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Abstract

This thesis develops techniques and ideas on proof search. Proof search is used
with one of two meanings. Proof search can be thought of either as the search for
a yes/no answer to a query (theorem proving), or as the search for all proofs of a
formula (proof enumeration). This thesis is an investigation into issues in proof
search in both these senses for some non-classical logics.

Gentzen systems are well suited for use in proof search in both senses. The rules
of Gentzen sequent calculi are such that implementations can be directed by thetop
level syntax of sequents, unlike other logical calculi such as natural deduction. All
the calculi for proof search in this thesis are Gentzen sequent calculi.

In Chapter 2, permutation of inference rules for Intuitionistic Linear Logic is stud-
ied. A focusing calculus, ILLF, in the style of Andreoli ([And92]) is developed.
This calculus allows only one proof in each equivalence class of proofs equivalent
up to permutations of inferences. The issue here is both theorem proving and proof
enumeration.

For certain logics, normal natural deductions provide a proof-theoretic semantics.
Proof enumeration is then the enumeration of all these deductions. Herbelin’s cut-
free LJT ([Her95], here called MJ) is a Gentzen system for intuitionistic logic al-
lowing derivations that correspond in a 1–1 way to the normal natural deductions
of intuitionistic logic. This calculus is therefore well suited to proof enumeration.
Such calculi are called ‘permutation-free’ calculi. In Chapter 3, MJ isextended to a
calculus for an intuitionistic modal logic (due to Curry) called Lax Logic. We call
this calculus PFLAX. The proof theory of MJ is extended to PFLAX.

Chapter 4 presents work on theorem proving for propositional logics using a history
mechanism for loop-checking. This mechanism is a refinement of one developed
by Heuerdinget al ([HSZ96]). It is applied to two calculi for intuitionistic logic
and also to two modal logics: Lax Logic and intuitionistic S4. The calculi for
intuitionistic logic are compared both theoretically and experimentally with other
decision procedures for the logic.

Chapter 5 is a short investigation of embedding intuitionistic logic in Intuitionistic
Linear Logic. A new embedding of intuitionistic logic in Intuitionistic Linear Logic
is given. For the hereditary Harrop fragment of intuitionistic logic, this embedding
induces the calculus MJ for intuitionistic logic.

ii



In Chapter 6 a ‘permutation-free’ calculus is given for Intuitionistic Linear Logic.
Again, its proof-theoretic properties are investigated. The calculus is proved to be
sound and complete with respect to a proof-theoretic semantics and (weak) cut-
elimination is proved.

Logic programming can be thought of as proof enumeration in constructive logics.
All the proof enumeration calculi in this thesis have been developed with logic
programming in mind. We discuss at the appropriate points the relationship between
the calculi developed here and logic programming.

Appendix A contains presentations of the logical calculi used and Appendix B con-
tains the sets of benchmark formulae used in Chapter 4.
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Chapter 1

Introduction and Background

This thesis develops a series of sequent calculus systems for some non-classical
logics with computationally motivated properties. The calculi we develop here will
be of two kinds: calculi for proving theorems, and calculi for enumerating proofs.
The first kind of calculus solves problems – a yes/no answer to a query is given.
The second kind of calculus tells in what ways something can be done – all useful
solutions to a problem are given.

In this introduction we give background on intuitionistic logic and in particular the
‘permutation-free’ sequent calculus MJ. We also give background on linear logic
and on logic programming. This serves as motivation for the calculi subsequently
developed in this thesis, as well as giving some technical reference material.

1.1 The Permutation-free calculus MJ

Natural deduction ([Gen69], [Pra65]) is thought of as the ‘real’ proof system for in-
tuitionistic logic. A normal form can be given for every proof in the natural deduc-
tion system – this normal form is standardly defined as a natural deduction to which
no reduction rules, either eliminating introduction/elimination pairs or commuting
inferences, are applicable. The normalisation process is confluent and strongly ter-
minating. The normal form consists of a chain of elimination steps followed by a
chain of introductions. Each minor premiss is again the conclusion of a normal nat-
ural deduction. Normal natural deductions are often thought of as the ‘real’ proofs
of the logic.

Natural deduction has a pragmatic drawback. In searching backwards for the proof
of a formula, it is not always obvious which rule to apply. For instance in� ` P � Q � ` P� ` Q (�")
it is not obvious from the conclusion that we should apply(�"). Even when this

1



CHAPTER 1. INTRODUCTION AND BACKGROUND 2

rule has been decided upon, whatP should be is hard to decide. The elimination
rules do not introduce a connective. Cut-free Gentzen sequent calculus systems
([Gen69]) are much better from this point of view. When a principal formula has
been chosen, the rules which can be applied to it are restricted. When the rulehas
also been chosen, the rule application is deterministic. The application of logical
rules is directed by the syntax of the principal formula. Structural rules can be
built into the sequent system. In such a system, when a principal formula has been
chosen, the next rule application is determined exactly by the syntax of that formula.
All logical rules of the sequent calculus are introduction rules (on the left or on the
right).

There are well known translations ([Pra65]) between normal natural deductions and
cut-free sequent proofs. Therefore we can search for proofs in sequent calculus
systems and then translate the resulting proofs to normal natural deductions. The
drawback here is that many sequent proofs translate to the same normal natural
deduction. Hence when one is trying to enumerate all proofs of a formula, the same
proof is found again and again.

This gives one motivation for the ‘permutation-free’ sequent calculus MJ for intu-
itionistic logic. This is a sequent calculus system for intuitionistic logic (enabling
syntax directed proof search) whose proofs can be translated in a 1–1 way with the
normal natural deductions for intuitionistic logic. MJ has the advantages of a se-
quent calculus system, whilst reflecting the structure of normal natural deductions.

The calculus originates with Herbelin ([Her95], [Her96]) and has also beeninves-
tigated and developed by Dyckhoff and Pinto ([DP96], [DP98a]). Herbelin calls
his calculus LJT, but here we follow Dyckhoff & Pinto in calling it MJ, as a cal-
culus intermediate between natural deduction (NJ) and sequent calculus (LJ). (This
nomenclature also avoids a clash with the calculus here called G4, but elsewhere
also called LJT, [Dyc92]). MJ has two kinds of sequent. One looks like the usual
kind of sequent; however, only right rules and contraction are applicable to this kind
of sequent in backwards proof search. By backwards proof search we mean proof
search starting from the root. The other kind of sequent has a formula (on the left)
in a privileged position called thestoup(following [Gir91]). The formula in the
stoup is always principal in the conclusion of an inference rule. Left rules areonly
applicable to stoup sequents. We display MJ in Figure 1.1.

We summarise the relationships between the systems in the following diagram:LJ
## ##H

HH
HH

HH
HH

// //NJ
zzu u
u u
u u
u u
u

_
?

oo MJ ::uuuuuuuuu
R2

ccH H H H H H H H H

Here LJ is the usual Gentzen system for intuitionistic logic (called G3 throughout
the rest of this thesis) and NJ is the normal natural deduction calculus for intuition-
istic calculus. There is an injection from the proofs of MJ into the proofs of LJ.



CHAPTER 1. INTRODUCTION AND BACKGROUND 3� P�! P (ax) � ?�! P (?L) �; P P�! R�; P ) R (C)�; P ) Q�) P � Q (�R) �) P � Q�! R� P�Q�! R (�L)�) P �) Q�) P ^Q (^R) � P�! R� P^Q�! R (^L1) � Q�! R� P^Q�! R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �; P ) R �; Q) R� P_Q�! R (_L)�) P [y=x]�) 8x:P (8R)y � P [t=x]�! R� 8x:P�! R (8L)�) P [t=x]�) 9x:P (9R) �; P [y=x]) R� 9x:P�! R (9L)yy y not free in�; P; R
Figure 1.1: The sequent calculus system MJ

The proofs of MJ can be seen as normal forms for proofs in LJ ([DP98b], [Min96]).
Inferences in LJ can be permuted (see Chapter 2) to give different LJ proofs. Proofs
in LJ that can be identified up to (semantically sound) permutations of inferences
are those that translate to the same MJ proof (see [DP97], [DP98b]). Hence MJis
described as a ‘permutation-free’ sequent calculus – no semantically sound permu-
tations of one MJ proof into another are possible. Another way to find the normal
form of an LJ proof is to translate the LJ proof to a natural deduction, then translate
it back again. The resulting proof will be a normal proof of LJ. These have the form
of MJ proofs.

A major theme of this thesis is the extension of these calculi with permutation-
free properties to other non-classical logics with normal natural deductions as their
proof-theoretic semantics. To this end we study Lax Logic (where the extension
is simple) and Intuitionistic Linear Logic (where the extension involves somenew
notions and a lot of complicated technical detail).

1.1.1 Technical Background

The technical details of the basic results on MJ are needed throughout this thesis,
hence are included here in the introduction. We discuss cut (and its elimination)
for MJ, we give term assignment systems for the intuitionistic calculi and westate
some of the main theorems and important lemmas.

MJ has two judgement forms and as a result has four cut rules; these can be seen



CHAPTER 1. INTRODUCTION AND BACKGROUND 4� Q�! P � P�! R� Q�! R (cut1) �) P �; P Q�! R� Q�! R (cut2)�) P � P�! R�) R (cut3) �) P �; P ) R�) R (cut4)
Figure 1.2: Cut rules for MJ

in Figure 1.2. We could give six cut rules, but these four suffice, the others being
admissible in MJ plus the four rules given. In fact, if one adds the admissible rule
of weakening as a primitive inference rule to MJ, the other cut rules are derivable.

The following theorem is proved in a variety of ways in [Her95] and [DP98a].

Theorem 1.1 The rules(cut1), (cut2), (cut3), (cut4) are admissible inMJ.

We have the usual term assignment system for natural deduction via the Curry-
Howard isomorphism ([How80]). We can give a restricted version of this for normal
natural deductions, a term calculus in which only normal terms are grammatically
correct. There are two kinds of proof terms,N, for normal proof terms (natural
deductions) andA, for normal non-abstraction terms. We give this grammar and a
presentation of a calculus for normal natural deductions with proof terms (Figure
1.3). Here V are the variables (proofs), U are the variables (individuals), T are the
terms (in proof).

N::= an(A) j �V:N j efq(A) j pr(N;N) j i(N) j j(N) jwn(A; V:N; V:N)�U:N j prq(T;N) jee(A;U:V:N)
A::= var(V ) j ap(A;N) j fst(A) j snd(A) j apn(A; T )
We can also give a term system for derivations in MJ. We give the grammar for
this, including terms for proofs which are not cut-free. There are two kinds of proof
terms corresponding to the two kinds of sequent. V are variables (proofs). U are
variables (individuals) and T are the terms. Note that the cut terms are parameterised
by the cut formula.

M ::=(V ;Ms) j �V:M j pair(M;M) j inl(M) j inr(M) j �U:M j pairq(T;M)cutP3 (M;Ms) j cutP4 (M;V:M)
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�; x : P � var(x) : P (ax) �� A : P���an(A) : P (M)���A : ?���efq(A) : P (?")�; x : P ��N : Q����x:N : P � Q (�I) �� A : P � Q ���N : P�� ap(A;N) : Q (�")���N1 : P ���N2 : Q���pr(N1; N2) : P ^Q (^I)�� A : P ^Q�� fst(A) : P (^"1) �� A : P ^Q�� snd(A) : Q (^"2)���N : P���i(N) : P _Q (_I1) ���N : Q���j(N) : P _Q (_I2)�� A : P _Q �; x1 : P ��N1 : R �; x2 : Q��N2 : R���wn(A; x1:N1; x2:N2) : R (_")���N : P [u=x]����u:N : 8x:P (8I)y �� A : 8x:P�� apn(A; t) : P [t=x] (8")���N : P [t=x]���prq(t; N) : 9x:P (9I) �� A : 9x:P �; x : P [u=x]��N : R���ee(A; u:x:N) : R (9")yy u not free in�; R
Figure 1.3: NNJ: Normal Natural Deduction Calculus for intuitionistic logic, with
proof term annotation
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Ms::= [ ] j ae j (M ::Ms) j p(Ms) j q(Ms) jwhen(V:M; V:M)apq(T;Ms) j spl(U:V:M) j cutP1 (Ms;Ms) j cutP2 (M;V:Ms)
Figure 1.4 shows these terms typed by sequents.

We now note an important point. Calculi with multisets and calculi with termas-
signments are not the same. With respect to enumerating proofs, the systems are not
equivalent. To take a very simple example, consider the sequentP; P ) P . With
the context a multiset of formulae, this has one MJ proof:P; P P�! P (ax)P; P ) P (C)
whereas when the context has labelled formulae, there are two proofs:x1 : P; x2 : P P�! [ ] : P (ax)x1 : P; x2 : P ) (x1; [ ]) : P (C) x1 : P; x2 : P P�! [ ] : P (ax)x1 : P; x2 : P ) (x2; [ ]) : P (C)
In this thesis, unless stated otherwise, we use calculi with proof terms for proof
enumeration (whether the terms have been included or not).

We give translations between the proof terms for normal natural deductions and
those for MJ proofs. Along with proofs of the soundness (Lemma 1.3) and adequacy
(Lemma 1.4) of the term annotations, this gives us a proof not only of the soundness
and completeness of MJ (Corollary 1.1), but also (via Lemmas 1.1 and 1.2) that
proofs of MJ correspond in a 1–1 to the normal natural deductions for intuitionistic
logic. We give the translations here, and state the lemmas and theorems, allof which
can be found in [DP96], [DP98a], [Her95], [Her96].

Sequent Calculus! Natural Deduction:� : M ! N�(x;Ms) = �0(var(x);Ms)�(�x:M) = �x:�(M)�(pair(M1;M2)) = pr(�(M1); �(M2))�(inl(M)) = i(�(M))�(inr(M)) = j(�(M))�(�u:M) = �u:(�(M))�(pairq(T;M)) = prq(T; �(M))
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� P�! [ ] : P (ax) � ?�! ae : P (?L) �; x : P P�!Ms : R�; x : P ) (x;Ms) : R (C)�; x : P )M : Q�) �x:M : P � Q (�R) �)M : P � Q�!Ms : R� P�Q�! (M ::Ms) : R (�L)�)M1 : P �)M2 : Q�) pair(M1;M2) : P ^Q (^R)� P�!Ms : R� P^Q�! p(Ms) : R (^L1) � Q�!Ms : R� P^Q�! q(Ms) : R (^L2)�)M : P�) inl(M) : P _Q (_R1) �)M : Q�) inr(M) : P _Q (_R2)�; x1 : P )M1 : R �; x2 : Q)M2 : R� P_Q�! when(x1:M1; x2:M2) : R (_L)�)M : P [y=x]�) �y:M : 8x:P (8R)y � P [t=x]�! Ms : R� 8x:P�! apq(t;Ms) : R (8L)�)M : P [t=x]�) pairq(t;M) : 9x:P (9R) �; P [y=x])M : R� 9x:P�! spl(y; x:M) : R (9L)y� Q�!Ms1 : P � P�!Ms2 : R� Q�! cutP1 (Ms1;Ms2) : R (cut1)�)M : P �; x : P Q�!Ms : R� Q�! cutP2 (M;x:Ms) : R (cut2)�)M : P � P�!Ms : R�) cutP3 (M;Ms) : R (cut3)�)M1 : P �; x : P )M2 : R�) cutP4 (M1; x:M2) : R (cut4)y y not free in�; R
Figure 1.4: The sequent calculus system MJ with term assignments



CHAPTER 1. INTRODUCTION AND BACKGROUND 8�0 : A �Ms! N�0(A; [ ]) = an(A)�0(A; (M ::Ms)) = �0(ap(A; �(M));Ms)�0(A; ae) = efq(A)�0(A; p(Ms)) = �0(fst(A);Ms)�0(A; q(Ms)) = �0(snd(A);Ms)�0(A;when(x1:M1; x2:M2)) = wn(A; x1:�(M1); x2:�(M2))�0(A; apq(T;Ms)) = �0(apn(A; T );Ms)�0(A; spl(u:x:M)) = ee(A; u:x:�(M))
Natural Deduction to Sequent Calculus: : N ! M (an(A)) =  0(A; [ ]) (�x:N) = �x: (N) (efq(A)) =  0(A; ae) (pr(N1; N2)) = pair( (N1);  (N2)) (i(N)) = inl( (N)) (j(N)) = inr( (N)) (wn(A; x1:N1; x2:N2)) =  0(A;when(x1: (N1); x2: (N2))) (�u:N) = �u: (N) (prq(T;N)) = pairq(T;  (N)) (ee(A; u:x:N) =  0(A; spl(u:x: (N))) 0 : A �Ms! M 0(var(x);Ms) = (x;Ms) 0(ap(A;N);Ms) =  0(A; ( (N) ::Ms)) 0(fst(A);Ms) =  0(A; p(Ms)) 0(snd(A);Ms) =  0(A; q(Ms)) 0(apn(A; T );Ms) =  0(A; apq(T;Ms))
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Lemma 1.1

i)  (�(M)) = M
ii)  (�0(A;Ms)) =  0(A;Ms)
Lemma 1.2

i) �( (N)) = N
ii) �( 0(A;Ms)) = �0(A;Ms)
Lemma 1.3 (SOUNDNESS) The following rules are admissible:�)M : P����(M) : P �� A : P � P�!Ms : R����0(A;Ms) : R
Lemma 1.4 (ADEQUACY) The following rules are admissible:���N : P�)  (N) : P �� A : P � P�!Ms : R�)  0(A;Ms) : R
Corollary 1.1 The calculusMJ is sound and complete.

Finally, by study of the cut-elimination reductions and the associated term reduc-
tions (neither of which have been included here), the following theorem can be
proved (again from [DP96], [DP98a]):

Theorem 1.2 (STRONG NORMALISATION) Every cut-elimination strategy termi-
nates (in a cut-free proof).

1.1.2 Advantages of MJ

As discussed above, the proofs of MJ represent a normal form for proofs in a more
usual sequent system: all proofs can be permuted to one with the form of an MJ
proof. The proofs of this systems are also in 1–1 correspondence with the normal
natural deductions of intuitionistic logic.

MJ’s focusing (see [And92]) on the stoup formula (that is, its avoidance of permuta-
tions) makes the calculus more direct for finding proofs of a formula. As discussed
below, MJ can be seen as a logic programming language. Again, this is related to
its proof search properties.

There are both practical and theoretical reasons to be interested in MJ andother
‘permutation-free’ calculi. MJ provides a refinement of the notion of sequent, bring-
ing the sequent calculus closer to its proof-theoretic semantics of normal natural
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deductions. Indeed the structure of a normal natural deduction can be seen in the
structure of an MJ proof.

One of the main themes of this thesis is the use of the ideas and techniques de-
veloped for MJ with other constructive logics, namely Lax Logic (Chapter 3) and
Intuitionistic Linear Logic (see Chapter 6). We also use MJ as the basis for proving
intuitionistic formulae (as opposed to enumerating all proofs), and argue that for
this purpose too, MJ is a better calculus than some more usual formulations (Chap-
ter 4). In Chapter 5 we will discuss embedding intuitionistic logic in linear logic,
with especial attention to MJ.

1.2 Theorem Proving

Whilst for many purposes one may be interested in enumerating all proofs of a
formula, for others a simple provable/unprovable answer will do. In this case we
are interested in the quickest way of getting this answer (and in its correctness).
Propositional logics are usually decidable (although propositional linear logic is a
notable exception to this, see [LMSS92]) and therefore we are interested infinding
these decision procedures, in particular we would like quick decision procedures.

The contraction rule is a major obstacle to finding decision procedures for non-
classical logics. Duplication of a formula means that on backwards proof searchthe
sequents become more complicated, not less. We have no obvious way of seeing
that we should terminate the search. Leaving contraction out usually leaves an
incomplete calculus. One can either try and find a calculus that duplicates resources
in a more subtle way (leading to G4 for intuitionistic logic) or study the nature of
non-terminating backwards search to see where one can stop the search.

In Chapter 4 we develop a technique for detecting loops using a history mechanism,
building on work of Heuerdinget al ([HSZ96], [Heu98]). We apply it to some
non-classical logics, giving useful decision procedures.

1.3 Linear Logic

Girard’s linear logic ([Gir87]) is a powerful ‘constructive’ logic. It is asubstruc-
tural (resource sensitive) logic – weakening and contraction are not generally valid.
The logic takes the usual logical connectives and breaks them into multiplicative
(context splitting) and additive (context sharing) versions. Hence we have two con-
junctions (tensor ‘
’ and with ‘&’); two disjunctions (par ‘O’ and plus ‘�’); and it
is possible to give two implications (lollipop ‘��’. Additive implication, ‘;’ can
be defined, but is rarely included). We also have four logical constants, multiplica-
tive: ‘I ’, ‘?’, additive: ‘>’, ‘ 0’. A logic without any structural rules at all is very
weak. The main novelty of linear logic is that the structural rules are reintroduced,



CHAPTER 1. INTRODUCTION AND BACKGROUND 11P ) P (ax) �) P �; P ) R�;�) R (cut)) I (IR) �) R�; I ) R (IL)�) > (>R) �; 0) R (0L)�; P ) Q�) P��Q (��R) �) P �; Q) R�;�; P��Q) R (��L)�) P �) Q�;�) P 
Q (
R) �; P; Q) R�; P 
Q) R (
L)�) P �) Q�) P&Q (&R) �; P ) R�; P&Q) R (&L1) �; Q) R�; P&Q) R (&L2)�) P�) P �Q (�R1) �) Q�) P �Q (�R2) �; P ) R �; Q) R�; P �Q) R (�L)!�) P!�)!P (P ) �; P ) R�; !P ) R (D)�) R�; !P ) R (W ) �; !P; !P ) R�; !P ) R (C)
Figure 1.5: Sequent Calculus system for ILL

but for marked formulae (the exponential formulae) only. For this purpose two extra
logical connectives are needed: ofcourse (or bang, allowing weakening and contrac-
tion on the left) ‘!’, and whynot (query, allowing weakening and contraction on the
right) ‘?’. Full classical linear logic (CLL) is completely symmetric, and is often
presented as a single-sided sequent calculus. Both single-sided and two-sidedpre-
sentations of linear logic can be found in the Appendix A. There are several good
introductions to linear logic: amongst them are Girard’s original paper ([Gir87]),
[Gir95], [Ale93] and [Tro92].

In this thesis we are mainly interested inIntuitionistic Linear Logic(ILL). This sys-
tem is the single succedent restriction of the two-sided presentation of linear logic.
This leads to a logic without theO and? connectives, as well as the logical constant?. Another way of looking at ILL is as a deconstruction of intuitionistic logic, a
refinement of the understanding of intuitionistic connectives (hence the nomencla-
ture). Intuitionistic logic has no structural rules on the right, and both weakening
and contraction on the left. ILL restricts structural rules to certainmarked formulae
on the left. The logical connectives are then split into additive and multiplicative
connectives as before. The sequent calculus system (which we refer to simplyas
ILL) can be seen in Figure 1.5. (Note that, as observed by Schellinx in [Sch94],
CLL is not a conservative extension of ILL. The system of Full Intuitionistic Lin-
ear Logic (FILL) is therefore of interest – CLL is a conservative extension of this
system. See [dPH93]).



CHAPTER 1. INTRODUCTION AND BACKGROUND 12P ` P (ax) � ` P �; P ` R�;� ` R (subs)` I (II) � ` I � ` R�;� ` R (I")�1 ` P1 ::: �n ` Pn�1; :::;�n ` > (>I) �1 ` P1 ::: �n ` Pn � ` 0�1; :::;�n;� ` R (0")�; P ` Q� ` P��Q (��I) � ` P��Q � ` P�;� ` Q (��")� ` P � ` Q�;� ` P 
Q (
I) � ` P 
Q �; P; Q ` R�;� ` R (
")� ` P � ` Q� ` P&Q (&I) � ` P&Q� ` P (&"1) � ` P&Q� ` Q (&"2)� ` P� ` P �Q (�I1) � ` Q� ` P �Q (�I2)� ` P �Q �; P ` R �; Q ` R�;� ` R (�")�1 `!Q1 ::: �n `!Qn !Q1; :::; !Qn ` P�1; :::;�n `!P (P )� `!P� ` P (D)� `!P � ` R�;� ` R (W ) � `!P �; !P; !P ` R�;� ` R (C)
Figure 1.6: NILL: Sequent Style Natural Deduction Calculus for ILL

We are interested in ILL because of its relationship to intuitionistic logic (as well
as with logic programming). We can use similar machinery for studying ILL to
that used for intuitionistic logic, whereas, despite being constructive, CLL has to be
understood in new ways. For example, CLL has as semantics: proof nets or coher-
ence spaces or certain categories or perhaps games. For ILL we can (amongst other
semantics) study natural deduction, which for intuitionistic logic has a long history
and is well understood. The natural deduction calculus we primarily consider is
that of Benton, Bierman, de Paiva and Hyland from ([BBdPH92], [BBdPH93b],
[BBdPH93a], [Bie94]). This calculus can be seen in a sequent style in Figure 1.6.
We call this calculus NILL. There are several other natural deduction systems for
ILL in the literature. Some are perfectly satisfactory alternatives to the one we con-
sider; others less so. We leave discussion of these alternative systems,as well as
commentary on NILL, until Chapter 6.

We will be interested in the normal forms of natural deductions in ILL. A notion of
(�, c)-normal form can be defined for the natural deductions of ILL. It is these (�,c)-normal deductions that are investigated further in Chapter 6.
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1.4 Logic Programming

The final piece of background included in this introduction is the link between
permutation-free sequent calculi and logic programming.

One view of logic programming is that it is about backwards proof search (as in
proof enumeration) in constructive logics. This view is laid out by Milleret al. in
[MNPS91] (see also [Har94]). We describe goal-directed proof search in theHorn
formula and hereditary Harrop formula fragments of first-order intuitionisticlogic,
as given in [MNPS91]. We also present calculi for goal-directed proof search in
these fragments.

1.4.1 Uniform Proofs and Abstract Logic Programming Lan-
guages

We give the definitions of uniform proof and of abstract logic programming lan-
guage from [MNPS91].

Definition 1.1 A uniform proof of a single succedent sequent in a fragment of in-
tuitionistic logic is a sequent calculus proof in which every occurrence of a sequent
with a non-atomic goal is the conclusion of a right rule.

Definition 1.2 An abstract logic programming languageis a triple (D, G, `)
(whereD is the set of valid context formulae andG is the set of valid goal formulae
and` is the consequence relation), such that for any subsetD0 ofD and any elementG0 ofG,D0 ` G0 iff there is a uniform proof ofG0 fromD0.
1.4.2 Horn formulae

Horn formulae (D) are given by the following grammar (whereG stands for Horn
goal formula andD for Horn definite formula);

G::= > j A j G ^G j G _G j 9V:G
D::= A j G � A j D ^D j 8V:D
It is known that̀ IL Ds) G iff `CL Ds) G. Moreover, the Horn definite for-
mulae are classically equivalent to the ‘Horn clauses’ of theorem proving (modulo
issues to do with quantifiers).



CHAPTER 1. INTRODUCTION AND BACKGROUND 14�; A) A (ax) �) > (>)�; D) G�) D � G (�R) �) G1 �) G2�) G1 ^G2 (^R)�) G1�) G1 _G2 (_R1) �) G2�) G1 _G2 (_R2)�) G[y=x]�) 8x:G (8R)� �) G[t=x]�) 9x:G (9R)�) G1 :::: �) Gn�) A (BC)y
* y not free in�y wheren � 0,D 2 � and< fG1; :::; Gng; A >2 jDj

Figure 1.7: The systemI for a fragment of intuitionistic logic

1.4.3 Hereditary Harrop formulae

Hereditary Harrop formulae are given by the following grammar (whereG stands
for hereditary Harrop goal formula andD for hereditary Harrop definite formula):

G::= > j A jD � G j G ^G j G _G j 8V:G j 9V:G
D::= A j G � D jD ^D j 8V:D
Note that the Horn formulae defined in the previous section are hereditary Harrop
definite formulae. We give a calculus (the backchaining calculus,I) for hereditary
Harrop logic (and hence one that can be restricted to one for Horn formulae) which
gives exactly the uniform proofs. The soundness and completeness of this calculus
tells us that hereditary Harrop goal formulae, hereditary Harrop definite formulae
and the intuitionistic consequence relation form an abstract logic programming lan-
guage. The backchaining calculus for intuitionistic logic can be seen in Figure 1.7.
This is taken from [HM94]. We need the following definition:

Definition 1.3 WhereP is aD formula, we definejP j to be the smallest set of pairs
such that:

1. < �; P >2 jP j
2. if< �; P1 ^ P2 >2 jP j then< �; P1 >2 jP j and< �; P2 >2 jP j
3. if< �; 8x:P 0 >2 jP j then for all closed termst,< �; P 0[t=x] >2 jP j
4. if< �; G � P 0 >2 jP j then< � [ fGg; P 0 >2 jP j
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It has been noted by Dyckhoff & Pinto ([DP94], [Dyc98]) that the proofs produced
by goal-directed proof search in the backchaining calculus correspond to normal
natural deductions in the fragment of intuitionistic logic being studied. Note that
this correspondence is only for certain restricted fragments of the logic.

1.4.4 MJ and Logic Programming

The backchaining calculus results from the development of the view of logic pro-
gramming as the backwards search for a proof of a formula in a constructive logic.
The hereditary Harrop formula fragment of intuitionistic logic can be seen as the
maximal fragment of intuitionistic logic for which goal directed proof search is
complete ([Har94]).

Logic programming is not just about what is provable, but about how something is
proved – proof enumeration, not just theorem proving. If one holds the view that
the proofs that should be enumerated are normal natural deductions, then one would
like a suitable system for enumerating these proofs. As discussed above, MJ is such
a system.

If one restricts MJ to the hereditary Harrop formula fragment, one can see that this
semantically motivated calculus matches the pragmatically motivated backchaining
calculus. As MJ extends the backchaining calculus to a calculus for the whole
of first-order intuitionistic logic, it might be thought of as a logic programming
language. MJ can then be thought of as suggesting a natural extension to the notion
of abstract logic programming language, one bringing it away from the syntactic
notion of goal-directed proof search and instead basing it on semantics. MJ is then
an extension of the backchaining calculus to a calculus for a logic programming
language with disjunction and the existential quantifier on the left, that is, the whole
of intuitionistic logic.

In [FMW97] a backchaining calculus for a fragment of an intuitionistic modal logic,
Lax Logic, is given as an abstract language for constraint logic programming. As
Lax Logic is a simple extension of intuitionistic logic, this seems an appropriate
case to apply permutation-free techniques to.

In [HM94] the ideas of abstract logic programming language, uniform proof and
backchaining calculi are applied to a fragment of ILL. This results in the calcu-
lus/programming language Lolli. Linear logic programming languages provide a
more refined language than the usual ones, increasing the expressivity of logic pro-
gramming languages. In Chapter 6 we develop an MJ like calculus for ILL with
the aim of giving a natural extension to Lolli in the same way that MJ extends the
backchaining calculus. A more detailed discussion and overview of Lolli, as well
as all details, are left to Chapter 6.



Chapter 2

Permutations

This chapter is an investigation of the permutability properties of the rules ofthe
two-sided Gentzen system for Intuitionistic Linear Logic (see Figure 1.5). We give
background on the permutability of the rules for intuitionistic logic and single-sided
linear logic, as well as definitions of permutation of inferences and of inference
rules. We tabulate the permutations in ILL and give a calculus, ILLF, for thelogic
adapted from Andreoli’s work on focusing proofs ([And92]). ILLF finds only one
proof in each equivalence class of proofs equivalent up to permutations.

2.1 Background

2.1.1 Intuitionistic Logic

Kleene studies the permutability properties of sequent calculi in [Kle52b]. Kleene
considers the permutability properties of classical and intuitionistic first-order logic.
He defines a notion of permutability of inferencesI1 andI2, whereI2 is immediately
below (as in closer to the root)I1 in the proof tree. The results of this investigation
(for the propositional connectives) can be seen in Table 2.1. (Note that this table
would be slightly different under the definition of permutation we give in section
2.1.3).

A similar table can be found in [DP97], [DP98b]. Mints also studies permutability
of inferences in intuitionistic logic ([Min96]). These papers give a more detailed
account of permutability of proofs in intuitionistic logic. Curry studies permutations
for classical logic in [Cur52b].

The calculus MJ can be studied as a calculus avoiding permutations. The derivations
in this system can be seen as canonical forms for intuitionistic proofs with respect
to permutation of inferences. Every proof in the usual sequent formulation (G3) of
the logic can, by permutation of inferences, be (weakly) normalised to the structure
of an MJ proof (see [DP98b]). Strong normalisation of permutation of proofs is

16
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Key:
p stands for permutable
x stands for non-permutable
n stands for not possible.

Table 2.1: Permutability of inference rules in propositional intuitionistic logic,G3

investigated in [DP98b], [Sch98]. It should be noted that MJ doesn’t avoid all per-
mutations – some of those involving(_L) can still be performed on the image of MJ
derivations inside G3. However, Dyckhoff & Pinto claim that these permutations
are not semantically sound. There are no corresponding equivalences of proof in
natural deduction for intuitionistic logic. Hence these permutations are not interest-
ing (an alternative point of view would be that this suggests that natural deduction
is a poor semantics outside of hereditary Harrop logic, [GLT89]). Indeed, the table
of the permutability of inference rules in a sequent system is dependent on exactly
which sequent system for the logic we look at. Kleene and Dyckhoff & Pinto study
the system G3, an additive system, and allow liberal use of structural rulesto ensure
the permuted proofs are valid. However, one could easily consider a multiplica-
tive intuitionistic calculus (such as G6), where the structural rules would bemore
important. In this calculus the table of the permutability of inferences would be sig-
nificantly different. For example, the(_L) rule no longer permutes down past(�L).
The permutabilities in G6 can be seen in Table 2.2. Permutation of inference rules
in a sequent system seems to be a syntactic notion – its relationship to semantics is
not a straightforward issue.

2.1.2 Linear Logic

Permutation of inferences in linear logic has also been studied, notably by Bellin
([Bel93]) and by Galmiche & Perrier ([GP94]). These studies consider full clas-
sical linear logic with a one-sided sequent presentation. In Tables 2.3 and 2.4 we
present the results of Bellin and Galmiche & Perrier respectively (restricting to the
propositional fragment).

We are interested in the permutation properties of Intuitionistic Linear Logic, pre-
sented as a two-sided sequent calculus with implication as a connective.
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I1
W C �R �L ^R ^L _R _L

W p p p p p p p p
C p p p x x p p x�R p p n x n p n p�L p p p p p p p xI2 ^R p p n p n p n x^L p p p x x p p x_R p p n p n p n p_L p p x x x p x p

Key:
p stands for permutable
x stands for non-permutable
n stands for not possible

Table 2.2: Permutability of inference rules in propositional intuitionistic logic,G6

I1
W C 
 O & � P D

W p p p p p p p p
C p p x p p p p p
 p p p p p p x pO p p x p p p x pI2 & x x x p p x x x� p p p p p p x pP p p x x x x x xD p p p p p p p p

Key:
p stands for permutable
x stands for non-permutable

Table 2.3: Permutability of inference rules in propositional linear logic, Bellin



CHAPTER 2. PERMUTATIONS 19I1
W C 
 O & � P D

W p p p p p p p p
C p p x p p p p p
 p p p p p p x pO p p x p p p x pI2 & x x* x x* x* x x x� p p p p p p x pP p p n n n n n xD p p p p p p p p

Key:
p stands for permutable
x stands for non-permutable
n stands for not possible
x* stands for permutable, depending on the definition of permutability

Table 2.4: Permutability of inference rules in propositional linear logic, Galmiche
& Perrier

2.1.3 Permutation

In this section we define what we mean by a permutation, taking our terminology
from Kleene ([Kle52b]), Galmiche & Perrier ([GP94]) and Troelstra & Schwichten-
berg ([TS96]). We define permutation of inferences (as specific rule instances), and
permutation of inference rules. We give a table of the permutabilities of inference
rules in ILL, and a discussion of its content.

Definition 2.1 Theprincipal formula of an inferenceI is the formula in the conclu-
sion in which the logical symbol is introduced, or which is the result of a contraction
or a weakening.

Definition 2.2 The active formulae of an inferenceI are those formulae in the
premiss(es) from which the principal formula derives.

Definition 2.3 The side formulae of an inferenceI are those formulae that are
unchanged from premiss(es) to conclusion (that is, those that are not principal or
active).

Having given terms of reference to the formulae in an inference, we give some
definitions of positional relationships of inferences in a proof.

Definition 2.4 InferenceI2 is an immediate ancestorof inferenceI1 (andI1 is an
immediate descendantof I2) if the conclusion ofI1 is a premiss ofI2. (Notice
that an inference has only one immediate ancestor, but may have many immediate
descendants.)
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Definition 2.5 InferencesI1 andI2 are in permutation position if I1 is an imme-
diate descendant ofI2 and if the principal formula ofI1 is not active inI2.
Definition 2.6 Let inferencesI1 andI2 be in permutation position. Let inferenceI1
be an instance of ruleR1 with premissesP1 and conclusionC1. Let inferenceI2 be
an instance of ruleR2 with premissesP2 [ fC1g and conclusionC2. InferenceI1
permutes overinferenceI2 if there is a deduction ofC2 fromP1[P2, with instances
of rulesR1 andR2 as the only primitive rule instances used,C2 the conclusion of the
only instance of ruleR1 and with one or more instances of ruleR2 (or admissible
rules) also used. If instances ofR1 andR2 are the only inferences, then we say thatI1 strictly permutes over I2.
Definition 2.7 RuleR1 permutes over(strictly permutes over) ruleR2 if for ev-
ery occurrence of these rules as inferencesI1, I2 in permutation position,I1 per-
mutes overI2 (I1 strictly permutes overI2).
Definition 2.8 If in proof �1, we permute an inferenceI1 over an inferenceI2, to
get proof�2, then we call�1 the permutation object and�2 the permutation
result.

We have made a distinction between permutation and strict permutation. Inferences
strictly permute if the permutation is simply a case of swapping the order twoinfer-
ences, whereas they simply permute if an admissible rule (an inversion, ora struc-
tural rule) is needed. An example of a permutation whereR1 permutes overR2,
but doesn’t strictly permute is the following permutation in G3 (where weakening
is needed): �; A � B ) A �; A � B;B;C ) D�; A � B;B ) C � D (�R)�; A � B ) C � D (�L)
permutes to �; A � B ) A�; A � B;C ) A (W ) �; A � B;B;C ) D�; A � B;C ) D (�L)�; A � B ) C � D (�R)
When the admissible rule is an inversion, it is less obvious that we should allow
such a permutation. We introduced the distinction since it explains the differences
in the tables of permutation of inference for single-sided classical linearlogic owing
to Bellin and Galmiche & Perrier that we gave earlier.
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2.2 Permutations and Intuitionistic Linear Logic

2.2.1 Invertibility

As described below, invertibility of inference rules is related to permutability. In
this section we give some results about the invertibility of the inference rules of
two-sided ILL. Some of these results can be found in [Tro92]. We give illustrative
proofs and counterexamples as well as the invertibilities themselves.

Proposition 2.1 The following primitive inference rules ofILL are invertible:(
L),(�L), (��R), (&R), (C), (P ), (IL). The following primitive inference rules ofILL
are not invertible:(��L), (&L), (
R), (�R), (W ), (D).
PROOF: We prove the invertibilities by showing that the inverse rules are admis-
sible in ILL. This may be done in either of two ways. Firstly we may proceed by
induction on the height of the derivation of the premiss. For example, we show that:�; P 
Q) R�; P; Q) R (
invL )
is admissible in ILL by case analysis of the last rule of the derivation of the premiss.
For each possible rule we either get the conclusion or we can perform the rule at a
lesser height, and we get the result by induction. We omit the long and repetitive
detail. This proof can be useful because of its independence from cut elimination.

Unlike the following much shorter proof using the admissibility of cut:P ) P (ax) Q) Q (ax)P;Q) P 
Q (
R) �; P 
Q) R�; P; Q) R (cut)
The admissibility of all the inverse rules can be shown in similar ways.

We give a counter-example to the invertibility of&L, that is, we show that the
following rule is not admissible in ILL:�; P&Q) R�; P ) R (&inv1L )
A simple counter-example is:A&B ) A&B (ax)A) A&B (&inv1L )
Similar counter-examples can be provided for the other non-invertible rules.�
It is possible that for the context splitting rules we could have defined a weak notion
of invertibility. For example, for(
R) we might have said that if�) P 
Q is
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provable, then there exists a splitting of� into �1 and�2 such that�1 ) P and�2 ) Q are both provable. However, the possibility of contraction prevents any
such notion. The following example illustrates this.

The sequent!A) A
 A is provable in ILL:A) A (ax)!A) A (D) A) A (ax)!A) A (D)!A; !A) A
 A (
R)!A) A
 A (C)
However, neither the pair of sequents (!A) A and) A) nor the pair of sequents
() A and!A) A) are provable.

The proof of the admissibility of the inverse rules makes it clear why invertibility is
related to permutability. The proof uses the interchangeability of the inference with
the other rules of the calculus, the fact that the rule is permutable with all others.
We get invertibility when we have permutability. We prove a general theorem for
all sequent calculi.

Theorem 2.1 For sequent calculusG, if rule R strictly permutes over all rules inG, and the active formulae can be combined, using the connectives of the logic, to
make the principal formula, then rule R is invertible.

PROOF: Consider ruleR with principal formulaP and active formulaePi in theith
premiss (Pi is a set): S1 ::: SnS R
then this has inverses: SS1 Rinv1 ::: SSn Rinvn
Consider theith such rule: SSi Rinvi
Consider any derivation ofS in G. We show that we have a derivation ofSi. There
are four cases to consider. When we refer toP , we refer to an occurrence ofP
traceable to its occurrence in the root.

1. P is the principal formula for some occurrence of ruleR. SinceR strictly
permutes over all the inference rules ofG, we can permute it to the root,
hence we have derivation ending:S1 ::: Si ::: SnS R
Hence we have a derivation ofSi.
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2. P is never principal, but is the side formula of some leaf node (or nodes) of
the derivation. By replacingP by thePi in each sequent in which it appears,
we have a derivation ofSi.

3. P is never principal in a logical rule, but is principal in a structural rule.
Similar to previous case.

4. P is never principal in a logical rule, but is principal in an axiom. This case
only applies whenG allows non-atomic axioms. In this case the rule for the
top connective on the other side needs to be applied where the axiom was.�

Having proved this theorem, we illustrate the proof with an example. Suppose that
the following rule permutes over all others in G6.�; P; Q) R�; P ^Q) R (^L)
Consider any derivation of the sequent�; P ^Q) R. Again, when we refer to an
occurrence of a formula we mean an occurrence that can be traced its occurrence at
the root. The cases are:

1. P ^ Q is principal for some inference. Then since(^L) permutes over all
rules of the calculus, it can be permuted to the root. Hence

....�; P; Q) R�; P ^Q) R (^L)
We have a proof of�; P; Q) R.

2. P ^Q is never principal, and is the side formula of some leaf node. Then�0; P ^Q; S ) S (ax)
....�; P ^Q) R becomes

�0; P; Q; S ) S (ax)
....�; P; Q) R

We have a proof of�; P; Q) R.

3. P ^Q is never principal in a logical rule, but is principal in a structural rule.
Consider weakening:

....�0 ) S�0; P ^Q) S (W )

....�; P ^Q) R becomes

....�0 ) S�0; Q) S (W )�0; P; Q) S (W )

....�; P; Q) R
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We have a proof of�; P; Q) R. Consider contraction:

....�0; P ^Q;P ^Q) S�0; P ^Q) S (C)

....�; P ^Q) R becomes

....�0; P; P;Q;Q) S�0; P; P;Q) S (C)�0; P; Q) S (C)

....�; P; Q) R
4. P ^Q is never principal in a logical rule, but is principal in an axiom. Then:�0; P ^Q) P ^Q (ax)

....�; P ^Q) R becomes

�0; P; Q) P (ax) �0; P; Q) Q (ax)�0; P; Q) P ^Q (^R)
....�; P; Q) R

We have a proof of�; P; Q) R.

2.2.2 Permutability Table for ILL

In section 2.1.3 we gave definitions of permutability of inferences and rules. Table
2.5 gives the permutability of the rules of ILL, indicating whether two rules permute
(and if so under what definition), or are never in permutation position, or do not
permute.

Study of this table suggests that some inferences are more suitable for permuting
backwards (toward the leaves) and others forwards to the root. Following [GP94]
we call the rules suitable for backward permutation,T"; those suitable for forward
permutation,T#. T# = f(
L), (�L), (��R), (&R), (IL)g. T" = f(��L), (
R),(&L), (�R), (W ), (D), (C)g. Notice that, as one would expect, the inference rules
that are suitable for forward permutation are those that are invertible, and those
suitable for backward permutation are the non-invertible rules. The only exception
to this is contraction, which is invertible, but is moved backward since the more
formulae there are in a sequent, the harder it is to control. Also note that(P ), also
invertible, is not included in either of these sets. Study of the table doesn’t suggest
an obvious answer to how we should try and move this inference. In fact, we leave
it as a pivot about which the structure of proofs revolve.

Having studied the permutation of inference rules in classical linear logic,Galmiche
& Perrier define a normal form for sequent derivations. We give a version of this
definition for two-sided ILL. The aim being to avoid redundancies in proofs, we
first observe that cut elimination holds for ILL (see [Bie94]) and so we do not have
to consider a system with cut. We also try to avoid weakening/contraction pairs,
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L �L ��L &L 
R �R ��R &R C W D P IL
L p p x p x p p p p p p x p�L i i x x x x i i i x x x i��L p p p p p p p p p p p x p&L p p p p p p p p p p p x p
R p p p p n n n n p p p n p�R p p p p n n n n p p p n pI2 ��R p p x p n n n n p p p n p&R i i x x n n n n i x x n iC p p x p x p p p p p p p pW p p p p p p p p p p p p pD p p p p p p p p p p p p pP n n n n n n n n p p x n nIL p p p p p p p p p p p x p

Key:
p stands for strictly permutable
x stands for non-permutable
n stands for not possible
i stands for permutable (using invertibility)

Table 2.5: Permutability of inference rules in propositional ILL

such as: P ) P (ax)!P ) P (D)!P; !P ) P (W )!P ) P (C)
Definition 2.9 Proof� in ILL is under weakening and contraction reductionif
for any instance of rule(C), the active formulae are not principal formulae of an
immediate descendant inference(W ).
Note that following definition (from Galmiche & Perrier) of normal proof is unre-
lated to the notion of normal natural deduction used elsewhere in this thesis.

Definition 2.10 Proof � in ILL is normal if it is cut-free, under weakening and
contraction reduction and:

1. any sequent of form!�)!P is the conclusion of a(P )
2. else if sequentS contains formulae introduced by an inference rule inT# thenS is the conclusion of an inference rule inT#
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3. else if sequentS contains formulae introduced by an inference rule inT"nf(W ), (C)g, then each premiss is either the conclusion of a(P ) or the ac-
tive formula (if it is not atomic) is the principal formula in the immediate
descendant.

4. else if sequentS has a principal formula!P , then either

(a) S is the conclusion of a(W ) which is the result of a chain of weakenings
from an axiom

(b) S is the conclusion of a(C) and the immediate descendant is a(D)
introducing one of the active formulae of the(C) or a chain of contrac-
tions from a context splitting rule.

Later we compare the sequent proofs in this normal form with proofs in the calculus
given in the next section.

2.3 Focusing Proofs

In this section we describe the notion of a ‘focusing proof’ introduced in [And92]
and apply it to the two-sided sequent calculus for ILL. In his paper, Andreoli givesa
single-sided focusing calculus for classical linear logic. Here we use the same ideas
to get a focusing calculus for two-sided ILL. We compare this with the permutability
table for ILL and with the definition of a normal sequent proof from Galmiche &
Perrier.

The motivation for focusing proofs is the same as for many of the calculi mentioned
in this thesis – to have a calculus that avoids finding proofs that are, in some sense,
essentially the same. Andreoli’s work is developed syntactically from thesequent
calculus presentation of linear logic, rather than the semantic approach taken later
in this thesis. Sequent proofs are studied, and redundancies, such as permutations
and trivial loops, are identified. A calculus that (as far as possible) avoids these
is given. The resulting calculus is one suitable for theorem proving – finding a
proof efficiently. By taking a purely syntactic view of proof, and considering the
focusing proofs as normal forms with respect to permutations, ILLF can also beseen
as a proof enumeration calculus. This is the view taken by Andreoli in [And92].
However, focusing calculi lack the semantic rationale that proof enumeration calculi
should have.

We take the following definitions from Andreoli ([And92]).

Definition 2.11 Two proofs are said to beP-equivalent if each can be transformed
to the other by simple permutation of inference figures and elimination or introduc-
tion of weakening/contraction pairs.
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We give a calculus for ILL similar to that of Andreoli’s for classical linear logic
which finds only one proof in each P-equivalence class.

We give two definitions:

Definition 2.12 A connective isasynchronousif, when a principal formula with
this connective as the top connective has been selected, there is only one applicable
instance of an inference rule.

Definition 2.13 A connective issynchronous if, when a principal formula with
this connective as the top connective has been selected, there is more than one
applicable instance of an inference rule.

For two-sided ILL we need to distinguish between the positive and negative occur-
rences of connectives (their occurrence on the right and on the left). We find that
the asynchronous connectives are:��+, &+, 
�, ��. The synchronous connec-
tives are:���, &�, 
+, �+. The negative occurrences will be principal formulae
of left rules and the positive occurrences will be principal formulae of right rules. It
is observed that the rules for the asynchronous connectives are invertible and in the
setT# and that the rules for the synchronous connectives are not invertible and are
in the setT". We haven’t mentioned! as it doesn’t fit as neatly into this pattern and
will be treated differently from the other connectives in the calculus we give.

We give a calculus which we will call ILLF. This has similar properties to Andreoli’s
focusing calculus for classical linear logic (called�3). Firstly the problem of where
to apply the structural rules is lessened. We add an extra field to the standard cal-
culus in which we put only exponential formulae. Weakening can be permuted up
towards the axioms, hence we can drop the weakening rule and in its place change
the axiom rule so that any number of exponential formulae are allowed in the con-
text. Contraction doesn’t permute over context splitting rules, but if we duplicate
all the exponential formulae in the new field at the application of one of these rules,
then we will have duplicated the necessary formulae. Hence no explicit contraction
rule is necessary. We may perform unnecessary contractions, but this is unproblem-
atic with the new axiom rule. Note that there is a small cost to this – the possibility
of dereliction of formulae that would not otherwise be in the context is introduced.
Which rules can be applied is also restricted. We try to apply (backward) the asyn-
chronous, invertible, rules first. To this end we split the context into further fields:
a list of formulae and a multiset of synchronous formulae. The list places an (ar-
bitrary) order on the way the asynchronous formulae are considered. We also have
two kinds of goal (for synchronous and asynchronous goals). ILLF is displayed in
Figure 2.1.

The calculus ILLF has four forms of sequent. These direct proof search by forcing
asynchronous formulae (those with invertible rules) to be broken up first, and then
by focusing on a formula (the active formula of a premiss is principal in the next
backward inference) for as long as possible.
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�; � * L; P ) Q *�; � * L) P��Q * (��R) �; � * L) P * �; � * L) Q *�; � * L) P&Q * (&R)�; � * L) > * (>R)�; � * L) R +�; � * L) R * (*R) if R not asynchronous�; � * L; P;Q) R +�; � * L; P 
Q) R + (
L)�; � * L; P ) R + �; � * L;Q) R +�; � * L; P �Q) R + (�L)�; P ; � * L) R +�; � * L; !P ) R + (S) �; � * L) R +�; � * L; I ) R + (IL)�; � * L; 0) R + (0L)�; �; P * L) R +�; � * L; P ) R + (Pop) P not asynchronous�; � +) R *�; � *) R + (+R) �; � + P ) R +�; �; P *) R + (Push)�; P ; � + P ) R +�; P ; � *) R + (D)�; � +) P * �;� +) Q *�; �;� +) P 
Q * (
R) �;+) I * (IR)�; � +) P *�; � +) P �Q * (�R1) �; � +) Q *�; � +) P �Q * (�R2)�;*) P *�;+)!P * (P )�; � *) R *�; � +) R * (+L1) R not synchronous�;+ A) A + (ax) �; � +) P * �;� + Q) R +�; �;� + P��Q) R + (��L)�; � + P ) R +�; � + P&Q) R + (&L1) �; � + Q) R +�; � + P&Q) R + (&L2)�; � * P ) R +�; � + P ) R + (+L2) P not synchronous

Figure 2.1: The focusing calculus ILLF for Intuitionistic Linear Logic
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Initial sequents have form�; � * L) R *. The only rules with such a sequent as
the conclusion are those for asynchronous connectives on the right and(*R), which
is only applicable when the goal is not asynchronous. Hence the goal formula is
forced to be broken up until not asynchronous, then the form of the sequent is
changed to�; � * L) R +.

When the sequent has form�; � * L) R + and the list,L, is non-empty, the only
rules applicable are those for the asynchronous connectives on the left,(Pop) and(S). The latter two rules are only applicable with principal formulae which arenot
asynchronous. That is, all asynchronous formulae on the left are broken up in a
fixed order and other formulae are put to one side to be dealt with later. When there
are no more asynchronous formulae on the left (that is, whenL is the empty list) we
reach the major choice point in the calculus. Using one of(+R), (Push) and(D),
a formula is selected and focused on.

If (+R) is used, the goal is selected and sequent changed to form�; � +) R *.
Only the rules for synchronous connectives on the right,(P ) and(+L1) are applica-
ble to a sequent of this form. That is, the goal is broken up until a sequent with a
non-synchronous right hand side is reached.

If (S) or (D) is used, a formula on the left is selected and the sequent changed to the
form �; � + P ) R +. Only the rules for synchronous formulae on the left,(ax)
and(+L2) are applicable to a sequent of this form. That is, the selected formula is
broken up until the formula in the special position is not synchronous.

2.3.1 Soundness and Completeness

The calculus ILLF is the result of entirely syntactic observations and results on the
permutability and invertibility of inference rules. To prove the requiredresults, a
lot of lemmas about the admissibility of various rules in ILLF are needed. This
makes the full detail of the proof very long, although there is nothing too involved
in these details. Here we state the lemmas, proving only one as an illustration of the
standard techniques used in the proofs. We then prove the theorem which, once we
have the lemmas, is routine.

We prove the result via the equivalence of both ILL and ILLF to an intermediate
calculus, ILL�. This calculus has two fields which absorb the structural rules of
ILL. The calculus ILL� can be seen in Figure 2.2. Note that� could have been
given as a set, but for our purposes it is easier for it to be a multiset. (Intuitionistic)
Linear Logic is often presented with the context split into non-linear (or classical)
and linear field. A calculus similar to ILL� can be found in, for example, [HM94].
Treating linear and non-linear formulae separately is taken to its extremes in Gi-
rard’s Logic of Unity ([Gir93]).

We prove the equivalence of ILL and ILL�. This requires a couple of standard
results.
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�;A) A (ax) �; �) > (>R) �; �; 0) R (0L)�;) I (IR) �; �) R�; �; I ) R (IL)�; �; P ) Q�; �) P��Q (��R) �; �) P �;�; Q) R�; �;�; P��Q) R (��L)�; �) P �; �) Q�; �) P&Q (&R)�; �; P ) R�; �; P&Q) R (&L1) �; �; Q) R�; �; P&Q) R (&L2)�; �) P �;�) Q�; �;�) P 
Q (
R) �; �; P; Q) R�; �; P 
Q) R (
L)�; �) P�; �) P �Q (�R1) �; �) Q�; �) P �Q (�R2)�; �; P ) R �; �; Q) R�; �; P �Q) R (�L)�; P ; �) R�; �; !P ) R (S) �; P ; �; P ) R�; P ; �) R (D)�;) P�;)!P (P )
Figure 2.2: The calculus ILL� for Intuitionistic Linear Logic
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Definition 2.14 Theheight of a derivation is the number of nodes on the longest
branch.

Lemma 2.1 The following rules are admissible inILL �:�; P; P ; �) R�; P ; �) R (C) �; �) P�;�;�) P (W�)
PROOF: The admissibility of both rules can be shown by standard induction argu-
ments.�
Lemma 2.2 The sequent!�;�) P is provable inILL iff the sequent�; �) P is
provable inILL �.

PROOF: We illustrate the proof of this theorem for the��, ! fragment of ILL. The
extended proof is similar.

First we show that if�; �) P is provable in ILL� then!�;�) P is provable in
ILL.

The proof is by induction on the height of derivations.

1. �;A) A (ax)
then A) A (ax)!�; A) A (W�)

2. In ILL� we have �; �; P ) Q�; �) P��Q (��R)
by induction hypothesis we have:!�;�; P ) Q!�;�) P��Q (��R)

3. In ILL� we have �; �) P �;�; Q) R�; �;�; P��Q) R (��L)
by induction hypothesis we have:!�;�) P !�;�; Q) R!�; !�;�;�; P��Q) R (��L)!�;�;�; P��Q) R (C�)
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4. In ILL� we have �; P ; �) R�; �; !P ) R (S)
by induction hypothesis we have:!�; !P;�) R
as required.

5. In ILL� we have �; P ; �; P ) R�; P ; �) R (D)
by induction hypothesis we have:!�; !P;�; P ) R!�; !P; !P;�) R (D)!�; !P;�) R (C)

6. In ILL� we have �;) P�;)!P (P )
by induction hypothesis we have:!�) P!�)!P (P )

Now we show that if!�;�) P (where� contains no banged formulae) is provable
in ILL then�; �) P is provable in ILL�.

The proof is by induction on the height of derivations.

1. In ILL we have A) A (ax)
then ;A) A (ax)

2. In ILL we have !�;�; P ) Q!�;�) P��Q (��R)
by induction hypothesis we have:�; �; P ) Q�; �) P��Q (��R)
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3. In ILL we have !�1;�) P !�2;�; Q) R!�1; !�2;�;�; P��Q) R (��L)
by induction hypothesis and Lemma 2.1 we have:�1; �) P�1;�2; �) P (W�) �2; �; Q) R�1;�2; �; Q) R (W�)�1;�2; �;�; P��Q) R (��L)

4. In ILL we have !�;�) R!�; !P;�) R (W )
by induction hypothesis and Lemma 2.1 we have:�; �) R�; P ; �) R (W )

5. In ILL we have !�; !P; !P;�) R!�; !P;�) R (C)
by induction hypothesis and Lemma 2.1 we have:�; P; P ; �) R�; P ; �) R (C)

6. In ILL we have !�; P;�) R!�; !P;�) R (D)
by induction hypothesis and Lemma 2.1 we have:�; �; P ) R�; P ; �; P ) R (W )�; P ; �) R (D)

7. In ILL we have !�) P!�)!P (P )
by induction hypothesis we have:�;) P�;)!P (P )
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The following lemmas are needed in order to prove the equivalence of ILL� and
ILLF. Note that the rules given have an* in the succedent, but that in most cases the
rule with this arrow reversed is also admissible. This is noted in the statement of the
appropriate lemmas. The proofs are all by induction on the height of derivations (in
fact we often simultaneously prove the admissibility of several rules with different
positions of arrows). We illustrate the proofs by giving a restricted proof of the first
lemma, but omit all other proofs.

Lemma 2.3 The following rule is admissible inILLF :�; � * L) R *�;�;� * L) R * (W�)
(In fact, we prove this result for any legitimate combination of the arrows).

PROOF: We illustrate the proof for the��, ! fragment of the logic.

The proof is by induction on the height of derivations.

1. (��R) �; � * L; P ) Q *�; � * L) P��Q * (��R)
by induction hypothesis we have:�; � * L; P ) Q *�;�;� * L; P ) Q * (W�)�;�;� * L) P��Q * (��R)

2. (*R) �; � * L) P +�; � * L) P * (*R) P not asynchronous

by induction hypothesis we have:�; � * L) P +�;�;� * L) P + (W�)�;�;� * L) P * (*R) P not asynchronous

3. (S) �; P ; � * L) R +�; � * L; !P ) R + (S)
by induction hypothesis we have:�; P ; � * L) R +�;�; P ; � * L) R + (W�)�;�;� * L; !P ) R + (S)
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4. (Pop) �; �; P * L) R +�; � * L; P ) R + (Pop)
by induction hypothesis we have:�; �; P * L) R +�;�;�; P * L) R + (W�)�;�;� * L; P ) R + (Pop)

5. (+R) �; � +) R *�; � *) R + (+R)
by induction hypothesis we have:�; � +) R *�;�;� +) R * (W�)�;�;� *) R + (+R)

6. (Push) �; � + P ) R +�; �; P *) R + (Push)
by induction hypothesis we have:�; � + P ) R +�;�;� + P ) R + (W�)�;�;�; P *) R + (Push)

7. (D) �; P ; � + P ) R +�; P ; � *) R + (D)
by induction hypothesis we have:�; P ; � + P ) R +�;�; P ; � + P ) R + (W�)�;�; P ; � *) R + (D)

8. (P ) �;*) P *�;+)!P * (P )
by induction hypothesis we have:�;*) P *�;�;*) P * (W�)�;�;+)!P * (P )
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9. (+L1) �; � *) R *�; � +) R * (+L1)
by induction hypothesis we have:�; � *) R *�;�;� *) R * (W�)�;�;� +) R * (+L1)

10. (ax) �;+ A) A + (ax)
then �;�;+ A) A + (ax)

11. (��L) �; � +) P * �;	 + Q) R +�; �;	 + P��Q) R + (��L)
by induction hypothesis we have:�; � +) P *�;�;� +) P * (W�) �;	 + Q) R +�;�;	 + Q) R + (W�)�;�;�;	 + P��Q) R + (��L)

12. (+L2) �; � * P ) R +�; � + P ) R + (+L2) P not synchronous

by induction hypothesis we have:�; � * P ) R +�;�;� * P ) R + (W�)�;�;� + P ) R + (+L2) P not synchronous�
Lemma 2.4 The following rule is admissible inILLF :�; �; P * L;M ) R *�; � * L; P;M ) R * P not asynchronous

(Note that this lemma still holds with the succedent arrow reversed).

Lemma 2.5 The following rule is admissible inILLF :�; � * L; P;Q;M ) R *�; � * L; P 
Q;M ) R *
(Note that this lemma still holds with the succedent arrow reversed).
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Lemma 2.6 The following rule is admissible inILLF :�; � * L; P;M ) R * �; � * L;Q;M ) R *�; � * L; P �Q;M ) R *
(Note that this lemma still holds with the succedent arrow reversed).

Lemma 2.7 The following rule is admissible inILLF :�; P ; � * L;M ) R *�; � * L; !P;M ) R *
(Note that this lemma still holds with the succedent arrow reversed).

Lemma 2.8 The following rule is admissible inILLF :�; � * L;M ) R *�; � * L; I;M ) R *
(Note that this lemma still holds with the succedent arrow reversed).

Lemma 2.9 The following rule is admissible inILLF :�; � *M ) P *�; � * L) P * whereL �M
whereL � M means thatL andM are different lists of the same elements. That is,
this is an exchange rule. (Note that this lemma also holds with the succedent arrow
reversed).

Lemma 2.10 Proving “�; �; L) R implies�; � * L) R * provable” is equiv-
alent to proving “�;L) R provable implies�;* L) R *”.

PROOF: “)” This direction is trivial, simply put� = �.

“(” Let L0 be any ordering of�. We can then prove�;* L; L0 ) R *. By Lemma
2.4 we can prove�; � * L) R *. �
Lemma 2.11 The following rule is admissible inILLF :�; � * L; P 
Q;M ) R *�; � * L; P;Q;M ) R *
(Note that this rule with the succedent arrow reversed is also admissible).

Lemma 2.12 The following rules are admissible inILLF :�; � * L; P �Q;M ) R *�; � * L; P;M ) R * �; � * L; P �Q;M ) R *�; � * L;Q;M ) R *
(Note that these rules with the succedent arrows reversed are also admissible).
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Lemma 2.13 The following rule is admissible inILLF :�; � * L; !P;M ) R *�; P ; � * L;M ) R *
(Note that this rule with the succedent arrow reversed is also admissible).

Lemma 2.14 The following rule is admissible inILLF :�; � * L; I;M ) R *�; � * L;M ) R *
(Note that this rule with the succedent arrow reversed is also admissible).

Lemma 2.15 The following rule is admissible inILLF :�; � * L; P;M ) R *�; �; P * L;M ) R * P not asynchronous

(Note that this rule with the succedent arrow reversed is also admissible).

Lemma 2.16 The following rule is admissible inILLF :�; � * L) P��Q *�; � * L; P ) Q *
Lemma 2.17 The following rules are admissible inILLF :�; � * L) P&Q *�; � * L) P * �; � * L) P&Q *�; � * L) Q *
Lemma 2.18 The following rule is admissible inILLF :�; � * L) P *�; � * L) P + P not asynchronous

Lemma 2.19 The following rule is admissible inILLF :�; �; P * L) R *�; �; P&Q * L) R *
(Note that this rule with the other appropriate combination of arrows is also admis-
sible).

Lemma 2.20 The following rule is admissible inILLF :�; �; Q * L) R *�; �; P&Q * L) R *
(Note that this rule with the other appropriate combination of arrows is also admis-
sible).
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Lemma 2.21 The following rule is admissible inILLF :�; �1 *) P * �; �2; Q * L) R *�; �1;�2; P��Q * L) R *
(Note that this rule with the other appropriate combination of arrows is also admis-
sible).

Lemma 2.22 The following rule is admissible inILLF :�; P ; �; P * L) R *�; P ; � * L) R *
(Note that this rule with the other appropriate combination of arrows is also admis-
sible).

Lemma 2.23 The following rule is admissible inILLF :�; �1 *) P * �; �2;* Q) R +�; �1;�2; P��Q *) R +
Lemma 2.24 The following rule is admissible inILLF :�; � * P ) R +�; �; P&Q *) R +
Lemma 2.25 The following rule is admissible inILLF :�; � * Q) R +�; �; P&Q *) R +
Lemma 2.26 The following rule is admissible inILLF :�; P ; � * L; P;M ) R *�; P ; � * L;M ) R *
(Note that this rule with the other appropriate combinations of arrows is also ad-
missible).

Lemma 2.27 The following rule is admissible inILLF :�; � *) R *�; � +) R *
Lemma 2.28 The following rule is admissible inILLF :�; � * L; 0;M ) R *
Now we have all the results we need to complete the equivalence proof.
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Lemma 2.29 Sequent�; �; L) P is provable inILL � iff sequent�; � * L) P *
is provable inILLF .

PROOF: The proof is again by induction on the height of derivations.

“(”. We need to show that:

– If �; � * L) R * is provable in ILLF then�; �; L) R is provable in ILL�.

– If �; � * L) R + is provable in ILLF then�; �; L) R is provable in ILL�.

– If �; � + P ) R + is provable in ILLF then�; �; P ) R is provable in
ILL �.

For this direction we illustrate the proof for the��, ! fragment of the logic.

1. In ILLF we have �; � * L; P ) Q *�; � * L) P��Q * (��R)
by induction hypothesis we have:�; �; L; P ) Q�; �; L) P��Q (��R)

2. In ILLF we have �; � * L) P +�; � * L) P * (*R)
by induction hypothesis we have:�; �; L) P
as required.

3. In ILLF we have: �; P ; � * L) R +�; � * L; !P ) R + (S)
by induction hypothesis we have:�; P ; �; L) R�; �; L; !P ) R (S)

4. In ILLF we have�; �; P * L) R +�; � * L; P ) R + (Pop) P not asynchronous

by induction hypothesis we get:�; �; L; P ) R
as required.
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5. In ILLF we have �; � +) R *�; � *) R + (+R)
by induction hypothesis we get:�; �) R
as required.

6. In ILLF we have �; � + P ) R +�; �; P *) R + (Push)
by induction hypothesis we get:�; �; P ) R
as required.

7. In ILLF we have �; P ; � + P ) R +�; P ; � *) R + (D)
by induction hypothesis we get:�; P ; �; P ) R�; P ; �) R (D)

8. In ILLF we have �;*) P *�;+)!P * (P )
by induction hypothesis we have:�;) P�;)!P (P )

9. In ILLF we have�; � *) R *�; � +) R * (+L1) R not synchronous

by induction hypothesis we get:�; �) R
10. In ILLF we have �;+ A) A + (ax)

then �;A) A (ax)
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11. In ILLF we have�; � +) P * �;� + Q) R +�; �;� + P��Q) R + (��L)
by induction hypothesis we have:�; �) P �;�; Q) R�; �;�; P��Q) R (��L)

12. In ILLF we have�; � * P ) R +�; � + P ) R + (+L) P not synchronous

by induction hypothesis we have:�; �; P ) R
as required.

“)” For this direction we give the entire proof rather than a fragment of it, as this
is the non-trivial part.

By Lemma 2.10 it is enough to show that�;L) P provable in ILL� implies�;* L) P * provable in ILLF.

1. In ILL� we have �;L; P ) Q�;L) P��Q (��R)
by induction hypothesis we have:�;* L; P ) Q *�;* L) P��Q * (��R)

2. In ILL� we have �;L) P �;L) Q�;L) P&Q (&R)
by induction hypothesis we have�;* L) P * �;* L) Q *�;* L) P&Q * (&R)

3. In ILL� we have �;L) > (>R)
in ILLF �;* L) > * (>R)
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4. In ILL� we have �;L; P;Q) R�;L; P 
Q) R (
L)
by induction hypothesis and Lemma 2.5 we have:�;* L; P;Q) R *�;* L; P 
Q) R *

5. In ILL� we have �;L; P ) R �;L;Q) R�;L; P �Q) R (�L)
by induction hypothesis and Lemma 2.6 we have:�;* L; P ) R * �;* L;Q) R *�;* L; P �Q) R *

6. In ILL� we have �; P ;L) R�;L; !P ) R (S)
by induction hypothesis and Lemma 2.7 we have�; P ;* L) R *�;* L; !P ) R *

7. In ILL� we have �;L) R�;L; I ) R (IL)
by induction hypothesis and Lemma 2.8 we have�;* L) R *�;* L; I ) R *

8. In ILL� we have �;L; 0) R (0L)
by Lemma 2.28 we have: �;* L; 0) R *

9. In ILL� we have �;L1 ) P �;L2 ) Q�;L1; L2 ) P 
Q (
R)
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by induction hypothesis we have:�;* L1 ) P *�0;L01 *) P * (1)�0;L01 +) P * (3) �;* L2 ) Q *�0;L02 *) Q * (2)�0;L02 +) P * (4)�0;L01; L02 *) P 
Q + (
R)�;* L1; L2 ) P 
Q + (5)�;* L1; L2 ) P 
Q * (*R)
Where(1) a series of applications of Lemmas 2.3, 2.11-2.15,(2) a series of
applications of Lemmas 2.3, 2.11-2.15,(3) Lemma 2.27,(4) Lemma 2.27,(5) a series of applications of(Pop), (
L), (�L), (IL), (S). Also we may
need to build extra bits of proof for additive rules.

10. In ILL� we have �; P ;L; P ) R�; P ;L) R (D)
by induction hypothesis and Lemma 2.25 we get:�; P ;* L; P ) R *�; P ;* L) R *

11. In ILL� we have �;) I (IR)
then �;+) I * (IR)�;*) I + (+R)�;*) I * (*R)

12. In ILL� we have �;L) P�;L) P �Q (�R1)
by induction hypothesis we have�;* L) P *�0;L0 *) P * (1)�0;L0 +) P * (2)�0;L0 +) P �Q * (�R1)�0;L0 *) P �Q + (+R)�;* L) P �Q + (3)�;* L) P �Q * (*R)
where(1) a series of application of Lemmas 11-15,(2) Lemma 2.26,(3) a
series of applications of(Pop), (
L), (�L), (IL), (S). Also we may need to
build extra bits of proof for additive rules
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13. (�R2) similar to(�R1).
14. In ILL� we have �;) P�;)!P (P )

by induction hypothesis we have�;*) P *�;+)!P * (P )�;*)!P + (+R)�;*)!P * (*R)
15. In ILL� we have �;A) A (ax)

by induction hypothesis we have�;+ A) A + (ax)�;A *) A + (Push)�;* A) A + (Pop)�;* A) A * (*R)
16. In ILL� we have �;L1 ) P �;L2; Q) R�;L1; L2; P��Q) R (��L)

by induction hypothesis we have�;* L1 ) P *�0;L01 *) P * (4)�0;L01 +) P * (5) �;* L2; Q) R *�;* L2; Q; L3 ) S * (1)�0;L02; L03 * Q) S * (2)�0;L02; L03 * Q) S + (3)�0;L01; L02; L03; P��Q *) S + (6)�;* L1; L2; L3; P��Q) S + (7)�;* L1; L2; L3; P��Q) S * (*R)�;* L1; L2; P��Q) R * (8)
where(1) a series of application of Lemmas 2.16, 2.17,(2) a series of applica-
tions of Lemmas 2.3, 2.11-2.15,(3) Lemma 2.18,(4) a series of applications
of Lemmas 2.3, 2.11-2.15,(5) Lemma 2.26,(6) Lemma 2.23(7) a series of
applications of(Pop), (
L), (�L), (IL), (S). Also we may need to build
extra bits of proof for additive rules,(8) a series of applications of(��R),(&R). Also we may need to build extra bits of proof for additive rules.
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17. In ILL� we have �;L1; P ) R�;L1; P&Q) R (&L1)
by induction hypothesis we have�;* L1; P ) R *�;* L1; P; L2 ) S * (1)�0;L01; L02 * P ) S * (2)�0;L01; L02 * P ) S + (3)�0;L01; L02; P&Q *) S + (4)�;* L1; L2; P&Q) S + (5)�;* L1; L2; P&Q) S * (*R)�;* L1; P&Q) R * (6)
where(1) a series of applications of Lemmas 2.16, 2.17,(2) a series of appli-
cations of Lemmas 2.11-2.15,(3) Lemma 2.18,(4) Lemma 2.24,(5) a series
of applications of(Pop), (
L), (�L), (IL), (S). Also we may need to build
extra bits of proof for additive rules,(6) a series of applications of(��R),(&R). Also we may need to build extra bits of proof for additive rules.

18. (&L2). Similar to(&L1).�
Theorem 2.2 The calculiILL and ILLF are equivalent: the sequent!�;�; L) P
is provable inILL iff the sequent�; � * L) P is provable inILLF . HenceILLF
is sound and complete with respect to provability inILL .

PROOF: Immediate from Lemma 2.2 and Lemma 2.29.�
2.4 ILLF and Permutations

The motivation for focusing calculi is the reduction of redundancy in proof search.
Calculi good for delivering a yes/no answer to a query have as much determinism
as possible, and on backtracking will not investigate an essentially similar path. A
calculus where trivial permutation of inferences is not possible is good for this.

ILLF has a lot of determinism and avoids permutations. Occurrences of(��R) and(&R) are forced to occur as soon as possible, hence cannot be permuted. Occur-
rences of(
L), (�L), and(IL) are forced to occur together, and the list structure
forces this treatment to be in fixed sequence, thus preventing (in a somewhat arbi-
trary manner) the permutation of these inferences with each other, as wellas with
other rules. The major choice point is where it is decided which synchronous for-
mula to consider, or whether to derelict. Once a formula had been decided upon, it is
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principal, as are the active formulae in the premisses (unless atomic) – the formula
is focused upon (further restriction could be placed on(+L2) to prevent its use with a
focused atom). Promotion occurs as soon as possible. In fact in ILLF as presented,
there is a choice between promotion and dereliction in ILLF. A side condition could
be placed on(D), restricting its application to when(P ) is not possible. Indeed it
could be further restricted so that it is only applicable when the formulae in� are
atomic. Due to the separate field for the exponential formulae, we do not have to
worry about permutations of(C) and(W ).
ILLF finds proofs up to permutations. Compare ILLF with the table of permuta-
tion of inference rules (Table 2.5). It is observed that inferences which it says are
permutable cannot occur in permutation position in ILLF (or the proofs of ILLF
mapped into proofs in ILL). For each ordering of the list, the calculus finds only
one proof in each P-equivalence class.

Finally we compare the proofs of ILLF with the definition of a normal sequent proof
(Definition 2.10). As discussed above, because of the formulation of(D), sequents
of form !�)!P might not be the result of promotion, but we could restrict ILLF so
that they are. The other clauses of the definition are satisfied, or irrelevant, so it can
be said that ILLF only finds proofs in normal form with respect to permutations.

2.5 Concluding Remarks

This chapter has studied ILL proofs in a purely syntactic way. Having investigated
permutations of inferences and inference rules, as well as the invertibility of rules,
we gave a calculus avoiding permutations. This calculus, ILLF, gives a reduced
proof search space and hence is suitable for theorem proving. It could also be
viewed as a proof enumeration calculus as it can be argued that normal proofs with
respect to permutation of inferences in a sequent calculus are the proofs of interest.
We prefer to have a semantic motivation for proof enumeration calculi. This results
in the calculus SILL given in Chapter 6.



Chapter 3

A Permutation-free Sequent Calculus
for Lax Logic

This chapter is a study in the application of permutation-free techniques. The meth-
ods that develop MJ (see Chapter 1, [Her95], [DP96], [DP98a]) are used to find a
‘permutation-free’ calculus for an intuitionistic modal logic. The results andtheir
proofs are simple extensions of those for MJ, their inclusion here being to illustrate
the wide applicability of permutation-free techniques and for reference purposes.

The logic we look at, now called Lax Logic, dates back to Curry ([Cur52a]). Interest
in Lax Logic has recently been renewed. We give a very short introduction to Lax
Logic and its applications, then build the machinery to develop the permutation-free
calculus PFLAX. Much of the work contained in this chapter can also be found in
[How98].

3.1 Lax Logic

Lax Logic is an intuitionistic modal logic with a single modality (�, somehow). This
modality is unusual in that it has properties both of necessity and of possibility. The
modality can be thought of as expressing correctness up to a constraint, abstracting
away from the detail (hence the choice of name, Lax Logic). A formula�P can be
read as “for some constraintc, formulaP holds underc”. The modality is axioma-
tised by three axioms:�R : S � �S�M : � � S � �S�F : (S � T ) � (�S � �T )
The logic can also be presented as a natural deduction calculus (displayed in sequent
style in Figure 3.1) and as a sequent calculus (Figure 3.6). Lax logic has recently
been investigated by Fairtlough, Mendler & Walton ([Men93], [FM94], [FM97],
[FMW97], [FW97]) and by Benton, Bierman and de Paiva ([BBdP98]).

48
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Curry ([Cur52a]) introduced the logic to illustrate cut-elimination in the presence
of modalities. The logic was rediscovered by Mendler, who developed the logic
for abstract reasoning about constraints in hardware verification ([Men93]).The
timing constraints that need to be satisfied in a circuit can be abstracted away as
instances of the modality and reasoned about separately from the logical analysis
of the circuit. In [Men93], [FM94], [FM97], the proof theory and semantics of Lax
Logic are developed, giving Gentzen calculi, natural deduction calculi and Kripke
semantics for the logic as well as giving details of the logic’s use as a tool for
hardware verification.

Lax Logic has also been observed ([BBdP98]) as the type system for Moggi’s com-
putational lambda-calculus (see [Mog89]). In [BBdP98] the correspondence be-
tween the natural deduction presentation of Lax Logic (there called computational
logic) and the computational lambda calculus is given, along with some proof the-
oretic results on the logic.

In [FMW97] the ability of Lax Logic to give an abstract expression of constraints
is utilised to give a semantics to constraint logic programming languages. The
constraints to be satisfied can be abstracted away as modalities and the query can be
reasoned about logically. The constraints can then be analysed separately. Thelogic
is used to give proofs of queries. These proofs give the constraints to be satisfied.
The work in this chapter gives a calculus suitable searching for these proofs.

The calculi in this chapter are presented as first order, but we only give proofs of
results for the propositional implicational and modal fragment (for brevity).

3.2 Natural Deduction

We give the natural deduction calculus for Lax Logic. This is taken directly from
[BBdP98] (with quantifiers and falsum added) and can be seen in Figure 3.1.

We look at the normalisation steps. Again these are taken from [BBdP98], with the
extra cases for? and9 added. The reduction rules for the intuitionistic connectives
are completely standard. We do not include them here, concentrating instead on
those involving the modality. We give these reductions in tree style rather thanin
sequent style.

First the�-reduction:

– ....P�P (�I) [P ]....�Q�Q (�") ; ....P....�Q
Now we give the commuting conversions (orc-reductions) involving the modality:
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–
....�P [P ]....�Q�Q (�") [Q]....�R�R (�") ; ....�P [P ]....�Q [Q]....�R�R (�")�R (�")

–
....P _Q [P ]....�R [Q]....�R�R (_") [R]....�S�S (�")

; ....P _Q [P ]....�R [R]....�S�S (�") [Q]....�R [R]....�S�S (�")�S (_")�; P ` P (ax) � ` > (>) � ` ?� ` P (?)�; P ` Q� ` P � Q (�I) � ` P � Q � ` P� ` Q (�")� ` P � ` Q� ` P ^Q (^I) � ` P ^Q� ` P (^"1) � ` P ^Q� ` Q (^"2)� ` P� ` P _Q (_I1) � ` Q� ` P _Q (_I2)� ` P _Q �; P ` R �; Q ` R� ` R (_")� ` P� ` �P (�I) � ` �P �; P ` �Q� ` �Q (�")� ` P [u=x]� ` 8x:P (8I)y � ` 8x:P� ` P [t=x] (8")� ` P [t=x]� ` 9x:P (9I) � ` 9x:P �; P [u=x] ` R� ` R (9")yy u not free in�; R
Figure 3.1: NLL: Sequent style presentation of natural deduction for Lax Logic



CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FOR LAX LOGIC 51

– ?�P (?") [P ]....�Q�Q (�") ; ?�Q (?")
–

....9x:P [P [u=x]]....�Q�Q (9") [Q]....�R�R (�") ; ....9x:P [P [u=x]]....�Q [Q]....�R�R (�")�R (9")
Definition 3.1 A natural deduction is said to be in(�; c)-normal form when no�-reductions and noc-reductions are applicable.

We give a presentation of a restricted version of natural deduction for Lax Logic. In
this calculus, the only deductions are those that are in (�; c)-normal form. This cal-
culus has two kinds of ‘sequents’, differentiated by their consequence relations,�
and��. Rules are applicable only when the premisses have a certain consequence
relation. The conclusions have a fixed consequence relation. Thus those deductions
that are valid are of a restricted form. This calculus, which we shall call NLAX, is
given in Figure 3.2.

Proposition 3.1 The calculusNLAX only allows deductions to which no�-reductions
and noc-reductions are applicable. Moreover, it allows all (�; c)-normal deduc-
tions.

PROOF: By inspection one can see that deductions to which one could apply a
reduction are not allowed in NLAX because they would involve a rule application
with a premiss with the wrong consequence relation.

It can be seen that by use of the(M) rule, all other deductions are possible.�
3.3 Term Assignment

In this section we give a term assignment system for NLAX. In [Mog89] Moggi
gave a�-calculus, which he called thecomputational�-calculus. This calculus
naturally matches Lax Logic, as can be seen in Figure 3.3. The only exception to
this match is our inclusion of the rules for(?") and the quantifiers. We leave these
rules out of Figure 3.3. More about the computational�-calculus and Lax Logic
(there called computational logic) can be found in [BBdP98].

We give this term system again in a syntax we prefer – an abstract syntax with
explicit constructors. We give a translation of Moggi’s terms to ours, and then give
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�; P � P (ax) �� P���P (M)���> (>) ��?���P (?")�; P ��Q���P � Q (�I) �� P � Q ���P��Q (�")���P ���Q���P ^Q (^I) �� P ^Q�� P (^"1) �� P ^Q��Q (^"2)���P���P _Q (_I1) ���Q���P _Q (_I2)�� P _Q �; P ��R �; Q��R���R (_")���P��� � P (�I) �� �P �; P �� �Q��� �Q (�")���P [u=x]���8x:P (8I)y �� 8x:P�� P [t=x] (8")���P [t=x]���9x:P (9I) �� 9x:P �; P [u=x]��R���R (9")yy u not free in�; R
Figure 3.2: NLAX: Sequent style presentation for normal natural deduction for
Lax Logic



CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FOR LAX LOGIC 53�; x : P ` x : P (ax) � ` � : > (>)�; x : P ` e : Q� ` �x:e : P � Q (�I) � ` e : P � Q � ` f : P� ` e f : Q (�")� ` e : P � ` f : Q� ` (e; f) : P ^Q (^I) � ` e : P ^Q� ` fst(e) : P (^"1) � ` e : P ^Q� ` snd(e) : Q (^"2)� ` e : P� ` inl(e) : P _Q (_I1) � ` e : Q� ` inr(e) : P _Q (_I2)� ` e : P _Q �; x : P ` f : R �; y : Q ` g : R� ` case e of inl(x) ! f j inr(y) ! g : R (_")� ` e : P� ` val(e) : �P (�I) � ` e : �P �; x : P ` f : �Q� ` let x ( e in f : �Q (�")
Figure 3.3: Sequent style presentation of natural deduction for Lax Logic, with
Moggi’s computational� terms.

yet another presentation of natural deduction for Lax Logic, this time annotated
with proof terms in our prefered syntax, in Figure 3.4.

Translation: Moggi’s terms; proof terms in our preferred syntaxx ; var(x)� ; ��x:e ; �x:ee f ; ap(e; f)(e; f) ; pr(e; f)fst(e) ; fst(e)snd(e) ; snd(e)inl(e) ; i(e)inr(e) ; j(e)case e of inl(x) ! f j inr(y) ! g ; wn(e; x:f; y:g)val(e) ; smhi(e)let x ( e in f ; smhe(e; x:f)
We are interested in the ‘real’ proofs for Lax Logic – the normal natural deduc-
tions. We now restrict the terms that can be built, in order that they matchour
restricted natural deduction calculus NLAX, giving us proof objects. (That is, no
reductions will be applicable at the term level; the term reductions match the�-
andc-reductions for types given earlier). The proof terms come in two syntactic
categories,A andN. V is the category of variables (proofs), U is the category of
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variables (individuals), and T the category of terms. The extra constructoran(A)
matches the(M) rule of NLAX.

A::= var(V ) j ap(A;N) j fst(A) j snd(A) j apn(A; T )
N::= � j efq(A) j an(A) j �V:N j pr(N;N) j i(N) j j(N)wn(A; V:N; V:N) j smhi(N) j smhe(A; V:N)�U:N j prq(T;N) j ee(A;U:V:N)�; x : P ` var(x) : P (ax)� ` � : > (>) � ` e : ?� ` efq(e) : P (?")�; x : P ` e : Q� ` �x:e : P � Q (�I) � ` e : P � Q � ` f : P� ` ap(e; f) : Q (�")� ` e : P � ` f : Q� ` pr(e; f) : P ^Q (^I) � ` e : P ^Q� ` fst(e) : P (^"1) � ` f : P ^Q� ` snd(f) : Q (^"2)� ` e : P� ` i(e) : P _Q (_I1) � ` e : Q� ` j(e) : P _Q (_I2)� ` e : P _Q �; x : P ` f : R �; y : Q ` g : R� ` wn(e; x:f; y:g) : R (_")� ` e : P� ` smhi(e) : �P (�I) � ` e : �P �; x : P ` f : �Q� ` smhe(e; x:f) : �Q (�")� ` e : P [u=x]� ` �u:e : 8x:P (8I)y � ` e : 8x:P� ` apn(e; t) : P [t=x] (8")� ` e : P [t=x]� ` prq(t; e) : 9x:P (9I) � ` e : 9x:P �; x : P [u=x] ` f : R� ` ee(e; u:x:f) : R (9")yy u not free in�; R

Figure 3.4: Sequent style presentation of natural deduction for Lax Logic
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In Figure 3.5 we give one final presentation of a natural deduction calculus for Lax
Logic, this time NLAX together with proof annotations.

3.4 Sequent Calculus

The stated aim of this chapter is to present a sequent calculus for Lax Logic whose
proofs naturally correspond in a 1–1 way to normal natural deductions for Lax Logic
– i.e. the proofs of NLAX. In this section we give such a sequent calculus, but first
we remind the reader of the sequent calculus as presented in [FM97] and [BBdP98].
This can be seen in Figure 3.6.

In fact, our presentation is slightly different from both those cited. The calculus in
[BBdP98] has no structural rules, that is, the contexts are sets. [FM97] haveboth
weakening and contraction on both the left and the right, plus exchange. Here the
only structural rule we consider (or need) is contraction on the left. The contexts in
our presentation are labelled sets. We leave all discussion of cut until later.

We now present a new sequent calculus which we call PFLAX (‘permutation-
free’ Lax Logic). Like MJ this calculus has two forms of judgement,�) R and� Q�! R. The calculus is displayed in Figure 3.7.

The stoup is a form of focusing: the formula in the stoup is always principal in the
premiss unless it is a disjunction or a somehow formula. One might ask why we do
not formulate the(�L) rule as follows� P�! �R� �P�! �R (�L)
To answer this, we point out that the resulting calculus would not match normal nat-
ural deductions in the manner we would like. Also, consider proofs of the sequent�� (P ^Q)) �(Q ^ P ).
3.5 Term Assignment for Sequent Calculus

We give a term assignment system for PFLAX. This we get by extending that given
for intuitionistic logic in [Her95], [DP96], [DP98a]. The term calculus has two
syntactic categories,M andMs. V is the category of variables (proofs), U is the
category of variables (individuals) and T is the category of terms .

M ::= � j (V ;Ms) j �V:M j pair(M;M) j inl(M) j inr(M)smhr(M) j �U:M j pairq(T;M)
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�; x : P � var(x) : P (ax) �� A : P���an(A) : P (M)���� : > (>) �� A : ?���efq(A) : P (?")�; x : P ��N : Q����x:N : P � Q (�I) �� A : P � Q ���N : P�� ap(A;N) : Q (�")���N1 : P ���N2 : Q���pr(N1; N2) : P ^Q (^I)�� A : P ^Q�� fst(A) : P (^"1) �� A : P ^Q�� snd(A) : Q (^"2)���N : P���i(N) : P _Q (_I1) ���N : Q���j(N) : P _Q (_I2)�� A : P _Q �; x1 : P ��N1 : R �; x2 : Q��N2 : R���wn(A; x1:N1; x2:N2) : R (_")���N : P���smhi(N) : �P (�I) �� A : �P �; x : P ��N : �Q���smhe(A; x:N) : �Q (�")���N : P [u=x]����u:N : 8x:P (8I)y �� A : 8x:P�� apn(A; t) : P [t=x] (8")���N : P [t=x]���prq(t; N) : 9x:P (9I) �� A : 9x:P �; x : P [u=x]��N : R���ee(A; u:x:N) : R (9")yy u not free in�; R
Figure 3.5: NLAX with proof annotations
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�; P ) P (ax) �; P; P ) R�; P ) R (C)�) > (>) �;? ) P (?)�; P ) Q�) P � Q (�R) �) P �; Q) R�; P � Q) R (�L)�) P �) Q�) P ^Q (^R) �; P ) R�; P ^Q) R (^L1) �; Q) R�; P ^Q) R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �; P ) R �; Q) R�; P _Q) R (_L)�) P�) �P (�R) �; P ) �R�; �P ) �R (�L)�) P [y=x]�) 8x:P (8R)y �; P [t=x]) R�; 8x:P ) R (8L)�) P [t=x]�) 9x:P (9R) �; P [y=x]) R�; 9x:P ) R (9L)yy y not free in�; R
Figure 3.6: LAX: Sequent Calculus for Lax Logic
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� P�! P (ax) �; P P�! R�; P ) R (C)�) > (>) � ?�! P (?)�; P ) Q�) P � Q (�R) �) P � Q�! R� P�Q�! R (�L)�) P �) Q�) P ^Q (^R) � P�! R� P^Q�! R (^L1) � Q�! R� P^Q�! R (^L2)
�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �; P ) R �; Q) R� P_Q�! R (_L)�) P�) �P (�R) �; P ) �R� �P�! �R (�L)�) P [y=x]�) 8x:P (8R)y � P [t=x]�! R� 8x:P�! R (8L)�) P [t=x]�) 9x:P (9R) �; P [y=x]) R� 9x:P�! R (9L)yy y not free in�; R

Figure 3.7: The Sequent Calculus PFLAX
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Ms::= [ ] j ae j (M ::Ms) j p(Ms) j q(Ms) j when(V:M; V:M)smhl(V:M) j apq(T;Ms) j spl(U:V:M)
These terms can easily be typed by PFLAX, as seen in Figure 3.8.

3.6 Results

Having presented the calculi for Lax Logic, we now prove that they have the proper-
ties we claim. We prove soundness and adequacy for PFLAX, and the equivalence
of the term calculi. These results prove the desired correspondence.

The full details of these proofs are rather repetitive: therefore we only givethe
proofs for the�; � fragment of Lax Logic. The remainder of the calculus is intu-
itionistic logic as presented in [DP96]. The details of the proofs extended to the rest
of the calculus can be found there.

We start by giving pairs of functions that define translations between the term as-
signment systems for natural deduction and sequent calculus.

Sequent Calculus to Natural Deduction:� : M ! N�(x;Ms) = �0(var(x);Ms)�(�x:M) = �x:�(M)�(smhr(M)) = smhi(�(M))�0 : A �Ms! N�0(A; [ ]) = an(A)�0(A; (M ::Ms)) = �0(ap(A; �(M));Ms)�0(A; smhl(x:Ms)) = smhe(A; x:�(M))
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� P�! [ ] : P (ax) �; x : P P�!Ms : R�; x : P ) (x;Ms) : R (C)�) � : > (>) � ?�! ae : R (?)�; x : P )M : Q�) �x:M : P � Q (�R) �)M : P � Q�!Ms : R� P�Q�! (M ::Ms) : R (�L)�)M1 : P �)M2 : Q�) pair(M1;M2) : P ^Q (^R)� P�!Ms : R� P^Q�! p(Ms) : R (^L1) � Q�!Ms : R� P^Q�! q(Ms) : R (^L2)�)M : P�) inl(M) : P _Q (_R1) �)M : Q�) inr(M) : P _Q (_R2)�; x1 : P )M1 : R �; x2 : Q)M2 : R� P_Q�! when(x1:M1; x2:M2) : R (_L)�)M : P�) smhr(M) : �P (�R) �; x : P )M : �R� �P�! smhl(x:M) : �R (�L)�)M : P [u=x]�) �u:M : 8x:P (8R)y � P [t=x]�! Ms : R� 8x:P�! apq(t;Ms) : R (8L)�)M : P [t=x]�) pairq(T;M) : 9x:P (9R) �; P [u=x])M : R� 9x:P�! spl(u:x:M) : R (9L)yy u not free in�; R
Figure 3.8: The Sequent Calculus PFLAX, with Term Assignment
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Natural Deduction to Sequent Calculus: : N ! M (an(A)) =  0(A; [ ]) (�x:N) = �x: (N) (smhe(A; x:N)) =  0(A; smhl(x: (N))) (smhi(N)) = smhr( (N)) 0 : A �Ms! M 0(var(x);Ms) = (x;Ms) 0(ap(A;N);Ms) =  0(A; ( (N) ::Ms))
We prove two lemmas showing the equivalence of the term calculi.

Lemma 3.1

i)  (�(M)) = M
ii)  (�0(A;Ms)) =  0(A;Ms)
PROOF: The proof is by simultaneous induction on the structure ofM andMs.
Case 1. TheM term is(x;Ms) (�(x;Ms)) =  (�0(var(x);Ms)) def�

=  0(var(x);Ms) ind ii)
= (x;Ms) def 0

Case 2.TheM term is�x:M (�(�x:M)) =  (�x:�(M)) def�
= �x: (�(M)) def 
= �x:M ind i)

Case 3. TheM term issmhr(M) (�(smhr(M))) =  (smhi(�(M))) def�
= smhr( (�(M))) def 
= smhr(M) ind i)
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Case 4.TheMs term is[ ] (�0(A; [ ])) =  (an(A)) def �
=  0(A; [ ]) def 0

Case 5.TheMs term is(M ::Ms) (�0(A; (M ::Ms))) =  (�0(ap(A; �(M));Ms)) def�0
=  0(ap(A; �(M));Ms) ind ii)
=  0(A; ( (�(M)) ::Ms)) def 0
=  0(A; (M ::Ms)) ind i)

Case 6. TheM term issmhl(x:M) (�0(A; smhl(x:M))) =  (smhe(A; x:�(M))) def�0
=  0(A; smhl(x: (�(M)))) def 
=  0(A; smhl(x:M)) ind i)�

Lemma 3.2

i) �( (N)) = N
ii) �( 0(A;Ms)) = �0(A;Ms)
PROOF: By simultaneous induction on the structure ofN andA.

Case 1.TheN term isan(A)�( (an(A)) = �( 0(A; [ ])) def 
= �0(A; [ ]) ind ii)
= an(A) def�0

Case 2. TheN term is�x:N�( (�x:N)) = �(�x: (N)) def 
= �x:�( (N)) def �
= �x:N ind i)

Case 3. TheN term issmhi(N)�( (smhi(N))) = �(smhr( (N))) def 
= smhi(�( (N))) def�
= smhi(N) ind i)
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Case 4. TheN term issmhe(A; x:N)�( (smhe(A; x:N))) = �( 0(A; smhl(x: (N)))) def 
= �0(A; smhl(x: (N))) ind ii)
= smhe(A; x:�( (N))) def�0
= smhe(A; x:N) ind i)

Case 5. TheA term isvar(x)�( 0(var(x);Ms)) = �(x;Ms) def 0
= �0(var(x);Ms) def�

Case 6. TheA term isap(A;N)�( 0(ap(A;N);Ms)) = �( 0(A; ( (N) ::Ms))) def 0
= �0(A; ( (N) ::Ms)) ind ii)
= �0(ap(A; �( (N)));Ms) def�0
= �0(ap(A;N);Ms) ind i)�

We now prove soundness and adequacy theorems.

Theorem 3.1 (SOUNDNESS) The following rules are admissible:�)M : R����(M) : R i) �� A : P � P�!Ms : R����0(A;Ms) : R ii)
PROOF: By simultaneous induction on the structure ofM andMs.
Case 1. TheM term is(x;Ms)
We have a derivation ending in:�; x : P P�!Ms : R�; x : P ) (x;Ms) : R (C)
and we know that �; x : P � var(x) : P
is deducible.

So we have: �; x : P � var(x) : P �; x : P P�!Ms : R����0(var(x);Ms) : R ii)



CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FOR LAX LOGIC 64

and we know that �0(var(x);Ms) = �(x;Ms)
Case 2. TheM term is�x:M
We have a derivation ending in�; x : P )M : Q�) �x:M : P � Q (�R)
whence �; x : P )M : Q�; x : P ���(M) : Q i)����x:�(M) : P � Q (�I)
and we know that �x:�(M) = �(�x:M)
Case 3. TheM term issmhr(M)
We have a derivation ending as follows�)M : P�) smhr(M) : �P (�R)
whence �)M : P����(M) : P i)���smhi(�(M)) : �P (�I)
and we know that smhi(�(M)) = �(smhr(M))
Case 4. TheMs term is[ ]
We have a deduction and a derivation:�� A : P � P�! [ ] : P (ax)
From the deduction, we obtain:�� A : P���an(A) : P (M)
and since an(A) = �0(A; [ ])
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we have what we require.

Case 5. TheMs term is(M ::Ms)
We have a derivation ending in�)M : P � Q�!Ms : R� P�Q�! (M ::Ms) : R (�L)
whence �� A : P � Q �)M : P����(M) : P i)�� ap(A; �(M)) : Q (�") � Q�!Ms : R����0(ap(A; �(M));Ms) : R ii)
and we know that �0(ap(A; �(M));Ms) = �0(A; (M ::Ms))
Case 6. TheMs term issmhl(x:Ms)
We have a derivation ending�; x : P )M : �Q� �P�! smhl(x:M) : �Q (�L)
whence �� A : �P �; x : P )M : �Q�; x : P ���(M) : �Q i)���smhe(A; x:�(M)) : �Q (�")
and we know that smhe(A; x:�(M)) = �0(A; smhl(x:M))�
Theorem 3.2 (ADEQUACY) The following rules are admissible:���N : R�)  (N) : R i) �� A : P � P�!Ms : R�)  0(A;Ms) : R ii)
PROOF: By simultaneous induction on the structure ofA andN .
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Case 1. TheN term isan(A)
We have a deduction ending �� A : P���an(A) : P (M)
We know that we can derive � P�! [ ] : P (ax)
hence we have �� A : P � P�! [ ] : P�)  0(A; []) : P ii)
We know that  0(A; [ ]) =  (an(A))
Case 2. TheN term is�x:N
We have a deduction ending�; x : P ��N : Q����x:N : P � Q (�I)
whence �; x : P ��N : Q�; x : P )  (N) : Q i)�) �x: (N) : P � Q (�R)
and we know that �x: (N) =  (�x:N)
Case 3. TheN term issmhe(A; x:N)
We have a deduction ending in�� A : �P �; x : P ��N : �Q���smhe(A; x:N) : �Q (�")
whence �� A : �P �; x : P ��N : �Q�; x : P )  (N) : �Q i)� �P�! smhl(x: (N)) : �Q (�L)�)  0(A; smhl(x: (N))) : �Q ii)
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and we know that 0(A; smhl(x: (N))) =  (smhe(A; x:N))
Case 4. TheN term issmhi(N)
We have a deduction ending in���N : P���smhi(N) : �P (�I)
whence ���N : P�)  (N) : P i)�) smhr( (N)) : �P (�R)
and we know that smhr( (N)) =  (smhi(N))
Case 5. TheA term isvar(x)
We can extend to �; x : P P�!Ms : R�; x : P ) (x;Ms) : R (C)
and since (x;Ms) =  0(var(x);Ms)
we have the result.

Case 6. TheA term isap(A;N)
We have a deduction ending in�� A : P � Q ���N : P�� ap(A;N) : Q (�")
whence �� A : P � Q ���N : P�)  (N) : P i) � Q�!Ms : R� P�Q�! ( (N) ::Ms) : R (�L)�)  0(A; ( (N) ::Ms)) : R ii)
and we know that  0(A; ( (N) ::Ms)) =  0(ap(A;N);Ms)�
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Theorem 3.3 The normal natural deductions of Lax Logic (the proofs ofNLAX )
are in 1–1 correspondence to the proofs ofPFLAX.

PROOF: Immediate from Theorems 1 and 2 and Lemmas 1 and 2.�
Corollary 3.1 The calculusPFLAX is sound and complete with respect to prov-
ability in the logic.

3.7 Cut Elimination

Now we move on to a study of cut in PFLAX. In the usual sequent calculus, cut
may be formulated as follows:�) P �; P ) Q�) Q (cut)
In PFLAX, the two judgement forms lead to the following four cut rules:.� Q�! P � P�! R� Q�! R (cut1) �) P �; P Q�! R� Q�! R (cut2)�) P � P�! R�) R (cut3) �) P �; P ) R�) R (cut4)
These have associated terms:

M ::= cutP1 (Ms;Ms) j cutP2 (M;V:Ms)
Ms::= cutP3 (M;Ms) j cutP4 (M;V:M)
We can give the cut rules again annotated by the proof terms:� Q�!Ms1 : P � P�!Ms2 : R� Q�! cutP1 (Ms1;Ms2) : R (cut1)�)M : P �; x : P Q�!Ms : R� Q�! cutP2 (M;x:Ms) : R (cut2)�)M : P � P�!Ms : R�) cutP3 (M;Ms) : R (cut3)�)M1 : P �; x : P )M2 : R�) cutP4 (M1; x:M2) : R (cut4)
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We call PFLAX extended with the four cut rules PFLAXcut. We give reduction rules
for PFLAXcut. As in the previous section, we restrict ourselves to the�; � fragment
of the logic, in order to prevent repetition of results that can be found elsewhere
([DP96]). Here we give reductions without terms, together with the associated term
reductions.

Case 1.cutP1 ([ ];Ms);Ms� P�! P (ax) � P�! R� P�! R (cut1) ; � P�! R
Case 2.cutP1 ((M ::Ms1);Ms2); (M :: cutP1 (Ms1;Ms2))�) S � T�! P� S�T�! P (�L) � P�! R� S�T�! R (cut1)

; �) S � T�! P � P�! R� T�! R (cut1)� S�T�! R (�L)
Case 3.cut�P1 (smhl(x:M);Ms) ; smhl(x:cut�P3 (M;Ms))�; S ) �P� �S�! �P (�L) � �P�! �R� �S�! �R (cut1) ; �; S ) �P � �P�! �R�; S ) �R (cut3)� �S�! �R (�L)
Case 4.cutP2 (M;x:[ ]); [ ]�) P �; P R�! R (ax)� R�! R (cut2) ; � R�! R (ax)
Case 5.cutP2 (M1; x:(M2 ::Ms)); ((cutP4 (M1; x:M2)) :: (cutP2 (M1; x:Ms)))�) P �; P ) S �; P T�! R�; P S�T�! R (�L)� S�T�! R (cut2)

; �) P �; P ) S�) S (cut4) �) P �; P T�! R� T�! R (cut2)� S�T�! R (�L)
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Case 6.cutP2 (M1; x1:smhl(x2:M2)); smhl(x2:cutP4 (M1; x1:M2))�) P �; P; S ) �R�; P �S�! �R (�L)� �S�! �R (cut2) ; �) P�; S ) P (W ) �; P; S ) �R�; S ) �R (cut4)� �S�! �R (�L)
Case 7.cutP3 ((x;Ms1);Ms2); (x; cutP1 (Ms1;Ms2))�; S S�! P�; S ) P (C) �; S P�! R�; S ) R (cut3)

; �; S S�! P �; S P�! R�; S S�! R (cut3)�; S ) R (C)
Case 8.cutP�Q3 (�x:M1; (M2 ::Ms)); cutQ3 (cutP4 (M2; x:M1);Ms)�; P ) Q�) P � Q (�R) �) P � Q�! R� P�Q�! R (�L)�) R (cut3); �) P �; P ) Q�) Q (cut4) � Q�! R�) R (cut3)
Case 9.cut�P3 (smhr(M1); smhl(x:M2)); cutP4 (M1; x:M2)�) P�) �P (�R) �; P ) �R� �P�! �R (�L)�) �R (cut3) ; �) P �; P ) �R�) �R (cut4)
Case 10.cutP3 (M; [ ]);M�) P � P�! P (ax)�) P (cut3) ; �) P
Case 11.cutP4 (M;x1:(x2;Ms)); (x2; cutP2 (M;x1:Ms))�; S ) P �; P; S S�! R�; P; S ) R (C)�; S ) R (cut4) ; �; S ) P �; S; P S�! R�; S S�! R (cut2)�; S ) R (C)
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Case 12.cutP4 (M;x:(x;Ms)); cutP3 (M; cutP2 (M;x:Ms))�) P �; P P�! R�; P ) R (C)�) R (cut4) ; �) P �) P �; P P�! R� P�! R (cut2)�) R (cut3)
Case 13.cutP4 (M1; x1:�x2:M2); �x2:cutP4 (M1; x1:M2)�) P �; P; S ) T�; P ) S � T (�R)�) S � T (cut4) ; �) P�; S ) P (W ) �; S; P ) T�; S ) T (cut4)�) S � T (�R)
Case 14.cutP4 (M1; x:smhr(M2)); smhr(cutP4 (M1; x:M2))�) P �; P ) S�; P ) �S (�R)�) �S (cut4) ; �) P �; P ) S�) S (cut4)�) �S (�R)
Notice that we used the following lemma:

Lemma 3.3 (WEAKENING) The following rules are admissible inPFLAX:�) R�; P ) R (W ) � Q�! R�; P Q�! R (W )
PROOF: Induction on the height of derivations.�
We summarise the term reductions:

1. cutP1 ([ ];Ms);Ms
2. cutP1 ((M ::Ms1);Ms2); (M :: cutP1 (Ms1;Ms2))
3. cut�P1 (smhl(x:M);Ms); smhl(x:cut�P3 (M;Ms))
4. cutP2 (M;x:[ ]); [ ]
5. cutP2 (M1; x:(M2 ::Ms)); ((cutP4 (M1; x:M2)) :: (cutP2 (M1; x:Ms)))
6. cutP2 (M1; x1:smhl(x2:M2)); smhl(x2:cutP4 (M1; x1:M2))
7. cutP3 ((x;Ms1);Ms2); (x; cutP1 (Ms1;Ms2))
8. cutP�Q3 (�x:M1; (M2 ::Ms)); cutQ3 (cutP4 (M2; x:M1);Ms)
9. cut�P3 (smhr(M1); smhl(x:M2)); cutP4 (M1; x:M2)
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10. cutP3 (M; [ ]);M
11. cutP4 (M;x1:(x2;Ms)); (x2; cutP2 (M;x1:Ms))
12. cutP4 (M;x:(x;Ms)); cutP3 (M; cutP2 (M;x:Ms))
13. cutP4 (M1; x1:�x2:M2); �x2:cutP4 (M1; x1:M2)
14. cutP4 (M1; x:smhr(M2)); smhr(cutP4 (M1; x:M2))

Definition 3.2 A simple cut instance is an instance of cut with cut-free premisses.

Definition 3.3 Thesizeof a formula is the number of connectives in that formula
plus one.

Definition 3.4 Theweight of a simple cut instance is the quadruple:(jAj; cutno:; h1; h2)
where:� jAj is the size of the cut formula.� cutno: is the kind of the cut (i.e. 1, 2, 3, 4)� h1 is the height of the derivation of the right premiss� h2 is the height of the derivation of the left premiss

we make the convention thatcut1 = cut3 < cut2 = cut4.
The quadruple is lexicographically ordered from the left.

Lemma 3.4 The weights defined in Definition 3.4 are well-ordered.

We now prove the theorem.

Theorem 3.4 (WEAK CUT ELIMINATION ) The rules(cut1); (cut2); (cut3); (cut4)
are admissible inPFLAX.

PROOF: We give a weak cut reduction strategy:

– pick any simple cut instance and reduce

– recursively reduce any simple cut instances in the result

By induction on the weight of the cut instance, and induction on the number of
simple cut instances, this strategy terminates.

This can easily be seen by inspection.�
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3.8 Strong Normalisation

In this section we prove that the cut reduction system strongly normalises, giving
another proof of cut elimination for PFLAX.

We prove strong normalisation using the recursive path-order from term rewriting
([Der82], see also [BN98]). This is attractive since it is purely syntactic; reasoning
is about the structure of the terms themselves rather than about a mapping of terms
into tuples of natural numbers. More on proving normalisation using term rewriting
can be found in [Sel98].

Again we restrict ourselves to the�; � fragment of Lax Logic to avoid repetition.

3.8.1 Termination Using the Recursive Path-Order

We define two strict partial orders, one on term constructors (or operators),>, and
one on terms,�. This second strict partial order, the recursive path-order, is de-
fined in terms of the first. Given that> has some simple properties (transitivity,
irreflexivity, well-foundedness – all true by definition), the recursive path-order the-
orem tells us that� is well-founded; that is, there is no infinite decreasing sequence�1 � �2 � :::. Finally we show for any reduction� ; �0, that� � �0. By the well
foundedness of�, every reduction sequence terminates; the cut reduction rules are
strongly normalising.

Definition 3.5 Therecursive path-order is defined as follows.

Let F be a set of operators,f; g 2 F . Let T(F) be the set of terms over F and an
infinite set of variables,s; t 2 T (F ). We also write terms asf(s1; :::sn), wheref(s1; :::; sn) is built from operatorf applied to termss1; :::; sn.

Let> be a strict partial order on F. Then� is defined recursively on T(F) as follows:s = f(s1; :::; sm) � g(t1; :::; tn) = t
iff i) si � t for somei 2 f1; :::; mg
or ii) f > g ands � tj for everyj 2 f1; :::; ng
or iii) f = g and[s1; :::; sm] �� [t1; :::; tn]
We have used the following abbreviations:� for � or equivalent up to permutation
of subterms;�� for the extension of� to finite multisets.

Definition 3.6 A relation� on setK (with�1; �2; ::: 2 K) is well-founded iff there
is no infinite decreasing sequence�1 � �2 � :::.
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Theorem 3.5 (RECURSIVE PATH-ORDER THEOREM) If > is well founded, then� is well-founded.

PROOF: See [Der82], [BN98].�
3.8.2 Strong Normalisation for PFLAX

We apply the recursive path-order to the term assignment system of PFLAX.

The operators are the term constructors of PFLAX; that is, the constructors;, �, ::,[ ], smhl, smhr, together with those for cut. The cut constructors are in fact an
infinite family of constructors parameterised by the formulae of Lax Logic, i.e. the
constructors arecutPi whereP ranges over the formulae of Lax Logic.Op = fcutPi j i 2 f1; 2; 3; 4g; P a formulag [ f; ; �; ::; [ ]; smhl; smhrg
The terms overOp contain the proof terms of PFLAXcut.
If we write f(s1; :::; sn), f is the top term constructor ands1; :::; sn are the immedi-
ate subterms.

We define a strict partial order on term constructors:

– if P andQ are formulae thenP > Q if Q is a subformula ofP (i.e.> has the
subterm property)

– cutPi > cutQj if P > Q, i; j 2 f1; 2; 3; 4g
– cutP4 ; cutP2 > cutP3 ; cutP1
– we putcutP1 = cutP3 andcutP2 = cutP4 (so in fact we have two cut operatorscutH andcutM )

– cutPi > ; ; �; ::; [ ]; smhl; smhr
– ; ; �; ::; [ ]; smhl; smhr are ordered equally.

Lemma 3.5 The ordering> on Op is transitive, irreflexive and well-founded.

PROOF: Transitivity and irreflexivity obvious.

We have an infinite number of term constructors, so it is possible that we could have
an infinite decreasing sequence:cutPi1 > cutQi2 > ::::
As either the cut suffix or the size of the cut formula must decrease, the length of
the sequence is bounded (by twice the size ofP ). �
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Corollary 3.2 � is well founded for the terms ofPFLAX.

PROOF: By the recursive path-ordering theorem.�
We also need the following lemma.

Lemma 3.6 For each cut reduction�; �0, � � �0 holds.

PROOF: We analyse each of the fourteen cases. In each case we give an argument
that for every pair of terms of the form involved, the relation holds.

Case 1.cutP1 ([ ];Ms) � Ms
sinceMs �Ms

Case 2.cutP1 ((M ::Ms1);Ms2) � (M :: cutP1 (Ms1;Ms2))
sincecutP1 >:: andcutP1 ((M ::Ms1);Ms2) �M

since(M ::Ms1) �McutP1 ((M ::Ms1);Ms2) � cutP1 (Ms1;Ms2)
sincecutP1 = cutP1 and[(M ::Ms1);Ms2] �� [Ms1;Ms2]

Case 3.cut�P1 (smhl(x:M);Ms) � smhl(x:cut�P3 (M;Ms))
sincecut�P1 > smhl andcut�P1 (smhl(x:M);Ms) � cut�P3 (M;Ms)

sincecut�P1 = cut�P3 and[smhl(x:M);Ms] �� [M;Ms]
Case 4.cutP2 (M;x:[ ]) � [ ]

since[ ] � [ ]
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Case 5.cutP2 (M1; x:((M2 ::Ms))) � ((cutP4 (M1; x:M2)) :: cutP2 (M1; x:Ms))
sincecutP2 >:: andcutP2 (M1; x:(M2 ::Ms)) � cutP4 (M1; x:M2)

sincecutP2 = cutP4 and[M1; (M2 ::Ms)] �� [M1;M2]cutP2 (M1; x:(M2 ::Ms)) � cutP2 (M1; x:Ms)
sincecutP2 = cutP2 and[M1; (M2 ::Ms)] �� [M1;M2]

Case 6.cutP2 (M1; x1:smhl(x2:M2)) � smhl(x2:cutP4 (M1; x1:M2))
sincecutP2 > smhl andcutP2 (M1; x1:smhl(x2:M2)) � cutP4 (M1; x1:M2)

sincecutP2 = cutP4 and[M1; smhl(x2:M2)] �� [M1;M2]
Case 7.cutP3 ((x;Ms1);Ms2) � (x; cutP1 (Ms1;Ms2))

sincecutP3 >; andcutP3 ((x;Ms1);Ms2) � cutP1 (Ms1;Ms2)
sincecutP3 = cutP1 and[(x;Ms1);Ms2] �� [Ms1;Ms2]

Case 8.cutP�Q3 (�x:M1; (M2 ::Ms)) � cutQ3 (cutP4 (M2; x:M1);Ms)
sincecutP�Q3 > cutQ3 andcutP�Q3 (�x:M1; (M2 ::Ms)) � cutP4 (M2; x:M1)

sincecutP�Q3 > cutP4 andcutP�Q3 (�x:M1; (M2 ::Ms)) �M2
since(M2 ::Ms) �M2
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since�x:M1 �M1cutP�Q3 (�x:M1; (M2 ::Ms)) � Ms

since(M2 ::Ms) � Ms
Case 9.cut�P3 (smhr(M1); smhl(x:M2)) � cutP4 (M1; x:M2)

sincecut�P3 > cutP4 andcut�P3 (smhr(M1); smhl(x:M2)) �M1
sincesmhr(M1) �M1cut�P3 (smhr(M1); smhl(x:M2)) �M2
sincesmhl(x:M2) �M2

Case 10.cutP3 (M; [ ]) �M
sinceM �M

Case 11.cutP4 (M;x1:(x2;Ms)) � (x2; cutP2 (M;x1:Ms))
sincecutP4 >; andcutP4 (M;x1:(x2;Ms)) � cutP2 (M;x1:Ms)

sincecutP4 = cutP2 and[M; (x2;Ms)] �� [M;Ms]
Case 12.cutP2 (M;x:(x;Ms)) � cutP3 (M; cutP2 (M;x:Ms))

sincecutP2 > cutP3 andcutP2 (M;x:(x;Ms)) � M
sinceM �McutP2 (M;x:(x;Ms)) � cutP2 (M;x:Ms)
sincecutP2 = cutP2 and[M; (x;Ms)] �� [M;Ms]
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Case 13.cutP4 (M1; x1:�x2:M2) � �x2:cutP4 (M1; x2:M2)
sincecutP4 > � andcutP4 (M1; x1:�x2:M2) � cutP4 (M1; x1:M2)

sincecutP4 = cutP4 and[M1; �x2:M2] �� [M1;M2]
Case 14.cutP4 (M1; x:smhr(M2)) � smhr(cutP4 (M1; x:M2))

sincecutP4 > smhr andcutP4 (M1; x:smhr(M2)) � cutP4 (M1; x:M2)
sincecutP4 = cutP4 and[M1; smhr(M2)] �� [M1;M2]�

Theorem 3.6 The cut reduction system forPFLAX strongly normalises.

PROOF: Immediate from Corollary 3.2, Lemma 3.4, Lemma 3.5 and Theorem 3.5.�
3.9 Lax Logic and Constraint Logic Programming

In [FMW97] and [Wal97], quantified Lax Logic is used to give a logical analysis of
constraint logic programming. Lax Logic is used to separate the logical analysis of
provability and the analysis of constraints. Here we summarise their approach.

Constraint logic programs consist of clauses, CLP clauses, which are closed formu-
lae of the form: 8x1:::xn:S � H
whereH is an atomA(x1; :::; xn) andS is a formula according to the following
grammar:

S::= > j A j S _ S j S ^ S j9V:S
These clauses can contain constraints. An example of a constraint logic program
clause is 8s:s � 5 � A(s)



CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FOR LAX LOGIC 79�) > (>I) �) �> (�>I)�) P �) Q�) P ^Q (^I) �) �P �) �Q�) �(P ^Q) (�^I)�) P�) P _Q (_I1) �) Q�) P _Q (_I2)�) �P�) �(P _Q) (�_I1) �) �Q�) �(P _Q) (�_I2)�) P [t=x]�) 9x:P (9I) �) �P [t=x]�) �9x:P (�9I)�; P � �A) �P�; P � �A) �A (� �")�; P � A) P�; P � A) A (�"1)�; P � A) �P�; P � A) �A (� �"2)
Figure 3.9: Proof search calculus for LLP

Queries (goal formulae) are also formulae ofS. Queries contain no constraints.

Lax Logic is used to separate the constraints from the logical parts of the programs.
This is done by a simple procedure: replace all occurrences of constraints inS by> and modalise the head. For example:8s:s � 5 � A(s) becomes 8s:> � �A(s)
The constraint can be encoded as a special kind of lambda term.

The result of this abstraction is called a Lax Logic program clause (LLP clause).
These have the form: 8x1:::xn:S � �H
whereS andH are as for constraint logic program clauses (except that no con-
straints are allowed inS). Note the constraint program clauses and Lax Logic pro-
gram clauses are part of the same logic (quantified Lax Logic) and so programs with
LLP clauses and constraint-free CLP clauses can be reasoned about together.

If we want to answer a queryQ from a program containing LLP clauses, then we
try to prove formula�Q, meaning thatQ is proved up to the satisfaction of some, as
yet unspecified, constraints. This is done using the natural deduction calculus given
in Figure 3.9.

For any query, we get one or many proofs from the program by using the LLP
calculus. This gives us different solutions up to the satisfaction of constraints. What
these constraints are differs for each proof. Using the proof term system for the
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LLP calculus, together with the lambda term (in a different system) encoding the
abstracted constraints, the actual constraints to be satisfied can be calculated and
then solved using suitable machinery.

For every query, we are interested in the proofs of this query. As has been discussed
in the introduction, permutation-free calculi, such as PFLAX, are peculiarly well
suited for the enumeration of all proofs. PFLAX has an advantage over the LLP
calculus given, in that it generates exactly the normal forms of proofs, whereasthe
LLP calculus involves transformation of proof terms to normal form. The drawback
is that PFLAX, even for the fragment of Lax Logic used for constraint logic pro-
gramming, does not allow goal directed proof search. However, despite there being
no obvious correspondence between LLP and PFLAX, we consider PFLAX to be a
suitable calculus for proof search in the context of constraint logic programming.

3.10 Conclusion

In this chapter we have presented a Gentzen system for Lax Logic whose proofs
naturally correspond in a 1–1 way to the normal natural deductions. This calcu-
lus is syntax-directed and hence suitable for proof enumeration. The search space
for PFLAX is smaller than that for the usual Lax Logic sequent calculus. In the
following chapter this calculus is used as the basis for a theorem proving calculus.

Lax Logic gives a proof-theoretic approach to constraint logic programming (see
[FMW97], [Wal97]). The modality can be used to abstract away the constraints,
separating the logical and constraint parts of the analysis. Lax Logic is used to
prove the modal formula. Permutation-free calculi are natural extensions to logic
programming thought of as backward proof search on hereditary Harrop formulae;
the work in this chapter provides an extension of the setting for constraint logic
programming founded upon Lax Logic. PFLAX is also useful since the proofs it
generates are in normal form, unlike the LLP calculus for constraint logic program-
ming.



Chapter 4

Loop-Checking Using a History
Mechanism

This chapter is an investigation of one technique for propositional theorem proving
– the use of a ‘history’ to prevent looping. We develop a new history mechanism
and apply it to several calculi, utilising work from the first three chapters of this
thesis. The resulting calculi with loop checking are proved to be sound and com-
plete. Although it seems intuitively obvious that the history calculi are complete,
the proofs of this are surprisingly involved.

Backward proof search in the usual formulations of many non-classical proposi-
tional sequent calculi is non-terminating. Backward application of the rules can
easily produce the same sequent again and again. A simple example in the G3
calculus for propositional intuitionistic logic is (withA atomic):

....(A ^ A) � A) A ....(A ^ A) � A) A(A ^ A) � A) A ^ A (^R) A; (A ^ A) � A) A (ax)(A ^ A) � A) A (�L)
Here the sequent(A ^ A) � A) Amay continue to occur in the proof tree for this
sequent.

There are several approaches to decision procedures for logics whose usual sequent
formulations are not decision procedures themselves. One can attempt to find a se-
quent formulation of the logic that terminates when used for backward proof search.
An example of this is the contraction-free calculus G4 for propositional intuition-
istic logic, originating with Vorob’ev ([Vor52], [Vor58]), and rediscovered and ex-
pounded by Dyckhoff ([Dyc92]) and by Hudelmaier ([Hud93]). These contraction-
free calculi are not easily discovered (indeed may not be possible), and so other
methods can be useful. Another approach is to place conditions on the sequent cal-
culus to ensure termination of search. It is elegant to be able to build the content of
these conditions into the sequent calculus itself. This is how we develop calculifor

81
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theorem proving in this section. The technique for doing this is quite general and
can be applied to many calculi. We apply it to the intuitionistic sequent calculi G3
and MJ, as well as to some modal logics: S4, Lax Logic and intuitionistic S4.

4.1 History Mechanisms

In order to ensure termination of backward proof search, we need to check that the
same sequent (modulo number of occurrences of formulae of the same type) does
not appear again on a branch. In the example above we easily see that there is a
loop: we need a mechanical way to detect such loops.

One way to do this is to add ahistory to a sequent. The history is the set of all
sequents to have occurred so far on a branch of a proof tree. After each backwards
inference the new sequent (without its history) is checked to see whether it is a
member of this set. If it is we have looping and backtrack. If not the new history is
the extension of the old history by the old sequent (without the history component),
and we try to prove the new sequent, and so on. Unfortunately, this method is space
inefficient as it requires long lists of sequents to be stored by the computer, and all
of this list has to be checked at each stage. When the sequents are stored, farmore
information than necessary is kept. Efficiency would be improved by cutting down
the amount of storage and checking to the bare minimum needed to prevent looping.

The basis of the reduced history is the realisation (as in [HSZ96]) that one need
only store goal formulae in order to loop-check. The contexts of the sequents in this
section are multisets rather than sets of labelled formulae. For most of the calculi
dealt with in this chapter, the context cannot decrease; once a formula is in the
context it will be in the context of all sequents above it in the proof tree. We say
that the calculus hasincreasing context. For two sequents to be the same they need
to have the same context (up to multiple occurrences of formulae of the same type).
Therefore we may empty the history every time the context is (properly) extended.
All we need store in the history are goal formulae. If we have a sequent whose goal
is already in the history, then we have the same goal and the same context as another
sequent, that is, a loop.

We describe two slightly different approaches to doing this. There is the straight-
forward extension of the calculus described in [HSZ96] (which we call the ‘Swiss
history’; more on this loop-checking method can be found in [Heu98]). There is
also related work on histories for intuitionistic logic by Gabbay in [Gab91]. The
other approach involves storing slightly more formulae in the history, but whichfor
some calculi detects loops more quickly. This we describe as the ‘Scottish history’
([How96], [How97]); it can in many cases be more efficient than the Swiss method.



CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 83�; P ) P ;H (ax) �;? ) P ;H (?)�; P ) Q;��) P � Q;H (�R1) if P =2 � �) Q;H�) P � Q;H (�R2) if P 2 ��; P ) ?;��) :P ;H (:R1) if P =2 � �) ?;H�) :P ;H (:R2) if P 2 ��; P � Q) P ; (D;H) �; P � Q;Q) D;��; P � Q) D;H (�L) if D =2 H; andQ =2 ��;:P ) P ; (D;H)�;:P ) D;H (:L) if D =2 H; and? =2 ��) P ;H �) Q;H�) P ^Q;H (^R)�; P ^Q;P ) D;��; P ^Q) D;H (^L1) if P =2 � �; P ^Q;Q) D;��; P ^Q) D;H (^L2) if Q =2 ��) P ;H�) P _Q;H (_R1) �) Q;H�) P _Q;H (_R2)�; P _Q;P ) D;� �; P _Q;Q) D;��; P _Q) D;H (_L) if P;Q =2 �D is either an atom,? or a disjunction.
When the history has been extended we have parenthesised(D;H) for emphasis.

Figure 4.1: G3Hist in the Swiss-style

4.1.1 The Swiss History

In this section we describe the application of the Swiss history to the G3 calculus
for propositional intuitionistic logic. We should first point out that the calculus we
describe as Swiss is different from the one in [HSZ96]. We are trying to focus on
the history mechanism and hence have not included the subsumption checks that
the calculus in [HSZ96] uses. It has also been extended to cover disjunction.

The Swiss-style calculus G3Hist is displayed in Figure 4.1. Let us make some gen-
eral points about it (which will apply to the Scottish G3Hist too). We give explicit
rules for negation (which are just special cases of the rules for implication)for the
sake of completeness of connectives. There are two rules for(�R). These corre-
spond to the two cases where the new formula,P , is or is not in the context. As
noted above, this is very important for history mechanism. Also notice that the
number of formulae in the history is at most equal to the length of the formula we
check for provability.

The loop checking works in a similar way to that ofIPCRP ^;!SU
in [HSZ96]. A

sequent is matched against the conclusions of right rules until the goal formula
is either a propositional variable, falsum, or a disjunction (note that disjunctionis
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not covered in [HSZ96], and requires special treatment). This has been ensured
by the restriction on goal formulae given in the calculus (although the calculus
would still be terminating without this restriction, it gives a much more efficient
implementation). A formula from the context is then picked and matched against
the left rules of the calculus. The history mechanism applies to prevent looping in
the (�L) rule (and similarly in the(:L) rule). The left premiss of the rule has the
same context as the conclusion, but the goal is, in general, different. If the goal,D,
of the conclusion is not in the history,H, we storeD in the history and continue
backward proof search on the left premiss. Alternatively,D might already be inH.
In this case there is a loop, and so this branch is not pursued. We backtrack and look
for a proof in a different way.

There are other places where the rules are restricted to prevent looping. The left
rules have side conditions to ensure that the context is increasing. For the(�R)
rule (which attempts to extend the context) there are two cases corresponding to
when the context is and when it is not extended. Something similar is happening
in the left rules. Take(_L) as an example. In both premisses of the rule a formula
may be added to context. If both contexts really are extended, then we can continue
building the proof tree. If one or both contexts are not extended then the sequent,S,
with the non-extended context, will be the same as some sequent at a lesser height
in the proof tree – there is a loop (which we describe as a trivial loop). This is easy
to see: since the context and the goal ofS are the same as that of the conclusion,
the conclusion is the same as the premissS.

What does a history sequent say? What, in logical terms, is the meaning of a sequent
with a history field? Take, for example, the G3Hist sequentS = �) R;H. This
says that for every proof ofS, if P 2 H, then no sequent of the form�) P ;H0
appears in the proof tree ofS.

We now prove the equivalence theorems. This is done in two stages. First we prove
the equivalence of G3 and G3 with goals of the left rules restricted to atoms,? and
disjunctions (a calculus we shall refer to as G3D). Then we prove the equivalence
of G3D and G3Hist .

Definition 4.1 Thesize of a proof treeis equal to the number of nodes in it.

We need the following lemmas:

Lemma 4.1 (WEAKENING) The following rule is admissible in bothG3andG3D:�) R�; P ) R (W )
PROOF: By induction on the height of the derivation of the premiss.�
Lemma 4.2 If sequentS is provable inG3, thenS is provable inG3 with the ax-
ioms and the goal of(?) restricted to atomic formulae (and?).
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PROOF: By breaking up the axiom formulae and induction on the size of the goal.�
We prove the following result using the permutation properties of the calculus as
studied in Chapter 2 (see Table 2.1).

Proposition 4.1 The calculiG3 and G3D are equivalent. That is, a sequent is
provable inG3 iff it is provable inG3D.

PROOF: It is trivial that if sequentS is provable in G3D then it is provable in G3.
We show the converse.

We show that if the goal is an implication or a conjunction, and the next inference
is (_L) and in both premisses the goal is principal, then the rules permute. i.e.�; S _ T; S; P ) Q�; S _ T; S ) P � Q (�R) �; S _ T; T; P ) Q�; S _ T; T ) P � Q (�R)�; S _ T ) P � Q (_L)
permutes to: �; S _ T; S; P ) Q �; S _ T; T; P ) Q�; S _ T; P ) Q (_L)�; S _ T ) P � Q (�R)
and (where�0 = �; S _ T )�0; S ) P �0; S ) Q�0; S ) P ^Q (^R) �0; T ) P �0; T ) Q�0; T ) P ^Q (^R)�; S _ T ) P ^Q (_L)
permutes to:�0; S ) P �0; T ) P�0 ) P (_L) �0; S ) Q �0; T ) Q�0 ) Q (_L)�; S _ T ) P ^Q (^R)
We proceed by induction on the height of derivations.

Consider a G3 inference which is not a G3D inference. This must be an instance of
a left rule with an implicational or conjunctive goal. By the induction hypothesis
we have G3D proofs of the premiss(es). Hence the premisses with implicational or
conjunctive goals have these goals as the principal formula. From Table 2.1 and the
permutations given above, we see that we can permute these inferences withthe left
rule we are looking at. The result follows by induction on the size of the goal.�
Lemma 4.3 (CONTRACTION) The following rule is admissible inG3Hist :�; P; P ) R;H�; P ) R;H (C)
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PROOF: By induction on the height of the derivations of the premisses.�
Theorem 4.1 The calculiG3 and G3Hist are equivalent. That is, sequent�) G
is provable inG3 iff �) G;� is provable inG3Hist.
PROOF: From Proposition 4.1 we know that it is enough to show that G3D is equiv-
alent to G3Hist.
It is trivial that any sequent provable in G3Hist is provable in G3D. (Simply drop
the history part of the sequent and use contraction above instances of(�R2)). We
prove the converse.

Take any proof tree for sequentS in G3D. By definition this proof tree is finite.
That is, all branches of the tree end with an occurrence of(ax) or (?), with all
branches having a finite number of nodes (there is also no infinite branching at any
node). Using a proof tree for a sequentS in G3D we construct a proof tree for the
sequentS;� in G3Hist. Essentially we take a G3D proof tree and give a recipe for
‘snipping out’ the loops: removing the sequents that form the loop. Or, looking at it
in another way we shall show that failure due to the history mechanism only occurs
when there is a loop.

Take any G3D proof tree withn > 0 nodes. We take this proof tree and use the
following construction to give a G3Hist proof tree.

The following construction takes a G3D proof tree and builds a G3Hist proof tree
from the root up. For simplicity we ignore negation, although this can easily be
added. In this construction we use ‘hybrid trees’. A hybrid tree is a fragment
of G3Hist proof tree with all branches that do not have(ax) or (?) leaves ending
with G3D proof trees. These G3D proof trees have roots which can be obtained by
backwards application of a G3D rule to the top history sequent (ignoring its history).
We analyse each case of a topmost history sequent with non-history premiss(es)
resulting from application of rule(R) in the sequent tree.

– The root of the G3D tree. We change (non-history) sequentS to history se-
quentS;�.

– (R) is one of(ax), (?), (^R), (_R1), (_R2), i.e. a rule which in G3Hist has
no side conditions. The premiss(es) are changed by adding the appropriate
history. They become the history sequents obtained by applying (backwards)
the G3Hist rule to the original conclusion.

For example, if the situation we are analysing is:�) P �) Q�) P ^Q;H (^R)
then we change this part of the hybrid tree to:�) P ;H �) Q;H�) P ^Q;H (^R)
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We have an extended G3Hist proof tree fragment with G3D proof tree(s) as
premiss(es).

– (R) is (�R). We simply add a history as appropriate to the version of the
rule, depending on the context. We use contraction when the context is not
properly extended.

– (R) is (^L1). If the side conditions of the history rule(^L1) are satisfied, we
simply add the appropriate history to the premiss. Else, we have:

...�; P ^Q;P ) D (inf)�; P ^Q) D;H (^L1)
whereP 2 �. From the point of view of looping, both the premiss and
conclusion are the same. This is a loop that we describe as trivial. The new
hybrid tree is simply the old one with the premiss obtained by contraction:

...�; P ^Q;P ) D;H (inf)�; P ^Q) D;H (C)
– (R) is (^L2) is treated analogously to(^L1).
– (R) is (_L). Similar to (^L1). If the side conditions are satisfied, then we

simply add the appropriate histories. Else, we have:�; P _Q;P ) D �; P _Q;Q) D�; P _Q) D;H (_L)
if P 2 � then the left premiss and the conclusion are the same and there is
a trivial loop. In this case the new hybrid tree is obtained by removing the
completed subtree above the right premiss and obtaining the left premiss by
contraction: �; P _Q;P ) D;H�; P _Q) D;H (C)
Similarly if Q 2 �. (If P;Q 2 �, then we have a choice of which branch to
remove).

– (R) is (�L). If the side conditions are satisfied then we simply add the ap-
propriate histories. Else, we have:�; P � Q) P �; P � Q;Q) D�; P � Q) D;H (�L)
If Q 2 �, then for the purposes of looping the right premiss and the conclu-
sion are the same. The new hybrid tree is obtained by removing the subtree
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deriving the left premiss, and obtaining conclusion from the right premiss by
contraction.

We now need to consider what happens ifD 2 H. This is where the history
mechanism prevents looping. If the history condition is not met, we know
that below the conclusion the hybrid tree has the form:�; P � Q) P �; P � Q;Q) D�; P � Q) D;H (�L)

....�; P � Q) S; (D;H0) ....�; P � Q) D;H0 (�L)
whereD 2 H andH � H0. The history is not reset at any point in this
fragment.

This can easily be seen to contain the loop which is the reason for the side
conditions not being met. The new hybrid tree is obtained by removing from
the previous hybrid tree all the sequents from, but not including, the sequent�; P � Q) D;H0 up to and including�; P � Q) D;H. (We may need
some contractions). We can now apply (backwards)(�L) to the first of these
sequents. Either the side conditions will be satisfied, orQ 2 �: in either case
we know how to proceed.

As has been noted, G3 proof trees are finite and at every stage in this construc-
tion, the number of nodes of the hybrid tree without a history strictly decreases.
Therefore the construction is terminating. As every branch in the G3 tree endsin an
application of(ax) or (?), the history tree we construct is a proof tree.�
G3Hist (Swiss) is a calculus with a history mechanism for propositional intuition-
istic logic. It is sound and complete. We claimed earlier that this calculus gives a
decision procedure for propositional intuitionistic logic. We prove that backwards
proof search in G3Hist in the Swiss style terminates.

Theorem 4.2 Backwards proof search in the Swiss calculusG3Hist is terminating.

PROOF: We associate with every sequent�) R;H a triple of natural numbers:W = (k � n; k �m; r)
wherek is the number of elements in theset of subformulae of(�; R); n is the
number of elements in thesetof elements of�; m is the number of elements inH
andr is the size of goal formulaR. (Notice that although� is a multiset, we count
its elements as a set). These triples are lexicographically ordered fromthe left.

By inspection we see thatW is lower for the premisses of every inference rule than
for the conclusion. Consider as an example,(�L):�; P � Q) P ; (D;H) �; P � Q;Q) D;��; P � Q) D;H (�L) if D =2 H andQ =2 �
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The conclusion hasW = (k � n; k � m; r). The left premiss hasW 0 = (k0 �n; k0� (m+1); r0) (wherek0 � k). ThereforeW 0 < W . The right premiss hasW 00= (k � (n+ 1); k; r). ThereforeW 00 < W . The weights of both premisses are less
than the conclusion.

Hence backwards proof search is terminating.�
Note 4.1 The proof of Theorem 4.2 makes explicit a theme that can be seem through-
out this chapter. We have given the calculi using multisets, in order that they match
usual presentations, and the way that they are implemented in Prolog. However, it
is often more natural to think of contexts as sets. In particular, the idea of increas-
ing context is one that is based on a view of the context as a set. In fact, as the
theory has shown, we can look at multisets, and we only need the set view when we
need to map proofs to tuples of natural numbers to get a termination argument as
in Theorem 4.2. We could rework the entire section using sets, or we could give a
collection of propositions about treating multisets as sets and the effect of this on
these calculi. However, we do not do this, instead restricting ourself to thisnote.

4.2 Scottish History and G3

In this section we discuss the ‘Scottish’ history mechanism as applied to G3.This
calculus takes a slightly different approach to the ‘Swiss’ calculus. Again we call
the calculus G3Hist. The calculus adds to the history at several points, rather than
just one (as is the case for the Swiss history) so has to store a larger set. Italso
checks for looping more often than the Swiss history, so proof trees do not have to
be so large. The Scottish calculus G3Hist can be seen in Figure 4.2.

We said earlier that when using a history mechanism to prevent looping it would be
good to cut down the amount of storage and checking to a bare minimum. This was
done in the Swiss G3Hist – the history mechanism operates in one place and one
place only and other restrictions for loop prevention involve no storage. However,
it is not clear that this is the best or most attractive approach. There is a tradeoff
between these advantages and the obvious disadvantage of not looking for loops
very often. We find loops more quickly if we look for them at more points. That is,
we might continue building a proof tree needlessly when a loop might have already
been spotted. The Scottish G3Hist has larger histories. This allows us to check for
loops in more places, and in certain situations this is advantageous.

As in the Swiss history, when attempting to prove a sequent, right rules are applied
first, breaking up a formula until it is atomic, falsum or a disjunction, and only then
can left rules be applied. Looping due to context extensions is prevented in the
same way. The difference between the two calculi is in the way that the history
mechanism works.

Whereas the Swiss calculus only places formulae in the history that have been the
goal of the conclusions of a(�L) (or (:L)), the Scottish calculus keeps a complete
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�; P ) P ;H (ax) �;? ) P ;H (?)�; P ) Q; fQg�) P � Q;H (�R1) if P =2 ��) Q; (Q;H)�) P � Q;H (�R2) ifP 2 � andQ =2 H�; P ) ?; f?g�) :P ;H (:R1) ifP =2 ��) ?; (?;H)�) :P ;H (:R2) ifP 2 � and? =2 H�; P � Q) P ; (P;H) �; P � Q;Q) D; fDg�; P � Q) D;H (�L) if P =2 H andQ =2 ��;:P ) P ; (P;H)�;:P ) D;H (:L) if P =2 H and? =2 ��) P ; (P;H) �) Q; (Q;H)�) P ^Q;H (^R) if P;Q =2 H�; P ^Q;P ) D; fDg�; P ^Q) D;H (^L1) if P =2 ��; P ^Q;Q) D; fDg�; P ^Q) D;H (^L2) if Q =2 ��) P ; (P;H)�) P _Q;H (_R1) if P =2 H �) Q; (Q;H)�) P _Q;H (_R2) if Q =2 H�; P _Q;P ) D; fDg �; P _Q;Q) D; fDg�; P _Q) D;H (_L) if P;Q =2 �D is either an atom,? or a disjunction.
When the history has been extended, we have parenthesised(P;H) for emphasis.

Figure 4.2: G3Hist in the Scottish style
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record of goal formulae between context extensions. At each of the places where
the history might be extended, the new goal is checked against the history. If it is in
the history, then there is a loop. The heart of the difference between the two calculi
is that in the Swiss calculus loop checking is done when a formula leaves the goal,
whereas in the Scottish calculus it is done when it becomes the goal.

We prove the same theorems for the Scottish G3Hist as for the Swiss G3Hist . The
proofs are very similar to those for the Swiss G3Hist and are omitted because of
their length and repetitiveness.

Theorem 4.3 The calculiG3 and G3Hist are equivalent. That is, sequent�) G
is provable inG3 iff �) G; fGg is provable inG3Hist .

PROOF: Similar to the proof of Theorem 4.1.�
Theorem 4.4 Backwards proof search in the calculusG3Hist is terminating.

PROOF: Similar to the proof of Theorem 4.2.�
4.2.1 Comparison of the Two Calculi

Because of the way that the Swiss history works, loop detection is delayed. Let us
illustrate this with an example. Consider the sequent:A;B; (A � B � C) � C ) A � B � C
In the Swiss G3Hist (where� = A;B; (A � B � C) � C andG = A � B � C)
we get the following: �) G; fCg �; C ) C;� (ax)�) C;� (�L)�) B � C;� (�R2)�) G;� (�R2)
We have to go through all the inference steps again (in the branch above the left
premiss) before the loop is detected – even though we can clearly see the loop.
However, in the Scottish calculus we get:�) G; fG;C;B � C;Gg �; C ) C; fCg (ax)�) C; fC;B � C;Gg (�L)�) B � C; fB � C;Gg (�R2)�) G; fGg (�R2)
The topmost inference,(�L), is not valid, since the left premiss has goal formula,G, which is already in the history. That is, the loop is detected, and is detected lower
in the proof tree than in the Swiss style calculus.
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Spotting the loop as it occurs is not only theoretically more attractive, but could also
prevent a lot of costly extra computation.

The two calculi both have their good points. The Swiss calculus is efficient from
the point of view that its history mechanism requires little storage and checking.
The Scottish calculus is efficient in that it detects loops as they occur, avoiding
unnecessary computation. The Swiss calculus needs less space for each sequent,
but more for the entire proof tree.

The question is whether or not in general an overhead in storage and checking of the
history (which should not be too great due to regular resetting) is preferable to the
larger proof trees which are the result of delaying checking. The approach we take
to this question is to look at empirical results in the form of timings for theorem
proving in implementations of the calculi. Note that as the two calculi are rather
similar it is more than likely that any optimisation that can be applied to one can
also be applied to the other.

Results for the implementations of the G3Hist calculi can be found in section 4.4.

4.3 Histories and MJ

So far we have used the history mechanisms with G3 to give decision procedures
for intuitionistic logic. We can, however, improve on these decision procedures
by using a different base calculus. The calculus MJ has all the features (such as
increasing context) which make it suitable for the history mechanisms to be applied
to. MJ has fewer derivations than G3 and has focusing, therefore when searching
for a proof, there are fewer possible proofs to check on backtracking. Hence the
decision as to whether or not a formula is provable in intuitionistic logic ought to
be made quicker. This is the approach taken in [How96], [How97]. The calculi
MJHist in the Swiss style and MJHist in the Scottish style can be seen in Figures 4.3
and 4.4 respectively.

We can prove similar theorems for MJHist as for G3Hist. The proofs are similar;
some of these proofs can be found in detail in [How96].

Proposition 4.2 The calculiMJ and MJD (MJ with the goal of(C) restricted to
atoms, falsum or disjunctions) are equivalent. That is, sequentS is provable inMJ
iff it is provable inMJD.

PROOF: Similar to proof of Proposition 4.1.�
Theorem 4.5 The Swiss calculusMJHist is equivalent toMJ.

PROOF: Similar to proof of Theorem 4.1.�
Theorem 4.6 Backwards proof search in the SwissMJHist is terminating.

PROOF: Similar to proof of Theorem 4.2.�
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� D�! D;H (ax) � ?�! D;H (?) �; P P�! D;H�; P ) D;H (C)�; P ) Q;��) P � Q;H (�R1) if P =2 � �) Q;H�) P � Q;H (�R2) if P 2 ��; P ) ?;��) :P ;H (:R1) if P =2 � �) ?;H�) :P ;H (:R2) if P 2 ��) P ; (D;H) � Q�! D;H� P�Q�! D;H (�L) if D =2 H�) P ; (D;H)� :P�! D;H (:L) if D =2 H�) P ;H �) Q;H�) P ^Q;H (^R)� P�! D;H� P^Q�! D;H (^L1) � Q�! D;H� P^Q�! D;H (^L2)�) P ;H�) P _Q;H (_R1) �) Q;H�) P _Q;H (_R2)�; P ) D;� �; Q) D;�� P_Q�! D;H (_L) if P =2 � andQ =2 �D is either a propositional variable,? or a disjunction.
When the history has been extended we have parenthesised(D;H) for emphasis.

Figure 4.3: The Calculus MJHist in the Swiss style.
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� D�! D;H (ax) � ?�! D;H (?) �; P P�! D;H�; P ) D;H (C)�; P ) Q; fQg�) P � Q;H (�R1) if P =2 ��) Q; (Q;H)�) P � Q;H (�R2) if P 2 � andQ =2 H�; P ) ?; f?g�) :P ;H (:R1) if P =2 ��) ?; (?;H)�) :P ;H (:R2) if P 2 � and? =2 H�) P ; (P;H) � Q�! D;H� P�Q�! D;H (�L) if P =2 H�) P ; (P;H)� :P�! D;H (:L) if P =2 H�) P ; (P;H) �) Q; (Q;H)�) P ^Q;H (^R) if P =2 H andQ =2 H� P�! D;H� P^Q�! D;H (^L1) � Q�! D;H� P^Q�! D;H (^L2)�) P ; (P;H)�) P _Q;H (_R1) if P =2 H �) Q; (Q;H)�) P _Q;H (_R2) if Q =2 H�; P ) D; fDg �; Q) D; fDg� P_Q�! D;H (_L) if P =2 � andQ =2 �D is either a propositional variable,? or a disjunction.
Where the history has been extended we have parenthesised(P;H) for emphasis.

Figure 4.4: The Calculus MJHist in the Scottish style
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Theorem 4.7 The Scottish calculusMJHist is equivalent toMJ.

PROOF: Similar to proof of Theorem 4.1.�
Theorem 4.8 Backwards proof search in the ScottishMJHist is terminating.

PROOF: Similar to proof of Theorem 4.2.�
4.3.1 Propositional Theorem Proving

We have described four calculi that are decision procedures for propositional intu-
itionistic logic. Another calculus which is a decision procedure for propositional
intuitionistic logic is the contraction-free calculus G4. (This calculus can befound
in the appendix).

We have already given a discussion of why we think that the Scottish history applied
to propositional intuitionistic logic is theoretically more attractive thanthe Swiss
history. We also said that we would like to compare implementations of the calculi
to add experimental evidence to the theoretical argument. We also compare with an
implementation of G4.

The calculi were all naı̈vely implemented in Prolog. By a naı̈ve implementation
we mean one that follows as closely as possible the unintelligent searching through
the proof trees as generated by the sequent calculi presented. We describe this for
MJHist.
Our implementations of the calculi are syntax directed. A sequent�) P ;� (for
the Swiss calculus), or�) P ; fPg (for the Scottish calculus) is passed to the theo-
rem prover. For a sequent with an empty stoup, the next inference is determined by
the goal. If the goal is an implication, negation or conjunction, then the appropriate
right rule is applied. If an instance of one of these rules fails, then we have to back-
track (as no other rule is applicable). If the goal is a propositional variable, falsum
or a disjunction, the contraction rule is applied, selecting a formula and placing it in
the stoup. If a contraction fails, another contraction is attempted, placing a different
formula in the stoup. If the goal is a propositional variable or falsum, and contrac-
tion has failed for all possible stoup formulae, then we backtrack. If the goal isa
disjunction and contraction has failed for all possible stoup formulae, then we may
apply disjunction on the right. If this fails we have to backtrack. For a sequent with
a stoup formula, the next inference is determined by the stoup formula. The next
inference must be an instance of the appropriate rule on the left. If such an inference
fails then we have to backtrack. Note that in(�L) we check the right branch, the
one with the stoup formula, first. We get failure if at any point no rule instance can
be applied. We give an example of failure owing to the history:�; P ) P � Q; fP;Qg (�R2)
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fails asP 2 f�; Pg andQ 2 fP;Qg; the side conditions are not satisfied. Owing to
the condition on(C), no other rule instances are applicable to this sequent and we
must backtrack. We can describe a similar process for the procedures for G3Hist and
G4.

Knowledge of the invertibility of inference rules can be useful when implementing
theorem provers. Although we have not used such knowledge here, we still think it
is useful to give the following lemma.

Lemma 4.4 The following rules ofMJHist (both Swiss and Scottish) are invertible:(�R1), (�R2), (:R1), (:R2), (�L), (:L), (^R), (_L). The rules(^L1), (^L2),(_R1), (_R2), (C) are not invertible.

PROOF: The invertibilities are proved by some easy inductions. We can give simple
counterexamples to the invertibility of the other rules.�
4.4 Results

We tested our implementations of the Swiss and Scottish G3Hist, the Swiss and
Scottish MJHist and G4 on a set of benchmarks for propositional intuitionistic logic
([Dyc97]) and on the example formulae from [How97]. The example sets may be
found in Appendix B. As we have already said, the implementations of these calculi
are naı̈ve. Much more efficient implementations are imaginable, and many better
implementations of G4 exist. The purpose of these implementations is for them to
be simple and in the same style in order that we can make a meaningful comparison
of the calculi.

The results are displayed in Table 4.1 and Table 4.2. The benchmark formulae are
all parameterised by natural numbern. The entries in the table represent the largestn for which the formula was decided in a particular calculus in less than 10 seconds
of processor time (the larger the entry, the better the prover has performed). The
timings in the second table are simply average timings (to two significant figures,
with a cut off at 100000ms) for proving the formulae (the smaller the entry, the bet-
ter the prover has performed). The Prolog code was run using SISCTUS Prolog2.1
on a Sun SPARCStation 10.

We can make several comparisons: we can compare the history provers withthe
contraction free prover; we can compare G3 and MJ as base calculi for applyinga
history mechanism to; we can compare the two forms of history mechanism.

The G4 decision procedure takes a different approach from that of the history
provers. Therefore the implementation, though we have attempted to write itin
the same style, is significantly different from the implementations of the history
provers. Comparison is hard and uncertain. We therefore do not want to say any-
thing definite based on the timings given. However, the results might indicate that



CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 97

G3Hist Sc. G3Hist Sw. MJHist Sc. MJHist Sw. G4

de bruijn p 3 2 7 6 10
de bruijn n 1 1 2 2 1
ph p 3 3 3 3 4
ph n 1 1 2 2 1
con p 50 23 54 85 130
con n 5 2 5 6 2
schwicht p 5 5 12 11 157
schwicht n 2 1 102 89 38
kk p 2 1 330 404 4
kk n 0 0 5 5 1
equiv p 3 2 13 13 4
equiv n 4 4 1191 1219 3

Table 4.1: Results for Theorem Provers (largest parameter giving proof in lessthan
10sec)

G4 is generally a faster decision procedure, but that for certain classesof problem,
the history provers can be comparable or even quicker.

The comparison between G3 and MJ as the base calculus for the history mechanism
seems quite straightforward. In all cases the Swiss MJHist is better than the Swiss
G3Hist, and the Scottish MJHist is better than the Scottish G3Hist. This is to be ex-
pected as MJ search space is a restriction of G3 search space. We conclude that MJ
is a better calculus than G3 for basing a history mechanism propositional theorem
prover on.

Our experimental results show that with both MJ and G3 as a base calculus, the
Swiss and Scottish calculi give similar results for most examples. However, as ex-
pected, there are some examples where the Swiss mechanism is a little better, and
others where the Scottish mechanism considerably outperforms (by several orders
of magnitude) the Swiss mechanism. We conclude that for propositional intuitionis-
tic logic, the Scottish mechanism seems to be the better approach to loop detection.
However, G4 seems to give the best decision procedure.

Of course, if one is interested in finding loops, or a certain class of proofs rather
than in decision procedures, then the history calculi are very useful and G4 isnot.

4.5 Histories and Modal Logic

So far we have discussed history mechanisms only with respect to propositional
intuitionistic logic. However, their use is possible for other logics, such as modal
logics. Indeed, as contraction-free calculi for modal logics are either not known or
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Eg Uni. P/U G3Hist Sw. G3Hist Sc MJHist Sw. MJHist Sc. G4

1. P 49 56 14 18 7
2. P 3900 4500 1400 1700 260
3. U 1800 1800 170 160 61
4. P 0.7 0.8 0.2 0.2 0.5
5. P 0.3 0.4 0.1 0.1 0.2
6. P 3.4 2.7 0.6 0.8 0.5
7. P 77 57 11 14 13
8. P 1.2 1.1 0.5 0.5 0.4
9. P NR NR 4.3 4.3 1500
10. U 1.1 1.0 0.4 0.5 0.7
11. U NR 61 24 10 NR
12. P 1.4 1.7 0.7 1.0 0.9
13. U 47 6.3 4.5 3.2 3.9
14. P 6.8 4.8 3.5 2.7 1.5
15. P 79 38 50 57 11
16. 3 P 6400 6500 800 960 1100
17. 2 P 46000 46000 7500 8500 3300
18. 4 P 63 41 63 8.5 13
18. 5 P 120 71 150 15 24
19. 2 P 52000 2500 7.8 8.1 13
19. 3 P NR NR 18000 27 260
20. 2 P 17 17 1.1 2.1 2.4
20. 4 P 970 950 5.3 6.6 33
21. 2 U 290 260 8.6 10 12
21. 3 U 1500 1500 27 33 37
22. 2 P 3200 190 370 22 8.0
22. 3 P NR 11000 12000 510 20
23. 2 P NR NR 35 45 140
23. 3 P NR NR 2200 1400 8900
24. 2 U NR NR 49 31 NR
25. 2 P NR NR 11000 20 29
25. 4 P NR NR NR 370 18000
26. 2 P NR NR 3.4 5.8 5.6
26. 5 P NR NR 17 30 40
27. 2 P 380 110 10000 47 9.3

Key:
Uni.:size of the universe the formula has been instantiated over; P: provable; U:
unprovable; NR: no result in less 100000ms)

Table 4.2: Results and Timings (averages in milliseconds)



CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 99�j�; A;:A;H (ax)�j�;>;H (>) �j�;H�j�;?;H (?)�j�; P; Q;H�j�; P _Q;H (_) �j�; P ;H �j�; Q;H�j�; P ^Q;H (^)�;3P j�; P ;��j�;3P ;H (31) if 3P =2 � �j�; P ;H�j�;3P ;H (32) if 3P 2 ��j�; P ;H;�2; P�j�1;2�2;2P ;H (2) if P =2 H
Figure 4.5: S4Hist in the Swiss style

are complicated, history mechanisms are of more interest here than for intuitionis-
tic logic. The Heuerdinget al. paper ([HSZ96]) is mainly about loop checking for
modal logics. In this section we discuss the application of histories to some modal
logics: S4, intuitionistic S4 and Lax Logic. We know of no contraction-free cal-
culi for intuitionistic S4 or Lax Logic (although [AF96] contains an unsuccessful
attempt at developing one). Hudelmaier has given a contraction-free calculus for
S4 ([Hud96]). However, this calculus is complicated and hard to understand, mo-
tivating other approaches to theorem proving in S4, such as the one from [HSZ96]
discussed here.

As S4 is a modal logic with classical logic underlying it, we do not need a calculus
which deals with all the connectives, but simply one which can deal with formulae
in negation normal form. We give the calculus for S4Hist from [HSZ96] (where it
is calledS4SU ), [Heu98] (where it is calledS4S;3) in Figure 4.5. Sequents are one-
sided and of the form�j�;H. � is a set of formulae of the form3P . � is a set of
formulae in negation normal form.H is a set of formula.

Definition 4.2 A formula is said to be innegation normal form if it contains no
occurrences of�, the only negated subformulae are atoms and the formula contains
no repeated instances of a modality (no22 and no33).

Since the base calculus is classical logic, no loop checking is needed for this. All
we need to consider for looping are the modalities. This is fortunate, since generally
speaking this calculus does not have the fundamental requirement that the context
is increasing. What it does have is an increasing context of3 formulae. As noted
in [HSZ96], this is enough to allow loop checking with a history.

In the previous section we identified two different approaches to loop detection in
intuitionistic propositional logic. The obvious thing to do next is to see if the same
distinction can be drawn for the modal logic.
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We reiterate the difference between the Swiss and Scottish method for intuitionistic
logic, with reference to the(�L) rule in the G3Hist calculi. First the Swiss(�L):�; P � Q) P ; (D;H) �; P � Q;Q) D;��; P � Q) D;H (�L) if D =2 H andQ =2 �
And the Scottish(�L):�; P � Q) P ; (P;H) �; P � Q;Q) D; fDg�; P � Q) D;H (�L) if P =2 H andQ =2 �
The Swiss calculus checks that the goal of theconclusionis not in the history and
if not, adds this formula to the history. The Scottish calculus checks that the goal
of the leftpremissis not in the history and if not, adds this goal to the history. For
intuitionistic logic this makes a significant difference to where a loop is detected.

Now look at the(2) inference of S4Hist . To illustrate the point we will look at a
sequent with only one boxed formula in it:�j�; P ;H; P�j�;2P ;H (2) if P =2 H
An alternative rule would have been:�j�; P ;H;2P�j�;2P ;H (2) if 2P =2 H
In terms of checking against the history and adding to it, these two rules are analo-
gous to those given above for intuitionistic logic. But here it is easy to see thatthese
rules will have exactly the same effect. The difference between checkingthe pre-
miss and conclusion formula is simply a box. The addition of more boxed formulae
to sequents makes no difference to this.

We see that the two slightly different approaches that were taken for intuitionistic
logic merge into one for S4.

In the rest of this section we illustrate the wide applicability of history mechanisms
by applying them to two more logics. Both are intuitionistic modal logics: intu-
itionistic S4 and Lax Logic.

4.5.1 Histories and Lax Logic

In this section we briefly present a history calculus which is a decision procedure
for propositional Lax Logic, as presented in Chapter 3.

Lax Logic extends usual calculi for intuitionistic logic by two rules, one for the
modality on the left and one for the modality on the right. The calculus we use here
as the basis for the history calculus is PFLAX (see Figure 3.7). Essentially,no extra



CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 101� P�! P ;H (ax) �; P P�! D;H�; P ) D;H (C)�; P ) Q; fQg�) P � Q;H (�R1) if P =2 ��) Q; (Q;H)�) P � Q;H (�R2) if P 2 � andQ =2 H�) P ; (P;H) � Q�! D;H� P�Q�! D : H (�L) ifP =2 H�) P ; (P;H)�) �P ;H (�R) if P =2 H�; P ) �R; f�Rg� �P�! �R;H (�L) if P =2 �D is either an atom or a modal formula.
Where the history has been extended we have parenthesised(P;H) for emphasis.

Figure 4.6: The calculus PFLAXHist (Scottish)

work has to be done for this calculus. It has all necessary features, such as increasing
context, for use with history mechanisms. We simply take the history mechanism
for intuitionistic logic (in either the Swiss or Scottish style, we only present one in
the Scottish style) and apply it without change, only noting that there are formulae
with a modality – this presents no difficulties. The calculus PFLAXHist restricted
to the connectives� and� is presented in Figure 4.6.

We can again prove all the usual theorems about soundness, completeness and ter-
mination.

4.5.2 Histories and IS4

Intuitionistic S4 (IS4) is a modal logic with a modality like that of S4, but built
on intuitionistic logic rather than classical logic. The two sided single succedent
calculus with a single modality that we deal with here can be found in the appendix.
More details on IS4 can be found in [BdP96] and [Sim94].

As for S4, we are faced with an immediate problem – the context is not increasing
(owing to the(2R) rule). For S4 this wasn’t problematic as we only needed to check
for looping owing to the modalities – the propositional classical logic needs no
history. The modal context was increasing: hence we could easily use our histories.
Now that the modal logic is based on intuitionistic logic, we have to consider loops
in the base calculus, as well as ones owing to the modality (which can be dealtwith
since we still have an increasing modal context).
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We do loop checking in this calculus by using two histories – one to deal with
the modalities (like that for S4 above) and one for intuitionistic propositional logic
(again, as above). We formulate the calculus in order to prove formulae withno
repeated modalities. (Sequents can be preprocessed to such a form since22P �2P . Notice that for proof enumeration such a preprocessing would not be allowed
as it would identify non-equivalent proofs. However, for theorem proving this is a
valid step). We display IS4Hist (in a Scottish style) in Figures 4.7 and 4.8. Because
of the two history mechanisms we have a lot of, but not unmanageably many, rules.
Sequents have form2�;�) P ;H1;H2, where none of the formulae in� are
boxed,H1 is the modal history andH2 is the intuitionistic history.

The calculus uses the Scottish style of history for the intuitionistic component. We
could easily have used the Swiss style instead. As already discussed, thereis only
one approach to the modal looping. We prove the soundness, completeness and
termination of this calculus.

Theorem 4.9 The calculi IS4 and IS4Hist are equivalent. That is, sequentS is
provable inIS4 iff it is provable inIS4Hist.
PROOF: Soundness is trivial. The completeness is similar to the other proofs. To
see this, one simply has to note that the two histories work independently, with the
modality history taking precedence. Between(2R) inferences the second history is
much like the intuitionistic history. That the first history is much like the S4 history
is also obvious. Building a proof tree can be done as in Theorem 4.1.�
Theorem 4.10 Backwards proof search in the calculusIS4Hist is terminating.

PROOF: The proof is similar of that of Theorem 4.2. We associate with every
sequent2�;�) R;H1;H2 a quadruple of natural numbersW = (k �m; k � l1; k � n; k � l2)
wherek is the number of elements of the set of subformulae of2�;�; R; m is
number of elements in the set of formulae of2�; n is the number of elements in�
when considered as a set;l1 is the number of elements inH1; l2 is the number of
elements inH2. The quadruples are ordered lexicographically from the left.

By inspection we see that for every inference, the premisses have lowerW than the
conclusion. Hence backwards proof search is terminating.�
We can easily formulate a two-sided classical S4 calculus similar to the IS4 calculus
we have given. We simply allow multiple succedents and adjust the rules accord-
ingly. What effect will this have on the histories? Basing the calculus on classical
logic immediately means that we do not need the second history – loop-checking
is not needed for classical logic. We still need to keep track of the boxed formulae
and this is done by noting all the boxed formulae in the succedent when performing(2R). That is, we end up with a two-sided calculus S4Hist.
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2�;�; P ) P ;H1;H2 (ax) 2�;�;? ) P ;H1;H2 (?)2�;�; N ) Q;H1; fQg2�;�) N � Q;H1;H2 (�R1) if N =2 �2�;M;�) Q;�; fQg2�;�)M � Q;H1;H2 (�R2) if M =2 2�2�;�) Q;H1; (Q;H2)2�;�) N � Q;H1;H2 (�R3) if N 2 � andQ =2 H22�;�) Q;H1; (Q;H2)2�;�)M � Q;H1;H2 (�R4) if M 2 � andQ =2 H22�;�; P � N ) P ;H1; (P;H2) 2�;�; P � N;N ) R;H1; fRg2�;�; P � N ) R;H1;H2 (�L1)y2�;�; P �M ) P ;H1; (P;H2) 2�;M;�; P �M ) R;�; fRg2�;�; P �M ) R;H1;H2 (�L2)z2�;�) P : H1; (P;H2) 2�;�) Q;H1; (Q;H2)2�;�) P ^Q;H1;H2 (^R) if P;Q =2 H22�;�; N ^Q;N ) R;H1; fRg2�;�; N ^Q) R;H1;H2 (^L1) ifN =2 �2�;�; P ^N;N ) R;H1; fRg2�;�; P ^N ) R;H1;H2 (^L2) ifN =2 �2�;M;�;M ^Q) R;�; fRg2�;�;M ^Q) R;H1;H2 (^L3) ifM =2 2�2�;M;�; P ^M ) R;�; fRg2�;�; P ^M ) R;H1;H2 (^L4) ifM =2 2�y if P =2 H2 andN =2 �.z if P =2 H2 andM =2 �.
All boxed formulae in the context are in2�M is a modal formula,N is a non-modal formula.P;Q;R can be either.
Where the history is extended we have parenthesised(P;H) for emphasis.

Figure 4.7: IS4Hist : axioms and rules for?, � and^
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2�;�) P ;H1; (P;H2)2�;�) P _Q;H1;H2 (_R1) if P =2 H22�;�) Q;H1; (Q;H2)2�;�) P _Q;H1;H2 (_R2) if Q =2 H22�;�; N1 _N2; N1 ) R;H1; fRg 2�;�; N1 _N2; N2 ) R;H1; fRg2�;�; N1 _N2 ) R;H1;H2 (_L1)y2�;M;�;M _N ) R;�; fRg 2�;�;M _N;N ) R;H1; fRg2�;�;M _N ) R;H1;H2 (_L2)z2�;�; N _M;N ) R;H1; fRg 2�;M;�; N _M ) R;�; fRg2�;�; N _M ) R;H1;H2 (_L3)[2�;M1;�;M1 _M2 ) R;�; fRg 2�;M2;�;M1 _M2 ) R;�; fRg2�;�;M1 _M2 ) R;H1;H2 (_L4)]2�) P ; (P;H1); fPg2�;�) 2P ;H1;H2 (2R) if P =2 H12�;�;2P; P ) R;H1; fRg2�;�;2P ) R;H1;H2 (2L) if P =2 �y if N1; N2 =2 �z if M =2 2� andN =2 �[ if M =2 2� andN =2 �] if M1;M2 =2 2�
All boxed formulae in the context are in2�M is a modal formula.N is a non-modal formula.P;Q;R can be either.
Where the history has been extended we have parenthesised(P;H) for emphasis.

Figure 4.8: The calculus IS4Hist : rules for_, 2
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4.6 Conclusion

In this chapter we have investigated the use of calculi with history mechanisms
as decision procedures for a variety of logics. We have given history calculi for
intuitionistic logic, S4, IS4, and Lax Logic. We have proved the soundness, com-
pleteness and termination of these calculi. We have compared our approach with
that of Heuerdinget al in [HSZ96]. We have given a theoretical discussion of this
and have also performed a practical comparison of the calculi for intuitionistic logic
using Prolog implementations of the calculi. We conclude that the Scottish mecha-
nism gives a better decision procedure for intuitionistic logic, but that for this logic,
G4 gives as good or better a decision procedure. For classical S4, the approaches
coincide. We have also illustrated the wide applicability and flexibility ofthe tech-
nique by applying it to IS4 and Lax Logic.



Chapter 5

Embedding MJ in Intuitionistic
Linear Logic

Girard’s original paper on linear logic, [Gir87], gives an embedding of intuitionis-
tic logic into linear logic, for formulae, sequents and for proofs. The translation,
known as the Girard embedding (the(:)0 embedding of [Gir87]), was claimed to
be correct and faithful. A detailed proof wasn’t provided in that paper – this was
supplied by Schellinx in [Sch91]. [Sch94], [TS96] show how the Girard embed-
ding of proofs induces a sequent calculus for implicational intuitionistic logic – this
Gentzen system is known as IU. We know of no satisfactory semantic justification
for the form of IU. In this chapter we discuss IU and the Girard embedding and give
a new embedding (defined by two functions) of a fragment of intuitionistic logic
into (Intuitionistic) Linear Logic. This embedding induces (and was designed to
induce) a fragment of the sequent calculus MJ. This calculus is syntactically similar
to IU, but has in addition a semantic justification – its proofs correspond naturally
in a 1–1 way to the normal natural deductions of intuitionistic logic. In fact, for
reasons discussed below, the largest fragment of intuitionistic logic that we have a
satisfactory solution for is hereditary Harrop logic.

5.1 The Girard Embedding

Before we discuss this particular embedding, we give a definition of what we mean
by an embedding of one logic into another.

Definition 5.1 Anembeddingof logicL1 into logicL2 is a function,f , interpreting
formulae ofL1 into formulae ofL2 such that for every formulaP of L1, `L1 P iff`L2 f(P ).
We should note that this definition is given in terms simply of provability – later in
the chapter we ask for a little more.

106
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The Girard embedding has been quite widely discussed and can be found in, for
example, [Gir87]. We present the embedding below:Ag = A whereA is atomic?g = 0(P � Q)g = !P g��Qg(P ^Q)g = P g&Qg(P _Q)g = !P g�!Qg(8x:P )g = 8x:P g(9x:P )g = 9x:!P g
To embed sequents we interpret�) R as!�g ) Rg and (withP the next principal
formula)�; P ) R as !�g; P g ) Rg. Hence if the last step in a proof of�; P �Q) R is (�L), then in the translation we would have:!�g ) P g!�g )!P g (P ) !�g; Qg ) Rg!�g; !P g��Qg ) Rg (��L)
We know that the embedding is correct for provability. The following theorem can
be found in [Sch91]:

Theorem 5.1 IL ` �) P iff CLL `!�g ) P g.
PROOF: The proof can be found in [Sch91].�
In [Gir87] a translation of proofs is also given, showing how to interpret a (natural
deduction) proof into a linear sequent calculus proof. It is translations of proofs
that we are really interested in in this chapter. It should also be pointed outthat
embedding logics into linear logic results in the system of Unified Logic in [Gir93].
This calculus, by building embeddings of classical logic and intuitionistic logic into
linear logic, has the connectives of all three logics and allows them to interact. We
mention connections between Unified Logic and IU later in the chapter.

5.2 Induced Calculi and IU

We look at the fragment of ILL generated by the grammar of the embedding of
intuitionistic logic into linear logic. From the proofs in this fragment, we find a
sequent calculus for intuitionistic logic. We say that the calculus isinducedby
the embedding. The proofs in the restricted grammar take a certain form and the
inference steps correspond to certain rules of intuitionistic logic. We makethe
notion of induced calculus precise.

Definition 5.2 A sequent calculusG1 for logic L1 is induced by embedding e of
logicL1 into logicL2 (with sequent calculusG2) if for every sequentS ofL1:



CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC L INEAR LOGIC 108�;A) A (ax) �; P ;P ) R�; P ;� ) R (C)�; P ; �) Q�;�) P � Q (�R) �;� ) P �;Q) R�;P � Q) R (�L)�;�) P �;�) Q�;�) P ^Q (^R)�;P ) R�;P ^Q) R (^L1) �;Q) R�;P ^Q) R (^L2)�;� ) P [u=x]�;� ) 8xP (8R)y �;P [t=x]) R�; 8xP ) R (8L)� stands for either empty or a single formula.� stands for empty.y u not free in�.
Figure 5.1: The sequent calculus IU for a fragment of intuitionistic logic

– there is a bijection between proofs of sequentS in G1 and proofs of sequente(S) in G2
The Gentzen calculus IU induced by the Girard embedding for the�;^; 8 fragment
of intuitionistic logic is displayed in Figure 5.1.

Proposition 5.1 IU` �;�) R iff IL` �;�) R
PROOF: See [TS96].�
We have not treated disjunction, bottom or the existential quantifier in IU. This
is because with these connectives the calculus loses the attractive feature of the
focused formula on the left. For example, the following could occur in ILL:!�; !P1; Q) R !�; !P2; Q) R!�; !P1�!P2; Q) R (�L)!�; !(!P1�!P2); Q) R (D)
Or even more illustrative: !�;�; 0) R (0)
These correspond to intuitionistic proofs with many focused formulae.

We know of no treatment of IU and the Girard embedding that explicitly mentions
disjunction or falsum, although it is hinted in [Sch94] that there is a correspondence
between the induced calculus for the whole of intuitionistic logic and the intuition-
istic fragment of Girard’s Logic of Unity ([Gir93]). Schellinx says that we find
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“the neutral fragment of intuitionistic implicational logic as it appears in Girard’s
system of Unified Logic” ([Sch94], pg. 50). The neutral intuitionistic fragment of
Unified Logic is the fragment of the logic with connectives�;^; 8, those of IU.
However, beyond this fragment, the interpretations of the intuitionistic connectives
is more complicated, and simply taking the fragment of Unified Logic for intuition-
istic logic gives an unattractive calculus (losing the single formula focusing). It does
not give MJ.

5.3 Inducing MJ

The�;^; 8 fragment MJ is similar to the calculus IU. Its form is that of IU, but
with the restriction that the�s of Figure 5.1 are empty. MJ also has satisfactory
rules for disjunction, falsum and the existential quantifier. We would like to find
an embedding of intuitionistic logic into ILL which induces this calculus. This
seems to be hard to achieve using a single mapping. Instead we use two mappings:
a positive one which applies to formulae on the right; and a negative one which
applies to formulae on the left. Unfortunately, we have been unable to find an
embedding of disjunction (on the left), falsum and the existential quantifier (on the
left) that works as we would like, and so these have been left out. We give this
embedding:A+ = A where A is atomicA� = A where A is atomic(P � Q)+ = !P���!Q+(P � Q)� = !P+��Q�(P ^Q)+ = !P+&!Q+(P ^Q)� = P�&Q�(8x:P )+ = 8x:!P+(8x:P )� = 8x:P�
We should also note the following extensions:(P _Q)+ = !P+�!Q+?+ = 0(9x:P )+ = 9x:!P+
We embed sequents into the ILL calculus with split context, the system ILL� (Fig-
ure 2.2).

The intuitionistic sequent�) R is interpreted as the sequent��;� ) R+ in

ILL �. The MJ sequent� P�! R is interpreted as the sequent��;P� ) R+ in
ILL �.

The sequent�) R of intuitionistic logic, is interpreted as��;� ) R+. Every
proof of this ILL� sequent, when viewed as an intuitionistic proof, is an MJ proof.
Moreover, all MJ proofs can be found in this way.
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We now try to explain why we have chosen this embedding. When we translate a
formula on the right, sayP � Q, to a linear logic formula!P��Q, the(��R) rule
can be applied straight away, independently of whether there is a stoup (unbanged)
formula on the left. This does not match MJ. One fix is to translate to!P��!Q in-
stead. In order to get to a sequent that is the translation of an intuitionistic logic
sequent, we have to unbang the goal – to do this we must have no unbanged formu-
lae in the context. The negative formula is still banged and is moved to the context.
However, we then find that the translation of implication on the left loses the no-
tion of a privileged formula. Hence the two translations. One for the left, to retain
the notion of a privileged formula, one for the right to ensure the rule can only be
applied when we require.

The two rules where IU differs from MJ are(�R) and(^R). The new embedding
induces the MJ rules. For example (using Lemma 5.1 below):��; P�;� ) Q+��; P�;� )!Q+ (P )��;� )!P���!Q+ (��R)
Obviously if there was a stoup formula, the linear context would be non-empty and
so we would not be able to perform the promotion (see Lemma 5.1).

The presentation of ILL that we use to prove results about the embedding is ILL�.
This can be seen in Figure 2.2. We prove that the embedding is correct and faithful.
Note that for presentational purposes we write MJ sequents differently from normal:

we write�;� ) R instead of�) R and we write�;P ) R instead of� P�! R.

Theorem 5.2 The embedding given above is correct for proofs. That is, for every
proof inMJ of�;�) P there is a proof inILL � of��; �� ) P+.

PROOF: The proof is by an easy induction on the height of derivations. We shall
illustrate it for just one case, the others being very similar.

The last inference is(�L). We have:
....�;� ) P ....�;Q) R�;P � Q) R (�L)

So by the induction hypothesis we have proofs in ILL� of:
....��;� ) P+ ....��;Q� ) R+

And hence we have a proof:
....��;� ) P+��;� )!P+ (P ) ....��;Q� ) R+��; !P+��Q� ) R+ (��L)
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We need two lemmas:

Lemma 5.1 If sequent��; �� )!R+ is provable inILL � then�� = �.

PROOF: Induction on the height of derivations.�
Lemma 5.2 If sequent��; �� ) R+ is provable inILL � then�� has zero or one
elements.

PROOF: Induction on the height of derivations.�
Theorem 5.3 The embedding given above is faithful for proofs. That is, for every
proof in ILL of��; �� ) P+ there is a proof inMJ of�;�) P .

PROOF: We prove the result by induction on the height of derivations.

1. Case: the last inference is an instance of(��R); we have the following:��; P�; �� )!Q+��; �� )!P���!Q+ (��R)
By Lemma 5.1�� is empty and the next inference in therefore(P ). By the
induction hypothesis we have an MJ proof ending in:�; P ;� ) Q�;� ) P � Q (�R)

2. Case: the last inference is an instance of(��L); we have the following:��; ��1 )!P+ ��;Q�;��2 ) R+��; !P+��Q�;��1 ;��2 ) R+ (��L)
By Lemma 5.1 and Lemma 5.2,��1 and��2 are empty and the left premiss
must result from(P ). By the induction hypothesis we have an MJ proof
ending in: �;� ) P �;Q) R�;P��Q) R (�L)

3. Case: the last rule is an instance of(&R); we have the following:��; �� )!P+ ��; �� )!Q+��; �� )!P+&!Q+ (&R)
By Lemma 5.1,�� is empty and therefore both premisses are the result of(P ). By the induction hypothesis we have an MJ proof ending in:�;� ) P �;� ) Q�;� ) P ^Q (^R)
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4. Case: the last inference is an instance of(&L1). We have the following:��;P�;�� ) R+��;P�&Q�;�� ) R+ (&L1)
By Lemma 5.2,�� is empty. By the induction hypothesis we have an MJ
proof ending as follows: �;P ) R�;P ^Q) R (^L1)

5. The case for(&L2) is similar to(&L1).
6. Case: the last inference is an instance of(D). We have the following:��; P�; ��; P� ) R+��; P�; �� ) R+ (D)

By Lemma 5.2,�� is empty. By the induction hypothesis we have an MJ
proof ending: �; P ;P ) R�; P ;� ) R (C)

7. Case: the last inference is an instance of(ax). We have the following:��;P� ) P+ (ax)
We have an MJ proof: �;P ) P (ax)

8. Case: the last inference is an instance of(8R). We have the following:��; �� ) P [y=x]+��; �� ) 8x:P+ (8R)
(with y not free in��;��). By Lemma 5.1,�� is empty. By the induction
hypothesis we have an MJ proof ending in:�;� ) P [y=x]�;� ) 8xP (8R)
(with y not free in�).

9. Case: the last inference is an instance of(8L). We have the following:��;P [t=x]�;�� ) R+��; 8x:P�;�� ) R+ (8L)
By Lemma 5.2,�� is empty. By the induction hypothesis we have an MJ
proof ending in: �;P [t=x]) R�; 8x:P ) R (8L)
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10. We can also add the cases for disjunction and the existential quantifier on the
right.�

The proofs of the two theorems above show that a fragment of MJ is indeed the cal-
culus induced by the new embedding. There is therefore an isomorphism between
the proofs in the fragment of ILL described above (that is, ILL over the grammar
of the embedding) and the proofs in the fragment of MJ. The�;^; 8 fragment of
MJ lives inside ILL. An obvious corollary of the above theorems is that the new
embedding is correct and faithful for provability.

The embedding given above uses two translations: one for occurrences on the left
and one for occurrences on the right. That the embedding requires this is, perhaps,
not surprising, given the lack of symmetry in intuitionistic logic between the left and
the righthand sides of the consequence relation and the symmetry that is observed
in CLL. Note that embeddings using a positive and a negative translation have been
used by several people when embedding calculi in linear logic. See for example,
[Tro92], [HM94], [HP94].

As noted several times above, we have only given the embedding for the�;^; 8
fragment of intuitionistic logic. This is because our interest is in the induced calculi
and these are unattractive outside of this fragment. We leave it as an open problem
how to embed disjunction on the left, falsum and the existential quantifier on the
left in order to induce MJ. We are not optimistic that a solution can be found.

The problems with some of the connectives result from trying to embed intuition-
istic logic into unrestricted ILL. If we restricted the fragment we were looking at
by, for example, only looking at sequents with one unbanged formula on the left,
then we could embed to get the result required. However, in this case we aresimply
making the ILL calculus closer to the intuitionistic calculus.

Notice that the fragment of MJ we can induce by the new embedding is enough to
cover hereditary Harrop formulae. That is, we can reason about this fragment of
intuitionistic logic (important from the logic programming perspective) inside ILL.
As noted in [Har94], hereditary Harrop logic is in some natural sense the largest well
behaved fragment of intuitionistic logic (for example with respect to goal-directed
proof search), and so we are not surprised that this is the largest fragment thatcan
easily be embedded to give MJ. Harland and Pym have also embedded hereditary
Harrop formulae into linear logic using a two function, positive and negative, em-
bedding (see [HP94]). Their embedding into ILL doesn’t induce a uniform proof
calculus for hereditary Harrop formulae. If, however, the embedding is into auni-
form proof calculus for linear logic, then the calculus induced will be a uniform
proof calculus.

Embedding intuitionistic logic into linear logic has also been investigated (with
different motivation) by Negri in [Neg95]. Also by Lincoln, Scedrov & Shankar
([LSS93]). Danos, Joinet and Schellinx have written extensively on embedding
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logics into linear logics. As well as Schellinx’s thesis ([Sch94]), embeddingsin
intuitionistic logic into linear logic are given in [DJS95], [Sch92].



Chapter 6

A Sequent Calculus for Intuitionistic
Linear Logic

In this chapter, the ideas behind the MJ calculus for intuitionistic logic are applied
to Intuitionistic Linear Logic (ILL). We develop a Gentzen-system, SILL,for ILL
whose derivations can be translated in a 1–1 way to the normal natural deductions
for ILL. We prove some properties of SILL and discuss possible alternative systems.
We also discuss SILL in relation to linear logic programming languages, paying
particular attention to Lolli.

6.1 Natural Deduction

The primary natural deduction system we consider is that of Benton, Bierman, de
Paiva and Hyland ([BBdPH92], [BBdPH93b], [BBdPH93a], [Bie94]). This can be
seen in Figure 1.6. We are interested in deductions in normal form and we give the
beta-reductions and commuting conversions from [Bie94] in order to define normal
natural deductions for ILL.

With the promotion rule, the discharged assumptions are written as[[!P1:::!Pn]]. This
means that all assumptions are of the form!Pi and that they are all discharged at(P ).
First beta-reductions:

1. Linear implication: [P ]....QP��Q (��I) ....PQ (��") ;� ....P....Q
115
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2. I: I (II) ....PP (I") ;� ....P
3. Tensor: ....P ....QP 
Q (
I) [P ][Q]....RR (
") ;� ....P ....Q....R
4. With: ....P ....QP&Q (&I)P (&"1) ;� ....P

Also: ....P ....QP&Q (&I)Q (&"2) ;� ....Q
5. Plus: ....PP �Q (�I1) [P ]....R [Q]....RR (�") ;� ....P....R

Also: ....QP �Q (�I2) [P ]....R [Q]....RR (�") ;� ....Q....R
6. Ofcourse, promotion with dereliction:

....!P1 :::: ....!Pn [[!P1::::!Pn]]....Q!Q (P )Q (D) ;� ....!P1 :::: ....!Pn....Q
7. Ofcourse, promotion with weakening:

....!P1 :::: ....!Pn [[!P1::::!Pn]]....Q!Q (P ) ....RR (W ) ;� ....!P1 :::: ....!Pn ....RR (W�)
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Note that the minor premisses of the promotion rule are ordered left to right,
and therefore that the minor premisses of(W�) are also ordered left to right.
This also applies in the next reduction.

8. Ofcourse, promotion with contraction:

....!P1 :::: ....!Pn [[!P1::::!Pn]]....Q!Q (P ) [!Q][!Q]....RR (C);�
....!P1 :::: ....!Pn [!P1]::::[!Pn] [[!P1::::!Pn]]....Q!Q (P ) [!P1]::::[!Pn] [[!P1::::!Pn]]....Q!Q (P )

....RR (C�)
Notice that the last two reductions involve the use of(C�) and (W�) —
inference rules which are combinations of multiple uses of the ordinary(C)
and(W ) rules. Ordering these occurrences makes them a shorthand forn rule
applications, rather than new admissible rules in their own right (although the
admissibility of such a rule could be shown).

Next, the commuting conversions. Here, the ellipsiss is for one of(
"), (I"),(�"), (0"), (W ), (C), and r is for one ofs or one of(��"), (&"1), (&"2),(D). Note that all the commutations are presented with two premiss rules.
The changes where the rule is in fact a single (or multiple) premiss rule are
obvious.

9. Commutation of(
"):
....P 
Q [P ][Q]....RR (
") ....S r ;c ....P 
Q [P ][Q]....R ....S rS (
")

10. Commutation of(I"):
....I ....PP (I") ....S r ;c ....I ....P ....S rS (I")



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 118

11. Commutation of(0"):
....

....0Q (0") �....R r ;c ....
�.... ....0R (0")

12. Commutation of(�"):�....P �Q �; P....R �; Q....RR (�") ....S r ;c �....P �Q �; P....R ....S r �; Q....R ....S rS (�")
13. Commutation of(W ):

....!Q ....RR (W ) ....S r ;c ....!Q ....R ....S rS (W )
14. Commutation of(C):

....!Q [!Q][!Q]....RR (C) ....S r ;c ....!Q [!Q][!Q]....R ....S rS (C)
15. Commutation of ans-rule with (P ):

....!P1 :::: ....R ....!Pi!Pi s :::: ....!Pn [[!P1; ::::; !Pn]]....Q!Q (P );c
....R ....!P1 :::: ....!Pn [[!P1::::!Pn]]....Q!Q (P )!Q s

16. Commutation of(P ) with (P ):
....!P1 :::: ....!R1 :::: ....!Rm [[!R1::::!Rm]]....Pi!Pi (P ) :::: ....!Pn [[!P1::::!Pn]]....Q!Q (P )
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....!P1 :::: ....!R1 :::: ....!Rm :::: ....!Pn [[!R1:::!Rm]] [[!R1::::!Rm]]....Pi[[!P1::::!Pi�1]] !Pi [[!Pi+1::::!Pn]] (P )....Q!Q (P )

We finally have some commutations associated with with the(0") and(>I)
rules.

17. Commutation of(0"):
....0 �1....P1 :::: �n....PnQ (0") ;c ....0 �1 :::: �nQ (0")

18. Commutation of(>I):�1....P1 :::: �n....Pn> (>I) ;c �1 :::: �n> (>I)
Definition 6.1 A deduction inNILL is said to be in(�, c)-normal form if no �-
reductions and noc-reductions can be applied to it.

6.1.1 Rewriting to normal form

It would be preferable if every natural deduction rewrote to a unique normal form.
That is, that the above normalisation process was confluent. Unfortunately the
above normalisation procedure is not confluent. Firstly, consider the beta-reductions
for promotion with weakening and promotion with contraction (reductions 7. and
8.) As noted above, these reductions involve multiple applications of weaken-
ing/contraction. As the usual formulations of these rules have single formulae being
weakened/contracted, we are left with a choice: either we make the multiple rules
primitive, or we have them simply as a shorthand for multiple applications of the
single rule.

We choose the latter option. This means that the(W�) and (C�) rules have or-
dered premisses. Now consider promotion. We again have a choice. Are the minor
premisses ordered or not?
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On the one hand, if they are, then there are proofs which are not equivalent, yet are
the same up to the ordering of the minor premisses. On the other hand, if they are
not ordered, then we can perform the reductions in many ways.

In fact we stipulate that the minor premisses of promotion are ordered (left to right
as written). Later in this chapter, the existence of an order will make thecalculus
easier to handle.

However, this is not the only place where we have a problem with confluence. Con-
sider the commutation of ans-rule with promotion (reduction 15.) Even with an
order on the minor premisses of promotion, this reduction is not confluent. For
example: B1 
 B2 !A1!A1 (
") B3 
B4 !A2!A2 (
") [[!A1; !A2]]....C!C (P );

B1 
B2 B3 
 B4 !A1 !A2 [[!A1; !A2]]....C!C (P )!C (
")!C (
")
or;

B3 
B4 B1 
 B2 !A1 !A2 [[!A1; !A2]]....C!C (P )!C (
")!C (
")
The following example illustrates the non-confluence introduced by the interaction
of �- and c-reductions:

!P1 ::: S 
 T [S][T ]....!Pi!Pi (
") ::: !Pn [[!P1:::!Pn]]....Q!Q (P ) RR (W )
We can reduce in two ways: either first perform the�-reduction then the commuting
conversion, or first perform the commuting conversion then then�-reduction.
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!P1 S 
 T [S][T ]....!Pi !Pn RR (W )

....RR (W )R (
")
....RR (W )

or;
S 
 T !P1

[S][T ]....!Pi !Pn RR (W )
....RR (W )

....RR (W )R (
")
It is known that if we consider only�-reductions then normalisation is confluent
and strongly normalising. See [Bie94] and [Ben95].

What can we say for (�; c)-reduction? The above examples show that confluence
does not hold. We can, of course, give a strategy for normalising non-normal de-
ductions which would give a unique normal form. For example, pick any top most
non-normal inference and recursively normalise.

What can be said is that all proofs in (�; c)-normal form areirreducible. A proof is
irreducible if no normalisation steps can be applied to it. The (�; c)-normal proofs
are all the irreducible proofs.

These problems with normal proofs suggest a more involved notion of normal form
for ILL, as discussed in section 6.3.

6.2 Term Assignment for Normal Natural Deductions

This section details a term assignment system whose terms are in 1–1 correspon-
dence with NILL deductions in (�, c)-normal form. We also give a sequent-style
natural deduction calculus allowing only deductions in normal form. This deduc-
tion system exactly types the proof terms. This calculus has two judgement forms
in order to restrict the deductions to those in(�; c)-normal form.
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The term assignment has two syntactic categories,A and N. The normal proofs
are given by theN terms. These are displayed below (where V is the category of
variables):

A::= var(V ) j ap(A;N) j der(A) j withe1(A) j withe2(A)
N::=� j ie(A;N) j tene(A; V:V:N) j weak(A;N) j cont(A; V:V:N) j withi(N;N) jplusi1(N) j plusi2(N) j pluse(A; V:N; V:N) j tr(fvar(V ); :::; var(V )g)an(A) j �V:N j teni(N;N) j prom(!A; !V :N) j fal(A; fvar(V ); :::; var(V )g)
The full calculus with term assignments, which we call NNILL, is presented in
sequent style in Figure 6.1.

6.2.1 Justification of the Restrictions

We now go through each of the�-reductions and commuting conversions and show
that none of them can be performed in the calculus presented in the previous section.

1. This is not applicable since the conclusion of(��I) is anN term whereas the
left premiss of(��") has to be anA term.

2. This is not applicable since the conclusion of(II) is anN term whereas the
left premiss of(I") has to be anA term.

3. This is not applicable since the conclusion of(
I) is anN term whereas the
left premiss of(
") has to be anA term.

4. This is not applicable since the conclusion of(&I) is anN term whereas the
premiss of(&") has to be anA term.

5. This is not applicable since the conclusion of(�I) is anN term whereas the
leftmost premiss of(�") has to be anA term.

6. This is not applicable since the conclusion of(P ) is anN term whereas the
premiss of(D) has to be anA term.

7. This is not applicable since the conclusion of(P ) is anN term whereas the
left premiss of(W ) has to be anA term.

8. This is not applicable since the conclusion of(P ) ia anN term whereas the
left premiss of(C) has to be anA term.

9. This is not applicable since the conclusion of(
") is anN term whereas the
left premiss of any of ther-rules has to be anA term.
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x : P � var(x) : P (ax)�� A : P��Q ���N : P�;�� ap(A;N) : Q (��") �; x : P ��N : Q����x:N : P��Q (��I)���� : I (II) �� A : I ���N : P�;���ie(A;N) : P (I")���N1 : P ���N2 : Q�;���teni(N1; N2) : P 
Q (
I)�� A : P 
Q �; x1 : P; x2 : Q��N : R�;���tene(A; x1:x2:N) : R (
")�� A :!P ���N : Q�;���weak(A;N) : Q (W ) �� A :!P �; x1 :!P; x2 :!P ��N : Q�;���cont(A; x1:x2:N) : Q (C)�� A :!P�� der(A) : P (D) �� A : P���an(A) : P (M)�1 � A1 :!P1 :::: �n � An :!Pn x1 :!P1; ::::; xn :!Pn ��N : Q�1; ::::;�n ��prom(!A;!x :N) :!Q (P )���N1 : P ���N2 : Q���withi(N1; N2) : P&Q (&I)�� A : P&Q�� withe1(A) : P (&"1) �� A : P&Q�� withe2(A) : Q (&"2)���N : P���plusi1(N) : P �Q (�I1) ���N : Q���plusi2(N) : P �Q (�I2)�� A : P �Q �; x1 : P ��N1 : R �; x2 : Q��N2 : R�;���pluse(A; x1:N1; x2:N2) : R (�")P1 � var(x1) : P1 :::: Pn � var(xn) : PnP1; :::; Pn ��tr(fvar(x1); :::; var(xn)g) : > (>I)P1 � var(x1) : P1 :::: Pn � var(xn) : Pn �� A : 0�; P1; :::; Pn ��fal(A; fvar(x1); :::; var(xn)g) : Q (0")
Figure 6.1: NNILL: Sequent style natural deduction calculus for ILL, giving nor-
mal natural deductions, together with term assignments.
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10. This is not applicable since the conclusion of(I") is anN term whereas the
left premiss of any of ther-rules has to be anA term.

11. This is not applicable since the conclusion of(0") is anN term whereas the
left premiss of any of ther-rules has to be anA term.

12. This is not applicable since the conclusion of(�") is anN term whereas the
left premiss of any of ther-rules has to be anA term.

13. This is not applicable since the conclusion of(W ) is anN term whereas the
left premiss of any of ther-rules has to be anA term.

14. This is not applicable since the conclusion of(C) is anN term whereas the
left premiss of any of ther-rules has to be anA term.

15. This is not applicable since the conclusion of anys-rule is anN term whereas
the minor premisses of(P ) have to beA terms.

16. This is not applicable since the conclusion of(P ) is anN term whereas the
minor premisses of(P ) have to beA terms.

17. This is not applicable since all the minor premisses of(0") must be instances
of (ax).

18. This is not applicable since all the premisses of(>I) must be instances of(ax).
Hence none of the reductions and commutations are applicable. Due to the(M)
rule, every other combination of inferences that was possible before is still possible.
Therefore the calculus does, as claimed, capture exactly the (�, c)-normal natural
deductions of ILL.

Proposition 6.1 The calculusNNILL generates exactly the (�, c)-normal natural
deductions ofILL .

6.2.2 Multiple Field Version of Natural Deduction

It should be noted that natural deduction for ILL might be presented with the as-
sumptions split into two fields. One field contains linear assumptions which have
to be discharged exactly once. The other contains non-linear (that is, banged) as-
sumptions packets – as in the usual natural deduction formulations for intuitionistic
logic. The rules then have to be adapted to take this into account and weakening
and contraction can be replaced by a single structural rule. We might find this an
attractive approach as it ties in with other work on linear logic and logic program-
ming. See for example the calculus ILL� in Figure 2.2 and the discussion in section
6.7.
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6.3 Alternative Natural Deduction and Term Systems

We have given the results so far for one presentation of natural deduction for ILL.
There are, however, several others in the literature, some of which arediscussed
here.

6.3.1 Logical Constants

We have given the system as formulated in [Bie94]. This formulation of natural
deduction has multiple premiss rules for(>I) and(0") along with some reduction
rules. We could have replaced these rules with the following:x1 : P1; :::; xn : Pn ��tr(fx1; :::; xng) : > (>I)�� A : 0x1 : P1; :::; xn : Pn;���fal(fx1; :::; xng; A) : R (0")
NNILL with these rules (or NILL with similar rules) remains closed under substi-
tution.

6.3.2 Promotion

Early formulations of natural deduction used the following apparently simpler in-
troduction rule for!: !�) Q!�)!Q (P )
This is the rule to be found in [Avr88], [Abr93], [Wad92], originally in [Tro92],
[Val92] and [RdRR97]. Unfortunately, natural deduction with this rule is not closed
under substitution. This is a fairly fundamental property from a computational point
of view, and so another formulation is desirable. The system we have already de-
scribed above is closed under substitution, as is the system NAT in [LM92] (this
system is similar to the one we discuss, in particular, it has the same rulefor pro-
motion).

The promotion rule for ILL suggested so far is still a rather strange looking rule.It
is an introduction rule, yet looks more like an elimination rule. It has the form taken
in order to make the possibility of substitution explicit – the rule can be thought of
as a promotion in the style rejected above, together withn substitutions. As noted
above, it has to be decided whether the premisses of promotion are ordered or not.
We are unsatisfied with our answer to this question. This motivates attemptsto find
another way of looking at the promotion rule in natural deduction.



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 126� ` Q� `!Q (P )� `!P< � >!P`!P (<>I) < � >!Q;� ` P�;� ` P (<>")�;M;M ` R�;M ` R (C)� consists of bracket formulae and! formulae.M consists of bracket formulae and! formulae.
Figure 6.2: MBILL: natural deduction rules involving the<> bracket

In [Tro95] another approach to natural deduction for ILL is developed. The promo-
tion rule is given as follows: [[D1....!R1 ::: Dn....!Rn]].... DQ!Q (P )
Here[[!R1:::!Rn]] is a complete list of open assumptions in deductionD and where
deductionsDi may be substituted for the!Ri. That is, this rule is much like the
one above in that it makes the possibility of substitution explicit. However,this
approach is hard to extend into the additives.

Yet another approach to natural deduction for ILL comes from Mints. In [Min95]
a natural deduction system is presented which avoids the use of an elimination-like
promotion rule by using an explicit notation for these substitution-like aspects of
promotion. This also orders the occurrences in a way that doesn’t happen in the
original system. The new rules can be seen in Figure 6.2 (the rest of the calculus is
as before).

We have given the contraction rule as presented by Mints, although we could use the
one given earlier. The judgement< � >!P ;� ` Q can be read as “Q is deducible
from� and!P ; also,!P is deducible from�”. Notice that the system as presented is
not closed under substitution, but that by restricting the condition on promotion so
that all assumptions are bracketed, the system becomes closed under substitution.

Whereas in the natural deduction system presented in Figure 1.6, all the substitu-
tions occur as part of the promotion rule, here they occur individually before the
promotion. Although we use the Bentonet al. system we could easily have used
that of Mints instead. Indeed we find some of its features more attractive than the
one we use, but are unhappy about the use of the brackets as some sort of logical
connective – we do not feel that we understand it properly. Also, the commuting
conversions for the bracket elimination rule are not obvious. It appears to commute
with everything, including itself, in either direction. Then in what order do these
eliminations occur?
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6.3.3 Tensor Elimination

One of the most unsatisfactory features of normal natural deductions for ILL are
chains of tensor eliminations. For example:�2 � C 
D �1 � A
B �; A; B; C;D ��E�1;�; C;D ��E (
")�1;�2;���E (
")
and �1 � A
B �2 � C 
D �; A; B; C;D ��E�2;�; A; B ��E (
")�1;�2;���E (
")
would seem to the same, yet are different normal natural deductions. A solution
would be to have ann premiss tensor elimination rule. Such an approach is outlined
by Mints in [Min97], [Min98]. The new tensor elimination rule is:�1 � P1 
Q1 ::: �n � Pn 
Qn �; P1; :::; Pn; Q1; :::; Qn ��R�1; :::;�n;���R (
")
Extra normalisation steps would then have to be added to bring tensor eliminations
together into such a rule. One might also add extra rules to commute tensor elimina-
tions with other elimination rules. Such a natural deduction would greatly improve
the denotational power of the natural deduction system, bringing it much closer to
expressing the equalities we would like. However, in this thesis we work with the
usual system for normal natural deductions.

6.4 Sequent Calculus

We now describe a calculus in the style of MJ for ILL. We call this calculus SILL
(for ‘Stouped’ Intuitionistic Linear Logic). We do not describe SILL as ‘permutation-
free’ since the study of the permutability of the inference rules of ILL conducted
in Chapter 2 shows that many derivations that would be seem to be equivalent are
not identified by SILL. Most obvious amongst these are those to do with(
L) –
these permutations correspond to ones that it would appear natural to identify even
in natural deduction, but are not identified under usual formulations of normal form
for natural deductions (see discussion in the previous section). SILL does have the
property that its proofs can be translated in a 1–1 with normal natural deductions
for ILL, the proofs of NNILL. The sequent calculus SILL can be seen in Figure 6.3.

This calculus has three forms of judgement. There are the usual sequents with no
privileged formula, there are sequents with a single stoup which behave much like
stoup sequents for MJ. Finally there are sequents with a multiple stoup, of the form� [!	][�]������ R. This is the form of judgement reflecting the structure of the promo-
tion rule for natural deduction. Themultistoupcontains two lists, one of banged
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� P�! P (ax) � [!�;!P ][	]������ R� [!�][!P;	]������ R (tog)� [ ][�]������ R�;�) R (sel�) � Q�! R�; Q) R (sel)�; P ) Q�) P��Q (��R)�) P � [!�][Q;	]������ R�;� [!�][P��Q;	]������ R (��L�) �) P � Q�! R�;� P��Q�! R (��L)�) P �) Q�;�) P 
Q (
R) �; P; Q) R� P
Q�! R (
L)�) I (IR) �) P� I�! P (IL)�) > (>R) � 0�! P (0L)�) P�) P �Q (�R1) �) Q�) P �Q (�R2)�; P ) R �; Q) R� P�Q�! R (�L)�) P �) Q�) P&Q (&R) � P�! R� P&Q�! R (&L1) � Q�! R� P&Q�! R (&L2)� [!�][P;	]������ R� [!�][P&Q;	]������ R (&L1�) � [!�][Q;	]������ R� [!�][P&Q;	]������ R (&L2�)�) R� !P�! R (W ) �; !P; !P ) R� !P�! R (C)� [!�][P;	]������ R� [!�][!P;	]������ R (D�) � P�! R� !P�! R (D) !	) P� [!	][ ]������!P (P )
Figure 6.3: Sequent calculus SILL for Intuitionistic Linear Logic
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formulae, and one of formulae of a certain form (formulae built from any banged
formulae using!, ��, &, where the formulaP in P��Q can be of any form). In
backwards proof search, a multiset of formulae is selected and ordered and becomes
the second list in the multistoup of the premiss. The first formula is then principal.
If it is banged it can be derelicted or appended to the first list. If the formulais
an implication or a with, then the appropriate rules may be applied, the result re-
maining principal. There are no rules for formulae with other top connectives inthe
multistoup – that is to say, they should not be there. Each formula in turn is decom-
posed until the formula at the head of the second list is a bang formula. Each of
these compositions corresponds to a minor premiss of promotion in normal natural
deduction. When the second list is empty and the context is empty, a promotion is
possible (and is the only applicable rule). Notice that, since this is the only wayof
leaving a multistoup, we should only perform(sel�) when the goal is banged. We
should point out that we have yet to mention cut. Cut is eliminable in ILL and will
be discussed in section 6.6.

6.4.1 Term Assignment

We also give a term assignment system. There are again different kinds of term
corresponding to the different judgement forms of the calculus, that is, there are
three kinds of proof terms. Again the terms are typed by the sequents of SILL. We
give the proof terms below (V is the category of variables).

M::= (�!V ;Mssi) j (V ;Ms) j �V:M j tenr(M;M) j � j tr(fV; :::; V g)plusr1(M) j plusr2(M) j withr(M;M)
Ms::=[ ] j (M ::Ms) j tenl(V:V:M) j il(M) j fal(fV; :::; V g) j plusl(V:M; V:M)withl1(Ms) j withl2(Ms) j w(M) j c(V:V:M) j d(Ms)
We need to explain the notation for the followingMssi terms. TheMssi have been
written with a superscript. These superscripts are natural numbers and formpart of
the detail of the proof term. They are included to ensure that the terms are builtin a
specific order, as the sequents are.

Mssi::=(tog(Mssi+1))i j (M ::Mssi)i j (withl1(Mssi))i j (withl2(Mssi))i(d(Mssi))i j (p(�!V :M))n+1
SILL together with its term system can be seen in Figures 6.4, 6.5 and 6.6.
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� [ ][�]������ Mss1 : R�;!x: �) (!x;Mss1) : R (sel�) � Q�!Ms : R�; x : Q) (x;Ms) : R (sel)�; x : P )M : Q�) �x:M : P��Q (��R)�)M1 : P �)M2 : Q�;�) tenr(M1;M2) : P 
Q (
R)�) � : I (IR) fxig : �) tr(fxig) : > (>R)�)M : P�) plusr1(M) : P �Q (�R1) �)M : Q�) plusr2(M) : P �Q (�R2)�)M1 : P �)M2 : Q�) withr(M1;M2) : P&Q (&R)
Figure 6.4: SILL with proof-term annotations:M terms.

� P�! [ ] : P (ax)�)M : P � Q�!Ms : R�;� P��Q�! (M ::Ms) : R (��L)�; x1 : P; x2 : Q)M : R� P
Q�! tenl(x1:x2:M) : R (
L)�)M : P� I�! il(M) : P (IL) fxig : � 0�! fal(fxig) : P (0L)�; x1 : P )M1 : R �; x2 : Q)M2 : R� P�Q�! plusl(x1:M1; x2:M2) : R (�L)� P�!Ms : R� P&Q�! withl1(Ms) : R (&L1) � Q�!Ms : R� P&Q�! withl2(Ms) : R (&L2)�)M : R� !P�! w(M) : R (W ) �; x1 :!P; x2 :!P )M : R� !P�! c(x1:x2:M) : R (C)� P�!Ms : R� !P�! d(Ms) : R (D)
Figure 6.5: SILL with proof-term annotation:Ms terms.
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� [!�;!P ][	]������ Mssi+1 : R� [!�][!P;	]������ (tog(Mssi+1))i : R (tog)�)M : P � [!�][Q;	]������ Mssi : R�;� [!�][P��Q;	]������ (M ::Mssi)i : R (��L�)� [!�][P;	]������ Mssi : R� [!�][P&Q;	]������ (withl1(Mssi))i : R (&L1�)� [!�][Q;	]������ Mssi : R� [!�][P&Q;	]������ (withl2(Mssi))i : R (&L2�)� [!�][P;	]������ Mssi : R� [!�][!P;	]������ (d(Mssi))i : R (D�)fxig :!	)M : P� [!	][ ]������ (p(!x :M))n+1 :!P (P )yy n is the number of elements infxig.
Figure 6.6: SILL with proof-term annotation:Mssi Terms.
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6.5 The Correspondence Between Natural Deduction
and Sequent Calculus for ILL

We have given a calculus for normal natural deductions, along with a term assign-
ment system for this calculus. We have also given a sequent calculus for ILL, which
restricts the sequent derivations which can be found in backward proof search inthe
calculus. Again we have given a term assignment system for this calculus. We
claim that the sequent derivations in SILL naturally correspond to the normal natu-
ral deductions (the deductions of NNILL) in a 1–1 way. In order to prove this we
give mappings from proof terms to proof terms in both directions, hence we have
an isomorphism between proof terms.

Sequent Calculus! Natural Deduction:�:M �! N�(�!x ;Mss1) = �0(����!var(x);Mss1)�((x;Ms)) = �0(var(x);Ms)�(�x:M) = �x:�(M)�(tenr(M1;M2)) = teni(�(M1); �(M2))�(�) = ��(tr(fxig)) = tr(fvar(xi)g)�(withr(M1;M2)) = withi(�(M1); �(M2))�(plusr1(M)) = plusi1(�(M))�(plusr2(M)) = plusi2(�(M))�0 : A � Ms �! N�0(A; [ ]) = an(A)�0(A; (M ::Ms)) = �0(ap(A; �(M));Ms)�0(A; tenl(x1:x2:M)) = tene(A; x1:x2:�(M))�0(A; il(M)) = ie(A; �(M))�0(A; fal(fx1; :::; xng)) = fal(A; fvar(x1); :::; var(xn)g)�0(A; plusl(x1:M1; x2:M2)) = pluse(A; x1:�(M1); x2:�(M2))�0(A;withl1(Ms)) = �0(withe1(A);Ms)



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 133�0(A;withl2(Ms)) = �0(withe2(A);Ms)�0(A;w(M)) = weak(A; �(M))�0(A; c(x1:x2:M)) = cont(A; x1:x2:�(M))�0(A; d(Ms)) = �0(der(A);Ms)�00 : �!A� Mssi �! N�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (tog(Mssi+1))i)= �00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1)�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (M ::Mssi)i)= �00([A1; :::; ap(Ai; �(M)); var(xi+1); :::; var(xn)];Mssi)�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl1(Mssi))i)= �00([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi)�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl2(Mssi))i)= �00([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi)�00([A1; ; :::; Ai; var(xi+1); :::; var(xn)]; (d(Mssi))i)= �00([A1; :::der(Ai); var(xi+1); :::; var(xn)];Mssi)�00([A1; ::::; An]; (p(�!x :M))n+1) = prom(�!A;�!x :�(M))
Natural Deduction �! Sequent Calculus :N �! M (�x:N) = �x: (N) (teni(N1; N2)) = tenr( (N1);  (N2)) (�) = � (ie(A;N)) =  0(A; il( (N))) (tene(A; x1:x2:N)) =  0(A; tenl(x1:x2: (N))) (cont(A; x1:x2:N)) =  0(A; c(x1:x2: (N))) (weak(A;N) =  0(A;w( (N))) (prom(�!A;�!x :N)) =  00([A1; :::; An]; (p(�!x : (N)))n+1) (an(A)) =  0(A; [ ])



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 134 (fal(A; fvar(xi)g)) =  0(A; fal(fxig)) (withi(N1; N2)) = withr( (N1);  (N2)) (plusi1(N)) = plusr1( (N)) (plusi2(N)) = plusl2( (N)) (pluse(A; x1:N1; x2:N2)) =  0(A; plusl(x1: (N1); x2: (N2))) (tr(fvar(x1); :::; var(xn)g)) = tr(fx1; :::; xng) 0:A � Ms �!M 0(var(x);Ms) = (x;Ms) 0(ap(A;N);Ms) =  0(A; ( (N) ::Ms)) 0(withe1(A);Ms) =  0(A;withl1(Ms)) 0(withe2(A);Ms) =  0(A;withl2(Ms)) 0(der(A);Ms) =  0(A; d(Ms)) 00 : �!A� Mssi �!M 00([var(x1); :::; var(xn)];Mss1) = (!x;Mss1) 00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1)=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (tog(Mssi+1))i) 00([A1; :::; ap(Ai; N); var(xi+1); :::; var(xn)];Mssi)=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; ( (N) ::Mssi)i) 00([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi)=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl1(Mssi))i) 00([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi)=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl2(Mssi))i) 00([A1; :::; der(Ai); var(xi+1); :::; var(xn)];Mssi)=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (d(Mssi))i)
In the following two lemmas we prove, using the translations above, that thetwo
systems are isomorphic.
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Lemma 6.1

i) For all termsM ,  (�(M)) =M
ii) Also, for all termsMs andA, (�0(A;Ms)) =  0(A;Ms).
iii) Also, for all termsMssi andA1; :::; Ai; var(xi+1); :::; var(xn), (�00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi)) = 00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi)
PROOF: By simultaneous structural induction onM ,Ms, Mssi.

1. TheM term has form(x;Ms) (�((x;Ms))) =  (�0(var(x);Ms)) def�
=  0(var(x);Ms) ind ii)
= (x;Ms) def 0

2. TheM term has form(�!x ;Mss1) (�(�!x ;Mss1)) =  (�00(����!var(x);Mss1)) def�
=  00(����!var(x);Mss1) ind iii)
= (�!x ;Mss1) def 00

3. TheM term has form�x:M (�(�x:M)) =  (�x:�(M)) def�
= �x: (�(M)) def 
= �x:M ind i)

4. TheM term has formtenr(M1;M2) (�(tenr(M1;M2))) =  (teni(�(M1); �(M2))) def�
= tenr( (�(M1));  (�(M2))) def 
= tenr(M1;M2) ind i)

5. TheM term has form� (�(�)) =  (�) def�
= � def 

6. TheM term has formtr(fx1; :::; xng) (�(tr(fx1; :::; xng))) =  (tr(fvar(x1); :::; var(xn)g)) def�
= tr(fx1; :::; xng) def�
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7. TheM term has formplusr1(M) (�(plusr1(M))) =  (plusi1(�(M))) def�
= plusr1( (�(M))) def 
= plusr1(M) ind i)

8. TheM term has formplusr2(M) (�(plusr2(M))) =  (plusi2(�(M))) def�
= plusr2( (�(M))) def 
= plusr2(M) ind i)

9. TheM term has formwithr(M1;M2) (�(withr(M1;M2))) =  (withi(�(M1); �(M2))) def�
= withr( (�(M1));  (�(M2))) def 
= withr(M1;M2) ind i)

10. TheMs term has form[ ] (�0(A; [ ])) =  (an(A)) def�0
=  0(A; [ ]) def 

11. TheMs term has form(M ::Ms) (�0(A; (M ::Ms))) =  (�0(ap(A; �(M));Ms)) def�0
=  0(ap(A; �(M));Ms) ind ii)
=  0(A; ( (�(M)) ::Ms)) def 0
=  0(A; (M ::Ms)) ind i)

12. TheMs term has formtenl(x1:x2:M) (�0(A; tenl(x1:x2:M))) =  (tene(A; x1:x2:�(M))) def�0
=  0(A; tenl(x1:x2: (�(M)))) def 
=  0(A; tenl(x1:x2:M)) ind i)

13. TheMs term has formil(M) (�0(A; il(M))) =  (ie(A; �(M))) def�0
=  0(A; il( (�(M)))) def 
=  0(A; il(M)) ind i)

14. TheMs term has formfal(fxig) (�0(A; fal(fxig))) =  (fal(A; fvar(xi)g)) def�0
=  0(A; fal(fxig)) def 
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15. TheMs term has formplusl(x1:M1; x2:M2) (�0(A; plusl(x1:M1; x2:M2)))
=  (pluse(A; x1:�(M1); x2:�(M2))) def�0
=  0(A; plusl(x1: (�(M1))); x2: (�(M2))) def 
=  0(A; plusl(x1:M1; x2:M2)) ind i)

16. TheMs term has formwithl1(Ms) (�0(A;withl1(Ms))) =  (�0(withe1(A);Ms)) def�0
=  0(withe1(A);Ms) ind ii)
=  0(A;withl1(Ms)) def 0

17. TheMs term has formwithl2(Ms) (�0(A;withl2(Ms))) =  (�0(withe2(A);Ms)) def�0
=  0(withe2(A);Ms) ind ii)
=  0(A;withl2(Ms)) def 0

18. TheMs term has formw(M) (�0(A;w(M))) =  (weak(A; �(M))) def�0
=  0(A;w( (�(M)))) def 
=  0(A;w(M)) ind i)

19. TheMs term has formc(x1:x2:M) (�0(A; c(x1:x2:M))) =  (cont(A; x1:x2:�(M))) def�0
=  0(A; c(x1:x2: (�(M)))) def 
=  0(A; c(x1:x2:M)) ind i)

20. TheMs term has formd(Ms) (�0(A; d(Ms))) =  (�0(der(A);Ms)) def�0
=  0(der(A);Ms) ind ii)
=  0(A; d(Ms)) def 0

21. TheMssi term has form(tog(Mssi+1))i (�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (tog(Mssi+1))i))
=  (�00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1)) def�00
=  00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1) ind iii)
=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (tog(Mssi+1))i) def 00
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22. TheMssi term has form(M ::Mssi)i (�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (M ::Mssi)i))
=  (�00([A1; :::; ap(Ai; �(M)); var(xi+1); :::; var(xn)];Mssi)) def�00
=  00([A1; :::; ap(Ai; �(M)); var(xi+1); :::; var(xn)];Mssi) ind iii)
=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; ( (�(M)) ::Mssi)i) def 00
=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (M ::Mssi)i) ind i)

23. TheMssi term has form(withl1(Mssi))i (�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl1(Mssi))i))
=  (�00([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi)) def�00
=  00([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi) ind iii)
=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl1(Mssi))i) def 00

24. TheMssi term has form(withl2(Mssi))i (�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl2(Mssi))i))
=  (�00([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi)) def�00
=  00([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi) ind iii)
=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl2(Mssi))i) def 00

25. TheMssi term has form(d(Mssi))i (�00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (d(Mssi))i))
=  (�00([A1; :::; der(Ai); var(xi+1); :::; var(xn)];Mssi)) def�00
=  00([A1; :::; der(Ai); var(xi+1); :::; var(xn)];Mssi) ind iii)
=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (der(Mssi))i) def 00

26. TheMssi term has form(p(�!x :M))n+1 (�00([A1; :::; An]; (p(�!x :M))n+1))
=  (prom([A1; :::; An];�!x :�(M))) def�00
=  00([A1; ::; An]; (p(�!x ;  (�(M))))n+1) def 
=  00([A1; ::; An]; (p(�!x ;M))n+1) ind i)�

Lemma 6.2

i) For all termsN , �( (N)) = N .
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ii) Also, for all termsMs andA,�( 0(A;Ms)) = �0(A;Ms)
iii) Also for all termsMssi andA1; :::; Ai; var(xi+1); :::; var(xn),�( 00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi)) =�00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi)
PROOF: By simultaneous structural induction onN andA.

1. TheN term has form��( (�)) = �(�) def 
= � def�

2. TheN term has formie(A;N)�( (ie(A;N))) = �( 0(A; il( (N)))) def 
= �0(A; il( (N))) ind ii)
= ie(A; �( (N))) def �0
= ie(A;N) ind i)

3. TheN term has formtene(A; x1:x2:N)�( (tene(A; x1:x2:N))) = �( 0(A; tenl(x1:x2: (N)))) def 
= �0(A; tenl(x1:x2: (N))) ind ii)
= tene(A; x1:x2:�( (N))) def�0
= tene(A; x1:x2:N) ind i)

4. TheN term has formweak(A;N)�( (weak(A;N))) = �( 0(A;w( (N)))) def 
= �0(A;w( (N))) ind ii)
= weak(A; �( (N))) def�0
= weak(A;N) ind i)

5. TheN term has formcont(A; x1:x2:N)�( (cont(A; x1:x2:N))) = �( 0(A; c(x1:x2: (N)))) def 
= �0(A; c(x1:x2: (N))) ind ii)
= cont(A; x1:x2:�( (N))) def�0
= cont(A; x1:x2:N) ind i)

6. TheN term has formwithi(N1; N2)�( (withi(N1; N2))) = �(withr( (N1);  (N2))) def 
= withi(�( (N1)); �( (N2))) def�
= withi(N1; N2) ind i)
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7. TheN term has formplusi1(N)�( (plusi1(N))) = �(plusr1( (N))) def 
= plusi1(�( (N))) def�
= plusi1(N) ind i)

8. TheN term has formplusi2(N)�( (plusi2(N))) = �(plusr2( (N))) def 
= plusi2(�( (N))) def�
= plusi2(N) ind i)

9. TheN term has formpluse(A; x1:N1; x2:N2)�( (pluse(A; x1:N1; x2:N2)))
= �( 0(A; plusl(x1: (N1); x2: (N2)))) def 
= �0(A; plusl(x1: (N1); x2: (N2))) ind ii)
= pluse(A; x1:�( (N1))); x2:�( (N2))) def�0
= pluse(A; x1:N1; x2:N2) ind i)

10. TheN term has forman(A)�( (an(A))) = �( 0(A; [ ])) def 
= �0(A; [ ]) ind ii)
= an(A) def �0

11. TheN term has form�x:N�( (�x:N)) = �(�x: (N)) def 
= �x:�( (N)) def�
= �x:N ind i)

12. TheN term has formteni(N1; N2)�( (teni(N1; N2))) = �(tenr( (N1);  (N2))) def 
= teni(�( (N1)); �( (N2))) def�
= teni(N1; N2) ind i)

13. TheN term has formprom(�!A;�!x :N)�( (prom(�!A;�!x :N)))
= �( 00([A1; :::; An]; (p(�!x : (N)))n+1)) def 
= �00([A1; :::; An]; (p(�!x : (N)))n+1) ind iii)
= prom(�!A;�!x :�( (N))) def�00
= prom(�!A;�!x :N) ind i)
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14. TheN term has formtr(fvar(xi)g)�( (tr(var(fxig)))) = �(tr(fxig)) def 
= tr(fvar(xi)g) def �

15. TheN term has formfal(A; fvar(xi)g)�( (fal(A; fvar(xi)g))) = �( 0(A; fal(fxig))) def 
= �0(A; fal(fxig)) ind ii)
= fal(A; fvar(xi)g) def�0

16. TheA term has formvar(x)�( 0(var(x);Ms)) = �((x;Ms)) def 0
= �0(var(x);Ms) def�

17. TheA term has formap(A;N)�( 0(ap(A;N);Ms)) = �( 0(A; ( (N) ::Ms))) def 0
= �0(A; ( (N) ::Ms)) ind ii)
= �0(ap(A; �( (N)));Ms) def�0
= �0(ap(A;N);Ms) ind i)

18. TheA term has formder(A)�( 0(der(A);Ms)) = �( 0(A; d(Ms))) def 0
= �0(A; d(Ms)) ind ii)
= �0(der(A);Ms) def�0

19. TheA term has formwithe1(A)�( 0(withe1(A);Ms)) = �( 0(A;withl1(Ms))) def 0
= �0(A;withl1(Ms)) ind ii)
= �0(withe1(A);Ms) def�0

20. TheA term has formwithe2(A)�( 0(withe2(A);Ms)) = �( 0(A;withl2(Ms))) def 0
= �0(A;withl2(Ms)) ind ii)
= �0(withe2(A);Ms) def�0

21. The
�!
A term has form

����!var(x)�( 00(����!var(x);Mss1)) = �(�!x ;Mss1) def 00
= �00(����!var(x);Mss1) def�00
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22. The
�!
A term has form[A1; :::; Ai; var(xi+1); :::; var(xn)]�( 00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1))

= �( 00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (tog(Mssi+1))i)) def 00
= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (tog(Mssi+1))i) ind iii)
= �00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1) def�00

23. The
�!
A term has form[A1; :::; ap(Ai; N); var(xi+1); :::; var(xn)]�( 00([A1; :::; ap(Ai; N); var(xi+1); :::; var(xn)];Mssi))

= �( 00([A1; :::; Ai; var(xi+1); :::; var(xn)]; ( (N) ::Mssi)i)) def 00
= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; ( (N) ::Mssi)i) ind iii)
= �00([A1; :::; ap(Ai; �( (N))); var(xi+1); :::; var(xn)];Mssi) def�00
= �00([A1; :::; ap(Ai; N); var(xi+1); :::; var(xn)];Mssi) ind i)

24. The
�!
A term has form[A1; :::; withe1(Ai); var(xi+1); :::; var(xn)]�( 00([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi))

= �( 00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl1(Mssi))i)) def 00
= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl1(Mssi))i) ind iii)
= �00([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi) def�00

25. The
�!
A term has form[A1; :::; withe2(Ai); var(xi+1); :::; var(xn)]�( 00([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi))

= �( 00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl2(Mssi))i)) def 00
= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl2(Mssi))i) ind iii)
= �00([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi) def�00

26. The
�!
A term has form[A1; :::; der(Ai); var(xi+1); :::; var(xn)]�( 00([A1; :::; der(Ai); var(xi+1); :::; var(xn)];Mssi))

= �( 00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (d(Mssi))i)) def 00
= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (d(Mssi))i) ind iii)
= �00([A1; :::; der(Ai); var(xi+1); :::; var(xn)];Mssi) def�00�

Theorem 6.1 The deductions ofNNILL are in 1–1 correspondence with the se-
quent derivations given by the sequent calculusSILL.

PROOF: Follows immediately from Lemma 6.1 and Lemma 6.2.�



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 143

Theorem 6.2 (SOUNDNESS) The following rules are admissible:�)M : R����(M) : R i) �� A : P � P�!Ms : R�;����0(A;Ms) : R ii)D1 ::: Dn � [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R�;�1; :::;�n ���00([A1; :::; Ai; var(xi+1); :::var(xn)];Mssi) : R iii)

where theD1; :::;Dn are (in order):�1 � A1 :!P1
...�i�1 � Ai�1 :!Pi�1�i � Ai : Pi�i+1 � var(xi+1) : Pi+1
...�n � var(xn) : Pn

PROOF: By simultaneous structural induction onM ,Ms andMssi.
1. TheM term has form(�!x ;Mss1)

We have a derivation ending in:� [ ][P1;:::;Pn]������ Mss1 : R�; P1; :::; Pn ) (�!x ;Mss1) : R (sel�)
and we know that for alli Pi � var(xi) : Pi
is deducible.

So we have:P1 � var(x1) : P1 ::: Pn � var(xn) : Pn � [ ][P1;:::;Pn]������ Mss1 : R�; P1; :::; Pn ���0 0(����!var(x);Mss1) : R iii)
and we know that �00(����!var(x);Mss1) = �(�!x ;Mss1)
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2. TheM term has form(x;Ms)
We have a derivation ending in:� P�!Ms : R�; P ) (x;Ms) : R (sel)
and we know that P � var(x) : P
is deducible.

So we have P � var(x) : P � P�!Ms : R�; P ���0(var(x);Ms) : R ii)
and we know that �0(var(x);Ms) = (x;Ms)

3. TheM term has form�x:M
We have a derivation ending in:�; x : P )M : Q�) �x:M : P��Q (��R)
whence �; x : P )M : Q�; x : P ���(M) : Q i)����x:�(M) : P��Q (��I)
and we know that �x:�(M) = �(�x:M)

4. TheM term has formtenr(M1;M2)
We have a derivation ending in:�1 )M1 : P �2 )M2 : Q�1;�2 ) tenr(M1;M2) : P 
Q (
R)
whence �1 )M1 : P�1 ���(M1) : P i)

�2 )M2 : Q�2 ���M2 : Q i)�1;�2 ��teni(�(M1); �(M2)) : P 
Q (
I)
and we know thatteni(�(M1); �(M2)) = �(tenr(M1;M2))
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5. TheM term has form�
We have the following derivation:) � : I (IR)
we also have the following deduction:�� � : I (II)
giving the result.

6. TheM term has formtr(fxig)
We have the following derivation:x1 : P1; :::; xn : Pn ) tr(fxig) : > (>R)
we also have the following deduction:P1 � var(x1) : P1 ::: Pn � var(xn) : PnP1; :::; Pn ��tr(fvar(xi)g) (>I)
and we know that tr(fvar(xi)g) = �(tr(fxig))

7. TheM term has formplusr1(M)
We have a derivation ending in:�)M : P�) plusr1(M) : P �Q (�R1)
whence �)M : P����(M) : P i)���plusi1(�(M)) : P �Q (�I1)
and we know that plusi1(�(M)) = �(plusr1(M))

8. TheM term has formplusr2(M)
We have a derivation ending in:�)M : Q�) plusr2(M) : P �Q (�R2)
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whence �)M : Q����(M) : Q i)���plusi2(�(M)) : P �Q (�I2)
and we know that plusi2(�(M)) = �(plusr2(M))

9. TheM term has formwithr(M1;M2)
We have a derivation ending in:�)M1 : P �)M2 : Q�) withr(M1;M2) : P&Q (&R)
whence �)M1 : P����(M1) : P i)

�)M2 : Q����(M2) : Q i)���withi(�(M1); �(M2)) : P&Q (&I)
and we know thatwithi(�(M1); �(M2)) = �(withr(M1;M2))

10. TheMs term has form[ ]
We have a derivation � P�! [ ] : P (ax)
and we can deduce �� A : P���an(A) : P (M)
and we know that an(A) = �0(A; [ ])

11. TheMs term has form(M ::Ms)
We have a derivation ending in:�1 )M : P �2 Q�!Ms : R�1;�2 P��Q�! (M ::Ms) : R (��L)
whence�� A : P��Q �1 )M : P�1 ���(M) : P i)�1;�� ap(A; �(M)) : Q (��") �2 Q�!Ms : R�1;�2;����0(ap(A; �(M));Ms) : R ii)
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and we know that�0(ap(A; �(M));Ms) = �0(A; (M ::Ms))
12. TheMs term has formtenl(x1:x2:M)

We have a derivation ending in:�; x1 : P; x2 : Q)M : R� P
Q�! timl(x1:x2:M) : R (
L)
whence �� A : P 
Q �; x1 : P; x2 : Q)M : R�; x1 : P; x2 : Q���(M) : R i)�;���tene(A; x1:x2:�(M)) : R (
")
and we know thattene(A; x1:x2:�(M)) = �0(A; timl(x1:x2:M))

13. TheMs term has formil(M)
We have a derivation ending in:�)M : R� I�! il(M) : R (IL)
whence �� A : I �)M : R����(M) : R i)�;���ie(A; �(M)) : R (I")
and we know that ie(A; �(M)) = �0(A; il(M))

14. TheMs term has formfal(fxig)
We have the following derivation:x1 : P1; :::; xn : Pn 0�! fal(fxig) : R (0L)
We also have the following deduction:P1 � var(x1) : P1 ::: Pn � var(xn) : Pn �� A : 0�; P1; :::; Pn ��fal(A; fvar(x1); :::; var(xn)g) : R (0")
and we know thatfal(A; fvar(xi)g) = �0(A; fal(fxig))
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15. TheMs term has formplusl(x1:M1; x2:M2)
We have a derivation ending in�; x1 : P )M1 : R �; x2 : Q)M2 : R� P�Q�! plusl(x1:M1; x2:M2) : R (�L)
whence�� A : P �Q �; x1 : P )M1 : R�; x1 : P ���(M1) : R i)

�; x2 : Q)M2 : R�; x2 : Q���(M2) : R i)�;���pluse(A; x1:�(M1); x2:�(M2)) : R (�")
and we know thatpluse(A; x1:�(M1); x2:�(M2)) = �0(A; plusl(x1:M1; x2:M2))

16. TheMs term has formwithl1(Ms)
We have a derivation ending in:� P�!Ms : R� P&Q�! withl1(Ms) : R (&L1)
whence �� A : P&Q�� withe1(A) : P (&"1) � P�!Ms : R�;����0(withe1(A);Ms) : R ii)

and we know that�0(withe1(A);Ms) = �0(A;withl1(Ms))
17. TheMs term has formwithl2(Ms)

We have a derivation ending in:� Q�!Ms : R� P&Q�! withl2(Ms) : R (&L2)
whence �� A : P&Q�� withe2(A) : Q (&"2) � Q�!Ms : R�;����0(withe2(A);Ms) : R ii)

and we know that�0(withe2(A);Ms) = �0(A;withl2(Ms))
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18. TheMs term has formw(M)
We have a derivation ending in:�)M : R� !P�! w(M) : R (W )
whence �� A :!P �)M : R����(M) : R i)�;���weak(A; �(M)) : R (W )
and we know that weak(A; �(M)) = �0(A;w(M))

19. TheMs term has formc(x1:x2:M)
We have a derivation ending in�; x1 :!P; x2 :!P )M : R� !P�! c(x1:x2:M) : R (C)
whence �� A :!P �; x1 :!P; x2 :!P )M : R�; x1 :!P; x2 :!P ���(M) : R i)�;���cont(A; x1:x2:�(M)) : R (C)
and we know thatcont(A; x1:x2:�(M)) = �0(A; c(x1:x2:M))

20. TheMs term has formd(Ms)
We have a derivation ending in� P�!Ms : R� !P�! d(Ms) : R (D)
whence �� A :!P�� der(A) : P (D) � P�!Ms : R�;����0(der(A);Ms) : R ii)

and we know that �0(der(A);Ms) = �0(A; d(Ms))
Mainly for reasons of typography, for the followingMssi cases we leave out
the details of the left premisses unless absolutely necessary. We replacethem
with the ellipsis

�!lp .



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 150

21. TheMssi term has form(tog(Mssi+1))i
We have a derivation ending in� [!P1;:::;!Pi][Pi+1;:::;Pn]������ Mssi+1 : R� [!P1;:::;!Pi�1][!Pi;::;Pn]������ (tog(Mssi+1))i : R (tog)
whence �!lp � [!P1;:::;!Pi][Pi+1;:::;Pn]������ Mssi+1 : R�;�1; :::;�n ���00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1) : R iii)

and we know that�00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1)= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (tog(Mssi+1))i)
22. TheMssi term has form(M ::Mssi)i

We have a derivation ending in�1 )M : Q �2 [!P1;:::;!Pi�1][Pi;:::Pn]������ Mssi : R�1;�2 [!P1;::;!Pi�1][Q��Pi;:::;Pn]������ (M ::Mssi)i : R (��L�)
whence�!lp �i � Ai : Q��Pi �1 )M : Q�1 ���(M) : Q i)�1;�i � ap(Ai; �(M)) : Pi (��") �2 [!P1;:::;!Pi�1][Pi;:::Pn]������ Mssi : R�1;�2;�1; ::;�n ���0 0([A1; :::; ap(Ai; �(M)); var(xi+1); ::; var(xn)];Mssi) : R iii)

and we know that�00([A1; :::; ap(Ai; �(M)); var(xi+1); ::; var(xn)];Mssi)= �00([A1; :::; Ai; var(xi+1); ::; var(xn)]; (M ::Msi)i)
23. TheMssi term has form(withl1(Mssi))i

We have a derivation ending in� [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R� [!P1;:::;!Pi�1][Pi&Q;::;Pn]������ (withl1(Mssi))i : R (&L1�)
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whence�!lp �i � Ai : Pi&Q�i � withe1(Ai) : Pi (&"1) � [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R�;�1; :::;�n ���0 0([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi) : R iii)

and we know that�00([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi)= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl1(Mssi))i)
24. TheMssi term has form(withl2(Mssi))i

We have a derivation ending in� [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R� [!P1;:::;!Pi�1][Pi&Q;::;Pn]������ (withl2(Mssi))i : R (&L2�)
whence�!lp �i � Ai : Q&Pi�i � withe2(Ai) : Pi (&"2) � [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R�;�1; :::;�n ���0 0([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi) : R iii)

and we know that�00([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi)= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (withl2(Mssi))i)
25. TheMssi term has form(d(Mssi))i

We have a derivation ending in� [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R� [!P1;::;!Pi�1][!Pi;:::;Pn]������ (d(Mssi))i : R (D�)
whence�!lp �i � Ai :!Pi�i � der(Ai) : Pi (D) � [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R�;�1; :::;�n ���0 0([A1; :::; der(Ai); var(xi+1); :::; var(xn)];Mssi) : R iii)

and we know that�00([A1; :::; der(Ai); var(xi+1); :::; var(xn)];Mssi)= �00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (d(Mssi))i)
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26. TheMssi term has form(p(�!x :M))n+1
We have a derivation ending inx1 :!P1; :::; xn :!Pn )M : R� [!P1;:::;!Pn][ ]������ (p(!x :M))n+1 :!R (P )
whence �!lp x1 :!P1; :::; xn :!Pn )M : Rx1 :!P1; :::; xn :!Pn ���(M) : R i)�1; :::;�n ��prom(�!A ;�!x :�(M)) :!R (P )
and we know thatprom(�!A;�!x :�(M)) = �00(�!A; (p(�!x :M))n+1)�

Theorem 6.3 (ADEQUACY) The following rules are admissible:���N : R�)  (N) : R i) �� A : P � P�!Ms : R�;�)  0(A;Ms) : R ii)D1 ::: Dn � [!P1;::;!Pi�1][Pi;:::;Pn]������ Mssi : R�;�1; :::;�n )  00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi) : R iii)

where theD1; :::;Dn are (in order):�1 � A1 :!P1
...�i�1 � Ai�1 :!Pi�1�i � Ai : Pi�i+1 � var(xi+1) : Pi+1
...�n � var(xn) : Pn

PROOF:

1. TheN term has form�x:N
We have a deduction ending in�; x : P ��N : Q����x:N : P��Q (��I)
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whence �; x : P ��N : Q�; x : P )  (N) : Q i)�) �x: (N) : P��Q (��R)
and we know that �x: (N) =  (�x:N)

2. TheN term has formteni(N1; N2)
We have a deduction ending in�1 ��N1 : P �2 ��N2 : Q�1;�2 ��teni(N1; N2) : P 
Q (
I)
whence �1 ��N1 : P�1 )  (N1) : P i)

�2 ��N2 : Q�2 )  (N2) : Q i)�1;�2 ) tenr( (N1);  (N2)) : P 
Q (
R)
and we know thattenr( (N1);  (N2)) =  (teni(N1; N2))

3. TheN term has form�
We have a deduction �� � : I (II)
and we know that we have a derivation) � : I (IR)
Hence result.

4. TheN term has formie(A;N)
We have a deduction ending in�1 � A : I �2 ��N : R�1;�2 ��ie(A;N) : R (I")
whence �1 � A : I �2 ��N : R�2 )  (N) : R i)�2 I�! il( (N)) : R (IL)�1;�2 )  0(A; il( (N))) : R ii)

and we know that  0(A; il( (N))) =  (ie(A;N))
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5. TheN term has formtene(A; x1:x2:N)
We have a deduction ending in�1 � A : P 
Q �2; x1 : P; x2 : Q��N : R�1;�2 ��tene(A; x1:x2:N) : R (
")
whence �1 � A : P 
Q �2; x1 : P; x2 : Q��N : R�2; x1 : P; x2 : Q)  (N) : R i)�2 P
Q�! tenl(x1:x2: (N)) : R (
L)�1;�2 )  0(A; tene(x1:x2: (N))) : R ii)

and we know that 0(A; tenl(x1:x2: (N))) =  (tene(A; x1:x2:N))
6. TheN term has formcont(A; x1:x2:N)

We have a deduction ending in�1 � A :!P �2; x1 :!P; x2 :!P ��N : R�1;�2 ��cont(A; x1:x2:N) : R (C)
whence �1 � A :!P �2; x1 :!P; x2 :!P ��N : R�2; x1 :!P; x2 :!P )  (N) : R i)�2 !P�! c(x1:x2: (N)) : R (C)�1;�2 )  0(A; c(x1:x2: (N))) : R ii)

and we know that 0(A; c(x1:x2: (N))) =  (cont(A; x1:x2:N))
7. TheN term has formweak(A;N)

We have a deduction ending in�1 � A :!P �2 ��N : R�1;�2 ��weak(A;N) : R (W )
whence �1 � A :!P �2 ��N : R�2 )  (N) : R i)�2 !P�! w( (N)) : R (W )�1;�2 )  0(A;w( (N))) : R ii)

and we know that  0(A;w( (N))) =  (weak(A;N))
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8. TheN term has formprom(�!A;�!x :N)
We have a deduction ending in�1 � A1 :!P1 ::: �n � An :!Pn x1 :!P1; :::; xn :!Pn ��N : R�1; :::;�n ��prom(�!A ;�!x :N) :!R (P )
whence�1 � A1 :!P1 ::: �n � An :!Pn x1 :!P1; :::; xn :!Pn ��N : Rx1 :!P1; :::; xn :!Pn )  (N) : R i)[!P1;:::;!Pn][ ]�! (p(�!x : (N)))n+1 :!R (P )�1; :::;�n )  00(�!A; (p(�!x : (N)))n+1) :!R iii)

and we know that 00(�!A; (p(�!x : (N)))n+1) =  (prom(�!A;�!x :N))
9. TheN term has forman(A)

We have a deduction ending in�� A : P���an(A) : P (M)
and we have the following derivation:� P�! [ ] : P (ax)
whence �� A : P  P�! [ ] : P (ax)�)  0(A; [ ]) : P ii)

and we know that  0(A; [ ]) =  (an(A))
10. TheN term has formfal(A; fvar(xi)g)

We have a deduction ending inP1 � var(x1) : P1 ::: Pn � var(xn) : Pn �� A : 0�; P1; :::; Pn ��fal(A; fvar(xi)g) : R (0")
whence �� A : 0 x1 : P1; :::; xn : Pn 0�! fal(fxig) : R (0L)�; P1; :::; Pn )  0(A; ; fal(fxig)) : R ii)

and we know that 0(A; ; fal(fxig)) =  (fal(A; fvar(xi)g))
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11. TheN term has formwithi(N1; N2)
We have a deduction ending in���N1 : P ���N2 : Q���withi(N1; N2) : P&Q (&I)
whence ���N1 : P�)  (N1) : P i)

���N2 : Q�)  (N2) : Q i)�) withr( (N1);  (N2)) : P&Q (&R)
and we know thatwithr( (N1);  (N2)) =  (withi(N1; N2))

12. TheN term has formplusi1(N)
We have a deduction ending in���N : P���plusi1(N) : P �Q (�I1)
whence ���N : P�)  (N) : P i)�) plusr1( (N)) : P �Q (�R1)
and we know that plusr1( (N)) =  (plusi1(N))

13. TheN term has formplusi2(N)
We have a deduction ending in���N : Q���plusi2(N) : P �Q (�I2)
whence ���N : Q�)  (N) : Q i)�) plusr2( (N)) : P �Q (�R2)
and we know that plusr2( (N)) =  (plusi2(N))
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14. TheN term has formpluse(A; x1:N1; x2:N2)
We have a deduction ending in�� A : P �Q �; x1 : P ��N1 : R �; x2 : P ��N2 : R�;���pluse(A; x1:N1; x2:N2) : R (�")
whence�� A : P �Q �; x1 : P ��N1 : R�; x1 : P )  (N1) : R i)

�; x2 : Q��N2 : R�; x2 : Q)  (N2) : R i)� P�Q�! plusl(x1: (N1); x2: (N2)) : R (�L)�;�)  0(A; plusl(x1: (N1); x2: (N2))) : R ii)

and we know that 0(A; plusl(x1: (N1); x2: (N2))) =  (pluse(A; x1:N1; x2:N2))
15. TheN term has formtr(fvar(xi)g)

We have a deductionP1 � var(x1) : P1 ::: Pn � var(xn) : PnP1; :::; Pn ��tr(fvar(xi)g) : > (>I)
we also have x1 : P1; :::; xn : Pn ) tr(fxig) : > (>R)
and we know that tr(fxig) =  (tr(fvar(xi)g))

16. TheA term has formvar(x)
We have deduction x : P � var(x) : P (ax)
and we find the following:� P�!Ms : R�; x : P ) (x;Ms) : R (sel)
and we know that (x;Ms) =  0(var(x);Ms)
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17. TheA term has formap(A;N)
We have a deduction ending in�1 � A : P��Q �2 ��N : P�1;�2 � ap(A;N) : Q (��")
whence�1 � A : P��Q �2 ��N : P�2 )  (N) : P i) � Q�!Ms : R�;�2 P��Q�! ( (N) ::Ms) : R (��L)�;�1;�2 )  0(A; ( (N) ::Ms)) : R ii)

and we know that 0(A; ( (N) ::Ms)) =  0(ap(A;N);Ms)
18. TheA term has formwithe1(A)

We have a deduction ending in�� A : P&Q�� withe1(A) : P (&"1)
whence �� A : P&Q � P�!Ms : R� P&Q�! withl1(Ms) : R (&L1)�;�)  0(A;withl1(Ms)) : R ii)

and we know that 0(A;withl1(Ms)) =  0(withe1(A);Ms)
19. TheA term has formwithe2(A)

We have a deduction ending in�� A : P&Q�� withe2(A) : Q (&"1)
whence �� A : P&Q � Q�!Ms : R� P&Q�! withl2(Ms) : R (&L2)�;�)  0(A;withl2(Ms)) : R ii)

and we know that 0(A;withl2(Ms)) =  0(withe2(A);Ms)
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20. TheA term has formder(A)
We have a deduction ending in�� A :!P�� der(A) : P (D)
whence �� A :!P � P�!Ms : R� !P�! d(Ms) : R (D)�;�)  0(A; d(Ms)) : R ii)

and we know that  0(A; d(Ms)) =  0(der(A);Ms)
In the following we again frequently uses the ellipsis

�!lp instead of spelling
out all the detail of the left premisses.

21. The
�!
A term has form

����!var(x)
We can find the following derivation:� [ ][P1;:::;Pn]������ Mss1 : R�; P1; :::; Pn ) (�!x ;Mss1) : R (sel�)
and we know that (�!x ;Mss1) =  00(����!var(x);Mss1)

22. The
�!
A term has form[A1; :::; Ai; var(xi+1); :::; var(xn)]

We have derivation ending in� [!P1;:::;!Pi][Pi+1;:::;Pn]������ Mssi+1 : R� [!P1;:::;!Pi�1][!Pi;:::;Pn]������ (tog(Mssi+1))i : R (tog)
whence �!lp � [!P1;:::;!Pi][Pi+1;:::;Pn]������ Mssi+1 : R�;�1; :::;�n )  00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1) : R iii)

and we know that 00([A1; :::; Ai; var(xi+1); :::; var(xn)];Mssi+1)=  00([A1; :::; Ai; var(xi+1); :::; var(xn)]; (tog(Mssi+1))i)
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23. The
�!
A term has form[A1; :::; ap(Ai; N); var(xi+1); :::; var(xn)]

Theith deduction ends in�i � Ai : P��Pi �0i ��N : P�i;�0i � ap(Ai; N) : Pi (��")
whence�!lp �0i ��N : P�0i )  (N) : P i) � [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R� [!P1;::;!Pi�1][P��Pi;:::;Pn]������ ( (N) ::Mssi)i : R (��L�)�1; :::;�i;�0i; :::;�n )  00(�!A; ( (N) ::Mssi)i) : R iii)

and we know that 00(�!A; ( (N) ::Mssi)i) =  00([A1; :::; ap(Ai; N); var(xi+1); :::; var(xn)];Mssi)
24. The

�!
A term has form[A1; :::; withe1(Ai); var(xi+1); :::; var(xn)]

Theith deduction ends in�i � Ai : Pi&Q�i � withe1(Ai) : Pi (&"1)
whence�!lp �i � Ai : Pi&Q � [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R� [!P1;::;!Pi�1][Pi&Q;:::;Pn]������ (withl1(Mssi))i : R (&L1�)�1::::;�n )  00(�!A; (withl1(Mssi))i : R iii)

and we know that 00(�!A; (withl1(Mssi))i =  00([A1; :::; withe1(Ai); var(xi+1); :::; var(xn)];Mssi)
25. The

�!
A term has form[A1; :::; withe2(Ai); var(xi+1); :::; var(xn)]

Theith deduction ends in�i � Ai : Q&Pi�i � withe2(Ai) : Pi (&"2)
whence�!lp �i � Ai : Q&Pi � [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R� [!P1;::;!Pi�1][Q&Pi;:::;Pn]������ (withl2(Mssi))i : R (&L2�)�1::::;�n )  00(�!A; (withl2(Mssi))i : R iii)
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and we know that 00(�!A; (withl2(Mssi))i =  00([A1; :::; withe2(Ai); var(xi+1); :::; var(xn)];Mssi)
26. The

�!
A term has form[A1; :::; der(Ai); var(xi+1); :::; var(xn)]

Theith deduction ends in �i � Ai :!Pi�i � der(Ai) : Pi (D)
whence�!lp �i � Ai :!Pi � [!P1;:::;!Pi�1][Pi;:::;Pn]������ Mssi : R� [!P1;::;!Pi�1][!Pi;:::;Pn]������ (d(Mssi))i : R (D�)�1; :::;�n )  00(�!A; (d(Mssi))i : R iii)

and we know that 00(�!A; (d(Mssi))i =  00([A1; :::; der(Ai); var(xi+1); :::; var(xn)];Mssi)�
6.6 Cut Elimination

In this section we discuss cut elimination for SILL. We give the (complicated) cut
rules for SILLcut (SILL with these rules) and then a simple cut elimination argument
for SILLcut.
There are ten cut rules for SILL. We show all of these in Figure 6.7. In these rules
we have some notation for multicuts:(!P )i stands fori occurrences of formula!P
and(!�)i stands fori occurrences of multiset!�.

In the next section we give reduction rules for the occurrences of cut, before giving
a cut-elimination procedure and further discussion on cut for SILL and its elimina-
tion.

6.6.1 Cut Reductions

We give reduction rules for the occurrences of the ten cut rules. First, we tryto
clarify some of the notation used.



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 162� Q�! P � P�! R�;� Q�! R (cut1) �) P �; P Q�! R�;� Q�! R (cut2)�) P � P�! R�;�) R (cut3) �) P �; P ) R�;�) R (cut4)�) P �; P [!�][	]������ R�;� [!�][	]������ R (cut5) �) P � [ ][�;P ]������ R�;�;�) R (cut6)[!�][ ]������!P �; (!P )i !P�! R�; (!�)i+1 ) R (cut7) [!�][ ]������!P �; (!P )i ) R�; (!�)i ) R (cut8)[!�][ ]������!P �; (!P )i Q�! R�; (!�)i Q�! R (cut9)[!�][ ]������!P �; (!P )i [!�][	]������ R�; (!�)i [!�][	]������ R (cut10)
Figure 6.7: Cut rules for SILL

Consider a promotion, written:!Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P )
....�1; :::;�n [ ][S1;:::;Sn]������ !P�1; :::;�n; S1; :::; Sn )!P (sel�)

The�i are the context formulae for the decomposition ofSi to !Qi. This section of
proof can then be extracted: � !Qi�!!Qi (ax)....�i Si�!!Qi�i; Si )!Qi (sel)
When this extraction forms part of a reduction, we simply write the conclusion.

We often write[�; P ]. This stands for a list whose elements are those of the multiset� and the elementP , with P occurring at an unspecified position in the list. We
write [�; (!Q1; :::; !Qn)] for a list of the elements of� with the list [!Q1; :::; !Qn]
occurring as a sublist in some position.
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Now we give the reduction rules.

1. (cut1) Analysis by cases on the left premiss:

(a) (ax) � P�! P (ax) � P�! R� P�! R (cut1)
reduces to: � P�! R

(b) (��L) �1 ) S �2 T�! P�1;�2 S��T�! P (��L) � P�! R�1;�2;� S��T�! R (cut1)
reduces to: �1 ) S �2 T�! P � P�! R�2;� T�! R (cut1)�1;�2;� S��T�! R (��L)

(c) (
L) �; S; T ) P� S
T�! P (
L) � P�! R�;� S
T�! R (cut1)
reduces to: �; S; T ) P � P�! R�;�; S; T ) R (cut3)�;� S
T�! R (
L)

(d) (IL) �) P� I�! P (IL) � P�! R�;� I�! R (cut1)
reduces to: �) P � P�! R�;�) R (cut3)�;� I�! R (IL)

(e) (0L) � 0�! P (0L) � P�! R�;� 0�! R (cut1)
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reduces to: �;� 0�! R (0L)
(f) (�L) �; S ) P �; T ) P� S�T�! P (�L) � P�! R�;� S�T�! R (cut1)

reduces to:�; S ) P � P�! R�;�; S ) R (cut3) �; T ) P � P�! R�;�; T ) R (cut3)�;� S�T�! R (�L)
(g) (&L1) � S�! P� S&T�! P (&L1) � P�! R�;� S&T�! R (cut1)

reduces to: � S�! P � P�! R�;� S�! R (cut1)�;� S&T�! R (&L1)
(h) (&L2) Similar to above.

(i) (W ) �) P� !S�! P (W ) � P�! R�;� !S�! R (cut1)
reduces to: �) P � P�! R�;�) R (cut3)�;� !S�! R (W )

(j) (C) �; !S; !S ) P� !S�! P (C) � P�! R�;� !S�! R (cut1)
reduces to: �; !S; !S ) P � P�! R�;�; !S; !S ) R (cut3)�;� !S�! R (C)
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(k) (D) � S�! P� !S�! P (D) � P�! R�;� !S�! R (cut1)
reduces to: � S�! P � P�! R�;� S�! R (cut1)�;� !S�! R (D)

2. (cut2) Analysis by cases on the right premiss.

(a) (ax) Not possible.

(b) (��L) �) P �1; P ) S �2 T�! R�1;�2; P S��T�! R (��L)�;�1;�2 S��T�! R (cut2)
reduces to:�) P �1; P ) S�;�1 ) S (cut4) �2 T�! R�;�1;�2 S��T�! R (��L)
or �) P �1 ) S �2; P T�! R�1;�2; P S��T�! R (��L)�;�1;�2 S��T�! R (cut2)
reduces to: �1 ) S �) P �2; P T�! R�;�2 T�! R (cut2)�;�1;�2 S��T�! R (��L)

(c) (
L) �) P �; P; S; T ) R�; P S
T�! R (
L)�;� S
T�! R (cut2)
reduces to: �) P �; P; S; T ) R�;�; S; T ) R (cut4)�;� S
T�! R (
L)
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(d) (IL) �) P �; P ) R�; P I�! R (IL)�;� I�! R (cut2)
reduces to: �) P �; P ) R�;�) R (cut4)�;� I�! R (IL)

(e) (0L) �) P �; P 0�! R (0L)�;� 0�! R (cut2)
reduces to: �;� 0�! R (0L)

(f) (�L) �) P �; P; S ) R �; P; T ) R�; P S�T�! R (�L)�;� S�T�! R (cut2)
reduces to:�) P �; P; S ) R�;�; S ) R (cut4) �) P �; P; T ) R�;�; T ) R (cut4)�;� S�T�! R (�L)

(g) (&L1) �) P �; P S�! R�; P S&T�! R (&L1)�;� S&T�! R (cut2)
reduces to: �) P �; P S�! R�;� S�! R (cut2)�;� S&T�! R (&L1)

(h) (&L2) Similar to above.

(i) (W ) �) P �; P ) R�; P !S�! R (W )�;� !S�! R (cut2)
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reduces to: �) P �; P ) R�;�) R (cut4)�;� !S�! R (W )
(j) (C) �) P �; P; !S; !S ) R�; P !S�! R (C)�;� !S�! R (cut2)

reduces to: �) P �; P; !S; !S ) R�;�; !S; !S ) R (cut4)�;� !S�! R (C)
(k) (D) �) P �; P S�! R�; P !S�! R (D)�;� !S�! R (cut2)

reduces to: �) P �; P S�! R�;� S�! R (cut2)�;� !S�! R (D)
3. (cut3) Analysis by cases on the left premiss.

(a) (sel) � S�! P�; S ) P (sel) � P�! R�;�; S ) R (cut3)
reduces to: � S�! P � P�! R�;� S�! R (cut1)�;�; S ) R (sel)

(b) (sel�) !Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P )
....�1; :::;�n [ ][S1;:::;Sn]������ !P�1; :::;�n; S1; :::; Sn )!P (sel�) � !P�! R�1; :::;�n;�; S1; :::; Sn ) R (cut3)
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reduces to:�n; Sn )!Qn !Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) � !P�! R�; !Q1; :::; !Qn ) R (cut7)�; !Q1; :::; !Qn�1;�n; Sn ) R (cut4)
.... cut4s�1; :::;�n;�; S1; :::; Sn ) R

(c) (��R) �; P ) Q�) P��Q (��R) �1 ) P �2 Q�! R�1;�2 P��Q�! R (��L)�;�1;�2 ) R (cut3)
reduces to: �1 ) P �; P ) Q �2 Q�! R�;�2; P ) R (cut3)�;�1;�2 ) R (cut4)

(d) (
R) �1 ) P �2 ) Q�1;�2 ) P 
Q (
R) �; P; Q) R� P
Q�! R (
L)�1;�2;�) R (cut3)
reduces to: �1 ) P �2 ) Q �; P; Q) R�2;�; P ) R (cut4)�1;�2;�) R (cut4)

(e) (IR) ) I (IR) �) R� I�! R (IL)�) R (cut3)
reduces to: �) R

(f) (>R) Not possible.

(g) (�R1) �) P�) P �Q (�R1) �; P ) R �; Q) R� P�Q�! R (�L)�;�) R (cut3)
reduces to: �) P �; P ) R�;�) R (cut4)
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(h) (�R2) Similar to above.

(i) (&R) �) P �) Q�) P&Q (&R) � P�! R� P&Q�! R (&L1)�;�) R (cut3)
reduces to: �) P � P�! R�;�) R (cut3)

4. (cut4) Analysis by cases on the right premiss.

(a) (sel) �) P �; P S�! R�; P; S ) R (sel)�;�; S ) R (cut4)
reduces to: �) P �; P S�! R�;� S�! R (cut2)�;�; S ) R (sel)
or �) P � P�! R�; P ) R (sel)�;�) R (cut4)
reduces to: �) P � P�! R�;�) R (cut3)

(b) (sel�) �) P �; P [ ][�]������ R�;�; P ) R (sel�)�;�;�) R (cut4)
reduces to: �) P �; P [ ][�]������ R�;� [ ][�]������ R (cut5)�;�;�) R (sel�)
or �) P � [ ][�;P ]������ R�;�; P ) R (sel�)�;�;�) R (cut4)
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reduces to: �) P � [ ][�;P ]������ R�;�;�) R (cut6)
(c) (��R) �) P �; P; S ) T�; P ) S��T (��R)�;�) S��T (cut4)

reduces to: �) P �; P; S ) T�;�; S ) T (cut4)�;�) S��T (��R)
(d) (
R) �) P �1; P ) S �2 ) T�1;�2; P ) S 
 T (
R)�;�1;�2 ) S 
 T (cut4)

reduces to:�) P �1; P ) S�;�1 ) S (cut4) �2 ) T�;�1;�2 ) S 
 T (
R)
(e) (IR) Not possible.

(f) (>R) �) P �; P ) > (>R)�;�) > (cut4)
reduces to: �;�) > (>R)

(g) (�R1) �) P �; P ) S�; P ) S � T (�R1)�;�) S � T (cut4)
reduces to: �) P �; P ) S�;�) S (cut4)�;�) S � T (�R1)

(h) (�R2) Similar to above.

(i) (&R) �) P �; P ) S �; P ) T�; P ) S&T (&R)�;�) S&T (cut4)
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reduces to:�) P �; P ) S�;�) S (cut4) �) P �; P ) T�;�) T (cut4)�;�) S&T (&R)
5. (cut5) Analysis by cases on the right premiss.

(a) (tog) �) P �; P [!�;!S][	]������ R�; P [!�][!S;	]������ R (tog)�;� [!�][!S;	]������ R (cut5)
reduces to: �) P �; P [!�;!S][	]������ R�;� [!�;!S][	]������ R (cut5)�;� [!�][!S;	]������ R (tog)

(b) (��L�) �) P �1; P ) S �2 [!�][T;	]������ R�1;�2; P [!�][S��T;	]������ R (��L�)�;�1;�2 [!�][S��T;	]������ R (cut5)
reduces to:�) P �1; P ) S�;�1 ) S (cut4) �2 [!�][T;	]������ R�;�1;�2 [!�][S��T;	]������ R (��L�)
or �) P �1 ) S �2; P [!�][T;	]������ R�1;�2; P [!�][S��T;	]������ R (��L�)�;�1;�2 [!�][S��T;	]������ R (cut5)
reduces to:�1 ) S �) P �2; P [!�][T;	]������ R�;�2 [!�][T;	]������ R (cut5)�;�1;�2 [!�][S��T;	]������ R (��L�)
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(c) (&L1�) �) P �; P [!�][S;	]������ R�; P [!�][S&T;	]������ R (&L1�)�;� [!�][S&T;	]������ R (cut5)
reduces to: �) P �; P [!�][S;	]������ R�;� [!�][S;	]������ R (cut5)�;� [!�][S&T;	]������ R (&L1�)

(d) (&L2�) Similar to above.

(e) (D�) �) P �; P [!�][S;	]������ R�; P [!�][!S;	]������ R (D�)�;� [!�][!S;	]������ R (cut5)
reduces to: �) P �; P [!�][S;	]������ R�;� [!�][S;	]������ R (cut5)�;� [!�][!S;	]������ R (D�)

(f) (P ) Not possible.

6. (cut6) Analysis by cases on the left premiss.

(a) (sel) Three possibilities:�0 ) P....� S�! P�; S ) P (sel) � [ ][�;P ]������ R�;�;�; S ) R (cut6)
reduces to: �0 ) P � [ ][�;P ]������ R�0;�;�) R (cut6)

....�;�;� S�! R�;�;�; S ) R (sel)
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or � P�! P (ax)
....� S�! P�; S ) P (sel) �0 [!�][P;	]������ R (tog)....� [ ][�;P ]������ R�;�;�; S ) R (cut6)

reduces to: �0 [!�][P;	]������ R....�;�0 [!�][S;	]������ R (tog)....�;� [ ][�;S]������ R�;�;�; S ) R (sel�)
or �0 0�! P (0L)

....� S�! P�; S ) P (sel) � [ ][�;P ]������ R�;�;�; S ) R (cut6)
reduces to: �0;�;� 0�! R (0L)

....�;�;� S�! R�;�;�; S ) R (sel)
(b) (sel�) Two possibilities.!Q1; ::::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P )

....�1; :::;�n [ ][S1;:::;Sn]������ !P�1; :::;�n; S1; :::; Sn )!P (sel�) �0 [!�][P;	]������ R�0 [!�][!P;	]������ R (D�)(tog)....� [ ][�;!P ]������ R�1; :::;�n;�;�; S1; :::; Sn ) R (cut6)
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reduces to:

�; Sn )!Qn !Q1; :::; !Qn ) P �0 [!�][P;	]������ R (tog)....� [ ][�;P ]������ R�;�; !Q1; :::; !Qn ) R (cut6)�;�; !Q1; :::; !Qn�1;�n; Sn ) R (cut4)
.... cut4s�1; :::;�n;�;�; S1; :::; Sn ) R

or

!Q1; :::; !Qn ) P[!Q1;::::;!Qn][ ]������ !P (P )
....�1; :::;�n [ ][S1;:::;Sn]������ !P�1; :::;�n; S1; :::; Sn )!P (sel�)

!�0; !P ) R[!�0;!P ][ ]������!R (P )
....�0 [!�;!P ][	]������!R�0 [!�][!P;	]������!R (tog)(tog)....� [ ][�;!P ]������!R�1; :::;�n;�;�; S1; :::; Sn )!R (cut6)

reduces to: !Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) !�0; !P ) R!�0; !Q1; :::; !Qn ) R (cut8)[!�0;(!Q1;:::;!Qn)][ ]������ !R (P )
....�1; :::;�n;� [ ][�;S1;:::;Sn]������ !R�1; :::;�n;�;�; S1; :::; Sn )!R (sel�)

(c) (��R)
�; P ) Q�) P��Q (��R)

�1 ) P �02 [!�][Q;	]������ R�1;�02 [!�][P��Q;	]������ R (��L�)(tog)....�1;�2 [ ][�;P��Q]������ R�;�1;�2;�) R (cut6)
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reduces to:

�1 ) P �; P ) Q �02 [!�][Q;	]������ R (tog)....�2 [ ][�;Q]������ R�;�;�2; P ) R (cut6)�;�1;�2;�) R (cut4)
(d) (
R) Not possible.

(e) (IR) Not possible.

(f) (>R) Not possible.

(g) (�R1) Not possible.

(h) (�R2) Not possible.

(i) (&R)
�) P �) Q�) P&Q (&R)

�0 [!�][P;	]������ R�0 [!�][P&Q;	]������ R (&L1�)(tog)....� [ ][�;P&Q]������ R�;�;�) R (cut6)
reduces to:

�) P �0 [!�][P;	]������ R (tog)....� [ ][�;P ]������ R�;�;�) R (cut6)
7. (cut7) Analysis by cases on the right premiss.

(a) (ax) [!Q1;:::;!Qn][ ]������ !P � !P�!!P (ax)!Q1; :::; !Qn )!P (cut7)
reduces to: [!Q1;:::;!Qn][ ]������ !P....[ ][!Q1;:::;!Qn]������ !P!Q1; :::; !Qn )!P (sel�)

(b) (��L) Not possible.
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(c) (
L) Not possible.

(d) (IL) Not possible.

(e) (0L) Not possible.

(f) (�L) Not possible.

(g) (&L1) Not possible.

(h) (&L2) Not possible.

(i) (W ) !Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) �; (!P )i ) R�; (!P )i !P�! R (W )�; (!Q1; :::; !Qn)i+1 ) R (cut7)
if i = 0 then this reduces to:�) R� !Qn�! R (W )�; !Qn ) R (sel)

.... weakenings�; !Q1; ::::; !Qn ) R
if i 6= 0 then the reduction is to:!Q1; :::!Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) �; (!P )i ) R�; (!Q1; :::; !Qn)i ) R (cut8)�; (!Q1; :::; !Qn)i !Qn�! R (W )�; (!Q1; :::; !Qn)i; !Qn ) R (sel)

.... weakenings�; (!Q1; :::; !Qn)i+1 ) R
(j) (C) !Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) �; (!P )i+2 ) R�; (!P )i !P�! R (C)�; (!Q1; :::; !Qn)i+1 ) R (cut7)

reduces to:!Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) �; (!P )i+2 ) R�; (!Q1; :::; !Qn)i+1; !Q1; :::; !Qn ) R (cut8)�; (!Q1; :::; !Qn)i; !Q1; :::; !Qn�1; !Q1; :::; !Qn�1 !Qn�! R (C)�; (!Q1; :::; !Qn)i; !Q1; :::; !Qn�1; !Q1; :::; !Qn�1; !Qn ) R (sel)
.... contractions�; (!Q1; :::; !Qn)i+1 ) R
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(k) (D) !Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) �; (!P )i P�! R�; (!P )i !P�! R (D)�; (!Q1; :::; !Qn)i+1 ) R (cut7)
if i = 0 the reduction is to:!Q1; :::; !Qn ) P � P�! R�; !Q1; :::; !Qn ) R (cut3)
if i 6= 0 the reduction is to:

!Q1; :::; !Qn ) P !Q!; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) �; (!P )i P�! R�; (!Q1; :::; !Qn)i P�! R (cut9)�; (!Q1; :::; !Qn)i+1 ) R (cut3)
8. (cut8) Analysis by cases on the right premiss.

(a) (sel) Two possibilities[!�][ ]������!P �; (!P )i S�! R�; (!P )i; S ) R (sel)�; (!�)i; S ) R (cut8)
reduces to: [!�][ ]������!P �; (!P )i S�! R�; (!�)i S�! R (cut9)�; (!�)i; S ) R (sel)
or [!�][ ]������!P �; (!P )i !P�! R�; (!P )i+1 ) R (sel)�; (!�)i+1 ) R (cut8)
reduces to: [!�][ ]������!P �; (!P )i !P�! R�; (!�)i+1 ) R (cut7)

(b) (sel�) We give two reductions which, when combined, give the desired
reduction.!Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) !�0; (!P )k ) R....�; (!P )i [ ][�;(!P )j+k]������ !R�; (!P )i+j+k;�) R (sel�)�; (!Q1; :::; !Qn)i+j+k;�)!R (cut8)
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if i 6= 0 then the reduction is to:

!Q1; :::; !Qn ) P[!Q1;:::;!Qn][ ]������ !P (P ) [!Q1;:::;!Qn][ ]������ !P !�0; (!P )k ) R....�; (!P )i [ ][�;(!P )j+k]������ !R�; (!Q1; :::; !Qn)i [ ][�;(!P )j+k]������ !R (cut10)�; (!Q1; :::; !Qn)i;�; (!P )j+k )!R (sel�)�; (!Q1; :::; !Qn)i+j+k;�)!R (cut8)
if i = 0 the then reduction is to the following:

!Q1; :::; !Qn ) P
[!Q1;:::;!Qn][ ]������ !P !�; (!P )k ) R!�0; (!Q1; :::; !Qn)k ) R (cut8)[!�;(!Q1;:::;!Qn)k ][ ]������ !R (P )

....�; (!Q1; :::; !Qn)i [ ][�;(!Q1;:::;!Qn)k;(P )j ]������ !R�;�; (!Q1; :::; !Qn)i+k; (P )j )!R (sel�)�;�; (!Q!; :::; !Qn)i+k+1; (P )j�1 )!R (cut4)
.... cut4s�;�; (!Q1; :::; !Qn)i+j+k )!R

By doing the first reduction, eliminating the(cut10)s (they move into
the minor premisses of the promotion) and then performing the second
reduction, we get one large reduction, which is the one we really want
to consider.

(c) (��R) [!�][ ]������!P �; (!P )i; S ) T�; (!P )i ) S��T (��R)�; (!�)i ) S��T (cut8)
reduces to: [!�][ ]������!P �; (!P )i; S ) T�; (!�)i; S ) T (cut8)�; (!�)i ) S��T (��R)

(d) (
R) [!�][ ]������!P �1; (!P )i ) S �2; (!P )j ) T�1;�2; (!P )i+j ) S 
 T (
R)�1;�2; (!�)i+j ) S 
 T (cut8)
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reduces to:[!�][ ]������!P �1; (!P )i ) S�1; (!�)i ) S (cut8) [!�][ ]������!P �2; (!P )j ) T�2; (!�)j ) T (cut8)�1;�2; (!�)i+j ) S 
 T (
R)
(e) (IR) Not possible.

(f) (>R) [!�][ ]������!P �; (!P )i ) > (>R)�; (!�)i ) > (cut8)
reduces to: �; (!�)i ) > (>R)

(g) (�R1) [!�][ ]������!P �; (!P )i ) S�; (!P )i ) S � T (�R1)�; (!�)i ) S � T (cut8)
reduces to: [!�][ ]������!P �; (!P )i ) S�; (!�)i ) S (cut8)�; (!�)i ) S � T (�R1)

(h) (�R2) Similar to above.

(i) (&R) [!�][ ]������!P �; (!P )i ) S �; (!P )i ) T�; (!P )i ) S&T (&R)�; (!�)i ) S&T (cut8)
reduces to:[!�][ ]������!P �; (!P )i ) S�; (!�)i ) S (cut8) [!�][ ]������!P �; (!P )i ) T�; (!�)i ) T (cut8)�; (!�)i ) S&T (&R)

9. (cut9) Analysis by cases on the right premiss.

(a) (ax) Not possible.

(b) (��L) [!�][ ]������!P �1; (!P )i ) S �2; (!P )j T�! R�1;�2; (!P )i+j S��T�! R (��L)�1;�2; (!�)i+j S��T�! R (cut9)
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reduces to:[!�][ ]������!P �1; (!P )i ) S�1; (!�)i ) S (cut8) [!�][ ]������!P �2; (!P )j T�! R�2; (!�)j T�! R (cut9)�1;�2; (!�)i+j S��T�! R (��L)
(c) (
L) [!�][ ]������!P �; (!P )i; S; T ) R�; (!P )i S
T�! R (
L)�; (!�)i S
T�! R (cut9)

reduces to: [!�][ ]������!P �; (!P )i; S; T ) R�; (!�)i; S; T ) R (cut8)�; (!�)i S
T�! R (
L)
(d) (IL) [!�][ ]������!P �; (!P )i ) R�; (!P )i I�! R (IL)�; (!�)i I�! R (cut9)

reduces to: [!�][ ]������!P �; (!P )i ) R�; (!�)i ) R (cut8)�; (!�)i I�! R (IL)
(e) (0L) [!�][ ]������!P �; (!P )i 0�! R (0L)�; (!�)i 0�! R (cut9)

reduces to: �; (!�)i 0�! R (0L)
(f) (�L) [!�][ ]������!P �; (!P )i; S ) R �; (!P )i; T ) R�; (!P )i S�T�! R (�L)�; (!�)i S�T�! R (cut9)
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reduces to:[!�][ ]������!P �; (!P )i; S ) R�; (!�)i; S ) R (cut8) [!�][ ]������!P �; (!P )i; T ) R�; (!�)i; T ) R (cut8)�; (!�)i S�T�! R (�L)
(g) (&L1) [!�][ ]������!P �; (!P )i S�! R�; (!P )i S&T�! R (&L1)�; (!�)i S&T�! R (cut9)

reduces to: [!�][ ]������!P �; (!P )i S�! R�; (!�)i S�! R (cut9)�; (!�)i S&T�! R (&L1)
(h) (&L2) Similar to above.

(i) (W ) [!�][ ]������!P �; (!P )i ) R�; (!P )i !S�! R (W )�; (!�)i !S�! R (cut9)
reduces to: [!�][ ]������!P �; (!P )i ) R�; (!�)i ) R (cut8)�; (!�)i !S�! R (W )

(j) (C) [!�][ ]������!P �; (!P )i; !S; !S ) R�; (!P )i !S�! R (C)�; (!�)i !S�! R (cut9)
reduces to: [!�][ ]������!P �; (!P )i; !S; !S ) R�; (!�)i; !S; !S ) R (cut8)�; (!�)i !S�! R (C)

(k) (D) [!�][ ]������!P �; (!P )i S�! R�; (!P )i !S�! R (D)�; (!�)i !S�! R (cut9)



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 182

reduces to: [!�][ ]������!P �; (!P )i S�! R�; (!�)i S�! R (cut9)�; (!�)i !S�! R (D)
10. (cut10) Analysis by cases on the right premiss.

(a) (tog) [!�][ ]������!P �; (!P )i [!�;!S][	]������ R�; (!P )i [!�][!S;	]������ R (tog)�; (!�)i [!�][!S;	]������ R (cut10)
reduces to: [!�][ ]������!P �; (!P )i [!�;!S][	]������ R�; (!�)i [!�;!S][	]������ R (cut10)�; (!�)i [!�][!S;	]������ R (tog)

(b) (��L�) [!�][ ]������!P �1; (!P )i ) S �2; (!P )j [!�][T;	]������ R�1;�2; (!P )i+j [!�][S��T;	]������ R (��L�)�1;�2; (!�)i+j [!�][S��T;	]������ R (cut10)
reduces to:[!�][ ]������!P �; (!P )i ) S�1; (!�)i ) S (cut8) [!�][ ]������!P �2; (!P )j [!�][T;	]������ R�2; (!�)j [!�][T;	]������ R (cut10)�1;�2; (!�)i+j [!�][S��T;	]������ R (��L�)

(c) (&L1�) [!�][ ]������!P �; (!P )i [!�][S;	]������ R�; (!P )i [!�][S&T;	]������ R (&L1�)�; (!�)i [!�][S&T;	]������ R (cut10)
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reduces to: [!�][ ]������!P �; (!P )i [!�][S;	]������ R�; (!�)i [!�][S;	]������ R (cut10)�; (!�)i [!�][S&T;	]������ R (&L1�)
(d) (&L2�) Similar to above.

(e) (D�) [!�][ ]������!P �; (!P )i [!�][S;	]������ R�; (!P )i [!�][!S;	]������ R (D�)�; (!�)i [!�][!S;	]������ R (cut10)
reduces to: [!�][ ]������!P �; (!P )i [!�][S;	]������ R�; (!�)i [!�][S;	]������ R (cut10)�; (!�)i [!�][!S;	]������ R (D�)

(f) (P ) Not possible.

6.6.2 Weighting Cuts in SILL

In this section we give a weight to simple cut instances (defined in Definition3.2)
in SILL. This measure is then used with a cut reduction strategy to prove the (weak)
cut-elimination theorem.

Definition 6.2 Associated with every formula occurrence in a SILL proof is an
elimination number. The elimination number of a formula is zero if it has form!P
and was not introduced by a promotion. Otherwise it has elimination number one.

Definition 6.3 Theweight of a simple cut instance in a SILLcut derivation is the
quadruple: (e; jP j; h2; h1)
where

– e is the elimination number of the left cut formula.

– jP j is the size of the cut formula.

– h2 is the height of the right premiss.
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– h1 is the height of the left premiss.

The quadruple is lexicographically ordered from the left.

Lemma 6.3 The weights defined in Definition 6.3 are well-ordered.

Theorem 6.4 The rules(cut1); :::; (cut10) are admissible in SILL.

PROOF: We give a reduction strategy:

– pick any simple cut instance and reduce

– recursively reduce any simple cut instances in the result

By induction on the weight of the simple cut instances, and induction on the number
of simple cut instances, this strategy terminates.

This can easily be seen by inspection.�
The reason for introducing the elimination number is now obvious. Reductions
3(b) and 6(b) introduce cuts whose cut formulae can be of greater size than the cut
being reduced. Inspection of these new cuts reveals that they are easily eliminable
(consider, for example, the second of the possibilities for reduction 6(a)). All that is
needed is a measure which captures this. This the elimination number achieves: a
simple cut whose left premiss has elimination number zero has a form such that the
cut can easily be eliminated (independently of the elimination of the cuts aboveit).

6.6.3 More on Cut Elimination

The ‘)’ sequents are the basic judgement form for SILL. Therefore, elimination of(cut4) is of primary interest. Indeed, the other nine cuts result from the attempt to
algorithmically eliminate the first – they naturally arise in the reduction of (cut4).
However, the simple admissibility of(cut4) can be proved without recourse to the
other cuts and all the complicated work above. We prove the admissibility again:

Theorem 6.5 The following rule is admissible in SILL:�) P �; P ) R�;�) R (cut)
PROOF: Given that the premisses are provable in SILL, they are provable in ILL
(from Theorem 6.1). We know ([Bie94]) that cut is admissible in ILL, hence the
conclusion is provable in ILL. Again from Theorem 6.1, the conclusion is provable
in SILL. �
We could use similar arguments to prove the admissibility of the other cut rules
described above.
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Cut elimination is of interest for two reasons. Firstly, from a logic programming
point of view, we are interested in backwards proof search, and a complete cut-free
system is desirable for this. We have already described a cut-free systemand proved
its completeness, hence from the logic programming perspective the cut-elimination
theorem is of lesser importance.

Another reason to be interested in a cut-elimination theorem for a system such as
SILL is that it can be seen as a computation process – calculating a normal-form
(cut-free proof) from a program (proof with cuts). This is the motivation for the
cut reductions given in section 6.6.1 and the cut-elimination theorem as proved
in Theorem 6.4. The proof given there is that the reduction strategy terminates –
we have a syntactic algorithm that will produce a normal form. This is akin to
normalisation of lambda terms as computation as seen in functional programming.
We would ideally like to prove that the set of reductions given (and the associated
proof terms not given) strongly normalise, but such a proof is beyond the scope of
this thesis. Indeed, given that normalisation for natural deduction is not confluent,
we are unsure whether or not cut is strongly admissible. We do not, however, have
a counter-example.

It was said above that the ten cut rules arise from the process of algorithmically
eliminating the ‘basic’(cut4). That this is so is easily seen from the reduction rules.
Of course, picking the right form for the cut rules is tricky. The rules have to be
sound with respect to provability in cut-free SILL and for all cases to reduce to valid
SILL sequents. This necessitates the ‘big step reductions’ which can be seen in, for
example, 6(a). The decomposition of promotions leads to several other complicated
reductions, such as 3(b). Finally notice that(cut7),...,(cut10) are multicut (or mix)
rules – one formula on the left is cut with many formulae on the right. This has led
to very little complication in the cut-elimination process, but the use of multicuts
for any purpose at all is unattractive, and using them with a calculus with several
judgement forms and focused formulae seemed best avoided. However, without the
use of multicuts, we were unable to find a measure on the size of a cut which would
always decrease. The situation is similar to that for multiplicative formulations of
intuitionistic logic (such as G6 in the appendix). Indeed, multicuts were first intro-
duced by Gentzen ([Gen69]) when trying to prove cut-elimination for this calculus
by similar methods to those we are using here. We know of no treatment of cut-
elimination for calculi such as G6 which do not use a multicut. However, we know
of no work showing that the use of the multicut is necessary.

6.7 SILL and Logic Programming

One of the motivations for the development of SILL is the link between ‘permutation-
free’ calculi and logic programming. Linear logic has been extensively studied in
relation to logic programming, in particular by Hodas & Miller and Harland &
Pym. Hodas & Miller have developed two systems for linear logic programming.



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 186

The first of these, Lolli ([HM94]), is based on a fragment of Intuitionistic Linear
Logic. The second, Forum ([Mil96]), is based on full classical linear logic. Harland
& Pym’s system, Lygon ([HP94]), is based on a fragment of classical linear logic.
This section will briefly describe Lolli (the language most closely relatedto SILL)
and compare it with SILL.

6.7.1 SILL and Lolli

In [MNPS91], the idea of a uniform proof was introduced. A uniform proof is
one where the goal formula can be broken up until atomic before the context is
considered (see Definition 1.1). Hereditary Harrop logic with uniform proofs and
a backchaining calculus allows goal directed proof search. This can be seen as a
logical foundation of logic programming. Lolli is the linear logic programming
language most closely corresponding to SILL. Lolli is a calculus (introduced in
[HM94]) for the fragment of ILL similar to hereditary Harrop logic as a fragment of
intuitionistic logic. This fragment is the largest fragment of ILL for which uniform
proofs are complete with respect to provability. Lolli is a backchaining calculus
suitable for goal-directed proof search.

In order to avoid problems with the structural rules, the Lolli calculus is formulated
with contexts split into linear and non-linear parts, like the calculus ILL� seen in
Figure 2.2. The calculus is presented with two implications (�� and!). �� can
be thought of as the usual linear implication for formulaP��Q whereP is not
banged.! can be thought of as linear implication for formulae of the form!P��Q.
Therefore, unlike ILL�, there is no rule for moving banged formulae on the left into
the non-linear context. The usual left rules are replaced by two backchaining rules.

Lolli is a calculus for the following fragment of ILL. We call this fragment UILL.
Formulae are generated according to the following grammar.

R::= A j > j G��R j G! R j R&R j 8V:R
G::= A j > j I j R��G j R! G j G&G j G
G j G�G j !G j 8V:G j 9V:G
UILL hasG formulae as goals. On the left,R formulae and bangedR formulae are
allowed.

Lolli is displayed in Figure 6.8 (with a minor change from [HM94] – we have
given two backchaining rules for the cases where the resource formula is and is not
in the linear context, whereas Hodas & Miller give one backchaining rule and a
dereliction rule). All banged formulae on the left are in� and all formulae which
are not banged are in�.

We need the following definition from [HM94].



CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC L INEAR LOGIC 187�; �) > (>R) �;) I (IR)�; �; P ) Q�; �) P��Q (��R) �; P ; �) Q�; �) P ! Q (!R)�; �1 ) P �; �2 ) Q�; �1;�2 ) P 
Q (
R) �; �) P �; �) Q�; �) P&Q (&R)�; �) P�; �) P �Q (�R1) �; �) Q�; �) P �Q (�R2)�;) P�;)!P (P )�; �) P [y=x]�; �) 8xP (8R)y �; �) P [t=x]�; �) 9x:P (9R)�;) P1 ::: �;) Pn �; �1 ) Q1 ::: �; �m ) Qm�; �1; :::;�m; P ) A (BC1)z�; P ;) P1 ::: �; P ;) Pn �; P ; �1 ) Q1 ::: �; P ; �m ) Qm�; P ; �1; :::;�m ) A (BC2)zy y not free in�; �z n;m � 0 and< fP1; :::; Png; fQ1; :::; Qmg; A >2k P k
Notice that(BC1); (BC2) can be nullary, providing the leaf nodes for the calculus.

Figure 6.8: Lolli

Definition 6.4 LetP range over logical formulae built using the connectives>, &,��, ! and8. Thenk P k is the smallest set of triples of the form< �;�; Q >
where� is a set of formulae and� is a multiset of formulae, such that

1. < �; �; P >2k P k
2. if< �;�; S&T >2k P k then both< �;�; S >2k P k

and< �;�; T >2k P k
3. if< �;�; 8x:S >2k P k then for all closed

termst,< �;�; S[t=x] >2k P k
4. if< �;�; S ! T >2k P k then< � [ fSg;�; T >2k P k
5. if< �;�; S��T >2k P k then< �;� [ fSg; T >2k P k

Proofs in Lolli proceed by applying right rules in order to break up the goal formula
until it is atomic, then backchaining and repeating the process.

How does Lolli compare with derivations in SILL? Lolli has contexts split intolin-
ear and non-linear parts, and hence no structural rules. SILL does not have this fea-
ture. Therefore a direct comparison of the two systems is not possible – treatment
of the structural rules cannot be compared. Instead we show that (over the UILL
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fragment of ILL) every Lolli derivation can be interpreted as a SILL derivation and
that every SILL derivation can be interpreted as a Lolli derivation. These interpreta-
tions rest on the fact that the premisses of the backchaining rule with backchaining
formulaP are exactly the minor premisses of the chain of stoup inference ending
in an axiom that arise from selectingP as the stoup formula. The axiom itself is
unnecessary in the backchaining rule. Note we make a slight change to SILL – we
restrict axioms to atomic formulae.

Proposition 6.2 Every Lolli derivation can be interpreted as aSILL derivation.

PROOF: We take each Lolli inference in turn and interpret it as a series of one or
more SILL inferences.

Where� is a Lolli proof, we call this interpretationJ (�).
1. The last inference in the Lolli derivation is one of:(>R), (IR), (��R), (!R),(&R), (�R1), (�R2), (8R), (9R). Then the last inference in SILL is the

corresponding inference. For example:�; P ; �) Q�; �) P ! Q (!R) is interpreted as
!�; !P;�) Q!�;�)!P��Q (��R)

2. The last inference in Lolli is(
R). Then�; �1 ) P �; �2 ) Q�; �1;�2 ) P 
Q (
R)
is interpreted as !�;�1 ) P !�;�2 ) Q!�; !�;�1;�2 ) P 
Q (
R)

.... contractions!�;�1;�2 ) P 
Q
3. The last inference in Lolli is(P ). Then

�;) P�;)!P (P )
is interpreted as

!�) P[!�][ ]������!P (P )
....[ ][!�]������!P!�)!P (sel�)

4. The last inference in Lolli is(BC1). Then�;) P1 ::: �;) Pn �; �1 ) Q1 ::: �; �m ) Qm�; �1; :::;�m; P ) A (BC1)
(where< fP1; :::; Png; fQ1; :::; Qmg; A >2k P k)
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is interpreted as (noting that anR formula once in the stoup has stoup pre-
misses ending in an axiom or failure)

minor premisses � A�! A (ax)
....!�; :::; !�;�1; :::;�m P�! A!�; :::; !�;�1; :::;�m; P ) A (sel)
.... contractions!�;�1; :::;�m; P ) A

wheren+m copies of!� are made and the minor premisses are the interpre-
tations of the premisses of(BC1) (via promotion for the�;) Pi).

5. The last inference in Lolli is(BC2). Then�; P ;) P1 ::: �; P ;) Pn �; P ; �1 ) Q1 ::: �; P ; �m ) Qm�; P ; �1; :::;�m ) A (BC2)
(where< fP1; :::; Png; fQ1; :::; Qmg; A >2k P k)
is interpreted as

minor premisses � A�! A (ax)
....!�; !P; :::; !�; !P;�1; :::;�m P�! A!�; !P; :::; !�; !P;�1; :::;�m !P�! A (D)!�; !P; :::; !�; !P; !P;�1; :::;�m ) A (sel)
.... contractions!�; !P�1; :::;�m ) A

wheren + m copies of!�; !P are made and the minor premisses are the
interpretations of the premisses of(BC2) (via promotion for the�;) Pi).�

Lemma 6.4 The following rules are admissible in Lolli:�; �) G�;�;�) G (W�) �;�;�;�) G�;�;�) G (C�)
Lemma 6.5 UILL sequents of the form!�; S )!P , whereS is not banged, are
unprovable.

Proposition 6.3 EverySILL derivation over theUILL fragment ofILL can be in-
terpreted as a Lolli derivation.
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PROOF: We analyse the cases for the ‘)’ form of sequent. We interpret SILL
sequent!�;�) G as Lolli sequent�; �) G.

Where� is a SILL proof, we call this interpretationI(�).
1. The last inference in SILL is one of(>R), (IR), (&R), (�R1), (�R2), (8R),(9R). The Lolli inference is the corresponding inference.

2. The last inference in SILL is(��R). Two cases:!�;�; P ) Q!�;�) P��Q (��R) is interpreted as
�; �; P ) Q�; �) P��Q (��R)

or !�;�; !P ) Q!�;�)!P��Q (��R) is interpreted as
�; P ; �) Q�; �) P ! Q (!R)

3. The inference in SILL is(
R). Then!�1;�1 ) P !�2;�2 ) Q!�1; !�2;�1;�2 ) P 
Q (
R)
is interpreted as�1; �1 ) P�1;�2; �1 ) P (W�) �2; �2 ) Q�1;�2; �2 ) Q (W�)�1;�2; �1;�2 ) P 
Q (
R)

4. The last inference in SILL is(sel�). Then we have (because of Lemma 6.5)!�) P[!�][ ]������!P (P )
....[ ][!�]������!P!�)!P (sel�)

is interpreted as
�;) P�;)!P (P )

5. The last inference in SILL is(sel). Then

minor premisses � A�! A (ax)
....!�1; :::; !�n+m;�1; :::;�m P�! A!�1; :::; !�n+m;�1; :::;�m; P ) A (sel)

(where< fP1; :::; Png; fQ1; :::; Qmg; A >2k P k)
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is interpreted as (omitting the weakenings that are needed)�1;) P1 ::: �n;) Pn �n+1; �1 ) Q1 ::: �n+m; �m ) Qm�1; :::;�n+m; �1; :::;�m; P ) A (BC1)
If the selected formula has a bang as its top formula, then either the next step
is dereliction, and the case is similar to before with(BC2), or the next step is
weakening or contraction and we get the result by the admissibility of these
rules in Lolli.�

Proposition 6.4 For any Lolli derivation�, I(J (�)) = �, modulo the elimination
of weakenings and contractions.

PROOF: Follows from the interpretations given in the preceding propositions. We
illustrate with the following example:�; �1 ) P �; �2 ) Q�; �1;�2 ) P 
Q (
R)
is interpreted as !�;�1 ) P !�;�2 ) Q!�; !�;�1;�2 ) P 
Q (
R)

.... contractions!�;�1;�2 ) P 
Q
which is then interpreted as�; �1 ) P�;�; �1 ) P (W ) �; �2 ) Q�;�; �2 ) Q (W )�;�; �1;�2 ) P 
Q (
R)�; �1;�2 ) P 
Q (C�)
and eliminating the structural rules:�; �1 ) P �; �2 ) Q�; �1;�2 ) P 
Q (
R)�
Propositions 6.2 and 6.3 show that up to the treatment of structural rules SILL and
Lolli coincide for UILL. Many SILL proofs are interpreted as the same Lolliproof,
but this is simply because of the greater flexibility in positioning weakening and
contractions.J (I(�)) brings all weakenings to axioms and contractions to imme-
diately below context splitting rules. In fact, several SILL proofs are interpreted
as one Lolli proof due to(sel�) in SILL, as each ordering of the formulae selected
gives a different proof.
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As has been noted several times in this thesis, we might want to consider refor-
mulations of natural deduction, in particular one which has linear and non-linear
assumptions – such a natural deduction system might give a good correspondence
with a split context version of SILL. We would expect such a calculus to match
Lolli even more closely than SILL matches Lolli. Syntactically, we could easily
give a split context version of SILL, but this would lack the correspondence with
semantics that motivates the calculus.

One of the reasons for developing SILL is as a logic programming language based
on ILL. MJ can be seen as extending the view of logic programming as backwards
proof search in a backchaining calculus for hereditary Harrop logic to proof search
over the whole of intuitionistic logic. In doing so, it gives a semantic rationaleto the
calculus used. Lolli is a logic programming language with a backchaining calculus
for a fragment of ILL. As MJ extends logic programming founded on intuitionistic
logic, so SILL extends Lolli. SILL contains all the Lolli proofs, and extends the
calculus to cover the whole of ILL, producing a calculus with a semantic rationale.
However, proof search in the resulting calculus is no longer goal directed. Whilst
for MJ this isn’t too problematic, SILL is a very complicated calculus, especially
because of the unrestricted occurrences of bang. SILL appears to be too complicated
to be practically used as a logic programming language, and its interest is restricted
to its theoretical properties of naturally corresponding in a 1–1 with normal natural
deductions, and hence giving a semantic rationale to Lolli.

6.7.2 SILL and Forum

Forum ([Mil96]) is another linear logic programming language. It is based on full
classical linear logic and exploits the symmetries of linear logic to give a calcu-
lus for the whole of linear logic whilst avoiding the use of connectives that have
rules which do not fit well with goal-directedness. The calculus is not given with a
backchaining rule as the presence of query formulae on the left prevents a calculus
with this as the only left rule from being complete. The rules are in fact presented
with single stoup rules, much like those of SILL. If we restrict Forum to its single
succedent subsystem, with sequents in the fragment of UILL built from the connec-
tives allowed in Forum, we find a subsystem of Lolli inside Forum. This subsystem
of Forum then matches SILL in the same way that Lolli matches SILL.

It would be interesting to see what a sequent system matching natural deduction
for classical linear logic ([Bie96]) would look like and how it would compare with
Forum. Of course one could argue that we should be interested in proof nets rather
than natural deduction for classical linear logic, and that we should direct our efforts
towards finding a sequent system reflecting these. This system might be similarto
Andreoli’s ([And92]) focusing calculus.
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6.8 SILL and Permutations of Inference Rules

In Chapter 2, the calculus ILLF was presented for ILL. This calculus gives proofs
for sequents giving only one proof for each equivalence class of proofs equivalent
up to permutation of inferences (P-equivalent proofs). Calculi such as SILL have
been described as permutation-free elsewhere in this thesis, and so we compare
SILL with ILLF. It has already been mentioned that we consider ‘permutation-free’
to be a poor description of a calculus such as SILL since many permutations are still
possible in SILL. These permutations may not be semantically sound with respect
to normal natural deductions, but this suggests rather that natural deduction is a poor
proof-theoretic semantics for ILL than that the permutations are not important.

If we restrict formulae to those in the UILL fragment of ILL, we find a calculus
very similar to Lolli. Apart from issues to do with context management, there is
only one difference. When focusing on a formula, ILLF as formulated in Figure
2.1 allows atoms to be returned to the context (by the(+L2) rule), whereas in Lolli
the backchaining that this is the end of would not be allowed. Otherwise the calculi
are the same. We could further restrict the(+L2) rule so that atoms would not be
returned the context. This calculus would match Lolli over the UILL fragment of
ILL.

We could give interpretation of the various systems into each other, much as wedid
with Lolli and SILL. We omit the details of these interpretations, but name them:

– Lolli into ILLF, K(�)
– ILLF into Lolli, L(�)
– ILLF into SILL, M(�)
– SILL into ILLF, N (�)

Proposition 6.5 For any Lolli proof�, L(K(�)) = �.

PROOF: By putting together the interpretations as in Proposition 6.4.�
Proposition 6.6 For anyILLF proof�,K(L(�)) = �.

PROOF: Similar to Proposition 6.4.�
Proposition 6.7 For anyILLF proof�,N (M(�)) = �.

PROOF: Similar to Proposition 6.4.�
Interpreting SILL proofs as ILL proofs and then interpreting back again will move
occurrences of weakening to the axioms and occurrences of contractions to imme-
diately below context splitting rules (as with interpretation in Lolli andback).
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6.9 Conclusion

In this chapter we have presented a calculus, SILL, for Intuitionistic Linear Logic,
the proofs in which correspond in a 1–1 to the normal natural deductions for ILL.
We have proved that SILL has this property. We have also given a weak cut-
elimination theorem for SILLcut.
We have compared SILL with the linear logic programming language Lolli. We
have shown that the Lolli can be interpreted in SILL, but that over the fragment of
ILL for which Lolli is defined, the calculi do not coincide owing to the treatment of
structural rules.

We have also discussed the formulation of natural deduction for ILL, and have sug-
gested that a more refined notion of normal natural deduction might have more
attractive properties. A sequent calculus matching this as SILL matches the formu-
lation used in this chapter might correspond more closely to Lolli, and have better
proof-theoretic properties.



Chapter 7

Conclusion

This thesis has been a study of proof search systems for a variety of non-classical
logics. Proof search has two meanings. Firstly it can mean the search fora single
proof, a simple yes/no answer to a query. Secondly it can mean the search for all
answers of a query, the enumeration of all proofs of a sequent. This thesis has
investigated proof search in both these senses.

– Chapter 2 was a study of the permutations of inference rules in Intuitionistic
Linear Logic. A Gentzen calculus for the logic, called ILLF, was presented
and shown to be sound and complete with respect to provability in ILL. ILLF
gives only one proof in each P-equivalence class (proofs equivalent up to
permutations). This calculus can be seen as an efficient calculus for searching
for a yes/no answer to a query (although as ILL is only semi-decidable, it is
not guaranteed that a negative answer will be produced). ILLF can also be as
a calculus for enumerating proofs, and thus as a basis of a logic programming
language (but without the semantic properties later argued for).

– Chapter 3 was a study in the application of ‘permutation-free’ techniques to
an intuitionistic modal logic, Lax Logic. A ‘permutation-free’ calculus is one
with proofs naturally corresponding in a 1–1 way to the normal natural de-
ductions for that logic. For well behaved fragments of logics, these proofs
are also the normal forms for sequent proofs up to permutation of inferences.
The calculus for Lax Logic, called PFLAX, is proved to have the correspon-
dence, hence is sound and complete. PFLAX is a suitable calculus for enu-
merating all proofs. Links with constraint logic programming are discussed.
Cut-elimination is also studied, and both weak and strong cut-elimination are
proved for the calculus.

– In Chapter 4 a method for turning suitable propositional calculi into decision
procedures using a history mechanism is given. A history mechanism keeps
track of which sequents have appeared so far on a branch, and prevents loop-
ing. The mechanism is applied to the G3 and MJ calculi for intuitionistic
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propositional logic, as well as PFLAX and intuitionistic S4. These calculi are
intended for delivering yes/no answers to queries.

– Chapter 5 is a short investigation into the embedding of intuitionistic logic in
linear logic.

– Chapter 6 applies ‘permutation-free’ techniques to Intuitionistic Linear Logic.
The resulting calculus, SILL, is proved to be in 1–1 correspondence with nor-
mal natural deductions. A weak cut-elimination theorem is proved. Connec-
tions with linear logic programming languages are discussed. SILL is seen
to contain the language Lolli. There is also discussion of the formulation of
natural deduction for ILL and its suitability as a proof-theoretic semantics for
ILL.

The work in this thesis achieves several things. Firstly, the work in Chapter 2 clari-
fies material already to be found in the literature for single succedent classical linear
logic by applying it to two-sided Intuitionistic Linear Logic. How to turn the CLL
studies into ILL studies is not obvious and it is worth spelling out in detail the calcu-
lus ILLF. Chapter 3 gives a Gentzen sequent calculus for Lax Logic corresponding
to normal natural deductions. Not only is this calculus attractive because of the
focusing involved, but it gives a suitable proof search calculus for constraint logic
programming (if it is accepted that constraint logic programming can be based on
Lax Logic). Chapter 4 gives a new decision procedure for propositional Lax Logic.
It also gives a general method for turning calculi into decision procedures, which
can often be useful. Chapter 5 raises some interesting questions as to what cal-
culi are induced by embedding one logic into another and partially answers these
questions. Chapter 6 again gives a Gentzen sequent calculus (this time for ILL)
corresponding to normal natural deductions which can be related to logic program-
ming. This calculus can be seen as giving a proof-theoretic semantics to the linear
logic programming language Lolli.

There are, however, points where although the work is technically correct and has
achieved its aims, we are a little disappointed with the outcome. The application of
the history mechanism to intuitionistic logic in Chapter 4 did not give as efficient
a theorem prover as had been hoped. It had also been hoped that we could make
improvements to decision procedures to classical modal logics, but unfortunately
this did not prove possible. In Chapter 5 we were unable to find an embedding
of intuitionistic logic into linear logic that induced the whole of MJ (or any other
attractive sequent calculus). We were disappointed, if not completely surprised, by
this. Finally, the system SILL for Intuitionistic Linear Logic given in Chapter 6
seems unattractive. In order to make the system correspond to the normal natural
deductions, the multistoup is needed (this corresponds to then minor premisses
of promotion). There is a large amount of non-determinism in the selection of the
multistoup – not only do you have to decide which formulae go into the stoup,
but in what order they appear in the multistoup. Each ordering of the formulae in
the multistoup corresponds to a different proof, despite the fact that they appear
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to be the same in many senses. This suggests that it might be good to rework the
theory with the promotion rule in natural deduction having unordered premisses,
and therefore SILL with an unordered multistoup. But not only does this involve a
lot of work to make sense of proof terms, it also makes it hard to see how to make
the normalisation process in ILL confluent.... A more radical reworking of natural
deduction might be more successful, starting with Mints’s suggestion for ann + 1
premiss tensor elimination rule. SILL is undoubtably too unwieldy for practical
use, but it does still provide a semantics for, and extension of, Lolli.

7.1 Permutation-free Calculi as a Foundation for Logic
Programming

Permutation-free calculi are of interest for several reasons. Theoretically it is inter-
esting that the structure of normal natural deductions can be captured in an elegant
sequent calculus system for a wide range of constructive logics. The cut-elimination
process for these calculi can also be viewed as a computation procedure. In thisthe-
sis we have been concentrating on the connections between cut-free permutation-
free sequent calculi and logic programming viewed as backwards proof search in
constructive logics. This section gives concluding remarks on this relationship.

It has already been seen that: the backchaining calculus for hereditary Harropfor-
mulae is contained in MJ; that Lolli is contained in SILL; that over the intersection
of their languages, Forum and SILL coincide.

Logic programming is about the search for proofs. A query is given and the inter-
preter for the logic programming language gives an answer. It can then be asked
for another answer, and so on until all answers have been given. These answers are
the different proofs possible in the logic. The question is, which proofs are wanted?
Proofs which are the same will give the same solution to a query. This is wasteful.
The uniform proof calculi are syntactically developed devices for giving proofs in
a reduced search space. It might be better to have a justification for the canonical
proofs from the proof-theoretic semantics of the logic. Normal natural deductions
provide a good proof-theoretic semantics to many constructive logics. This sug-
gest that the proofs that are interesting for logic programming are normal natural
deductions. It is normal natural deductions that are found by ‘permutation-free’
calculi, hence it seems that these are the natural calculi to base logic programming
languages on.

As stated above, over suitable fragments of the logic, the permutation-freecalculi
coincide with the corresponding backchaining calculi. Backchaining calculi are
defined over fragments where the permutations in the sequent calculus match those
in natural deductions and which are suitable for goal-directed proof search. That is,
the ‘nice’ fragments of the logics.

For these fragments the calculi coincide, and although it is useful to have a semantic
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underpinning of the calculi used, no change is suggested for the actual bases of the
programming languages. They now have a semantic justification. As the fragments
do not cover the whole of the logic, their power of expression could be extended,
by extending them to the whole calculus. At this point, goal-directed proof search
is lost. What the calculi should be is not entirely obvious from a syntactic point of
view. Some sort of Andreoli-style focusing calculus, such as ILLF, appears to bethe
answer. However, these do not have the proof-theoretic semantics argued for above,
and so we think that extensions to logic programming should be the extensions of
the corresponding permutation-free calculi. Of course, losing the goal directedness
of proof search is a disadvantage from an implementational point of view, whereas
an Andreoli style calculus would keep this to a greater extent.

Having argued for permutation-free calculi in general as good extensions to logic
programming languages, we now consider SILL in particular as an extension of
Lolli. Whereas, for example, normal natural deductions are generally consideredto
be the correct proof-theoretic semantics for intuitionistic logic, it is not so clear that
they are for ILL. Many natural deductions (hence SILL proofs) that one would intu-
itively want to identify are not identified for ILL. SILL seems to lack determinism
compared to a calculus such as ILLF. It is possible that a refinement of the notion
of normal natural deduction for ILL would give a much better proof-theoretic se-
mantics, and the resulting SILL-like calculus would seem a much more suitable
extension of Lolli.

In conclusion, it is the proof-theoretic semantics of logics that are of primary im-
portance in logic programming. Proof search is search for exactly the proofs given
by the proof-theoretic semantics. Permutation-free calculi are of interest as they
seem particularly well suited for the enumeration of normal natural deductions,the
semantics for many non-classical logics. However, for logics whose proof-theoretic
semantics is not normal natural deductions, these calculi are less well suited and
less interesting as the basis of a logic programming language based on the logics.
For these logics we are interested in good ways of enumerating all proofs, whether
in the logical system itself, or in another more suitable. Hence MJ is a good calculus
to base a logic programming language on, and SILL less good. A better understand-
ing of the proof-theoretic semantics of ILL might suggest a more suitable calculus
for extending Lolli.

7.2 Semantics of ILL

The preceding discussion leads one to question whether or not natural deduction is
a suitable proof-theoretic semantics for ILL. At first glance it seems to bethe obvi-
ous semantics for the logic. ILL can, after all, be seen as a refinement of the usual
intuitionistic logic. That its semantics should be a refinement of usual semantics for
intuitionistic logic seems to follow. Indeed, as can be seen, as a calculus, natural
deduction for ILL seems attractive. It is only when one considers which proofs intu-
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itively seem to be the same that natural deduction seems less well suited.Different
normal natural deductions appear as though they should be identified. This could
be fixed by adding more normalisation steps as suggested by Mints. There is also
the problem of non-confluence of normalisation and its relation to the ordering of
the premisses of promotion in natural deduction. Some sort of solution might be
given, but the suggestion is that the proof-theoretic semantics is not normal natural
deduction.

If normal natural deductions do not provide a good proof-theoretic semantics for
ILL, then what does? The first thought is that a version of proof nets might provide
the solution, but we know of no satisfactory treatment of proof nets for ILL. (Treat-
ments include [Lam94], [BCST96], [BCS96], [CS97]). We do think that a study
of the syntactic system ILLF, along with the categorical semantics for ILLmight
suggest some suitable system, but this is pure speculation.

Finally we should ask whether the problem is that ILL is not a sensible logic? Per-
haps we should consider a larger fragment, or full CLL. However, as syntactically
ILL is perfectly well defined, we think that ILL is interesting and worthy of study.
ILL is a proper logic in its own right.

7.3 Future Work

This thesis leaves some immediate questions to be answered, as well as posing
some more open ended problems. Most of these problems are subject to ongoing
investigation by the author.

The most obvious unsolved problems left by this thesis are the questions of strong
cut-elimination and strong normalisation for SILL. This is complicated andhard
to formulate properly, and we are unsure whether or not the results hold. Strong
cut-elimination can hopefully be proved by using a suitable modification of the
definition of elimination number, and choosing suitable measures to build a weight
for the cut instance. We would also like to extend the term calculus to cut terms.
For presentation purposes, this would involve giving different proof terms for the
cut-free calculus too (showing the internal structure of promotion). Once we have
this with its extension to the cuts, we would hope that by using the recursive path
order, strong normalisation could be proved without too much difficulty. We would
then have a second proof of strong cut-elimination. Of course, if the results do not
hold, we would like simple counter-examples!

It has been noted in [BdP96] that the introduction and elimination rules for the
modality in intuitionistic S4 can be formulated in the same way as the introduction
and elimination rules for promotion used here. With this knowledge, it should be a
simple task to give a ‘permutation-free’ calculus for IS4.

A study of the relationship between cut-elimination and normalisation for natural
deduction in ILL (as carried out in [Zuc74], [Pot77] for intuitionistic logic) would
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also be an interesting and a useful study.

In several places in this thesis, the work of Mints on ILL has been mentioned and
outlined. A more extensive investigation of this, and its development, together with
a permutation-free calculus for the resulting natural deduction system would be
another interesting study, one which might be more fruitful and lead to attractive
results. Trying to built in split linear and non-linear assumptions would be a part
of this investigation. A study of ILLF and its relationship to the semantics ofILL
would form another part of this study.

In Chapter 5 we tried to induce the calculus MJ for intuitionistic logic from an
embedding of intuitionistic logic into ILL. This was only successful for hereditary
Harrop logic. We would like the result to hold for the whole of intuitionistic logic.
Although we are pessimistic of success, we feel the question is worth investigating
and an understanding of the failure to get the desired result would be useful.

In Chapter 4 we gave a decision procedure for propositional Lax Logic. It was
said there that a contraction-free (or terminating) calculus for the logic wouldbe
interesting and useful. Although we are again pessimistic of finding such a calculus
the investigation would be useful. Again, analysis and proof of the failure might
also be interesting. The decision procedure, the calculus PFLAXHist, has yet to
be properly implemented, tested and developed. This would be a useful task to
complete.

Finally, the Scottish history calculi in Chapter 4 could be used to enumerateall
loop-free proofs for a sequent calculus. Syntactically, this seems like a well-defined
(and finite) subset of proofs. It would be interesting to see whether or not this
corresponds to a well defined subset of proofs in the semantics. The author has no
intuition as to the answer to this question, but if it is a yes, then there is an interesting
field of development in logic and possibly logic programming to consider.



Appendix A

Logical Calculi

This appendix contains the logical calculi mentioned, but not presented, in the body
of this thesis.

A.1 G3

This is not quite the same calculus as in [TS96], but it is exactly G3 as presented by
Kleene in [Kle52a]. �; P ) P (ax) �;? ) P (?)�; P ) Q�) P � Q (�R) �; P � Q) P �; P � Q;Q) R�; P � Q) R (�L)�; P ) ?�) :P (:R) �;:P ) P�;:P ) R (:L)�) P �) Q�) P ^Q (^R)�; P ^Q;P ) R�; P ^Q) R (^L1) �; P ^Q;Q) R�; P ^Q) R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2)�; P _Q;P ) R �; P _Q;Q) R�; P _Q) R (_L)
A.2 G4

This is the contraction-free calculus of [Vor58], [Dyc92], [Hud93].
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APPENDIX A. LOGICAL CALCULI 202�; A) A (ax) �;? ) R (?)�; P ) Q�) P � Q (�R)�; A;Q) R�; A � Q;A) R (�L1) �; S � (T � Q)) R�; (S ^ T ) � Q) R (�L2)�; S � Q; T � Q) R�; (S _ T ) � Q) R (�L3) �; T � Q) S � T �; Q) R�; (S � T ) � Q) R (�L4)�) P �) Q�) P ^Q (^R) �; P; Q) R�; P ^Q) R (^L)�) P�) P _Q (_R1) �) Q�) P _Q (_R2)�; P ) R �; Q) R�; P _Q) R (_L)
Here, A is atomic. Note that? is not atomic.

A.3 G6

The multiplicative formulation of intuitionistic logic.P ) P (ax) �;? ) P (?)�) R�; P ) R (W ) �; P; P ) R�; P ) R (C)�; P ) Q�) P � Q (�R) �1 ) P �2; Q) R�1;�2; P � Q) R (�L)�1 ) P �2 ) Q�1;�2 ) P ^Q (^R) �; P; Q) R�; P ^Q) R (^L)�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �1; P ) R �2; Q) R�1;�2; P _Q) R (_L)
A.4 NJ

We present the natural deduction calculus for propositional intuitionistic logic, first
in ‘tree-style’, and then in sequent style.
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A.4.1 Trees ?P (?)[P ]....QP � Q (�I) P � Q PQ (�")P QP ^Q (^I) P ^QP (^"1) P ^QQ (^"2)PP _Q (_I1) QP _Q (_I2) P _Q [P ]....R [Q]....RR (_")
A.4.2 Sequents �; P ` P (ax) �;? ` P (?)�; P ` Q� ` P � Q (�I) � ` P � Q � ` P� ` Q (�")� ` P � ` Q� ` P ^Q (^I) � ` P ^Q� ` P (^"1) � ` P ^Q� ` Q (^"2)� ` P� ` P _Q (_I1) � ` Q� ` P _Q (_I2)� ` P _Q �; P ` R �; Q ` R� ` R (_")
A.5 CLL

A.5.1 Single-sided

CLL: single sided, multiple succedent calculus for classical linear logic.) P; P? (ax) ) �; P ) �; P?) �;� (cut)) I (I) ) �) �;? (?) ) �;> (>)) �; P ) �; Q) �;�; P 
Q (
) ) �; P ) �; Q) �; P&Q (&)



APPENDIX A. LOGICAL CALCULI 204) �; P; Q) �; POQ (O) ) �; P) �; P �Q (�1) ) �; Q) �; P �Q (�2))?�; P)?�; !P (P ) ) �; P) �; ?P (D)) �) �; ?P (W ) ) �; ?P; ?P) �; ?P (C)
A.5.2 Two-sided

CLL2: two-sided, multiple-succedent sequent calculus - including implication.P ) P (ax) �1 ) �1; P �2; P ) �2�1;�2 ) �1;�2 (cut)) I (IR) �) ��; I ) � (IL)�) ��) ?;� (?R) ? ) (?L)�) >;� (>R) �; 0) � (0L)�; P ) Q;��) P��Q (��R) �1 ) P;�1 �2 ) Q;�2�1;�2; P��Q) �1;�2 (��L)�1 ) P;�1 �2 ) Q;�2�1;�2 ) P 
Q;�1;�2 (
R) �; P; Q) ��; P 
Q) � (
L)�) P;� �) Q;��) P&Q;� (&R) �; P ) ��; P&Q) � (&L1)�; Q) ��; P&Q) � (&L2)�) P;Q;��) POQ;� (OR) �; P ) � �0; Q) �0�1;�2; POQ) �1;�2 (OL)�) P;��) P �Q;� (�R1) �) Q;��) P �Q;� (�R2)�; P ) � �; Q) ��; P �Q) � (�L)!�) P; ?�!�)!P; ?� (PR) !�; P )?�!�; ?P )?� (PL)�) P;��)?P;� (DR) �; P ) ��; !P ) � (DL)�) ��)?P;� (WR) �) ��; !P ) � (WL)�)?P; ?P;��)?P;� (CR) �; !P; !P ) ��; !P ) � (CL)
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A.6 IS4

Two sided single succedent calculus for intuitionistic S4.�; P ) P (ax) �;? ) R (?)�; P ) Q�) P � Q (�R) �; P � Q) P �; P � Q;Q) R�; P � Q) R (�L)�) P �) Q�) P ^Q (^R)�; P ^Q;P ) R�; P ^Q) R (^L1) �; P ^Q;Q) R�; P ^Q) R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2)�; P _Q;P ) R �; P _Q;Q) R�; P _Q) R (_L)2�) P2�;�) 2P (2R) �;2P; P ) R�;2P ) R (2L)
A.7 S4

This is a single sided (multiple succedent) sequent calculus.�; P;:P (ax) �; P�;::P (::)�;:P;Q�; P � Q (�) �; P �;:Q�;:(P � Q) (: �)�; P �; Q�; P ^Q (^) �;:P;:Q�;:(P ^Q) (:^)�; P; Q�; P _Q (_) �;:P �;:Q�;:(P _Q) (:_)�;3P; P�;3P (3) 2�2; P�1;2�2;:3P (:3)2�2; P�1;2�2;2P (2) �;:2P; P�;:2P (:2)



Appendix B

Benchmark Formulae

This Appendix gives the benchmark formulae used in Chapter 4. The benchmark
formulae in Figure A.1 are from a comparison of propositional intuitionistic theo-
rem provers at the TABLEAUX’98 conference. A description of them can be found
in [Dyc97]. The formulae in Figures A.2 and A.3 are taken from [How97]. As
can be seen from the table of results in Table 4.2, the formulae with quantifiers are
instantiated over finite universes to give propositional formulae.
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1. de bruijn p(n):LHS(2n+ 1) �RHS(2n + 1)
de bruijn n(n):LHS(2n) � (p(0)_RHS(2n) _ :p(0))
RHS(m) := ^mi=1p(i)
LHS(M) := ^mi=1((p(i)$ p(i+ 1)) �RHS(m))
addition modulom

2. ph p(n):= left p(n) � right(n)
ph n(n):= left n(n) � right(n)

left p(n):=^n+1i=1 (_nj=1 occ(i, j))
left n(n):=^n+1i=1 (_n�1j�1 (occ(i, j) _ :: occ(i, n)))
right(n):=^ni1=1 _n+1i2=1 _n+1j=i2+1 s(i1, i2, j)
s(l,m, n):=occ(l, n) ^ occ(m, n)

3. con p(n):=((conjs(n)_ disjs p(n)) � p(f)) � p(f)
con n(n):=((conjs(n)_ disjs n(n)) � p(f)) � p(f)
conjs(n):=^ni=1p(i)
disjs p(n):=_ni=1(p(i) � p(f))
disjs n(n):=(::p(1) � p(f)) _ _ni=2(p(i) � p(f))

4. schwicht p(n):=(ant p(n)� p(0))
schwicht n(n):=(ant n(n)� p(0))
ant p(n):=p(n) ^ ^ni=1(p(i) � p(i) � p(i� 1))
ant n(n):=::p(n) ^ ^ni=1(p(i) � p(i) � p(i� 1))

5. kk p(n):=(kk pp(n, n) � p(f)) ^ (kkr(n, n)� p(f))
kk n(n):=kk nn(n, n)

kk pp(n, 0):=(pr(a, 0)� p(f)) ^ ((pr(b,n)� pr(b, 0))� pr(a,n))
kk pp(n,m):=kk pp(n,m� 1) ^ ((pr(b,m� 1) � pr(a,m)) � pr(a,m� 1))
kkr(n, 0):=((pr(b,n)� pr(b, 0))� pr(a,n)) ^ (pr(a, 0)� p(f))
kkr(n,m):=((pr(b,m� 1)� pr(a,m)) � pr(a,m� 1)) ^ kkr(n,m� 1)
kk nn(n, 0):=(pr(a, 0)� p(f)) ^ ((:: pr(b,n) � pr(b, 0))� pr(a,n))
kk nn(n,m):=kk nn(n,m� 1) ^ ((:: pr(b,m� 1) � pr(a,m)) � pr(a,m))

6. equiv p(n):=eq pf(n) $ eq b(n)
equiv n(n):=eq nf(n) $ eq b(n)

eq pf(1):=p(1)
eq pf(n):=eq pf(n� 1) $ p(n)
eq nf(1):=::p(1)
eq nf(n):=eq nf(n� 1) $ p(n)
eq b(1):=p(1)
eq b(n):=p(n)$ eq pb(n� 1)

Figure B.1: Benchmark Formulae
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1. ((A_B)^ (D _E)^ (G_H)) � ((A^D)_ (A^G)_ (D ^G)_ (B ^E)_(B ^H) _ (E ^H))
2. ((A_B_C)^(D_E_F )^(G_H_J)^(K_L_M)) � (A^D)_(A^G)_(A^K)_(D^G)_(D^K)_(G^K)_(B^E)_(B^H)_(B^L)_(E^H)_(E^L)_(H^L)_(C^F )_(C^J)_(C^M)_(F^J)_(F ^M)_(J^M)
3. ((A _B _ C) ^ (D _ E _ F )) � ((A ^ B) _ (B ^ E) _ (C ^ F ))
4. (A � B) � (A � C) � (A � (B ^ C))
5. (A ^ :A) � B
6. (A _ C) � (A � B) � (B _ C)
7. ((((A � B) ^ (B � A)) � (A ^ B ^ C)) ^ (((B � C) ^ (C � B)) �(A ^ B ^ C)) ^ (((C � A) ^ (A � C)) � (A ^ B ^ C))) � (A ^ B ^ C)
8. ((::P � P ) � P ) _ (:P � :P ) _ (::P � ::P ) _ (::P � P )
9. (((G � A) � J) � D � E) � (((H � B) � I) � C � J) � (A � H) �F � G � (((C � B) � I) � D) � (A � C) � (((F � A) � B) � I) �E
10. A � B � ((A � B � C) � C) � (A � B � C)
11. ((::(:A _ :B) � (:A _ :B)) � (::(:A _ :B) _ :(:A _ :B))) �(::(:A _ :B) _ :(:A _ :B))
12. B � (A � (((A ^ B) � C1) � (((A ^ B) � C2) � (((A ^ B) � C3) �(((A ^ B) � (B � C1 � C2 � C3 � B)) � (A ^B))))))
13. ((A ^ B _ C) � (C _ (C ^D))) � (:A _ ((A _ B) � C))
14. ::((:A � B) � (:A � :B) � A)
15. ::(((A$ B)$ C)$ (A$ (B $ C)))
16. 8x9y8z(p(x) ^ q(y) ^ r(z))$ 8z9y8x(p(x) ^ q(y) ^ r(z))
17. 9x18y19x28y29x38y3(p(x1; y1) ^ q(x2; y2) ^ r(x3; y3)) �8y39x38y29x28y19x1(p(x1; y1) ^ q(x2; y2) ^ r(x3; y3))
18. :9x8y(mem(y; x)$ :mem(x; x))
19. :9x8y(q(y) � r(x; y)) ^ 9x8y(s(y) � r(x; y)) � :8x(q(x) � s(x))

Figure B.2: Example formulae



APPENDIX B. BENCHMARK FORMULAE 209

20. 8z18z28z3(q(z1; z2; z3; z1; z2; z3)) � 9x19x29x39y19y29y3((p(x1) ^ p(x2) ^p(x3)$ p(y1) ^ p(y2) ^ p(y3)) ^ q(x1; x2; x3; y1; y2; y3))
21. ((9x(p � f(x))) ^ (9x1(f(x1) � p))) � (9x2((p � f(x2)) ^ (f(x2) � p)))
22. (9x(p(x))^(8x1(f(x1) � (:g(x1)^r(x1)))^(8x2(p(x2) � (g(x2)^f(x2)))^(8x3(p(x3) � q(x3)) _ 9x4(p(x4) ^ r(x4)))))) � 9x5(q(x5) ^ p(x5))
23. ((9x(p(x)) $ 9x1(q(x1))) ^ 8x28y((p(x2) ^ q(y)) � (r(x2) $ s(y)))) �(8x3(p(x3) � r(x3))$ 8x4(q(x4) � s(x4)))
24. (8x((f(x) _ g(x)) � :h(x)) ^ 8x1((g(x1) � :i(x1)) � (f(x1) ^ h(x1)))) �8x2(i(x2))
25. (:9x(f(x)^ (g(x)_h(x)))^ (9x1(i(x1)^f(x1))^8x2(:h(x2) � j(x2)))) �9x3(i(x3) ^ j(x3))
26. (8x((f(x) ^ (g(x) _ h(x))) � i(x)) ^ (8x1((i(x1) ^ h(x1)) � j(x1)) ^8x2(k(x2) � h(x2)))) � 8x3((f(x3) ^ k(x3)) � j(x3))
27. :9y8x(f(x; y)$ :9z(f(x; z) ^ f(z; x)))

Figure B.3: Example Formulae
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