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Abstract— non-invasive transcutaneous analysis is very 

desirable in medical applications that require blood analysis. 

Electrical impedance spectroscopy (EIS) is one of the many 

methods that has been extensively researched and is often used 

for such applications, with its advantages including very high 

sensitivity and rapid response. EIS utilizes electrodes to 

monitor conductivity variations in blood. However in order to 

minimize the effect of high impedance tissue and skin 

surrounding a low impedance, localized subcutaneous vascular 

structure of interest, one has to locate the structure of interest 

and then adjust the placement and size of the electrodes  to 

make the measurement as targeted as possible. It is thus 

essential to achieve an appropriate method for a) detecting the 

vascular structure of interest and b) localizing the 

transcutaneous measurement so that sensitivity can be 

improved and greatly interfering measurements from 

surrounding tissue can be disregarded. This study proposes 

and assesses the potential use of a multi-electrode array for 

making dynamically reconfigurable electrodes (DRE), by 

treating electrode segments as pixels that can form re-locating 

and re-shaping electrodes. Simulations preformed in COMSOL 

indicated that the technique can successfully locate a 

transcutaneous structure and achieve double the sensitivity 

relative to conventional electrode topologies.   

I. INTRODUCTION 

Transcutaneous analysis of blood has been attempted 
using different monitoring methods in order to identify 
change in the composition of blood [1], [2]. One such method 
is electrical impedance spectroscopy (EIS) [3] which offers 
very high sensitivity and rapid response. The technique 
involves impedance measurements taken from the surface of 
the skin and can be carried out using a tetrapolar (four 
electrode) arrangement to minimize the influence of electrode 
properties to the measurements [4], [5]. The impedance 
measured can then be used to analyze different characteristics 
such as blood flow [6], levels of blood analytes like e.g. 
glucose [7] or even to  carry out impedance cardiography [8]. 
In some or all of the above applications impedance 
measurements are taken by using ether band electrodes, 
which wrap loosely around a section of the body, or spot 
electrodes, which are usually disk shaped electrodes applied 
using adhesive tape [6], [8]. The problem associated with the 
use of such conventional electrodes is that the measurements 
of low-impedance blood variations are typically 
overshadowed by the high impedance of skin and tissue 
surrounding the region of interest. [5], [6], [9]. For 
transcutaneous analysis of blood it would be highly desirable 
for its impedance contribution to the measurement to be 
enhanced [3]. To achieve this, the electrodes would ideally 
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need to be positioned directly over the blood vessels (Fig. 
1a), however this would still require ether: a) the exact 
location of the targeted blood vessels to be known or b) 
visual inspection to be employed especially as the location of 
blood vessels differ from person to person. Even after the 
desired electrode positioning is identified, optimal fitting may 
require several attempts. 

A possible solution to this challenge could be addressed 
by the use of multi-electrode array (MEA, similar to that used 
in [9]), whereby electrodes, could be dynamically  addressed 
rather than physically re-positioned. However, in order to 
eliminate the need for visual inspection and alignment, a 
solution would be desirable for detecting the targeted 
structure prior to the measurement taking place. Moreover, in 
order to minimize unwanted impedance measurements from 
surrounding tissue, electrodes would ideally need to be 
physically shaped to a size corresponding to the diameter of 
the targeted vessel. Thus oversized electrodes would need to 
be “trimmed” whilst very small electrodes would entail a 
very high contact impedance, potentially limiting the output 
dynamic range of the current injection electronics and 
increasing thermal noise at the input of the measurement 
electronics [5]. 

The authors are researching a dynamically reconfigurable 
electrode (DRE) system that will allow the four electrodes of 
a tetrapolar configuration to automatically re-shape and re-
locate so as to both trace and focus on a subcutaneous blood 
vessel (Fig. 1b). It will utilize a MEA, but with each 
electrode acting as a “pixel” that can be re-grouped and re-
combined to form larger electrodes of different shapes and 
sizes and that can also be freely positioned at any location 
within the array. 

In EIS such grouping of electrodes has not been reported, 
however it has been reported in other applications of 
electrical bio-interfacing such as electrical neurostimulation. 
Popovic-Bijeli et al. [9] developed a 24 segment electrode 
array for electrical stimulation of nerves in the arm, with 
segments combining to increase the size and to change the 
position of the stimulating electrodes. Lawrence et al. 
increased the number of segments (256) to improve the 
stimulation’s selectivity [10]. 

Whilst the above methods were investigated for 
neurostimulation, to the knowledge of the authors they have 
not been proposed for use in transcutaneous impedimetric 
analysis of blood. Moreover, these studies presented the 
benefits of re-shaping electrodes but did not demonstrate 
their use for “mapping” the exact location of a structure of 
interest. 

In this paper we carried out FEM simulations to assess the 
front-end of our tetrapolar DRE system, comprising a 
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pixelated multi-electrode array for scanning and locating the 
position of a blood vessel followed by appropriately shaping 
and positioning electrodes (made of grouped pixels) such that 
they are directly over the targeted structure to refine 
transcutaneous blood impedance measurements. The 
sensitivity of the tetrapolar DRE front end was compared 
with that of large electrodes that have fixed size and static 
placement.   

II. METHODS 

In order to assess the use of the DRE front end for use in 

transcutaneous blood analysis and to verify its use to detect 

the structure, a model of fat and blood was setup using FEM 

analysis in COMSOL 5.1 software and by solving Maxwell 

equations to measure the transfer impedance of the model. 

A. Large electrode setup 

A 3D model (Fig. 2) was designed in COMSOL 5.1 
software, with a rectangular block set as a layer of fat with 
3.9 mm depth, 17.1 mm height and 45.3 mm width. A 
cylinder positioned diagonally at a depth of 0.905mm away 
from the top was positioned inside the rectangular block, 
representing a blood vessel. Four co-planar rectangular 
electrodes where designed on the block’s surface opposite to 
the blood vessel. Current carrying electrodes (CC - outer 
pair) were defined to be 8 mm high and 2 mm wide while 
pick-up electrodes (PU - inner pair) were defined to be 8 mm 
high and 1.5 mm wide. The distance between the inner pair 
of electrodes was set to 10mm center to center (as shown in 
Fig. 2). The shape and size of electrodes was chosen from an 
existing sensor. Simulations were performed using 
COMSOL’s AC/DC module using a quasi-static solution of 
Maxwell’s equations to solve for the electrical potential. The 
electrode/electrolyte interface double layer was not included 
in the simulation. The relative permittivity and electrical 
conductivity for blood and fat were taken from [11]. 

 

 

 
Figure 1: Tetrapolar configuration including current carrying (CC) and 
pick-up (PU) electrodes using a) fixed size and positioning (conventional 

setup), and b) DRE formed using a pixelated MEA. 

 

 

Figure 2: (a) COMSOL geometry top view of fat and blood with four 

rectangular electrodes, CC electrodes for current injection and PU 

electrodes for voltage measurement, and (b) a free tetrahedral mesh for the 

setup.  

Two electric current models (ec and ec2) were set up one 
for the injection electrodes and one for the measurement 
electrodes. In both models the left electrode was set as the 
current injection terminal with a 1A current being assigned as 
a boundary condition and the remaining electrodes were set 
to ground terminal. A parametric sweep was set up which 
increased the conductivity of blood from its original value by 
0.005S/m until the conductivity of blood was increased to 
0.05S/m over the original conductivity. The sweep represents 
variations of blood analytes (e.g. ions) that would be 
measured by a transcutaneous EIS system and its purpose 
was to allow for the DRE sensitivity to be assessed in 
comparison to that of conventional electrodes. 

B. DRE pixelated MEA setup 

For the DRE setup, an identical second model was 
created, with the large electrodes replaced by an array of 
8x16 round electrodes with a diameter of 0.6mm (Fig. 3). 
The array was designed such that two columns of 8 electrode 
pixels would equal the size of the first model’s large 
measurement electrodes. The spacing between the elements 
of the array was setup to be 1mm center to center from the 
surrounding elements. This was done so that the array would 
cover the same area as the previously used large electrodes.  

The next set of simulations was carried out in order to assess 
the ability of the DRE array to identify the location of the 
blood vessel. For this purpose, impedance measurements 
need to be taken from the entire area covered by the array. 
This simulation was carried out by keeping the conductivity 
of blood constant, the program then selected four electrodes 
horizontally adjacent to one another on the array (Fig. 4a) 
and ran the simulation, then changed the selection of 
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electrodes to the next four electrodes vertically below the 
previously selected ones (Fig. 4c) and ran the simulation 
again. This process was repeated till measurements were 
taken from all the eight rows of electrodes (array height), the 
program then shifted the selection of electrodes to the right 
horizontally by one electrode (Fig. 4b) and carried out 
impedance measurements for all eight rows. In this manner 
the program virtually scanned the entire area covered by the 
array.  

C. Focused measurement simulation. 

The results from the scan carried out in the second model 
(shown in the next section - Fig. 6), identified the location 
and optimum number of pixels positioned above the blood 
vessel, thus allowing the formation of the tetrapolar DRE 
configuration shown in Fig. 5. Each DRE consisted of four 
pixels. The resulting “focused” tetrapolar DRE configuration 
was then compared with the conventional tetrapolar 
configuration by using the same parametric simulation 
procedure that was used for the first model. 

 

   

Figure 3: COMSOL geometry top view of fat and blood with an array of 

8x16 electrodes that will be used for forming DREs 
 

 

 

a.  b.  

c.  d.  
 

Figure 4. Electrode selections for impedance scan a) position of the four 
electrodes for first measurement, b) position of selected electrodes after 

shifting horizontally to the right, c) position of selected electrodes after 

shifting vertically down, d) position of selected electrodes vertically down 
after horizontally shifting right. 

         
 
 

Figure 5. a) CC electrodes, b) PU electrodes, of the final DRE tetrapolar 

configuration, with their position and shape “focused” on the blood vessel, 

that has been determined by the on the scanning process (Fig. 6) . 

III. RESULTS AND DISCUSSION  

A. Multi electrode scan 

The results from the scan were plotted to visualize the 

impedance of the area under the array (Fig. 6). From the plot 

it can be seen that the area where the blood vessel was 

located exhibited lower impedance from its surroundings, 

due to the high conductivity of blood which allows the 

majority of the injected current to flow through it, hence 

reducing the impedance measured locally by the sweeping 

four electrode pixels. In that manner the location of the 

blood vessel could be identified allowing for the selection of 

electrode pixels positioned above it to be grouped to form 

optimum DREs aiming towards a more focused impedance 

measurement.  

 

 

 
Figure 6. Impedance scan plot, a) top view, b) side view. The location of the 

low impedance subcutaneous blood vessel through the high impedance fat 

layer is clearly detectable, especially in (a). 

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13

A
rray h

eigh
t (p

ixels) 

Array width (pixels) 

(a) Impedance scan top view 
4000-4500

3500-4000

3000-3500

2500-3000

2000-2500

1
2
3
4
5
6

7

82000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13

Im
p

ed
an

ce
 (

Ω
) 

Array width (pixels)  

(b) Impedance scan side view 

4000-4500

3500-4000

3000-3500

2500-3000

2000-2500

Array width 

A
rr

ay
 h

ei
g

h
t 

(a) (b) 



  

 
Figure 7: Comparison of both tetrapolar configurations in terms of their 
respective impedance sensitivity normalized to their respective baseline 

values. The impedance variation was a result of the same parametric 

conductivity sweep applied to both models.  

B. Focused electrode results  

The parametric impedance variation was applied to both 
the conventional “large” electrode tetrapolar configuration 
(1

st
 model) and to the DRE tetrapolar configuration (2

nd
 

model) that was formed following the four electrode pixel 
scan-and-detect sweep described above. Measurements were 
plotted in Fig. 7 normalized to start from the respective 
baseline impedance measurement for each tetrapolar 
configuration. The results for the conventional model show 
that for each increment in conductivity of blood by 0.005S/m 
there was a decrease in measured impedance of 
approximately 2.86Ω ± 0.03Ω. For the same conductivity step 
the DRE configuration exhibited a decrease in measured 
impedance of approximately 5.32Ω ± 0.06Ω. This is almost 
double the change in impedance measured using the 
conventional electrodes. Thus, the comparison clearly 
indicates that the DRE configuration can greatly improve the 
sensitivity of EIS for transcutaneous blood analysis. 

IV. CONCLUSION  

In applications of transcutaneous blood analysis using 

impedance spectroscopy, the measurements from a 

subcutaneous blood vessel can be significantly degraded by 

the much higher impedance of surrounding tissue and skin. 

It is therefore desirable to accurately select the localization 

and size of the electrodes to be used. Within the context of 

their research towards a dynamically reconfigurable 

electrode (DRE) system the authors carried out COMSOL 

simulations to assess the performance of the system’s front-

end. This paper presented the results of these FEM 

simulations which were carried out to assess (a) the ability 

of a pixelated MEA to scan and detect a subcutaneous blood 

vessel and (b) the sensitivity of a DRE vs. a conventional 

electrode tetrapolar configuration in cases where a blood 

component changes its concentration. 

The results indicated to a very satisfactory level that the 

proposed front-end is capable of scanning and detecting a 

subcutaneous blood vessel, below a layer of fat. This leads 

to the identification of the optimal size and positioning of 

electrode pixel groups that lead to the formation of DREs. 

The resulting “focused” tetrapolar configuration exhibits 

almost double the sensitivity of a conventional fixed shape 

and position electrode configuration. Therefore the proposed 

method can provide much more effective impedance 

measurements for non-invasive blood analysis. 
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