The multichannel discharge plasma synthetic jet actuator

Zhang, Z., Wu, Y., Jia, M., Song, H., Sun, Z., Zong, H. & Li, Y. (2017). The multichannel discharge plasma synthetic jet actuator. Sensors and Actuators A: Physical, 253, pp. 112-117. doi: 10.1016/j.sna.2016.11.011

[img] Text - Accepted Version
Restricted to Repository staff only until 23 November 2017.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Request a copy

Abstract

The plasma synthetic jet actuator (PSJA) is a flow control device capable of generating high speed pulsed jet. However, the performance of conventional PSJA is restricted by low discharge efficiency and small control area, because one power supply only drives one electrode couple. The present work is to propose a new concept of multichannel discharge plasma synthetic jet actuator (MD-PSJA), which is driven by single power supply. The new MD-PSJA has two types, namely the multi-electrode PSJA and the multi-PSJA array. These two types of MD-PSJA are examined experimentally. The multi-electrode PSJA containing 11-electrode PSJA is first studied. Comparison with standard 2-electrode PSJA reveals that the discharge efficiency and jet velocity increase 200% and 47% respectively under the same input energy and discharge voltage. The multi-PSJA array is later evaluated. One power supply is found to be able to drive an array of 12 PSJAs, resulting in 6 times affected area and 64% jet velocity of a conventional PSJA. The proposed MD-PSJA is finally concluded an improved active flow control actuator in high speed applications.

Item Type: Article
Uncontrolled Keywords: Multichannel discharge; Spark jet actuator; Plasma synthetic jet actuator; PSJA array; Plasma flow control
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: School of Engineering & Mathematical Sciences > Engineering
URI: http://openaccess.city.ac.uk/id/eprint/16926

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics