IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Howe, J. M. (1998). Proof search issues in some non-classical logics.
(Unpublished Doctoral thesis, University of St Andrews)

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1708/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

PROOF SEARCH ISSUES IN
SOME NON-CLASSICAL LOGICS

A thesis submitted to the
UNIVERSITY OF ST ANDREWS
for the degree of
DOCTOR OF PHILOSOPHY

by
Jacob M. Howe

School of Mathematical and Computational Sciences
University of St Andrews

September 1998

I, Jacob Howe, hereby certify that this thesis, which is approximately 2§@spia
length, has been written by me, that it is the record of work carried out by mie, a
that it has not been submitted in any previous application for a higher degree.

date signature of candidate

| was admitted as a research student in Octdl§eb and as a candidate for the
degree of Doctor of Philosophy in Octobe96; the higher study for which this is
a record was carried out in the University of St Andrews betw&di and1998.

date signature of candidate

| hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of Doctor of Philosophy in the University of
St Andrews and that the candidate is qualified to submit this thesis in appficati
for that degree.

date signature of supervisar

In submitting this thesis to the University of St Andrews | understand thatdiam

ing permission for it to be made available for use in accordance with the tiegsda

of the University Library for the time being in force, subject to any copynigtsted

in the work not being affected thereby. | also understand that the title ancetbst
will be published, and that a copy of the work may be made and supplied to any
bona fide library or research worker.

date signature of candidate

Abstract

This thesis develops techniques and ideas on proof search. Proof search is used
with one of two meanings. Proof search can be thought of either as the search for
a yes/no answer to a query (theorem proving), or as the search for all proofs of a
formula (proof enumeration). This thesis is an investigation into issuesoif pr
search in both these senses for some non-classical logics.

Gentzen systems are well suited for use in proof search in both senseaul@he r
of Gentzen sequent calculi are such that implementations can be directeddy the
level syntax of sequents, unlike other logical calculi such as natural deductibn. Al
the calculi for proof search in this thesis are Gentzen sequent calculi.

In Chapter 2, permutation of inference rules for Intuitionistic Linear Logi¢uss

ied. A focusing calculus, ILLF, in the style of Andreoli ([And92]) is developed.
This calculus allows only one proof in each equivalence class of proofs equivalent
up to permutations of inferences. The issue here is both theorem proving and proof
enumeration.

For certain logics, normal natural deductions provide a proof-theoretic semantics
Proof enumeration is then the enumeration of all these deductions. Herbelin’s cut-
free LJIT ([Her95], here called MJ) is a Gentzen system for intuitianisgic al-
lowing derivations that correspond in a 1-1 way to the normal natural deductions
of intuitionistic logic. This calculus is therefore well suited to proof enuriiena

Such calculi are called ‘permutation-free’ calculi. In Chapter 3, Mekiended to a
calculus for an intuitionistic modal logic (due to Curry) called Lax Logic. Wk ca
this calculus PFLAX. The proof theory of MJ is extended to PFLAX.

Chapter 4 presents work on theorem proving for propositional logics using a history
mechanism for loop-checking. This mechanism is a refinement of one developed
by Heuerdinget al ([HSZ96]). It is applied to two calculi for intuitionistic logic

and also to two modal logics: Lax Logic and intuitionistic S4. The calculi for
intuitionistic logic are compared both theoretically and experimentalli eiher
decision procedures for the logic.

Chapter 5 is a short investigation of embedding intuitionistic logic in Intuitiomis

Linear Logic. A new embedding of intuitionistic logic in Intuitionistic Linear Logic
is given. For the hereditary Harrop fragment of intuitionistic logic, this embegdi
induces the calculus MJ for intuitionistic logic.

In Chapter 6 a ‘permutation-free’ calculus is given for Intuitionistic Lineagic.
Again, its proof-theoretic properties are investigated. The calculus iggrovbe
sound and complete with respect to a proof-theoretic semantics and (weak) cut-
elimination is proved.

Logic programming can be thought of as proof enumeration in constructive logics.
All the proof enumeration calculi in this thesis have been developed with logic
programming in mind. We discuss at the appropriate points the relationship between
the calculi developed here and logic programming.

Appendix A contains presentations of the logical calculi used and Appendix B con-
tains the sets of benchmark formulae used in Chapter 4.

Acknowledgements

| would especially like to thank my supervisor, Dr Roy Dyckhoff, for his advice and
encouragement over the last three years, and for providing a stimulatingclesea
environment.

| would also like to thank the following friends and colleagues for their help and
support during my time as a research student: Hanne Gottleibsen, lan Holgate,
Tom Kelsey, Angela Morrison, Duncan Shand, Katherine Williams and Steph van
Willigenberg. | would finally like to thank my parents for all their support and
encouragement.

Contents

1

Introduction and Background 1
1.1 The Permutation-free calculusMJ 1
1.1.1 Technical Background 3
1.1.2 AdvantagesofMJ 9
1.2 TheoremProving 10
1.3 LinearLogiC. 10
1.4 LogicProgramming 13
1.4.1 Uniform Proofs and Abstract Logic Programming Languages 13
142 Hornformulae 13
1.4.3 Hereditary Harrop formulae 14
1.4.4 MJandLogic Programming 15
Permutations 16
2.1 Background 16
2.1.1 IntuitionisticLogic 16
2.1.2 LinearLogic 17
2.1.3 Permutation 19
2.2 Permutations and Intuitionistic Linear Logic 21
221 Invertibility oo 21
2.2.2 Permutability TableforILL 24
2.3 FocusingProofs 26
2.3.1 Soundnessand Completeness 29
2.4 ILLFand Permutations, 46

25 ConcludingRemarks 47

A Permutation-free Sequent Calculus for Lax Logic 48
3.1 LaxlLogic e 48
3.2 NaturalDeduction. 49
3.3 TermAssignment 51
3.4 SequentCalculus 55
3.5 Term Assignment for Sequent Calculus 55
36 Results. 59
3.7 CutElimination 68
3.8 StrongNormalisation 73
3.8.1 Termination Using the Recursive Path-Order 73
3.8.2 Strong Normalisation for PFLAX 74
3.9 LaxLogic and Constraint Logic Programming 78
3.10 Conclusion 80
Loop-Checking Using a History Mechanism 81
4.1 History Mechanisms 82
411 TheSwissHistory 83
4.2 ScottishHistoryand G3, 89
4.2.1 Comparisonofthe TwoCalculi 91
4.3 HistoriesandMJ L 92
4.3.1 Propositional TheoremProving 95
44 Results. 96
4.5 Historiesand Modal Logic 97
4.5.1 Historiesand LaxLogic 100
45.2 Historiesand IS4 o 101
4.6 Conclusion 105
Embedding MJ in Intuitionistic Linear Logic 106
5.1 TheGirardEmbedding 106

Vi

5.2 InducedCalculiandIU 107

53 InducingMJ 109
A Sequent Calculus for Intuitionistic Linear Logic 115
6.1 Natural Deduction. 115
6.1.1 Rewritingtonormalform 119
6.2 Term Assignment for Normal Natural Deductions 121
6.2.1 Justification of the Restrictions 122
6.2.2 Multiple Field Version of Natural Deduction 124
6.3 Alternative Natural Deduction and Term Systems 125
6.3.1 LogicalConstants 125
6.3.2 Promotion. 125
6.3.3 Tensor Elimination 127
6.4 SequentCalculus 127
6.4.1 TermAssignment. 129
6.5 The Correspondence Between Natural Deduction and Sequent Cal-
culusforILL 132
6.6 CutElimination 161
6.6.1 CutReductions 161
6.6.2 WeightingCutsinSILL 183
6.6.3 More on CutElimination 184
6.7 SILL and Logic Programming 185
6.7.1 SlLLandLolli 186
6.7.2 SlLLandForum, 192
6.8 SILL and Permutations of InferenceRules 193
6.9 Conclusion 194
Conclusion 195

7.1 Permutation-free Calculi as a Foundation for Logic Programming . 197
7.2 Semanticsof ILL 198
7.3 FutureWork 199

vii

A Logical Calculi 201

Al G3 . . e 201
A2 G4 . 201
A3 G6 . . . 202
Ad NI . . 202
A4l Trees 203
A42 Sequents 203
AS5 CLL e 203
A5.1 Single-sided 203
A52 Two-sided., 204
ABG IS4 . . . e 205
AT S4 . e 205
B Benchmark Formulae 206
Bibliography 210

viii

Notation

PQR,ST logical formulae
A B, C atomic formulae
LA, U, & = 6 multisets of logical formulae/labelled sets of logical formulae
Y, 10 sets of formulae

history, a set of formulae
a sequent proof

variables

y substituted for: in P

the set of elements, .., x,
the list of elements, ..., 2,
a reduction

empty set/empty multiset

<

<
s
il

<3

ST AR
——

Systems

G3

G6

NJ
NNJ
MJ

G4

A

ILL*>
ILLF
NLL
LAX
NLAX
PFLAX
LLP
GsHist
MJHist
G3P
MJP
S4
S4Hist
PFLAX! st
1S4
|S4Hist
U
CLL
CLL?
ILL
NILL
NNILL
SILL
Lolli

A sequent calculus for intuitionistic logic

A multiplicative calculus for intuitionistic logic

A natural deduction calculus for intuitionistic logic

A natural deduction calculus for intuitionistic logic

A ‘permutation-free’ sequent calculus for Lax Logic

A contraction-free calculus for propositional intuitionistic logic
A backchaining calculus for hereditary Harrop logic

A sequent calculus for Intuitionistic Linear Logic

A focusing calculus for Intuitionistic Linear Logic

A natural deduction calculus for Lax Logic
A sequent calculus for Lax Logic
A natural deduction calculus for Lax Logic

A ‘permutation-free’ sequent calculus for Lax Logic

A natural deduction calculus for a fragment of Lax Logic

A history calculus for propositional intuitionistic logic (two varieties)
A history calculus for propositional intuitionistic logic (two varieties)
A sequent calculus for intuitionistic logic

A sequent calculus for intuitionistic logic

A sequent calculus for S4

A history calculus for S4

A history calculus for Lax Logic

A sequent calculus for intuitionistic S4

A history calculus for IS4

A sequent calculus for hereditary Harrop logic

A sequent calculus for classical linear logic

A sequent calculus for classical linear logic

A sequent calculus for Intuitionistic Linear Logic

A natural deduction calculus for Intuitionistic Linear Logic

A natural deduction calculus for Intuitionistic Linear Logic

A sequent calculus for Intuitionistic Linear Logic

A backchaining calculus for a fragment of Intuitionistic Linear Logic

Chapter 1

Introduction and Background

This thesis develops a series of sequent calculus systems for some nondclassica
logics with computationally motivated properties. The calculi we develop el

be of two kinds: calculi for proving theorems, and calculi for enumerating proofs.
The first kind of calculus solves problems — a yes/no answer to a query is given.
The second kind of calculus tells in what ways something can be done — all useful
solutions to a problem are given.

In this introduction we give background on intuitionistic logic and in particular the
‘permutation-free’ sequent calculus MJ. We also give background on linear logic
and on logic programming. This serves as motivation for the calculi subsequently
developed in this thesis, as well as giving some technical referenceiahater

1.1 The Permutation-free calculus MJ

Natural deduction ([Gen69], [Pra65]) is thought of as the ‘real’ proof system for in-
tuitionistic logic. A normal form can be given for every proof in the natural deduc-
tion system — this normal form is standardly defined as a natural deduction to which
no reduction rules, either eliminating introduction/elimination pairs or conmgut
inferences, are applicable. The normalisation process is confluent and stemgly t
minating. The normal form consists of a chain of elimination steps followed by a
chain of introductions. Each minor premiss is again the conclusion of a normal nat-
ural deduction. Normal natural deductions are often thought of as the ‘real’ proofs
of the logic.

Natural deduction has a pragmatic drawback. In searching backwards for the proof
of a formula, it is not always obvious which rule to apply. For instance in

FFP>Q TP
IFQ (>)

it is not obvious from the conclusion that we should apfty). Even when this

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

rule has been decided upon, whatshould be is hard to decide. The elimination
rules do not introduce a connective. Cut-free Gentzen sequent calculus systems
([Gen69]) are much better from this point of view. When a principal formula has
been chosen, the rules which can be applied to it are restricted. When tiasule
also been chosen, the rule application is deterministic. The application oglogi
rules is directed by the syntax of the principal formula. Structural rules can be
built into the sequent system. In such a system, when a principal formula has been
chosen, the next rule application is determined exactly by the syntax of that formula
All logical rules of the sequent calculus are introduction rules (on the left or on the
right).

There are well known translations ([Pra65]) between normal natural deductidns a
cut-free sequent proofs. Therefore we can search for proofs in sequent calculus
systems and then translate the resulting proofs to normal natural deductions. The
drawback here is that many sequent proofs translate to the same normal natural
deduction. Hence when one is trying to enumerate all proofs of a formula, the same
proof is found again and again.

This gives one motivation for the ‘permutation-free’ sequent calculus MJ for intu-
itionistic logic. This is a sequent calculus system for intuitionistic logic éing
syntax directed proof search) whose proofs can be translated in a 1-1 way with the
normal natural deductions for intuitionistic logic. MJ has the advantages of a se-
guent calculus system, whilst reflecting the structure of normal natural deductions

The calculus originates with Herbelin ([Her95], [Her96]) and has also beers-
tigated and developed by Dyckhoff and Pinto ([DP96], [DP98a]). Herbelin calls
his calculus LJT, but here we follow Dyckhoff & Pinto in calling it MJ, as & ca
culus intermediate between natural deduction (NJ) and sequent calculusiis). (
nomenclature also avoids a clash with the calculus here called G4, bwhelse

also called LJT, [Dyc92]). MJ has two kinds of sequent. One looks like the usual
kind of sequent; however, only right rules and contraction are applicable to this kind
of sequent in backwards proof search. By backwards proof search we mean proof
search starting from the root. The other kind of sequent has a formula (on the left)
in a privileged position called thstoup(following [Gir91]). The formula in the
stoup is always principal in the conclusion of an inference rule. Left rulesrdye
applicable to stoup sequents. We display MJ in Figure 1.1.

We summarise the relationships between the systems in the following diagram

LJ- -N.J

Here LJ is the usual Gentzen system for intuitionistic logic (called G3 throughout

the rest of this thesis) and NJ is the normal natural deduction calculus foromntuiti
istic calculus. There is an injection from the proofs of MJ into the proofs of LJ.

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

P
(az) (Lg) IhP— R
r-2p r-=p ILP=R (©)
I P=Q =P F&R(D)
(Or) PoQ
Tr=PoQ r2¢r
P Q
I'sP I'=Q L= Ry L—=Bp
TS DPAg MR pragp VR g
L=P) ﬂ(v) Fjpj]fpvanR(Vc)
T=pPvQ ™ Tr=pPvQ \'* r 2 g
I' = Ply/x] % (Vz)
TSvep VR e
I = Plt/a] LPy/al =R g
——— (dn Jz.P L
T = Ju.P r 4R
Ty notfreeinl’, P, R

Figure 1.1: The sequent calculus system MJ

The proofs of MJ can be seen as normal forms for proofs in LJ ([DP98b], [Min96]).
Inferences in LJ can be permuted (see Chapter 2) to give different LJ prootds P

in LJ that can be identified up to (semantically sound) permutations of infesence
are those that translate to the same MJ proof (see [DP97], [DP98b]). Henise MJ
described as a ‘permutation-free’ sequent calculus — no semantically soumakper
tations of one MJ proof into another are possible. Another way to find the normal
form of an LJ proof is to translate the LJ proof to a natural deduction, then translat
it back again. The resulting proof will be a normal proof of LJ. These have the form
of MJ proofs.

A major theme of this thesis is the extension of these calculi with permutation-
free properties to other non-classical logics with normal natural deductiohsias t
proof-theoretic semantics. To this end we study Lax Logic (where the extension
is simple) and Intuitionistic Linear Logic (where the extension involves soeve
notions and a lot of complicated technical detail).

1.1.1 Technical Background

The technical details of the basic results on MJ are needed throughout this thesis,
hence are included here in the introduction. We discuss cut (and its elimination)
for MJ, we give term assignment systems for the intuitionistic calculi andtate

some of the main theorems and important lemmas.

MJ has two judgement forms and as a result has four cut rules; these can be seen

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

r-%p FQR(=P F,P&R

5 cuty) 0 (cuty)
' =R ' — R
P
=P I' =R I'sP I'P=R
A) F=R (cuta)

Figure 1.2: Cut rules for MJ

in Figure 1.2. We could give six cut rules, but these four suffice, the others being
admissible in MJ plus the four rules given. In fact, if one adds the admissible rule
of weakening as a primitive inference rule to MJ, the other cut rules areatiei

The following theorem is proved in a variety of ways in [Her95] and [DP98a].

Theorem 1.1 The rules(cut,), (cuty), (cuts), (cut,) are admissible iMJ.

We have the usual term assignment system for natural deduction via the Curry-
Howard isomorphism ([How80]). We can give a restricted version of triaérmal
natural deductions, a term calculus in which only normal terms are gramihatica
correct. There are two kinds of proof ternid, for normal proof terms (natural
deductions) and\, for normal non-abstraction terms. We give this grammar and a
presentation of a calculus for normal natural deductions with proof terms (Figure
1.3). Here V are the variables (proofs), U are the variables (individualgkg Tha
terms (in proof).

N::=
an(A) | AV.N efq(A) | pr(N,N) [i(N) | j(N) |wn(A, V.N, V.N)

AU.N | prq(T,N) |ee(A,U.V.N)

var(V) | ap(A, N) | fst(A) | snd(A) | apn(A,T)

We can also give a term system for derivations in MJ. We give the granonar f
this, including terms for proofs which are not cut-free. There are two kinds of proof
terms corresponding to the two kinds of sequent. V are variables (proofs). U are
variables (individuals) and T are the terms. Note that the cut terms aragi@rsed

by the cut formula.

M::=
(Vs Ms) | A\V.M | pair(M, M) | inl(M) | inr(M) | \U.M | pairq(T, M)

cutd (M, Ms) | cutl (M, V.M)

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

(CLCU) F|>AP
e P>oar(z): P I'cean(A) @ P

oA L
[pefq(A): P (L)
[x: PN :Q '>A:PD>Q I'beN:P
TewN PoQg o7 T>ap(A,N):Q ()
oeN P TNy Q
[oepr(Ny,Na) : PAQ
FDA:P/\Q() '>A:PAQ (A.)
L> fst(A): PV L>snd(A):Q
F.DDN:P (Vz,) F'DDN:Q
Foei(N):PVQ I'o>j(N):PVQ
[eA:PVQ Do :PweN:R Lo QN R (o
[wn(A, x1.N1,29.No) - R ‘
[N : Plu/x] Vo)t '>A:Va.P (v.)
' Au.N :Va.P I'> apn(A,t) : Plt/x]
LN : Pt/ I'>A:3z.P T,z:Plu/z]cbN: R
[oeprq(t,N) : Jz.P () ['oee(A,u.x.N): R

Tunotfreeinl’, R

(M)

(A1)

(\/12)

(3t

Figure 1.3: NNJ: Normal Natural Deduction Calculus for intuitionistic logic, with
proof term annotation

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

Ms::=
[]|ae| (M :: Ms)|p(Ms) | q(Ms) |when(V.M,V.M)

apq(T, Ms) | spl(UV.M) | cut? (Ms, Ms) | cuty (M, V.Ms)

Figure 1.4 shows these terms typed by sequents.

We now note an important point. Calculi with multisets and calculi with taem
signments are not the same. With respect to enumerating proofs, the systeros ar
equivalent. To take a very simple example, consider the sedqudnt= P. With
the context a multiset of formulae, this has one MJ proof:

(ax)

pprP-p
-5 =5 (O)

PP=DP

whereas when the context has labelled formulae, there are two proofs:

(ax) 5 PP[]PW@
Ty L0,T9 — :

()) : 5 (O)

vy Pyt P=(x9;]]): P

.:UI:P,.TQ:PL[]:P
1 :Pwy: P= (x;]]): P

In this thesis, unless stated otherwise, we use calculi with proof tesmgréof
enumeration (whether the terms have been included or not).

We give translations between the proof terms for normal natural deductions and
those for MJ proofs. Along with proofs of the soundness (Lemma 1.3) and adequacy
(Lemma 1.4) of the term annotations, this gives us a proof not only of the soundness
and completeness of MJ (Corollary 1.1), but also (via Lemmas 1.1 and 1.2) that
proofs of MJ correspond in a 1-1 to the normal natural deductions for intuitionistic
logic. We give the translations here, and state the lemmas and theoreohgylatth

can be found in [DP96], [DP98a], [Her95], [Her96].

Sequent Calculus— Natural Deduction:

f:M— N

CHAPTER 1. INTRODUCTION AND BACKGROUND

(Le) F,x:PLMS:R

—(CLCE‘) -
FL[]:P I —>ae:P F,x:Pi(m;Ms):R(C)
P P M:Q L= M:P F&Ms:R(D)
: (Dr) PoQ £
= Xe.M:P>Q [= (M:Ms):R
I'= M, : P F:>M2Q(/\)
[' = pair(My, Ms) : PAQ R
r-2 Ms:R (Ac r-% Ms:R (Ae)
Fmp(Ms):R qu(Ms):R
T=inl(M):PvQ ™ T =inr(M):PvQ ™
ey:P=M,:R T',20:Q=My: R
= (Ve)
r 28 when(xy. My, x9.My) : R
Plt/x] .
['= M : Ply/z] I — Ms: R (Vz)
F:>)\y.M:VaU.P(R)]L FW—'>Papq(t,Ms):R
. P =M:R
[= M : P[t/a] , Ply/x] Eo)t

[' = pairq(t, M) : Jz.P (Gr r 2L spl(y,z.M) : R

I % Ms,:P I' 25 Msy: R
r i>cutf([\/_l'sl,MSQ) 'R

(cuty)

I'=M:P T,o:P-% Ms:R
T -2 cutl (M, .Ms) : R

(cuts)

I'=M:P I' 25 Ms:R
[= cutd (M, Ms): R
T=M:P T,2:P=M:R
Ficutf(Ml,x.Mz):R

(cuts)

(cuty)

Ty notfreeinl’, R

Figure 1.4: The sequent calculus system MJ with term assignments

CHAPTER 1. INTRODUCTION AND BACKGROUND

0':AxMs—N

o' (A,
0!
0!

[

A, (M :: Ms)) =0"(ap(A,0(M)), Ms)

A, ae) = efq(A)

0'(A, p(Ms)) = 0'(fst(A), Ms)

0'(A,q(Ms)) =6 (snd(A), Ms)

0' (A, when(x,. My, x9.My)) = wn(A, 21.0(M), 25.0(My))
0' (A, apq(T, M s)) = ' (apn(A,T), Ms)

0 (A, spl(u.x.M)) = ee(A, u.x.0(M))

(
(
(
(
(),
()
(

(

Natural Deduction to Sequent Calculus:

wn(A, x1.N1, 22.N2)) = P'(A, when(z1.9(N1), 22.9(N2)))

Y (var(z), Ms) = (z; M s)

V' (ap(A, N), Ms) = ¢'(A, (Y(N) :: Ms))
W'(fst(A), Ms) = ' (A, p(Ms))

W' (snd(A), Ms) = ' (A, q(Ms))

V'(apn(A, T), Ms) = '(A, apg(T, Ms))

CHAPTER 1. INTRODUCTION AND BACKGROUND 9

Lemmal.l

) v((M)) = M

i) Y(@'(A Ms)) = ¢'(A, Ms)
Lemmal.2

) 6((N)) = N

i) 0y (A, Ms)) = 0'(A, Ms)
Lemma 1.3 (SOUNDNESS The following rules are admissible:

= M:P 's>A:P -2 Ms:R
T oe0(M) : P [o0'(4, Ms) : R

Lemma 1.4 ADEQUACY) The following rules are admissible:

>N : P F'sA:P I' 25 Ms: R
I'=¢(N):P I'=¢'(A,Ms): R

Corollary 1.1 The calculugvid is sound and complete.

Finally, by study of the cut-elimination reductions and the associated tetut+e
tions (neither of which have been included here), the following theorem can be
proved (again from [DP96], [DP98a)):

Theorem 1.2 STRONG NORMALISATION) Every cut-elimination strategy termi-
nates (in a cut-free proof).

1.1.2 Advantages of MJ

As discussed above, the proofs of MJ represent a normal form for proofs in a more
usual sequent system: all proofs can be permuted to one with the form of an MJ
proof. The proofs of this systems are also in 1-1 correspondence with the normal
natural deductions of intuitionistic logic.

MJ'’s focusing (see [And92]) on the stoup formula (that is, its avoidance of permuta
tions) makes the calculus more direct for finding proofs of a formula. As discussed
below, MJ can be seen as a logic programming language. Again, this is related to
its proof search properties.

There are both practical and theoretical reasons to be interested in Mathaard
‘permutation-free’ calculi. MJ provides a refinement of the notion of sequent, bring-
ing the sequent calculus closer to its proof-theoretic semantics of normal lnatura

CHAPTER 1. INTRODUCTION AND BACKGROUND 10

deductions. Indeed the structure of a normal natural deduction can be seen in the
structure of an MJ proof.

One of the main themes of this thesis is the use of the ideas and techniques de-
veloped for MJ with other constructive logics, namely Lax Logic (Chapter 3) and
Intuitionistic Linear Logic (see Chapter 6). We also use MJ as the basis fangro
intuitionistic formulae (as opposed to enumerating all proofs), and argue that for
this purpose too, MJ is a better calculus than some more usual formulations (Chap-
ter 4). In Chapter 5 we will discuss embedding intuitionistic logic in lineardpgi

with especial attention to MJ.

1.2 Theorem Proving

Whilst for many purposes one may be interested in enumerating all proofs of a
formula, for others a simple provable/unprovable answer will do. In this case w
are interested in the quickest way of getting this answer (and in itsatpeass).
Propositional logics are usually decidable (although propositional linear logic is a
notable exception to this, see [LMSS92]) and therefore we are interediedimg

these decision procedures, in particular we would like quick decision procedures

The contraction rule is a major obstacle to finding decision procedures for non-
classical logics. Duplication of a formula means that on backwards proof sbarch
sequents become more complicated, not less. We have no obvious way of seeing
that we should terminate the search. Leaving contraction out usually leaves an
incomplete calculus. One can either try and find a calculus that duplicatesces

in a more subtle way (leading to G4 for intuitionistic logic) or study the nature of
non-terminating backwards search to see where one can stop the search.

In Chapter 4 we develop a technique for detecting loops using a history mechanism,
building on work of Heuerdingt al ((HSZ96], [Heu98]). We apply it to some
non-classical logics, giving useful decision procedures.

1.3 Linear Logic

Girard’s linear logic ([Gir87]) is a powerful ‘constructive’ logic. It issubstruc-

tural (resource sensitive) logic — weakening and contraction are not ggneiad.

The logic takes the usual logical connectives and breaks them into multipdicativ
(context splitting) and additive (context sharing) versions. Hence we have two con-
junctions (tensor®’ and with ‘&’); two disjunctions (par’’ and plus ®’); and it

is possible to give two implications (lollipop-’. Additive implication, ' can

be defined, but is rarely included). We also have four logical constants, mutiplic
tive: *I°, * L', additive: ‘T, *0". A logic without any structural rules at all is very
weak. The main novelty of linear logic is that the structural rules arercelated,

CHAPTER 1. INTRODUCTION AND BACKGROUND

11

'=P AP=R
PSP 97 T'A=R (cut)
=R
=7 t15 R
=7 (") 5 (0
F,P:>Q() I'= P A,Q:>R()
T = PoQ ' °R A, PoQ=R ' ¢
=P A=Q IP,Q=R
rAsPaqg O®) T pesgsg (©0
=P I'=Q IP=R Q=R
I = P&Q (&r) F,P&Q:»R(&‘l) F,P&Q:»R(&‘Z)
=P '=aQ P=R I''Q=R
=reg o®) T=peq @) FLPoQ=R 09
=P I''P=R
r=ip D) F,!P:>R(D)
=R IP'P =R
F,!P:R(W) 'P=R (©)

Figure 1.5: Sequent Calculus system for ILL

but for marked formulae (the exponential formulae) only. For this purpose two extra
logical connectives are needed: ofcourse (or bang, allowing weakening and contrac-
tion on the left) ", and whynot (query, allowing weakening and contraction on the
right) ‘7. Full classical linear logic (CLL) is completely symmetric, and iseof
presented as a single-sided sequent calculus. Both single-sided and twprsided
sentations of linear logic can be found in the Appendix A. There are several good
introductions to linear logic: amongst them are Girard’s original paper ([Gir87]),
[Gir95], [Ale93] and [Tro92].

In this thesis we are mainly interestedimuitionistic Linear Logic(ILL). This sys-

tem is the single succedent restriction of the two-sided presentation of loge

This leads to a logic without the and? connectives, as well as the logical constant
L. Another way of looking at ILL is as a deconstruction of intuitionistic logic, a
refinement of the understanding of intuitionistic connectives (hence the nomencla-
ture). Intuitionistic logic has no structural rules on the right, and both weakening
and contraction on the left. ILL restricts structural rules to cemaamked formulae

on the left. The logical connectives are then split into additive and mukbitphe
connectives as before. The sequent calculus system (which we refer to sisply
ILL) can be seen in Figure 1.5. (Note that, as observed by Schellinx in [Sch94],
CLL is not a conservative extension of ILL. The system of Full Intuitionistic-Li
ear Logic (FILL) is therefore of interest — CLL is a conservative extamsif this
system. See [dPH93]).

CHAPTER 1. INTRODUCTION AND BACKGROUND 12

TP APFR

Prp (@) TAFR b
o -1 AFR
=7 U2 rarr 1)
kaa,”.rnkﬂwj) P .. T,FP, AFO(O)
Iy, L, FT o I,..I.,AFR <
I,P+HQ I'-P-oQ AFP
I+ Poq (%) Larg (%)
LEP AFQ o [EP®Q APQER
FAFPeqQ &7 ILAFR (®:)
'-P T'HQ '+ P&Q '+ P&Q
TFP 'e@

TPeg ®n) Trpeg @)
r'FP®Q APFR AQFR

IAFR (@)
rHe, ... T,HQ, 'Q..'Q.FP P)
ry,..,r,HP
[P
r+pP (D)
TP AR =P A'P'PFR
AFR (") IAFR (©)

Figure 1.6: NILL: Sequent Style Natural Deduction Calculus for ILL

We are interested in ILL because of its relationship to intuitionisticddgs well

as with logic programming). We can use similar machinery for studying ILL to
that used for intuitionistic logic, whereas, despite being constructive, Ckltdiae
understood in new ways. For example, CLL has as semantics: proof nets or coher-
ence spaces or certain categories or perhaps games. For ILL we can (amorrgst othe
semantics) study natural deduction, which for intuitionistic logic has a long history
and is well understood. The natural deduction calculus we primarily consider is
that of Benton, Bierman, de Paiva and Hyland from ([BBdPH92], [BBdPH93b],
[BBAPH93a], [Bie94]). This calculus can be seen in a sequent style in Figure 1.6.
We call this calculus NILL. There are several other natural deductionragsier

ILL in the literature. Some are perfectly satisfactory alterrestito the one we con-
sider; others less so. We leave discussion of these alternative systemsll as
commentary on NILL, until Chapter 6.

We will be interested in the normal forms of natural deductions in ILL. A notion of
(6, ¢)-normal form can be defined for the natural deductions of ILL. It is thgse (
c)-normal deductions that are investigated further in Chapter 6.

CHAPTER 1. INTRODUCTION AND BACKGROUND 13

1.4 Logic Programming

The final piece of background included in this introduction is the link between
permutation-free sequent calculi and logic programming.

One view of logic programming is that it is about backwards proof search (as in
proof enumeration) in constructive logics. This view is laid out by Mideal. in
[MNPS91] (see also [Har94]). We describe goal-directed proof search iddhe
formula and hereditary Harrop formula fragments of first-order intuitionisticc,

as given in [MNPS91]. We also present calculi for goal-directed proof baarc
these fragments.

1.4.1 Uniform Proofs and Abstract Logic Programming Lan-
guages

We give the definitions of uniform proof and of abstract logic programming lan-
guage from [MNPS91].

Definition 1.1 A uniform proof of a single succedent sequent in a fragment of in-
tuitionistic logic is a sequent calculus proof in which every occurrence of a sequent
with a non-atomic goal is the conclusion of a right rule.

Definition 1.2 An abstract logic programming languageis a triple (D, G,)
(whereD is the set of valid context formulae aadis the set of valid goal formulae
andt- is the consequence relation), such that for any subsef D and any element
G' of G, D'+ G iff there is a uniform proof ofy’ from D’.

1.4.2 Horn formulae

Horn formulae D) are given by the following grammar (whe@ stands for Horn
goal formula and for Horn definite formula);
G:=

TIA|GAG|GVG|3IV.G

A|GDA|DAD|VYV.D
It is known that~;;, Ds = G iff -, Ds = G. Moreover, the Horn definite for-

mulae are classically equivalent to the ‘Horn clauses’ of theorem prowmogllo
issues to do with quantifiers).

CHAPTER 1. INTRODUCTION AND BACKGROUND 14

rasa o7 ()
ILD=dd '=G, I'=aG,
r=Do5G (°F) I'= G, AG, (=)
I'= Gy I'= Gy
F:>G1\/G2 (le) F:>G1\/G2 (\/R2)
I' = Gly/z] I' = G[t/x]
FSveg (R = 3G R
= A (BO)
* y not free inl’
fwheren >0, D € I"and< {Gy,...,Gp}, A >€ |D|

Figure 1.7: The systen¥ for a fragment of intuitionistic logic

1.4.3 Hereditary Harrop formulae

Hereditary Harrop formulae are given by the following grammar (wli&@istands
for hereditary Harrop goal formula amfor hereditary Harrop definite formula):

TIA|D>G|GAG|GVG|VV.G|IV.G

A|GDD|DAD|VV.D

Note that the Horn formulae defined in the previous section are hereditary Harrop
definite formulae. We give a calculus (the backchaining calcdlugyr hereditary
Harrop logic (and hence one that can be restricted to one for Horn formulae) which
gives exactly the uniform proofs. The soundness and completeness of this calculus
tells us that hereditary Harrop goal formulae, hereditary Harrop definiteuiae

and the intuitionistic consequence relation form an abstract logic programming la
guage. The backchaining calculus for intuitionistic logic can be seen in Figure 1.7.
This is taken from [HM94]. We need the following definition:

Definition 1.3 WhereP is aD formula, we defingP| to be the smallest set of pairs
such that:

1. < ¢,P>c|P|
2. if< A, P AP, >€ |P|then< A, P, >¢ |P|and< A, P, >€ |P|
3. if < A,Va.P' >€ |P| then for all closed termg < A, P'[t/x] >€ |P|

4. if<A,G D P'>¢ |P|then< AU{G}, P’ >€ |P|

CHAPTER 1. INTRODUCTION AND BACKGROUND 15

It has been noted by Dyckhoff & Pinto ([DP94], [Dyc98]) that the proofs produced
by goal-directed proof search in the backchaining calculus correspond to normal
natural deductions in the fragment of intuitionistic logic being studied. Note that
this correspondence is only for certain restricted fragments of the logic.

1.4.4 MJand Logic Programming

The backchaining calculus results from the development of the view of logic pro-
gramming as the backwards search for a proof of a formula in a constructive logic.
The hereditary Harrop formula fragment of intuitionistic logic can be seeheas t
maximal fragment of intuitionistic logic for which goal directed proof search is
complete ([Har94]).

Logic programming is not just about what is provable, but about how something is
proved — proof enumeration, not just theorem proving. If one holds the view that
the proofs that should be enumerated are normal natural deductions, then one would
like a suitable system for enumerating these proofs. As discussed abowesiwthi

a system.

If one restricts MJ to the hereditary Harrop formula fragment, one carhaeéhis
semantically motivated calculus matches the pragmatically motilatekchaining
calculus. As MJ extends the backchaining calculus to a calculus for the whole
of first-order intuitionistic logic, it might be thought of as a logic programming
language. MJ can then be thought of as suggesting a natural extension to the notion
of abstract logic programming language, one bringing it away from the syntactic
notion of goal-directed proof search and instead basing it on semantics. Mhis t

an extension of the backchaining calculus to a calculus for a logic programming
language with disjunction and the existential quantifier on the left, that is, hloéew

of intuitionistic logic.

In [FMW97] a backchaining calculus for a fragment of an intuitionistic modal logic,
Lax Logic, is given as an abstract language for constraint logic programming. As
Lax Logic is a simple extension of intuitionistic logic, this seems an appr&priat
case to apply permutation-free techniques to.

In [HM94] the ideas of abstract logic programming language, uniform proof and
backchaining calculi are applied to a fragment of ILL. This results in theueal
lus/programming language Lolli. Linear logic programming languages provide a
more refined language than the usual ones, increasing the expressivity of logic pro-
gramming languages. In Chapter 6 we develop an MJ like calculus for ILL with
the aim of giving a natural extension to Lolli in the same way that MJ extends the
backchaining calculus. A more detailed discussion and overview of Lolli, ds we
as all details, are left to Chapter 6.

Chapter 2

Permutations

This chapter is an investigation of the permutability properties of the ruléseof
two-sided Gentzen system for Intuitionistic Linear Logic (see Figure 1.5). We gi
background on the permutability of the rules for intuitionistic logic and single-sided
linear logic, as well as definitions of permutation of inferences and of inference
rules. We tabulate the permutations in ILL and give a calculus, ILLF, fotdbe
adapted from Andreoli’'s work on focusing proofs (JAnd92]). ILLF finds only one
proof in each equivalence class of proofs equivalent up to permutations.

2.1 Background

2.1.1 Intuitionistic Logic

Kleene studies the permutability properties of sequent calculi in [Kle52gerd
considers the permutability properties of classical and intuitionistiedndér logic.

He defines a notion of permutability of inferendesndl,, wherel, isimmediately
below (as in closer to the rooi) in the proof tree. The results of this investigation
(for the propositional connectives) can be seen in Table 2.1. (Note that this table
would be slightly different under the definition of permutation we give in section
2.1.3).

A similar table can be found in [DP97], [DP98b]. Mints also studies permutgbili
of inferences in intuitionistic logic ([Min96]). These papers give a more betai
account of permutability of proofs in intuitionistic logic. Curry studies permategi
for classical logic in [Cur52b].

The calculus MJ can be studied as a calculus avoiding permutations. The desvati
in this system can be seen as canonical forms for intuitionistic proofs vafreot

to permutation of inferences. Every proof in the usual sequent formulation (G3) of
the logic can, by permutation of inferences, be (weakly) normalised to thews&uct
of an MJ proof (see [DP98b]). Strong normalisation of permutation of proofs is

16

CHAPTER 2. PERMUTATIONS 17

I

DRI D | AR | ANg | VR | Vg

Sl n | x| n|lplnlp

Oc | P p p p p p

L | Az n P n p n p
Ne | P p p P P p

Vg | N p n P n p

Ve X X X P X P

Key:

p stands for permutable

x stands for non-permutable
n stands for not possible.

Table 2.1: Permutability of inference rules in propositional intuitionistic 10Gi8,

investigated in [DP98b], [Sch98]. It should be noted that MJ doesn’t avoid all per-
mutations — some of those involvirig ;) can still be performed on the image of MJ
derivations inside G3. However, Dyckhoff & Pinto claim that these permutations
are not semantically sound. There are no corresponding equivalences of proof in
natural deduction for intuitionistic logic. Hence these permutations are notsitere
ing (an alternative point of view would be that this suggests that natural deduction
is a poor semantics outside of hereditary Harrop logic, [GLT89]). Indeed, the tabl
of the permutability of inference rules in a sequent system is dependent on exactly
which sequent system for the logic we look at. Kleene and Dyckhoff & Pinto study
the system G3, an additive system, and allow liberal use of structuratouesure

the permuted proofs are valid. However, one could easily consider a mukiplica
tive intuitionistic calculus (such as G6), where the structural rules woulthdre
important. In this calculus the table of the permutability of inferences wouldbe s
nificantly different. For example, th&/;) rule no longer permutes down p&st,).

The permutabilities in G6 can be seen in Table 2.2. Permutation of inferelese r

in a sequent system seems to be a syntactic notion — its relationship to msnsant

not a straightforward issue.

2.1.2 Linear Logic

Permutation of inferences in linear logic has also been studied, notably by Bell
([Bel93]) and by Galmiche & Perrier ((GP94]). These studies consider fafi-cl
sical linear logic with a one-sided sequent presentation. In Tables 2.3 and 2.4 we
present the results of Bellin and Galmiche & Perrier respectivestrioting to the
propositional fragment).

We are interested in the permutation properties of Intuitionistic Lineard, quye-
sented as a two-sided sequent calculus with implication as a connective.

CHAPTER 2. PERMUTATIONS 18

I

W |C Or | D | A\r | A\g | VR | V¢
Wip|p|p p p p p p
Clpip| P X X p p | X
Srlplpl N | x| n|p|n|p

S| PP P p p P p | X

L\ A | P|P]| N p n p n X
Ne | PP P X | x| pl|p| X

Ve | P | P| N p n p n p

Ve P P X X X P X]

Key:

p stands for permutable

X stands for non-permutable
n stands for not possible

Table 2.2: Permutability of inference rules in propositional intuitionistic 10Gig,

I

WiICl|®|&|®|P|D
Wip|p|P|P|P|P|P|P
Clp|pP|[X|P|P|P|P|P
QP |P|P|P|P|P|X|P
TIPIPIX|P|IP|IP|X|P

L | & | X [X|X|p|lp|X|X]|X
S| P|P|{P|P|P|P|X]|P
Plplp|X|X|X]|X]|X]X
Diplp|lpP|P|P|P|P|P

Key:
p stands for permutable
X stands for non-permutable

Table 2.3: Permutability of inference rules in propositional linear logic, Belli

CHAPTER 2. PERMUTATIONS 19

I

W C|®|®|&|®|P|D
Wip|p|(P|P|P|P|P|P
Clp|p|X|pP|P|(P|P|P
QIP|P|P|P|P|P|X|P
TIPIP|IX|P|P|P|X|P

L | & | X | X | X | X*|X*| X | X]| X
S|IP|P|P|P|P|P|IX|DP
Plplplin|n|{n|{n|nj|X
Diplp|pP|P|P|P|P|P

Key:

p stands for permutable

x stands for non-permutable

n stands for not possible

x* stands for permutable, depending on the definition of permutability

Table 2.4: Permutability of inference rules in propositional linear logic, Gaimi
& Perrier

2.1.3 Permutation

In this section we define what we mean by a permutation, taking our terminology
from Kleene ([Kle52b]), Galmiche & Perrier ((GP94]) and Troelstra & Siditen-

berg ([TS96]). We define permutation of inferences (as specific rule insjanoes
permutation of inference rules. We give a table of the permutabilities ofeinéer
rules in ILL, and a discussion of its content.

Definition 2.1 Theprincipal formula of an inferencé is the formula in the conclu-
sion in which the logical symbol is introduced, or which is the result of a contraction
or a weakening.

Definition 2.2 The active formulae of an inferencé are those formulae in the
premiss(es) from which the principal formula derives.

Definition 2.3 The side formulae of an inferencé are those formulae that are
unchanged from premiss(es) to conclusion (that is, those that are not principal or
active).

Having given terms of reference to the formulae in an inference, we give som
definitions of positional relationships of inferences in a proof.

Definition 2.4 Inferencel, is animmediate ancestorof inferencel; (and !, is an
immediate descendantof I,) if the conclusion off; is a premiss ofl,. (Notice

that an inference has only one immediate ancestor, but may have many immediate
descendants.)

CHAPTER 2. PERMUTATIONS 20

Definition 2.5 Inferences/; and I, are in permutation position if I; is an imme-
diate descendant df, and if the principal formula of; is not active in/,.

Definition 2.6 Let inferenced; and, be in permutation position. Let inferenég

be an instance of rul&; with premisse$; and conclusiorC;. Let inferencd, be

an instance of rule?, with premisse$, U {C;} and conclusiorC;. Inferencel;
permutes overinferencel, if there is a deduction af’; fromP; UP,, with instances
of rulesRk, and R, as the only primitive rule instances uséd,the conclusion of the
only instance of ruld?; and with one or more instances of rul& (or admissible
rules) also used. If instances Bf and R, are the only inferences, then we say that
I, strictly permutes over Is.

Definition 2.7 Rule R, permutes over(strictly permutes over) rule R; if for ev-
ery occurrence of these rules as inferenégsi, in permutation position/; per-
mutes ovelr, (I; strictly permutes overs).

Definition 2.8 If in proof I1;, we permute an inferenck over an inferencd,, to
get proofll,, then we callll,; the permutation object and II, the permutation
result.

We have made a distinction between permutation and strict permutatiorerioésr
strictly permute if the permutation is simply a case of swapping the ordeinfen
ences, whereas they simply permute if an admissible rule (an inversiarstarc-
tural rule) is needed. An example of a permutation whigrgpermutes overR,,
but doesn't strictly permute is the following permutation in G3 (where waalg

is needed): P ASBBCoD

PA>B= A nAgaB¢03Dfﬁ
ILADB=C>D oL
permutesto
MADB=A
(W)

MADB,C=A I'NADB,B,C=D

[LA>B,C=D (5¢)

F,ADB:>CDD(DR)

When the admissible rule is an inversion, it is less obvious that we should allo
such a permutation. We introduced the distinction since it explains the difference
in the tables of permutation of inference for single-sided classical llogarowing

to Bellin and Galmiche & Perrier that we gave earlier.

CHAPTER 2. PERMUTATIONS 21
2.2 Permutations and Intuitionistic Linear Logic

2.2.1 Invertibility

As described below, invertibility of inference rules is related tonpgability. In
this section we give some results about the invertibility of the inferencs rod
two-sided ILL. Some of these results can be found in [Tro92]. We give illtiggra
proofs and counterexamples as well as the invertibilities themselves.

Proposition 2.1 The following primitive inference rules dfL are invertible:(®,),
(@), (—or), (&r), (C), (P), (Iz). The following primitive inference rules oL
are not invertible:(—o,), (&), (®%), (®r), (W), (D).

PROOF. We prove the invertibilities by showing that the inverse rules are sdmi
sible in ILL. This may be done in either of two ways. Firstly we may proceed by
induction on the height of the derivation of the premiss. For example, we show that:

PRI =R
I,P,Q=R

(®F)

is admissible in ILL by case analysis of the last rule of the derivation of thenss.

For each possible rule we either get the conclusion or we can perform the rule at a
lesser height, and we get the result by induction. We omit the long and repetitive
detail. This proof can be useful because of its independence from cut elimination.

Unlike the following much shorter proof using the admissibility of cut:
P=p ") g=q @

PO0sPa0 ©®) ppsosr
T.P,Q = R (cut)

The admissibility of all the inverse rules can be shown in similar ways.

We give a counter-example to the invertibility &f;, that is, we show that the
following rule is not admissible in ILL:
[P&Q = R

rpogr ()

A simple counter-example is:

A&B:>A&BE§QM)
A= A&B £

Similar counter-examples can be provided for the other non-invertible llles.

It is possible that for the context splitting rules we could have defined a weak notion
of invertibility. For example, fof®z) we might have said that if = P ® @ is

CHAPTER 2. PERMUTATIONS 22

provable, then there exists a splittingofinto I';, andI'; such thatl’; = P and
I'; = @ are both provable. However, the possibility of contraction prevents any
such notion. The following example illustrates this.

The sequentd = A ® A is provable in ILL:

7 (ax) (az)

A= A A= A

!A::ZA (D) !A::ZA (D)
A A= A A ©)

A=A A

R)

However, neither the pair of sequentd & A and=- A) nor the pair of sequents
(= Aand!A = A) are provable.

The proof of the admissibility of the inverse rules makes it clear why tiibty is
related to permutability. The proof uses the interchangeability of the infensith
the other rules of the calculus, the fact that the rule is permutable with alisothe
We get invertibility when we have permutability. We prove a general tmedos

all sequent calculi.

Theorem 2.1 For sequent calculug, if rule R strictly permutes over all rules in
g, and the active formulae can be combined, using the connectives of the logic, to
make the principal formula, then rule R is invertible.

PROOF. Consider ruleR with principal formulaP and active formula@; in theith
premiss P; is a set):

S ... S,
g R
then this has inverses:
ﬁ inU1 ﬁ inUn
g, It .5 I
Consider théth such rule:
S Rz’nvi

Consider any derivation & in G. We show that we have a derivationgf There

are four cases to consider. When we refeiowe refer to an occurrence @t
traceable to its occurrence in the root.

1. P is the principal formula for some occurrence of rdte SinceR strictly
permutes over all the inference rules ®f we can permute it to the root,
hence we have derivation ending:

Sy .5 .. Sy,
S

R

Hence we have a derivation 6f.

CHAPTER 2. PERMUTATIONS 23

2. P is never principal, but is the side formula of some leaf node (or nodes) of
the derivation. By replacing by theP; in each sequent in which it appears,
we have a derivation df;.

3. P is never principal in a logical rule, but is principal in a structural rule.
Similar to previous case.

4. P is never principal in a logical rule, but is principal in an axiom. This case
only applies wherg; allows non-atomic axioms. In this case the rule for the
top connective on the other side needs to be applied where the axiom was.

Having proved this theorem, we illustrate the proof with an example. Suppose that
the following rule permutes over all others in G6.

RRQ:R(A)
ILPAQ=R"*

Consider any derivation of the sequéntP A Q = R. Again, when we refer to an
occurrence of a formula we mean an occurrence that can be traced its ocewatrenc
the root. The cases are:

1. P A Q is principal for some inference. Then singe;) permutes over all
rules of the calculus, it can be permuted to the root. Hence

RRQéR(A)
ILPAQ=R*

We have a proof of', P,) = R.

2. P A @ is never principal, and is the side formula of some leaf node. Then

nPA@S:S(M) Itﬂgsés(m)
I'PAQ=R becomes TI,P,Q = R

We have a proof of', P, Q = R.

3. P A Q is never principal in a logical rule, but is principal in a structural rule.
Consider weakening:

P%S(W)

BT IEY
F’,P/_Q =S () F’,P,Q =S ()

F,P/\Q:>R becomes F,P,Q:>R

CHAPTER 2. PERMUTATIONS 24

We have a proof of, P, Q = R. Consider contraction:

["PPQQ=S
I'',P,P,Q=S (©)
F’,P,Q:>S

I'"'PAQ,PAQ =S
I"PANQ =S

(©)

IPAQ =R becomes I',P,Q= R

4. P A @ is never principal in a logical rule, but is principal in an axiom. Then:

vy TPe=P " TRg=q)
IPAQ=PAQ " I P,Q=PAQ R
F,P/\Q:>R becomes F,P,Q:>R

We have a proof of', P,) = R.

2.2.2 Permutability Table for ILL

In section 2.1.3 we gave definitions of permutability of inferences and rules. Table
2.5 gives the permutability of the rules of ILL, indicating whether two rules pgem
(and if so under what definition), or are never in permutation position, or do not
permute.

Study of this table suggests that some inferences are more suitable for permuting
backwards (toward the leaves) and others forwards to the root. Followin@4|GP
we call the rules suitable for backward permutati®p,those suitable for forward
permutation.T. T, = {(®c), (Bc), (~or), (&r), (L)} Tt = {(~oc), (®x),
(&), (®r), (W), (D), (C)}. Notice that, as one would expect, the inference rules
that are suitable for forward permutation are those that are invertibte treose
suitable for backward permutation are the non-invertible rules. The only egoepti
to this is contraction, which is invertible, but is moved backward siheenore
formulae there are in a sequent, the harder it is to control. Also not¢&hatlso
invertible, is not included in either of these sets. Study of the table doesn’tsugge
an obvious answer to how we should try and move this inference. In fact, we lea
it as a pivot about which the structure of proofs revolve.

Having studied the permutation of inference rules in classical linear IGgikeniche

& Perrier define a normal form for sequent derivations. We give a version of this
definition for two-sided ILL. The aim being to avoid redundancies in proofs, we
first observe that cut elimination holds for ILL (see [Bie94]) and so we do not have
to consider a system with cut. We also try to avoid weakening/contractios, pa

CHAPTER 2. PERMUTATIONS 25

I

Rc | B | o | & | Qr | Pr| ©or | &r |C|W | D|P|I,
c| PP X P X PP PR R XD
Br i i X X X X i | | X [x| x|
—oc | P P P P P P P PP P |P[X|P
&e | P P P P P P P P PP |P[X|P
®r | P P P P n n n ni pj{pjp|np
Or | P P P P n n n ni p|pjpnp
Iy| —or| P P X P n n n ni p|pjp|np
&r |] i X X n n n n | i | x| x|nli
¢ Y Y X Y X Y Y PP P |P|P|P
W Y Y Y Y Y Y Y P PP |P|P|P
D Y Y Y Y Y Y Y P PP |P[P|P
P n n n n n n n n |plplx|nin
Ic P P P P P P P P P[P |P[X|P

Key:

p stands for strictly permutable

X stands for non-permutable

n stands for not possible

i stands for permutable (using invertibility)

Table 2.5: Permutability of inference rules in propositional ILL

such as:

p= p (02)
P = P
IP,\P = P
P =P

Definition 2.9 ProofIT in ILL is under weakening and contraction reductionif
for any instance of rul¢C), the active formulae are not principal formulae of an
immediate descendant inferen@é&’).

Note that following definition (from Galmiche & Perrier) of normal proof is unre-
lated to the notion of normal natural deduction used elsewhere in this thesis.

Definition 2.10 Proof IT in ILL is normal if it is cut-free, under weakening and
contraction reduction and:

1. any sequent of forf’ =!P is the conclusion of &P)

2. else if sequerfi contains formulae introduced by an inference ruldjrthen
S is the conclusion of an inference ruleTn

CHAPTER 2. PERMUTATIONS 26

3. else if sequen$ contains formulae introduced by an inference rulefin,
{(W), (C)}, then each premiss is either the conclusion @¢fg or the ac-
tive formula (if it is not atomic) is the principal formula in the immediate
descendant.

4. else if sequert has a principal formuld P, then either

(@) S'isthe conclusion of &V') which is the result of a chain of weakenings
from an axiom

(b) S is the conclusion of 4C') and the immediate descendant ig)
introducing one of the active formulae of tft€) or a chain of contrac-
tions from a context splitting rule.

Later we compare the sequent proofs in this normal form with proofs in the calculus
given in the next section.

2.3 Focusing Proofs

In this section we describe the notion of a ‘focusing proof’ introduced in [And92]
and apply it to the two-sided sequent calculus for ILL. In his paper, Andreoli gives
single-sided focusing calculus for classical linear logic. Here we usathe gleas

to get a focusing calculus for two-sided ILL. We compare this with the perniitjabi
table for ILL and with the definition of a normal sequent proof from Galmiche &
Perrier.

The motivation for focusing proofs is the same as for many of the calculi mentioned
in this thesis — to have a calculus that avoids finding proofs that are, in song sens
essentially the same. Andreoli’'s work is developed syntactically fronsélogient
calculus presentation of linear logic, rather than the semantic approachltaée

in this thesis. Sequent proofs are studied, and redundancies, such as permutations
and trivial loops, are identified. A calculus that (as far as possible) avoide the
is given. The resulting calculus is one suitable for theorem proving — finding a
proof efficiently. By taking a purely syntactic view of proof, and considering the
focusing proofs as normal forms with respect to permutations, ILLF can alsedme

as a proof enumeration calculus. This is the view taken by Andreoli in [And92].
However, focusing calculi lack the semantic rationale that proof enuroarediculi
should have.

We take the following definitions from Andreoli ([And92]).
Definition 2.11 Two proofs are said to be-equivalentif each can be transformed

to the other by simple permutation of inference figures and elimination or introduc-
tion of weakening/contraction pairs.

CHAPTER 2. PERMUTATIONS 27

We give a calculus for ILL similar to that of Andreoli’s for classical larxdogic
which finds only one proof in each P-equivalence class.

We give two definitions:

Definition 2.12 A connective isasynchronousif, when a principal formula with
this connective as the top connective has been selected, there is only one applicable
instance of an inference rule.

Definition 2.13 A connective issynchronousif, when a principal formula with
this connective as the top connective has been selected, there is more than one
applicable instance of an inference rule.

For two-sided ILL we need to distinguish between the positive and negative-occur
rences of connectives (their occurrence on the right and on the left). We find that
the asynchronous connectives arei™, &+, ® , @~ . The synchronous connec-
tives are:—o—, &, @1, ®T. The negative occurrences will be principal formulae

of left rules and the positive occurrences will be principal formulae of righsrute

is observed that the rules for the asynchronous connectives are invertible bed in t
setT and that the rules for the synchronous connectives are not invertible and are
in the setl’;. We haven’t mentionetlas it doesn't fit as neatly into this pattern and
will be treated differently from the other connectives in the calculus we.giv

We give a calculus which we will call ILLF. This has similar propertieg&ndreoli’s
focusing calculus for classical linear logic (callggl). Firstly the problem of where

to apply the structural rules is lessened. We add an extra field to the staradar
culus in which we put only exponential formulae. Weakening can be permuted up
towards the axioms, hence we can drop the weakening rule and in its place change
the axiom rule so that any number of exponential formulae are allowed in the con-
text. Contraction doesn’t permute over context splitting rules, but if we duplica

all the exponential formulae in the new field at the application of one of these rules,
then we will have duplicated the necessary formulae. Hence no explicit cbatra

rule is necessary. We may perform unnecessary contractions, but this is unproble
atic with the new axiom rule. Note that there is a small cost to this — thelpltysi

of dereliction of formulae that would not otherwise be in the context is introduced.
Which rules can be applied is also restricted. We try to apply (backwaedBsyn-
chronous, invertible, rules first. To this end we split the context into furtle&idi

a list of formulae and a multiset of synchronous formulae. The list places an (ar-
bitrary) order on the way the asynchronous formulae are considered. We also have
two kinds of goal (for synchronous and asynchronous goals). ILLF is displayed in
Figure 2.1.

The calculus ILLF has four forms of sequent. These direct proof search by forcing
asynchronous formulae (those with invertible rules) to be broken up first, and then
by focusing on a formula (the active formula of a premiss is principal in the next
backward inference) for as long as possible.

CHAPTER 2. PERMUTATIONS 28
ZEﬂijﬁQﬂ(%) St L=P1 &FﬁL:Qﬁ(&)
ST L=PoQf " * ST L= P&Q 1 R

STHL=Tf(®
S P L=RI
STHL=Rf ()
SOALPQ=RY (o
STHLPeQ=RI
STALP=RI STHLQ=RI
STILPOQ=RI ()
SPCfL=RY o SLfL=RY
S I LIP=R ST LI=RY

if R not asynchronous

&FﬂLOiR@ma
&RPﬂL:RU(
SSTHL,P=RI
ST = R S 5TyP=RI|
&FwéRUw@ »:I,Pf=RI

S, P;TP=RJ

S, P;T = R

50 U=P1 SAJ=Q170
S TVAUI=PRQ 1
S0 = P1{

Y. ll=PaQ1

Pop) P not asynchronous

(Push)

(D)

(®r) SIST7 (Ir)

o =
(Or,) zmuipggﬂ
Y= P o)
> =P)

X I'f= R
ﬁ(%l)

Y. l=PN SA0Q=R|
&uA:AU@m ST,A | PoQ= R (—oc)
ST P=R| : STUQ=RI (e
ST | P&Q = R | ST I P&Q =R 5

S TAP=RI
STUP= Ry (Ve

(69712)
(P)

R not synchronous

&51)

P not synchronous

Figure 2.1: The focusing calculus ILLF for Intuitionistic Linear Logic

CHAPTER 2. PERMUTATIONS 29

Initial sequents have form; " f L = R). The only rules with such a sequent as
the conclusion are those for asynchronous connectives on the rightandvhich

is only applicable when the goal is not asynchronous. Hence the goal formula is
forced to be broken up until not asynchronous, then the form of the sequent is
changedta;I' L = R |.

When the sequent has formI" {} L = R |} and the list,L, is non-empty, the only
rules applicable are those for the asynchronous connectives on the?lef, and

(S). The latter two rules are only applicable with principal formulae whichnarte
asynchronous. That is, all asynchronous formulae on the left are broken up in a
fixed order and other formulae are put to one side to be dealt with later. When ther
are no more asynchronous formulae on the left (that is, whisrthe empty list) we
reach the major choice point in the calculus. Using onglgf), (Push) and(D),

a formula is selected and focused on.

If (r) is used, the goal is selected and sequent changed toXofm|= R 1.

Only the rules for synchronous connectives on the righj,and({},) are applica-

ble to a sequent of this form. That is, the goal is broken up until a sequent with a
non-synchronous right hand side is reached.

If (S) or (D) is used, a formula on the left is selected and the sequent changed to the
form 3;T" || P = R |. Only the rules for synchronous formulae on the léft;)
and({l.,) are applicable to a sequent of this form. That is, the selected formula is
broken up until the formula in the special position is not synchronous.

2.3.1 Soundness and Completeness

The calculus ILLF is the result of entirely syntactic observations and sesalthe
permutability and invertibility of inference rules. To prove the requiresllts, a

lot of lemmas about the admissibility of various rules in ILLF are needed. This
makes the full detail of the proof very long, although there is nothing too involved

in these details. Here we state the lemmas, proving only one as an tiluswéthe
standard techniques used in the proofs. We then prove the theorem which, once we
have the lemmas, is routine.

We prove the result via the equivalence of both ILL and ILLF to an intermediate
calculus, ILL*. This calculus has two fields which absorb the structural rules of
ILL. The calculus ILL* can be seen in Figure 2.2. Note thatcould have been
given as a set, but for our purposes it is easier for it to be a multiset. {omisitic)
Linear Logic is often presented with the context split into non-linear (or idals
and linear field. A calculus similar to I’t.can be found in, for example, [HM94].
Treating linear and non-linear formulae separately is taken to itsreggen Gi-
rard’s Logic of Unity ([Gir93]).

We prove the equivalence of ILL and IEL This requires a couple of standard
results.

CHAPTER 2. PERMUTATIONS

30

TP = Q () % I'=P E;A,Q:>R(_O)
[= PoQ ' R SiT,A, PoQ = R £

“.Ih=P YT'=Q &
;T = P&Q (&)

“I'P=R (&2.) T, =R (&2,)
>, P&Q = R "~ S, T,P&Q =R ‘%

WIh=P Y, A=Q (@) X, P, QQ = R (®2)
S TLA=PRQ R > T,PR®Q=>R "¢

X I'= P (@r.) =@ (@r,)
S T=PoQ R S I=PpQ ‘R

“%ZI'P=R %I[,Q=R (@2)
Y I,POQ =R £

2HFij) S, PT,P=R
ST,P=R . PT = R

(D)

o= P
¥, =P

(P)

Figure 2.2: The calculus ILE® for Intuitionistic Linear Logic

CHAPTER 2. PERMUTATIONS 31
Definition 2.14 Theheight of a derivation is the number of nodes on the longest
branch.

Lemma 2.1 The following rules are admissible L *:

S,P,P;I = R
S, P = R

S0 =P
S, AL =P

(©) (W)

PROOF. The admissibility of both rules can be shown by standard induction argu-
ments.l

Lemma 2.2 The sequent:, I' = P is provable inlLL iff the sequenE; " = P is
provable inlLL *.

PROOF. We illustrate the proof of this theorem for the, ! fragment of ILL. The
extended proof is similar.

First we show that ifS; " = P is provable in ILL* then!X,T" = P is provable in
ILL.

The proof is by induction on the height of derivations.

1.

then

2. InILL* we have
ST, P = Q

S0 = Po@ (R
by induction hypothesis we have:

BLP=Q
IS T = PoQ ' R

3. InILL* we have

WIh=P X,AQ=R (<o¢)
5 ILA P—oQ =R £

by induction hypothesis we have:

. I'=P YA Q=R
OIN, A P—oQ = R
N, IA, P—o@Q = R

(—oc)
(C*)

CHAPTER 2. PERMUTATIONS 32

4. InILL* we have
>, Pl = R

&nm:Rw)
by induction hypothesis we have:
I !IP,T = R
as required.

5. In ILL* we have
X, P;I'P= R

Y.P,I'= R (D)
by induction hypothesis we have:

IS,IP,T,P= R
R ATANEY
ISP T = R

(D)
(©)

6. In ILL* we have
Xy= P

;=P (P)
by induction hypothesis we have:

Y =P
¥ =P (P)

Now we show that ifY, ' = P (wherel contains no banged formulae) is provable
in ILL then X; " = P is provable in ILL>.

The proof is by induction on the height of derivations.

1. In ILL we have

1= 4 (@)
then
A5 4 (@)
2. In ILL we have
I, T,P=Q

S.F = Pog °®)
by induction hypothesis we have:

SLP=Q
SL=Po@ ' %

CHAPTER 2. PERMUTATIONS

3. In ILL we have

Y, =P !EZ,A,Q:R()
_o
1Y, 15, T,A, PoQ = R £

by induction hypothesis and Lemma 2.1 we have:

21,1—‘:>P EQ,A,QiR
I Y AT D
%1, 5, 1,A P-<Q =R £
4. In ILL we have ST = R
=
!2RF$ROW

by induction hypothesis and Lemma 2.1 we have:

;. I'=R
Y.P;T=R (")

5. In ILL we have
PP, T = R

I, IP,T =R
by induction hypothesis and Lemma 2.1 we have:

(€)

S,P,P;T =R
S, P = R

(©)

6. In ILL we have
Y, P.I'=R

> PT = R

by induction hypothesis and Lemma 2.1 we have:

(D)

S:T,P= R

XRRPiRS@
>, P;T =R
7. InILL we have 5 = p
=
=P (P)
by induction hypothesis we have:
Xy= P
(P)

¥ =I1P

33

CHAPTER 2. PERMUTATIONS 34

The following lemmas are needed in order to prove the equivalence of &nd
ILLF. Note that the rules given have grin the succedent, but that in most cases the
rule with this arrow reversed is also admissible. This is noted intdterment of the
appropriate lemmas. The proofs are all by induction on the height of derivations (in
fact we often simultaneously prove the admissibility of several ruléls gifferent
positions of arrows). We illustrate the proofs by giving a restricted proof of tbe fi
lemma, but omit all other proofs.

Lemma 2.3 The following rule is admissible il.LF:

ST L= R
SATHL=RA

(W)
(In fact, we prove this result for any legitimate combination of the arrows).

PrRoOOF. We illustrate the proof for theo, ! fragment of the logic.
The proof is by induction on the height of derivations.

1. (—o
(7ox) SN LP=Q1

STHL=PoQf R
by induction hypothesis we have:

SiD AL P= Q1
SATILPSOf VY
S ATNLo Po0] R

2 () >I'tL =P
E? T g T z P # (ftx) P notasynchronous
by induction hypothesis we have:
ST L=Pl
SATTL=P] Y
SATNL=Ph (=) P notasynchronous
3. (9)

SPTfL=RY
z;rﬂL,!P:»Ru()

by induction hypothesis we have:

S, P;THL=RI
S, AP THL=RJ (s)
SSATNLIP=RI

CHAPTER 2. PERMUTATIONS

4. (Pop)
S:T,PHL=RI
STHLP=RJU

(Pop)

by induction hypothesis we have:

ST, PYL=R|
SALPNL=R
SATHLP=RI

(W)
(Pop)

5.
=) X = R1

5= ke U7
by induction hypothesis we have:

T U= R1
z¢xr¢:RﬂEy?
S, ATH= Ry VR

6. (Push) ST Ry
; =
YLPf= R

by induction hypothesis we have:

(Push)

STy P=RI
SSATUP=RY
S, AT, P = R

7. (D
2) S, P;TUP=RI
S, Pl 1= Ry

by induction hypothesis we have:

S, P;TP=RI
2APIUP$RU()
S AP L= R

8. (P
(P) Xift= P 1
S U=1P 1

by induction hypothesis we have:

(P)

= P gy
2¢xmﬁpﬂ(wﬂ
2ijmﬂ()

35

CHAPTER 2. PERMUTATIONS

9.)
ea) T = RA

ST U= R4 (Ue,)
by induction hypothesis we have:

%= R 1
S AT 1= R Sf/*))
AT =R V&
10. (ax)
S VA= A (az)
then
S ATA= A (az)
11. (—o)

Y= PN v Q=R|
ST Uy Po0= Ry (o0

by induction hypothesis we have:
2T = P

v Q=R|

sari=Pf Y SAVIOS R EW*)>
S, AT || Po@Q =R —O¢
12. (Yr,)
gf E ﬂ g z Z ﬁ (lz,) P notsynchronous
by induction hypothesis we have:
S THP=RJ|
SAaTPoRY VY
SATUPS R (Jz,) P notsynchronous
|

Lemma 2.4 The following rule is admissible ii.LF:

S0, P L, M = R
ST L, P, M= R1{

P not asynchronous

(Note that this lemma still holds with the succedent arrow reversed).

Lemma 2.5 The following rule is admissible i LF:

' L,P,Q,M = R 1
STNYLPRQ,M = RA1

(Note that this lemma still holds with the succedent arrow reversed).

CHAPTER 2. PERMUTATIONS 37

Lemma 2.6 The following rule is admissible iiLF:

SSTALPM=R{ S;TNLQ M= R
ST L,PeQ, M= R{

(Note that this lemma still holds with the succedent arrow reversed).

Lemma 2.7 The following rule is admissible il.LF:

S, P;T LM = R A
ST L, P, M= R{

(Note that this lemma still holds with the succedent arrow reversed).

Lemma 2.8 The following rule is admissible il.LF:

S:T LM = RA
ST L I,M=R1{

(Note that this lemma still holds with the succedent arrow reversed).

Lemma 2.9 The following rule is admissible ii.LF:

D M= P4
SSTNL= D1

whereL = M

whereL. = M means thal. and M are different lists of the same elements. That is,
this is an exchange rule. (Note that this lemma also holds with the succedent arrow
reversed).

Lemma 2.10 Proving “%; ', L = R impliesX; T {} L = R {} provable” is equiv-
alent to proving %; L = R provable impliesZ; L = R {}".
PROOF “=-" This direction is trivial, simply pul’ = ¢.

“«<"Let L' be any ordering of. We can then provE; 1} L, L' = R {}. By Lemma
24wecanprove: 't L=R. 1

Lemma 2.11 The following rule is admissible itLF:

ST L PRQ,M= RAq
ST L PQ M= R

(Note that this rule with the succedent arrow reversed is also admissible).

Lemma 2.12 The following rules are admissible IbLF:

STALPOQM=RfH STCHLPOQ M= R{
ST L,PM=R1{ ST L,Q,M=R1{

(Note that these rules with the succedent arrows reversed are also admissible)

CHAPTER 2. PERMUTATIONS 38

Lemma 2.13 The following rule is admissible iLF:

SiT) L,IP,M = R A
S PDANL,M=R1{

(Note that this rule with the succedent arrow reversed is also admissible).

Lemma 2.14 The following rule is admissible itLF:

ST LI, M = RAp
ST L, M=RTA

(Note that this rule with the succedent arrow reversed is also admissible).

Lemma 2.15 The following rule is admissible il LF:

ST L, P,M = R 1)

;TP L, M= R P not asynchronous

(Note that this rule with the succedent arrow reversed is also admissible).

Lemma 2.16 The following rule is admissible i LF:

ST L = P—oQ 1)
STHLP=Q1

Lemma 2.17 The following rules are admissible IbLF:

ST L= P&Qf ST fL= P&
SSTNL= D1 STHL= Q1

Lemma 2.18 The following rule is admissible itLF:

S L= P o
STHL=DPJ

P not asynchronous

Lemma 2.19 The following rule is admissible iLF:

ST, P L= R{
ST, PEQ L= RA

(Note that this rule with the other appropriate combination of arrows is also admis-
sible).

Lemma 2.20 The following rule is admissible i LF:

20,00 L= R4
>0, P&Q 1 L = R {)

(Note that this rule with the other appropriate combination of arrows is also admis-
sible).

CHAPTER 2. PERMUTATIONS 39

Lemma 2.21 The following rule is admissible itLF:

D= Pf X1QN L= R1
E,Fl,FQ,P—OQﬂ‘LjRﬂ

(Note that this rule with the other appropriate combination of arrows is also admis-
sible).

Lemma 2.22 The following rule is admissible i LF:

S, P;T,PYL=R1p
S PTNL=R1

(Note that this rule with the other appropriate combination of arrows is also admis-
sible).

Lemma 2.23 The following rule is admissible i LF:

L= P Yt Q=R
X1, Ty, P—Q = R ||

Lemma 2.24 The following rule is admissible iLF:

ST P=RI
> 1, P&Q 1= R |}

Lemma 2.25 The following rule is admissible il LF:

STHQ=RU
ST, P&Q = R |

Lemma 2.26 The following rule is admissible iLF:

S, P;TAL,P,M = R
S PDANL,M=R1{

(Note that this rule with the other appropriate combinations of arrows is also ad-
missible).

Lemma 2.27 The following rule is admissible iLF:

T = RN
T U= R

Lemma 2.28 The following rule is admissible i LF:

ST L0, M= R1{

Now we have all the results we need to complete the equivalence proof.

CHAPTER 2. PERMUTATIONS 40

Lemma 2.29 Sequenk; I, L = Pis provableinlLL * iff sequent; " {} L = P 1{
is provable inlLLF.
PROOF. The proof is again by induction on the height of derivations.

“«<". We need to show that:

— If ;I L = R fyisprovablein ILLF thert;I", L = Ris provablein ILL*.
— IfX; T L = R |Jis provablein ILLF thert;T", L = Ris provablein ILL*.

—If X;I'l P= R | is provable in ILLF thenY;I', P = R is provable in
ILL*>.

For this direction we illustrate the proof for the, ! fragment of the logic.

1. In ILLF we have
;I L, P= Q1

ST L= P—oQ 1 (o)
by induction hypothesis we have:

B0 LP=Q
ST, L= PoQ R

2. In ILLF we have
>, I'ftL=PJ

STHL=pf %)
by induction hypothesis we have:

I, L= P
as required.

3. In ILLF we have:
S, P,TL=RI|

ST L,/P=R (5)
by induction hypothesis we have:

S, P;T,L=R ()
ST,L,1P = R

4. In ILLF we have

SLPAL= R b
SINLP=>RYV?

P not asynchronous

by induction hypothesis we get:
>;I,L,P=R

as required.

CHAPTER 2. PERMUTATIONS

5. In ILLF we have
.= R1)

ST =Ry (Ur)

by induction hypothesis we get:

;. I'=R
as required.
6. InILLF we have STUP=R
S TP 1= ry L)

by induction hypothesis we get:
>;IP=R
as required.
7. In ILLF we have
X, PsTUP=RI
X, P =R
by induction hypothesis we get:

(D)

S, PT,P=R
. PT = R

(D)

8. In ILLF we have
Xift= P 1

s U=1P 1)
by induction hypothesis we have:

(P)

o= P
¥, =P

(P)

9. In ILLF we have

%= R A1

;= R1 (Iz,) R notsynchronous

by induction hypothesis we get:
;. I'=R
10. In ILLF we have
SiAS Ay (@)

then
s As 4 ()

41

CHAPTER 2. PERMUTATIONS 42

11. In ILLF we have

S Thy=Pf SAlQ=RI|
STAJPo0= Ry o0

by induction hypothesis we have:

WIh=P X,AQ=R -
5 ILA P—oQ =R (=oc)

12. In ILLF we have

ST P=RI
STy P=RJ

(lz) P notsynchronous

by induction hypothesis we have:
> I'P=R

as required.

“=" For this direction we give the entire proof rather than a fragment of it, as this
is the non-trivial part.

By Lemma 2.10 it is enough to show th&at L = P provable in ILL* implies
Y:{t L = P {y provablein ILLF.

1. InILL> we have
S LP=Q

S L= PoQ ®)
by induction hypothesis we have:

S L, P= Q1
S L= PoQq (-or)

2. InILL* we have
o L=P Y;L=0Q

;L= P&Q
by induction hypothesis we have

Y L=PN XN L=Q1"N"
X L = P&Q 1

(&r)

(&)

3. InILL* we have
SIoT (Tr)
in ILLF
STyESEA

CHAPTER 2. PERMUTATIONS

4. InILL* we have
X;L,P,QQ= R

S LPo0= R (&)

by induction hypothesis and Lemma 2.5 we have:

YL P Q= R
S LPRQ=RA

5. In ILL* we have

s L,P=R Y;L,Q=R (@)
.L,P®Q =R £

by induction hypothesis and Lemma 2.6 we have:

SN LP=R) ML Q=R
ML POQ=R1

6. In ILL* we have
S, P;L=R

&gm:&ﬂa
by induction hypothesis and Lemma 2.7 we have

S, P L= RY
SN L,IP = R1{

7. In ILL* we have
:L=R

2@1:3““

by induction hypothesis and Lemma 2.8 we have

YNt L= R1
S LI = RAY
8. InILL* we have
&LO:R“w
by Lemma 2.28 we have:
M L,0= R

9. InILL* we have

S Pog (OR)

CHAPTER 2. PERMUTATIONS 44

by induction hypothesis we have:

XLy = P) YLy = Q 1)
Z’;L’1 = P9 Z’;L'2 U= P9
YL L= PRQ | (@)
St L=PoQy Y
S L= Poqf (®

Where(1) a series of applications of Lemmas 2.3, 2.11-2(2%,a series of
applications of Lemmas 2.3, 2.11-2.18) Lemma 2.27,4) Lemma 2.27,
(5) a series of applications @fop), (®c), (Dr), (Ic), (S). Also we may
need to build extra bits of proof for additive rules.

10. In ILL* we have
S, P;L,P=R

S,P;L= R
by induction hypothesis and Lemma 2.25 we get:

(D)

X, P L,P = RA

S, P L= R
11. In ILL* we have
5=7 IR
then s
SIS TH ()
Sl)
Y= I VR
12. In ILL* we have
S L= P

S L= PoqQ (or)

by induction hypothesis we have

it L= P9

S = P o

Y= P g
oLl l=Pa Q1
Y= PaQl
E;ﬂL:P@QU(ﬂR)
YSHL=PaoQ1

—_
~—

DO
~

where(1) a series of application of Lemmas 11-18) Lemma 2.26(3) a

series of applications dfPop), (®¢), (®), (Iz), (S). Also we may need to
build extra bits of proof for additive rules

CHAPTER 2. PERMUTATIONS 45

13. (®x,) similar to(®x,).

14. In ILL* we have
Xy= P
¥ =I1P

by induction hypothesis we have

(P)

;= P4
S5 §=1P) Eff)
=P | (ﬂR
Sip=1P R

15. In ILL* we have
s AS 4 ()

by induction hypothesis we have

(az)
(Push)
(Pop)
(=)

VA=A
Y A=Al
SN A=>AY
LN A=A

16. In ILL* we have

ol =P Y;L,,QQ =R (_o)
S; Ly, Ly, P—oQ = R £

by induction hypothesis we have

XL = P E';L'zyLéﬂQiSﬂ()
(6)

=Pt Y T Q=50
L, Ly, Ly, P—oQ = S | @)
St Ly, Ly, Ly, PoQ = S |
i) Ly, Lo, Ly, P—oQ = S Eg)ﬂ)
St Ly, Ly, PoQ = R

where(1) a series of application of Lemmas 2.16, 2.(%},a series of applica-
tions of Lemmas 2.3, 2.11-2.18) Lemma 2.18(4) a series of applications
of Lemmas 2.3, 2.11-2.1%5) Lemma 2.26(6) Lemma 2.237) a series of
applications of(Pop), (®c), (®c), (I), (S). Also we may need to build
extra bits of proof for additive rulegg8) a series of applications dfoy),
(&x). Also we may need to build extra bits of proof for additive rules.

CHAPTER 2. PERMUTATIONS 46

17. In ILL* we have
S: L, P =R

Y, L, P&Q = R (&ec.)

by induction hypothesis we have

S5 Ly, P= RA
i Ly, P, Ly = S
LGP =S
SCLL LA P= S|

S L L, P&Q 1= S | (
E,ﬂLl,LQ,P&QjSU« E
(

(1)
(2)
(3)
4)
5)
=)
6)

2 Ly, Ly, P&Q = S 1
Y Ly, P&Q = R A

where(1) a series of applications of Lemmas 2.16, 2.(27,a series of appli-
cations of Lemmas 2.11-2.18) Lemma 2.18(4) Lemma 2.24(5) a series
of applications of Pop), (®,), (®c), (I¢), (S). Also we may need to build
extra bits of proof for additive rulegf) a series of applications dfoz),
(&x). Also we may need to build extra bits of proof for additive rules.

18. (&.,). Similar to(&¢,).

Theorem 2.2 The calculilLL andILLF are equivalent: the sequeh, ', L = P
is provable inILL iff the sequenkE; " f} L = P is provable inlLLF. HencelLLF
is sound and complete with respect to provabilitylih .

PrROOE Immediate from Lemma 2.2 and Lemma 2.1D.

2.4 ILLF and Permutations

The motivation for focusing calculi is the reduction of redundancy in proof search.
Calculi good for delivering a yes/no answer to a query have as much determinism
as possible, and on backtracking will not investigate an essentiallyesipath. A
calculus where trivial permutation of inferences is not possible is good for this.

ILLF has a lot of determinism and avoids permutations. Occurrencesogf) and

(&) are forced to occur as soon as possible, hence cannot be permuted. Occur-
rences of(®.), (&), and(I.) are forced to occur together, and the list structure
forces this treatment to be in fixed sequence, thus preventing (in a someaWihat a
trary manner) the permutation of these inferences with each other, aaswsith

other rules. The major choice point is where it is decided which synchronous for-
mula to consider, or whether to derelict. Once a formula had been decided upon, itis

CHAPTER 2. PERMUTATIONS 47

principal, as are the active formulae in the premisses (unless atonfie)feriula

is focused upon (further restriction could be placedips,) to prevent its use with a
focused atom). Promotion occurs as soon as possible. In fact in ILLF as g@sent
there is a choice between promotion and dereliction in ILLF. A side conditiomcoul
be placed or{ D), restricting its application to whefP) is not possible. Indeed it
could be further restricted so that it is only applicable when the formuléeare
atomic. Due to the separate field for the exponential formulae, we do not have to
worry about permutations ¢t”') and(W).

ILLF finds proofs up to permutations. Compare ILLF with the table of permuta-
tion of inference rules (Table 2.5). It is observed that inferences whiclyst @@
permutable cannot occur in permutation position in ILLF (or the proofs of ILLF
mapped into proofs in ILL). For each ordering of the list, the calculus finds only
one proof in each P-equivalence class.

Finally we compare the proofs of ILLF with the definition of a normal sequent proof
(Definition 2.10). As discussed above, because of the formulati¢f pfsequents

of form !I" =! P might not be the result of promotion, but we could restrict ILLF so
that they are. The other clauses of the definition are satisfied, or irrelegaihtan

be said that ILLF only finds proofs in normal form with respect to permutations.

2.5 Concluding Remarks

This chapter has studied ILL proofs in a purely syntactic way. Having investiga
permutations of inferences and inference rules, as well as the invéytdfiliules,

we gave a calculus avoiding permutations. This calculus, ILLF, gives a reduced
proof search space and hence is suitable for theorem proving. It could also be
viewed as a proof enumeration calculus as it can be argued that normal proofs with
respect to permutation of inferences in a sequent calculus are the proofs esinter
We prefer to have a semantic motivation for proof enumeration calculi. €bidts

in the calculus SILL given in Chapter 6.

Chapter 3

A Permutation-free Sequent Calculus
for Lax Logic

This chapter is a study in the application of permutation-free techniques. The met
ods that develop MJ (see Chapter 1, [Her95], [DP96], [DP98a]) are used to find a
‘permutation-free’ calculus for an intuitionistic modal logic. The results v
proofs are simple extensions of those for MJ, their inclusion here being to itkistra
the wide applicability of permutation-free techniques and for reference purposes.

The logic we look at, now called Lax Logic, dates back to Curry ([Cur52a]) réste

in Lax Logic has recently been renewed. We give a very short introduction to Lax
Logic and its applications, then build the machinery to develop the permuta&en-f
calculus PFLAX. Much of the work contained in this chapter can also be found in
[How98].

3.1 LaxLogic

Lax Logic is an intuitionistic modal logic with a single modality, 5omehow This
modality is unusual in that it has properties both of necessity and of possibhigy. T
modality can be thought of as expressing correctness up to a constraint, albgtracti
away from the detail (hence the choice of name, Lax Logic). A formiétaan be
read as “for some constraintformula P holds under”. The modality is axioma-
tised by three axioms:

oR: S DoS

oM: o008 DoS

oF : (SDT)D (oS DoT)
The logic can also be presented as a natural deduction calculus (displayed mtseque
style in Figure 3.1) and as a sequent calculus (Figure 3.6). Lax logic has recently
been investigated by Fairtlough, Mendler & Walton ([Men93], [FM94], [FM97],
[FMW97], [FW97]) and by Benton, Bierman and de Paiva ([BBdP98]).

48

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoOGIC 49

Curry ([Cur52a]) introduced the logic to illustrate cut-elimination in thespreee

of modalities. The logic was rediscovered by Mendler, who developed the logic
for abstract reasoning about constraints in hardware verification ([MenJ8g.
timing constraints that need to be satisfied in a circuit can be abstraatay as
instances of the modality and reasoned about separately from the logical analysis
of the circuit. In [Men93], [FM94], [FM97], the proof theory and semantics of Lax
Logic are developed, giving Gentzen calculi, natural deduction calculi and Kripke
semantics for the logic as well as giving details of the logic’'s use as a tool for
hardware verification.

Lax Logic has also been observed ([BBdP98]) as the type system for Moggi’'s com-
putational lambda-calculus (see [Mog89]). In [BBdP98] the correspondence be-
tween the natural deduction presentation of Lax Logic (there called computationa
logic) and the computational lambda calculus is given, along with some proof the-
oretic results on the logic.

In [FMW97] the ability of Lax Logic to give an abstract expression of constsai

is utilised to give a semantics to constraint logic programming languages. The
constraints to be satisfied can be abstracted away as modalities andriheayuiee
reasoned about logically. The constraints can then be analysed separatébgid@he

is used to give proofs of queries. These proofs give the constraints to be satisfied.
The work in this chapter gives a calculus suitable searching for these proofs.

The calculi in this chapter are presented as first order, but we only give proofs of
results for the propositional implicational and modal fragment (for brevity).

3.2 Natural Deduction

We give the natural deduction calculus for Lax Logic. This is taken direabiynfr
[BBdP98] (with quantifiers and falsum added) and can be seen in Figure 3.1.

We look at the normalisation steps. Again these are taken from [BBdP38]tive

extra cases fat. andd added. The reduction rules for the intuitionistic connectives
are completely standard. We do not include them here, concentrating instead on
those involving the modality. We give these reductions in tree style rathenrthan
sequent style.

First thes-reduction:

]

P (01)
oP 77 oQ (0.) :
o@ € ~ o(

Now we give the commuting conversions (ereductions) involving the modality:

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX Loalic 50

] [Pl 1Q]
o o (o) : o) oR (o)
o) oR oP oR :
oR (oc) ~ oR (oc)
) P
PYQ ok ok, . ¢
oR (Ve) olS
oS (o)
[P] [R] Q] [R]
: o:R o:S o:R oS
PV Q oS (oc) oS (oc)
- e (Ve)
TFL
rrrp @ (D rep)
I,PFQ TFP>Q TP
IFp5q 7 rrg 9
I'FP T'HQ I'PAQ I'PAQ
F"P/\Q (AI) W(&l) W(Q)
L-P '-Q
r=pvg n) TEpvg (VR
LFPvQ IPFR IQFR
IFR (Ve)
P ['FoP I',PFoQ
I+op °7) TFoQ (02)

Trvep (o T Plt/a]

' Plt/x] I'F3z.P TI',Plu/z]FR
TFaep 9 TF R (31

T unotfreeinl’, R
Figure 3.1: NLL: Sequent style presentation of natural deduction for Lax Logic

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX Loaic 51

P
1 :
oP o) 1
oQ (o) ~ @(—LE)
[Plu/x]] [Plu/z]] [Q]
. Q @] _ : :
S ———— - ° (3.) OE : u(%)
© ey | Lol

Definition 3.1 A natural deduction is said to be i, ¢)-normal form when no
[-reductions and ne-reductions are applicable.

We give a presentation of a restricted version of natural deduction for LaxLgi

this calculus, the only deductions are those that arg in){normal form. This cal-

culus has two kinds of ‘sequents’, differentiated by their consequence relations,
andpt>. Rules are applicable only when the premisses have a certain consequence
relation. The conclusions have a fixed consequence relation. Thus those deductions
that are valid are of a restricted form. This calculus, which we sladliNLAX, is

given in Figure 3.2.

Proposition 3.1 The calculudNLAX only allows deductions to which ribreductions
and noc-reductions are applicable. Moreover, it allows alf,(c)-normal deduc-
tions.

PROOF. By inspection one can see that deductions to which one could apply a
reduction are not allowed in NLAX because they would involve a rule appbicati
with a premiss with the wrong consequence relation.

It can be seen that by use of th&/) rule, all other deductions are possilii.

3.3 Term Assignment

In this section we give a term assignment system for NLAX. In [Mog89] Moggi
gave a\-calculus, which he called theomputational\-calculus This calculus
naturally matches Lax Logic, as can be seen in Figure 3.3. The only exception to
this match is our inclusion of the rules fot .) and the quantifiers. We leave these
rules out of Figure 3.3. More about the computatiokalalculus and Lax Logic
(there called computational logic) can be found in [BBdP98].

We give this term system again in a syntax we prefer — an abstract synfax wi
explicit constructors. We give a translation of Moggi’s terms to ours, and thven gi

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 52

(M) = (L)

I P> '>PD>Q I'pP
TP O Q (51) I'>Q (5:)

LeeP '@ '>PAQ '>PAQ
Fl>f>P/\Q (/\I) W(61) W (/\52)

I'>>Q
I'cePVQE

I'>>P

I>>PVQ (Vz,)

(\/11)

'>Pve [I'PpR Q>R (v.)
>R :

TP ['>oP I'PP>o(
Fl>{>OP(OI) oeo@ (oc)

[o> Plu/x] I'>Ve.P
Toovrp i F;)ﬁﬁx](a

[o> Plt/x] I'>3z.P T, Plu/z]>>R
T oodep 7 INF (3)1

Tunotfreeinl’, R

Figure 3.2: NLAX: Sequent style presentation for normal natural deduction for
Lax Logic

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIc 53

Tz:Pra:P (a)

Fl—*:T(T)

Le:Ple:Q 'Fe:PDQ T'Hf:P
T wwe PoQ OF) TFef:0 (52)
'Fe: P THf:Q 'Fe: PANQ 'Fe:PANQ
I'k(e,f): PANQ (2) 'k fst(e): P (Nar) ['F snd(e) : Q (Nea)
I'Fe: P (\/Il) Fl‘@:@ (\/Iz)

I'Finl(e) : PV Q I'Finr(e) : PVQ

'Fe:PvQ T,2:PFHf:R Ty:QFg:R
I'Fcaseeof inl(z) — flinr(y) — g: R

(Ve)

'Fe:oP I'x: Pk f:oQ
I'Fletx < ein f:oQ

'Fe: P
['Fwal(e) : oP

(o1) (o:)

Figure 3.3: Sequent style presentation of natural deduction for Lax Logic, with
Moggi’s computationah terms.

yet another presentation of natural deduction for Lax Logic, this time annotated
with proof terms in our prefered syntax, in Figure 3.4.

Translation: Moggi’s terms~ proof terms in our preferred syntax

x ~ var(x)

" ~ %

\r.e ~ Ax.e

€ f ~ a’p(ea f)

(6, f) ~ pr(e, f)
fst(e) ~ [st(e)
snd(e) ~ snd(e)
inl(e) ~ ie)

inr(e) ~ j(e)

case e of inl(z) — f|inr(y) — g ~ wn(e,x.f,y.9)
val(e) ~> smbhi(e)
letx < ein f ~ smhe(e, z.f)

We are interested in the ‘real’ proofs for Lax Logic — the normal natural deduc-
tions. We now restrict the terms that can be built, in order that they n@ich
restricted natural deduction calculus NLAX, giving us proof objects. (That is, no
reductions will be applicable at the term level; the term reductions matchi-the
and c-reductions for types given earlier). The proof terms come in two syntactic
categoriesA andN. V is the category of variables (proofs), U is the category of

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 54

variables (individuals), and T the category of terms. The extra constructot)
matches théA/) rule of NLAX.

A=
var(V) | ap(A, N) | fst(A) | snd(A) | apn(A,T)

* | efq(A) [an(A) | AV.N | pr(N, N) [i(N) | j(N)
wn(A, V.N,V.N) | smhi(N) | smhe(A,V.N)
AU.N | prq(T,N) | ee(A,U.V.N)

[z: PkFoar(x): P (az)

'Fe: L
Thx:T (T) ['Fefqle): P (L)
Le:Ple:Q I'Fe:PDQ I'EHf:P
ITowe PoQ =7 T wle. 0)
The:P TFf:0 The:PAQ THf:PAQ

(Ae»)

I'Fopr(e,f): PAQ (2) Fl—fst(e):P(1) ['Fsnd(f):Q

Lle:P () [Fe:@
THife):PVQ " TFjle):PVQ

(vfz)

'Fe:PvQ T,2:PFHf:R TIy:QFg:R

I'Fwn(e,z.f,y.g): R (Ve)

['Fe:P (o1) I'Fe:oP F,x:Pl—f:oQ(o)
' smhi(e):oP * * I' - smhe(e,x.f) : oQ :

LFe: Plu/a] I'Fe:Va.P
I'=Au.e:Vo.P (vz) [+ apn(e,t) : Plt/x] (Ve)

I'Fe: Plt/x] 'te:dz.P T,x:Plu/zj-f:R

L'k oprq(te): Jz.P () ['Fee(e,ux.f): R (3t

T unotfreeinl’, R
Figure 3.4: Sequent style presentation of natural deduction for Lax Logic

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 55

In Figure 3.5 we give one final presentation of a natural deduction calculus for Lax
Logic, this time NLAX together with proof annotations.

3.4 Sequent Calculus

The stated aim of this chapter is to present a sequent calculus for Lax Logic whose
proofs naturally correspond in a 1-1 way to normal natural deductions for Lax Logic
—i.e. the proofs of NLAX. In this section we give such a sequent calculus, but firs
we remind the reader of the sequent calculus as presented in [FM97] and [BBdP98]
This can be seen in Figure 3.6.

In fact, our presentation is slightly different from both those cited. Theubadan
[BBAP98] has no structural rules, that is, the contexts are sets. [FM97]dwdlve
weakening and contraction on both the left and the right, plus exchange. Here the
only structural rule we consider (or need) is contraction on the left. The contexts i
our presentation are labelled sets. We leave all discussion of cut uetil lat

We now present a new sequent calculus which we call PFLAX (‘permutation-
free’ Lax Logic). Like MJ this calculus has two forms of judgemdnts R and

I -2 R. The calculus is displayed in Figure 3.7.

The stoup is a form of focusing: the formula in the stoup is always principal in the

premiss unless it is a disjunction or a somehow formula. One might ask why we do
not formulate théo,) rule as follows

@(oﬁ)
FO—P>OR

To answer this, we point out that the resulting calculus would not match normal nat-
ural deductions in the manner we would like. Also, consider proofs of the sequent
oo (PAQ) = o(QAP).

3.5 Term Assignment for Sequent Calculus

We give a term assignment system for PFLAX. This we get by extending that given
for intuitionistic logic in [Her95], [DP96], [DP98a]. The term calculus has two
syntactic categoriesyl andMs. V is the category of variables (proofs), U is the
category of variables (individuals) and T is the category of terms .

M::=
x| (V; Ms) | A\V.M | pair(M, M) | inl(M) | inr(M)

smhr(M) | \U.M | pairq(T, M)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LOGIC 56

(CLCU) FI>AP
Ix: P> oar(z): P I can(A) - P

(M)

I'>A: L
Dopx: T (1) [>efq(A) : P (Le)

Dix: PN Q (52) '>A:PD>Q FDDN:P(D)
TN Po5Q 7 T>ap(A,N):Q :

F|>f>N12P F»NQ:Q
[oepr(Ny,Ny) : PAQ

(A1)

'>A:PAQ '>A:PAQ
T fotid) P) Tosnaa) g)

LoeN:P >N Q (Vz)
Tesi(N): Pv@ ™ Tesj(N):PVQ W ™
I'>A:PVQ DLyz;: PN R F,@:QDDNQ:R(V)

[wn(A, x1.N1,29.No) - R :

I'>pN: P (o7) I'>A:oP F,x:PDDN:oQ(O)
[oesmhi(N) :oP I pe>smhe(A, x.N) : oQ ‘

[N @ Plu/x] (V) '>A:Vao.P
TN :Vo.P V7 f ['>apn(A,t): Plt/z]

(Ve)

I'oe>N: Pt/ E) I'>A:3e.P T,z:Plu/z]ce>N: R
T seprq(t, N) : Jz.P *F T o>ee(A,u.a.N): R

(3ot

Tunotfreeinl’, R

Figure 3.5: NLAX with proof annotations

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIc 57

I,P,P=R

nPij@ nP:R(@
F:>T(T) F,L:P(L)
IP=qQ =P T'Q=R
r=po50 (°F) T PS50= R 20
F:PF:QM) I,P=R (Ae) Q=R
I=PAQ R ILPAQ=R "™ I,PAQ=R
=P (Va.) '=Q (Vi) IP=R I''Q=R
r=PrvQ '™ Ir=PvQ ‘' * ILPVQ=R
=P [''P=oR
I =op %) ToP= o 0
[' = Ply/x] [, Plt/x] = R
FSvep VR [,Va.P = R (Vc)
[' = P[t/x] I, Ply/x] = R
F:>3xf’(3R) I,3z.P = R (3c)t

Ty notfreeinl’, R

(/\52)

(Ve)

Figure 3.6: LAX: Sequent Calculus for Lax Logic

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 58

=7 () pLp

Q
I'==P T R
ﬂ(n) PDQ—> ry
'=PDQ ' — R
=P I'sQ r R r-% R
= = (/\51) (/\Cz)
FT=PAQ (A=) [Prg r g

I'P=R I,Q=R

=P I'=Q (V)
r=pvg \m) TSPy VR e R
[P = oR
F = (OR) oP (OL")
['= oP ' — oR
Plt/a]
[= Ply/x] L= Ry,
(Vr) Va.P
[= Va.P r =8 R
L, P
L= Plt/a] P/ =R o
I=3z.P % I =5 R

Ty notfreeinl’, R

Figure 3.7: The Sequent Calculus PFLAX

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIc 59

Ms::=
[]|ae| (M :: Ms) | p(Ms) | q(Ms) | when(V.M,V.M)

smhl(V.M) | apq(T, M s) | spl(U.V.M)

These terms can easily be typed by PFLAX, as seen in Figure 3.8.

3.6 Results

Having presented the calculi for Lax Logic, we now prove that they have the proper-
ties we claim. We prove soundness and adequacy for PFLAX, and the equivalence
of the term calculi. These results prove the desired correspondence.

The full details of these proofs are rather repetitive: therefore we onlythe
proofs for theD, o fragment of Lax Logic. The remainder of the calculus is intu-
itionistic logic as presented in [DP96]. The details of the proofs extended teshe r
of the calculus can be found there.

We start by giving pairs of functions that define translations between the term as-
signment systems for natural deduction and sequent calculus.
Sequent Calculus to Natural Deduction:

f:M— N

O(x; Ms) = 0'(var(z), Ms)
O(A\z. M) = \x.6(M)
O(smhr(M)) = smhi(6(M))

¢ :AxMs—N

0'(4,[]) = an(4)
0'(A, (M :: Ms)) =6 (ap(A,0(M)), Ms)
0'(A, smhl(z.Ms)) = smhe(A, z.0(M))

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIc 60

(az) F,x:Pi)Ms:R

FL[]:P F,x:Pi(x;Ms):R(C)
_ — (1)
F:>*:T(T) I =sae: R

Q
F’$:P:>M:Q (D) I'=M:P F—>MS:R(D£)
T=\eM:P>Q R P29 s Ms) R
F:>M1:P F:>M2Q(/\)
[' = pair(My, Ms) : PAQ R
P Q

I' - Ms: R (/\) I' = Ms: R (/\)

PA £1 PA L2

FJZ)(MS):R FJQ(MS):R
. I'= M:

L=M:P (Va) = M:Q (Va,)

I'=nl(M): PVQ I'=inr(M): PVQ

F,.T1:P:>M1:R 1—‘,1‘2:@:>M2:R

P (Ve)
e when(x1.My, x9.Ms) : R
[x:P = M:oR
I'=M:P (07?,) Nz (Oﬂ)
[' = smhr(M) : oP [' — smhl(z.M) : oR
Plt/x]
I'= M : Plu/z] I — Ms: R (V)
FjAu.M:Vw.P(R)T va—'};apq(t,Ms):R
[= M: P[t/z] D, Plu/z] = M : R (Fo)t

I'= pairq(T, M) : Jz.P (3z) r =L spl(u.x.M) : R

T unotfreeinl’, R

Figure 3.8: The Sequent Calculus PFLAX, with Term Assignment

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 61

Natural Deduction to Sequent Calculus:

Y (var(z), Ms) = (z; M s)
Y'(ap(A,N), Ms) =¢'(A, (Y(N) :: Ms))

We prove two lemmas showing the equivalence of the term calculi.

Lemma 3.1

) v(0(M)) = M
i) $(0'(A, Ms)) = /(A Ms)

PROOF The proof is by simultaneous induction on the structuré/oénd M s.

Case 1. TheéM termis(x; Ms)

Y(0(z; Ms)) (@ (var(x), Ms)) defd
Y (var(x), Ms) ind ii)
(x; Ms) defq)

Case 2.Thé term is\z. M

YOO M) = pOa.0(M)) defo
Awp(0(M)) defy

Ao M ind i)

Case 3. Th&/ term issmhr (M)

Y(8(smhr(M))) (smhi(0(M))) defd
smhr(y(6(M))) defy

smhr(M) ind i)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LOGIC 62

Case 4.Thé/s term is| |

D(O'(A, 1)

(an(A)) deff
V(A []) defy

Case 5.Thé/s termis(M :: M s)

V(O"(A, (M =2 Ms))) = (0 (ap(A, 0(M)), Ms)) defd’
= '(ap(A,0(M)), Ms) ind ii)
= (A (W(O(M)) = Ms)) defy
= Y(A, (M :: Ms)) ind i)

Case 6. The term issmhl(x.M)

(0 (A, smhl(z.M))) (smhe(A,z.0(M))) defo’
YA, smhl(zap(6(M)))) defy
Y'(A, smhl(z.M)) ind i)

Lemma 3.2

) 0(Y(N)) = N
ii) 0('(A, Ms)) = 0'(A, Ms)

PROOF. By simultaneous induction on the structureMdfand A.

Case 1.Thé&\ termisan(A)

0(¢'(A,[]) defy
0'(A,[]) ind i)
an(A) defo’

0y (an(A))

Case 2. Th& term is)\z. N

o(w(\x.N)) = O(\zap(N)) defy
AwH((N)) defo

Az.N ind i)

Case 3. The\ term issmhi(INV)

0(v(smhi(N))) 0(smhr((N))) defy
smhi(0((N))) defd
)

smhi(N ind i)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 63

Case 4. Thé\ term issmhe(A, .N)

0(yp(smhe(A, z.N))) O(¢)' (A, smhl(x.ap(N)))) defy
0 (A, smhl(z.p(N))) ind ii)
smhe(A,z.0((N))) defe’

smhe(A,z.N) ind i)

Case 5. Thé term isvar(x)

0(¢' (var(x), Ms)) O(z; Ms) defq)

0 (var(z), Ms) defd

Case 6. Thé termisap(A, N)

0(¢'(ap(A, N), Ms)) »(N) : Ms))) defy’
(N) :: Ms)) ind ii)
' (ap(A,0(¢(N))), Ms) defd’

(A s) ind i)

We now prove soundness and adequacy theorems.

Theorem 3.1 (SOUNDNESS The following rules are admissible:

L= MR, I'>A:P FLMs:Rm
oe0(M): R o0 (A Ms): R

PROOF By simultaneous induction on the structureidfand M s.
Case 1. ThM term is(x; Ms)
We have a derivation ending in:

F,x:Pi)Ms:R
I'Ne:P=(z;Ms): R

(€)
and we know that
Lo : P>woar(z): P
is deducible.
So we have:
[e: P>war(z): P Iz:P -5 Ms: R n
I o0 (var(x), Ms) : R "

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 64

and we know that
0' (var(z), Ms) = 0(z; Ms)

Case 2. ThéM termisiz. M

We have a derivation ending in

Le: P=M:Q
= Xe.M:PD>Q

(Or)

whence
De:P=M:Q

Ix:PpO(M):Q 0
Toone 0D PoQ Y

and we know that
Az.O(M) = 0(\x. M)

Case 3. The/ term issmhr (M)

We have a derivation ending as follows

'=M:P (O)
T = smhr(M):oP " *

whence

'=M:P i)
Loe>0(M) : P
I oe>smhi(0(M)) :

5p (°7)

and we know that
smhi(6(M)) = 0(smhr(M))

Case 4. Thé/is term is| |

We have a deduction and a derivation:

I>A:P PJ;H;P(M)

From the deduction, we obtain:

I'>A:P
I'oean(A) - P

(M)

and since
an(A) = ¢'(A, [])

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoaGic 65
we have what we require.
Case 5. ThdMis term is(M :: Ms)

We have a derivation ending in

. Q)
'=M:P F—>M3.R(D£)

T 29 (M Ms): R

whence
'=M:P Z)
I'>A:PDQ F»G(M):P(D)
T > ap(4,0(M)) : Q P % Ms: R

I o0 (ap(A, 0(M)), Ms) : R i)

and we know that

0'(ap(A, 6(M)), Ms) = 6'(4, (M :: Ms))
Case 6. ThdVs term issmhl(x.Ms)

We have a derivation ending

T,0:P= M:oQ
T =% smhl(z.M) : oQ

(oc)

whence
L,e:P= M:oQ

I'>A:oP T,x:PrpO(M):oQ i)
[o>smhe(A, x.0(M)) : oQ (o:)

and we know that
smhe(A,z.0(M)) = 60'(A, smhl(z.M))
|

Theorem 3.2 (ADEQUACY) The following rules are admissible:

I'oeN: R i I'>A:P FLMs:RZ.Z.)
I'=9Y(N):R I'=y'(A, Ms): R

PROOF. By simultaneous induction on the structureoand./V.

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LOGIC 66
Case 1. Thé&l termisan(A)
We have a deduction ending

I'>A:P
I'oean(A) - P

We know that we can derive

hence we have

We know that

Case 2. Th&l termis\z. N

We have a deduction ending

[e: PN Q (57)
Lo e N:PDOQ ‘T F

whence
[e: PN Q

T,2:P = ¢(N):Q i)
= o) Pog PR

and we know that
Az.p(N) = p(Az.N)

Case 3. Thé\ term issmhe(A, z.N)

We have a deduction ending in

I'>A:0oP I',z:Pp>N:oQ (02)
I ob>smhe(A,x.N) : oQ ‘

whence
[,z:P>>N:oQ

[z: P=¢(N):oQ 2 oc)
I'>A:0P I 25 smhl(z.4p(N)) : oQ ..£
T = oA smhlwoN) 00 Y

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 67
and we know that
Y'(A, smhl(xz.p(N))) = (smhe(A, x.N))

Case 4. The\ term issmhi(N)

We have a deduction ending in

F »N . P (O)
I s>smhi(N) :oP * ©

whence

['ce>N:P .
T = o(N) P
I' = smhr(y(N)) : oP (or)

and we know that
smhr(ip(N)) = ¢(smhi(N))

Case 5. Thé\ term isvar(x)
We can extend to

F,J}ZPLMS:R
I'Ne:P=(z;Ms): R

(©)

and since
(75 M's) = o' (var (), Ms)

we have the result.

Case 6. Thé\ termisap(A, N)

We have a deduction ending in
'>A:PD>Q T'eN:P

I'>ap(A,N):Q ()
whence
LooN:P_
[=¢(N): P F&Ms:R(D)
IT>A:P>Q 29 (W(N) = Ms): R :
[= ¢'(4, (¢(N) = Ms)) : R i)

and we know that

(A (W(N) :: Ms)) = ¢'(ap(A, N), Ms)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LOGIC 68

Theorem 3.3 The normal natural deductions of Lax Logic (the proofd\dfAX)
are in 1-1 correspondence to the proofsRFLAX.

PrRoOE Immediate from Theorems 1 and 2 and Lemmas 1 arll 2.

Corollary 3.1 The calculusPFLAX is sound and complete with respect to prov-
ability in the logic.

3.7 Cut Elimination

Now we move on to a study of cut in PFLAX. In the usual sequent calculus, cut
may be formulated as follows:

I'=P I'P=Q
['=0@Q

(cut)

In PFLAX, the two judgement forms lead to the following four cut rules:.

Q P I=p P2
r—=p F—>R(0ut1) = , P— R

(cuts)
r-%ngR r-% R
P
=P I' =R I'sP I'P=R
A A) T=R (cuta)

These have associated terms:

M:=
cutt (Ms, Ms) | cuty (M, V.Ms)

Ms::=
cutd (M, Ms) | cutl (M, V.M)

We can give the cut rules again annotated by the proof terms:

r % Ms,:P T2 Ms,: R
T -2 cut!(Ms,, Msy) : R

(cuty)

I'=M:P T,z2:P-% Ms:R
F&cutg(M,x.Ms):R

(cuts)

T=M:P T -5 Ms:R
[= cutd (M, Ms): R
I'=M:P I'N'e:P=M: R
I = cut! (M, z.M,) : R

(cuts)

(cuty)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 69

We call PFLAX extended with the four cut rules PFLAX We give reduction rules

for PFLAX“, As in the previous section, we restrict ourselves tathe fragment

of the logic, in order to prevent repetition of results that can be found elsewhere
(IDP96]). Here we give reductions without terms, together with the assdditm
reductions.

Case lcutf([],Ms) ~ Ms

i (cuty)

Case 2cut?’ (M :: Msy), Msy) ~ (M :: cutl’ (Msy, Mss))

T

r2>4p r LR

r 4R

(cuty)

rop FLR(
=S FLR(

~ r*t R

cuty)

Dg)

Case 3cut;? (smhl(x. M), M s) ~ smhl(x.cutif (M, Ms))

LS=oP r,S=oP T 5oR

¢
oS oP F, S = oR
I' —oP — I' — oR (cutl) — (Oﬂ)
I' — oR ~ I' — oR

(cuts)

Case 4cuth (M, z.[]) ~ []

—R (ax)
=P IP-5R (cuty) (a2)

Case 5cuty (My, x.(Msy :: Ms)) ~ ((cut] (My, x.Ms)) = (cuty (M, x.Ms)))

r,P=S I,P-SR
SoT (Oc)
=P I''P—=—R
(cuts)

r 4R

T
F=P I[LP=5 r=pP IP-5R

T= S (cuts) FLR(

~ r*4 R

(cuts)

Dg)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LogGIc 70

Case 6cuth (M, zy.smhl(xy.My)) ~ smhl(zy.cut) (My, x,.My))

=P
LRSSz ok r5=P W) 1 psson
I'=P I,P>0R T,S= oR
(cuty) ——— (o¢)

I 2% oR ~ I 25 oR

(cuty)

Case 7cutl ((x; Msy), Msy) ~ (z; cutt (M sy, M ss))

r,s-=>p c
I,S=P (©) r,s SR
LS=-~R

(cuts)

rs-p rs-5R

r,s s R
~> F,S:>R

(cuts)
(©)

Case 8cutt 2 (\w. My, (My :: Ms)) ~ cut$ (cuty (Ms, x.My), Ms)

I P=Q L= P F&R(

F:PDQ(DR) r ¢ R

I'= R

'=P I'P=Q
'=qQ
~ I'=R

35)

(cuts)

(cuts) @, p

(cuts)

Case 9cutyl’ (smhr(My), smhl(z.Ms)) ~» cutl (M, x.M,)
[P =oR

FO—P>OR
I' = oR

(oc)

(cuts)

[= oP ‘7R I'=P I,P=oR

I' = oR

(cuty)

Case 10cutf (M,[]) ~ M

—— (az)
=P 3 ~ =P

Case 11cutt (M, xy.(wy; Ms)) ~ (w9 cuty (M, 1. Ms))

s IS=P I,5P-5R
IP,S— R (©) - (cuty)
rS=°r I''PS=R rs—nrR

(cuty) 2 et

[S=R ~> IS=R (©)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LogGIc 71

Case 12cuth (M, x.(x; Ms)) ~» cuty (M, cutl (M, x.Ms))

rp-R r=pP PSR
" (C) - (cuts)
I'=R 4 ~ I'=R 3

Case 13cutt (My, xy. Ay My) ~» Axy.cuth (My, z1.My)

M(W)
I.PS=T T.5= P IS P=T
rsp T PSS5T (°OR) TS= 7T (cuts)
r=5>T (cuts) F:>SDT(®)

Case 14cut? (M, x.smhr(Msy)) ~ smhr(cut] (My, z.My))

LP=s =P ILP=S
L>P TP=oS o) [=5)(C“t‘l)
[I'= oS et = o8\

Notice that we used the following lemma:

Lemma 3.3 WEAKENING) The following rules are admissible PFLAX:

Q
' — R
L= R T=R
rpor W) rp%np

PROOF Induction on the height of derivationli

We summarise the term reductions:

1. cut? ([, Ms)~ Ms
cutl (M :: Msy), Msy) ~ (M :: cutt (Msy, Mss,))
cutst (smhl(x. M), Ms) ~ smhl(z.cut3? (M, Ms))

cuty (M, .[]) ~ []

cutP(M My =2 Ms)) ~ ((cutd (My, z.My)) == (cuth (My, z.Ms)))
cuty (M, x1.smhl(xy.My)) ~ smhl(xy.cut] (My, x,.My))
cutl ((x; Msy), Msy) ~ (x5 cutt (Msy, Msy))

cuty " (Aw. My, (My :: Ms)) ~ cut (cut] (M, x.M,), Ms)

© © N o 0 bk~ W DN

cut3f (smhr(My), smhl(x.My)) ~ cuty (M, x.My)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 72

10. cuty (M,[]) ~ M

11. cuth? (M, xy.(29; Ms)) ~ (z9; cuth (M, x,.Ms))
12. cuty (M, x.(x; Ms)) ~ cutd (M, cutd (M, .M s))
13. cut? (My, 1. \vo. My) ~> Axy.cut (My, 1. My)
14. cut? (My, x.smhr(My)) ~ smhr(cutl (M, x.My))

Definition 3.2 A simple cutinstance is an instance of cut with cut-free premisses.

Definition 3.3 Thesizeof a formula is the number of connectives in that formula
plus one.

Definition 3.4 Theweight of a simple cut instance is the quadruple:
(|A|7 CU/tnO., hl) h?)

where:

e |A| is the size of the cut formula.
e cutno. is the kind of the cut (i.e. 1, 2, 3, 4)
e h, is the height of the derivation of the right premiss

e |, is the height of the derivation of the left premiss
we make the convention thatt, = cut; < cuty = cuty.
The quadruple is lexicographically ordered from the left.

Lemma 3.4 The weights defined in Definition 3.4 are well-ordered.

We now prove the theorem.

Theorem 3.4 (WEAK CUT ELIMINATION) The rules(cut,), (cuts), (cuts), (cuty)
are admissible ifrPFLAX.

PROOF. We give a weak cut reduction strategy:

— pick any simple cut instance and reduce

— recursively reduce any simple cut instances in the result

By induction on the weight of the cut instance, and induction on the number of
simple cut instances, this strategy terminates.

This can easily be seen by inspecti@h.

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIc 73

3.8 Strong Normalisation

In this section we prove that the cut reduction system strongly normalisesggivi
another proof of cut elimination for PFLAX.

We prove strong normalisation using the recursive path-order from termtireyvri
([Der82], see also [BN98]). This is attractive since it is purely syttaceasoning

is about the structure of the terms themselves rather than about a mapping of terms
into tuples of natural numbers. More on proving normalisation using term rewriting
can be found in [Sel98].

Again we restrict ourselves to the o fragment of Lax Logic to avoid repetition.

3.8.1 Termination Using the Recursive Path-Order

We define two strict partial orders, one on term constructors (or operatgraphd

one on terms;-. This second strict partial order, the recursive path-order, is de-
fined in terms of the first. Given that has some simple properties (transitivity,
irreflexivity, well-foundedness — all true by definition), the recursive pathfdtae

orem tells us that is well-founded; that is, there is no infinite decreasing sequence
ay > ay = Finally we show for any reductioh~» ¢, that > £'. By the well
foundedness of, every reduction sequence terminates; the cut reduction rules are
strongly normalising.

Definition 3.5 Therecursive path-order is defined as follows.

Let F be a set of operatorg, g € F. Let T(F) be the set of terms over F and an
infinite set of variabless,t € T'(F). We also write terms ag(sy, ...s,), where
f(s1, ..., sp) is built from operatorf applied to terms, ..., s,.

Let> be a strict partial order on F. Ther is defined recursively on T(F) as follows:
s = f(s1,.0,8m) = g(t1, s ty) =1
iff
i) s; = tforsome € {1,...,m}
orii) f > gands > t; foreveryj € {1,...,n}

oriii) f=gand[sy, ..., sm] == [t1, .., tn]

We have used the following abbreviationsfor - or equivalent up to permutation
of subtermsy- for the extension of to finite multisets.

Definition 3.6 ArelationD on setK (with k1, ko, ... € K) iswell-foundediff there
is no infinite decreasing sequenceD ks D ...

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 74

Theorem 3.5 RECURSIVE PATH-ORDER THEOREM) If > is well founded, then
> is well-founded.

PROOF. See [Der82], [BN98|H

3.8.2 Strong Normalisation for PFLAX

We apply the recursive path-order to the term assignment system of PFLAX.

The operators are the term constructors of PFLAX; that is, the constryctors,

[], smhl, smhr, together with those for cut. The cut constructors are in fact an
infinite family of constructors parameterised by the formulae of Lax Logicthe
constructors areut!” whereP ranges over the formulae of Lax Logic.

Op = {cut! |i € {1,2,3,4}, Paformuld U {;, \,::,[], smhl, smhr}

The terms ove©p contain the proof terms of PFLAX'.

If we write f(sy, ..., s,), f IS the top term constructor angd, ..., s,, are the immedi-
ate subterms.

We define a strict partial order on term constructors:

— if P and(are formulae the® > Q) if () is a subformula of (i.e. > has the
subterm property)

— cutl > cut? if P>Q,i,7€{1,2,3,4}
— cutt’ cutl > cut3P , cut?

— we putcut!’ = cutl andcut! = cut? (so in fact we have two cut operators
cuty andcutyy)

—cut!’ > 5 N[, smhl, smhr
— 5, A, [], smhl, smhr are ordered equally.
Lemma 3.5 The ordering> on Op is transitive, irreflexive and well-founded.

PROOF Transitivity and irreflexivity obvious.

We have an infinite number of term constructors, so it is possible that we could have
an infinite decreasing sequence:

cutf-j > cutg > ...

As either the cut suffix or the size of the cut formula must decrease, the length of
the sequence is bounded (by twice the siz&€pfll

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 75

Corollary 3.2 = is well founded for the terms d?FLAX.

PROOF. By the recursive path-ordering theorell.

We also need the following lemma.

Lemma 3.6 For each cut reductiom ~ o', « > «' holds.

PROOF. We analyse each of the fourteen cases. In each case we give an argument
that for every pair of terms of the form involved, the relation holds.

Case 1.
cutl ([], Ms) = Ms

sinceMs = Ms

Case 2.
cut] (M :: Msy), Msy) = (M :: cuty (Msy, Msy))
sincecut] >:: and
cuty (M == Msy), Msy) = M
since(M :: Msy) » M
cut{ (M :: Msy), Msy) > cut] (M, Ms)
sincecut; = cut{ and

(M :: Msy), Msy] = [Msy, Mss]

Case 3.
cutt (smhl(x. M), Ms) = smhl(z.cut3” (M, Ms))
sincecut;” > smhl and
cutt (smhl(x. M), Ms) = cut3” (M, Ms)
sincecut;?” = cuts? and

[smhl(x.M), Ms| = [M, Ms]

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LOGIC 76

Case 5.
cuth (My, x.(My = Ms))) = ((cuth (My, x.My)) = cuty (M, x.Ms))
sincecuty >:: and
cuty (My, x.(My =2 Ms)) = cutl (M, x.M,)
sincecut! = cut!’ and
(M, (My =2 Ms)] == [My, Ms)]
cutl (My, x.(My :: Ms)) = cutd (M, x.Ms)
sincecut} = cuty and

[Ml, (M2 . MS)] > [Ml,Mg]

Case 6.
cuty (My, x1.smhl(x9.My)) = smhl(xg.cuty (My, x1.My))
sincecuty > smhl and
cutd (My, xy.smhl(xe.Ms)) = cuty (M, x1.My)
sincecut! = cut!’ and

[M]_, Smhl(:ngg)] > [M17 Mz]

Case 7.
cutf ((z; Ms1), Msy) = (w5 cutl (M sy, Ms,))
sincecuty >; and
cutf ((z; Msy), Msy) = cut! (Msy, Mss)
sincecut? = cut] and

[(z; Msy), Msg]| = [Msy, M s,

Case 8.
cuty "\ My, (My :: Ms)) = cut$ (cut] (M, .M;), Ms)
sincecut} 29 > cut$ and
cuth 29 (e My, (My = Ms)) = cut? (My, x.M,)
sincecut} 29 > cut! and
cuty 22 \e. My, (My == Ms)) = M,
since(M; :: Ms) »= M,

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGICc 77

cut3PDQ()\x.M1, (My 2 Ms)) = M,
since\x. M, = M,
cutt 29 (\w. My, (My = Ms)) = Ms
since(My :: Ms) = Ms

Case 9.
cuts? (smhr (M), smhl(z.My)) = cut? (M, z.M,)
sincecuts” > cut] and
cut§t (smhr(My), smhl(x.My)) = M,
sincesmhr(M,) = M,
cut3f (smhr(My), smhi(x.My)) = M,

sincesmhl(x.My) = M,

Case 10.
cuty (M, []) = M

sinceM > M

Case 11.
cuth (M, zy.(w2; Ms)) = (w23 cuth (M, 1. Ms))
sincecut! >; and
cutt (M, xy.(xg; Ms)) = cuth (M, ,.Ms)
sincecutf = cuty and

(M, (z2; M's)| == [M, Ms]

Case 12.
cuty (M, z.(x; Ms)) = cuty (M, cuty (M, z.Ms))
sincecuty > cutl and
cutl (M, z.(x; Ms)) = M
sinceM = M
cutl (M, z.(x; Ms)) = cuth (M, z.Ms)
sincecut! = cutl and

(M, (z; M's)| > [M, Ms|

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIC 78

Case 13.
cuth (My, x1. \x9.My) = Axg.cuth (M, xo.My)
sincecut; >)\ and
cutl (My, w1 \x9. M) = cutl (M, z1.M>)
sincecut] = cut} and

[Mla)\.I'Q.Mg] > [Mla MQ]

Case 14.
cuty (M, x.smhr(My)) = smhr(cut] (M, x.My))
sincecut! > smhr and
cutt (My, x.smhr(My)) = cutl (My, x. M)
sincecut! = cut! and
[My, smhr(My)] == [My, M)
[

Theorem 3.6 The cut reduction system f&FLAX strongly normalises.

PROOF. Immediate from Corollary 3.2, Lemma 3.4, Lemma 3.5 and Theorem 3.5.
[

3.9 Lax Logic and Constraint Logic Programming

In [FMW97] and [Wal97], quantified Lax Logic is used to give a logical analysis of
constraint logic programming. Lax Logic is used to separate the logical analysis of
provability and the analysis of constraints. Here we summarise their ajpproac

Constraint logic programs consist of clauses, CLP clauses, which are ciosed f
lae of the form:
Vey..xp.S D H

where H is an atomA(z4, ..., z,) and S is a formula according to the following
grammar:

S:=
TIA|SVS|SASI|FV.S
These clauses can contain constraints. An example of a constraint logic program

clause is
Vs.s > 5 D Als)

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX LoGIc 79

r=7 (7 Foor D
I'=P I'=>Q I'=oFP I'=oQ
r=pParg 0 TSo@rg) N
Ir=pr I'=Q
r=rvg \n) T=pvg Ve
= oP ['=oQ
F:o@vQ)wwﬁ F¢oWVQ)®Wﬁ
I' = Pt/x] @) [' = oPlt/x] (o7)
= 3z.P “* I =odz.P \ %

[,PDoA= oP
[P DoA= oA (50)
ILPOA=P

FLPoAsA e
I,P> A= oP
[P DO A= oA

(Do)

Figure 3.9: Proof search calculus for LLP

Queries (goal formulae) are also formulagsofQueries contain no constraints.

Lax Logic is used to separate the constraints from the logical parts of the pmgram
This is done by a simple procedure: replace all occurrences of constraisitsyin
T and modalise the head. For example:

Vs.s > 5D A(s) becomes Vs.T D oA(s)

The constraint can be encoded as a special kind of lambda term.

The result of this abstraction is called a Lax Logic program clause (LLE&selka
These have the form:
Vri..2,.8 D oH

where S and H are as for constraint logic program clauses (except that no con-
straints are allowed i§). Note the constraint program clauses and Lax Logic pro-
gram clauses are part of the same logic (quantified Lax Logic) and so programs wit
LLP clauses and constraint-free CLP clauses can be reasoned about together.

If we want to answer a quer§ from a program containing LLP clauses, then we
try to prove formula@, meaning thaf) is proved up to the satisfaction of some, as
yet unspecified, constraints. This is done using the natural deduction calculus given
in Figure 3.9.

For any query, we get one or many proofs from the program by using the LLP
calculus. This gives us different solutions up to the satisfaction of constraifitat
these constraints are differs for each proof. Using the proof term system for the

CHAPTER 3. A PERMUTATION-FREE SEQUENT CALCULUS FORLAX Loaic 80

LLP calculus, together with the lambda term (in a different system) encotlang t
abstracted constraints, the actual constraints to be satisfied canchkatea and
then solved using suitable machinery.

For every query, we are interested in the proofs of this query. As has beensdidcus

in the introduction, permutation-free calculi, such as PFLAX, are pecyhaell

suited for the enumeration of all proofs. PFLAX has an advantage over the LLP
calculus given, in that it generates exactly the normal forms of proofs, whitreas
LLP calculus involves transformation of proof terms to normal form. The draiwba

is that PFLAX, even for the fragment of Lax Logic used for constraint logic pro-
gramming, does not allow goal directed proof search. However, despite there being
no obvious correspondence between LLP and PFLAX, we consider PFLAX to be a
suitable calculus for proof search in the context of constraint logic programming.

3.10 Conclusion

In this chapter we have presented a Gentzen system for Lax Logic whose proofs
naturally correspond in a 1-1 way to the normal natural deductions. This calcu-
lus is syntax-directed and hence suitable for proof enumeration. The search space
for PFLAX is smaller than that for the usual Lax Logic sequent calculus. In the
following chapter this calculus is used as the basis for a theorem provinguslcul

Lax Logic gives a proof-theoretic approach to constraint logic programming (see
[FMWQ97], [Wal97]). The modality can be used to abstract away the constraints
separating the logical and constraint parts of the analysis. Lax Logic is used to
prove the modal formula. Permutation-free calculi are natural extensiongito |
programming thought of as backward proof search on hereditary Harrop formulae;
the work in this chapter provides an extension of the setting for constraint logic
programming founded upon Lax Logic. PFLAX is also useful since the proofs it
generates are in normal form, unlike the LLP calculus for constraint logic pregram
ming.

Chapter 4

Loop-Checking Using a History
Mechanism

This chapter is an investigation of one technique for propositional theorem proving
— the use of a ‘history’ to prevent looping. We develop a new history mechanism
and apply it to several calculi, utilising work from the first three chaptdrthis
thesis. The resulting calculi with loop checking are proved to be sound and com-
plete. Although it seems intuitively obvious that the history calculi are coraple
the proofs of this are surprisingly involved.

Backward proof search in the usual formulations of many non-classical proposi-
tional sequent calculi is non-terminating. Backward application of the rules can
easily produce the same sequent again and again. A simple example in the G3
calculus for propositional intuitionistic logic is (with atomic):

(A/\A):DA:>A (A/\A):DA:>A
(AAA)SA=ANA ") T ard)oAsal
AAA)>A= A (e)

ax)

Here the sequeritd A A) D A = A may continue to occur in the proof tree for this
sequent.

There are several approaches to decision procedures for logics whose usual sequent
formulations are not decision procedures themselves. One can attempt todind a s
guent formulation of the logic that terminates when used for backward proof search.
An example of this is the contraction-free calculus G4 for propositional intuition-
istic logic, originating with Vorob’ev ([Vor52], [Vor58]), and rediscoverealdaex-
pounded by Dyckhoff ([Dyc92]) and by Hudelmaier ([Hud93]). These contraction-
free calculi are not easily discovered (indeed may not be possible), andheso ot
methods can be useful. Another approach is to place conditions on the sequent cal-
culus to ensure termination of search. It is elegant to be able to build thentohte

these conditions into the sequent calculus itself. This is how we develop dalculi

81

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 82

theorem proving in this section. The technique for doing this is quite general and
can be applied to many calculi. We apply it to the intuitionistic sequentb&kS3
and MJ, as well as to some modal logics: S4, Lax Logic and intuitionistic S4.

4.1 History Mechanisms

In order to ensure termination of backward proof search, we need to check that the
same sequent (modulo number of occurrences of formulae of the same type) does
not appear again on a branch. In the example above we easily see that there is a
loop: we need a mechanical way to detect such loops.

One way to do this is to add laistory to a sequent. The history is the set of all
sequents to have occurred so far on a branch of a proof tree. After each backwards
inference the new sequent (without its history) is checked to see whether it is a
member of this set. If it is we have looping and backtrack. If not the new history is
the extension of the old history by the old sequent (without the history component),
and we try to prove the new sequent, and so on. Unfortunately, this method is space
inefficient as it requires long lists of sequents to be stored by the computei] and a
of this list has to be checked at each stage. When the sequents are stareatefar
information than necessary is kept. Efficiency would be improved by cuttingndo

the amount of storage and checking to the bare minimum needed to prevent looping.

The basis of the reduced history is the realisation (as in [HSZ96]) that one need
only store goal formulae in order to loop-check. The contexts of the sequents in this
section are multisets rather than sets of labelled formulae. For mdse agtculi

dealt with in this chapter, the context cannot decrease; once a formula is in the
context it will be in the context of all sequents above it in the proof tree. We say
that the calculus hagacreasing contextFor two sequents to be the same they need
to have the same context (up to multiple occurrences of formulae of the same type).
Therefore we may empty the history every time the context is (properly) extended.
All we need store in the history are goal formulae. If we have a sequent whose goal
is already in the history, then we have the same goal and the same context as anothe
sequent, that is, a loop.

We describe two slightly different approaches to doing this. There is thglstrai
forward extension of the calculus described in [HSZ96] (which we call thesSw
history’; more on this loop-checking method can be found in [Heu98]). There is
also related work on histories for intuitionistic logic by Gabbay in [Gab91]. The
other approach involves storing slightly more formulae in the history, but wbich
some calculi detects loops more quickly. This we describe as the ‘Scottisiyhist
([How96], [How97]); it can in many cases be more efficient than thesSwiethod.

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 83

IS TR ey T

I,P=Q;é . I'= QX .
IP= L:¢ . I'= L:H .
Toopn () TPED o= (ore) HPET

LLPO>Q=P;(D,)H) T'PD>Q,Q= D;¢
I'PO>Q=D;H
I',-P = P;(D,H)

I')-P= D;H
I'=PH I'=QH (Ar)
I'=PAQ;H R
[PAQ,Q = D;¢ .
LPAQ= DK M) LPAGo D e TQET
= P;H I'=Q;H
r=pvoxr Y®) topvox (VR
IPVQ,P=D;¢ I''PVQ,Q= D;¢ .
I, PVQ= DA (Ve) TRQ¢T
D is either an atom/ or a disjunction.
When the history has been extended we have parenthddiséd) for emphasis.

(Dg) D ¢H,andQ ¢ T

(-g) fD¢H,andL ¢ T

IPAQ,P= D¢

if P¢ T

Figure 4.1: G3%%! in the Swiss-style

4.1.1 The Swiss History

In this section we describe the application of the Swiss history to the @8laal

for propositional intuitionistic logic. We should first point out that the calculus we
describe as Swiss is different from the one in [HSZ96]. We are trying to focus on
the history mechanism and hence have not included the subsumption checks that
the calculus in [HSZ96] uses. It has also been extended to cover disjunction.

The Swiss-style calculus &3 is displayed in Figure 4.1. Let us make some gen-
eral points about it (which will apply to the Scottish 33 too). We give explicit
rules for negation (which are just special cases of the rules for implicdbothe
sake of completeness of connectives. There are two rulgsfy. These corre-
spond to the two cases where the new formiitajs or is not in the context. As
noted above, this is very important for history mechanism. Also notice that the
number of formulae in the history is at most equal to the length of the formula we
check for provability.

The loop checking works in a similar way to that I@fCRPAﬁSU in [HSZ96]. A

sequent is matched against the conclusions of right rules until the goal formula
is either a propositional variable, falsum, or a disjunction (note that disjunigtion

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 84

not covered in [HSZ96], and requires special treatment). This has beereénsur
by the restriction on goal formulae given in the calculus (although the calculus
would still be terminating without this restriction, it gives a much moreceffit
implementation). A formula from the context is then picked and matched against
the left rules of the calculus. The history mechanism applies to prevent looping in
the (D) rule (and similarly in thg—.) rule). The left premiss of the rule has the
same context as the conclusion, but the goal is, in general, different. If the/gjoal,

of the conclusion is not in the histor§{, we storeD in the history and continue
backward proof search on the left premiss. AlternativBlynight already be ir.

In this case there is a loop, and so this branch is not pursued. We backtrack and look
for a proof in a different way.

There are other places where the rules are restricted to prevent loopingefihe |
rules have side conditions to ensure that the context is increasing. FOphe

rule (which attempts to extend the context) there are two cases corresponding t
when the context is and when it is not extended. Something similar is happening
in the left rules. TakgV,.) as an example. In both premisses of the rule a formula
may be added to context. If both contexts really are extended, then we can continue
building the proof tree. If one or both contexts are not extended then the sefuent,
with the non-extended context, will be the same as some sequent at a lesser height
in the proof tree — there is a loop (which we describe as a trivial loop). Thisis e

to see: since the context and the goalsodre the same as that of the conclusion,
the conclusion is the same as the prensiss

What does a history sequent say? What, in logical terms, is the meaning of a sequent
with a history field? Take, for example, the 88 sequentS = I' = R;H. This

says that for every proof df, if P € H, then no sequent of the forlm= P; H’
appears in the proof tree 6f

We now prove the equivalence theorems. This is done in two stages. Firstvee pro
the equivalence of G3 and G3 with goals of the left rules restricted to atorasd
disjunctions (a calculus we shall refer to as/33Then we prove the equivalence
of G3” and G3/#t

Definition 4.1 Thesize of a proof treeis equal to the number of nodes in it.

We need the following lemmas:

Lemma 4.1 WEAKENING) The following rule is admissible in both3and G3":

=R
F,P:>R(W)

PROOF By induction on the height of the derivation of the premilis.

Lemma 4.2 If sequentS is provable inG3, thenS is provable inG3 with the ax-
ioms and the goal of L) restricted to atomic formulae (and).

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 85

PROOF. By breaking up the axiom formulae and induction on the size of the goal.
[

We prove the following result using the permutation properties of the calculus as
studied in Chapter 2 (see Table 2.1).

Proposition 4.1 The calculiG3 and G3” are equivalent. That is, a sequent is
provable inG3iff it is provable inG3”.

PROOF. It is trivial that if sequentS is provable in G3 then it is provable in G3.
We show the converse.

We show that if the goal is an implication or a conjunction, and the next inference
is (V) and in both premisses the goal is principal, then the rules permute. i.e.

I,SVT,S,P=Q I,SVT,T,P = Q

FﬁvﬂS$PDQCh)FﬁVﬂTéPDQ8?
[LSVI=P>Q “

permutes to:
I,SVT,S,\P=Q [,SVI,T,P=Q
rﬁvﬂP:Q(D)
ILSVI=P>Q ‘%

(Ve)

and (wherd”" =T1',SVvT)

I"S=r F’,S:>Q(A) I"TI'=sP 1I'T=0Q
I'S=PAQ R]ﬂTiPAQW)
[,SVIT=PAQ £

permutes to:
I"S=pr 1I"T=P I"S=0Q I''I'=Q
=P (Ve) '=Q
ILSVT=PAQ (Aw)

(Ve)

We proceed by induction on the height of derivations.

Consider a G3 inference which is not a’Biference. This must be an instance of

a left rule with an implicational or conjunctive goal. By the induction hypothesis
we have G3 proofs of the premiss(es). Hence the premisses with implicational or
conjunctive goals have these goals as the principal formula. From Table 2.1 and the
permutations given above, we see that we can permute these inferenctsewetih

rule we are looking at. The result follows by induction on the size of the dbal.

Lemma 4.3 (CONTRACTION) The following rule is admissible i@37% :

I''P,P=R;H
I'P=R;H

(©)

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 86

PROOF By induction on the height of the derivations of the premisiks.

Theorem 4.1 The calculiG3 and G3%*! are equivalent. That is, sequeht= G
is provable inG3iff I' = G ¢ is provable inG3!%,

PROOF. From Proposition 4.1 we know that it is enough to show that G3equiv-
alent to G3/%t,

It is trivial that any sequent provable in &3t is provable in G3. (Simply drop
the history part of the sequent and use contraction above instan¢es 9f). We
prove the converse.

Take any proof tree for sequeftin G3”. By definition this proof tree is finite.
That is, all branches of the tree end with an occurrenc&of or (L), with all
branches having a finite number of nodes (there is also no infinite branching at any
node). Using a proof tree for a sequehin G3P we construct a proof tree for the
sequentS; ¢ in G3%!, Essentially we take a G3proof tree and give a recipe for
‘snipping out’ the loops: removing the sequents that form the loop. Or, looking at it
in another way we shall show that failure due to the history mechanism only occurs
when there is a loop.

Take any G3 proof tree withn > 0 nodes. We take this proof tree and use the
following construction to give a G3* proof tree.

The following construction takes a B3roof tree and builds a G3*! proof tree

from the root up. For simplicity we ignore negation, although this can easily be
added. In this construction we use ‘hybrid trees’. A hybrid tree is a fragment
of G3"*! proof tree with all branches that do not have:) or (L) leaves ending

with G3P proof trees. These @&3proof trees have roots which can be obtained by
backwards application of a @3 ule to the top history sequent (ignoring its history).

We analyse each case of a topmost history sequent with non-history premiss(es)
resulting from application of ruleR) in the sequent tree.

— The root of the GB tree. We change (non-history) sequénto history se-
quentsS; ¢.

— (R) is one of(ax), (L), (Ar), (V&,), (V&,), i.e. a rule which in G8%! has
no side conditions. The premiss(es) are changed by adding the appropriate
history. They become the history sequents obtained by applying (backwards)
the G37** rule to the original conclusion.

For example, if the situation we are analysing is:

r=pr r=qQ
T=PAQ;H (x)

then we change this part of the hybrid tree to:

'==PH I'=>QH (Ar)
I=PAQ:H R

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 87

We have an extended @3¢ proof tree fragment with G3 proof tree(s) as
premiss(es).

— (R) is (Dr). We simply add a history as appropriate to the version of the
rule, depending on the context. We use contraction when the context is not
properly extended.

— (R) is (Ag,). If the side conditions of the history rule\.,) are satisfied, we
simply add the appropriate history to the premiss. Else, we have:

T.PAQP=D (Tf)
IPANQ= D;H (Aey)

where P € I'. From the point of view of looping, both the premiss and
conclusion are the same. This is a loop that we describe as trivial. The new
hybrid tree is simply the old one with the premiss obtained by contraction:

T.PAQP=D:H (Z’f)
IPANQ= D;H (©)

— (R) is (Ar,) is treated analogously 1@\,).

— (R) is (V¢). Similar to(A,,). If the side conditions are satisfied, then we
simply add the appropriate histories. Else, we have:

ILPVQ,P=D I,PVQ,Q=D Vo)
I,PVQ= D;H £

if P € I' then the left premiss and the conclusion are the same and there is
a trivial loop. In this case the new hybrid tree is obtained by removing the
completed subtree above the right premiss and obtaining the left premiss by

contraction:
IPVQ,P=D;H

IPVQ=DH

Similarly if Q@ € I'. (If P,Q € I', then we have a choice of which branch to
remove).

(©)

— (R) is (D¢). If the side conditions are satisfied then we simply add the ap-
propriate histories. Else, we have:

LPOQ=P F,PDQ,Q:D(D)
I,P>Q=D;H £

If @ € I', then for the purposes of looping the right premiss and the conclu-
sion are the same. The new hybrid tree is obtained by removing the subtree

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 88

deriving the left premiss, and obtaining conclusion from the right premiss by
contraction.

We now need to consider what happen®ite 7. This is where the history
mechanism prevents looping. If the history condition is not met, we know
that below the conclusion the hybrid tree has the form:

LLPODQR=P F,PDQ,Q:D(D)
I'PO>Q=D;H “

I,P>Q=S;(D,H) :
IPD>Q= D;H

(Dc)

whereD € H and#H D H'. The history is not reset at any point in this
fragment.

This can easily be seen to contain the loop which is the reason for the side
conditions not being met. The new hybrid tree is obtained by removing from
the previous hybrid tree all the sequents from, but not including, the sequent
I''P D> Q= D;H uptoand includind’, P O Q = D;H. (We may need
some contractions). We can now apply (backwards)) to the first of these
sequents. Either the side conditions will be satisfied) @ I': in either case

we know how to proceed.

As has been noted, G3 proof trees are finite and at every stage in this construc-
tion, the number of nodes of the hybrid tree without a history strictly decreases.
Therefore the construction is terminating. As every branch in the G3 treaereads
application of(az) or (L), the history tree we construct is a proof tri.

G3ist (Swiss) is a calculus with a history mechanism for propositional intuition-
istic logic. It is sound and complete. We claimed earlier that this cadcgives a
decision procedure for propositional intuitionistic logic. We prove that backwards
proof search in G*! in the Swiss style terminates.

Theorem 4.2 Backwards proof search in the Swiss calcul&?*! is terminating.

PROOF We associate with every sequénts> R; H a triple of natural numbers:
W=(k-nk—m,r)

wheref is the number of elements in ttset of subformulae of(I", R); n is the
number of elements in theetof elements of; m is the number of elements #H
andr is the size of goal formul&. (Notice that although' is a multiset, we count
its elements as a set). These triples are lexicographically orderedtmleft.

By inspection we see th&t’ is lower for the premisses of every inference rule than

for the conclusion. Consider as an exampte;):

ILPO>Q=P;(D,H) I''"PDQ,Q= D;¢p
I'PDODQ=D;H

(Dg) D¢ Hand@ ¢ 7T

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 89

The conclusion ha$l’ = (k — n,k — m,r). The left premiss hadl’’ = (k' —
n,k'— (m+1),r") (wherek’ < k). Therefore/" < W. The right premiss hald’"

= (k— (n+1),k,r). ThereforeW" < W. The weights of both premisses are less
than the conclusion.

Hence backwards proof search is terminatillg.

Note 4.1 The proof of Theorem 4.2 makes explicit a theme that can be seem through-
out this chapter. We have given the calculi using multisets, in order that they match
usual presentations, and the way that they are implemented in Prolog. However, it
is often more natural to think of contexts as sets. In particular, the idea of increas-
ing context is one that is based on a view of the context as a set. In fact, as the
theory has shown, we can look at multisets, and we only need the set view when we
need to map proofs to tuples of natural numbers to get a termination argument as
in Theorem 4.2. We could rework the entire section using sets, or we could give a
collection of propositions about treating multisets as sets and the effect of this on
these calculi. However, we do not do this, instead restricting ourself tothes

4.2 Scottish History and G3

In this section we discuss the ‘Scottish’ history mechanism as applied tG38.
calculus takes a slightly different approach to the ‘Swiss’ calculus. iAgai call

the calculus G3%¢. The calculus adds to the history at several points, rather than
just one (as is the case for the Swiss history) so has to store a larger a&to It
checks for looping more often than the Swiss history, so proof trees do not have to
be so large. The Scottish calculus’@3 can be seen in Figure 4.2.

We said earlier that when using a history mechanism to prevent looping it would be
good to cut down the amount of storage and checking to a bare minimum. This was
done in the Swiss G3¢! — the history mechanism operates in one place and one
place only and other restrictions for loop prevention involve no storage. Howeve

it is not clear that this is the best or most attractive approach. There asl@ofif
between these advantages and the obvious disadvantage of not looking for loops
very often. We find loops more quickly if we look for them at more points. That is,
we might continue building a proof tree needlessly when a loop might have already
been spotted. The Scottish &3 has larger histories. This allows us to check for
loops in more places, and in certain situations this is advantageous.

As in the Swiss history, when attempting to prove a sequent, right ruleppliec

first, breaking up a formula until it is atomic, falsum or a disjunction, and only then
can left rules be applied. Looping due to context extensions is prevented in the
same way. The difference between the two calculi is in the way that theris
mechanism works.

Whereas the Swiss calculus only places formulae in the history that havehgeen t
goal of the conclusions of @) (or (—)), the Scottish calculus keeps a complete

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 90

rPsPA Y Tispad

P ; .

I'= Q@ (QH .
[= g D(QQ?_)[(D’RZ) ifP eI and@ gé H
IP= 1;{L)
T = ﬁP;{H} (Fr1) P ET
= 1;(L _
p:; ;(P-,;{{) (7re) fPelandl ¢ H

[,Po>Q= P;F(??;)QFZ;IZ;DHQ,Q = D;{D} (D¢) ifP¢HandQ ¢ T
e P) RQ e
e () QT

I'= P;(PH) . I'=Q;(Q,H) ,

[,PVQ,P=D;{D} T,PVQ Q= D;{D} |
FPVQ= D (ve) WPQET

D is either an atom/_ or a disjunction.
When the history has been extended, we have parenthéstsgd for emphasis.

Figure 4.2: G3/%! in the Scottish style

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 91

record of goal formulae between context extensions. At each of the places where
the history might be extended, the new goal is checked against the history. Ifitis in

the history, then there is a loop. The heart of the difference between the twui cal

is that in the Swiss calculus loop checking is done when a formula leaves the goal,
whereas in the Scottish calculus it is done when it becomes the goal.

We prove the same theorems for the Scottis @3as for the Swiss G3%' . The
proofs are very similar to those for the Swiss&3and are omitted because of
their length and repetitiveness.

Theorem 4.3 The calculiG3 and G3% are equivalent. That is, sequeht= G
is provable inG3iff I' = G; {G} is provable inG3"t .

PROOF Similar to the proof of Theorem 4.1

Theorem 4.4 Backwards proof search in the calculG@8!** is terminating.

PROOF. Similar to the proof of Theorem 4.1

4.2.1 Comparison of the Two Calculi

Because of the way that the Swiss history works, loop detection is delayed. Let us
illustrate this with an example. Consider the sequent:

AB(ADBDC)DC=AD>DBD>C

In the Swiss G8%! (wherel’ = A,B,(AD> B> C)>CandG=AD>BD>C()
we get the following:

I G {C} T.05 04 ™

[=Cio (52)
=550 %)
r= G; ¢ (DR2)

We have to go through all the inference steps again (in the branch above the left
premiss) before the loop is detected — even though we can clearly see the loop.
However, in the Scottish calculus we get:

(az)

FéGﬁGQBDQG}RCiC&@KD)
L

FéCﬁQBDQG}CD)
FiBDCﬂBDQG}DM)
r=G;{G} bs

The topmost inferencé, D), is not valid, since the left premiss has goal formula,
G, which is already in the history. That s, the loop is detected, and is eetknter
in the proof tree than in the Swiss style calculus.

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 92

Spotting the loop as it occurs is not only theoretically more attractive, bud absib
prevent a lot of costly extra computation.

The two calculi both have their good points. The Swiss calculus is efficient from
the point of view that its history mechanism requires little storage and checking.
The Scottish calculus is efficient in that it detects loops as they occurdliagoi
unnecessary computation. The Swiss calculus needs less space for each sequent,
but more for the entire proof tree.

The question is whether or not in general an overhead in storage and checking of the
history (which should not be too great due to regular resetting) is preferable to the
larger proof trees which are the result of delaying checking. The approach we take
to this question is to look at empirical results in the form of timings for theore
proving in implementations of the calculi. Note that as the two calculi dtesra
similar it is more than likely that any optimisation that can be appleedrte can

also be applied to the other.

Results for the implementations of the 33 calculi can be found in section 4.4.

4.3 Histories and MJ

So far we have used the history mechanisms with G3 to give decision procedures
for intuitionistic logic. We can, however, improve on these decision procedures
by using a different base calculus. The calculus MJ has all the features such a
increasing context) which make it suitable for the history mechanisms to bea@ppl

to. MJ has fewer derivations than G3 and has focusing, therefore when searching
for a proof, there are fewer possible proofs to check on backtracking. Hence the
decision as to whether or not a formula is provable in intuitionistic logic ought to
be made quicker. This is the approach taken in [How96], [How97]. The calculi
MJHt in the Swiss style and MJ*! in the Scottish style can be seen in Figures 4.3
and 4.4 respectively.

We can prove similar theorems for M3 as for G3!!. The proofs are similar;
some of these proofs can be found in detail in [How96].

Proposition 4.2 The calculiMJ and MJ” (MJ with the goal of(C') restricted to
atoms, falsum or disjunctions) are equivalent. That is, segtiesprovable inMJ
iff it is provable inMJ” .

PROOF. Similar to proof of Proposition 4.1
Theorem 4.5 The Swiss calculuslJ?**! is equivalent tdVJ.

PROOF. Similar to proof of Theorem 4.1
Theorem 4.6 Backwards proof search in the Swigd?*! is terminating.

PROOF. Similar to proof of Theorem 4.2

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 93

P
— (ax) — (1))P — D;H (©)
I = D;H I — D;H I''P= D;H
F7P:>Q;¢ : F:>Q,H .
Tspogu o) TPEL popo gy bre) TPET
[LP= 1;¢ . = 1;H .
m(“nl) if P gl m(—w@) ifPel
Q
= P;(D,H) T D;H .
(PDQ) — Pt) itD¢H
' — D;H
I'=P;(D,H .
—|P()(_'5) IngéH
' —D;H

I'=P;H F:>Q;7-(,()
I=PAQ:H R

FJQQHU\ r-% DyH
PP P8 pon
A) LS)
I P=D;¢ 1''Q= D;o
r e D;H
D is either a propositional variable, or a disjunction.
When the history has been extended we have parenthddiséd) for emphasis.

(/\52)

(Ve) ifP¢Tland@ ¢ T

Figure 4.3: The Calculus M3*! in the Swiss style.

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 94

— (@) —/——— (1) F,PLD;H(C)
= DA I = D;H T,P= D;#H
[P = Q{Q :
F:>PDQ§-7.,}((3R1) if P¢gT
I'=Q;(Q,H .
Figj(QQ’]-)[(Dryp) P el and@ ¢ H
I'P= 1;{L :
F:>ﬁP;{H} ("m1) FPET
I'= 1;(L
p:; ;(P-,:{{) (-re) ifPelandl ¢ H
Q
= P;(P,H) T =% D;H _
(chz (Oc) FPEH
I' — D;H
I'= P;(P _
:>P,(M) (o) PN
I — D;H
P2 LM) it anaq ¢
I DiH r-% D
P/\—(/\['l) P/\—(/\ﬁz)
F—Q;Dﬂ‘[F—%D;?‘l

FiP\gQ;’}i(vnl) it P ¢ H ngv(%;qz(vm) ifQ¢H

IP=D;{D} I',Q= D;{D}
r ¢ p.y
D is either a propositional variable, or a disjunction.
Where the history has been extended we have parenthg#istd for emphasis.

(Ve) ifP¢TlandQ@ ¢ T

Figure 4.4: The Calculus M3%! in the Scottish style

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 95

Theorem 4.7 The Scottish calculuglJ®*! is equivalent tdviJ.

PROOF. Similar to proof of Theorem 4.1

Theorem 4.8 Backwards proof search in the Scottigld?**! is terminating.

PROOF. Similar to proof of Theorem 4.2

4.3.1 Propositional Theorem Proving

We have described four calculi that are decision procedures for propositional intu-
itionistic logic. Another calculus which is a decision procedure for propositional
intuitionistic logic is the contraction-free calculus G4. (This calculus cafobed

in the appendix).

We have already given a discussion of why we think that the Scottish historgdppli
to propositional intuitionistic logic is theoretically more attractive thlha Swiss
history. We also said that we would like to compare implementations of thelca
to add experimental evidence to the theoretical argument. We also compasnwit
implementation of G4.

The calculi were all naively implemented in Prolog. By a naive implaaten

we mean one that follows as closely as possible the unintelligent searching through
the proof trees as generated by the sequent calculi presented. We describe this for
MJHiSt_

Our implementations of the calculi are syntax directed. A seqlieat P; ¢ (for

the Swiss calculus), af = P; { P} (for the Scottish calculus) is passed to the theo-
rem prover. For a sequent with an empty stoup, the next inference is determined by
the goal. If the goal is an implication, negation or conjunction, then the appropriate
right rule is applied. If an instance of one of these rules fails, then we haveke ba
track (as no other rule is applicable). If the goal is a propositional variaddkrh

or a disjunction, the contraction rule is applied, selecting a formula and plae¢mg i

the stoup. If a contraction fails, another contraction is attempted, placirifgeedt
formula in the stoup. If the goal is a propositional variable or falsum, and contrac-
tion has failed for all possible stoup formulae, then we backtrack. If the ga@al is
disjunction and contraction has failed for all possible stoup formulae, thenaye m
apply disjunction on the right. If this fails we have to backtrack. For a sequelmt wit

a stoup formula, the next inference is determined by the stoup formula. The next
inference must be an instance of the appropriate rule on the left. If such asmoger
fails then we have to backtrack. Note that(in;) we check the right branch, the
one with the stoup formula, first. We get failure if at any point no rule instaane c

be applied. We give an example of failure owing to the history:

LP= PP %

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 96

failsasP € {I', P} and@ € {P, Q}, the side conditions are not satisfied. Owing to
the condition on(C'), no other rule instances are applicable to this sequent and we
must backtrack. We can describe a similar process for the proceduressr el

G4.

Knowledge of the invertibility of inference rules can be useful when implemegnt
theorem provers. Although we have not used such knowledge here, we still think it
is useful to give the following lemma.

Lemma 4.4 The following rules oMJ“*¢ (both Swiss and Scottish) are invertible:

(Or1)s (Or2)s (7r1)s (R2), (Or)s (72)) (Aw), (Ve). The rules(Az,), (Ac,),
(Vr,), (Vr,), (C) are not invertible.

PROOF The invertibilities are proved by some easy inductions. We can give simpl
counterexamples to the invertibility of the other rulllis.

4.4 Results

We tested our implementations of the Swiss and Scottish*G3he Swiss and
Scottish MJ*s* and G4 on a set of benchmarks for propositional intuitionistic logic
([Dyc97]) and on the example formulae from [How97]. The example sets may be
found in Appendix B. As we have already said, the implementations of these calculi
are naive. Much more efficient implementations are imaginable, and méey be
implementations of G4 exist. The purpose of these implementations is for them to
be simple and in the same style in order that we can make a meaningful comparison
of the calculi.

The results are displayed in Table 4.1 and Table 4.2. The benchmark formulae are
all parameterised by natural numberThe entries in the table represent the largest

n for which the formula was decided in a particular calculus in less than hdec

of processor time (the larger the entry, the better the prover has performied). T
timings in the second table are simply average timings (to two significaneBgur
with a cut off at 2100000ms) for proving the formulae (the smaller the entry, the bet-
ter the prover has performed). The Prolog code was run using SISCTUS Prolog2.1
on a Sun SPARCStation 10.

We can make several comparisons: we can compare the history proverhavith
contraction free prover; we can compare G3 and MJ as base calculi for applying
history mechanism to; we can compare the two forms of history mechanism.

The G4 decision procedure takes a different approach from that of the history
provers. Therefore the implementation, though we have attempted to wiite it
the same style, is significantly different from the implementations of theyist
provers. Comparison is hard and uncertain. We therefore do not want to say any-
thing definite based on the timings given. However, the results might indicdte tha

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM

97

| G375 Sc. | G387 Sw. | MJFsf Sc. | MJ7! Sw. | G4 |

de_bruijnp 3 2 7 6 10
de bruijnmn 1 1 2 2 1
ph_p 3 3 3 3 4
ph_n 1 1 2 2 1
con_p 50 23 54 85 130
con.n 5 2 5 6 2
schwi cht p 5 5 12 11 157
schw cht _n 2 1 102 89 38
kk_p 2 1 330 404 4
kk_n 0 0 5 5 1
equi v_p 3 2 13 13 4
equi v_n 4 4 1191 1219 3

Table 4.1: Results for Theorem Provers (largest parameter giving proof ithbess
10sec)

G4 is generally a faster decision procedure, but that for certain clagpesblem,
the history provers can be comparable or even quicker.

The comparison between G3 and MJ as the base calculus for the history mechanism
seems quite straightforward. In all cases the Swis§Mis better than the Swiss
G34%t and the Scottish MJ#! is better than the Scottish &3¢, This is to be ex-
pected as MJ search space is a restriction of G3 search space. Wadecthelt MJ

is a better calculus than G3 for basing a history mechanism propositional theorem
prover on.

Our experimental results show that with both MJ and G3 as a base calculus, the
Swiss and Scottish calculi give similar results for most examples.adewyas ex-
pected, there are some examples where the Swiss mechanism is a litte dredt
others where the Scottish mechanism considerably outperforms (by several order
of magnitude) the Swiss mechanism. We conclude that for propositional intuitionis-
tic logic, the Scottish mechanism seems to be the better approach to loofotetec
However, G4 seems to give the best decision procedure.

Of course, if one is interested in finding loops, or a certain class of proofs rathe
than in decision procedures, then the history calculi are very useful andr®4 is

4.5 Histories and Modal Logic

So far we have discussed history mechanisms only with respect to propositional
intuitionistic logic. However, their use is possible for other logics, such adain
logics. Indeed, as contraction-free calculi for modal logics are either not known or

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 98
\ Eg \ uni. \ P/U\ G3Hist Sw.\ G3Hust Sc\ MJH st Sw.\ MJH st Sc.\ G4\
1. P 49 56 14 18 7
2. P 3900 4500 1400 1700 260
3. U 1800 1800 170 160 61
4, P 0.7 0.8 0.2 0.2 0.5
5. P 0.3 0.4 0.1 0.1 0.2
6. P 3.4 2.7 0.6 0.8 0.5
7. P 77 57 11 14 13
8. P 1.2 1.1 0.5 0.5 0.4
9. P NR NR 4.3 4.3| 1500
10. U 1.1 1.0 0.4 0.5 0.7
11. U NR 61 24 10 NR
12. P 1.4 1.7 0.7 1.0 0.9
13. U 47 6.3 4.5 3.2 3.9
14. P 6.8 4.8 3.5 2.7 15
15. P 79 38 50 57 11
16.| 3 P 6400 6500 800 960 1100
17.] 2 P 46000 46000 7500 8500| 3300
18.| 4 P 63 41 63 8.5 13
18.| 5 P 120 71 150 15 24
19.| 2 P 52000 2500 7.8 8.1 13
19.] 3 P NR NR 18000 27 260
20.| 2 P 17 17 1.1 2.1 2.4
20.| 4 P 970 950 53 6.6 33
21.| 2 U 290 260 8.6 10 12
21.| 3 U 1500 1500 27 33 37
22.| 2 P 3200 190 370 22 8.0
22.| 3 P NR 11000 12000 510 20
23.| 2 P NR NR 35 45 140
23.] 3 P NR NR 2200 1400 8900
24,1 2 U NR NR 49 31 NR
25.| 2 P NR NR 11000 20 29
25.| 4 P NR NR NR 370 | 18000
26.| 2 P NR NR 3.4 5.8 5.6
26.| 5 P NR NR 17 30 40
27.| 2 P 380 110 10000 47 9.3

Key:

Uni.:size of the universe the formula has been instantiated over; P: provble
unprovable; NR: no result in less 100000ms)

Table 4.2: Results and Timings (averages in milliseconds)

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 99

S, A, A 7)
SILH
YL, T, H (T) Y|, L, H (L)

S|IL P, Qi H V) S|IL P H E|H,Q;H()
SILPVQ;H SIILPAQ H
s, OP|IL, P; _ |1, P; H .
Y|, PyH, Iy, P
|) ,Ha 2 (D) if P ¢ H

E|H1, DHQ, DP,H

Figure 4.5: S475! in the Swiss style

are complicated, history mechanisms are of more interest here than foiomisit

tic logic. The Heuerdingt al. paper ([HSZ96]) is mainly about loop checking for
modal logics. In this section we discuss the application of histories to somd moda
logics: S4, intuitionistic S4 and Lax Logic. We know of no contraction-free cal-
culi for intuitionistic S4 or Lax Logic (although [AF96] contains an unsuccessful
attempt at developing one). Hudelmaier has given a contraction-free caloulus f
S4 ([Hud96]). However, this calculus is complicated and hard to understand, mo-
tivating other approaches to theorem proving in S4, such as the one from [HSZ96]
discussed here.

As S4 is a modal logic with classical logic underlying it, we do not need a calculus
which deals with all the connectives, but simply one which can deal withutaen

in negation normal form. We give the calculus for&4 from [HSZ96] (where it

is calledS4%"), [Heu98] (where it is calle§4°) in Figure 4.5. Sequents are one-
sided and of the formx|IT; #. X is a set of formulae of the forr» P. I1 is a set of
formulae in negation normal forn# is a set of formula.

Definition 4.2 A formula is said to be imegation normal form if it contains no
occurrences ob, the only negated subformulae are atoms and the formula contains
no repeated instances of a modality (@@ and no<).

Since the base calculus is classical logic, no loop checking is needed for this. A
we need to consider for looping are the modalities. This is fortunate, since tignera
speaking this calculus does not have the fundamental requirement that the context
is increasing. What it does have is an increasing context fifrmulae. As noted

in [HSZ96], this is enough to allow loop checking with a history.

In the previous section we identified two different approaches to loop deteation i
intuitionistic propositional logic. The obvious thing to do next is to see if the same
distinction can be drawn for the modal logic.

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 100

We reiterate the difference between the Swiss and Scottish methoduibioimistic
logic, with reference to théd) rule in the G3*! calculi. First the Swis$D):

LLPOQ=P;(D,H) T'PD>Q,Q= D;¢
IL'PO>Q=D;H

(Dg) D¢ HandQ ¢ T

And the Scottisi{D,):

IP>Q=P;(PH) T,P>Q,Q= D;{D}
IPOQR=D;H

(Dg) IfP¢Hand@ ¢

The Swiss calculus checks that the goal of ¢baclusionis not in the history and

if not, adds this formula to the history. The Scottish calculus checks that the goal
of the leftpremissis not in the history and if not, adds this goal to the history. For
intuitionistic logic this makes a significant difference to where a loop isotiede

Now look at the(O) inference of S&*! . To illustrate the point we will look at a
sequent with only one boxed formula in it:

SIS, Py H, P

S0P (O) ifP¢H

An alternative rule would have been:

Y|X,P;H, 0P
YL, OP;H

(O) fOP¢H

In terms of checking against the history and adding to it, these two rules doe ana
gous to those given above for intuitionistic logic. But here it is easy to seésd
rules will have exactly the same effect. The difference between chethengre-
miss and conclusion formula is simply a box. The addition of more boxed formulae
to sequents makes no difference to this.

We see that the two slightly different approaches that were taken for ontigtic
logic merge into one for S4.

In the rest of this section we illustrate the wide applicability of histogchanisms
by applying them to two more logics. Both are intuitionistic modal logics: intu-
itionistic S4 and Lax Logic.

4.5.1 Histories and Lax Logic

In this section we briefly present a history calculus which is a decision guoee
for propositional Lax Logic, as presented in Chapter 3.

Lax Logic extends usual calculi for intuitionistic logic by two rules, one for the
modality on the left and one for the modality on the right. The calculus we use here
as the basis for the history calculus is PFLAX (see Figure 3.7). Essemiakgxtra

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 101

(az) DL,P-—>DiH

r-2% pu T,P=D;H (©)
P ; i
I'=Q;(Q,H)

F=Po5QH (Dr2) fPelandQ ¢ H

I'=P,(PH) T-%D%H
r'2¢p.#u
I'= P;(P,H)
I'=oP;H
I, P = oR; {oR}
I 25 oRrH

(D/;) if P ¢ H

(og) P ¢H

(og) ifP¢T

D is either an atom or a modal formula.
Where the history has been extended we have parenthggistd for emphasis.

Figure 4.6: The calculus PFLAX ! (Scottish)

work has to be done for this calculus. It has all necessary features, sucheasing
context, for use with history mechanisms. We simply take the history mechanis
for intuitionistic logic (in either the Swiss or Scottish style, we only présme in

the Scottish style) and apply it without change, only noting that there are formulae
with a modality — this presents no difficulties. The calculus PFEZAXrestricted

to the connectives ando is presented in Figure 4.6.

We can again prove all the usual theorems about soundness, completeness and ter-
mination.

45.2 Histories and 1S4

Intuitionistic S4 (1S4) is a modal logic with a modality like that of S4, but buil
on intuitionistic logic rather than classical logic. The two sided single exdeat
calculus with a single modality that we deal with here can be found in the appendix.
More details on 1S4 can be found in [BdP96] and [Sim94].

As for S4, we are faced with an immediate problem — the context is not inogeasi
(owing to the(Ox) rule). For S4 this wasn’t problematic as we only needed to check
for looping owing to the modalities — the propositional classical logic needs no
history. The modal context was increasing: hence we could easily use our histories.
Now that the modal logic is based on intuitionistic logic, we have to consider loops
in the base calculus, as well as ones owing to the modality (which can bendlbalt
since we still have an increasing modal context).

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 102

We do loop checking in this calculus by using two histories — one to deal with
the modalities (like that for S4 above) and one for intuitionistic propositionatlogi
(again, as above). We formulate the calculus in order to prove formulaenwith
repeated modalities. (Sequents can be preprocessed to such a formSiAce

OP. Notice that for proof enumeration such a preprocessing would not be allowed
as it would identify non-equivalent proofs. However, for theorem proving this is a
valid step). We display IS#¢ (in a Scottish style) in Figures 4.7 and 4.8. Because
of the two history mechanisms we have a lot of, but not unmanageably many, rules.
Sequents have formll’, A = P;Hi;H,, where none of the formulae iA are
boxed,#; is the modal history an@, is the intuitionistic history.

The calculus uses the Scottish style of history for the intuitionistic component. We
could easily have used the Swiss style instead. As already discussedstbele

one approach to the modal looping. We prove the soundness, completeness and
termination of this calculus.

Theorem 4.9 The calculilS4 and 1S47%! are equivalent. That is, sequeStis
provable inIS4 iff it is provable inIS47%t,

PROOF. Soundness is trivial. The completeness is similar to the other proofs. To
see this, one simply has to note that the two histories work independently, with the
modality history taking precedence. Betwé€ry,) inferences the second history is
much like the intuitionistic history. That the first history is much like tifehsstory

is also obvious. Building a proof tree can be done as in Theoreni4.1.

Theorem 4.10 Backwards proof search in the calcull®4%! is terminating.

PROOF The proof is similar of that of Theorem 4.2. We associate with every
sequentdl’, A = R;H,; H, a quadruple of natural numbers

W= (k—mbk—1li,k—nk—I)

wherek is the number of elements of the set of subformula&bf A, R; m is
number of elements in the set of formulaedf; » is the number of elements i
when considered as a sét;is the number of elements iH;; [is the number of
elements ir{,. The quadruples are ordered lexicographically from the left.

By inspection we see that for every inference, the premisses havelibvwean the
conclusion. Hence backwards proof search is terminalihg.

We can easily formulate a two-sided classical S4 calculus similiet|S4 calculus

we have given. We simply allow multiple succedents and adjust the rules accord-
ingly. What effect will this have on the histories? Basing the calculus essidal

logic immediately means that we do not need the second history — loop-checking
is not needed for classical logic. We still need to keep track of the boxedifae

and this is done by noting all the boxed formulae in the succedent when performing
(Oz). That is, we end up with a two-sided calculus?34,

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 103

T A PSP, Y mra s PhH Y
OC, AN = Q; Hi; {Q}
O A = N D Q;Hi; Ho

ar, M,A = Q; ;{Q}
O A= M D Q;Hqi; He

O, A = Q;Ha; (Q, Ha)
O A = N D Q;Hi; Ho
O, A = Q;Ha; (Q, Ha)
O A= M D Q;Hyi; Ha
O0,A,P D> N = P;Hy;(P,H,) O, A,P>N,N = R;H;{R}

Or,A,P D> N = R;Hi; Hs
O0,A,P D> M = P;Hy; (P,H,) O, M,A P> M= R;¢;{R}
Or,A,P D> M = R;Hi; Ho
O, A = P:Hy; (PHy) O0 A = Qs Hy; (Q,Ha)
O0,A = PAQ;Hi; Hs

O0,A,NAQ,N = R;H,; {R}

O, AN AQ = R; Hy; Ha
O0,A,PAN,N = R; H; {R}

O, A, PAN = R;Hy; Ho

Or, M,A,M AN@Q = R;¢;{R}

O0, A, M AQ = R; Hy; Ha

O, M,A,PANM = R;¢;{R}

O A PAM = R;Hy; Ho

tif P ¢ HyandN ¢ A.

Tif P ¢ HyandM ¢ A.

All boxed formulae in the context are inl’

M is a modal formula)V is a non-modal formulaP, , R can be either.
Where the history is extended we have parenthegiBet) for emphasis.

(Or1) N ¢A

(Dgry) if M ¢ 0T

(Dr3) f N eAandQ ¢ H,

(Dr4) if M el andQ ¢ H,

(Do)t

(Dr2)t

(Ar) 1fP,Q ¢ Hs

(A1) IEN ¢ A

(Ag2) N €A

(Ag3) ifM ¢ O

(Azs) ifM ¢ OT

Figure 4.7: 1S4t : axioms and rules for, > andA

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 104

O0, A = P;Hy; (P, Hsy)
OA = PV Q;Hi; He
ar, A H;

O0, A, Ny V Ny, Ny = R;Hy:{R} OL,A,N;V Ny, Ny = R; Hy; {R}
OC,A, N,V Ny = R; Hy; Ho

O, M,A,MV N = R;¢;{R} O ,A,MV N,N = R;H,;{R}
O, A, MV N = R;Hi; Hs

OC, ANV M,N = R;H,; {R} O, M,A,NV M = R;¢;{R}
OC,A,NV M = R; Hy; Ho

ar, My, A, My V My = R;¢;{R} 0O, My, A, MV My = R;¢;{R}
OC, A, My V My = R; Hy; Ho

Or = P; (P, H,); {P}

DF,A:> DP;H1;H2

OC, A, 0P, P = R; H,;{R}

ar, A, 0P = R; Hi; Ho

(Vr,) ifP¢&H,

(V)T

(Ve2)t

(Vea)b

(Vea)t

(DR) if P §E H,y

(@) ifP¢A

T |f Nl, N2 ¢ A

1if M ¢ O andN ¢ A

if M ¢ O andN ¢ A

tif My, M, ¢ 0T

All boxed formulae in the context are ial’

M is a modal formulaN is a non-modal formulaP, Q, R can be either.

Where the history has been extended we have parenth¢gistd for emphasis.

Figure 4.8: The calculus IS4 : rules forv, O

CHAPTER 4. LOOP-CHECKING USING A HISTORY MECHANISM 105

4.6 Conclusion

In this chapter we have investigated the use of calculi with history mesimani

as decision procedures for a variety of logics. We have given history cabouli f
intuitionistic logic, S4, 1S4, and Lax Logic. We have proved the soundness, com-
pleteness and termination of these calculi. We have compared our approach with
that of Heuerdinget al in [HSZ96]. We have given a theoretical discussion of this
and have also performed a practical comparison of the calculi for intuitiofogiic

using Prolog implementations of the calculi. We conclude that the Scottish mecha-
nism gives a better decision procedure for intuitionistic logic, but that for digi)

G4 gives as good or better a decision procedure. For classical S4, the approaches
coincide. We have also illustrated the wide applicability and flexibilityhef tech-

nique by applying it to IS4 and Lax Logic.

Chapter 5

Embedding MJ in Intuitionistic
Linear Logic

Girard’s original paper on linear logic, [Gir87], gives an embedding of intuitionis-
tic logic into linear logic, for formulae, sequents and for proofs. The translation,
known as the Girard embedding (the embedding of [Gir87]), was claimed to
be correct and faithful. A detailed proof wasn't provided in that paper — this was
supplied by Schellinx in [Sch91]. [Sch94], [TS96] show how the Girard embed-
ding of proofs induces a sequent calculus for implicational intuitionistic logic — this
Gentzen system is known as IU. We know of no satisfactory semantic jatitfic

for the form of IU. In this chapter we discuss IU and the Girard embedding and give
a new embedding (defined by two functions) of a fragment of intuitionistic logic
into (Intuitionistic) Linear Logic. This embedding induces (and was designed to
induce) a fragment of the sequent calculus MJ. This calculus is syntacticallgsi

to IU, but has in addition a semantic justification — its proofs correspond tigtura
in a 1-1 way to the normal natural deductions of intuitionistic logic. In fact, for
reasons discussed below, the largest fragment of intuitionistic logic thatweesha
satisfactory solution for is hereditary Harrop logic.

5.1 The Girard Embedding

Before we discuss this particular embedding, we give a definition of what we mean
by an embedding of one logic into another.

Definition 5.1 Anembeddingof logic L, into logic L, is a function,f, interpreting
formulae ofL, into formulae ofL, such that for every formul® of L, ., P iff

|_L2 f(P)

We should note that this definition is given in terms simply of provability erlat
the chapter we ask for a little more.

106

CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC LINEAR LOGIC 107

The Girard embedding has been quite widely discussed and can be found in, for
example, [Gir87]. We present the embedding below:

AY = A whereA is atomic
19 = 0

(PDQ)Y = P

(PAQ)Y = PI&Q?

(PVQ)Y = PIglQ?

(Vz.P)y = Vz.PY

(Jz.P)? = Fz.PY

To embed sequents we interpfets- R as!l'? = RY and (with P the next principal
formula)I', P = R as!l'?, P9 = RY. Hence if the last step in a proof of P D
() = Ris (D), then in the translation we would have:

9 = P9
v =1ps) ipe o = p
09, 1PY—0QI = RY (=oc)

We know that the embedding is correct for provability. The following theorem can
be found in [Sch91]:

Theorem 5.1 IL T = P iff CLL HI'Y = P9.

PROOF. The proof can be found in [Sch91l

In [Gir87] a translation of proofs is also given, showing how to interpret au(aht
deduction) proof into a linear sequent calculus proof. It is translations of proofs
that we are really interested in in this chapter. It should also be pointethaut
embedding logics into linear logic results in the system of Unified Logic in [Gir93]
This calculus, by building embeddings of classical logic and intuitionistic logc int
linear logic, has the connectives of all three logics and allows them to abtéhse
mention connections between Unified Logic and IU later in the chapter.

5.2 Induced Calculi and IU

We look at the fragment of ILL generated by the grammar of the embedding of
intuitionistic logic into linear logic. From the proofs in this fragment, we find a
sequent calculus for intuitionistic logic. We say that the calculusidsicedby

the embedding. The proofs in the restricted grammar take a certain form and the
inference steps correspond to certain rules of intuitionistic logic. We rttake
notion of induced calculus precise.

Definition 5.2 A sequent calculué&/, for logic L; is induced by embedding e of
logic L, into logic L, (with sequent calculu&’,) if for every sequent of L;:

CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC LINEAR LOGIC 108

I,P;P= R
ris4a tp-=g©
[P,0=Q (5r) I''—=P F;Q:>R(D)
r.oe=PrPoQ ‘% I;P>Q=R £

e=~r F;@:>Q(A)
[;0=PAQ R

IP=R (Ae) Q=R (Ae)
I;PAQ=R "™ I;PAQ=R "

I'; — = Plu/z] I Plt/z] = R
o=vwr R Twpsr (0

© stands for either empty or a single formula.
— stands for empty.
T u not free inI".

Figure 5.1: The sequent calculus U for a fragment of intuitionistic logic

— there is a bijection between proofs of sequ&mtb G; and proofs of sequent
B(S) in Go

The Gentzen calculus IU induced by the Girard embedding fobnthe vV fragment
of intuitionistic logic is displayed in Figure 5.1.

Proposition 5.1 IlU- ;0 = Riff ILF [0 = R

PROOF. See [TS96]1

We have not treated disjunction, bottom or the existential quantifier in IU. This
is because with these connectives the calculus loses the attractiveefeathe
focused formula on the left. For example, the following could occur in ILL:

I0,IPL, Q=R 'T,'PQ=R
LIPeR Q=R)
T, /(1@ P,),Q = R

(®c)

Or even more illustrative:
T, A0=R (0)
These correspond to intuitionistic proofs with many focused formulae.

We know of no treatment of IU and the Girard embedding that explicitly mentions
disjunction or falsum, although it is hinted in [Sch94] that there is a correspondence
between the induced calculus for the whole of intuitionistic logic and the intuition-
istic fragment of Girard’s Logic of Unity ([Gir93]). Schellinx says that wedi

CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC LINEAR LOGIC 109

“the neutral fragment of intuitionistic implicational logic as it appears ina@i’'s
system of Unified Logic” ([Sch94], pg. 50). The neutral intuitionistic fragment of
Unified Logic is the fragment of the logic with connectivesA,V, those of 1U.
However, beyond this fragment, the interpretations of the intuitionistic comescti
is more complicated, and simply taking the fragment of Unified Logic for intuition-
istic logic gives an unattractive calculus (losing the single formula focusihddes

not give MJ.

5.3 Inducing MJ

The D, A,V fragment MJ is similar to the calculus 1U. Its form is that of 1U, but
with the restriction that th&s of Figure 5.1 are empty. MJ also has satisfactory
rules for disjunction, falsum and the existential quantifier. We would like to find

an embedding of intuitionistic logic into ILL which induces this calculus. This
seems to be hard to achieve using a single mapping. Instead we use two mappings:
a positive one which applies to formulae on the right; and a negative one which
applies to formulae on the left. Unfortunately, we have been unable to find an
embedding of disjunction (on the left), falsum and the existential quantifier (on the
left) that works as we would like, and so these have been left out. We give this
embedding:

AT = A where A is atomic
A = A where A is atomic
(PO>Q)t = P —lQT
(PD>Q)” = PT—o@Q~
(PAQ)T = PT&IQT
(PAQ)™ = P7&Q~
(Ve.P)t = ValP*
(Ve.P)~ = Vao.P~
We should also note the following extensions:
(PvQ@)"™ = PtelQ*
1+ = 0
(Fz.P)t = FxlPT

We embed sequents into the ILL calculus with split context, the systerm (Elg-
ure 2.2).

The intuitionistic sequenE = R is interpreted as the sequent; — = R" in

ILL*. The MJ sequent Ly Ris interpreted as the sequent; P~ = R* in
ILL*>.

The sequenE = R of intuitionistic logic, is interpreted a&—; — = R*. Every
proof of this ILL* sequent, when viewed as an intuitionistic proof, is an MJ proof.
Moreover, all MJ proofs can be found in this way.

CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC LINEAR LOGIC 110

We now try to explain why we have chosen this embedding. When we translate a
formula on the right, say’ O @), to a linear logic formuldP — (@, the (—o%) rule

can be applied straight away, independently of whether there is a stoup (unbanged)
formula on the left. This does not match MJ. One fix is to translaté&te!() in-

stead. In order to get to a sequent that is the translation of an intuitiorogiic |
sequent, we have to unbang the goal — to do this we must have no unbanged formu-
lae in the context. The negative formula is still banged and is moved to thextonte
However, we then find that the translation of implication on the left loseab-

tion of a privileged formula. Hence the two translations. One for the lefetaim

the notion of a privileged formula, one for the right to ensure the rule can only be
applied when we require.

The two rules where U differs from MJ af®x) and(Ax). The new embedding
induces the MJ rules. For example (using Lemma 5.1 below):

S, P - = QF
_7 _, :>Q (P)
Y, P — =1t
S Sip ogr (o)

Obviously if there was a stoup formula, the linear context would be non-empty and
so we would not be able to perform the promotion (see Lemma 5.1).

The presentation of ILL that we use to prove results about the embedding’is ILL
This can be seen in Figure 2.2. We prove that the embedding is correct and faithful.
Note that for presentational purposes we write MJ sequents differently from horma

we writeX; — = Rinstead ob. = R and we write; P = R instead o L R.

Theorem 5.2 The embedding given above is correct for proofs. That is, for every
proof inMJ of £; © = P there is a proof ilLL* of ¥ —; 0~ = P*.

PROOF. The proof is by an easy induction on the height of derivations. We shall
illustrate it for just one case, the others being very similar.

The last inference i€D). We have:

Y- =P Q=R o)
S POQ=R £

So by the induction hypothesis we have proofs in¥Ldf:

Y- =Pt Y ,Q- = Rt
And hence we have a proof:
Y — = Pt

Yo — =Pt
Y IPTo@Q = R*

(P)

CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC LINEAR LOGIC 111

We need two lemmas:

Lemma 5.1 If sequent.—; ©~ =!R* is provable inlLL * then©~ = ¢.

PROOF. Induction on the height of derivationll

Lemma 5.2 If sequent.—; ©~ = R* is provable inlLL * then©~ has zero or one
elements.

PROOF. Induction on the height of derivationll

Theorem 5.3 The embedding given above is faithful for proofs. That is, for every
proofinILL of ¥~;©~ = P* thereis a proofirMJ of X; © = P.

PROOF. We prove the result by induction on the height of derivations.

1. Case: the last inference is an instancé-efz); we have the following:
¥, P07 =101
56 =P —lgr (R

By Lemma 5.10 is empty and the next inference in theref¢re). By the
induction hypothesis we have an MJ proof ending in:
io—=PDQ (Or)

2. Case: the last inference is an instancé-ef;); we have the following:
Y;07 =IPT Y0 ,0; = RT
Y lPT—@Q~,07,0; = Rt

(—oc)

By Lemma 5.1 and Lemma 5.8, and©, are empty and the left premiss
must result from(P). By the induction hypothesis we have an MJ proof
ending in:
Yo—=P Y;Q=R
SPoQ=R 0

3. Case: the last rule is an instancg &f;); we have the following:
Y;,00 =Pt Y0 =107 (&x)
ST 07 =IPHIQT R

By Lemma 5.1,0~ is empty and therefore both premisses are the result of
(P). By the induction hypothesis we have an MJ proof ending in:
Y;—-=P Y;—=0Q A
Yo—=PAQ (A=)

CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC LINEAR LOGIC 112

4. Case: the last inference is an instancétof,). We have the following:
Y, P7,00 = R"
Y P&Q,00 = RY

(&c1)

By Lemma 5.2,0~ is empty. By the induction hypothesis we have an MJ
proof ending as follows:
X;P=R A
S PAQ= R (Acr)

5. The case fof&) is similar to(&,).
6. Case: the last inference is an instancél®f. We have the following:
X ,P;0,P = R" (D)
Y¥7,P7;0” = RT

By Lemma 5.2,0~ is empty. By the induction hypothesis we have an MJ
proof ending:
S,P;P=R

,P;— =R (©)

7. Case: the last inference is an instancé&f). We have the following:

5= = pr)
We have an MJ proof:
S PSP (ax)
8. Case: the last inference is an instancévaf). We have the following:
Y7;07 = Ply/«]|" (V)
Y;0 = V. Pt

(with y not free iInX~,07). By Lemma 5.109~ is empty. By the induction
hypothesis we have an MJ proof ending in:
¥; — = Ply/x]
¥y — = VaP (V=)

(with y not free inY).

9. Case: the last inference is an instancévef). We have the following:

S P[t/z]”,0 = R*
Y= V2.P~,0- = R*

(Ve)

By Lemma 5.2,0~ is empty. By the induction hypothesis we have an MJ
proof ending in:

Y, Plt/z] = R

&WPiR(d

CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC LINEAR LOGIC 113

10. We can also add the cases for disjunction and the existential quantifier on the
right.

The proofs of the two theorems above show that a fragment of MJ is indeed the cal-
culus induced by the new embedding. There is therefore an isomorphism between
the proofs in the fragment of ILL described above (that is, ILL over the gramma
of the embedding) and the proofs in the fragment of MJ. The,,V fragment of

MJ lives inside ILL. An obvious corollary of the above theorems is that the new
embedding is correct and faithful for provability.

The embedding given above uses two translations: one for occurrences on the left
and one for occurrences on the right. That the embedding requires this is, perhaps,
not surprising, given the lack of symmetry in intuitionistic logic between tfiatel

the righthand sides of the consequence relation and the symmetry that is observed
in CLL. Note that embeddings using a positive and a negative translation have been
used by several people when embedding calculi in linear logic. See for example,
[Tro92], [HM94], [HP94].

As noted several times above, we have only given the embedding far, thev
fragment of intuitionistic logic. This is because our interest is in the indudedica
and these are unattractive outside of this fragment. We leave it as an opegnprobl
how to embed disjunction on the left, falsum and the existential quantifier on the
left in order to induce MJ. We are not optimistic that a solution can be found.

The problems with some of the connectives result from trying to embed intuition-
istic logic into unrestricted ILL. If we restricted the fragment weravéooking at

by, for example, only looking at sequents with one unbanged formula on the left,
then we could embed to get the result required. However, in this case \siergoly
making the ILL calculus closer to the intuitionistic calculus.

Notice that the fragment of MJ we can induce by the new embedding is enough to
cover hereditary Harrop formulae. That is, we can reason about this fragrhe
intuitionistic logic (important from the logic programming perspective) inside IL

As noted in [Har94], hereditary Harrop logic is in some natural sense thestavgd
behaved fragment of intuitionistic logic (for example with respect to goakttice
proof search), and so we are not surprised that this is the largest fragmecarihat
easily be embedded to give MJ. Harland and Pym have also embedded hereditary
Harrop formulae into linear logic using a two function, positive and negative, em
bedding (see [HP94]). Their embedding into ILL doesn’t induce a uniform proof
calculus for hereditary Harrop formulae. If, however, the embedding is intg-a

form proof calculus for linear logic, then the calculus induced will be a uniform
proof calculus.

Embedding intuitionistic logic into linear logic has also been investigateth (w
different motivation) by Negri in [Neg95]. Also by Lincoln, Scedrov & Shankar
([LSS93]). Danos, Joinet and Schellinx have written extensively on embedding

CHAPTER 5. EMBEDDING MJ IN INTUITIONISTIC LINEAR LOGIC 114

logics into linear logics. As well as Schellinx’s thesis ([Sch94]), embeddings
intuitionistic logic into linear logic are given in [DJS95], [Sch92].

Chapter 6

A Sequent Calculus for Intuitionistic
Linear Logic

In this chapter, the ideas behind the MJ calculus for intuitionistic logic areeappli

to Intuitionistic Linear Logic (ILL). We develop a Gentzen-system, Slfdr, ILL

whose derivations can be translated in a 1-1 way to the normal natural deductions
for ILL. We prove some properties of SILL and discuss possible alternativerags

We also discuss SILL in relation to linear logic programming languages, paying
particular attention to Lolli.

6.1 Natural Deduction

The primary natural deduction system we consider is that of Benton, Bierman, de
Paiva and Hyland ([BBdPH92], [BBdPH93b], [BBdPH93a], [Bie94]). This can be
seen in Figure 1.6. We are interested in deductions in normal form and we give the
beta-reductions and commuting conversions from [Bie94] in order to define normal
natural deductions for ILL.

With the promotion rule, the discharged assumptions are writt@Pas.! P,]. This
means that all assumptions are of the féffyand that they are all discharged &?).

First beta-reductions:

1. Linear implication:

P
B 5
P = b i
Q ey Q

115

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 116

2.1 _
= (I7)
1 P
P (IE) M/g P
3. Tensor: o
]:D : [P][Q)] :
P ®§2 @) v : ¢
R @) o, &
4. With: .
Z&—Q (&)
7 &) P
Also: _
ZTQ (&z)
0 (&) ~y O
5. Plus:
g Pl [Q]
P : :
PoQ @rn) p f
7 @) .,
Also: _
652 Pl [Q)
P®Q @) g
5 @) .,
6. Ofcourse, promotion with dereliction
[['Pl.._..!Pn]]
Py !!Cl;n € (p) P P
0 (D) - Q
7. Ofcourse, promotion with weakening:
[['Pl.....!Pn]]
T :
: 'Q 2 (P) R P 'Pn R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 117

Note that the minor premisses of the promotion rule are ordered left to right,
and therefore that the minor premisseg1dfx) are also ordered left to right.
This also applies in the next reduction.

8. Ofcourse, promotion with contraction:

[\P,...\P,]
’} @ é [Q)['Q]
10 _ R(m
~B
['P,...\P,] ['P,...\P,]
wumﬁg cg@)paymig Q(m
P ... P, R«%)

R

Notice that the last two reductions involve the use(©%) and (W) —
inference rules which are combinations of multiple uses of the ordif@@)y
and(1V) rules. Ordering these occurrences makes them a shorthamaier
applications, rather than new admissible rules in their own right (although the
admissibility of such a rule could be shown).

Next, the commuting conversions. Here, the elligdgsfor one of(®.), (I.),

(®:), (0.), (W), (C), andr is for one ofs or one of (—,), (&.,), (&-,),

(D). Note that all the commutations are presented with two premiss rules.
The changes where the rule is in fact a single (or multiple) premiss rule are
obvious.

9. Commutation of®.):

. [Hp] [Hp]
Pé@ R . : R
(®E) . r
i 5 N P®Qs > (@)

10. Commutation of1.):

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 118

11. Commutation of0.):

L A
'?0(05) 5 5 0
7" ~, —r 0
12. Commutation ofe.):
T AP AQ A, P A,Q
: : : L L :
PoQ R R : : R R
(&) P s " g’
s N = S (@)
13. Commutation of ¥V):
O koo i
W) ! g "
B 2w
14. Commutation ofC'):
1QIQ] Q@)
QR R
—5 @ (N
E_— 20

15. Commutation of ag-rule with (P):

: n - : :
P, 1P, . 1P, Q
1 o (P)
/\/)C
['Py...!P,]
R .
P (P)
— s
'Q
16. Commutation of P) with (P):
['Ry...\R,]
; ['Py...!P,]
: IR, 'R, P : :
P P, T .

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 119

/\/)C
['Ry...1R,]
['Ry..\R,.] P, (P)
[Pi..)P_y] P [\Py... | P
P, s Ry o Ry o Py Q
1 1 ’Q (P)
We finally have some commutations associated with with(6hgand (T7)
rules.
17. Commutation of0.):
L L
0 P Pn 0 I r,
e 0 e (0:)
18. Commutation of Tz):
L1 Ln
P, .. P, r, .. T,
et (Ty) | e (Tg)

Definition 6.1 A deduction inNILL is said to be in(3, ¢)-normal form if no -
reductions and ne-reductions can be applied to it.

6.1.1 Rewriting to normal form

It would be preferable if every natural deduction rewrote to a unique normal form.
That is, that the above normalisation process was confluent. Unfortunately the
above normalisation procedure is not confluent. Firstly, consider the beta-meducti
for promotion with weakening and promotion with contraction (reductions 7. and
8.) As noted above, these reductions involve multiple applications of weaken-
ing/contraction. As the usual formulations of these rules have single formulae being
weakened/contracted, we are left with a choice: either we make theplraulties
primitive, or we have them simply as a shorthand for multiple applications of the
single rule.

We choose the latter option. This means that (fiéx) and (C'x) rules have or-
dered premisses. Now consider promotion. We again have a choice. Are the minor
premisses ordered or not?

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 120

On the one hand, if they are, then there are proofs which are not equivalent, yet are
the same up to the ordering of the minor premisses. On the other hand, if they are
not ordered, then we can perform the reductions in many ways.

In fact we stipulate that the minor premisses of promotion are orderedd|eftt
as written). Later in this chapter, the existence of an order will makedlelus
easier to handle.

However, this is not the only place where we have a problem with confluence. Con-
sider the commutation of astrule with promotion (reduction 15.) Even with an
order on the minor premisses of promotion, this reduction is not confluent. For
example:

[141,145]
B, ® By 'Al () B3 ® B 'A2 ()
!A1 ‘ ‘AZ : C P
iC (P)
i [14y,14,]
1A, 1A, C
B, ® B, iC - (P)
B, ® By IC (®) c
|C’ €
or
- [14,,14,]
14, 1A, ¢
P
B, ® B, C o) (P)
B; ® By 'C (®.) ‘
IC :

The following example illustrates the non-confluence introduced by the interaction
of - and c-reductions:

We can reduce in two ways: either first perform theeduction then the commuting
conversion, or first perform the commuting conversion then theaduction.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 121

S][T] Lt)
P,
Z (W)
S®T R (®.)
P
= (W)
or
sz o)
2 ()
1P,
L1 0000 ct (W)
S®T R
= (®.)

It is known that if we consider only-reductions then normalisation is confluent
and strongly normalising. See [Bie94] and [Ben95].

What can we say for, ¢)-reduction? The above examples show that confluence

does not hold. We can, of course, give a strategy for normalising non-normal de-
ductions which would give a unique normal form. For example, pick any top most
non-normal inference and recursively normalise.

What can be said is that all proofs ifi,¢)-normal form ardrreducible A proof is
irreducible if no normalisation steps can be applied to it. The)normal proofs
are all the irreducible proofs.

These problems with normal proofs suggest a more involved notion of normal form
for ILL, as discussed in section 6.3.

6.2 Term Assignment for Normal Natural Deductions

This section details a term assignment system whose terms are in 1-Jpoarres
dence with NILL deductions in4, c)-normal form. We also give a sequent-style
natural deduction calculus allowing only deductions in normal form. This deduc-
tion system exactly types the proof terms. This calculus has two judgement forms
in order to restrict the deductions to thos€ it) ¢)-normal form.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 122

The term assignment has two syntactic catego#esnd N. The normal proofs
are given by thé\ terms. These are displayed below (where V is the category of
variables):

A var(V) | ap(A, N) | der(A) | withel(A) | withe2(A)
N::=
& | ie(A, N) | tene(A, V.V.N) | weak(A, N) | cont(A, V.V.N) | withi(N, N) |
plusil(N) | plusi2(N) | pluse(A, V.N, V.N) | tr({var(V), ...,var(V)})
an(A) | \VV.N | teni(N, N) | prom(A,V .N) | fal(A, {var(V), ...,var(V)})

The full calculus with term assignments, which we call NNILL, is presdnh
sequent style in Figure 6.1.

6.2.1 Justification of the Restrictions

We now go through each of thiereductions and commuting conversions and show
that none of them can be performed in the calculus presented in the previous section.

1. This is not applicable since the conclusior{-eé7) is anN term whereas the
left premiss of(—o.) has to be ai term.

2. This is not applicable since the conclusion(6f) is anN term whereas the
left premiss of(Z.) has to be ar\ term.

3. This is not applicable since the conclusion@f;) is anN term whereas the
left premiss of(®.) has to be ar\ term.

4. This is not applicable since the conclusion &f) is anN term whereas the
premiss of(&.) has to be ar\ term.

5. This is not applicable since the conclusion@f;) is anN term whereas the
leftmost premiss of®.) has to be a\ term.

6. This is not applicable since the conclusion(#% is anN term whereas the
premiss of(D) has to be ar\ term.

7. This is not applicable since the conclusion(#%) is anN term whereas the
left premiss of(117) has to be ar\ term.

8. This is not applicable since the conclusion 8f) ia anN term whereas the
left premiss of(C') has to be ar\ term.

9. This is not applicable since the conclusion@t) is anN term whereas the
left premiss of any of the-rules has to be aA term.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 123

xz: P>woar(x): P (az)
'>A: PoQ@ ADDN:P(_O) F,x:PDDN:Q(_O)
LA ap(A,N) : Q : LAz N: P—oQ * *

(Iy) FDA:]-ADDN:P(IE)
A= [Apsie(A,N): P
oeN P ANy Q)
[, A ppteni(Ny, No) : P® Q
r'>A:PQ Ax :Pxy:Qpb>N:R
[, A ptene(A, x1.05.N) : R (@)
'> AP ApDBN:Q > AP Az :!Pxy PN : Q)
I A bweak(A,N) : Q [A pbcont(A, xy.29.N) = Q

I'>A:IP (D) '>A:P
I'>der(A): P I'oean(A) : P
A> AP L A A P, x Pz, P, DN Q

At A, »prom(z,z N):Q
NP TNy Q (&2)

T sewithi(Ny, Ny) : P&Q

I'>A: P&Q (&) I'>A: P&Q
[> withel(A): P [> withe2(A) : Q
TN : P TN :Q
I oeplusil(N) : P ® Q I oeplusi2(N) : P& Q
[>A:PDQ Axi:PbNi R Axy:QD>Ny: R
[, A ppluse(A, x1.Ny, 29.No) - R (&)
Py >wvar(xy) : P ... P,>var(xzy,): P,
Py, ..., P, o>tr({var(xy), ...,var(x,)}) «: T
P >wvar(xy) : P ... P,>wvar(z,): P, A>A:0 (0.)
A, Py, ..., P, ob fal(A, {var(zy), ...,var(z,)}) : @ :

(®1)

(W) (©)

(M)

(P)

(&)

(@Il) (6912)

(Tz)

Figure 6.1: NNILL: Sequent style natural deduction calculus for ILL, giving nor-
mal natural deductions, together with term assignments.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 124

10. This is not applicable since the conclusion ff) is anN term whereas the
left premiss of any of the-rules has to be aA term.

11. This is not applicable since the conclusion@f) is anN term whereas the
left premiss of any of the-rules has to be aA term.

12. This is not applicable since the conclusior{®f) is anN term whereas the
left premiss of any of the-rules has to be aA term.

13. This is not applicable since the conclusior(idf) is anN term whereas the
left premiss of any of the-rules has to be aA term.

14. This is not applicable since the conclusion©f) is anN term whereas the
left premiss of any of the-rules has to be aA term.

15. This is not applicable since the conclusion of afyle is anN term whereas
the minor premisses @f) have to beA terms.

16. This is not applicable since the conclusion(Bf is anN term whereas the
minor premisses ofP) have to beA terms.

17. This is not applicable since all the minor premisse®of must be instances
of (ax).

18. This is not applicable since all the premisseg ©f) must be instances of

(ax).

Hence none of the reductions and commutations are applicable. Due td/the
rule, every other combination of inferences that was possible before is stlbpms
Therefore the calculus does, as claimed, capture exactlysthg-ormal natural

deductions of ILL.

Proposition 6.1 The calculudNNILL generates exactly thej(¢)-normal natural
deductions oflLL .

6.2.2 Multiple Field Version of Natural Deduction

It should be noted that natural deduction for ILL might be presented with the as-
sumptions split into two fields. One field contains linear assumptions which have
to be discharged exactly once. The other contains non-linear (that is, banged) as-
sumptions packets — as in the usual natural deduction formulations for intuitionistic
logic. The rules then have to be adapted to take this into account and weakening
and contraction can be replaced by a single structural rule. We might find this an
attractive approach as it ties in with other work on linear logic and logic progr
ming. See for example the calculus Ein Figure 2.2 and the discussion in section
6.7.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 125

6.3 Alternative Natural Deduction and Term Systems

We have given the results so far for one presentation of natural deduction for ILL.
There are, however, several others in the literature, some of whictisressed
here.

6.3.1 Logical Constants

We have given the system as formulated in [Bie94]. This formulation of natural
deduction has multiple premiss rules forz) and(0.) along with some reduction
rules. We could have replaced these rules with the following:

T
xy: Pz Poobtr({xg, . x,)) 0 T (Tz)

w1 Pryoxy s Py, A fal({xy, ., xn}, At RS

NNILL with these rules (or NILL with similar rules) remains closed undebsti-
tution.

6.3.2 Promotion

Early formulations of natural deduction used the following apparently simpler in-
troduction rule for:
T=Q

T =1Q

This is the rule to be found in [Avr88], [Abr93], [Wad92], originally in [Tro92],
[Val92] and [RARR97]. Unfortunately, natural deduction with this rule is not dose
under substitution. This is a fairly fundamental property from a computational point
of view, and so another formulation is desirable. The system we have already de-
scribed above is closed under substitution, as is the systemimN[LM92] (this
system is similar to the one we discuss, in particular, it has the saméreo-
motion).

(P)

The promotion rule for ILL suggested so far is still a rather strange looking itule.

is an introduction rule, yet looks more like an elimination rule. It has the fakmar

in order to make the possibility of substitution explicit — the rule can be thought of
as a promotion in the style rejected above, together wihibstitutions. As noted
above, it has to be decided whether the premisses of promotion are ordered or not.
We are unsatisfied with our answer to this question. This motivates attémfptd
another way of looking at the promotion rule in natural deduction.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 126

(1]

l_
=]

O

(P)

(11

O

<F>!Q,A|_P
TAFDP

HP
< I >pHP

(<>1) (<>e)

T,M,MFR
T, MFR

= consists of bracket formulae ahébrmulae.
M consists of bracket formulae ahtbrmulae.

(€)

Figure 6.2: MBILL: natural deduction rules involving the > bracket

In [Tro95] another approach to natural deduction for ILL is developed. The promo-
tion rule is given as follows:

D Dn
MR . 1R
D
5 ()

Here[!R;...!R,] is a complete list of open assumptions in deductiband where
deductionsD; may be substituted for thd?;. That is, this rule is much like the
one above in that it makes the possibility of substitution explicit. Howetes,
approach is hard to extend into the additives.

Yet another approach to natural deduction for ILL comes from Mints. In [Min95]

a natural deduction system is presented which avoids the use of an elimink&on-li
promotion rule by using an explicit notation for these substitution-like aspects of
promotion. This also orders the occurrences in a way that doesn’t happen in the
original system. The new rules can be seen in Figure 6.2 (the rest of the catculus i
as before).

We have given the contraction rule as presented by Mints, although we could use the
one given earlier. The judgemeatl’ >,p, A -) can be read ag}) is deducible

from A and!P; also,! P is deducible fromi™. Notice that the system as presented is
not closed under substitution, but that by restricting the condition on promotion so
that all assumptions are bracketed, the system becomes closed under substitution.

Whereas in the natural deduction system presented in Figure 1.6, all the substitu-
tions occur as part of the promotion rule, here they occur individually before the
promotion. Although we use the Bentehal. system we could easily have used
that of Mints instead. Indeed we find some of its features more attractinelea

one we use, but are unhappy about the use of the brackets as some sort of logical
connective — we do not feel that we understand it properly. Also, the commuting
conversions for the bracket elimination rule are not obvious. It appears to cemmut
with everything, including itself, in either direction. Then in what order ds¢he
eliminations occur?

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 127

6.3.3 Tensor Elimination

One of the most unsatisfactory features of normal natural deductions for ILL are
chains of tensor eliminations. For example:

N>A®B AABC,DbFE

I>C®D T.AC,DoE (®:)
T 05 Ao E (®:)
and
Ly>C®D AABC DE
I, >A® B T, A A BooF (®:)
[0, A E (®:)

would seem to the same, yet are different normal natural deductions. A solution
would be to have an premiss tensor elimination rule. Such an approach is outlined
by Mints in [Min97], [Min98]. The new tensor elimination rule is:

FII>P1®Q1 Fn[>Pn®Qn AJPIJ"'JPTLJQIJ"'JQTL »R
ry,...,T,, AR

(©:)

Extra normalisation steps would then have to be added to bring tensor eliminations
together into such a rule. One might also add extra rules to commute tensoraelimi
tions with other elimination rules. Such a natural deduction would greatly mepro
the denotational power of the natural deduction system, bringing it much closer to
expressing the equalities we would like. However, in this thesis we wdtktive

usual system for normal natural deductions.

6.4 Sequent Calculus

We now describe a calculus in the style of MJ for ILL. We call this calculud.SI

(for ‘Stouped’ Intuitionistic Linear Logic). We do not describe SILL as ‘permiotat

free’ since the study of the permutability of the inference rules of ILL conducted
in Chapter 2 shows that many derivations that would be seem to be equivalent are
not identified by SILL. Most obvious amongst these are those to do (@it —

these permutations correspond to ones that it would appear natural to identify even
in natural deduction, but are not identified under usual formulations of normal form
for natural deductions (see discussion in the previous section). SILL does have the
property that its proofs can be translated in a 1-1 with normal natural deductions
for ILL, the proofs of NNILL. The sequent calculus SILL can be seen in Figure 6.3.

This calculus has three forms of judgement. There are the usual sequents with no
privileged formula, there are sequents with a single stoup which behave mach lik

stoup sequents for MJ. Finally there are sequents with a multiple stoup, of the form

[¥][A]
r > R. This is the form of judgement reflecting the structure of the promo-

tion rule for natural deduction. Thmultistoupcontains two lists, one of banged

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 128

['®,!P][¥]

P (az) [1®][1P,¥] (tog)
o — P r > R

[11A]
I > R

A= R
IVP=(Q
= Pog (R

(selx) FFQi> B;{ (sel)

Fep A 19](Q, 7] o
= >N (o) D=P ASR (L,
[19][P—Q, V] P—oQ) £
A A — R
=P A=Q (®r) —F’P;g;R (®¢)
[LA=P®Q ‘°F I =% R
=P
. ——— (I¢)
;=1 Lp
. — (0g)
r=T('® | %p
=P I'=@Q
F:>P@Q(EBR1) F:>PEBQ(EBRZ)
IP=R I'Q=R
) (®c)
' =R
Q
~ ma (&r) P&Q (&) P&Q (&r,)
I = P&Q r R r R
[1®][P,¥] ['®][Q,V]
reaw (e reaw | (Ker)
r > R r
ij o F,!P,!P:>R(C)
r 2R r 2R
1®][P,V] . W P
L ——>p I —R Y=L (p
[1®][IP,¥] (D) P (D) (]l] (P)
r > R I R) 1P

Figure 6.3: Sequent calculus SILL for Intuitionistic Linear Logic

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 129

formulae, and one of formulae of a certain form (formulae built from any banged
formulae using, —o, &, where the formulaP in P—o() can be of any form). In
backwards proof search, a multiset of formulae is selected and ordered andesecom
the second list in the multistoup of the premiss. The first formula is then pehci

If it is banged it can be derelicted or appended to the first list. If the fornsula

an implication or a with, then the appropriate rules may be applied, the result re
maining principal. There are no rules for formulae with other top connectivbgin
multistoup — that is to say, they should not be there. Each formula in turn is decom
posed until the formula at the head of the second list is a bang formula. Each of
these compositions corresponds to a minor premiss of promotion in normal natural
deduction. When the second list is empty and the context is empty, a promotion is
possible (and is the only applicable rule). Notice that, since this is the onlyfvay
leaving a multistoup, we should only perforf¥eix) when the goal is banged. We
should point out that we have yet to mention cut. Cut is eliminable in ILL and will
be discussed in section 6.6.

6.4.1 Term Assignment

We also give a term assignment system. There are again different kindsrof ter
corresponding to the different judgement forms of the calculus, that is, there are
three kinds of proof terms. Again the terms are typed by the sequents of SILL. We
give the proof terms below (V is the category of variables).

M::=
(V' Mss') | (V; Ms) | \V.M | tenr(M, M) | = | tr({V,..,V})
plusr1(M) | plusr2(M) | withr(M, M)
Ms::=
(]| (M =2 Ms) | teni(V.V.M) | il(M) | fal({V; ..., V'}) | plusi(V. M, V.M)
withlL(Ms) | with12(Ms) | w(M) | ¢(V.V.M) | d(Mys)

We need to explain the notation for the followiMgs' terms. TheMss' have been
written with a superscript. These superscripts are natural numbers angdorof
the detail of the proof term. They are included to ensure that the terms aralauilt
specific order, as the sequents are.

Mss'::=
(tog(Mss"™ ™))" | (M :: Mss")" | (withl1(Mss"))" | (withl2(Mss"))"
(d(Mss)' | (p(V D))"

SILL together with its term system can be seen in Figures 6.4, 6.5 and 6.6.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LoGIC 130

114 . 0
r >>MSS R r = Ms: R

T, 2: A= (2;Mss'): R Ie:Q= (x;Ms): R
Le:P=M:Q

['= Ae.M : P—oQ

=M :P A= M:Q

[VA = tenr(My, M) : P®Q

(selx)

(sel)

(—or)

(®=)

Gl T (@ T R
'=M:P '=M:Q
I' = plusrl(M) : P& Q I' = plusr2(M) : P& Q
I'= M, : P F:>M2Q(&)
T = withr(My, My) : P&Q *° F

g1)

(@Rl) (69722)

Figure 6.4: SILL with proof-term annotationg¥l terms.

()
6 —1[]:P
P=M:P A% Ms:R
F,A@(M Ms): R
Doy :Pay: Q= M: R
F%tenl(wl.xQ.M) 'R
'=M:P
r-5a(M): P {2} : T fal({z:}): P
Doy : P=M:R [axy:Q=M:R
F@plusl(wl.Ml,xQ.Mg) 'R

(—oc)

(®c)

(Ic) (0c)

(®r)

r -2 Ms:R
I 29 withil(Ms) : R
'=M:R

F!—P>w(M):R

I 25 Ms

(&51)

(W)

r % Ms:R
I 29 withi2(Ms) : R
I,z \Pay!!P=M: R

r -4 c(xy.29.M) : R

2 d(Ms): R

(©)

(&52)

Figure 6.5: SILL with proof-term annotationMs terms.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 131

Pl

> Msstt R (tog)

[P Y] .. °9

> (tog(Mss™)) : R
['®][Q,¥])

> Mss': R (

'=sM:P A
[1®][P—oQ,V] .
A > (M :: Mss')' R
['@][P,¥])
> Mss': R (&z, %)
relPeQu] N “
> (withl1(Mss'))" : R
[12][Q,¥])
> Mss': R (&c,%)
relPeQu] N =
r > (withl2(Mss'))" : R
['@][P,¥])
> Mss': R

—O[,*)

[l®]['P,v] (D*)

> (d(Mss'))' : R
{z;} W =M:P
(V] — (P)i
> (p(x .M))"TL:1p
T nis the number of elements {u;; }.
Figure 6.6: SILL with proof-term annotationMss' Terms.

r

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 132

6.5 The Correspondence Between Natural Deduction
and Sequent Calculus for ILL

We have given a calculus for normal natural deductions, along with a term assign-
ment system for this calculus. We have also given a sequent calculus for hi¢h w
restricts the sequent derivations which can be found in backward proof sedneh in
calculus. Again we have given a term assignment system for this calculus. We
claim that the sequent derivations in SILL naturally correspond to the normal nat
ral deductions (the deductions of NNILL) in a 1-1 way. In order to prove this we
give mappings from proof terms to proof terms in both directions, hence we have
an isomorphism between proof terms.

Sequent Calculus— Natural Deduction:
M — N

0(7; Mss') =0 (var(x), Mss)

O((z; Ms)) = 0'(var(z), Ms)

O(A\x. M) = \x.0(M)

O(tenr(My, My)) = teni(0(M,), 0(My))
(%) =
(
(
(
(

>
~—

O(tr({x;})) = tr({var(z;)}
O(withr(My, My)) = withi(0(M,),0(Ms))

O(plusrl(M)) = plusil(6(M))
O(plusr2(M)) = plusi2(6(M))

)
(
(
(
0 : A x Ms — N

0'(A,[]) = an(A)

0" (A, (M :: Ms)) =0 (ap(A,0(M)), Ms)

0' (A, tenl(zy.x9.M)) = tene(A, xy.29.0(M))

(4, i1(M)) = ie(4, 0(M)

0 (A, fal({z1,...,xn})) = fal(A, {var(zy), ...,var(z,)})

0' (A, plusl(x1.My, x9.Ms)) = pluse(A, z1.0(My), x5.0(Ms))
0'(A, withil(Ms)) = ' (withel(A), Ms)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 133

0' (A, withi2(Ms)) = ' (withe2(A), Ms)
0'(A, w(M)) = weak(A, 0(M))

0'(A, c(x1.29.M)) = cont(A, x1.25.0(M))
0'(A,d(Ms)) = 0'(der(A), Ms)

0" . K x Mss — N
0" ([Ay1, ..., A, var (ziy 1), ..., var(z,)], (tog(Mss1))?)
=0"([Ay, ..., Aj, var(xiyq), ..., var (z,)], Mss'™t)
0" ([Ar, ..., Aj, var(zi1), ..., var (z,)], (M = Mss®)?)
=0"([Ay, ..., ap(A;, O(M)), var(z;y 1), ..., var(z,)], M ss®)
0" ([Ay1, ..., A, var (ziy 1), ..., var(z,)], (withi1(Mss'))?)
= 0"([Ay, ..., withel(A;), var(z;y1), ..., var(z,)], Mss')
0" ([Ar, ..., Ay, var(ziy 1), ..., var(z,)], (withi2(M ss'))?)
= 0"([Ay, ..., withe2(A;), var(xiy1), ..., var(z,)], Mss')
0"([A1,, ..., Ai,var(ziz1), .., var(z,)], (d(Mss'))*)
=0"([Ay, ...der (A;),var(z;y1), ..., var(z,)], Mss')
0"([Ar, ..., Ay, (p(@.M))"+h) = prom(z, 7.0(M))

Natural Deduction — Sequent Calculus
P:N— M

Y(Az.N) = Az.p(N)
Y(teni(Ny, Ny)) = tenr (p(Ny), 1 (N2))
(%) =
U(ie(A,N)) = ¢'(A, il(y(N)))
P(tene
(, c(@1.22.9(N)))
(»(N)))
((A, -y Aul, (0(Z 0 (N)))™H)
(

(0 weak(N)=v¢'(Aw
(0 prom(ﬁ 7 .N)) ="
P(an(A)) = P'(A, []

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 134

A, fal({z:}))
(V1), (Na))
plusil(N)) = plusrl(yp(N))
plusi2(N)) = plusl2(y(N))
= ¢'(A, plusl(z1.4p(N1), 224 (N2)))
b)) =tr({zy,...,xn})

¥
(¥

)
)

tr({var(z,), ..., var(x,

Y (var(x), Ms) = (z; M s)

P'(ap(A, N), Ms) = '(A, (Y(N) = Ms))
Y (withel(A), Ms) = ' (A, withl1(Ms))
Y (withe2(A), Ms) = ' (A, withl2(Ms))
Y'(der(A), Ms) = ' (A,d(Ms))

" B x Mss —s M

" ([var(zy), ..., var(z,)], Mss') = (2; Mss)
V"'([Ar, ..., A var (zi41), . var ()], Mss™)

=Y"([Ar, ..., Ay, var (zi1), ..., var(z,)], (tog(M sst1))?)
V"'([Ar, ..., ap(Ai, N),var(xiyq), ..., var(z,)], Mss?)

=" ([Ay, ..., A, var(xig), ..., var(x,)], (Y(N) ©: Mss')?)
V" ([Ay, ..., withel(A;), var(zi 1), ..., var(z,)], M ss®)

=Y"([A1, ..., Ay, var (zig1), ..., var (z,)], (withl1(Mss®))?)
V"([Ar, ..., withe2(A;), var(zi 1), ..., var(z,)], M ss)

=Y"([A1, ..., Ay, var (zi41), ..., var (z,)], (withi2(M sst))?)
V" ([Ay, ..., der(Ay), var(xig), ..., var(z,)], Mss')

=Y"([A1, ..., Ay var (Tig 1), .., var(z,,)], (d(Mss'))?)

In the following two lemmas we prove, using the translations above, thaihe
systems are isomorphic.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 135

Lemma 6.1

i) ForalltermsM, ¢ (0(M)) =M

i) Also, for all termsi s and A,
Y(0'(A, Ms)) =" (A, Ms).

iii) Also, for all termsM ss® and Ay, ..., A;, var(xiy1), ..., var(z,),
V(O ([Ay, ..., Aiyvar(xig), ..., var(x,)], Msst)) =
2/)”([1417) Aia UCLT(JIH_I), ad) UCLT(CEn)], MSSi)

PROOF By simultaneous structural induction a, Ms, M ss.

1. TheM term has form{(x; Ms)

»(O((x; Ms))) (O (var(x), Ms)) defo
Y (var(z), Ms) ind ii)
(x; Ms) defq)

2. TheM term has form(@’; Mss')

Y(0(T; Mssh)) (0" (var(z), Msst)) deff
V" (var(z), Mss') ind iii)
(75 Msst) defy”

3. TheM term has form\z. M

YOO M) = pOa.0(M)) defo
Aeap(0(M)) defep

Ao M ind i)

4. TheM term has formtenr (M, M)

V(6 (tenr(M,y, Ms))) (teni(0(My), 0(Ms))) defd

tenr((0(M)), v(0(Ms))) defrp

tenr(M;y, M) ind i)
5. TheM term has formk
P(O(x) = (x) deff
= % defy

6. TheM term has formtr({zy, ..., z,, })

Y(@(tr({x, ..., xn}))) Y(tr({var(zy),...,var(xy,)})) defé

tr({z1,....,xn}) def¢

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 136

7. TheM term has formplusr1(A1)
(O (plusrl(M))) Y(plusil(§(M))) defd

plusrl(Y(0(M))) defqp
plusrl(M) ind i)

8. TheM term has formplusr2(M)

(0 (plusr2(M))) Y(plusi2(0(M))) defd
plusr2(y(0(M))) defy
plusr2(M) ind i)

9. TheM term has formwithr(M;, M)

(O (withr (M, Ms))) Y(withi(6(My), 6(Ms))) defd
withr (1 (0(My)), p(0(Ms))) defip
’U)ith?"(Ml, Mg) ind |)

10. TheMs term has form |

D(O'(A, []) P(an(A)) defd’

(A []) defy
11. TheMs term has form(M :: Ms)

(O (A, (M :: Ms))) V(O (ap(A,0(M)), Ms)) defd’
V' (ap(A,0(M)), Ms) ind ii)
V'(A, (¥ (() = Ms)) defy
W'(A, (M = Ms)) ind i)

12. TheMs term has fornmtenl(xy.z4.M)
(' (A, tenl(xy.29.M))) (tene(A, z1.29.0(M))) defe’

P'(A, tenl(xy.22.0(0(M)))) defy
Y'(A, tenl(zy.29.M)) ind i)

13. TheMs term has formil (/)

D(O'(A, il (M))) (ie(A, 0(M))) def ¢’
V(A il(p(0(M)))) defy

(A, il(M)) ind i)
14. TheMs term has formfal({x;})

D(O'(A; fal({zi}))) U(fal(A, {var(z;)})) defd!

Y'(A, fal({x:})) defq)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 137

15. TheMs term has fornplusi(zy. My, x4. M)

(0 (A, plusl(xy. My, x9.M,)))

Y(pluse(A, x1.0(My), x9.0(My)) defe’

)
W' (A, plusl(z1.4(0(M))) 22.1p(0(M,))) defep
W' (A, plusl(xy. My, x9.Ms)) ind i)

16. TheMs term has formwithl1(Ms)

(6 (A, withl1(Ms))) (@ (withel(A), Ms)) defe’
Y (withel(A), Ms) ind ii)
Y'(A, withl1(Ms)) defy’

17. TheMs term has formwithl2(M s)

(0 (A, withl2(Ms))) (6 (withe2(A), Ms)) defe’
Y (withe2(A), Ms) ind ii)
' (A, withl2(Ms)) defq)’

18. TheMs term has formw (M)

D(O'(A, w(M)))

I
< S S

19. TheMs term has forne(z;.x2.M)

P(' (A, c(xy.x9.M))) (cont(A, z1.22.0(M))) defd
V(A e(zr.2p(0(M)))) defd)

Y'(A, c(y.09.M)) ind i)
20. TheMs term has formi(M s)

P(0'(A,d(Ms))) P(0'(der(A), Ms)) defd’
' (der(A), Ms) ind ii)

Y'(A,d(Ms)) defq)

21. TheMss' term has form(tog(Mss*™))*

V(0" ([Ay, ..., Aiyvar (zi41), ... var (z,)], (tog(Mss™t1))"))

V(O ([Ay, ..., Aj,var(xigq), ..., var (z,)], Mss'™)) def§”
V' ([Ar, ..., Ay var (zig1), .. var ()], Msst™) ind iii)
V'([Ar, ..., A var (zig1), .. var(z,)], (tog(Mss™1))Y) defqy”

CHAPTER 6. A SEQUENT CALCULUS FORINTUITIONISTIC LINEAR LoGIC 138
22. TheMss' term has form(M :: Mss')!

V(O ([AL, ..., Ai,var(xig), ..., var(x,)], (M 2 Mss®)?))
V(O ([Ay, ..., ap(A;, O(M)), var(xi), ..., var(x,)], Mss')) defd”

_= P'([AL, ..., ap(A;, 0(M)), var(xiyy), .. ,var(mn)] Mss") ind iii)

= 77b”([1417 RS Ai: Ua’l“(.l‘l+1), UCL?"(.CUH)], ((()) MSS)Z) defW'

= Y'([Ay, ..., Aj,var(xig), ..., var(z,)], (M Mss®)?) ind i)
23. TheMss' term has formwithl1(Mss'))®

V(O ([AL, ..., Aj,var(xi41), ..., var (x,)], (withl1(Mss?))?))

V(0" ([Ay, ..., withel(A;),var(xiy1), ..., var(z,)], Mss')) def”
V" ([Ay, ..., withel(A;), var(zi 1), ..., var(z,,)], M ss?) ind iii)
V" ([A1, .., Ay var (Tig1), - var(z,)], (withil(Mss'))?) defy”

24. TheMss' term has form(withl2(M ss'))

V(O ([AL, ..., Aj,var(xig1), ..., var(x,)], (withl2(Mss?))?))

V(0" ([Ay, ..., withe2(A;), var(xiy), ..., var(x,)], Mss')) defd”
V" ([Ayr, ..., withe2(A;), var (ziy 1), ..., var(z,)], M ss?) ind iii)
V" ([Ar, ..., Ay var (Tig1), - var(x,)], (withi2(Mss'))?) defy”

25. TheMss' term has form(d(M ss?))

V(O ([AL, ..., Ai,var(xig), ..., var(x,)], (d(Mss?))?))

V(O ([Ay, ..., der(Ay), var(zi1), ..., var(xy,)], Mss®)) defd”
V" ([Ay, ..., der(A;), var(Tig), ..., var(x,)], Mss') ind iii)
V" ([Ay, .., Asyvar (Tig1), - var(x,,)], (der(Mss?))t) defqy”

26. TheMss' term has fornm(p(z.M))"+!

Y(O0"([Ar .o, Aul, (p(7.M))"H))

= ¢Y(prom([A, ..., n]? 6(M))) defo”
= P"([As, - Al (0(7, 0(0(M))))”“) defq
= Y([Ar, - A, (o(7, M))M) ind i)
[|
Lemma 6.2

i) ForalltermsN, 6(y(N)) = N.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 139

i) Also, for all termsi/ s and A,
O(¢' (A, Ms)) =0'(A, Ms)

iii) Also for all termsM ss* and Ay, ..., A;, var(zis1), ..., var(x,),
O("([Ay, ..., Aiyvar(xig), ..., var(z,)], Mss')) =
0" ([Ary - A 007 (T351), - 007 (0], Moss')

PROOF By simultaneous structural induction dhand A.
1. TheN term has fornk

0(4(x)) 0(x) defy

* def@

2. TheN term has formie(A, N)

O(ie(AN) = /(A il(U(N)) defy
= 0(Ail(Yp(N))) ind ii)
= ie(A,0(1(N))) def¢’
= ie(A,N) ind i)

3. TheN term has fornmtene(A, x,.25.N)

O(¢(tene(A, z1.22.N))) O(¢' (A, tenl(xy.x9.0(N)))) defep
0 (A, tenl(zy.x2.90(N))) ind ii)
tene(A, xy.29.0((N))) defo’

tene(A, xy.24.N) ind i)

4. TheN term has formuveak(A, N)

O((weak(4,N) = O(/(A,w(B(N)) defy
0'(A, w((N))) ind ii)
weak(A,0(¢p(N))) defd
weak(A, N) ind i)

5. TheN term has formeont(A, x,.z2.N)

0(¢(cont(A, x1.x9.N))) O(¢' (A, c(x1.w9.00(N)))) defep

: 0’ (A, c(x1.29.9(N))) ind ii)
= cont(A,x1.22.0(¢p(N))) defd
= cont(A,x,.29.N) ind i)

6. TheN term has formwithi(N;y, N»)
0(¢(withi(Ni, N2))) O(withr(yY(N1),¢(Ne))) defyp
0

withi(B(w(N)),0((Ne)) defo
withz(Nl, NQ) ind |)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 140

7. TheN term has fornplusi1(N)

0(¢(plusi1(N))) O(plusri(s(N))) defy)

plusil(6(»(N))) defd
plusil(N) ind i)

8. TheN term has fornplusi2(N)

0(¢(plusi2(N))) O(plusr2(yp(N))) defy

plusi2(6(¢p(N))) defd
plusi2(N) ind i)

9. TheN term has fornpluse(A, x1.N1, 25.N3)

0(¢(pluse(A, x1.N1, 22.N3)))
g(w,(Aaplu‘Sl(xlw(NI)Jwa(N2)))) defw

= 0'(A,plusl(x.(Ny), x2.00(Ns))) ind ii)
= pluse(A,z1.0(p(Ny))), x2.0(¢(No))) defd’
= pluse(A, x;. Ny, x5.N3) ind i)

10. TheN term has formun(A)

0(y(an(A))) 0(¢'(4,[])) defy
0(A, 1) indii)

an(A) defo’
11. TheN term has form\z. N

O(w(\e.N)) = O(\zap(N)) defy
Ar0(p(N)) defd

Az N ind i)

12. TheN term has formteni(Ny, N»)

O((teni(Ny, Ny))) = Otenr ((Ny), 1/5(]\[2))) defqp

teni(B((N,)), 0((No)) defo
tem'(Nl, Ng) ind |)

13. TheN term has formprom (A, 7.N)

9(¢(pr0m(z, 7.N)))

0" ([Ar, ooy Anl, (p(T(N)))*) defy
0" ([Ay, ..., Au], (p(Z (V)™ ind i)

0() def 6"
N) ind i)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 141

14. TheN term has formr({var(z;)})

O(y(tr(var({zi})))) O(tr({z:})) defy

tr({var(z;)}) def@

15. TheN term has formfal(A, {var(z;)})

0(y(fal(A, {var(z;)}))) O(¢'(A, fal({z:}))) defy
0'(A, fal({z:})) indii)

fal(A, {var(z;)}) defd

16. TheA term has formvar(z)

0(¢' (var(x), Ms)) O((x; Ms)) def)’

0 (var(x), Ms) defd

17. TheA term has formup(A, N)

0(¢" (ap(A, N), Ms)) 9(1//(1(4, (V(N) :: Ms))) defd’

z 0 (A, (Y(N) :: Ms)) ind ii)
= 0'(ap(A,0((N))), Ms) defd’
= 0(ap(A,N), Ms) ind i)

18. TheA term has formler(A)
O()' (der(A), Ms)) O(¢' (A, d(Ms))) defy’
0'(A,d(Ms)) ind ii)
¢ (der(A), Ms) defd’
(

19. TheA term has formwithel(A)

0(¢' (withel(A), Ms)) O(¢' (A, withll(Ms))) defy’
0’ (A, withll(Ms)) ind i)

0’ (withel(A), Ms) defo’

20. TheA term has formwithe2(A)

0(¢y' (withe2(A), Ms)) O(¢' (A, withi2(Ms))) defy’
0’ (A, withl2(Ms)) ind i)
0’ (withe2(A), Ms) def¢’

21. TheA term has formvar(z

0(y" (var(z), Msst)) 0(7; Mss') def "

0" (var(z), Mss') defg”

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 142

22. TheA term has formA,, ..., Aj,var(ziy), ..., var(x,)]

0" ([Ar, ..y Ay var (Tigr), ..., var (z,)], MSSZ'H))

O("([Ay, ..., Aj,var(xig), ..., var(x,)], (tog(M sst™+1))?)) defqy”
0" ([Ay1, ..., A, var (ziy 1), ..., var(z,)], (tog(Mss*™1))?) ind iii)
0" ([A1, ..., A, var (x4 1), ..., var(z,)], Mss') def”

23. TheA term has formA,, ..., ap(A;, N),var(ziy1), ..., var(x,)]

O("([Ay, ..., ap(A;, N),var(zit1), ..., var(x,)], Mss'))

O ([Ary s A var (212), - var(a)], (0(N) = Mss'y)) defy”
0" ([Ar, ..., Aj,var (zi 1), ..., var(z,)], (W(N) 2 Mss')?) ~indiii)
0"([A1, ... ap(A;, (Y (N))), var (it), ..., var(z,)], Mss') defd”
0" ([A1, ..., ap(As, N),var(zig1), .., var(zy,)], Mss') ind i)

24. TheA term has formA,, ..., withel(A;), var(ziy1), ..., var(x,)]

O(p" ([Ay, ..., withel(A;), var(xi1), ..., var(x,)], Msst))

O("([Ay, ..., Aj,var(xig), ..., var(x,)], (withl1(Mss?))?)) defq”
0"([Ay, ..., Aj,var(zit1), ..., var(z,)], (withl1(Mss'))*) ind iii)
0" ([Ay, ..., withel(A;), var(z;y1), ..., var(z,)], Mss') def§”

25. TheA term has formA,, ..., withe2(A;), var(ziy1), ..., var(x,)]

O("([Ay, ..., withe2(A;), var(xit1), ..., var(x,)], Mss'))

O("([Ay, ..., Aj,var(xig), ..., var(z,)], (withl2(Mss'))")) defqy”
0" ([Ay1, ..., A, var (ziy 1), ..., var(z,)], (withi2(Mss'))?) ind iii)
0" ([Ar, ..., withe2(A;), var(x;y1), ..., var(z,)], M ss?) defg”

26. TheA term has formA,, ..., der(A;), var(x;yq), ..., var(z,)]

O("([Ay, ..., der(A;), var (ziy), ..., var(x,)], Mss®))

0" ([Ar, .., Ay var (ig1), ..., var(2,)], (d(Mss'))")) - defy”
0" ([A1, s Ajyvar (Tis1), ..., var (z,)], (d(Mss'))") ind iii)
0" ([A1, ..., der(A;), var(xiq), ..., var(z,)], M ss*) defo”

Theorem 6.1 The deductions oNNILL are in 1-1 correspondence with the se-
guent derivations given by the sequent calci8ud..

PROOF. Follows immediately from Lemma 6.1 and Lemma ai.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 143

Theorem 6.2 SOUNDNESS The following rules are admissible:

L= M:R AB>A:P FLMS:R“)

L oe0(M) : R L, Ape0'(A, Ms) : R
1Py, Py 1] [Piyees Pr)
D, D, T S>> Mss': R

: . ii
DAL LA, D0 ([Ag, oy Ay var (2i44), var(x,)], Mss') © R)
where theD,, ..., D,, are (in order):
Al > Al I!Pl

A D> A P
A, > A P

Ajyq > var(xi) : P

A, >var(z,) : P,

PROOF. By simultaneous structural induction au, M s and M ss'.

1. TheM term has form(@; M ss")

We have a derivation ending in:

[1[P1yesPn]
r— > Mss': R

L,Py,...P,= (7;Mss') : R

(selx)

and we know that for all

P; > wvar(x;) : P

is deducible.
So we have:
[1[PryesPa]
P >wvar(z): P ... P,>wvar(z,): P, T > Mss': R

iii)

L, P, .., P,o>0"(var(z), Mss') : R
and we know that

0" (var(x), Mss') = 0(7; Mss")

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 144

2. TheM term has form(z; M s)

We have a derivation ending in:

L Ms:R
VP = (z;Ms): R

sel)

and we know that
P>wvar(z): P

is deducible.

So we have
Pr>var(z): P r -2 Ms:R i)
I, P o0 (var(z), Ms) : R "

and we know that
0 (var(z), Ms) = (x; M's)

3. TheM term has form\z. M

We have a derivation ending in:

F,x:P:>M:Q()
T = \o.M:PoQ * R

whence
Le:P=M:Q

Do PoeO(M) :
T 0(M) : P

i)
0 (—oz)

—0

and we know that
Ar.O(M) =0(\x. M)

4. TheM term has formtenr (M, M,)

We have a derivation ending in:

I'y=M,:P F2:>M21Q
1—‘1,1—‘2 :>tem“(M1,M2) . P®Q

(®r)

whence
I'y=M:P F2:>M22Q.

[y oe0(M): P i) T, o000, - O i)
[y, Dy oiteni(0(M,), 0(Ms)) : P® Q (®1)

and we know that

teni(6(My),0(Ms)) = O(tenr(My, Ms))

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 145

5. TheM term has formx

We have the following derivation:

(Ir)

=x%x: 1]

we also have the following deduction:

DD*:I(II)

giving the result.

6. TheM term has formtr({x;})

We have the following derivation:

T
xy Py Py = tr({a}) T (T%)

we also have the following deduction:

Py >wvar(xy) : Py ... P,>var(zy,): P,
Py, .., P, obtr({var(x;)})

(Tz)
and we know that
tr({var(z;)}) = 0(tr({z:}))
7. TheM term has formplusr1(Al)

We have a derivation ending in:

I's>M:P
I'= plusrl(M) : P& Q

(69721)

whence
I'=M:P)

T oog(M): P
[oeplusil(0(M)) : P Q

and we know that

(6911)

plusil(§(M)) = 0(plusrl(M))

8. TheM term has formplusr2(M)

We have a derivation ending in:

= M:Q
I'= plusr2(M) : P& Q

(69722)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 146

whence
'=M:Q

I'oe0(M) :Q)
I oplusi2(0(M)) : P ® Q

(®1,)
and we know that
plusi2(0(M)) = 0(plusr2(M))
9. TheM term has formwithr(M,, M,)

We have a derivation ending in:

I'= M, : P F:>M21Q
[' = withr(M, My) : P&Q

(&r)

whence
=M, :P) = M, :Q
[cbwithi(0(M,y), 0(Ms)) : P&Q
and we know that

withi(6(My),0(Ma)) = 0(withr (M, Ms))

)
(&)

10. TheMs term has form |

We have a derivation

(az)

) i) []:P
and we can deduce
App>an(A): P
and we know that
an(A) = 0'(A,[])

11. TheMs term has form(M :: Ms)

We have a derivation ending in:

I'=M:P Ty-% Ms:R
T, Ty =% (M Ms): R

(—or)

whence
'h=M:P i
A A: P—oQ Typ0(M):P
TLADap(A,0M):Q 7 Ty-% Ms:R .
[y, Ty, A0 (ap(A,0(M)), Ms) : R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 147

and we know that

0 (ap(A,0(M)), Ms) =0'(A, (M :: Ms))

12. TheMs term has formtenl(x;.z4.M)

We have a derivation ending in:

ey :Pasy:Q=M:R

r e timl(zy.x9.M) : R

(®c)

whence
Dyxy i Pay: Q= M: R |
ADA:PRQ T,z1:Pay:Q0(M): R
[, A ptene(A, x1.09.0(M)) : R (@)

and we know that

tene(A, x1.209.0(M)) = 0'(A, timl(x1.29.M))
13. TheMs term has formii (M)
We have a derivation ending in:

I . £
' —il(M): R

whence
A>A:T ToeO(M):R (L)

I A pie(A,0(M)) : R

and we know that
ie(A,0(M)) =6'(A,il(M))

14. TheMs term has formfal({x;})

We have the following derivation:

5 (0c)
x1: Py xy s Py — fal({z;}) : R

We also have the following deduction:

P>wvar(z): Py ... Py>oar(z,): P, A>A:0
APy, ..., P, b fal(A, {var(zy), ...,var(x,)}) : R

(0:)

and we know that

fal(A, {var(z;)}) = 0'(A, fal({zi}))

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 148

15. TheMs term has fornplusi(zy. My, x4. M)

We have a derivation ending in
F,$1IP:>M1:R F,Z'Q:Q:>M2:R

(D)
r 2o plusl(xy. My, x9.Ms) : R
whence
F,$1IP:>M1:R |) F,.TQ:Q:>M2:R |)
A>A:PeQ T ,z:Pro0(M): R F,mz:QDDQ(Mg):R(®)
I A oepluse(A, x1.0(My), x2.0(Ms)) : R)

and we know that

pluse(A, x1.0(My), x2.0(My)) = 0'(A, plusl(zy. My, x2.My))

16. TheMs term has formwuithl1(Ms)

We have a derivation ending in:

I 2 Ms: R (&c)

e withll(Ms) : R

whence
Ap> A: P&Q (&)
A> withel(A): P " T 25 Ms: R i
A 6 (withel(A), Ms) : R
and we know that
' (withel(A), Ms) = 6'(A, withl1(Ms))
17. TheMs term has formwithl2(M s)
We have a derivation ending in:
r-% Ms: R (&e)
P&Q . £
' — withi2(Ms) : R
whence
Ap> A: P&Q (&.,)
A withe2(A):Q) T % Ms:R i

A 6 (withe2(A), Ms) : R
and we know that

' (withe2(A), Ms) = 0'(A, withl2(Ms))

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 149

18. TheMs term has formu (A1)

We have a derivation ending in:
r-4 w(M) : R

whence
Ap> AP Te0(M): R W
')A sbweak(A,0(M)) - R (W)

and we know that

weak(A,0(M)) = 0'(A, w(M))

19. TheMs term has forme(xy.z5.M)

We have a derivation ending in
Doy \Pay!!P=M:R

P ()
I' — c(z1.29.M) : R
whence
Uz \Pxy!!P= M:R)
Ap> AP T,z :IPay:!\Po0(M): R (©)

[y Apbcont(A, xy.20.0(M)) - R
and we know that

cont(A, x1.22.0(M)) = 0'(A, c(xy.29.M))

20. TheMs term has formi(M s)

We have a derivation ending in

r % d(Ms): R
whence
Ap A:lP
Apder(A): P ' — Ms: R
Iy A 6 (der(A), Ms) : R

(D)

ii)
and we know that
0 (der(A), Ms) = 6'(A,d(Ms))

Mainly for reasons of typography, for the followildss’ cases we leave out
the details of thg> left premisses unless absolutely necessary. We rdqdace
with the ellipsisip.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 150

21. TheMss' term has form(tog(Mss**t1))*

22.

23.

We have a derivation ending in

[Py P[Pt oo P Mesitl: B o
[PL, Pi 1][! Py Pa] o °9
> (tog(Mss"™™)) : R

whence

[Pi,..., 'Pil[Pit1,--- P, .
E)) r S Mss™t R

, il
U, AL A, D0 ([Ay, . Ay var (Tiy), - var (z,)], Mss™) - R)

and we know that
0”([Ala Ed) Aia UCLT(.I’H_l), Ed) U(LT(.Tn)], MSSH_I)
= 9”([1417 (EEE) Aia UCLT‘(.Ti+1), teey Ua’r(l‘n)]a (tog(M33i+1))i)

TheMss' term has form(M :: Mss')"

We have a derivation ending in

[Py, Pi_1][Pryen P

F1:>MIQ FQ =>> MSSi:R

e (oc)
¥ ol PP 7471][Q40P1 Pn} L.
',y > (M :: Mss')' - R
whence
['y=M:Q I)

A; > A P T M) -
_, 4iP @—o 1 DO(M) - (—o.) [PLye P 1][Piyee. Pa] :
Ip Iy, Ay > ap(A;,0(M)) : P Iy > Mss

Ly, Do Ay, Ay b0 ([Ay, oy ap(As, O(M)), var (x4 1), .., var(x,)], Mss?)

and we know that
0" ([Ay, ..., ap(A;, 0(M)), var (xsy,), .., var(z,)], M ss")
= 0"([Ay, ..., Ay, var(wiyy), .., var(zy,)], (M 2 Ms")Y)

TheMss' term has form(withl1(Mss?))!

We have a derivation ending in

(P P a][Pi&Q,e., P L (&z,%)
> (withll(Mss"))" : R

:}; ii)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 151

whence

['P1,....,' P;_1][Pi,..., Pnl] .
E; A; > withel(4;) : P, (&) = Mss': R i)
DAL A, o0 ([Ag, . withel (A;), var(xiyq), ..., var(z,)], Mss') : R

and we know that
0" ([Ay, ..., withel(4;), var(ziy1), ..., var(z,)], M ss")
=0"([Ay, ..., Ay, var(zig1), ..., var(z,)], (withl1(Mss'))")
24. TheMss' term has formwithl2(Mss'))®

We have a derivation ending in

[Py, Pi1][Piyens P ,
> Mss': R

[1PL,. P [Pi&Q,.. Pl - (&, %)
> (withl2(Mss"))' : R
whence
Ai > Ai s Q&P (&.,) (1P Pi] [Piyeeos Pal

E; A; > withe2(4;) : P r > Mss' : R i)
DAL A, o0 ([Ay, . withe2(A;), var(xiyq), ..., var(z,)], Mss') : R

and we know that
0" ([Ay, ..., withe2(A;), var(ziy1), ..., var(z,)], M ss")
= 0"([AL, ..., Ay, var(ziyy), ..., var(x,)], (withi2(Mss'))")
25. TheMss' term has form(d(M ss'))*

We have a derivation ending in

[Py, Pi1][Piyens P)
> Mss': R

(P Pi—][1Py, P N
> (d(Mss*) : R

(Dx)

whence

A; > AP
i i D (1Py,...\P;_1][Pi....Pn] ,
E; A; > der(4;) : P (D) r 1>> Mss': R

— i
LyA A, 0 ([Ay, .y der(4y), var (ziq1), ..., var(z,)], Mss') : R)

and we know that
0" ([Ay, ..., der(Ay), var(wiyy), ..., var(x,)], Mss")
=0"([Ay, ..., Aj, var(zig1), ..., var(z,)], (d(Mss"))")

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 152

26. TheMss' term has form(p(z.M))"+!

We have a derivation ending in

whence
x1 Py, .. x, Py = M: R

E; xy APy, xR, DO(M) - R
A, A, DDprom(X, 7.0(M)) IR
and we know that

prom(A, 2.0(M)) = 0" (A, (p(Z.M))"*)

)
(P)

Theorem 6.3 ADEQUACY) The following rules are admissible:

LobN:R g A>A:P FLMs:R”)
I'=¢y(N): R A= ¢'(A,Ms): R

['P1,..,'Pi_1][P;,e..,Pr)

D, .. D, > Mss': R i
DAL LA, = W ([Ay o Ay var (i), . var (2,)], Msst) © R

where theD, ..., D,, are (in order):
Al > A1 I!Pl

A > A P
A; > A P

Ajyq > var(xi) : P

A, > wvar(zy) : P,
PrROOFE

1. TheN term has form\z. N

We have a deduction ending in

[e: PN Q
I'oeAx.N : P—oQ

(—oz)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 153

whence
[e: PN @)
Io: P=¢(N): (=)
I = Aep(N): P-oQ ' ¢

and we know that
Az.p(N) = p(Az.N)

2. TheN term has formteni(Ny, N»)

We have a deduction ending in
F1|>f>N12P F2|>f>N22Q

Iy Ty ooteni(VuN,) : Po @ (&Y
whence
Fl DDNl : P I) FQ [>1'>N2 . Q I)
Iy = 9(N): P Iy = (Ng) : Q

Ty, Ty = tenr((Ny), 0(N,) : PR Q (@)
and we know that

tenr(1(N1), ¥ (N2)) = ¥(teni(Ny, N2))

3. TheN term has formk

We have a deduction

> (]I)
and we know that we have a derivation

=1)

Hence result.

4. TheN term has forme(A, N)

We have a deduction ending in

F1|>AI] FZ»NR(I)
[y, Dy >pie(A,N): R V¢

whence
Ih'eeN R I)
Iy = ¢(N) 'R (Iﬁ)
Iy>A:T Ty —5dl(p(N): R i

[, Te = ' (A il(p(N))) : R
and we know that

7//(147 Zl(¢(N))) = 1/J(i€(14: N))

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 154

5. TheN term has forntene(A, x,.25.N)

We have a deduction ending in

> A:PRQ D'y,z1:Paxy: Q>N R
Fl,rz |>f>t€n€(A,l'1.l'2.N) 'R

(®:)

whence
[o,20: Pag : Q>N R
F27‘/L‘1:P7$2:Q:>2/)(N)

I >A:PRQ I,=% tenl(xy.x9.9(N))
[, Ty = ¢/ (A, tene(x;.x9.0(N))) : R

and we know that
V'(A, tenl(xy.29.0(N))) = (tene(A, x1.25.N))

1
'R ()
R
i)

6. TheN term has fornvont(A, x1.x5.N)

We have a deduction ending in
[i> AP Ty x!!Pay!IP>N: R
1—‘1, 1—‘2 [>{'>COTLt(A,.I‘1..I‘2.N) 'R

(©)

whence
Fz,l'l :!P,.I'Q dAP>>N: R

Lo,y 1Py \P = ¢(N): R
Iy > AP Ty -5 o(wy.200(N)) : R
Fl,FQ = 'Lp,(A,C(JIlJIQl/)(N))) 'R
and we know that
P'(A, c(x1.22.9(N))) = (cont(A, x1.29.N))

7. TheN term has formweak(A, N)

)
(©)

i)

We have a deduction ending in

F1|>A’P F2[>{'>N2R
I'y, Ty sbweak(A,N) : R

(W)

whence
1—‘2 >N R

Iy= o(N): R

AP Ty w
Fl: 1—‘2 = wl(A7 ’U)(Tﬁ(N
and we know that

V(A w(W(N))) = ¢(weak(4, N))

1)

(W)
N):R .

(
IR

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 155

8.

10.

TheN term has formprom (A, @.N)

We have a deduction ending in
A AP L AL AP, x P, PN R

P
AN TRIA »prom(ﬁ,?.]\f) IR (2)
whence
xy P, .., x, Py DN D R i
-'Pl,..., 1P, = ¥(N) : R (P
Ay AP An>Amwg[H I @ () R

Aiy o A = (A (p(F 0 (N))) R g

and we know that

(A, (p(FH(N)) = w(prom(A, T .N))

. TheN term has fornun(A)

We have a deduction ending in

I'>A:P
I'oan(A) @ P

and we have the following derivation:

(M)

whence

(az)

I>A:P =] P“)

P=¢'(AlD):P

and we know that
V(A []) = ¥(an(A))
TheN term has formfal(A, {var(z;)})

We have a deduction ending in
P>wvar(z): Py ... Py>oar(z,): P, A>A:0 (0.)
APy, ..., P, o> fal(A, {var(z;)}) : R)

whence

(0c)

ADAﬂ)m;&meRfoMhm:Rm

AP,P, =Y (A, fal({z;})) : R
and we know that

(A, fal({x:}) = o(fal(A, {var(x:)}))

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 156

11. TheN term has formwithi(Ny, N3)

We have a deduction ending in

F[>{'>N1:P F»NQQ

I s>withi(Ny, Na) : P&Q (&z)
whence
F»Nlip I) F[»NQ:Q I)
['=y(V): P ['=9¢{V2): Q
(&r)

[= withr(y(Ny),¢¥(Ns)) : P&Q

and we know that

withr(Y(Ny), p(Na)) = ¥ (withi(Ny, Ny))
12. TheN term has formplusil (V)

We have a deduction ending in

I'D>B>N: P
[oeplusil(N) : P& Q

(6911)

whence
I'e>N: P

T o o) P)
['= plusrl(¢y(N)): P®Q

and we know that

(@Rl)

plusr1(b(N)) = ¢(plusil(N)

13. TheN term has formplusi2(INV)

We have a deduction ending in

[N Q
I oeplusi2(N) : P& Q

(6912)

whence
>N :Q

['=¢(N):Q)
[' = plusr2(¢y(N)): P& Q

and we know that

(69732)

plusr2(Y(N)) = ¢(plusi2(N))

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 157

14. TheN term has fornpluse(A, x,.Ny, x9.N3)

We have a deduction ending in

FDAP@Q A,.I'1:P|>f>N1:R A,$21P|>{’>N2:R

[, A ppluse(A, x1.Ny, 29.No) : R ()

whence
A,.I'1:P|>f>N1:R |) A,Z‘QIQ»NQZR
Az P=¢Y(N): R Ajzy: Q= ¢Y(Ng): R

[>A:PaQ APi%gplusl(xl.w(Nl),xg.w(Ng)) 'R
[A = ' (A, plusl(xy.p(Ny), 22.90(N2))) = R

i)
(G2

i)

and we know that
W'(A, plusl(x1.9(Ny), 22.90(Na))) = P(pluse(A, x1.Ny, £2.N3))

15. TheN term has formr({var(z;)})

We have a deduction

P >wvar(zy): P, ... P,>wvar(z,): P,
Py, ..., P, >tr({var(z;)}) : T

we also have

x Py Py = tr({o}) 0 T

and we know that

tr({z:}) = ¢(tr({var(z:)}))

16. TheA term has formvar(z)

We have deduction

xz: P>wvar(x): P (az)

and we find the following:

L Ms:R (o
e P=(z;Ms): R

and we know that
(2; Ms) = ¢'(var(x), Ms)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 158

17. TheA term has formup(A, N)

We have a deduction ending in

Ai>A:Po@ Ayp>N:P (=o.)
A, Ay > ap(A,N) : Q :

whence
AyDB>N: P .
A= o) P
A>A:PoQ T,A =% (W(N):Ms): R .
[yAL Ay = ' (A (P(N) 2 Ms)) - R

and we know that
Y'(A, (Y(N) : Ms)) =4 (ap(A, N), Ms)

18. TheA term has formwithel(A)

We have a deduction ending in

Ap> A: P&Q
A > withel(A) : P

(&)

whence
P&Q . L1
Ap> A: P&Q T — withll(Ms): R ..
A = o' (A, withl1(Ms)) : R
and we know that

P'(A, withll(Ms)) = ' (withel(A), M s)

19. TheA term has formwithe2(A)

We have a deduction ending in

A A: P&Q
A > withe2(A) : Q

(&)

whence
r-% Ms:R (&e)
P&Q . £
Ap> A: P& T — withi2(Ms): R i
VA = ' (A, withl2(Ms)) : R
and we know that

(A, withl2(Ms)) = ' (withe2(A), Ms)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 159

20. TheA term has formier(A)

We have a deduction ending in

A> AP
A der(A): P

(D)

whence

A>A:dP T -5 dMs): R .
T A (A dis) R

and we know that
Y'(A,d(Ms)) = (der(A), Ms)

In the following we again frequently uses the eIIipﬁsinstead of spelling
out all the detail of the left premisses.

21. TheA term has formvar(z

We can find the following derivation:

[1[P1yesPn]
i > Mss': R

L,P,...,P,= (7;Mss'): R

(selx)

and we know that

(75 Mss') = " (var(x), Mss")
22. TheA term has formA,, ..., Aj,var(ziy), ..., var(x,)]

We have derivation ending in

[Pi,..., 'Pi][Pi+1,-..,Pn] -
Mss'™t: R

[1PL,...\Pi_1][! Py Pr] (tog)

> (tog(Mss*™)) . R

whence

1Py 1P [Pig 1o Pa] ,
E; r S Msstt R

DAL LA, = W ([A . Ay var (), .y var (2,)], Msst™™) 0 R

ii)

and we know that
W ([Ary ooy Aiy 008 (3341, - var (2], Mss'™)
- w”([Ala) Aia Ua’r(l‘i+1)7) UCLT‘(.TH)], (tog(Mssi+1))i)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 160

23. TheA term has formA,, ..., ap(A;, N),var(z;y1), ..., var(x,)]

Theith deduction ends in
A; > A . P—oP, A;DDN:P()
_O
AZ,A;DGP(A“N) Pz :

whence
/ .
AZ »N . P I) ['Pl,,'Plfl][Pz ----- Pn]
Al=y(N): P’ T > Mss':R
_> [!Pl,..,!Pi_l}[P—OPi,...,Pn] (_O»C*)
lp L > w(N) - MSSZ)Z |||)

A,y Ay AL A, = (A, (0(N) = Mss')) : R
and we know that

¢"(X, (Y(N) = Mss')') = " ([Ay, ...,ap(As, N),var(zig1), ..., var(z,)], M ss")
24. TheA term has formA,, ..., withel(A;), var(ziy1), ..., var(x,)]
The:th deduction ends in

A > A P&Q
A; > withel(4;) : P,

(&2,)

whence

[!Pl,...,!Pi_l}[;...,Pn] Mt R
SS§° .

— PP P& QP — (&%)

P Ai> A PEQ T > (withl (M) R

Ay Ay = (A, (withll(Mss')) : R

and we know that

w”(ﬁ, (withl1(Mss"))" = " ([Ay, ..., withel(A;), var(zi1), ..., var(z,)], M ss")

25. TheA term has formA,, ..., withe2(A;), var(ziy1), ..., var(x,)]

The:th deduction ends in
A > A Q&P

&..
A; > withe2(A4;) : P (&)
whence
[1Py,..\Pi_1][Pi,....Pn] Mad: B
>> SS° . (&£2*)

[1P1,..,'Pi_1][Q&P;,...,Py]

E; A;> A Q&P T > (withi2(Mss')) : R i)
Apeoy Ay = (A, (withi2(Mss')) : R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 161

and we know that

w”(ﬁ, (withl2(Mss'))" = " ([Ay, ..., withe2(A;), var(zi1), ..., var(z,)], M ss")
26. TheA term has formA,, ..., der(A;), var(x;y1), ..., var(z,)]

The:th deduction ends in

At AP
A; > der(A;) @ P

(D)

whence

[1PL,) Pi1][Piyens P ,
> Mss': R
1Py, \P;_1]['P,...,Pn]

E; A;> AP T > (d(Mss')) : R
Ay, A, = (A, (d(Mss?)) : R

iii)
and we know that

1/}”(2, (d(Mss"))" =" ([Ay, ..., der (A;), var(zi4,), ..., var(z,)], Mss")

6.6 Cut Elimination

In this section we discuss cut elimination for SILL. We give the (compidatut
rules for SILL“* (SILL with these rules) and then a simple cut elimination argument
for SILL““,

There are ten cut rules for SILL. We show all of these in Figure 6.7. In thess rul
we have some notation for multicutd?)* stands fori occurrences of formulaP
and(!©)* stands for occurrences of multisé®.

In the next section we give reduction rules for the occurrences of cut, before giving
a cut-elimination procedure and further discussion on cut for SILL and itsredimi
tion.

6.6.1 Cut Reductions

We give reduction rules for the occurrences of the ten cut rules. First, we try
clarify some of the notation used.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 162

r % p ALR(cut) I'=P AP-%SR
1
rA-%R rA-%R

'=P AP=R
A=R

(cuty)

=P AZLR
A= R

(cuts) (cuty)

('®][w]
I'=s=P AP > R
o] (cut:) T=P A

T, A SR T AZ=R

relr] o p (elr] :
>P A, (IP)) — R >IP A, (IP))=R
(cutz)

A (10 = R A (10) = R

el] |
SIP A, (P -5 R

A, (10) % R

(el] o [le][¥]
SIP A, (IP) ——> R

['o][v]

[IEP]

> R

(cutg)

(cutg)

(cuty)

(Cutlo)
A, (10)

Figure 6.7: Cut rules for SILL

Consider a promotion, written:

(101, 10nl[]
TSP
[1[S1sSn]

r,,..T, Shp

I L. 5.5 =ip o)
Thel’; are the context formulae for the decompositiorbpfo !(Q;. This section of
proof can then be extracted:

(ax)

6 ~251Q;

)

5,5 =g, o

When this extraction forms part of a reduction, we simply write the conclusion.

We often write[=, P|. This stands for a list whose elements are those of the multiset
= and the elemenP, with P occurring at an unspecified position in the list. We
write =, (1Q1, ..., !1Q,)] for a list of the elements dE with the list[!Q;, ..., !Q,]
occurring as a sublist in some position.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 163

Now we give the reduction rules.

1. (cut;) Analysis by cases on the left premiss:

(@) (ax) (@)
axr
o P AL
(cuty)
AL R
reduces to:
AR
(b) (—Oc)
=S Iy P
S—oT (—oc) P
Iy, —~P A—R
I, Ty A4 R (eut)
1,12,
reduces to:
r, P AR (cuty)
1
I =S Ty, A 5 R
S—oT (—oc)
[, I'y, A— R
() (®cr)
IS, T =P
S®T (®c) P
A4 R o
reduces to:
S, T=P AR
TAST=R k)
T (@)
IA—R
(d) (1) bl p
:I> (1) P
I — P IA—>R(CUt1)
A — R
reduces to: .
I'=sP A R
LA :>R_> (cuts)
—— (L¢)
A — R
(e) (0¢)
0 (Oc) P
I —P A — R (cutl)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 164

reduces to:
——— (0¢)
IA— R
() (®r)
rS=°r I'lT=P
SoT (®c) P
Ir—P A — R (CU,tl)
AR
reduces to:
[,S=P ALR() I,7T=P ALR()
T A S= R cuts CAT=R)0“3
L
AR
(@) (&) .
r P
&),
r—2Ppr A — R (cutl)
AR
reduces to:
r-°,p ALR(CUM
F,Aiﬂ%()
S — L
rap
(h) (&.,) Similar to above.
@ (W)
I'= P W
r=p AR (cuty)
A5 R
reduces to: .
I'=sP A——R
t3)
ILA=R (cuts
W)
A — R
0 (©) LIS 1G o p
SIS =
— O,
I =P A— R (cutl)
'A% R
reduces to:
[,18,1S = P ALR(CM)
3

T,A IS 1S= R
r'ASR

(©)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 165

(K) (D) .
#(D ,
r—P A—>R(
A5 R

cuty)

reduces to:
r-°,p ALR(

AR

I'ASR

cuty)

(D)

2. (cuty) Analysis by cases on the right premiss.

(@) (ax) Not possible.

(b) (—or)
ALP=S Ay R (o)
L
T'=P ALA, PR (cuta)
2
TALA 3R
reduces to:
=P A,P=S y
F,A1:>S (CU4) A2L>R(—O)
L
T ALA 73R
or
A=S AP SR (o)
L
T'=P ALA, PR (cuta)
2
TAL A 4R
reduces to:
=P AP R (cuty)
2
Al =S F, AQ L R
S—oT (o)
F,AI,AQ — R
(€) (®¢)
A,P,S,T = R
ST (©)
'=P AP— R
S@T (cuty)
A=/ R
reduces to:
=P APST=R
TASToR Ut
S&T (®c)

A —R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 166

(d) (1)
AP=R
— (Iz)
'=P AP—R
- (cuts)
A — R
reduces to:
'=P AP=R
A= R (cuts)
—— (L¢)
A — R
(e) (0¢)
—— (0g)
'=P AP—R
s (cuty)
A — R
reduces to:
——— (0g)
A — R
) (®r)
APS=R APT=R
SoT (®c)
=P A PSR
Sor (cuts)
A=/ R
reduces to:
'=s=P APS=R =P APT=R
TASS R (Cculd) TATS R\ o)
)))) (®£)
A4 R
(g) (&51)
APPSR)
= T (&g
=P APXR
T (cuts)
A —R
reduces to:
=P AP-5R
5 (cuts)
A — R (&)
== (&,
A2 R
(h) (&,) Similar to above.
@ (W) N
P =
—— (V)
'=P AP—R
(cuts)

A5 R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 167

reduces to:
'=P AP=R

A=R
—s (W)
A —R

(cuty)

0 (©)
A, P1S,1S= R

r=PrP APPSR
A5 R

(©)
(cuts)

reduces to:
=P API!S'S=R

LAISIS = R
5.,)
A —R

(cuty)

K (D)
AP R

=P AP R
A5 R

(D)
(cuty)

reduces to:
=P AP LR

AR
A5 R

(cuty)
(D)

3. (cuts) Analysis by cases on the left premiss.

(@) (sel)

reduces to:

(b) (selx)

> P

ry,...T, (
ry,..r,,S,...,S, =P A —
Iy, 00 A0S, .., S, = R

(cuts)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 168

reduces to:
! !
e
&5 PP n p
Fna Sn :>’Qn Aa !Qla) 'Qn = R (") !
A) !Qla crey !anlarna Sn = R clta
D cutys
Fl,...,Fn,A,Sl,...,Sn =R
() (—or)
Q
F,P:>Q A1:>P A2—>R(—O)
2 (—oR) P oQ L
F:>P—OQ Al,A2—>R(t)
TALN = R cuts
reduces to:
IP=0Q AR .
A =P F,AQ,P:>R(t()CUS)
T ALA, = R it
(d) (®=) AP.Q=R
)) :>
Lol D29 (gn) ~r e, (00)
FI,F2:>P®Q A—>R(t)
T, 19, A= R cuts
reduces to:
I=Q A,P,Q:>R(1)
I, =P FQ,A,P:R(t)cu‘*
.05, A =R cita
e) (Ir) Ao R
=
B (Ic)
A= R cuts
reduces to:
A= R
(/) (Tx) Not possible.
AP=R AQ=R
S e e
'=PaQ ! A— R
I A=R (cuts)
reduces to:
'=P AP=R
(cuty)

NA=R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 169

(h) (®,) Similar to above.

() (&r)
A—R
I'==P I'=sQ (&r) ~PEO &)
' = P&Q A—=R
I A=R (cuts)
reduces to:

r=pr AR
A= R

(cuts)

4. (cuty) Analysis by cases on the right premiss.

(@) (sel)
AP -5 R
I'sP APS=R
AS=R

(sel)
(cuty)

reduces to:
=P AP-SR

AR

A S=R

(cuts)
(sel)

or

reduces to:

(b) (selx)

=)
AP —">R

I'=P AZP=R
LAZ=R

(selx)
(cuty)

reduces to: -

=P AP
=

> R

(cuts)
A > R
AZE=R

(selx)

of [1[E.P]
=,P
A > R

I'=P AZP=R
LAZ=R

(selx)
(cuty)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 170

reduces to:
[1[E,P]

=P A >>R(

AJZ=R

cutg)

(©) (—or)
AP S=T

=P A Po ST %)
Ao Sor (vt

reduces to:
'=P APS=T

VA S=T
T Ao ST (%)

(cuty)

(d) (®r)
A,P=S Ay=T

=P Al,AQ,P:>5®T
F,Al,A2:>S®T

(®r)

(cuty)

reduces to:

=P A,P=S y
F,A1:>S (CU 4) ANy =T

DAL A= ST (®R)
(e) (Iz) Not possible.
® (Tr)
=P AP=T (Tf)
TLA=T (cuts)
reduces to:
IA=T (Tx)
(g) (@Rl)
AP=S
r=p APSSaT Or)
FTAsser (b
reduces to:

=P AP=S
TAsg |l
TASSeT (o)

(h) (®x,) Similar to above.
(i) (&r)
AP=S AP=T &
=P A,P = S&T t(®)
T, A = S&T (cuts)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 171

reduces to:
'=P AP=S y '=P AP=T ;
A= S (cuts) T A=T &)(CU 1)
LA = S&T R
5. (cuts) Analysis by cases on the right premiss.
(@) (tog)
[12,!1S][¥]
AP .
1e][1S,] (tog)
=P AP >R
[12][15,¥] (cuts)
A > R
reduces to:
19,15][v]
'=P AP > R ;
[10,15][W] (cuts)
T, A .
[19][15,] (tog)
A > R
(b) (—oc*)
19)[T,¥]
Al, P=3S AQ > R
[10][S —oT,¥] (—or*)
I'=P A, Ay P "
10][S—oT', V] (cuts)
AL Ay
reduces to:
=P A,P=S
’ 19)[T,¥]
A, =g (uh) , "0
[10][S —oT,¥] (—or%)
AL A > R
or
[1e][T,¥]
A=S AyP
[10][S—oT,¥] (—oc¥)
I'=P Al, AQ, P > R "
10][S 0T, ¥] (cuts)
FJ AI; AQ > R
reduces to:
19)[T,¥]
=P A,P .
[o)[T,] (cuts)
A= S F, Ay
19][S—oT, V] (-ocx)
AL Ay > R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 172

(C) (&51*)
[19][S,¥]
A, P > R &
[10][S&T, V] (&, %)
=P AP > R ;
[19][S&T,] (cuts)
A > R
reduces to:
[19][S,¥]
'=P AP > R ;
19][S,V] (cuts)
A > R
[10][S&T, V] (&)
A > R
(d) (&c,*) Similar to above.
(€) (D)
[19][S,¥]
A, P > R D
[19][1S,v] (D)
'=P AP > R ;
[12][15,¥] (cuts)
A > R
reduces to:
[19][S,¥]
'=P AP > R ;
19][S,V] (cuts)
A > R
(D)
[12][15, W]
A > R
(f) (P) Not possible.
6. (cuts) Analysis by cases on the left premiss.
(a) (sel) Three possibilities:
"= P
ﬂiP
. [[EP]
T oo p) A B g
[AZS=R (cuto)
reduces to:
[1[E,P]
I"'=P A > R
U AZsR)
IAZ - R

IAZS=R (sel)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 173

> (a2)
ax
P [e][P,¥]
A 2 (tog)
P, p :
[1E.P]
o= p 5l >R
A=, S=R Ut
reduces to:
, [1®][P,¥]
19][5, 7]
1'\ !
—— (tog)
[[=.5)
T, A R
T AZ 5o R)
or
——— (0g)
I"— P
LDP () =P
r,S="r A R (cuty)
TAZ,S= R Ut
reduces to:
o (0c)
I"AJ)Z — R
I'AZ-5R (sel)
T.AZ,S= R \°
(b) (selx) Two possibilities.
Q1,0 1Qn = P 1] (P,v]
- (P) ' b
[1Q1,e!Qn][] TR (Dx)
3P Lelrry) o
: tog
[1[S1,-++5Sn]
ry,..,0, > 1P (se1%) -
ry,....0., 5, ..., =!P A > R (cut)
6

Ty, ..TmAE S, .8, =R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 174

reduces to:
, ['®][P,¥]
(tog)
[E,P)
Q1 .., 1Q, =P A > R (cute)
r,s, =0, AE Q... 10, = R (cuty) 6
AJEJ!QIJ"'J!Qn—IJFTLJS’n:>R et
D cutys
iy Ty AVE Sh, o, S = R
or
2P =R
(=P (P)
>R
1Q,...,1Q, = P 19, 1P][¥]
Qla) Q = (P) AI >>'
[1Q1,mn,!Qunl[] ————— (tog)
$p][Vl
! >R
; (tog)
Ly, ., S p :
Do n : [11=:17]
I L. 5.5 =P) SR (cuts)
Ty, 0y A28, .. 8, =R o
reduces to:
'Q1,...,'Q0, = P ()
[1Q1 Q][] _,
> 1P 1=/, IP = R
=101, .10, = R (cuts)
T (P)
1Z00Q1,-,'Qn)][]
> IR
[1[Z,51,,Sn]
Ty, Doy A IR (sels)
Ty,...[,,AZ S, ... 8, =R *°
() (—or)
['®][Q,V]
[0][P—Q,v] (—oc)
Aq, Al > R
_ (tog)
LP=Q 5_
ot =% [1[E,P—Q]
= P-oQ (—or) Ay A, > R

T A A E=R (cuts)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 175

reduces to:
, oy
e)

EQ]
> R

F,P:>Q AQ
Ay =P = A, P=R
A, Ay, Z= R

(cutg)
(cuty)

(d)
(e)
()
(9)
(h)
(i)

®%) Not possible.
Iz) Not possible.

Tx) Not possible.
®x,) Not possible.
®x,) Not possible.
&r)

o N T N e

roPy)
A/
Telrege | (et)

i (tog)

r=P I'=>Q
['= P&Q

[E,P&Q)]

FTAZS R (cuto)

reduces to:
| leliry)

(tog)

[E,P]
I'=P A >>R(

AZE=R

cutg)

7. (cut7) Analysis by cases on the right premiss.

@) (ax)

reduces to:

(1Q1 Q]
>
010, =P

(selx)

(b) (—o,) Not possible.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 176

®.) Not possible.
1) Not possible.
0.) Not possible.

~ ~—

@ (W) Q Q, = P
1Qy,....1Q, = 1P
oo ©) = ('P) ;; e W)
S0P ALPY DR
- cu
A (1Q1, ., 1Q) = R !
if ¢ = 0 then this reduces to:
AR
A, = i 5
: weakenings
AQ, ..., Q, = R
if i # 0 then the reduction is to:
l r
el AN
Sp A, (IP) = R
: (cuts)
A, (1Q1, . 1Q.) = R)
A (1Q1, ., 1Q0) 25 R
(sel)

A (1Qu, . 1Qn)',1Qn = R

: weakenings

A (1Qr, ., 1Qn) T = R

0 (©)
'Q1,....1Q0, = P (P) A, (IP)*2 = R

@l APy B R (C)

! A, (! .
AJ (!Qla "y !Qn)l+1 = R (Cu 7)

reduces to:

R p AP =R

- cu

A (1Qr, Q) 1Qy, . 1Q = R ©)

AJ (!Qla (RS 'Qn)za !QIJ (RS !Qn—la !QIJ () !Qn—l 'Q—n> R
(sel)

AJ (!Qla Ty 'Qn)la !Qla Ty !Qn—la !Qla teey !Qn—la 'Qn = R

: contractions

Aa (!Qla) 'Qn)H_l =R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 177

(k) (D)

i) N

A(1Qy, .., !1Q.) " = R
if © = 0 the reduction is to:
Q1,...1Qn =P AR
AQy, . L0, = R
if i # 0 the reduction is to:

Q),...,1Q, = P P

Sp A, (P 5 R

Q... 1Q, = P A(1Q, .., 'Q,) =5 R
AJ (!Qla) !Qn)i+1 =R

g (D)
(cutr)

(cuts)

(cuts)

8. (cuts) Analysis by cases on the right premiss.

(@) (sel) Two possibilities

ol A, (1P 5 R
—IP A, (IP),S=R
A, (10),S = R

(sel)
(cutg)

reduces to:

[rel] R
>!P A, (IP)) —R
A, (10) 5 R
A (1©),S = R

(cuty)

(sel)

or '

ol A, (!P)f R
>IP A (P =R
A (10)* = R

(sel)

(cutg)

reduces to:

e[| Cp
>!P A(IP) — R
A, (I9)* = R

(b) (selx) We give two reductions which, when combined, give the desired

(cutr)

reduction.
1= (IP)* =R
O 1 P [JE Py
Qi Q=P py A (1py > IR
(1Q1,,!Qn][] — (selx)
Sp A, (IP)H7+h = = R
(cutg)

A, (1Qy, ., 1Qn) TR 2 =R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 178

if ¢ # 0 then the reduction is to:

1= (IP)* =R
[QuiQl] [P+
TSP A, (1P >R
1Q1, .., 'Qn = P LEPy] o
100l (P) A Q. [Qn) > (selx)
> 1P A, (1Q1, ..., 'Qn)E 2, (IP)ITE =R .
A, (1Qr, Q) = IR (cuts)
if © = 0 the then reduction is to the following:
[‘Ql:"':lQTLM]
> P 12, (IP)f= R ;
1= (1Q1, ..., 1Qn)F = R (cuts)
1= (!] k (P)
['Hr('Ql Qn)][]
> IR
ME ('er"'rlQ")k’(P)”
!Qla"' ’Qn :>P 7‘—‘7(Q17" 7!Qn)z+k7(P)j :>'R ¢
7H, (Q' 'Qn)H_’H_la (P)j—l =R (Cu 4)
D cutys

AE (1Q1, .., Q) T =R

By doing the first reduction, eliminating theut;o)s (they move into
the minor premisses of the promotion) and then performing the second
reduction, we get one large reduction, which is the one we really want

to consider.
() (—or) '
A (1P, S=T
Lol : —og)
>IP A, (IP)'= S—oT .
A, (10)! = S—oT cuts)
reduces to:
[rel] .
>IP A (IP),S=T
- (cutg)
A (10),S =T
i (_OR)
A, (19) = S—T
(d) (®r)
AL (IP)Yi=S Ay (I1PY =T
re]l] LUP)' =5 e (P) = (®r)
>IP AI,AQ, (!P)Z+J =5T
(cutg)

AL A, (10)H = 5@T

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 179

reduces to:
['e]l] . [re]r] .
- (cutg) : (cuts)
A (10) = § Ay, (10)7 = T ()
AL Ay, (10)H = ST &
(e) (Iz) Not possible.
) (Tx) -
10 -
o A (I1P) =T E 7;))
A(0) =T o
reduces to: -
N
(g) (69721) .
re][] 2,0P) =5 (®r,)
—>IP A(Pi=>SeT
- cutg
A (10) = ST
reduces to:
['e]l] .
SIP A, (IP) =S
: (cuts)
A (l0) =S (@)
A (0= SeT
(h) (®x,) Similar to above.
(i) (&r) N N
IP)! =S 'P) =T
1]] . (P) 5. (F) (&)
>1P A, (IP) = S&T (euty)
- Cu
A, (1) = S&T ’
reduces to:
['e]l] . ['e]l])
SIP A, (IP)i= S SIP A (IP)i=T
: (cutg) . (cuts)
A, (10)i = S A, (10) =T (ten)
A, (10) = S&T &

9. (cutg) Analysis by cases on the right premiss.

(@) (ax) Not possible.
(b) (—or)

AL (IPY =S Ay, (1P R

e[| ——
1P Ap, Ay, (1P)iH R

S—oT

A1, Ag, ('@)Z+] — R

—o£)

(cuty)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LoGIC 180

reduces to:
© , te]] o
[][]>>'P Al,(!P)Z = S (.) > P AQ, (’P)J — R (Cutg)
AL(©) =S cuts Ao (O =R
o —O¢
A1, Ay, (10)H =4 R
©) (®c) ,
A, (IP), S, T = R
rell] —ar — (®r)
S>IP A (PSR
(cuty)
A, (l0) 5
reduces to:
['e]l] ,
SIP A, (!P)‘,S,T:>R()
- Cu
A, (10)1,5,T = R ’
o — (®c)
A (10) =5 R
(d) (Ic) ,
A (IP)= R
1o][| ——— (L)
>IP A, (1P -5 R
— (cutg)
A, (1) -5 R
reduces to:
['e]] .
SIP A, (IP) = R
A (10) = R (cuts)
— (Ic)
A, (1) -5 R
(e) (0c)
rell] ——— (0¢)
>IP A, (1P -5 R
— (cutgy)
A, (1) %5 R
reduces to:
—— (0¢)
A (10 — R
) (®c)
A, (IP),S=R A,(IP),T=R
re]r] ot (®r)
>1P A (IP)— R

- (cuty)
A, (10) 2 R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 181

reduces to:

1ol] . 1ol] .
>IP A, (IP),S=R >IP A, (IP),T =R

- t -
A (0),S=R (cuts) A, (00,7 = R

(cutg)

(@) (&)

reduces to:

o]l] g
>P A (IP)) — R
A, (10) 25 R
A, (10) 2 R
(h) (&.,) Similar to above.
ONUD

A (IP))=R
el] -
>IP A (1P 25 R
A, (10) =5 R

(W)
(cuty)

reduces to: ol
10 ,
>!P A, (IP))=R

A (1O =R
A, (10) =5 R

(cutg)

(W)

0 (©)

A, (IP)1S,15 = R
el] 5
>IP A (PSR
A, (10) =5 R

(©)
(cuty)

reduces to:

1]] |
SIP A, (IP),1S,1S = R

A, (10)15,1S = R
A, (10) 25 R

(cutg)

(©)

(k) (D)

A, (1P) 25 R
el] —3
>IP A (1P 25 R
A, (10) 255 R

(D)

(cutgy)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 182

reduces to:
1o][| g
>IP A (IP) 25 R
— (cuty)
A (10 =R (D)
A, (10) 255 R
10. (cutyp) Analysis by cases on the right premiss.
(@) (tog)
[,1S][v]
A, (1P)i
rel e (109)
SIP A, (IP) — > R
19[S, v (cuto)
A, (10) > R
reduces to:
o]] [le,1S][v]
S>IP A, (IP) > R
[19,15]] (cuto)
A, (!@)i (t)
[o)[1S,v] o9
A, (10) > R
(b) (—Oc*)
) . ['e][T,¥]
A, ('P)Z =95 Ay ('P)J > R
o e[S o7, (—oc*)
1P Ay, Ay, (IP)itI S R
 [19][S—oT,¥] (cutio)
A, Ay, (10)
reduces to:
o]] S) (1 i
S0P A(IP) =S P Ay (1P) >
- (cuts) - [le][T,]
Ay, (10) = S A, (10)7 > R
[19][S—oT,¥] (—oc%)
Ay, Ay, (lO)H
(C) (&51*)
_ [1e][s,v]
A, (IP) >R
rel] Telsere] (&)
S>IP A, (IP) >R
[19][S&T,] (cutio)
A, (19)i R

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 183

reduces to:
(el] _ [1e][s,v]
>P A, (IP) > R
(Cutlo)
A, (10): S R
[19][S&T, V] (&z,%)
A, (')
(d) (&,,*) Similar to above.
(e) (Dx)
A, 1Py 2
— (D)
(el] [e][ts, v
>IP A, (IP)) — > R
pe)sv] (cutro)
A, (ley
reduces to:
[rel] [1e][S,v]
>IP A, (IP) > R
T elSv] (cutro)
A, (le)

(D+)
- [1e][lS,]
A, (10) > R

(f) (P) Not possible.

6.6.2 Weighting Cuts in SILL

In this section we give a weight to simple cut instances (defined in DefirBt@&n
in SILL. This measure is then used with a cut reduction strategy to pheveweak)
cut-elimination theorem.

Definition 6.2 Associated with every formula occurrence in a SILL proof is an
elimination number. The elimination number of a formula is zero if it has fdifn
and was not introduced by a promotion. Otherwise it has elimination number one.

Definition 6.3 Theweight of a simple cut instance in a SIEL derivation is the
quadruple:
(67 |P|7 h27 hl)

where
— e is the elimination number of the left cut formula.
— |P]is the size of the cut formula.

— hy is the height of the right premiss.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 184

— hy is the height of the left premiss.

The quadruple is lexicographically ordered from the left.
Lemma 6.3 The weights defined in Definition 6.3 are well-ordered.

Theorem 6.4 The rules(cut,), ..., (cutyy) are admissible in SILL.
PROOF. We give a reduction strategy:

— pick any simple cut instance and reduce

— recursively reduce any simple cut instances in the result

By induction on the weight of the simple cut instances, and induction on the number
of simple cut instances, this strategy terminates.

This can easily be seen by inspecti@ih.

The reason for introducing the elimination number is now obvious. Reductions
3(b) and 6(b) introduce cuts whose cut formulae can be of greater size than the cut
being reduced. Inspection of these new cuts reveals that they are easihaélin
(consider, for example, the second of the possibilities for reduction 6(a)halid
needed is a measure which captures this. This the elimination number aclaieves
simple cut whose left premiss has elimination number zero has a form suchehat t
cut can easily be eliminated (independently of the elimination of the cuts a)ove

6.6.3 More on Cut Elimination

The ‘=’ sequents are the basic judgement form for SILL. Therefore, elimination of
(cuty) is of primary interest. Indeed, the other nine cuts result from the attempt to
algorithmically eliminate the first — they naturally arise in the reductf (cut,).
However, the simple admissibility ¢fut4) can be proved without recourse to the
other cuts and all the complicated work above. We prove the admissibility:aga

Theorem 6.5 The following rule is admissible in SILL:

'=P AP=R
A=R

(cut)

PROOF. Given that the premisses are provable in SILL, they are provablelin IL
(from Theorem 6.1). We know ([Bie94]) that cut is admissible in ILL, hence the
conclusion is provable in ILL. Again from Theorem 6.1, the conclusion is provable
in SILL. H

We could use similar arguments to prove the admissibility of the other cut rules
described above.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 185

Cut elimination is of interest for two reasons. Firstly, from a logic prograng
point of view, we are interested in backwards proof search, and a completeeut-fr
system is desirable for this. We have already described a cut-free syistpnoved

its completeness, hence from the logic programming perspective the cut-éiomina
theorem is of lesser importance.

Another reason to be interested in a cut-elimination theorem for a systdmasuc
SILL is that it can be seen as a computation process — calculating a nammal-f
(cut-free proof) from a program (proof with cuts). This is the motivation for the
cut reductions given in section 6.6.1 and the cut-elimination theorem as proved
in Theorem 6.4. The proof given there is that the reduction strategy terminates —
we have a syntactic algorithm that will produce a normal form. This is akin to
normalisation of lambda terms as computation as seen in functional programming.
We would ideally like to prove that the set of reductions given (and the assdcia
proof terms not given) strongly normalise, but such a proof is beyond the scope of
this thesis. Indeed, given that normalisation for natural deduction is not confluent,
we are unsure whether or not cut is strongly admissible. We do not, however, have
a counter-example.

It was said above that the ten cut rules arise from the process of algomthmic
eliminating the ‘basic{cut,). That this is so is easily seen from the reduction rules.
Of course, picking the right form for the cut rules is tricky. The rules have to be
sound with respect to provability in cut-free SILL and for all casegtiuce to valid

SILL sequents. This necessitates the ‘big step reductions’ which caneséar
example, 6(a). The decomposition of promotions leads to several other complicated
reductions, such as 3(b). Finally notice tlait;),...,(cut;y) are multicut (or mix)

rules — one formula on the left is cut with many formulae on the right. This has led
to very little complication in the cut-elimination process, but the use wlitiouts

for any purpose at all is unattractive, and using them with a calculus wigrale
judgement forms and focused formulae seemed best avoided. However, without the
use of multicuts, we were unable to find a measure on the size of a cut which would
always decrease. The situation is similar to that for multiplicatrenilations of
intuitionistic logic (such as G6 in the appendix). Indeed, multicuts were fingi-int
duced by Gentzen ([Gen69]) when trying to prove cut-elimination for this aadcul

by similar methods to those we are using here. We know of no treatment of cut-
elimination for calculi such as G6 which do not use a multicut. However, wevkno

of no work showing that the use of the multicut is necessary.

6.7 SILL and Logic Programming

One of the motivations for the development of SILL is the link between ‘permutation-
free’ calculi and logic programming. Linear logic has been extensively studied i
relation to logic programming, in particular by Hodas & Miller and Harland &
Pym. Hodas & Miller have developed two systems for linear logic programming.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 186

The first of these, Lolli ((HM94]), is based on a fragment of Intuitionistioéar
Logic. The second, Forum ([Mil96]), is based on full classical linear logaxl&hd

& Pym’s system, Lygon ([HP94]), is based on a fragment of classical linear.logi
This section will briefly describe Lolli (the language most closely relabeHILL)
and compare it with SILL.

6.7.1 SILL and Lolli

In [MNPS91], the idea of a uniform proof was introduced. A uniform proof is
one where the goal formula can be broken up until atomic before the context is
considered (see Definition 1.1). Hereditary Harrop logic with uniform proofs and

a backchaining calculus allows goal directed proof search. This can be seen as a
logical foundation of logic programming. Lolli is the linear logic programming
language most closely corresponding to SILL. Lolli is a calculus (introduced in
[HM94]) for the fragment of ILL similar to hereditary Harrop logic as agnaent of
intuitionistic logic. This fragment is the largest fragment of ILL for which anrh

proofs are complete with respect to provability. Lolli is a backchainingutas
suitable for goal-directed proof search.

In order to avoid problems with the structural rules, the Lolli calculus isitdated

with contexts split into linear and non-linear parts, like the calculus®lseen in
Figure 2.2. The calculus is presented with two implicatioas §nd—). —o can

be thought of as the usual linear implication for formutao() where P is not
banged— can be thought of as linear implication for formulae of the foftro().
Therefore, unlike ILE, there is no rule for moving banged formulae on the left into
the non-linear context. The usual left rules are replaced by two backchaining rules

Lolli is a calculus for the following fragment of ILL. We call this fragmentL.
Formulae are generated according to the following grammar.

R::=
A|T|G—-oR|G— R|R&R|VYV.R
G:=

A|T|I|R—oG|R—G|G&G|GR®G|GHG |G |VV.G|IV.G

UILL has G formulae as goals. On the leR,formulae and bangeld formulae are
allowed.

Lolli is displayed in Figure 6.8 (with a minor change from [HM94] — we have
given two backchaining rules for the cases where the resource formula is and is not
in the linear context, whereas Hodas & Miller give one backchaining rule and a
dereliction rule). All banged formulae on the left are¥irand all formulae which

are not banged are in

We need the following definition from [HM94].

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 187

sro7 (R g7 (R
“.IP=Q (—oR) Y, P =Q (=7)
- _O
;T = P-o@Q ' * S T=P—-Q" ' ®
=P Z;F2:>Q() “»Ir'=P Z;F:>Q(&)
ST, = PoqQ \OR ST = P&Q R
»I'=P %I =Q
ST=PoqQ %) TTrspeg @R
E;:>P()
¥ =I1P
YT = Ply/x] ¥, = Plt/x]
;T = VaP (Vr)t ;T = Jz.P ()
Si=P .. =P, STi=0Q .. Ii0m=Qn
Y:Tq,.., [, P= A (BCW
S, P;=P, .. Y, P;=P, S P,\I'=0Q, .. %Pl =Qn .
Y, Pl .. T,=A (BC)
Ty not free inX; T’
In,m>0and<{P,..,P.},{Q1,....,Qun}, A >€| P |

Notice that(BC), (BC,) can be nullary, providing the leaf nodes for the calculus.

Figure 6.8: Lolli

Definition 6.4 Let P range over logical formulae built using the connectivest,
—o, — andV. Then|| P || is the smallest set of triples of the forn X, 1",) >
whereX is a set of formulae anti is a multiset of formulae, such that

1. < ¢,¢,P>€|| P

2. if< X, T, S&T >€|| P || then both< X, I, S >¢|| P ||
and< X, I' T >€|| P ||

3. if< X, I',Va.S >€|| P || then for all closed
termst, < X, I, S[t/x] >€|| P ||

4. if< 3, IS - T >€|| P||then<c SU{S},I',T >¢|| P ||

5 if<X,I'S—T >¢|| P || then< X, T U {S},T >€|| P ||

Proofs in Lolli proceed by applying right rules in order to break up the goal formula
until it is atomic, then backchaining and repeating the process.

How does Lolli compare with derivations in SILL? Lolli has contexts split iine

ear and non-linear parts, and hence no structural rules. SILL does not have-this fea
ture. Therefore a direct comparison of the two systems is not possible —érgatm

of the structural rules cannot be compared. Instead we show that (over the UILL

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 188

fragment of ILL) every Lolli derivation can be interpreted as a SILL d&ion and

that every SILL derivation can be interpreted as a Lolli derivation. &l@®rpreta-

tions rest on the fact that the premisses of the backchaining rule with backchaining
formula P are exactly the minor premisses of the chain of stoup inference ending
in an axiom that arise from selectirdg as the stoup formula. The axiom itself is
unnecessary in the backchaining rule. Note we make a slight change to SILL — we
restrict axioms to atomic formulae.

Proposition 6.2 Every Lolli derivation can be interpreted assdLL derivation.
PROOF. We take each Lolli inference in turn and interpret it as a series of one or
more SILL inferences.

Wherell is a Lolli proof, we call this interpretatiof (I1).

1. The lastinference in the Lolli derivation is one ¢f:%), (Iz), (—or), (—=%),
(&r), (®r,) (®r,), (Yr), (Ir). Then the last inference in SILL is the
corresponding inference. For example:

X, P = Q () DIP T = Q (—ox)
S T=P—Q " * isinterpretedas!s, [=/P—oQ * *

2. The lastinference in Lolli i®%). Then

>T,0, = PeQ ®

is interpreted as
!Z,F1:>P ’Z,F2:>Q
ST, o Peg (OF
. contractions
!E,FI,FQ :>P®Q

3. The lastinference in Lolli i§P). Then

e
¥;= P >!P

;=P (P) is interpreted as 'Y =!P (

selx)

4. The lastinference in Lolli i$BC,). Then

Yo P .. Y= P, L Ihv=0 ... X0,=0n
51y, ., I, P= A

(BCl)

(where< {Py, ..., P, },{Q1, ..., Qm}, A >€|| P ||)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 189

is interpreted as (noting that @& formula once in the stoup has stoup pre-
misses ending in an axiom or failure)

(az)

. . A
minor premisses p— A

12, I8 Ty, Ty =2 A
Y .. >0, .0, P=A
. contractions

IS Ty, Ty P = A

(sel)

wheren + m copies oflY are made and the minor premisses are the interpre-
tations of the premisses 6BC) (via promotion for theZ; = P)).

5. The lastinference in Lolli i$BC5). Then

S, P;=P .. S P;=P, S PTy=Q .. S PTm=Qn
S, P00, = A

(BC2)

(Where< {P, ..., P, },{Q1, ..., Qu}, A>€|| P|])
is interpreted as

(az)

. . A
minor premisses ¢ A

ISP, IS P Ty, . T, - A

ISP, . I8, P, Ty, o T -2 A
NP S PP T, ..T,. = A
. contractions
IS IPTy, T, = A

(D)
(sel)

wheren + m copies of!>, !P are made and the minor premisses are the
interpretations of the premisses(@C-) (via promotion for theZ; = PB).

Lemma 6.4 The following rules are admissible in Lolli:

. I'= G
YA =G

SAAT = G

(W) S AT =G

(Cx)

Lemma 6.5 UILL sequents of the forit, S =!P, whereS is not banged, are
unprovable.

Proposition 6.3 EverySILL derivation over thaJILL fragment ofILL can be in-
terpreted as a Lolli derivation.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LoGIC 190

PROOF We analyse the cases for the-* form of sequent. We interpret SILL
sequenty, I' = G as Lolli sequenk; ' = G.

Wherell is a SILL proof, we call this interpretatidh(1I).

1.

The last inference in SILL is one 6T), (Izr), (&%), (®r,), (Br,), (Vr),
(3z). The Lolli inference is the corresponding inference.

. The last inference in SILL i—%). Two cases:

. ILP=Q (<og) “ILP=Q (—ox)

IX, T = P-oQ * "~ isinterpretedas ©;T = P—oQ * ~
or

SLIP=Q SPr=Q

X, T =!P-oQ ' * isinterpretedas ;T =P - Q * ~

The inference in SILL i$®%). Then

!21,F1:>P !22,F2:>Q (®)
I, 18, T=PRQ -~

is interpreted as

21;F1:>P 22,F2:>Q
ShoP) SSin=q)
¥, %9501, = PRQ ®

The last inference in SILL i6selx). Then we have (because of Lemma 6.5)

][]
>1P
1)
——>'P (selx) %= P (P)
=P is interpreted as X; =!P

The last inference in SILL i&sel). Then

. . T (ax)
minor premisses p— A

150, oo 1S Ty ooy T — A
5, 5w D1y T P = A

(sel)

(where< { P, ..., P}, {Q1,...,Qm}, A >€|| P||)

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 191

is interpreted as (omitting the weakenings that are needed)

Yiy=P 0 Y= P Y= 00 E77,—1—777,51_‘777,:>Qm(

N1y, g D1y ooy Ty P = A BCh)

If the selected formula has a bang as its top formula, then either the next step
is dereliction, and the case is similar to before WihC’,), or the next step is
weakening or contraction and we get the result by the admissibility of these
rules in Lolli.

Proposition 6.4 For any Lolli derivationlIl, Z(.7 (II)) = II, modulo the elimination
of weakenings and contractions.

PROOF Follows from the interpretations given in the preceding propositions. We
illustrate with the following example:

5T, T, = PeQ ®

is interpreted as
!Z,F1:>P ’Z,F2:>Q
ST, o Peg (OF
. contractions
!E,FI,FQ :>P®Q

which is then interpreted as

Sy, =P Sy, =0
2T, Th=PoQ
ST L= Peg (OF)

(W)
(®r)

and eliminating the structural rules:

>T,0, = PoQ ®

Propositions 6.2 and 6.3 show that up to the treatment of structural rules SILL and
Lolli coincide for UILL. Many SILL proofs are interpreted as the same Lpibof,

but this is simply because of the greater flexibility in positioning weakening and
contractions 7 (Z(I1)) brings all weakenings to axioms and contractions to imme-
diately below context splitting rules. In fact, several SILL proofs aerpreted

as one Lolli proof due tdselx) in SILL, as each ordering of the formulae selected
gives a different proof.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 192

As has been noted several times in this thesis, we might want to consider ref
mulations of natural deduction, in particular one which has linear and non-linear
assumptions — such a natural deduction system might give a good correspondence
with a split context version of SILL. We would expect such a calculus to match
Lolli even more closely than SILL matches Lolli. Syntactically, we cbabsily

give a split context version of SILL, but this would lack the correspondence with
semantics that motivates the calculus.

One of the reasons for developing SILL is as a logic programming language based
on ILL. MJ can be seen as extending the view of logic programming as backwards
proof search in a backchaining calculus for hereditary Harrop logic to prooftsearc
over the whole of intuitionistic logic. In doing so, it gives a semantic ratiotwlke
calculus used. Lolli is a logic programming language with a backchaining calculus
for a fragment of ILL. As MJ extends logic programming founded on intuitionistic
logic, so SILL extends Lolli. SILL contains all the Lolli proofs, and extends the
calculus to cover the whole of ILL, producing a calculus with a semantic rdéona
However, proof search in the resulting calculus is no longer goal directed.sWhil
for MJ this isn’'t too problematic, SILL is a very complicated calculugpessally
because of the unrestricted occurrences of bang. SILL appears to be too cormplicate
to be practically used as a logic programming language, and its interedrictegs

to its theoretical properties of naturally corresponding in a 1-1 with normalalatur
deductions, and hence giving a semantic rationale to Lolli.

6.7.2 SILL and Forum

Forum ([Mil96]) is another linear logic programming language. It is based on full
classical linear logic and exploits the symmetries of linear logic to givaleue

lus for the whole of linear logic whilst avoiding the use of connectives that have
rules which do not fit well with goal-directedness. The calculus is not givemavit
backchaining rule as the presence of query formulae on the left prevents a calculus
with this as the only left rule from being complete. The rules are in facieptes

with single stoup rules, much like those of SILL. If we restrict Forum s$osihgle
succedent subsystem, with sequents in the fragment of UILL built from the connec-
tives allowed in Forum, we find a subsystem of Lolli inside Forum. This subsystem
of Forum then matches SILL in the same way that Lolli matches SILL.

It would be interesting to see what a sequent system matching natural deduction
for classical linear logic ([Bie96]) would look like and how it would comparigw
Forum. Of course one could argue that we should be interested in proof nets rather
than natural deduction for classical linear logic, and that we should directfousef
towards finding a sequent system reflecting these. This system might be $amilar
Andreoli’s (JAnd92]) focusing calculus.

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 193

6.8 SILL and Permutations of Inference Rules

In Chapter 2, the calculus ILLF was presented for ILL. This calculus gives proof
for sequents giving only one proof for each equivalence class of proofs equivalent
up to permutation of inferences (P-equivalent proofs). Calculi such as SN& ha
been described as permutation-free elsewhere in this thesis, and so wareom
SILL with ILLF. It has already been mentioned that we consider ‘permutdtiesi-

to be a poor description of a calculus such as SILL since many permutationglare st
possible in SILL. These permutations may not be semantically sound with tespec
to normal natural deductions, but this suggests rather that natural deduction is a poor
proof-theoretic semantics for ILL than that the permutations are not important.

If we restrict formulae to those in the UILL fragment of ILL, we find a adics

very similar to Lolli. Apart from issues to do with context managementethe

only one difference. When focusing on a formula, ILLF as formulated in Figure
2.1 allows atoms to be returned to the context (by(thg) rule), whereas in Lolli

the backchaining that this is the end of would not be allowed. Otherwise the calculi
are the same. We could further restrict (e,) rule so that atoms would not be
returned the context. This calculus would match Lolli over the UILL fragment of
ILL.

We could give interpretation of the various systems into each other, muchdid we
with Lolli and SILL. We omit the details of these interpretations, but nameet

Lolliinto ILLF, KC(II)

ILLF into Lolli, £(II)

ILLF into SILL, M(II)

SILL into ILLF, A/ (1)

Proposition 6.5 For any Lolli proofII, £(KC(I1)) = II.

PROOF. By putting together the interpretations as in Proposition lL.4.

Proposition 6.6 For anyILLF proofIl, I(£(II)) = II.

PROOF. Similar to Proposition 6.48

Proposition 6.7 For anyILLF proof I, N'(M(II)) = II.

PROOF. Similar to Proposition 6.48

Interpreting SILL proofs as ILL proofs and then interpreting back again wileno
occurrences of weakening to the axioms and occurrences of contractions to imme-
diately below context splitting rules (as with interpretation in Lolli dratk).

CHAPTER 6. A SEQUENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC 194

6.9 Conclusion

In this chapter we have presented a calculus, SILL, for Intuitionistic lrihegic,

the proofs in which correspond in a 1-1 to the normal natural deductions for ILL.
We have proved that SILL has this property. We have also given a weak cut-
elimination theorem for SILt“.

We have compared SILL with the linear logic programming language Lolli. We
have shown that the Lolli can be interpreted in SILL, but that over the fesof

ILL for which Lolli is defined, the calculi do not coincide owing to the treatment of
structural rules.

We have also discussed the formulation of natural deduction for ILL, and have sug-
gested that a more refined notion of normal natural deduction might have more
attractive properties. A sequent calculus matching this as SILL maticbdsrimu-

lation used in this chapter might correspond more closely to Lolli, and haver bett
proof-theoretic properties.

Chapter 7

Conclusion

This thesis has been a study of proof search systems for a variety of nonallassic
logics. Proof search has two meanings. Firstly it can mean the searatsiogle
proof, a simple yes/no answer to a query. Secondly it can mean the search for al
answers of a query, the enumeration of all proofs of a sequent. This thesis has
investigated proof search in both these senses.

— Chapter 2 was a study of the permutations of inference rules in Intuitionistic
Linear Logic. A Gentzen calculus for the logic, called ILLF, was presented
and shown to be sound and complete with respect to provability in ILL. ILLF
gives only one proof in each P-equivalence class (proofs equivalent up to
permutations). This calculus can be seen as an efficient calculus fonisegarc
for a yes/no answer to a query (although as ILL is only semi-decidable, it is
not guaranteed that a negative answer will be produced). ILLF can also be as
a calculus for enumerating proofs, and thus as a basis of a logic programming
language (but without the semantic properties later argued for).

— Chapter 3 was a study in the application of ‘permutation-free’ techniques to
an intuitionistic modal logic, Lax Logic. A ‘permutation-free’ calculus is one
with proofs naturally corresponding in a 1-1 way to the normal natural de-
ductions for that logic. For well behaved fragments of logics, these proofs
are also the normal forms for sequent proofs up to permutation of inferences.
The calculus for Lax Logic, called PFLAX, is proved to have the correspon-
dence, hence is sound and complete. PFLAX is a suitable calculus for enu-
merating all proofs. Links with constraint logic programming are discussed.
Cut-elimination is also studied, and both weak and strong cut-eliminatson ar
proved for the calculus.

— In Chapter 4 a method for turning suitable propositional calculi into decision
procedures using a history mechanism is given. A history mechanism keeps
track of which sequents have appeared so far on a branch, and prevents loop-
ing. The mechanism is applied to the G3 and MJ calculi for intuitionistic

195

CHAPTER 7. CONCLUSION 196

propositional logic, as well as PFLAX and intuitionistic S4. These calculi are
intended for delivering yes/no answers to queries.

— Chapter 5 is a short investigation into the embedding of intuitionistic logic in
linear logic.

— Chapter 6 applies ‘permutation-free’ techniques to Intuitionistic Lineard.ogi
The resulting calculus, SILL, is proved to be in 1-1 correspondence with nor-
mal natural deductions. A weak cut-elimination theorem is proved. Connec-
tions with linear logic programming languages are discussed. SILL is seen
to contain the language Lolli. There is also discussion of the formulation of
natural deduction for ILL and its suitability as a proof-theoretic semaruics f
ILL.

The work in this thesis achieves several things. Firstly, the work in @nh&ptlari-

fies material already to be found in the literature for single succedesicdbnear

logic by applying it to two-sided Intuitionistic Linear Logic. How to turn the CLL
studies into ILL studies is not obvious and it is worth spelling out in detail thaueal

lus ILLF. Chapter 3 gives a Gentzen sequent calculus for Lax Logic corresponding
to normal natural deductions. Not only is this calculus attractive because of the
focusing involved, but it gives a suitable proof search calculus for constogitt |
programming (if it is accepted that constraint logic programming can be based on
Lax Logic). Chapter 4 gives a new decision procedure for propositional Lax Logic.
It also gives a general method for turning calculi into decision procedureshwhic
can often be useful. Chapter 5 raises some interesting questions as to Wwhat ca
culi are induced by embedding one logic into another and partially answers these
guestions. Chapter 6 again gives a Gentzen sequent calculus (this time for ILL)
corresponding to normal natural deductions which can be related to logic program-
ming. This calculus can be seen as giving a proof-theoretic semantics to the line
logic programming language Lolli.

There are, however, points where although the work is technically correct and ha
achieved its aims, we are a little disappointed with the outcome. The apphof

the history mechanism to intuitionistic logic in Chapter 4 did not give as efificie

a theorem prover as had been hoped. It had also been hoped that we could make
improvements to decision procedures to classical modal logics, but unfolfunate
this did not prove possible. In Chapter 5 we were unable to find an embedding
of intuitionistic logic into linear logic that induced the whole of MJ (or any other
attractive sequent calculus). We were disappointed, if not completely sapbyg

this. Finally, the system SILL for Intuitionistic Linear Logic given in Chap®
seems unattractive. In order to make the system correspond to the normal natur
deductions, the multistoup is needed (this corresponds te timnor premisses

of promotion). There is a large amount of non-determinism in the selection of the
multistoup — not only do you have to decide which formulae go into the stoup,
but in what order they appear in the multistoup. Each ordering of the formulae in
the multistoup corresponds to a different proof, despite the fact that they appear

CHAPTER 7. CONCLUSION 197

to be the same in many senses. This suggests that it might be good to rework the
theory with the promotion rule in natural deduction having unordered premisses,
and therefore SILL with an unordered multistoup. But not only does this involve a
lot of work to make sense of proof terms, it also makes it hard to see howake m

the normalisation process in ILL confluent.... A more radical reworking of natural
deduction might be more successful, starting with Mints’s suggestion far{an
premiss tensor elimination rule. SILL is undoubtably too unwieldy for practical
use, but it does still provide a semantics for, and extension of, Lolli.

7.1 Permutation-free Calculi as a Foundation for Logic
Programming

Permutation-free calculi are of interest for several reasons. Thealteti is inter-

esting that the structure of normal natural deductions can be captured in an elegant
sequent calculus system for a wide range of constructive logics. The cut-eloninat
process for these calculi can also be viewed as a computation procedurethethis

sis we have been concentrating on the connections between cut-free permutation-
free sequent calculi and logic programming viewed as backwards proof search in
constructive logics. This section gives concluding remarks on this relationship.

It has already been seen that: the backchaining calculus for hereditary Harrop
mulae is contained in MJ; that Lolli is contained in SILL; that over thergeetion
of their languages, Forum and SILL coincide.

Logic programming is about the search for proofs. A query is given and the inter-
preter for the logic programming language gives an answer. It can then be asked
for another answer, and so on until all answers have been given. These angwers ar
the different proofs possible in the logic. The question is, which proofs are wanted?
Proofs which are the same will give the same solution to a query. This igfuhst

The uniform proof calculi are syntactically developed devices for giving proofs in

a reduced search space. It might be better to have a justification for the c@noni
proofs from the proof-theoretic semantics of the logic. Normal natural deductions
provide a good proof-theoretic semantics to many constructive logics. This sug-
gest that the proofs that are interesting for logic programming are normal natural
deductions. It is normal natural deductions that are found by ‘permutation-free’
calculi, hence it seems that these are the natural calculi to base logicrprogrg
languages on.

As stated above, over suitable fragments of the logic, the permutationdiedi
coincide with the corresponding backchaining calculi. Backchaining calculi are
defined over fragments where the permutations in the sequent calculus match those
in natural deductions and which are suitable for goal-directed proof searchsThat i
the ‘nice’ fragments of the logics.

For these fragments the calculi coincide, and although it is useful to have atsema

CHAPTER 7. CONCLUSION 198

underpinning of the calculi used, no change is suggested for the actual bases of the
programming languages. They now have a semantic justification. As the fragments
do not cover the whole of the logic, their power of expression could be extended,
by extending them to the whole calculus. At this point, goal-directed proof search
is lost. What the calculi should be is not entirely obvious from a syntactic point of
view. Some sort of Andreoli-style focusing calculus, such as ILLF, appearshebe
answer. However, these do not have the proof-theoretic semantics arguedvier abo
and so we think that extensions to logic programming should be the extensions of
the corresponding permutation-free calculi. Of course, losing the goal direcsednes
of proof search is a disadvantage from an implementational point of view, whereas
an Andreoli style calculus would keep this to a greater extent.

Having argued for permutation-free calculi in general as good extensions to logic
programming languages, we now consider SILL in particular as an extension of
Lolli. Whereas, for example, normal natural deductions are generally consimered
be the correct proof-theoretic semantics for intuitionistic logic, it is nolesardhat

they are for ILL. Many natural deductions (hence SILL proofs) that one would intu-
itively want to identify are not identified for ILL. SILL seems to lacktdiaminism
compared to a calculus such as ILLF. It is possible that a refinement of the notion
of normal natural deduction for ILL would give a much better proof-theoretic se-
mantics, and the resulting SILL-like calculus would seem a much morebsiita
extension of Lolli.

In conclusion, it is the proof-theoretic semantics of logics that are of prirmary i
portance in logic programming. Proof search is search for exactly the proofs given
by the proof-theoretic semantics. Permutation-free calculi are of intagethey

seem particularly well suited for the enumeration of normal natural deductians,
semantics for many non-classical logics. However, for logics whose proofetie
semantics is not normal natural deductions, these calculi are less wetl anide

less interesting as the basis of a logic programming language based on the logics.
For these logics we are interested in good ways of enumerating all proofs, whether
in the logical system itself, or in another more suitable. Hence MJ is a goodlasl

to base a logic programming language on, and SILL less good. A better understand-
ing of the proof-theoretic semantics of ILL might suggest a more suitable calculus
for extending Lolli.

7.2 Semantics of ILL

The preceding discussion leads one to question whether or not natural deduction is
a suitable proof-theoretic semantics for ILL. At first glance it seems thé&ebvi-

ous semantics for the logic. ILL can, after all, be seen as a refinement ofuhk us
intuitionistic logic. That its semantics should be a refinement of usual sernémitic
intuitionistic logic seems to follow. Indeed, as can be seen, as a calcutusalna
deduction for ILL seems attractive. It is only when one considers which proais int

CHAPTER 7. CONCLUSION 199

itively seem to be the same that natural deduction seems less well dbitfedent
normal natural deductions appear as though they should be identified. This could
be fixed by adding more normalisation steps as suggested by Mints. There is also
the problem of non-confluence of normalisation and its relation to the ordering of
the premisses of promotion in natural deduction. Some sort of solution might be
given, but the suggestion is that the proof-theoretic semantics is not normal natural
deduction.

If normal natural deductions do not provide a good proof-theoretic semantics for
ILL, then what does? The first thought is that a version of proof nets might provide
the solution, but we know of no satisfactory treatment of proof nets for ILL. (Trea
ments include [Lam94], [BCST96], [BCS96], [CS97]). We do think that a study
of the syntactic system ILLF, along with the categorical semantics formight
suggest some suitable system, but this is pure speculation.

Finally we should ask whether the problem is that ILL is not a sensible logic? Per-
haps we should consider a larger fragment, or full CLL. However, as syntiactica
ILL is perfectly well defined, we think that ILL is interesting and worthy tidy.

ILL is a proper logic in its own right.

7.3 Future Work

This thesis leaves some immediate questions to be answered, as well as posing
some more open ended problems. Most of these problems are subject to ongoing
investigation by the author.

The most obvious unsolved problems left by this thesis are the questions of strong
cut-elimination and strong normalisation for SILL. This is complicated haitl

to formulate properly, and we are unsure whether or not the results hold. Strong
cut-elimination can hopefully be proved by using a suitable modification of the
definition of elimination number, and choosing suitable measures to build a weight
for the cut instance. We would also like to extend the term calculus to custer
For presentation purposes, this would involve giving different proof terms for the
cut-free calculus too (showing the internal structure of promotion). Once we have
this with its extension to the cuts, we would hope that by using the recursive path
order, strong normalisation could be proved without too much difficulty. We would
then have a second proof of strong cut-elimination. Of course, if the results do not
hold, we would like simple counter-examples!

It has been noted in [BdP96] that the introduction and elimination rules for the
modality in intuitionistic S4 can be formulated in the same way as the inttmofuc
and elimination rules for promotion used here. With this knowledge, it should be a
simple task to give a ‘permutation-free’ calculus for 1S4.

A study of the relationship between cut-elimination and normalisation for alatur
deduction in ILL (as carried out in [Zuc74], [Pot77] for intuitionistic logic) would

CHAPTER 7. CONCLUSION 200

also be an interesting and a useful study.

In several places in this thesis, the work of Mints on ILL has been mentioméd a
outlined. A more extensive investigation of this, and its development, togettirer w

a permutation-free calculus for the resulting natural deduction system would be
another interesting study, one which might be more fruitful and lead to atteacti
results. Trying to built in split linear and non-linear assumptions would be a part
of this investigation. A study of ILLF and its relationship to the semantickd bf
would form another part of this study.

In Chapter 5 we tried to induce the calculus MJ for intuitionistic logic from an
embedding of intuitionistic logic into ILL. This was only successful for heregitar
Harrop logic. We would like the result to hold for the whole of intuitionistic logic.
Although we are pessimistic of success, we feel the question is worthHigatsg
and an understanding of the failure to get the desired result would be useful.

In Chapter 4 we gave a decision procedure for propositional Lax Logic. It was
said there that a contraction-free (or terminating) calculus for the logic woeild
interesting and useful. Although we are again pessimistic of finding suchwwslc

the investigation would be useful. Again, analysis and proof of the failure might
also be interesting. The decision procedure, the calculus PPLAXhas yet to

be properly implemented, tested and developed. This would be a useful task to
complete.

Finally, the Scottish history calculi in Chapter 4 could be used to enumalate
loop-free proofs for a sequent calculus. Syntactically, this seems like-alefeled

(and finite) subset of proofs. It would be interesting to see whether or not this
corresponds to a well defined subset of proofs in the semantics. The author has no
intuition as to the answer to this question, butif itis a yes, then there iemesting

field of development in logic and possibly logic programming to consider.

Appendix A

Logical Calculi

This appendix contains the logical calculi mentioned, but not presented, in the body
of this thesis.

Al G3

This is not quite the same calculus as in [TS96], but it is exactly G3 as peesleynt
Kleene in [Kle52a].

PP @ FispW
IP=Q (5r) LPOQ=P F,PDQ,Q:R(DM
'=PD>Q LPOR=R
IP= 1 I'N-P=P
Ts-p ® Top=R (W
['=P F:>Q(/\R)
'=PAQ
F’PAQ’P:>R(/\£) F,PAQ,Q:R(AE)
[PAQ =R ! [PAQ =R ?
LS v g ()

IPVQ,P=R I,PVQ,Q=R Vo)
[LPVQ=R £

A2 G4

This is the contraction-free calculus of [Vor58], [Dyc92], [Hud93].

201

APPENDIX A. LoGicAL CALCULI 202

) RLiRu)
VP =@
F:PDQ(DR)
IA,Q=R (5c) [LS>(T>Q) =R
IA>Q A= R ‘—F I(SAT)DQ=R
[LSDOQ,TDO>Q=R LTo>Q=5S>T ILQ=R

(Dc2)

MR EY R EY
'=P I'=Q I[P =R
r=prg ™ T progsk M

=P =@
=pvo VR TSpvg VR

RP:RFQ:RW)
[LPVQ=R £

Here, A is atomic. Note that is not atomic.

A3 G6

The multiplicative formulation of intuitionistic logic.

p=p) DL:Pu)

=R I'P,P=R
F,P:>R(W) IP=R (©)
[P=Q =P 1I5,,Q=R

r=7P50 "% T oLP50=SR Y

I'h=P~P F2:>Q() IPQ=R (Ac)

[, Ih=PAQ V7 ILPAQ=R‘*
Fr="Pr (Va.) '=qQ (Vi) I',P=R FZ,Q:R(V)
Ir=PrPvQ ‘'™ Ir=PvQ ‘' * [,I,,PVQ=R £

A4 NJ

We present the natural deduction calculus for propositional intuitionistic logit, firs
in ‘tree-style’, and then in sequent style.

APPENDIX A. LoGicAL CALCULI 203

A.4.1 Trees
1
5 (L)
i
Pchm PDS'PDJ
P Q PAQ PAQ
PA Q (/\I) P (/\51) T (/\62)
Pl [Q)
P Q PVvQ R R
PVQ (VII) PVQ (\/Iz) R (vﬁ)

A.4.2 Sequents

RPFPWM RLFP(”

I PFQ I'FP>Q I'kP
rFp50 7 rrg O

'EP I'HQ 'EPAQ 'EPAQ

rFrag M TTEp M) TrRg M)

TP '-Q
r=pvg \n) TEpvg (VR

'-PvqQ I''PFR F,QI—R(V)
'R ‘

A5 CLL

A.5.1 Single-sided

CLL: single sided, multiple succedent calculus for classical linear logic.

=P =A Pt
(o)
=1,A

= PPt (cut)

=TI
:>I(I) =1, 1L (L) =1, T (T)
=1I,P :>A,Q() =01,P =1,Q
ST,A\,P®Q = I, P&Q

(&)

APPENDIX A. LoGicAL CALCULI 204

=0,PQ =1I,P =10
~T.r0%® STPe0®) ST pag®
SUP L TP
TP ~T.7P
~ I,7P,7P
—~1.p (©

(D)

=T
=T1,7P (")

A.5.2 Two-sided
CLL?Z: two-sided, multiple-succedent sequent calculus - including implication.

(ax) 1_‘1 = AI;P FQ,P = AQ (cut)
P=P ', To= A, A,
I'= A
=1 (I=) I,JI=A (Ie)

F=1A"F

= (Le)

r=7.4 (™™ ro=sa 0
[LP=Q,A (—or) = PA Ty=Q,A, (—og)
['= P—oQ [, [y, P—oQ = Ay, Ay
['=PA T'y=0Q,A [LP,Q= A
T, Pe0 AN, %) T ragsa (@
'=PA F:Q,A(&R) LP=A (&c,)

I'= P&Q, A [, P&Q = A !
rog=A
T, PgQ =4 (&)
'=PQ,A LP=A 1"Q= A
TS Pe0 8 PR TR0 ALA, 70
['= P A '=0Q,A
r=PaQ A O®) TSP g@, A (Or.)
LP=A T,Q=A
ILPOQ=A (®c)
T = P,7A T, P =7A

T =!P,7A (Pr) IT,?7P =7A (Pe)
'=PA P=A
I =7P,A (Dr) I,/P=A (D)
= A = A
r=wpa "™ pipsx ()
[=?P,7P,A [P P = A

I =7P,A (Cr) I,'P=A (Cr)

APPENDIX A. LoGicAL CALCULI 205

A6 IS4

Two sided single succedent calculus for intuitionistic S4.

F,P:>P(ax) F,L:>R(L)
I[P=Q (o) LLPO>Q=P I''PDQR,Q=R
Ir=PrPo>Q ‘™% ILPO>Q=R
=P F:>Q(/\)
L=PAQ R
F,P/\Q,P:>R(A) [LPAQ,Q=R
I PAQ=R ‘% I,PAQ=R
=P I'=Q
r=rvg '®) T=pvg (VR
I'PVQ,P=R TI,PVQ,Q=R
PVQ =R
_Or=pP LoPP=R
or,A = OpP (O) [,O0P = R (Bc)

(Dc)

(/\52)

(Ve)

A7 5S4

This is a single sided (multiple succedent) sequent calculus.

1, P

T RGN T
17500 wwsg 7
Mot 0 e)
nrve Y v Y
%() Hl,EI?[ZZI:OP (=)

Appendix B

Benchmark Formulae

This Appendix gives the benchmark formulae used in Chapter 4. The benchmark
formulae in Figure A.1 are from a comparison of propositional intuitionistic theo-
rem provers at the TABLEAUX'98 conference. A description of them can be found
in [Dyc97]. The formulae in Figures A.2 and A.3 are taken from [How97]. As
can be seen from the table of results in Table 4.2, the formulae with quantiigers a
instantiated over finite universes to give propositional formulae.

206

APPENDIX B. BENCHMARK FORMULAE 207

1. de_bruijn_p(n):LHS(2n + 1) DRHS2n + 1)
de brui j n.n(n) :LHS(2n) D (p(0)VRHS(2n) V —p(0))

RHS(m) := ALip(7)
LHS(M) := A2, ((p(i) <> p(i + 1)) DRHS(m))
addition modulan

2. ph_p(n) :=left_p(n) D right(n)
ph_n(n) :=left_n(n) D right(n)

left_p(n):=njt (Vi_, occg, 7))
left_n(n):=A7"' (Vi (occg, j) v —— occ, 1))
right(n):=Aj,_, V5™, V;'l;ri12+1 s@1, i2, j)

s(l, m, n):=occ(, n) A occ(n, n)

3. con_p(n) :=((conjs)V disjsp(n)) D p(f)) D p(f)
con_n(n) :=((conjsg)V disjsn(n)) > p(f)) D p(f)

conjs):=A"_,p(i)
disjsp(n):=Vi, (p(i) > p(f))
disjsn(n):=(—=—p(1) D p(f)) V Vi, (p(i) D p(f))

4. schwi cht _p(n) :=(antp(r)> p(0))
schwi cht _n(n) :=(antn(n)> p(0))

antp(n):=p(n) A ALy (p(é) D p(i) D p(i — 1))
antn(n):=-—p(n) A ALy (p(i) O p(i) O p(i — 1))

5. kk_p(n) :=(kk_pp(r, n) > p(f)) A (Kkr(n, n)> p(f))
kk_n(n) :=kk_nn(n, n)

kk_pp(n, 0):=(pr(a, Op p(f)) A ((pr(b,n)> pr(b, 0))> pr(a,n))

kk_pp(n, m):=kk_pp(, m — 1) A ((pr(b,m — 1) D pr(a,m)) D pr(a,m — 1))
kkr(n, 0):=((pr(b,n)> pr(b, 0)) > pr(a,n)) A (pr(a, 0)> p(f))

kkr(n, m):=((pr(b,m — 1)> pr(a,m)) D pr(a,m — 1)) A kkr(n, m — 1)
kk_nn(z, 0):=(pr(a, Op p(f)) A (== pr(b,n) > pr(b, 0))> pr(a,n))
kk_nn(n, m):=kk_nn(n, m — 1) A ((=— pr(b,m — 1) D pr(a,m)) D pr(a,m))

6. equi v_p(n) :=eqpf(n) + eqb(n)
equi v_n(n) :=eqnf(n) + eqb(n)

eqpf(1):=p(1)
eqpf(n):=eqpf(n — 1) > p(n)
eqnf(1):=——p(1)
eqnf(n):=eqnf(n — 1) < p(n)
eqb(1):5(1)

eqb(n):=p(n) < eqpb(— 1)

Figure B.1: Benchmark Formulae

APPENDIX B. BENCHMARK FORMULAE 208

1. (AVB)A(DVEYA(GVH))D ((AAD)V(AANG)V(DAG)V (BANE)V
(BANH)V (ENH))

2. ((AVBVC)AN(DVEVFE)NGVHNVJ)N(KVLVM)) D (AAD)V(AANG)V
(ANK)V(DAG)V(DAK)V(GAK)V(BAE)V(BANH)V(BAL)V(EANH)V
(EANL)V(HANL)V(CAF)V(CANJ)NV(CAM)N(EANT)N (FAM)V(JAM)

(AVBVC)AN(DVEVF)D(AANB)V(BAE)V (CAF))
ADB)D(ADC)D(AD(BAQ))

AVC)D(ADB)D(BV()

A L S

(
(
(AN-A)D B
(
(

(A > B)AB > A) D>AABAC)A(((B D C)A(C > B)) D
(AABAC)A((C DA AADC) D(AABAC)) D (AABAC)

o

(=P D>P)DP)V (=P D-P)V(-—~P D—-=P)V (=P DP)

9. (G A)DJ)DDDODE)D(((HO>B)DI)DCD>J)D(ADH)D
FOGO((Co>B)DI)>DD)>(ADC)D((F>A) D>B)DI)D
E

10 ADBDO((ADBD>C)DC)D(ADBD(O)

11. ((-—=(=AV =B) D (mAV =B)) D (+=(=AV =B)V =(-AV =B))) D
(—|—|(—|A V —|B) V —|(—|A \Y —|B))

122.BD>(AD (((AAB) D Cy) D (((AAB) D Cy) D (((AAB) D C3) D
((AANB)D(BDC,DCy;y>C3D B)) D (AANB))))))

13. (AABVC)D (CV(CAD)))D(=AV((AVB)DC(O))
14. -—=((wAD> B) D (A D -B) D A)

15. -=(((A<> B) < C) <> (A< (B < ()))

16. Vo3yVz(p(z) A q(y) Ar(2)) <> VeFyVa(p(z) Aqly) Ar(2))

17. 3 Vyy FroVyo w3 Vys(p(x1, y1) A q(z2, y2) A r(zs,y3)) D
Vys3wsVyadwoVy 321 (p(21, y1) A g2, y2) A r(xs, ys))

18. —~JaVy(mem(y, z) <> —-mem(x,x))

19. =3a¥y(q(y) 2 r(x,y)) A 3aVy(s(y) O r(w,y)) O ~Va(g(z) O s(x))

Figure B.2: Example formulae

APPENDIX B. BENCHMARK FORMULAE 209

20. Vz1V29V23(q(21, 22, 23, 21, 22, 23)) D Jr13weTrzIyr IyoTys((p(x1) A p(as) A
p(xs) < p(y1) Ap(yz2) Ap(ys)) A gy, 2o, 23, Y1, Y2, Y3))

(Bzlp 3 f(2))) A (Frr(f (1) D p))) D Bal(p O f(w2)) A (f(2) D p)))

- Ce(p(@) AV (f(21) D (mg(w) Ar(21))) A (Vaa(p(r2) O (g9(z2) AS(22)))A
(Vas(p(ws) O q(ws)) V za(p(aa) Ar(24)))))) O Fws(q(ws) A p(ws))

23. (Bz(p(x)) < Fri(g(1))) A VaeVy((plez) Aaly)) D (r(z2) < s(y))) D
(Vos(p(3) O 7(23)) < Vaalg(ra) O s(24)))
(

24. (Vz((f(z) Vg(x)) D =h(x)) AVx((g(x1) D —i(z1)) D (f(z1) A h(x1)))) D

2

N
N

)
25. (232(f(2) A (g(x) V R(x)) A (Fzr(@(20) A f (1)) AV2(=h(22) D j(22)))) D

26. (Va((f(z) A (g(z) V h(z))) D i(x)) A (Voi((i(z1) A h(z1)) D jlz1)) A
Vo (k(z2) D h(xz)))) D Vas((f(xs) Ak(xs)) D j(xs))

Figure B.3: Example Formulae

Bibliography

[Abro3]

[AF96]

[Ale93]

[And92]

[Avr88]

[BBAP98]

[BBAPH92]

S. Abramsky. Computational Interpretations of Linear Logibeo-
retical Computer Scien¢d11(1-2):3-57, 1993.

A. Avellone and M. Ferrari. Almost Duplication-free Tableau @gilc
for Propositional Lax Logics. Springer LNA) 1071:48-64, 1996.
Proceedings of TABLEAUX'96.

V. Alexiev. Applications of Linear Logic to Computation. Techni-
cal Report TR93-18, Department of Computer Science, University of
Alberta, 1993.

J.-M. Andreoli. Logic Programming with Focusing Proofs in Linear
Logic. Journal of Logic and Computatio2(3):297-347, 1992.

A. Avron. The Semantics and Proof Theory of Linear Logitieo-
retical Computer Scien¢®7(2):161-184, 1988.

P. N. Benton, G. M. Bierman, and V. de Paiva. Computational Types
from a Logical PerspectiveJournal of Functional Programming
8(2):177-193, 1998.

P.N. Benton, G.M. Bierman, V.C.V. de Paiva, and J.M.E. Hyland.
Term Assignment for Intuitionistic Linear Logic. Technical Report
262, Computer Laboratory, Univerity of Cambridge, 1992.

[BBAPH93a] P. N. Benton, G. M. Bierman, V. C. V. de Paiva, and J. M. E. Hyland.

Linear Lambda Calculus and Categorical Models Revisi&gutinger
Lecture Notes in Computer Scien@@®2:61-84, 1993. Proceeding of
Computer Science Logic.

[BBAPH93b] P. N. Benton, G. M. Bierman, V. C. V. de Paiva, and J. M. E. Hyland.

[BCS96]

A Term Calculus for Intuitionistic Linear LogicSpringer Lecture
Notes in Computer Sciend@64:75-90, 1993. Proceedings of Typed
Lambda Calculus and Applications.

R. F. Blute, J. R. B Cockett, and R. A. G. Seely. ! and ? Storage as
Tensorial StrengthMathematical Structures in Computer Science
6:313-351, 1996.

210

BIBLIOGRAPHY 211

[BCST96]

[BAP96]

[Bel93]

[Ben95]

[Bie94]

[Bie96]

[BNOS]

[CS97]

[Cur52a]

[Cur52b]

[Der82]

[DJIS95]

[DP94]

[DP96]

[DP97]

R. F. Blute, J. R. B. Cockett, R. A. G. Seely, and T. H. TrmiNat-
ural Deduction and Coherence for Weakly Distributive Categories.
Journal of Pure and Applied Algebra13(3):229-96, 1996.

G. M. Bierman and V. de Paiva. Intuitionistic Necessity Restkit
Technical Report CSRP-96-10, University of Cambridge, 1996.

G. Bellin. Proof Nets for Multiplicative and Additive Linear Logic.
Technical Report LFCS-91-161, University of Edinburgh, 1993.

P. N. Benton. Strong Normalisation for the Linear Term Calculus.
Journal of Functional Programmind(1):65-80, 1995.

G.M. Bierman. On Intuitionistic Linear Logic. Technical Report 346,
University of Cambridge Computer Laboratory, 1994. PhD thesis.

G. M. Bierman. A Classical Linear Lambda Calculus. Technical
Report 401, Computer Laboratory, University of Cambridge, 1996.

F Baader and T. NipkowTerm Rewriting and All ThatCambridge
University Press, 1998.

J. R. B. Cockett and R. A. G. Seely. Proof Theory for Full Intuition-
istic Linear Logic, Bilinear Logic, and MIX Categorie$heory and
Applications of Categories8(5):85-131, 1997.

H. B. Curry. The Elimination Theorem When Modality is Present.
Journal of Symbolic Logicl7(4):249-65, 1952.

H. B. Curry. The Permutability of Rules in the Classical Infeanti
Calculus.Journal of Symbolic Logicl7:245—-248, 1952.

N. Dershowitz. Orderings for Term-Rewriting Systerbeoretical
Computer Sciencd 7:279-301, 1982.

V. Danos, J.-B. Joinet, and H. Schellinx. On the Linear Decoration of
Intuitionistic Derivations.Archive for Mathematical Logic33:387—
412, 1995.

R. Dyckhoff and L. Pinto. Uniform Proofs and Natural Deductions.
In D. Galmiche and L. Wallen, editor&roceedings of CADE-12
workshop on "Proof Search in Type Theoretic Languagd$94.

R. Dyckhoff and L. Pinto. A Permutation-free Sequent Calculus for
Intuitionistic Logic. Technical Report CS/96/9, University of St An-
drews, 1996.

R. Dyckhoff and L. Pinto. Permutability of Proofs in Intuitionistic
Sequent Calculi. Technical Report CS/97/7, University of St An-
drews, 1997.

BIBLIOGRAPHY 212

[DP98a]

[DP98D]

[dPHO3]

[Dyc92]

[Dyc97]

[Dyc98]

[FM94]

[FM97]

[FMWOT]

[FW97]

[Gab91]

[Gen69]

[Gir87]

[Gir91]

[Gir93]

R. Dyckhoff and L. Pinto. Cut Elimination and a Permutation-free
Sequent Calculus for Intuitionistic Logi&tudia Logi¢60:107-118,
1998.

R. Dyckhoff and L. Pinto. Permutability of Proofs in Intuitionistic
Sequent CalculiTheoretical Computer SciencE98. Forthcoming.

V.C.V. de Paiva and M. Hyland. Full Intuitionistic Linear Logic.
Annals of Pure and Applied Logi64(3):273-291, 1993.

R. Dyckhoff. Contraction-Free Sequent Calculi for Intuitionistic
Logic. Journal of Symbolic Logi&7(3):795-807, 1992.

R. Dyckhoff. Some Benchmark Formulae for Intu-
itionistic Propositional Logic. http://www-theory.dcs.st-
and.ac.uk/ rd/logic/ipcfmls.html, 1997.

R. Dyckhoff. Proof Search in Constructive Logics. Rroceedings
of Logic Colloquium 971998.

M. Fairtlough and M. Mendler. An Intuitionistic Modal Logic with
Applications to the Formal Verification of Hardware. Gomputer
Science Logicpages 354—-68. Springer, 1994.

M. Fairtlough and M. Mendler. Propositional Lax Logloformation
and Computation137(1), 1997.

M. Fairtlough, M. Mendler, and M. Walton. First-order Lax Logic as
a Framework for Constraint Logic Programming. Technical Report
MIPS-9714, University of Passau, 1997.

M. Fairtlough and M. Walton. Quantified Lax Logic. Technical Re-
port CS-97-11, University of Sheffield, 1997.

D. Gabbay. Algorithmic Proof with Diminishing Resources, part 1.
Springer Lecture Notes in Computer Sciere®3:156-173, 1991.

G. Gentzen. The Collected Papers of Gerhard Gentzeiorth-
Holland, Amsterdam, 1969. Edited M. E. Szabo.

J.-Y. Girard. Linear Logic.Theoretical Computer Sciencg0(1):1—
102, 1987.

J.-Y. Girard. A New Constructive Logic: Classical Logidlathe-
matical Structures in Computer Sciende255-296, 1991.

J.-Y. Girard. On the Unity of Logic.Annals of Pure and Applied
Logic, 59(3):201-17, 1993.

BIBLIOGRAPHY 213

[Gir95]

[GLT89]

[GP94]

[Har94]

[Her95]

[Her96]

[Heu9s]

[HM94]

[How80]

[How96]

[How97]

[How98]

[HP94]

J.-Y. Girard. Linear Logic: Its Syntax and Semantics. In J.-Ya@ir
Y. Lafont, and L. Regnier, editorgydvances in Linear Logjwolume
222 ofLondon Mathematical Society Lecture Notes Sepeges 1—
42. Cambridge University Press, 1995.

J.-Y. Girard, Y. Lafont, and P. TaylorProofs and Typesvolume 7
of Cambridge Tracts in Theoretical Computer Scien€@ambridge
University Press, 1989.

D. Galmiche and G. Perrier. On Proof Normalization in Linear Logic
Theoretical Computer SciencE35(1):67-110, 1994.

J. Harland. A Proof-Theoretic Analysis of Goal-Directed Provigbil
Journal of Logic and Computatiod(1):69—-88, 1994.

H. Herbelin. A\-calculus Structure Isomorphic to Gentzen-style Se-
quent Calculus Structure. In L Pacholski and J Tiuryn, editérs;
ceedings of the 1994 workshop Computer Science |Legicme 933

of Springer Lecture Notes in Computer Scignuages 61-75, 1995.

H. Herbelin. A\-calculus Structure Isomorphic to Sequent Calculus
Structure. Unpublished, 1996.

A. HeuerdingSequent Calculi for Proof Search in Some Modal Log-
ics. PhD thesis, Universitat Bern, 1998.

J.S. Hodas and D. Miller. Logic Programming in a Fragment of Intu-
itionistic Linear Logic. Information and Computatiqri10(2):327—
365, 1994.

W. A. Howard. The Formulae-as-types Notion of Construction. In
J. P. Seldin and J. R. Hindley, editofgy H. B. Curry: Essays on
Combinatory Logic, Lambd Calculus and Formalispages 480—
490. Academic Press, New York, 1980.

J.M. Howe. Theorem Proving and Partial Proof Search for Intu-
itionistic Propositional Logic Using a Permutation-free Calculus with
Loop Checking. Technical Report CS/96/12, University of St An-
dews, 1996.

J.M. Howe. Two Loop Detection Mechanisms: a Compari-
son. Springer LNA] 1227:188-200, 1997. Proceedings of
TABLEAUX'97.

J. M. Howe. A Permutation-free Calculus for Lax Logic. Technical
Report CS/98/1, University of St Andrews, 1998.

J. A. Harland and D. J. Pym. A Uniform Proof-Theoretic Investiga-
tion of Linear Logic ProgrammingJournal of Logic and Computa-
tion, 4(2):175-207, 1994.

BIBLIOGRAPHY 214

[HSZ96]

[Hud93]

[Hud9e]

[Kle52a]

[Kle52b]

[Lam94]

[LM92]

[LMSS92]

[LSS93]

[Men93]

[Mil96]

[Min95]

[Min96]

A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient Loop-
Check for Backward Proof Search in Some Non-classical Propo-
sitional Logics. Springer LNA] 933:61-75, 1996. Proceeding of
TABLEAUX'96.

J. Hudelmaier. An O(n log n)-space Decision Procedure for Intu-
itionistic Propositional Logic.Journal of Logic and Computation
3(1):63-75, 1993.

J. Hudelmaier. A Contraction-free Sequent Calculus for S4. In
H. Wansing, editorProof Theory of Modal Logi¢gs/olume 2 ofAp-
plied Logic Seriespages 1-15. Kluwer, 1996.

S.C. Kleene. Introduction to Metamathematics North-Holland,
1952.

S.C. Kleene. Permutability of Inferences in Gentzen’s Calculi LK
and LJ.Memoirs of the American Mathematical Socjgtgiges 1-26,
1952.

F. Lamarche. Proof Nets for Intuitionistic Linear Logic I: Essdntia
Nets. Unpublished, 1994.

P. Lincoln and J. Mitchell. Operational Aspects of Linear Lambda
Calculus. InSeventh Annual Symposium of Logic in Computer Sci-
ence pages 235-246. IEEE Computer Society Press, 1992.

P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision Prob-
lems for Propositional Linear LogicAnnals of Pure and Applied
Logic, 56:239-311, 1992.

P. Lincoln, A. Scedrov, and N. Shankar. Linearizing Intuitionistic
Implication. Annals of Pure and Applied Logi66:239-311, 1993.

M. Mendler.A Modal Logic for Handling Behavioural Constraints in
Formal Hardware VerificationPhD thesis, University of Edinburgh,
1993. ECS-LFCS-93-255.

D. Miller. Forum: A Multiple Conclusion Specification LogicThe-
oretical Computer Scien¢@65(1):201-232, 1996.

G. Mints. Natural Deduction in the Intuitionistic Linear Logic. Tech-
nical Report CSLI-95-50, CSLI, 1995. (Forthcoming in the Archive
for Mathematical Logic).

G. Mints. Normal Forms for Sequent Derivations. In Odifreddi,
editor,Kreiseliang pages 469-92. A. K. Peters Ltd., Wellesley, MA,
1996.

BIBLIOGRAPHY 215

[Min97]

[Min98g]

[MNPS91]

[Mog89]

[Neg95]

[Pot77]

[Pra65]

[RIRR97]

[Scho1]

[Scho?]

[Scho4]

[Schosg]

[Selog]

[Sim94]

[Tro92]

G. Mints. Three Faces of Natural DeductiorSpringer Lecture
Notes in Artificial Intelligence1227:16-30, 1997. Proceedings of
TABLEAUX'97.

G. Mints. Natural Deduction for Intuitionistic Linear LogiStudia
Logica 1998. Forthcoming.

D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform Proofs
as a Foundation for Logic Programmimganals of Pure and Applied
Logic, 51(1-2):125-157, 1991.

E. Moggi. Computational Lambda-Calculus and Monads Pro-
ceedings of LICS’8%ages 14-23, 1989.

S. Negri. Semantical Observations on the Embedding of Intuitionistic
Logic into Intuitionistic Linear Logic. Mathematical Structures in
Computer Scien¢&:41-68, 1995.

G. Pottinger. Normalization as a Homomorphic Image of Cut-
elimination. Annals of Mathematical Logjd 2:323-357, 1977.

D. Prawitz. Natural Deduction volume 3 ofStockholm Studies in
Philosophy Almgvist & Wiksell, Stockholm, 1965.

S. Ronchi della Rocca and L. Roversi. Lambda Calculus and Intu-
itionistic Linear Logic.Studia Logica59(3), 1997.

H. Schellinx. Some Syntactical Observations on Linear Lagiar-
nal of Logic and Computatiqri(4):537-559, 1991.

H. Schellinx. How to Broaden your Horizons. Technical Report ML-
92-07, University of Amsterdam, 1992.

H. Schellinx.The Noble Art of Linear DecoratingNumber 1994-1
in ILLC Dissertation Series. Institute for Logic Language and Com-
putation, 1994. PhD Thesis.

H. Schwichtenberg. Termination of Permutative Conversions in In-
tuitionistic Gentzen Calculi.Theoretical Computer Scienc&998.
Forthcoming.

S. Selhab.Logiques et Becritures PhD thesis, Université Henri
Poincarée, Nancy I, 1998. (In French).

A. K. Simpson. The Proof Theory and Semantics of Intuitionistic
Modal Logic PhD thesis, University of Edinburgh, 1994.

A. S. Troelstra.Lectures on Linear Logic Center for the Study of
Language and Information, Stanford, CA, 1992.

BIBLIOGRAPHY 216

[Tro95]

[TS96]

[Val92]

[Vor52]

[Vor58]

[Wad92]

[Wal97]

[Zuc74]

A. S. Troelstra. Natural Deduction for Intuitionistic Linear Logic.
Annals of Pure and Applied LogiZ3(1):79-108, 1995.

A.S. Troelstra and H. Schwichtenberdasic Proof Theoryvol-
ume 43 ofCambridge Tracts in Theoretical Computer ScierfCam-
bridge University Press, 1996.

S. Valentini. The Judgement Calculus for Intuitionistic Linear Logic:
Proof Theory and SemanticZeitschrift fur Mathematische Logik
und Grundlagen der MathematiR8(1):39-58, 1992.

N. N. Vorob’ev. The Derivability Problem in the Constructive Propo-
sitional Calculus with Strong NegationDoklady Akademii Nauk
SSSR85:689-92, 1952.

N. N. Vorob’ev. A New Algorithm for Derivability in the Construc-

tive Propositional Calculugrrudy Matematicheskogo Institutaimena
V. A. Stetkovab2:193-225, 1958. English translation in American
Matematical Society Translations, ser. 2, vol. 94 (1970), pp.37-71.

P. Wadler. There’s No Substitute for Linear Logic. 8th Interna-
tional Workshop on the Mathematical Foundations of Programming
Semantics, 1992.

M. Walton. Abstraction and Constraints: Two Sides of the Same
Coin. Technical Report CS-97-18, University of Sheffield, 1997.

J. Zucker. The Correspondence Between Cut-elimination and Nor-
malization.Annals of Mathematical Logj@:1-112, 1974.

