
              

City, University of London Institutional Repository

Citation: Howe, J. M. & King, A. (2003). Efficient groundness analysis in Prolog. Theory 

and Practice of Logic Programming, 3(1), pp. 95-124. doi: 10.1017/s1471068402001485 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/1701/

Link to published version: https://doi.org/10.1017/s1471068402001485

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Under onsideration for publiation in Theory and Pratie of Logi Programming 1
EÆient Groundness Analysis in PrologJACOB M. HOWEDepartment of Computing, City University, London, EC1V OHB, UKjaob�soi.ity.a.ukANDY KINGComputing Laboratory, University of Kent, CT2 7NF, UKa.m.king�uk.a.uk

AbstratBoolean funtions an be used to express the groundness of, and trae grounding depen-denies between, program variables in (onstraint) logi programs. In this paper, a varietyof issues pertaining to the eÆient Prolog implementation of groundness analysis are in-vestigated, fousing on the domain of de�nite Boolean funtions, Def . The systematidesign of the representation of an abstrat domain is disussed in relation to its impaton the algorithmi omplexity of the domain operations; the most frequently alled op-erations should be the most lightweight. This methodology is applied to Def , resultingin a new representation, together with new algorithms for its domain operations utilisingpreviously unexploited properties of Def { for instane, quadrati-time entailment hek-ing. The iteration strategy driving the analysis is also disussed and a simple, but verye�etive, optimisation of indued magi is desribed. The analyser an be implementedstraightforwardly in Prolog and the use of a non-ground representation results in an ef-�ient, salable tool whih does not require widening to be invoked, even on the largestbenhmarks. An extensive experimental evaluation is given.Keywords: Abstrat interpretation, groundness analysis, de�nite Boolean funtions, �x-point algorithms.
1 IntrodutionGroundness analysis is an important theme of logi programming and abstrat in-terpretation. Groundness analyses identify those program variables bound to termsthat ontain no variables (ground terms). Groundness information is typially in-ferred by traking dependenies among program variables. These dependenies areommonly expressed as Boolean funtions. For example, the funtion x ^ (y  z)desribes a state in whih x is de�nitely ground, and there exists a grounding de-pendeny suh that whenever z beomes ground then so does y.Groundness analyses usually trak dependenies using either Pos, the lass ofpositive Boolean funtions (Bagnara & Shahte, 1999; Baker & S�ndergaard, 1993;Codish & Demoen, 1995; Feht & Seidl, 1999; Marriott & S�ndergaard, 1993; VanHentenryk et al., 1995), or Def , the lass of de�nite positive funtions (Armstronget al., 1998; Gar��a de la Banda et al., 1996; Genaim & Codish, 2001; Howe &



2 Jaob M. Howe and Andy KingKing, 2000). Pos is more expressive than Def , but studies have shown that Defanalysers an be faster than omparable Pos analysers (Armstrong et al., 1998) and,in pratie, the loss of preision for goal-dependent groundness analysis is usuallysmall (Heaton et al., 2000). This paper is a development of (Howe & King, 2000)and is an exploration of the representation of Boolean funtions for groundnessanalysis and the use of Prolog as a medium for implementing all the omponentsof a groundness analyser.The rationale for this work was to develop an analyser with oneptually sim-ple domain operations, with a small and simple (thus easily maintained) Prologimplementation based on a meta-interpreter and with performane omparable tothat of BDD-based analysers. Moreover, sine Prolog is well suited to symboli ma-nipulation, it should provide an appropriate medium for implementing a symbolianalysis, suh as groundness analysis. Any analysis that an be quikly prototypedin Prolog is partiularly attrative. The main drawbak of this approah has tra-ditionally been performane. The eÆieny of an analyser an be guaranteed byinluding a widening (the ontrolled exhange of preision for salability). How-ever, a suessful analyser should �re widening infrequently to maximise preision.The eÆieny of groundness analysis depends ritially on the way dependen-ies are represented. Representation has two aspets: the theoretial representa-tion (BDDs, Blake Canonial Form, et.) of the Boolean funtions and the data-strutures of the implementation language that are used to support this represen-tation. The theoretial representation determines the omplexity of the domainoperations, but the implementation requires the spei� data-strutures used to beamenable to eÆient implementation in the hosen language. That is, the imple-mentation an push the omplexity into a higher lass, or introdue a prohibitiveonstant fator in the omplexity funtion. This paper onsiders how a represen-tation should be hosen for the intended appliation (groundness analysis) by bal-aning the size of the representation (and its impat) with the omplexity of theabstrat operations and the frequeny with whih these operations are applied. Thepaper also explains how Prolog an be used to implement a partiularly eÆientDef -based groundness analysis. The orthogonal issue of the iteration strategy usedto drive the analysis is also onsidered. Spei�ally, this paper makes the followingontributions:
� A representation of Def formulae as non-anonial onjuntions of lauses ishosen by following a methodology that advoates: 1) ensuring that the mostommonly alled domain operations are the most lightweight; 2) that theabstrations that arise in pratie should be dense; 3) that, where possible,expensive domain operations should be �ltered by lightweight speial ases.� A fast Prolog implementation of Def -based groundness analysis is givenfounded on the methodology above, using a ompat, fatorised represen-tation.� Representing Boolean funtions as non-ground formulae allows suint im-plementation of domain operations. In partiular a onstant-time meet is



EÆient Groundness Analysis in Prolog 3ahieved using di�erene lists and a quadrati-time entailment hek is builtusing delay delarations.� A new join algorithm is presented whih does not require formulae to bepreproessed into a anonial form.� The use of entailment heking as a �lter for join is desribed, as is the useof a �ltered projetion.� Various iteration strategies are systematially ompared and it is suggested(at least for groundness analysis) that good performane an be obtained bya surprisingly simple analysis framework.� An extensive experimental evaluation of groundness analysis using a varietyof ombinations of domains, representations and iteration strategies is given.� As a whole, the work presented in this paper strongly suggests that theimplementor an produe a robust, fast, preise, salable analyser for goal-dependent groundness analysis written in Prolog. The analyser presented doesnot require widening to be applied for any programs in the benhmarks suite.The rest of the paper is strutured as follows: Setion 2 details the neessarypreliminaries. Setion 3 reviews the methods used for hoosing the representation ofDef . It goes on to desribe various representations of Def in relation to a frequenyanalysis of the operations; a non-anonial representation as onjuntions of lausesis detailed. Setion 4 desribes a new join algorithm, along with �ltering tehniquesfor join and for projetion. Setion 5 disusses a variety of iteration strategiesfor driving an analysis. Setion 6 gives an experimental evaluation of the variousombinations of domain representations and iteration strategy for Def (and alsofor the domains EPos and Pos). Setion 7 surveys related work and Setion 8onludes.
2 PreliminariesA Boolean funtion is a funtion f : Booln ! Bool where n � 0. Let V denotea denumerable universe of variables. A Boolean funtion an be represented by apropositional formula over X � V where jXj = n. The set of propositional formulaeover X is denoted by BoolX . Throughout this paper, Boolean funtions and propo-sitional formulae are used interhangeably without worrying about the distintion.The onvention of identifying a truth assignment with the set of variables M thatit maps to true is also followed. Spei�ally, a map  X(M) : }(X) ! BoolX isintrodued de�ned by:  X(M) = (^M)^:(_(XnM)). In addition, the formula ^Yis often abbreviated as Y .De�nition 1The (bijetive) map modelX : BoolX ! }(}(X)) is de�ned by: modelX(f) =fM � X j  X(M) j= fg.Example 1If X = fx; yg, then the funtion fhtrue; truei 7! true, htrue; falsei 7! false,hfalse; truei 7! false, hfalse; falsei 7! falseg an be represented by the formulax ^ y. Also, modelX(x ^ y) = ffx; ygg and modelX(x _ y) = ffxg; fyg, fx; ygg.



4 Jaob M. Howe and Andy KingThe fous of this paper is on the use of sub-lasses of BoolX in traing groundnessdependenies. These sub-lasses are de�ned below:De�nition 2A funtion f is positive i� X 2 modelX(f). PosX is the set of positive Booleanfuntions over X. A funtion f is de�nite i� M \M 0 2 modelX(f) for all M;M 0 2modelX(f). Def X is the set of positive funtions overX that are de�nite. A funtionf is GE i� f is de�nite positive and for all M;M 0 2 modelvar(f)(f), jM nM 0j 6= 1.EPosX is the set of GE funtions over X.Note that EPosX � Def X � PosX . One useful representational property of Def Xis that eah f 2 Def X an be desribed as a onjuntion of de�nite (propositional)lauses, that is, f = ^ni=1(yi  ^Yi) (Dart, 1991). Note that the yis are notneessarily distint. Finally, Def abbreviates Def V . Also notie that EPosX =f^F j F � X [EXg, where EX = fx$ y j x; y 2 Xg.Example 2Suppose X = fx; y; zg and onsider the following table, whih states, for someBoolean funtions, whether they are in EPosX , Def X or PosX and also givesmodelX .f EPosX Def X PosX modelX(f)false ;x ^ y � � � f fx; yg; fx; y; zggx _ y � f fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggx y � � f;; fxg; fzg; fx; yg; fx; zg; fx; y; zggx _ (y  z) � f;; fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggtrue � � � f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg; fx; y; zggNote, in partiular, that x _ y is not in Def X (sine its set of models is not losedunder intersetion) and that false is neither in EPosX , nor PosX nor Def X .De�ning f1 __f2 = ^ff 2 Def X j f1 j= f ^ f2 j= fg, the 4-tuple hDef X ; j=;^; __i isa �nite lattie (Armstrong et al., 1998), where true is the top element and ^X isthe bottom element. Existential quanti�ation is de�ned by Shr�oder's EliminationPriniple, that is, 9x:f = f [x 7! true℄ __f [x 7! false℄. Note that if f 2 Def X then9x:f 2 Def X (Armstrong et al., 1998).Example 3If X = fx; yg then x __(x $ y) = ^f(x  y); trueg = (x  y), as an be seenin the Hasse diagram for dyadi Def X (Fig. 1). Note also that x __y = ^ftrueg =true 6= (x _ y).The set of (free) variables in a syntati objet o is denoted by var(o). Also,9fy1; : : : ; yng:f (projet out) abbreviates 9y1: : : : :9yn:f and 9Y:f (projet onto)denotes 9var(f)nY:f . Let �1; �2 be �xed renamings suh thatX\�1(X) =X\�2(X)= �1(X) \ �2(X) = ;. Renamings are bijetive and therefore invertible.Downward losure, #, relates Pos and Def and is useful when traking sharingwith Boolean funtions (Codish et al., 1999). It is de�ned by #f = model�1X (f\S j



EÆient Groundness Analysis in Prolog 5

EPosfx;ygx ^ y��� ���x x$ y y��� ���true
Def fx;ygx ^ y ##x x$ y y�� ��x y y  x## true

Posfx;ygx ^ y ##x x$ y y�� ��x y x _ y y  x## ## true

Fig. 1. Hasse Diagrams
; � S � modelX(f)g). Note that #f has the useful omputational property that#f = ^ff 0 2 Def X j f j= f 0g if f 2 PosX . That is, # takes a Pos formula to itsbest Def approximation. Finally, for any f 2 BoolX , oneg(f) = model�1X (fX nM jM 2 modelX(f)g) (Codish et al., 1999).The following piees of logi programming terminology will also be needed. LetT denote the set of terms onstruted from V and a set of funtion symbols F .An equation e is a pair (s = t) where s; t 2 T . A substitution is a (total) map� : V ! T suh that fv 2 V j �(v) 6= vg is �nite. Let Sub denote the set ofsubstitutions and let E denote a �nite set of equations. Let �(t) denote the termobtained by simultaneously replaing eah ourrene of v in t with �(v), and let�(E) = f�(s) = �(t) j (s = t) 2 Eg.Composition of substitutions indues the (more general than) relation � de�nedby: � �  if there exists Æ 2 Sub suh that  = Æ Æ �. More general than lifts toterms by s � t i� there exists � 2 Sub suh that �(s) = t. The set of uni�ers ofE, unify(E), is de�ned by: unify(E) = f� 2 Sub j 8(s = t) 2 E:�(s) = �(t)g andthe set of most general uni�ers, mgu(E), is de�ned by: mgu(E) = f� 2 unify(E) j8 2 unify(E):� �  g. Finally, the set of generalisations of two terms is de�nedby: gen(t1; t2) = ft 2 T jt � t1 ^ t � t2g and the set of most spei� generalisationsis de�ned by: msg(t1; t2) = ft 2 gen(t1; t2)j8s 2 gen(t1; t2):s � tg.

3 Choosing a Representation for Def3.1 Review of Design MethodsThe eÆieny of an analyser depends ritially on the algorithmi omplexities ofits abstrat domain operations. These in turn are determined by the representationof the abstrat domain. The representation also determines the size of the inputsto the domain operations, as well as impating on memory usage. Beause of this,the hoie of representation is fundamental to the eÆieny of an analyser andis therefore of great importane. The remainder of this subsetion reviews threefators whih should help the implementor arrive at a suitable representation andsuggest where domain operations might be re�ned.
3.1.1 Frequeny Analysis of the Domain OperationsThere are typially many degrees of freedom in designing an analyser, even for agiven domain. Furthermore, work an often be shifted from one abstrat operation



6 Jaob M. Howe and Andy Kinginto another. For example, Boolean formulae an be represented in either onjun-tive normal form (CNF) or disjuntive normal form (DNF). In CNF, onjuntionis onstant-time and disjuntion is quadrati-time, whereas in DNF, onjuntionis quadrati-time and disjuntion is onstant-time. Ideally, an analysis should bedesigned so that the most frequently used operations have low omplexity and aretherefore fast. This motivates the following approah:1. Prototype an analyser for the given domain.2. Instrument the analyser to ount the number of times eah domain operationis invoked.3. Generate these ounts for a number of programs (the bigger the better).4. Choose a representation whih gives a good math between the frequeny andthe omplexity of the domain operations.Beause the frequeny analysis is solely onerned with generated instrution ounts,the eÆieny of the prototype analyser is not a signi�ant issue. The objetive isto hoose a representation for whih the most frequently ourring operations arealso the fastest. However, this riterion needs to be balaned with others, suh asthe density of the representation.
3.1.2 Density of the Domain RepresentationThe omplexity of the domain operations is a funtion of the size of their inputs.Large inputs nullify the value of good omplexities, hene a balane between sizeof representation and omplexity of domain operations is needed. The followingfators impat on this relationship:1. The abstrations whih typially arise should be represented ompatly.2. A fatorised representation with an expressive, high density, low maintenaneomponent is attrative.3. Maintaining the representation (for example, as a anonial form) should notome with a high overhead.4. The representation should �t with mahinery available in the implementationlanguage.A domain is said to be fatorised if its information is represented as a produt ofsubdomains. It may not always be possible to ful�ll all these requirements. More-over, these fators needs to balaned with others, suh as their impat on theomplexities of frequently alled domain operations.

3.1.3 Filtering the Domain OperationsIn many analyses it is inevitable that some domain operations will have high om-plexity. However, it is sometimes possible to redue the impat of this by �lteringthe operation, as follows:1. For a high omplexity domain operation identify speial ases where the op-eration an be alulated using a lower omplexity algorithm.



EÆient Groundness Analysis in Prolog 72. Instrument the analyser to quantify how often the lower omplexity algorithman be applied.3. If it appears that the speial ase ours frequently, then implement the speialase and measure the impat on performane.The bottom line is that the ost of deteting the speial ase should not outweighthe bene�t of applying the speialised domain algorithm.
3.2 Frequeny Analysis for DefIn order to balane the frequeny of abstrat operations against their ost, anexisting Def analyser was instrumented to ount the number of alls to the var-ious abstrat operations. The analyser used for this is based on Armstrong andShahte's BDD-based domain operations for Pos and Sharing (Armstrong et al.,1998; Shahte, 1999). Using the domain operations provided for these domains, aDef analyser an easily be derived. This analyser is oded in Prolog as a simplemeta-interpreter that uses indued magi-sets (Codish, 1999a) and eager evaluation(Wunderwald, 1995) to perform goal-dependent bottom-up evaluation and all theC implemented domain operations.Indued magi is a re�nement of the magi set transformation, avoiding muhof the re-omputation that arises beause of the repetition of literals in the bodiesof magiked lauses (Codish, 1999a). Eager evaluation (Wunderwald, 1995) is a�xpoint iteration strategy whih proeeds as follows: whenever an atom is updatedwith a new (weaker) abstration, a reursive proedure is invoked to ensure thatevery lause that has that atom in its body is re-evaluated. An advantage of induedmagi is that it an be oded straightforwardly in Prolog.Table 1 gives a breakdown of the relative frequeny (in perentages) of the allsto eah abstrat operation in the BDD-based Def analysis of eight large programs.Meet, join, equiv, projet and rename are the obvious Boolean operations. Join(di�) is those alls to a join f1 __f2 where f1 __f2 6= f1 and f1 __f2 6= f2 (this willbe useful in setion 4). Total details the total number of alls to these domainoperations.�le rubik hat parser sim v5-2 peval airraft essln hat 80 aqua meet 30.9 31.6 35.9 32.5 28.5 42.7 34.0 34.2join 10.4 10.4 8.8 9.7 11.1 8.4 10.2 10.5join (di�) 1.1 1.7 0.0 2.9 0.1 0.9 1.5 1.6equiv 10.4 10.4 8.8 9.7 11.1 8.4 10.2 10.5projet 12.6 12.5 13.0 12.5 13.0 10.5 12.1 11.7rename 34.7 33.4 33.6 32.8 36.2 29.2 32.0 31.6total 14336 14124 5943 6275 24758 19051 45444 280485Table 1. Frequeny Analysis: BDD-based Def Analyser (Figures in %)Observe that meet and rename are alled most frequently. Join, equiv and projetare alled with a similar frequeny, but less frequently than meet and rename. Notethat it is rare for a join to di�er from both its arguments. Join is always followed



8 Jaob M. Howe and Andy Kingby an equivalene and this explains why the join and equiv rows oinide. Sinemeet and rename are the most frequently alled operations, ideally they should bethe most lightweight. As join, equiv and projet are alled less frequently, a higheralgorithmi omplexity is more aeptable for these operations.
3.3 Representations of DefThis setion reviews a number of representations of Def in terms of the algorithmiomplexity of the domain operations. The representations onsidered are reduedordered binary deision diagrams, dual Blake anonial form (speialised for Def(Armstrong et al., 1998)) and a non-anonial de�nite propositional lause repre-sentation.ROBDD A redued ordered binary deision diagram (ROBDD) is a rooted, di-reted ayli graph. Terminal nodes are labelled 0 or 1 and non-terminal nodesare labelled by a variable and have edges direted towards two hild nodes.ROBDDs have the additional properties that: 1) eah path from the root toa node respets a given ordering on the variables, 2) a variable annot ourmultiply in a path, 3) no subBDD ours multiply. ROBDDs give a unique rep-resentation for every Boolean funtion (up to variable ordering).DBCF Dual Blake Canonial Form (DBCF) represents Def funtions as onjun-tions of de�nite (propositional) lauses (Armstrong et al., 1998; Dart, 1991;Gar��a de la Banda et al., 1996) maintained in a anonial (orthogonal) formthat makes expliit transitive variable dependenies and uses a redued mono-toni body form. For example, the funtion (x y) ^ (y  z) is represented as(x  (y _ z)) ^ (y  z). Again, DBCF gives a unique representation for everyDef funtion (up to variable ordering).Non-anonial The non-anonial lausal representation expresses Def funtions asonjuntions of propositional lauses, but does not maintain a anonial form.This does not give a unique representation.Table 2 details the omplexities of the domain operations for Def for the threerepresentations. Notie that the omplexities are in terms of the size of the repre-sentations and that these are all potentially exponential in the number of variables.Also, observe that sine DBCF maintains transitive dependenies, whereas the non-anonial representation does not, the DBCF of a Def funtion has the potentialto be onsiderably larger than the non-anonial representation. As ROBDDs arerepresented in a fundamentally di�erent way, their size annot be diretly omparedwith lausal representations.Both ROBDDs and DBCF are maintained in a anonial form. Canonial formsredue the ost of operations suh as equivalene heking and projetion by fa-toring out searh. However, anonial forms need to be maintained and this main-tenane has an assoiated ost in meet and join. That is, ROBDDs and DBCF buylow omplexity equivalene heking and projetion at the ost of higher omplexitymeet and join.



EÆient Groundness Analysis in Prolog 9Representation meet join equiv rename projetROBDD O(N2) O(N2) O(1) O(N2) O(N2)DBCF O(N4) O(22N ) O(N) O(N) O(N)Non-anonial O(1) O(22N ) O(N2) O(N) O(2N )Table 2. Complexity of Def Operations for Various Representations (where N isthe size of the representation { number of nodes/variable ourrenes).
As disussed in the previously, the lowest ost operations should be those thatare most frequently alled. Table 1 shows that for Def based groundness analysis,meet and renaming are alled signi�antly more often than the other operations.Hene these should be the most lightweight. This suggests that the non-anonialrepresentation is better suited to Def -based goal-dependent groundness analysisthan ROBDDs and DBCF. The following setions will detail the non-anonialrepresentation.

3.4 GEP RepresentationThis setion outlines how the non-anonial representation is used in an analysisfor all and answer patterns. Implementing all and answer patterns with a non-ground representation enables the non-anonial representation to be fatorised atlittle overhead.A all (or answer) pattern is a pair ha; fi where a is an atom and f 2 Def .Normally the arguments of a are distint variables. The formula f is a onjuntion(list) of propositional lauses. In a non-ground representation the arguments of aan be instantiated and aliased to express simple dependeny information (Heatonet al., 2000). For example, if a = p(x1; :::; x5), then the atom p(x1; true; x1; x4; true)represents a oupled with the formula (x1 $ x3) ^ x2 ^ x5. This enables theabstration hp(x1; :::; x5); (x1 $ x3) ^ x2 ^ x5 ^ (x4 ! x1)i to be ollapsed tohp(x1; true; x1; x4; true); x4 ! x1i. This enoding leads to a more ompat repre-sentation and is similar to the GER fatorisation of ROBDDs proposed by Bagnaraand Shahte (Bagnara & Shahte, 1999). The representation of all and answerpatterns desribed above is alled GEP (groundness, equivalenes and propositionallauses) where the atom aptures the �rst two properties and the formula the latter.Formally, let GEP = fhp(t1; :::; tn); fi j p 2 �; ti 2 V [ ftrueg; f 2 Def nGEg.De�ne j= by hp(~a1); f1i j= hp(~a2); f2i i� 9~x:((~a1 $ ~x) ^ f1) j= 9~x:((~a2 $ ~x) ^ f2)and var(~x) \ (var(~a1) [ var(~a2) [ var(f1) [ var(f2)) = ;. Then hGEP; j=i is apreorder. The preorder indues the equivalene relation � de�ned by hp(~a1); f1i �hp(~a2); f2i i� hp(~a1); f1i j= hp(~a2); f2i and hp(~a2); f2i j= hp(~a1); f1i. Let GEP�denotes GEP quotiented by the equivalene. De�ne ^ : GEP� �GEP� ! GEP�by [ha1; f1i℄� ^ [ha2; f2i℄� = [h�(a1); �(f1) ^ �(f2)i℄�, where � 2 mgu(a1; a2). ThenhGEP�; j=;^i is a �nite lattie.The meet of the pairs hp(~a1); f1i and hp(~a2); f2i an be omputed by unifying a1and a2 and onatenating f1 and f2. The uni�ation is nearly linear in the arity ofp (using rational tree uni�ation (Ja�ar, 1984)) and onatenation is onstant-time(using di�erene lists). Sine the arguments ~a1 and ~a2 are neessarily distint, the



10 Jaob M. Howe and Andy Kinganalyser would unify ~a1 and ~a2 even in a non-fatorised representation, hene noextra overhead is inurred. The objets that require renaming are formulae andall (answer) pattern GEP pairs. If a dynami database is used to store the pairs(Hermenegildo et al., 1992), then renaming is automatially applied eah time apair is looked-up in the database. Formulae an be renamed with a single all tothe Prolog builtin opy term. Renaming is therefore linear.The GEP fatorisation de�ned above is true, that is, all the GE dependenies arefatored into the atom. An alternative de�nition would beGEP = fhp(t1; :::; tn); fi jp 2 �; ti 2 V [ftrueg; f 2 Def g. Here the fatorisation is not neessarily true, in thesense that GE dependenies may exists in the P omponent, e.g. hp(x; x; true); trueimay also be orretly expressed as hp(u; v; w); (u$ v)^wi. A non-true fatorisationmay be adventageous when it omes to implementing the domain and from hene-forth GEP will refer to the non-true fatorisation version unless stated otherwise.The P omponent may ontain redundant (indeed, repeated) lauses and these mayimpat adversely on performane. In order to avert unonstrained growth of P, aredundany removal step may be applied to P at a onvenient point (via entail-ment heking). Sine the non-anonial formulae do not need to be maintained in aanonial form and sine the fatorisation is not neessarily true, the representationis exible in that it an be maintained on demand, that is, the implementor anhoose to move dependenies from P into GE at exatly those points in the analysiswhere true fatorisation gives a performane bene�t.
4 Filtering and AlgorithmsThe non-anonial representation has high ost join and projetion algorithms.Therefore it is sensible to fous on improving the eÆieny of these operations.This is aomplished through �ltering following the strategy desribed in setion3.1. This setion presents a new approah to alulating join and desribes the useof entailment heking as a �lter in the join algorithm. It also desribes a �lteringmethod for projetion.

4.1 JoinThis setion desribes a new approah to alulating join, inspired by a onvexhull algorithm for polyhedra used in disjuntive onstraint solving (De Baker &Beringer, 1993). The new join algorithm is �rst desribed for formulae and is thenlifted to the GEP representation.
4.1.1 Join for FormulaeCalulating join in Def is not straightforward. It is not enough to take the joineah possible pair of lauses and onjoin them { transitive dependenies also needto be taken into aount. This is illustrated by the following example (adapted from(Armstrong et al., 1998)).Example 4



EÆient Groundness Analysis in Prolog 11Put f1 = (x  u) ^ (u  y) and f2 = (x  v) ^ (v  y). Then f1 __f2 = (x  (u^ v))^ (x y). The lause (x (u^ v)) omes from (x u) __(x v), but thelause x  y is not the result of the join of any pair of lauses in f1; f2. It arisessine f1 j= x y and f2 j= x y, that is, from lauses whih appear in transitivelosure.One way in whih to address the problem of ensuring that the transitive dependen-ies are aptured is to make the expliit in the representation (this idea is apturedin the orthogonal form requirement of (Armstrong et al., 1998)). However, this leadsto redundany in the formula whih ideally should be avoided.It is insightful to onsider __ as an operation on the models of f1 and f2. Sine bothmodelX(fi) are losed under intersetion, __ essentially needs to extendmodelX(f1)[modelX(f2) with new models M1 \M2 where Mi 2 modelX(fi) to ompute f1 __f2.The following de�nition expresses this observation and leads to a new way of om-puting __ in terms of meet, renaming and projetion, that does not require formulaeto be �rst put into orthogonal form.De�nition 3The map _g : BoolX2 ! BoolX is de�ned by: f1 _gf2 = 9Y:f1g f2 where Y =var(f1) [ var(f2) and f1gf2=�1(f1) ^ �2(f2) ^ ^y2Y y $ (�1(y) ^ �2(y)).The following example illustrates the _g operator.Example 5Let f1 = (x  u) ^ (u  y), f2 = (x  v) ^ (v  y). Then Y = fu; v; x; yg.The following substitutions rename the funtions apart, �1 = fu 7! u0; v 7! v0; x 7!x0; y 7! y0g, �2 = fu 7! u00; v 7! v00; x 7! x00; y 7! y00g. Using De�nition 3, f1 g f2 =(x0  u0)^ (u0  y0)^ (x00  v)00 ^ (v00  y00)^u$ (u0^u00)^ v $ (v0 ^ v00)^x$(x0 ^ x00) ^ y $ (y0 ^ y00). Projetion onto Y gives f1 _gf2 = 9fu; v; x; yg:f1 g f2 =(x (u ^ v)) ^ (x y).Note that _g operates on BoolX rather than Def X . This is required for the downwardlosure operator in setion 5.3. Lemma 1 expresses a key relationship between _gand the models of f1 and f2.Lemma 1Let f1; f2 2 BoolX .M 2 modelX(f1 _gf2) if and only if there existsM1 2 modelX(f1)and M2 2 modelX(f2) suh that M =M1 \M2.ProofPut X 0 = X[�1(X)[�2(X). LetM 2 modelX(f1 _gf2). There existsM �M 0 � X 0suh that M 0 2 modelX0(f1 g f2). Let Mi = ��1i (M 0 \ �i(Y )), for i 2 f1; 2g. ThusMi 2 modelX(Fi) for i 2 f1; 2g. Observe that M � M1 \M2 sine f1 g f2 j= y !(�1(y)^�2(y)). Also observe thatM1\M2 �M sine f1gf2 j= (�1(y)^�2(y))! y.Thus M =M1 \M2, as required.Let Mi 2 modelX(fi) for i 2 f1; 2g and put M = M1 \M2 and M 0 = M [�1(M1) [ �1(M2). Observe M 0 2 modelX0(f1 g f2) so that M 2 modelX(f1 _gf2).



12 Jaob M. Howe and Andy KingFrom lemma 1 ows the following orollary and also the useful result that _g ismonotoni.Corollary 1Let f 2 PosX . Then f = f _gf if and only if f 2 Def X .Lemma 2_g is monotoni, that is, f1 _gf2 j= f 01 _gf 02 whenever f1 j= f 01 and f2 j= f 02.ProofLet M 2 modelX(f1 _gf2). By lemma 1, there exist Mi 2 modelX(fi) suh thatM = M1 \M2. Sine fi j= f 0i , Mi 2 modelX(f 0i) and hene, by lemma 1, M 2modelX(f 01 _gf 02).The following proposition states that _g oinides with __ on Def X . This gives asimple algorithm for alulating __ that does not depend on the representation of aformula.Proposition 1Let f1; f2 2 Def X . Then f1 _gf2 = f1 __f2.ProofSine X j= f2 it follows by monotoniity that f1 = f1 _gX j= f1 _gf2 and similarlyf2 j= f1 _gf2. Hene f1 __f2 j= f1 _gf2 by the de�nition of __.Now let M 2 modelX(f1 _gf2). By lemma 1, there exists Mi 2 modelX(fi) suhthat M =M1 \M2 2 modelX(f1 __f2). Hene f1 _gf2 j= f1 __f2.
4.1.2 Join for GEPJoin, _ : GEP� � GEP� ! GEP�, in the GEP representation an be de�ned interms of ^ and j= in the usual way, i. e.[ha1; f1i℄� _ [ha2; f2i℄� = ^�[ha; fi℄� 2 GEP� ���� [ha1; f1i℄� j= [ha; fi℄�;[ha2; f2i℄� j= [ha; fi℄� �

In pratie quotienting manifests itself through the dynami database. Eah timea pattern is read from the database it is renamed. Join is lifted to quotients byreformulated GEP pairs as follows: hp(~a1); f1i beomes hp(~a); (~a$ ~a1)^ f1i wherep(~a) = msg(p(~a1); p(~a2)). p(~a) is omputed using Plotkin's anti-uni�ation algo-rithm in O(N log(N)) time, where N is the arity of p (Plotkin, 1970). The followinglemma formalises this lifting of the join algorithm to the GEP representation.Lemma 3[hp(~t1); f1i℄� _ [hp(~t2); f2i℄� = [hp(~t); (f1 ^ (~t1 $ ~t)) _g(f2 ^ (~t2 $ ~t))i℄�, where~t 2 msg(~t1;~t2).Proof



EÆient Groundness Analysis in Prolog 13The �rst equality holds by the de�nition of � in GEP�, the seond by the de�nitionof join in GEP�, the third by the de�nition of j= in GEP�, the fourth by thede�nition of ^ in GEP�, and the last by Proposition 1.[hp(~t1); f1i℄� _ [hp(~t2); f2i℄�= [hp(~t); (~t1 $ ~t) ^ f1i℄� _ [hp(~t); (~t2 $ ~t) ^ f2i℄�= ^�[hp(~t0); f 0i℄� ���� [hp(~t); (~t1 $ ~t) ^ f1i℄� j= [hp(~t0); f 0i℄�;[hp(~t); (~t2 $ ~t) ^ f2i℄� j= [hp(~t0); f 0i℄� �
= ^�[hp(~t); f 0i℄� ���� [hp(~t); (~t1 $ ~t) ^ f1i℄� j= [hp(~t); f 0i℄�;[hp(~t); (~t2 $ ~t) ^ f2i℄� j= [hp(~t); f 0i℄� �
= [hp(~t);^ff 0 2 Def j (~t1 $ ~t) ^ f1 j= f 0; (~t2 $ ~t) ^ f2 j= f 0gi℄�= [hp(~t); (f1 ^ (~t1 $ ~t)) _g(f2 ^ (~t2 $ ~t))i℄�

4.2 Filtering Join using Entailment ChekingIn setion 3.3 it was observed that some high omplexity domain operations havespeial ases where the operation an be alulated using a lower omplexity algo-rithm. Join for Def in the non-anonial GEP representation is one suh operation.Spei�ally, __ is exponential (see Table 2), however, if f1 j= f2, then f1 __f2 = f2.Entailment heking is quadrati in the number of variable ourrenes (using aforward haining algorithm), hene by using this test, join an be re�ned. Table 1shows that the majority of alls to join will be aught by the heaper entailmentheking ase. The following proposition explains how this �ltering is lifted to theGEP representation. Observe that this proposition has three ases. The third aseis when the entailment hek fails. The �rst ase is when entailment heking re-dues to a lightweight math on the GE omponent followed by an entailment hekon the P omponent. The seond ase is more expensive, requiring a most spei�generalisation to be omputed as well as an entailment hek on more ompliatedformulae. In the ontext of the analyser, the pair [hp(~t2); f2i℄� orresponds to anabstration in the database and these abstrations have the property that the vari-ables in the P omponent are ontained in those of the GE omponent. This isnot neessarily the ase for [hp(~t1); f1i℄�, sine in the indued magi framework f1represents the state of the variables of the lause to the left of the all to p(~t1).Variable disjointness follows sine renaming automatially ours every time a fatis read from the dynami database.
Proposition 2Suppose var(f2) � var(p(~t2)) and var(hp(~t1); f1i) \ var(hp(~t2); f2i) = ;. Then,



14 Jaob M. Howe and Andy King[hp(~t1); f1i℄� _ [hp(~t2); f2i℄�
=
8>>>>>>>>><>>>>>>>>>:

[hp(~t2); f2i℄� if � 2 mgu(p(~t1); p(~t2));p(~t1) = �(p(~t2));�(f1) j= �(f2)[hp(~t2); f2i℄� if p(~t) 2 msg(p(~t1); p(~t2));f1 ^ (~t1 $ ~t) j= f2 ^ (~t2 $ ~t)[hp(~t); fi℄� otherwise where p(~t) = msg(p(~t1); p(~t2));f = (f1 ^ (~t1 $ ~t)) _g(f2 ^ (~t2 $ ~t))ProofCase 1 �(f1) j= �(f2)) (�(~t1)$ ~x) ^ �(f1) j= (�(~t2)$ ~x) ^ �(f2) by assumption) (~t1 $ ~x) ^ �(f1) j= (�(~t2)$ ~x) ^ �(f2) ~t1 = �(~t2) = �(~t1)) (~t1 $ ~x) ^ f1 j= (�(~t2)$ ~x) ^ �(f2) var(f1) \ var(~t2) = ;) (~t1 $ ~x) ^ f1 j= (~t2 $ ~x) ^ f2 j= is transitive) 9~x:((~t1 $ ~x) ^ f1) j= 9~x:((~t2 $ ~x) ^ f2) 9 is monotoni) [hp(~t1); f1i℄� j= [hp(~t2); f2i℄� by de�nitionCase 2 (~t1 $ ~t) ^ f1 j= (~t2 $ ~t) ^ f2) (~t$ ~x) ^ (~t1 $ ~t) ^ f1 j= (~t$ ~x) ^ (~t2 $ ~t) ^ f2) 9~x:((~t$ ~x) ^ (~t1 $ ~t) ^ f1) j= 9~x:((~t$ ~x) ^ (~t2 $ ~t) ^ f2) 9 is monotoni) 9~x:((~t1 $ ~x) ^ f1) j= 9~x:((~t2 $ ~x) ^ f2) sine ~x are fresh) [hp(~t1); f1i℄� j= [hp(~t2); f2i℄� by de�nitionCase 3 Immediate from lemma 3.A non-ground representation allows haining to be implemented eÆiently usingblok delarations. To hek that ^ni=1yi  Yi entails z  Z the variables of Z are�rst grounded. Next, a proess is reated for eah lause yi  Yi that suspends untilYi is ground. When Yi is ground, the proess resumes and grounds yi. If z is groundafter a single pass over the lauses, then (^ni=1yi  Yi) j= z  Z. Suspending andresuming a proess delared by a blok is onstant-time (in SICStus). By alling thehek under negation, no problemati bindings or suspended proesses are reated.
4.3 Downward ClosureA useful spin-o� of the join algorithm in setion 5.1 is a result that shows how toalulate suintly the downward losure operator that arises in BDD-based setsharing analysis (Codish et al., 1999). Downward losure is losely related to _gand, in fat, _g an be used repeatedly to ompute a �nite iterative sequene thatonverges to #. This is stated in proposition 3. Finiteness follows from boundedhain length of PosX .Proposition 3



EÆient Groundness Analysis in Prolog 15Let f 2 PosX . Then #f = _i�1fi where fi 2 PosX is the inreasing hain givenby: f1 = f and fi+1 = fi _gfi.ProofLet M 2 modelX(#f). Thus there exists Mj 2 modelX(f) suh that M = [mj=1Mj .ObserveM1\M2;M3\M4; : : : 2 modelX(f2) and thereforeM 2 modelX(fdlog2(m)e).Sine m � 22n where n = jXj it follows that #f j= f2n .Proof by indution is used for the opposite diretion. Observe that f1 j=#f . Sup-pose fi j=#f . LetM 2 modelX(fi+1). By lemma 1 there existsM1;M2 2 modelX(fi)suh that M = M1 \M2. By the indutive hypothesis M1;M2 2 modelX(#f) thusM 2 modelX(#f). Hene fi+1 j=#f .Finally, _i=1fi 2 Def X sine f1 2 PosX and _g is monotoni and thus X 2modelX(_i=1fi).The signi�ane of this is that it enables # to be implemented straightforwardlywith standard BDD operations. This saves the implementor the task of odinganother BDD operation.
4.4 ProjetionProjetion is only applied to the P omponent of the GEP representation (sineprojetion is onto the variables of the GE omponent). Projetion is another ex-ponential operation. Again, this operation an be �ltered by reognising speialases where the projetion an be alulated with lower omplexity. The projetionalgorithm implemented is based on a Fourier-Motzkin style algorithm (as opposedto a Shr�oder variable elimination algorithm). The algorithm is syntati and eahof the variables to be projeted out is eliminated in turn. The �rst two steps olletlauses with the variable to be projeted out ourring in them, the third performsthe projetion by syllogising and the fourth inreases eÆieny by removing redun-dant lauses. Suppose that f = ^F , where F is a set of lauses, and suppose x isto be projeted out of f .1. All those lauses with x as their head are found, giving H = fx Xi j i 2 Ig,where I is a (possibly empty) index set.2. All those lauses with x in the body are found, giving B = fy  Yj j j 2 Jg,where J is a (possibly empty) index set and x 2 Yj for eah j 2 J .3. Let Zi;j = Xi [ (Yj n fxg). Then N = fy  Zi;j j i 2 I ^ j 2 J ^ y 62 Zi;jg(syllogising). Put F 0 = ((F nH) nB) [N . (Then 9x:f = ^F 0.)4. A ompat representation is maintained by eliminating redundant lausesfrom F 0 (ompation).All four steps an be performed in a single pass over f . A �nal pass over f retratslauses suh as x  true by binding x to true and also removes lause pairs suhas y  z and z  y by unifying y and z.At eah pass the ost of step 4, the ompation proess, is quadrati in the sizeof the formula to be ompated (sine the ompation an be redued to a linearnumber of entailment heks, eah of whih is linear). The point of ompation is to



16 Jaob M. Howe and Andy Kingkeep the representation small. Therefore, if the result of projeting out a variable(prior to ompation) is smaller than the original formula, then ompation appearsto be unneessary. Thus, step 4 is only applied when the number of lauses in theresult of the projetion is stritly greater than the number of lauses in the originalformula. Notie also that in the �ltered ase the number of syllogisms is linear inthe number of ourrenes of the variable being projeted out. Table 3 details therelative frequeny with whih the �ltered and ompation ases are enountered.Observe that the vast majority of ases do not require ompation. Finally notiethat join is de�ned in terms of projetion, hene the �lter for projetion is inheritedby join. �le strips hat parser sim v5-2 peval airraft essln hat 80 aqua �lt 100.0 99.8 100.0 97.4 100.0 99.4 99.7 96.1elim 0.0 0.2 0.0 2.6 0.0 0.6 0.3 3.9Table 3. Frequeny Analysis of Compation in Projetion (indued magi)Notie that �ltered algorithms break up an operation into several omponents ofinreasing omplexity. The �ltered algorithm then suggests natural plaes at whihto widen, i. e. the high omplexity omponent is widened from above using a heapapproximation. This approximation might be aeptable sine the high omplexityase will be alled infrequently. For example, widening might be used to improvethe worst ase omplexity of projetion (and hene join) for non-anonial Def .
5 Implementation of the Iteration StrategySetions 3 and 4 are onerned with the representation of the abstrat domain andthe design and implementation of domain operations. The overall eÆieny of ananalyser depends not only on these operations, but also on the iteration strategy em-ployed within the �xpoint engine. A �xpoint engine has to trade o� the omplexityof its data-strutures against the degree of reomputation that these data-struturesfator out. For example, semi-na��ve iteration (Banilhon & Ramakrishnan, 1986)has very simple data-strutures, but entails a degree of reomputation, whereasPLAI (Hermenegildo et al., 2000) traks dependenies with dynamially generatedgraphs to dramatially redue the amount of reomputation.Fixpoint engines with dependeny traking whih have been applied to logi pro-gramming analyses inlude: PLAI (Muthukumar & Hermenegildo, 1992; Hermenegildoet al., 2000), GAIA (Le Charlier & Van Hentenryk, 1994), the CLP(R) engine(Kelly et al., 1998) and GENA (Feht & Seidl, 1996; Feht, 1997; Feht & Seidl,1999). An alternative to on-the-y dependeny traking is to use semi-na��ve it-eration driven by a redo worklist detailing whih all and answer patterns needto be re-evaluated and (possibly) in whih order. One instane of this is induedmagi (Codish, 1999a) under eager evaluation (Wunderwald, 1995), whih fatorsout muh of the reomputation that arises through magi transformation. Otherinstanes use knowledge of the dependenies to help order the redo list and therebyredue unneessary omputation { this is typially done by statially alulating



EÆient Groundness Analysis in Prolog 17SCCs (Gallagher & de Waal, 1994), possibly reursively (Bourdonle, 1993), on theall graph or on the all graph of the magi program.The bene�t of redued reomputation is dependent upon the ost of the abstratdomain operations. Therefore the sophistiation of the iteration strategies of en-gines suh as PLAI and GENA is of most value when the domain operations areomplex. The present paper has designed its analysis so that heavyweight domainoperations are infrequently alled, hene an iteration strategy employing simplerdata-strutures, but possibly introduing extra omputation, is worthy of onsid-eration. The analyser desribed in (Howe & King, 2000) used indued magi undereager evaluation. The urrent analyser builds on this work by adopting tatis in-spired by PLAI, GAIA and GENA into the indued magi framework. Importantlythese tatis require no extra data-strutures and little omputational e�ort. Ex-perimental results suggest that this hoie of iteration strategy is well suited toDef -based groundness analysis.
5.1 Ordered Indued MagiIndued magi was introdued in (Codish, 1999a), where a meta-interpreter forsemi-na��ve, goal-dependent, bottom-up evaluation is presented. The analyser de-sribed in (Howe & King, 2000) implements a variant of this sheme using eagerevaluation. In that paper, eager evaluation was implemented without an expliitredo list as follows: eah time a new all or answer pattern is generated, the meta-interpreter invokes a prediate, solve, whih re-evaluates the appropriate lauses.The re-evaluation of a lause may in turn generate new alls to solve so that oneall may start before another �nishes. The status of these alls is maintained on thestak, whih simulates a redo list. Heneforth, this strategy is referred to as eagerindued magi.As noted by other authors, simple optimisations an signi�antly impat on per-formane. In partiular, as noted in (Hermenegildo et al., 2000), evaluations result-ing from new alls should be performed before those resulting from new answers,and a all to solve for one rule should �nish before another all to solve for an-other rule starts. These optimisations annot be integrated with stak based eagerevaluation beause they rely on reordering the alls to solve. Hene a redo list isreintrodued in order to make these optimisations.The meta-interpreter listed in Fig. 2 illustrates how a redo list an be integratedwith indued magi. Four of the prediates are represented as atoms in the dy-nami database: redo/2, the redo list; fat/4, the all and answer patterns, wherepropositional formulae are represented as di�erene lists { spei�ally, the fourthargument is an open list with the third argument being its tail; head to lause/2,representing the head and body for eah lause; atom to lause/4, representingthe lauses with a given atom in the body. Before invoking oim solve/0, a allto ond assert/3 is required. This has the e�et of adding the top-level all tothe fat/4 database and adding the all pattern to the redo/2 database, therebyinitialising the �xpoint alulation. Evaluation is driven by the redo list. If theredo list ontains all patterns, then the �rst (most reently introdued) is removed



18 Jaob M. Howe and Andy Kingoim_solve :-retrat(redo(all, Atom)), !, (all_solve(Atom); oim_solve).oim_solve :-retrat(redo(answ, Atom)), !, (answ_solve(Atom); oim_solve).all_solve(Head) :-head_to_lause(Head, Body), fat(all, Head, [℄, Form1),solve_right(Body, Form1, Form2), ond_assert(answ, Head, Form2), fail.answ_solve(Atom) :-atom_to_lause(Atom, Head, Left, Right),fat(all, Head, [℄, Form1), fat(answ, Atom, Form1, Form2),solve_left(Left, Form2, Form3), solve_right(Right, Form3, Form4),ond_assert(answ, Head, Form4), fail.solve_left([℄, Form, Form).solve_left([Atom | Atoms℄, Form1, Form3) :-fat(answ, Atom, Form1, Form2), solve_left(Atoms, Form2, Form3).solve_right([℄, Form, Form).solve_right([Atom | Atoms℄, Form1, Form2) :-solve_right(Atom, Atoms, Form1, Form2).solve_right(Atom, _, Form, _) :-ond_assert(all, Atom, Form), !, redo_assert(answ, Atom), fail.solve_right(Atom, Atoms, Form1, Form3) :-fat(answ, Atom, Form1, Form2), solve_right(Atoms, Form2, Form3).Fig. 2. A Meta-interpreter for Ordered Indued Magi
and all solve/1 is invoked. If the redo list ontains only answer patterns, thenthe �rst is removed and ontrol is passed to answ solve/1. The meta-interpreterterminates (with failure) when the redo list is empty.The prediate all solve/1 re-evaluates those lauses whose heads math anew all pattern. It �rst looks up a body for a lause with a given head followedby the urrent all pattern for head, then solves the body in indued magi fashionwith solve right/3. If ond assert/3 is alled with a all (answer) pattern thatdoes not entail the all (answer) pattern in fat/4, then it sueeds, updatingfat/4 with the join of the all (answer) patterns. In this event, the new all(answer) pattern is added to the beginning of the redo/2 database. The prediateansw solve/1 re-evaluates those lauses ontaining a body atom whih mathes anew answer pattern. It looks up a lause with a body that ontains a given atom,solves the body to the left of the atom and then to the right of the atom. If a newall pattern is enountered in solve right/4, then the evaluation of the lause isaborted, as the new all may give a new answer for this body atom. In this situation,alulating an answer for the head with the old body answer will result in an answerthat needs to be re-alulated. To ensure that the lause is re-evaluated, an answerfor the body atom is put in the redo list by redo assert/2. This iteration strategyis referred to as ordered indued magi.



EÆient Groundness Analysis in Prolog 195.2 SCC-based StrategiesIn order to assess the suitability of ordered indued magi as a �xpoint strategyfor Def -based groundness analysis, it has been ompared with a variety of popularSCC-based methods. The �xpoint engine an be driven either by onsidering thetop-level SCCs (Gallagher & de Waal, 1994) or by onsidering the reursive nestingof SCCs, for example (Bourdonle, 1993). The SCCs an be statially alulatedeither on the all graph of the magiked program or on the all graph of the originalprogram.SCCs for the all graph of the magiked program (in topologial order) are al-ulated using Tarjan's algorithm (Tarjan, 1972). The �xpoint alulation then pro-eeds bottom-up, stabilising on the (all and answer) prediates in eah SCC intopologial order. If an SCC ontains a single, non-reursive, (all or answer) pred-iate, then the prediate must stabilise immediately, hene no �xpoint hek isneeded. This strategy is heneforth referred to as SCC magi.A more sophistiated SCC-based tati is to alulate SCCs within an SCC, assuggested by Bourdonle (Bourdonle, 1993). The `reursive strategy' desribed byBourdonle reursively applies Tarjan's algorithm to eah non-trivial SCC havingremoved an appropriate node (the head node) and orresponding edges. The �xpointalulation proeeds bottom-up, stabilising on the (all and answer) prediates ineah omponent reursively. The �xpoint hek need only be made at the headnode. This is strategy has potential for reahing a �xpoint in a partiularly smallnumber of updates. This strategy is heneforth referred to as Bourdonle magi.Sine both SCC magi and Bourdonle magi work on the all graph of themagi program, they annot be ombined with indued magi; the ordering of there-evaluations onits. Calulating SCCs on the all graph of the original programmay be ombined with (ordered) indued magi. The order in whih the alls areenountered is determined by the top-down left-to-right exeution of the programand the evaluation of a all may add new answers to the redo list. SCCs an beused to order new answers as they are added to the redo list. This strategy isheneforth referred to as SCC indued magi. However, sine alls are re-evaluatedin preferene to answers, the order of answers in the redo list is largely determinedby the order of the alls. Consequently, SCCs should have a negligible e�et onperformane.
5.3 Dynami Dependeny TrakingOne test of the eÆay of an iteration strategy is the number of iterations requiredto reah the �xpoint. In order to assess how well ordered indued magi behaves, amore sophistiated iteration strategy based on dynami dependeny traking wasimplemented. The strategy hosen was that of WRT solver of GENA (Feht, 1997;Feht & Seidl, 1999) sine this reent work is partiularly well desribed, has ex-tensive experimental results and onveniently �ts with the worklist model.The WRT strategy utilises a worklist, whih is e�etively reordered on-the-y.To quote Feht and Seidl (Feht & Seidl, 1996), \The worklist now is organized as



20 Jaob M. Howe and Andy King�le rubik hat parser sim v5-2 peval airraft essln hat 80 aqua meet 39.3 40.5 41.5 44.6 35.4 48.3 41.0 43.5join 8.7 8.7 10.0 6.4 10.5 8.0 9.1 8.7join (di�) 1.0 2.0 0.1 2.6 0.2 0.7 1.8 1.3equiv 8.7 8.7 10.0 6.4 10.5 8.0 9.1 8.7proj 5.8 4.7 4.5 7.1 4.1 4.0 4.4 4.2rename 36.5 35.4 34.1 33.0 39.3 31.0 34.5 33.6total 6646 11324 5748 3992 12550 11754 32906 109612Table 4. Frequeny Analysis: Non-anonial Def Analyser with Ordered InduedMagi
�le strips hat parser sim v5-2 peval airraft essln hat 80 aqua �lt 100.0 99.7 100.0 98.4 100.0 99.7 99.7 98.0elim 0.0 0.3 0.0 1.6 0.0 0.3 0.3 2.0Table 5. Frequeny Analysis of Compation in Projetion (Ordered InduedMagi)

a (max) priority queue where the priority of an element [all pattern℄ is given byits time stamp," where the time stamp reords the last time the solver was alledfor that all pattern. If, whilst solving for a all pattern, new all patterns areenountered, then the bottom answer pattern is not simply returned. Instead thesolver tries to reursively ompute a better approximation to this answer pattern.This tati is also applied in PLAI and GAIA, though realised di�erently.The WRT strategy of GENA gives a small number of updates, hene is anattrative iteration strategy. However, its implementation in a baktrak drivenmeta-interpreter requires extensive use of the dynami database for the auxiliarydata-strutures. In Prolog this is potentially expensive (Hermenegildo et al., 1992).
5.4 Frequeny Analysis for Def : RepriseIn setion 4 a frequeny analysis of the abstrat domain operations in Def -basedgroundness analysis was given. It was then argued that in light of these resultsertain hoies about the abstrat domain operations should be made. These resultsare dependent on the iteration strategy of the analyser. In this setion severaldi�erent iteration strategies have been proposed and it needs to be heked thatthese give similar proportions of alls to the abstrat domain operations { that is,that the hoies for the abstrat domain operations remain justi�ed. Table 4 givesthe frequeny analysis for ordered indued magi driving non-anonial Def andindiates that the hoies of domain operation remain valid. Note that for the BDDanalyser, eah rename is aompanied by a projetion { this is not the ase fornon-anonial Def , explaining the lesser frequeny of projetion. This makes thenon-anonial Def representation appear even more suitable. Table 5 demonstratesthat projetion still almost always avoids ompation. Similar distributions arefound with the other iteration strategies and for brevity these tables are omitted.



EÆient Groundness Analysis in Prolog 216 Experimental EvaluationThis setion gives experimental results for a number of analysers with the objetiveof omparing the analysis proposed in the previous setions with existing tehniquesand evaluating the impat of the various tatis utilised. These analysers are builtby seleting appropriate ombinations of: abstrat domain, domain representation,iteration strategy and optimisations. The analysers are evaluated in terms of bothexeution time and the underlying behaviour (i. e. the number of updates). Allimplementations are oded in SICStus Prolog 3.8.3 with the exeption of the domainoperations for Pos, whih were written in C by Shahte (Shahte, 1999). Theanalysers were run on a 296MHz Sun UltraSPARC-II with 1GByte of RAM runningSolaris 2.6. Programs are abstrated following the elegant (two program) sheme of(Bueno et al., 1996) to guarantee orretness. Programs are normalised to de�nitelauses. Timings are the arithmeti mean over 10 runs. Timeouts were set at �veminutes.
6.1 Domains: Timings and PreisionTables 6 and 7 give timing and preision results for the domains EPos, Def rep-resented in DBCF, non-anonial Def (denoted GEP after the representation) andPos. In these tables, �le is the name of the program analysed; size is the numberof abstrat lauses in the normalised program; abs is the time taken to read, parseand normalise the input �le, produing the abstrat program; �xpoint details theanalysis time for the various domains; preision gives the total number of groundarguments in the all and answer patterns found by eah analysis (exluding thoseintrodued by normalising the program); % pre. loss gives the loss of preision ofEPos and Def as ompared to Pos { to emphasise where preision is lost, entriesare only made when there is a preison loss. All the analyses were driven by theordered indued magi iteration strategy.First onsider preision. As is well known, in pratie, for goal-dependent ground-ness analysis, the preision of Def is very lose to that of Pos . In the benhmarksuite used here, Def loses ground arguments in only two programs: rotate.pl, whihloses three arguments, and sim v5-2.pl, where two arguments are lost. EPos losespreision in several programs, but still performs reasonably well. (Goal-independentanalysis preision omparisons for EPos and Def are given in (Heaton et al., 2000)and (Genaim & Codish, 2001). These show that EPos loses signi�ant preision,whereas Def gives preision lose to that of Pos .)The non-anonial Def analyser appears to be fast and salable { taking morethan a seond to analyse only the largest benhmark program. This analyser doesnot employ widening (however, inorporating a widening would guarantee robust-ness of the analyser, even for pathologial programs (Genaim et al., 2001)). Notiethat the analysis times for all the programs is lose to the abstration time { thissuggests that a large speed up in the analysis time needs to be oupled with aommensurate speedup in the abstrater.The non-anonial Def analysis times are omparable to those for EPos for



22 Jaob M. Howe and Andy King�xpoint preision % pre. loss�le size abs EPos DBCF GEP Pos EPos DBCF GEP Pos EPos Defappend.pl 2 0.00 0.00 0.01 0.01 0.01 3 4 4 4 25.0rotate.pl 3 0.00 0.00 0.01 0.01 0.01 2 3 3 6 66.6 50.0mortgage.lpr 4 0.00 0.00 3.31 0.00 0.04 6 6 6 6qsort.pl 6 0.01 0.00 0.00 0.00 0.01 11 11 11 11rev.pl 6 0.01 0.00 0.01 0.01 0.01 0 0 0 0queens.pl 9 0.00 0.00 0.04 0.00 0.02 3 3 3 3zebra.pl 9 0.01 0.00 0.06 0.01 0.10 19 19 19 19laplae.lpr 10 0.01 0.00 0.08 0.01 0.01 0 0 0 0shape.pl 11 0.00 0.00 0.04 0.00 0.03 6 6 6 6parity.pl 12 0.01 0.00 3.24 0.52 { 0 0 0 { { {treeorder.pl 12 0.00 0.00 0.20 0.01 0.03 0 0 0 0fastolor.pl 13 0.04 0.00 0.00 0.01 0.01 14 14 14 14musi.pl 13 0.01 0.01 { 0.02 0.07 2 { 2 2serialize.pl 13 0.01 0.00 0.12 0.00 0.06 3 3 3 3rypt wam.pl 19 0.02 0.01 0.03 0.01 0.04 31 31 31 31option.lpr 19 0.02 0.00 1.27 0.02 0.07 42 42 42 42iruit.lpr 20 0.02 0.00 52.69 0.02 0.12 3 3 3 3air.lpr 20 0.01 0.00 44.63 0.02 0.09 9 9 9 9dnf.lpr 22 0.02 0.01 0.01 0.00 0.03 8 8 8 8dg.pl 23 0.02 0.00 0.01 0.00 0.02 59 59 59 59hamiltonian.pl 23 0.02 0.00 0.01 0.00 0.02 37 37 37 37nand.pl 31 0.03 0.02 0.03 0.01 0.05 34 37 37 37 8.1semi.pl 31 0.03 0.02 0.75 0.04 0.23 28 28 28 28life.pl 32 0.02 0.00 0.03 0.01 0.05 58 58 58 58poly10.pl 32 0.03 0.00 0.02 0.00 0.04 45 45 45 45meta.pl 33 0.02 0.01 0.02 0.02 0.03 1 1 1 1rings-on-pegs.lpr 34 0.02 0.02 1.20 0.02 0.11 11 11 11 11browse.pl 35 0.02 0.01 0.04 0.02 0.04 41 41 41 41gabriel.pl 38 0.03 0.02 0.06 0.02 0.07 37 37 37 37tsp.pl 38 0.02 0.02 0.07 0.02 0.11 122 122 122 122map.pl 41 0.02 0.02 0.03 0.01 0.05 17 17 17 17sg.lpr 42 0.04 0.01 0.00 0.00 0.02 8 8 8 8disj r.pl 48 0.03 0.01 0.02 0.02 0.08 97 97 97 97ga.pl 48 0.08 0.00 0.03 0.02 0.09 141 141 141 141ritial.lpr 49 0.03 0.01 { 0.04 0.21 14 { 14 14robot.pl 51 0.04 0.00 0.01 0.00 0.03 41 41 41 41s1.pl 51 0.03 0.01 0.08 0.01 0.14 89 89 89 89ime v2-2-1.pl 53 0.04 0.02 0.30 0.03 0.20 100 101 101 101 0.9s r.pl 54 0.06 0.01 0.06 0.01 0.09 149 149 149 149titatoe.pl 55 0.05 0.01 0.08 0.02 0.09 60 60 60 60atten.pl 56 0.04 0.02 0.22 0.04 0.13 27 27 27 27mastermind.pl 56 0.03 0.02 0.04 0.02 0.09 43 43 43 43dialog.pl 61 0.03 0.01 0.03 0.02 0.05 45 45 45 45neural.pl 67 0.06 0.03 0.13 0.02 0.08 121 123 123 123 1.6bridge.lpr 68 0.10 0.00 0.07 0.01 0.09 24 24 24 24onman.pl 76 0.05 0.00 0.00 0.00 0.02 6 6 6 6unify.pl 77 0.05 0.02 0.19 0.05 0.38 70 70 70 70kalah.pl 78 0.04 0.02 0.05 0.02 0.10 199 199 199 199nbody.pl 85 0.07 0.03 0.08 0.04 0.19 113 113 113 113peep.pl 85 0.11 0.02 0.13 0.03 0.14 10 10 10 10sdda.pl 89 0.05 0.02 0.13 0.04 0.12 17 17 17 17bryant.pl 94 0.07 0.06 0.23 0.14 0.76 99 99 99 99boyer.pl 95 0.07 0.02 0.08 0.05 0.08 3 3 3 3read.pl 101 0.09 0.03 0.15 0.05 0.20 99 99 99 99qplan.pl 108 0.09 0.02 0.07 0.02 0.16 216 216 216 216trs.pl 108 0.14 0.06 { 0.09 2.46 13 { 13 13press.pl 109 0.08 0.07 0.40 0.10 0.36 52 53 53 53 1.8reduer.pl 113 0.07 0.05 3.47 0.04 0.30 41 41 41 41parser dg.pl 122 0.09 0.04 2.27 0.08 0.24 28 43 43 43 34.8simple analyzer.pl 140 0.11 0.05 0.28 0.10 0.58 89 89 89 89Table 6. Groundness Results: Smaller Programs



EÆient Groundness Analysis in Prolog 23�xpoint preision % pre. loss�le size abs EPos DBCF GEP Pos EPos DBCF GEP Pos EPos Defdbqas.pl 143 0.09 0.02 0.54 0.03 0.09 18 18 18 18ann.pl 146 0.10 0.05 0.77 0.09 0.32 71 71 71 71asm.pl 160 0.17 0.04 0.08 0.04 0.17 90 90 90 90nand.pl 179 0.14 0.04 0.19 0.05 0.37 402 402 402 402lnprolog.pl 220 0.10 0.07 0.16 0.07 0.21 110 143 143 143 23.0ili.pl 221 0.15 0.07 1.29 0.17 0.36 4 4 4 4strips.pl 240 0.22 0.02 0.04 0.03 0.14 142 142 142 142sim.pl 244 0.20 0.08 1.69 0.18 1.38 100 100 100 100rubik.pl 255 0.20 0.12 { 0.16 0.46 158 { 158 158hat parser.pl 281 0.34 0.09 0.47 0.24 1.16 504 505 505 505 0.1sim v5-2.pl 288 0.23 0.05 0.15 0.07 0.32 455 455 455 457 0.4 0.4peval.pl 332 0.17 0.05 0.23 0.18 0.39 27 27 27 27airraft.pl 395 0.55 0.11 0.21 0.14 0.55 687 687 687 687essln.pl 595 0.48 0.12 2.70 0.19 0.93 158 162 162 162 2.4hat 80.pl 883 1.53 0.38 8.17 0.76 4.53 852 855 855 855 0.3aqua .pl 3928 3.47 1.70 { 4.26 144.62 1222 { 1285 1285 4.9Table 7. Groundness Results: Larger Programs
smaller programs, with EPos outperforming non-anonial Def on some of thelarger benhmarks. This is unsurprising given the muh better theoretial behaviourof EPos, indeed it is muh in the favour of non-anonial Def that it is ompetitivewith EPos. The DBCF analyser su�ers from the problems disussed in setion 4.The ost in meet of maintaining the anonial form often beomes signi�ant. Inases (suh as in musi.pl) where the number of variables, the number of body atomsand the size of the representation are all large, the exponential nature of reduing toanonial form leads to a massive blowup in analysis time. Hene the DBCF anal-yser fails to produe a result for several examples and gives poor salability. Also,the analysis appears to lak robustness { the sensitivity of the meet to the formof the program lauses leads to widely varying results. Pos performs well on mostprograms, but is still onsistently several times slower than non-anonial Def . Posperforms partiularly poorly on parity.pl (a program designed to be problematifor BDD-based Pos analysers) and aqua .pl. Again, sine the Pos analyser usesBDDs (essentially a anonial form) there is a ost in maintaining the representa-tion. This an lead to a lak of robustness. It should be pointed out that the Posanalyser is not state of the art and that one using the GER representation (Bagnara& Shahte, 1999) would probably give improved results. Of ourse, widening ouldbe used to give improved times for Pos, but at the ost of preision.

6.2 Iteration Strategy: Timings and UpdatesTable 8 gives timing results for non-anonial Def analysis when driven by variousiteration strategies. The olumn headers are abbreviations as follows: ord stand forordered indued magi; eim stands for eager indued magi; bom stands for Bour-donle magi; sm stands for SCC magi; s stands for SCC indued magi; dydstands for dynami dependeny. The timings are split into two setions. The over-head time is the preproessing overhead inurred in alulating the SCCs requiredto drive the analyses. For bom and sm, SCCs are alulated on the all and answergraph of the magi program. For s, SCCs are alulated on the all graph of the



24 Jaob M. Howe and Andy Kingoverhead strategy�le bom sm s ord eim bom sm s dyddbqas.pl 0.02 0.02 0.01 0.03 0.03 0.03 0.06 0.03 0.07ann.pl 0.05 0.04 0.01 0.09 0.14 0.18 0.22 0.09 0.19asm.pl 0.06 0.06 0.02 0.04 0.08 0.09 0.13 0.05 0.15nand.pl 0.10 0.08 0.02 0.05 0.06 0.21 0.13 0.05 0.17lnprolog.pl 0.07 0.06 0.03 0.07 0.10 0.23 0.19 0.07 0.22ili.pl 0.06 0.04 0.02 0.17 0.29 0.73 0.38 0.16 0.68strips.pl 0.10 0.08 0.03 0.03 0.01 0.10 0.06 0.03 0.07sim.pl 0.10 0.07 0.02 0.18 0.35 0.38 0.29 0.19 0.37rubik.pl 0.29 0.15 0.04 0.16 0.19 1.12 0.33 0.15 0.34hat parser.pl 0.19 0.08 0.05 0.24 0.44 2.31 0.67 0.24 1.89sim v5-2.pl 0.25 0.12 0.04 0.07 0.07 0.57 0.18 0.07 0.22peval.pl 0.06 0.06 0.04 0.18 0.30 0.31 0.29 0.17 0.38airraft.pl 0.73 0.26 0.14 0.14 0.23 1.13 0.53 0.13 0.44essln.pl 0.40 0.19 0.11 0.19 0.27 1.58 0.61 0.18 0.46hat 80.pl 0.96 0.34 0.15 0.76 1.36 21.22 2.59 0.73 3.30aqua .pl 17.91 1.59 0.84 4.26 10.69 454.22 20.52 4.30 15.74Table 8. Timing Results for Iteration Strategies
original program. The strategies ord, eim and dyd do not require any preproess-ing, hene have no overhead. The strategy times are the times for analysing eahprogram (that is, the time taken for the �xpoint alulation, not inluding the pre-proessing overhead). Table 9 gives a seond measure of the ost of eah iterationstrategy; this time in terms of the number of updates (writes to database/extensiontable) required to reah the �xpoint.One important measure of the suess of an iteration strategy is the number ofupdates required in the analysis. This impats diretly on the number of alls toabstrat operations and hene the amount of work (speed) of the analysis. Table9 indiates that ord, s and dyd give the best behaviour over a large number ofprograms. However, all of the other strategies give the best result for some programs,indiating that eah has its merits. Observe that, as predited in setion 5, ord ands give very similar results.In measuring performane of a partiular analysis, the overall time taken is alsoof importane. Table 8 indiates that the methods based on SCCs in the all graphof the magi program have problems. Firstly, they require SCCs to be alulated{ the ost of this (in partiular for Bourdonle magi) is signi�ant. Seondly,the �xpoint times for bom and sm are muh greater than would be expetedfrom the results in Table 9. This is partly beause the bom and sm strategiesannot be integrated with indued magi, whih impats heavily on speed. Thebom strategy also has a third drawbak { the proportion of re-evaluations notresulting in an update rises dramatially for larger programs. Larger programsoften give rise to deeply nested SCCs. Suppose an SCC, say A, nests a subSCC,say B. In deteting the stability of A, the stability of the head of B needs tobe established. This in turn requires a single pass over B. If n passes over A arerequired to reah stability, then n passes over B are also needed (even if B is alreadystable). Extrapolating, the number of times an SCC is passed over is determined



EÆient Groundness Analysis in Prolog 25strategy�le ord eim bom sm s dydappend 3 3 3 3 3 3rotate 7 7 7 7 7 6mortgage 6 6 6 6 6 6qsort 8 7 8 8 8 7rev 11 11 11 11 11 11queens 12 12 12 12 12 12zebra 12 12 12 12 12 12laplae 12 12 12 12 12 12shape 12 10 10 10 12 10parity 38 47 38 38 38 37treeorder 17 18 17 18 17 14fastolor 18 19 18 18 18 18musi 13 13 13 12 13 13serialize 16 18 16 16 16 10rypt wam 23 23 23 23 23 23option 30 35 30 30 30 29iruit 32 31 30 34 32 29air 32 35 32 36 32 29dnf 8 8 8 8 8 8dg 31 30 30 30 31 30hamiltonian 28 28 28 28 28 28nand 49 51 44 51 49 49semi 53 51 51 54 53 48life 30 30 30 31 30 30poly10 24 24 24 24 24 24meta 46 29 40 40 46 40rings-on-pegs 37 37 37 37 37 37browse 43 43 43 43 43 43gabriel 48 48 48 50 48 47tsp 66 66 65 73 66 65map 68 68 68 68 68 68sg 12 12 12 12 12 12disj r 58 58 58 58 58 58ga 60 60 59 60 60 59ritial 42 39 44 44 42 36robot 28 28 28 28 28 28s1 51 50 50 50 51 50ime v2-2-1 77 74 72 77 77 70

strategy�le ord eim bom sm s dyds r 66 66 66 66 66 66titatoe 60 56 56 57 60 55atten 81 95 80 107 81 71mastermind 86 84 82 85 86 82dialog 82 95 79 82 82 77neural 83 78 78 102 83 78bridge 13 13 13 13 13 13onman 14 14 14 14 14 14unify 92 114 92 97 92 83kalah 91 93 92 93 91 92nbody 125 173 124 162 125 122peep 61 61 62 61 61 58sdda 91 105 96 100 93 94bryant 202 210 189 161 202 214boyer 99 107 102 101 99 105read 119 127 90 114 119 91qplan 95 95 95 94 95 93trs 86 92 88 96 88 69press 224 222 221 217 224 241reduer 118 173 173 158 118 163parser dg 170 170 157 168 169 160simple analyzer 200 242 200 321 201 189dbqas 105 105 94 109 105 98ann 207 233 229 281 207 192asm 169 237 174 217 169 181nand 188 188 186 187 188 186lnprolog 253 300 279 281 253 264ili 209 318 318 330 209 312strips 108 101 111 106 108 99sim 280 310 269 277 281 266rubik 372 369 375 383 372 373hat parser 445 682 659 652 445 621sim v5-2 256 256 254 254 256 256peval 280 331 312 309 281 285airraft 506 506 506 506 506 506essln 485 547 473 516 485 450hat 80 1322 1657 1494 1579 1323 1454aqua  4751 5779 5667 6106 4842 4611Table 9. Number of Updates for Iteration Strategies
by the sum of the number of passes over eah SCC ontaining it. If the SCC isdeeply nested and large this involves a large number of re-evaluations produing noupdates. As the sm strategy does not involve nested SCCs, this problem does notarise. It appears that Bourdonle's reursive strategy is not well suited for drivinggroundness analyses of logi programs. Table 8 also indiates that whilst SCCson the all graph give omparable analysis times to ordered indued magi, theytoo ome with an overhead of preomputation. Sophistiated dynami dependenygraphs do not pay for themselves in a groundness analysis involving lightweightdomain operations, as reeted by the timings for dyd. However, they are moreamenable to optimisation than ordered indued magi (whih is itself essentially anoptimisation of indued magi) and in an analysis where the ost of the abstratoperations is higher it is to be expeted that this strategy would be more e�etive.Also, by using a di�erent programming paradigm, the dynami hanges to the



26 Jaob M. Howe and Andy Kingord dyd�le 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8dbqas.pl 55 21 1 0 1 60 16 2ann.pl 88 39 11 2 100 32 4 4asm.pl 140 13 1 130 21 3nand.pl 172 5 2 173 5 1lnprolog.pl 168 32 7 155 47 5ili.pl 89 24 20 3 41 54 23 5 5 7 1strips.pl 82 10 2 89 5sim.pl 144 43 12 1 2 152 38 10 2rubik.pl 264 54 264 53 1hat parser.pl 207 78 14 7 1 0 1 101 144 37 14 7 5sim v5-2.pl 248 4 248 4peval.pl 114 45 13 4 3 1 111 52 9 3 2 1 1 1airraft.pl 468 19 468 19essln.pl 321 59 9 2 1 1 341 48 3 1hat 80.pl 537 224 70 22 4 2 1 466 261 93 22 10 7 1aqua  2135 742 205 64 28 12 2 1 3 2170 781 151 48 26 11 2 3Table 10. Chain Length Distributionsdependeny graph ould be made more eÆiently (for example, (Feht & Seidl,1999) use SML).
6.3 Chain LengthTable 10 gives further details of the number of updates required in program analysiswith non-anonial Def . This table gives the distribution of the number of updatesrequired to reah the �xpoint for the various program prediates. Results are givenfor ord and dyd as it is lear from Table 9 that these are the most ompetitivestrategies. Eah olumn gives the number of prediates requiring that number ofupdates. Entries beyond the maximum number of updates have been left blank tohighlight the maximum hain length.Chain length gives a good indiation of the robustness of the iteration strategies.Whilst it is always possible to onstrut programs exhibiting worst ase behaviour(Codish, 1999b; Genaim et al., 2001), Table 10 shows that for both ord and dyd,very few hains are longer than 4 and that at worst hains have length 9. It alsoagain indiates that di�erent strategies an give signi�antly di�erent behaviour forthe analysis. 6.4 OptimisationsA number of optimisations have been disussed in this paper. Table 11 details thee�et of these, singly and in ombination. The �ve optimisations onsidered haveeah been abbreviated by a single letter: e denotes �ltering by entailment heking;g denotes the use of a GEP fatorisation; p denotes �ltering projetion; r denotesthe use of redundany removal; t denotes the maintenane of a true fatorisation.The olumn headers desribe whih optimisations have been swithed on; for exam-ple, gpr denotes the situation where the analysis uses a GEP fatorisation, where



EÆient Groundness Analysis in Prolog 27swithes�le egpr egprt egp epr gpr egr pr er gr rdbqas.pl 0.02 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.03ann.pl 0.09 0.09 0.09 0.10 0.10 0.09 0.11 0.10 0.10 0.11asm.pl 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.05 0.04 0.06nand.pl 0.05 0.05 0.05 0.07 0.06 0.05 0.09 0.07 0.06 0.09lnprolog.pl 0.06 0.07 0.07 0.08 0.07 0.07 0.09 0.08 0.07 0.10ili.pl 0.16 0.16 0.16 0.17 0.16 0.16 0.18 0.17 0.18 0.19strips.pl 0.02 0.02 0.02 0.03 0.03 0.02 0.04 0.03 0.03 0.03sim.pl 0.18 0.18 0.18 0.20 0.20 0.20 0.23 0.23 0.22 0.25rubik.pl 0.15 0.16 0.16 0.16 0.17 0.19 0.18 0.20 0.19 0.21hat parser.pl 0.24 0.24 0.24 0.29 0.27 0.25 0.33 0.30 0.28 0.34sim v5-2.pl 0.06 0.07 0.06 0.08 0.07 0.07 0.10 0.08 0.07 0.10peval.pl 0.17 0.17 0.17 0.18 0.17 0.18 0.19 0.19 0.18 0.20airraft.pl 0.14 0.14 0.14 0.17 0.16 0.14 0.21 0.17 0.16 0.21essln.pl 0.18 0.19 0.19 0.22 0.20 0.19 0.24 0.22 0.21 0.25hat 80.pl 0.73 0.74 0.73 0.84 0.81 0.76 0.96 0.89 0.84 0.99aqua .pl 4.25 4.20 4.28 4.74 4.73 4.81 5.34 5.36 5.29 5.99Table 11. Timing Results for Combinations of Optimisations
projetion is �ltered and where redundany removal is used, but the fatorisationis not true and the entailment heking �lter for join is not applied. Note that theswith for the entailment heking does not entirely turn o� the entailment hek�lter for join, as the Def analysers enfore termination using the same entailmenthek whih �lters join. In Proposition 2, the �ltering of join has three ases; theentailment hek swith turns the �rst (most lightweight) ase on and o�. The de-fault for the non-anonial Def analyser whih has been used for other timings inthis paper is egpr, sine this gives the best result for most programs.The �rst three olumns of Table 11 all give very similar times, indiating that truefatorisation and redundany removal have little e�et on analysis times, essentiallypaying for themselves. The next three olumns give times for the situation with oneof e, g, p swithes o� (relative to the default ase). It is lear that turning o� anyof these optimisation gives a slow down of, perhaps, 10%. The next three olumnsgive results for swithing o� optimisations in pairs. Again there is a lear slowdownfrom the previous three results (although notie that the epr and gr results are verysimilar), a slowdown of 15-20% from the default ase. Finally, the last olumn showsthat swithing o� all the optimisations results in a slowdown of approximately 25%in most programs.One onlusion to be drawn from Table 11 is that the non-anonial Def analysisis extremely robust. By turning o� all the optimisations for both the size of repre-sentation and the eÆieny of the abstrat operations, the analysis is still fast. Itis expeted that the e�et of turning o� these optimisations would be bigger whenusing a less e�etive iteration strategy or a less suitable (orthogonal) representation.

7 Related WorkVan Hentenryk et al. (Van Hentenryk et al., 1995) is an early work whih laid a



28 Jaob M. Howe and Andy Kingfoundation for BDD-based Pos analysis. Corsini et al. (Corsini et al., 1993) desribehow variants of Pos an be implemented using Toupie, a onstraint language basedon the �-alulus. If this analyser was extended with, say, magi sets, it might leadto a very respetable goal-dependent analysis. More reently, Bagnara and Shahte(Bagnara & Shahte, 1999) have developed the idea (Bagnara, 1996) that a fa-torised implementation of ROBDDs whih keeps de�nite information separatelyfrom dependeny information is more eÆient than keeping the two together. Thishybrid representation an signi�antly derease the size of an ROBDD and thus isa useful implementation tati.Heaton et al. (Heaton et al., 2000) propose EPos, a sub-domain of Def , thatan only propagate dependenies of the form (x1 $ x2) ^ x3 aross proedureboundaries. This information is preisely that ontained in one of the �elds of theGEP fatorised domain. The main �nding of (Heaton et al., 2000) is that thissub-domain performs reasonably well for goal-dependent analysis.Armstrong et al. (Armstrong et al., 1998) study a number of di�erent represen-tations of Boolean funtions for both Def and Pos. An empirial evaluation on 15programs suggests that speialising Dual Blake Canonial Form (DBCF) for Defleads to the fastest analysis overall. Armstrong et al. (Armstrong et al., 1998) alsoperform interesting preision experiments. Def and Pos are ompared, however, ina bottom-up framework that is based on ondensing and is therefore biased towardsPos. The authors point out that a top-down analyser would improve the preisionof Def relative to Pos.Gar��a de la Banda et al. (Gar��a de la Banda et al., 1996) desribe a Prologimplementation of Def that is also based on an orthogonal DBCF representation(though this is not expliitly stated) and show that it is viable for some mediumsized benhmarks. Feht and Seidl (Feht, 1997; Feht & Seidl, 1999) desribe an-other groundness analyser for Pos that is not oded in C. They adopt SML asa oding medium in order to build an analyser that is delarative and easy tomaintain. Their analyser employs a widening.Codish and Demoen (Codish & Demoen, 1995) desribe a non-ground modelbased implementation tehnique for Pos that would enode x1 $ (x2^x3) as threetuples htrue; true; truei, hfalse; ; falsei, hfalse; false; i. King et al. show how, forDef , meet, join and projetion an be implemented with quadrati operations basedon a Sharing quotient (King et al., 1999). Def funtions are essentially representedas a set of models and widening is thus required to keep the size of the representationmanageable. Ideally, however, it would be better to avoid widening by, say, using amore ompat representation.Most reently, Genaim and Codish (Genaim & Codish, 2001) propose a dualrepresentation for Def . For funtion f , the models of oneg(f) are named and f isrepresented by a tuple reording for eah variable of f whih of these models thevariable is in. For example, the models of oneg(x! y) are ffx; yg; fxg; ;g. Namingthe three models a, b,  respetively, f is represented by hab; ai. This representationleverly allows the well known ACI1 uni�ation theory to be used for the domainoperations. (Genaim & Codish, 2001) report promising experimental results, butstill need a widening to analyse the aqua  benhmark.



EÆient Groundness Analysis in Prolog 298 ConlusionBy onsidering the way in whih goal-dependent groundness analyses proeed, anintelligent hoie an be made as to how to represent the abstrat domain and howthe ost of the domain operations should be balaned. Analysing the relative fre-quenies of the domain operations leads to a representation whih is ompat, andwhere the most ommonly alled domain operations are the most lightweight. Filtersfor the more expensive domain operations are desribed whih allow these opera-tions to be alulated by inexpensive speial ases. Ways in whih a non-groundrepresentation for Boolean funtions may exploit the language features of Prolog toobtain an eÆient implementation are desribed. The iteration strategy for drivingan analysis is also extremely important. Several strategies are disussed and om-pared. It is onluded that for groundness analysis the fastest implementation usesa simple strategy avoiding preomputation and sophistiated data-strutures. Animplementor might �nd some or all of the issues disussed and ideas raised in thispaper useful in designing a program analysis and in implementing it in Prolog.The end produt of this work is a highly prinipled goal-dependent groundnessanalyser ombining the tehniques desribed. It is written in Prolog and is smalland easily maintained. The analyser is a robust, fast, preise and salable and doesnot require widening for the largest program in the benhmark suite. Experimentalresults show that the speed of the �xpoint alulation is very lose to that of reading,parsing and normalising the input �le. Results also suggest that the performane ofthe analyser ompares well with other groundness analysers, inluding BDD-basedanalysers written in C.
AknowledgementsWe thank Roberto Bagnara, Fran�ois Bourdonle, Mike Codish, Roy Dykho�,John Gallagher, Samir Genaim and Pat Hill for useful disussions. We would alsolike to thank Peter Shahte for help with his BDD analyser. This work was fundedpartly by EPSRC Grant GR/MO8769.

ReferenesArmstrong, T., Marriott, K., Shahte, P., & S�ndergaard, H. (1998). Two Classes ofBoolean Funtions for Dependeny Analysis. Siene of Computer Programming, 31(1),3{45.Bagnara, R. (1996). A Reative Implementation of Pos using ROBDDs. Pages 107{121of: Programming Languages: Implementation, Logis and Programs. Leture Notes inComputer Siene, vol. 1140. Springer-Verlag.Bagnara, R., & Shahte, P. (1999). Fatorizing Equivalent Variable Pairs in ROBDD-Based Implementations of Pos. Pages 471{485 of: Seventh International Conferene onAlgebrai Methodology and Software Tehnology. Leture Notes in Computer Siene,vol. 1548. Springer-Verlag.Baker, N., & S�ndergaard, H. (1993). De�niteness Analysis for CLP(R). AustralianComputer Siene Communiations, 15(1), 321{332.Banilhon, F., & Ramakrishnan, R. (1986). An Amateur's Introdution to Reursive



30 Jaob M. Howe and Andy KingQuery Proessing Strategies. Pages 16{52 of: ACM SIGMOD International Confereneon Management of Data. ACM Press.Bourdonle, F. (1993). EÆient Chaoti Iteration Strategies with Widenings. Pages128{141 of: Formal Methods in Programming and their Appliations. Leture Notes inComputer Siene, vol. 735. Springer-Verlag.Bueno, F., Cabeza, D., Hermenegildo, M., & Puebla, G. (1996). Global Analysis of Stan-dard Prolog Programs. Pages 108{124 of: European Symposium on Programming. Le-ture Notes in Computer Siene, vol. 1058. Springer-Verlag.Codish, M. (1999a). EÆient Goal Direted Bottom-up Evaluation of Logi Programs.Journal of Logi Programming, 38(3), 355{370.Codish, M. (1999b). Worst-Case Groundness Analysis using Positive Boolean Funtions.Journal of Logi Programming, 41(1), 125{128.Codish, M., & Demoen, B. (1995). Analysing Logi Programs using \prop"-ositional LogiPrograms and a Magi Wand. Journal of Logi Programming, 25(3), 249{274.Codish, M., S�ndergaard, H., & Stukey, P. (1999). Sharing and Groundness Dependeniesin Logi Programs. ACM Transations on Programming Languages and Systems, 21(5),948{976.Corsini, M.-M., Musumbu, K., Rauzy, A., & Le Charlier, B. (1993). EÆient Bottom-upAbstrat Interpretation of Prolog by means of Constraint Solving over Finite Domains.Pages 75{91 of: Programming Language Implementation and Logi Programming. Le-ture Notes in Computer Siene, vol. 714. Springer-Verlag.Dart, P. (1991). On Derived Dependenies and Conneted Databases. Journal of LogiProgramming, 11(1{2), 163{188.De Baker, B., & Beringer, H. (1993). A CLP Language Handling Disjuntions of LinearConstraints. Pages 550{563 of: International Conferene on Logi Programming. MITPress.Feht, C. (1997). Abstrakte Interpretation logisher Programme: Theorie, Implemen-tierung, Generierung. Ph.D. thesis, Universit�at des Saarlandes.Feht, C., & Seidl, H. (1996). An Even Faster Solver for General Systems of Equations.Pages 189{204 of: Stati Analysis Symposium. Leture Notes in Computer Siene, vol.1145. Springer-Verlag.Feht, C., & Seidl, H. (1999). A Faster Solver for General Systems of Equations. Sieneof Computer Programming, 35(2-3), 137{162.Gallagher, J., & de Waal, D. A. (1994). Fast and Preise Regular Approximations ofLogi Programs. Pages 599{613 of: Internationl Conferene on Logi Programming.MIT Press.Gar��a de la Banda, M., Hermenegildo, M., Bruynooghe, M., Dumortier, V., Janssens, G.,& Simoens, W. (1996). Global Analysis of Constraint Logi Programs. ACM Transa-tions on Programming Languages and Systems, 18(5), 564{614.Genaim, S., & Codish, M. (2001). The Def-inite Approah to Dependeny Analysis. Pages417{432 of: European Symposium on Programming. Leture Notes in Computer Siene,vol. 2028. Springer-Verlag.Genaim, S., Howe, J. M., & Codish, M. (2001). Worst-Case Groundness Analysis usingDe�nite Boolean Funtions. Theory and Pratie of Logi Programming, 1(5), 611{615.Heaton, A., Abo-Zaed, M., Codish, M., & King, A. (2000). A Simple Polynomial Ground-ness Analysis for Logi Programs. Journal of Logi Programming, 45(1{3), 143{156.Hermenegildo, M., Warren, R., & Debray, S. (1992). Global Flow Analysis as a PratialCompilation Tool. Journal of Logi Programming, 13(4), 349{366.Hermenegildo, M., Puebla, G., Marriot, K., & Stukey, P. (2000). Inremental Analy-



EÆient Groundness Analysis in Prolog 31sis of Constraint Logi Programs. ACM Transation on Programming Languages andSystems, 22(2), 187{223.Howe, J. M., & King, A. (2000). Implementing Groundness Analysis with De�nite BooleanFuntions. Pages 200{214 of: European Symposium on Programming. Leture Notes inComputer Siene, vol. 1782. Springer-Verlag.Ja�ar, J. (1984). EÆient Uni�ation over In�nite Trees. New Generation Computing,2(3), 207{219.Kelly, A. D., Marriot, K., MaDonald, A. D., Stukey, P. J., & Yap, R. H. C. (1998).Optimizing Compilation of CLP(R). ACM Transations on Programming Languagesand Systems, 20(6), 1223{1250.King, A., Smaus, J.-G., & Hill, P. (1999). Quotienting Share for Dependeny Analysis.Pages 59{73 of: European Symposium on Programming. Leture Notes in ComputerSiene, vol. 1576. Springer-Verlag.Le Charlier, B., & Van Hentenryk, P. (1994). Experimental Evaluation of a GeneriAbstrat Interpretation Algorithm for Prolog. ACM Transations on ProgrammingLanguages and Systems, 16(1), 35{101.Marriott, K., & S�ndergaard, H. (1993). Preise and EÆient Groundness Analysis forLogi Programs. ACM Letters on Programming Languages and Systems, 2(4), 181{196.Muthukumar, K., & Hermenegildo, M. (1992). Compile-Time Derivation of Variable De-pendeny using Abstrat Interpretation. Journal of Logi Programming, 13(2-3), 315{347.Plotkin, G. (1970). A Note on Indutive Generalisation. Mahine Intelligene, 5, 153{163.Shahte, P. (1999). Preise and EÆient Stati Analysis of Logi Programs. Ph.D. thesis,Department of Computer Siene, The University of Melbourne, Australia.Tarjan, R. (1972). Depth-�rst Searh and Linear Graph Algorithms. SIAM Journal ofComputing, 1(2), 146{160.Van Hentenryk, P., Cortesi, A., & Le Charlier, B. (1995). Evaluation of the DomainProp. Journal of Logi Programming, 23(3), 237{278.Wunderwald, J. (1995). Memoing Evaluation by Soure-to-Soure Transformation. Pages17{32 of: Logi Program Synthesis and Transformation. Leture Notes in ComputerSiene, vol. 1048. Springer-Verlag.


