such as the guide width, height, and separation between them have been optimized, and modal birefringence and wavelength dependence have been calculated by using a full-vectorial H-Field finite element method. The optical power transfer characteristics have been calculated by using a rigorous least squares boundary residual method.

Item Type: Article
Additional Information: © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Uncontrolled Keywords: Optical waveguides, Silicon, Couplings, Nanowires, Metals, Optical polarization, Indexes, silicon on insulator technology, Directional couplers, finite element methods, nanophotonics, numerical analysis, polarization splitter (PS)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: School of Engineering & Mathematical Sciences > Engineering
URI: http://openaccess.city.ac.uk/id/eprint/16549

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics