Caudrelier, V., Mintchev, M. & Ragoucy, E. (2005). Solving the quantum nonlinear Schrodinger equation with deltatype impurity. Journal of Mathematical Physics, 46(4), doi: 10.1063/1.1842353

PDF
Download (203kB)  Preview 
Abstract
We establish the exact solution of the nonlinear Schrodinger equation with a deltafunction impurity, representing a pointlike defect which reflects and transmits. We solve the problem both at the classical and the second quantized levels. In the quantum case the ZamolodchikovFaddeev algebra, familiar from the case without impurities, is substituted by the recently discovered reflectiontransmission (RT) algebra, which captures both particleparticle and particleimpurity interactions. The offshell quantum solution is expressed in terms of the generators of the RT algebra and the exact scattering matrix of the theory is derived. (C) 2005 American Institute of Physics.
Item Type:  Article 

Uncontrolled Keywords:  REFLECTIONTRANSMISSION ALGEBRAS, HALFLINE, FIELDTHEORY, EXCHANGE ALGEBRAS, SCATTERING, DEFECT, QUANTIZATION, PARTICLES, SYSTEMS, MODELS 
Subjects:  Q Science > QC Physics 
Divisions:  School of Engineering & Mathematical Sciences > Department of Mathematical Science 
URI:  http://openaccess.city.ac.uk/id/eprint/166 
Actions (login required)
View Item 
Downloads
Downloads per month over past year