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A�������: We provide an explicit construction for Gazeau-Klauder coherent states re-

lated to non-Hermitian Hamiltonians with discrete bounded below and nondegenerate

eigenspectrum. The underlying spacetime structure is taken to be of a noncommutative

type with associated uncertainty relations implying minimal lengths. The uncertainty

relations for the constructed states are shown to be saturated in a Hermitian as well

as a non-Hermitian setting for a perturbed harmonic oscillator. The computed value

of the Mandel parameter dictates that the coherent wavepackets are assembled accord-

ing to sub-Poissonian statistics. Fractional revival times, indicating the superposition of

classical-like sub-wave packets are clearly identified.

1. Introduction

Noncommutative spacetime structures are suggested by gravitational stability [1] in almost

all promising approaches to quantum gravity, such as string theory [2, 3, 4] or loop quantum

gravity [5, 6] as well as black hole physics [7]. Besides the numerous possible structures

we focus here on a particularly interesting one giving rise to minimal measurable distance

beyond which the entire concept of length becomes meaningless. Such type of cutoff in our

possible knowledge of space results from generalized versions of Heisenberg’s uncertainty

relations, i.e. from modifying standard spacetime to certain noncommutative versions in a

specific way. These type of spaces have attracted considerable attention in recent years in

the mathematical and physical literature [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

So far most of the attention has been paid to the algebras, but fairly little, in compari-

son to standard systems, to the actual nature and properties of the states it acts on. Here we

focus on the explicit construction of coherent states respecting these modified uncertainty

relations. Generic expressions for coherent states were propose by Gazeau and Klauder

(GZ) [22, 23]. By construction the states are expected to be stable when evolved in time,

in the sense that they remain coherent during the evolution process. For a one dimensional
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harmonic oscillator on a noncommutative space we present here a computation of these

states in first order perturbation theory. When dealing with noncommutative spacetime

structures of the aforementioned type one also encounters an addition complication due to

the fact that the associated canonical variables are in general no longer Hermitian with

regard to standard inner products [10]. Consequently Hamiltonians formulated in terms

of these variables are also no longer Hermitian. We adopt here a recent approach to non-

Hermitian systems [24, 25, 26, 27, 28] which renders them self-consistent and physically

meaningful.

A striking feature of the coherent states presented here is the well known fact that

in a certain parameter regime the original wave packet can be fully reconstructed after a

specific time and can be interpreted as a superposition of classical-like sub-wave packets. In

the system considered here the existence of these structures is a signature of the spacetime

deformation and disappears in a standard setting. This indicates the interesting possibility

that the structures of noncommutative spaces could actually be probed experimentally.

Many of the computations presented here have been attempted previously by Ghosh

and Roy in [29], but almost all our results disagree with their findings and conclusions

which we believe to be conceptually and compositionally incorrect as we will point in the

course of our presentation.

Our manuscript is organized as follows: In section 2 we assemble various generalities on

GZ-coherent states and show how the construction needs to be altered for a non-Hermitian

setting. We also set up our notation for a standard perturbative treatment. In section 3 we

construct GZ-states and evaluates various expectation values for a Hermitian as well as non-

Hermitian setting, which we use to test the Ehrenfest theorem and the equivalence principle.

In section 4 we present our analysis for the revival times structure. Our conclusions are

stated in section 5.

2. Perturbative GZ-coherent states for non-Hermitian Hamiltonians

We commence by establishing our notations by collecting some well known facts about

GZ-coherent states and indicate the necessary modifications needed for a non-Hermitian

setting. The GZ-coherent states [22, 23] for a Hermitian Hamiltonian h with discrete

bounded below and nondegenerate eigenspectrum are defined as a two parameter set

|J, γ, φ� = 1

N (J)

∞�

n=0

Jn/2 exp(−iγen)√
ρn

|φn� , J ∈ R+0 , γ ∈ R. (2.1)

The states |φn� are the orthonormal eigenstates of h, that is h |φn� = �ωen |φn�. The
probability distribution and normalization constant are

ρn :=
n�

k=1

ek and N 2(J) :=
∞�

k=0

Jk

ρk
, (2.2)

respectively, where the latter results from the requirement �J, γ, φ |J, γ, φ� = 1.

Here we will consider Hamiltonians H on noncommutative spaces which are non-

Hermitian with regard to the standard inner product. The construction for the coherent
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states is then easily adoptable when we assume that the Hamiltonian H is pseudo/quasi

Hermitian, i.e. the non-Hermitian Hamiltonian H and the Hermitian Hamiltonian h are

related by a similarity transformation h = ηHη−1, with η†η being a positive definite oper-

ator playing the role of the metric. The corresponding eigenstates |Φ� and |φ� of H and h,
respectively, are then simply related as |Φ� = η−1 |φ�. As observables are expected to be
Hermitian, we need to change the metric when computing expectation values for operators

associated to the non-Hermitian system [24, 25, 26, 27, 28]. The same reasoning has to

be adopted for the evaluation of expectation values with regard to the coherent states.

Therefore the expectation value for a non-Hermitian operator O related to a Hermitian
operator o by a similarity transformation o = ηOη−1 is computed as

�J, γ,Φ|O |J, γ,Φ�η := �J, γ,Φ| η†ηO |J, γ,Φ� = �J, γ, φ| o |J, γ, φ� . (2.3)

Our notation is to be understood in the sense that in the state |J, γ, φ� and |J, γ,Φ� we sum
over the eigenstates of the Hermitian Hamiltonian h and non-Hermitian Hamiltonian H,

respectively. These states are continuous in the two variables (J, γ), provide a resolution

of the identity, are temporarily stable, in the sense that they remain coherent states under

time evolution, and satisfy the action identity

�J, γ,Φ|H |J, γ,Φ�η = �J, γ, φ|h |J, γ, φ� = �ωJ. (2.4)

This identity ensures that (J, γ) are action angle variables [22, 23].

The main purpose is here to consider a model on a noncommutative space with nontriv-

ial commutation relations for their canonical variables giving rise to minimal uncertainties.

It is then interesting to investigate how close the GK-states approach the minimum uncer-

tainty product and eventually might even become squeezed states. Thus for a simultaneous

measurement of two observables A and B in this system we need to evaluate the left and

right hand side of the generalized version of Heisenberg’s uncertainty relation

∆A∆B ≥ 1

2

����J, γ,Φ| [A,B] |J, γ,Φ�η
��� . (2.5)

The uncertainties are computed as ∆A = �J, γ,Φ|A2 |J, γ,Φ�η − �J, γ,Φ|A |J, γ,Φ�2η and
analogously for ∆B. In order to test the quality of the coherent states, i.e. to see how

closely they resemble classical mechanics, we may also test Ehrenfest’s theorem for an

operator A

i�
d

dt
�J, γ + tω,Φ|A |J, γ + tω,Φ�η = �J, γ + tω,Φ| [A,H] |J, γ + tω,Φ�η . (2.6)

We used in (2.6) the fact that the time evolution for the states |J, γ,Φ� is simply imple-
mented as exp(−iHt/�) |J, γ,Φ� = |J, γ + tω,Φ�, see [22, 23]. Specifying the operators A
and B we will also test below the correspondence principle.

Here we present a perturbative treatment of the above considerations around h0 for a

Hamiltonian decomposable as h = h0 + h1, with h0 |n� = e
(0)
n |n�. According to standard

— 3 —
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Rayleigh-Schrödinger perturbation theory the first order expansions of the eigenenergies

and the eigenstates are

en = e(0)n + �n|h1 |n�+O(τ2) and |φn� = |n�+
�

k �=n

�k|h1 |n�
e
(0)
n − e

(0)
k

|k�+O(τ2), (2.7)

respectively. Wherever appropriate, we then simply use these expressions in (2.1) for our

computations.

3. GK-coherent states for the noncommutative harmonic oscillator

We will now construct the GK-coherent states and various expectation values for the one

dimensional harmonic oscillator [8, 10, 13]

H =
P 2

2m
+
mω2

2
X2 − �ω

�
1

2
+
τ

4

�
(3.1)

defined on the noncommutative space satisfying

[X,P ] = i�
�
1 + τ̌P 2

�
, X = (1 + τ̌p2)x, P = p. (3.2)

Here τ̌ := τ/(mω�) has the dimension of an inverse squared momentum with τ being

dimensionless. We also provided in (3.2) a representation for the noncommutative variables

in terms of the standard canonical variables x, p satisfying [x, p] = i�. The ground state

energy is conveniently shifted to allow for a factorization of the energy. The Hamiltonian

in (3.1) in terms of x, p differs from the one treated recently in [29] as we take a different

representation for X and P , which we believe to be incorrect in [29] even up to O(τ).

The so-called Dyson map η, whose adjoint action relates the non-Hermitian Hamiltonian

in (3.1) to its isospectral Hermitian counterpart h, is easily found to be η = (1+ τ̌p2)−1/2.

With the help of this expression we evaluate

h = ηHη−1 =
p2

2m
+
mω2

2
x2 +

ωτ

4�
(p2x2 + x2p2 + 2xp2x)− �ω

�
1

2
+
τ

4

�
+O(τ2). (3.3)

Taking now h0 to be the standard harmonic oscillator, the energy eigenvalues for H and h

were computed to lowest order in perturbation theory [8, 13] to

En = �ωen = �ωn
�
1 +

τ

2
(1 + n)

	
+O(τ2). (3.4)

According to (2.7) we now calculate the first order expression for the wavefunctions to

|φn� = |n� −
τ

16



(n− 3)4 |n− 4�+ τ

16



(n+ 1)4 |n+ 4�+O(τ2). (3.5)

where (x)n := Γ(x+ n)/Γ(x) denotes the Pochhammer symbol. We stress that it is vital

to include the second and third term in |φn� in order to achieve an accuracy of order τ for
expectation values. In [29], where a similar computation was attempted, these terms were

incorrectly ignored. The expression for En coincides with the one found in [29] for τ → 2λ,
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as this computation only involves �k|h1 |n�. Given en as defined by by the relation (3.4),
we compute the probability density and the expansions of its inverse

ρn =
1

2n
τnn!

�
2 +

2

τ

�

n

and
1

ρn
=

1

n!
− 3 + n

4(n− 1)!
τ +O(τ2), (3.6)

We use the latter expression to evaluate the normalization constant in (2.2)

N 2(J) = eJ
�
1− τJ − τ

4
J2
�
+O(τ2). (3.7)

We have now assembled all the necessary quantities to define the GZ-coherent states |J, γ, φ�
in (2.1) and are in the position to verify the validity of some of the crucial requirements

on them, test their behaviour and compute expectation values.

As is well known [24, 25, 26, 27, 28], in a non-Hermitian setting the observables are not

dictated by the Hamiltonian and it becomes a matter of choice to select them or equivalently

the metric [24]. In fact, this is also true for a Hermitian system, where, however, the choice

of the standard metric seems to be the most natural one. Here we are mainly interested in

the Hamiltonian H of (3.1) with X and P as observables, but it will also be instructive to

consider first the Hermitian system described by h with x and p being the observables of

choice.

3.1 Obervables in the Hermitian system

At first we consider the Hamiltonian h in (3.3) as fundamental and treat the variables x

and p as observables in that system. Expectation values are then most easily computed

by taking the states |n� to be the normalized standard Fock space eigenstates of the har-
monic oscillator with usual properties a† |n� = √

n+ 1 |n+ 1� and a |n� = √
n |n− 1�. To

first order in τ , we then compute the expectation values of the creation and annihilation

operators

�J, γ, φ| a |J, γ, φ� =
√
Je−iγ

�
1− τ

4
(2 + J + 4iγ(1 + J))

	
+
τ

4
J3/2e3iγ +O(τ2), (3.8)

�J, γ, φ|a† |J, γ, φ� =
√
Jeiγ

�
1− τ

4
(2 + J − 4iγ(1 + J))

	
+
τ

4
J3/2e−3iγ +O(τ2). (3.9)

For the details of the computation we refer the reader to the appendix. In what follows

we will often drop the explicit mentioning of the order in τ , understanding that all our

computations are carried out to first order. Using the fact that x =


�/(2mω)(a† + a)

and p = i


�mω/2(a† − a), the expectation values

�J, γ, φ|x |J, γ, φ� =



2J�

mω

�
cos γ − τ

�
γ sin γ +

cos γ

2
+ J sinγ

�
γ +

sin 2γ

2

���
, (3.10)

�J, γ, φ| p |J, γ, φ� = −
√
2Jmω�

�
sin γ + τ

�
γ cos γ − sinγ

2
+ J cos γ

�
γ − sin 2γ

2

���
,

— 5 —
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then follow trivially from (3.8) and (3.9). Expanding x2 and p2 in terms of a† and a, a

similar, albeit more lengthy, computation yields

�J, γ, φ|x2 |J, γ, φ� = �

2mω

�
1 + 4J cos2 γ − τJ (6γ sin 2γ + cos 2γ + 2) (3.11)

−τJ2(4γ sin 2γ − cos 4γ + 1)
�
,

�J, γ, φ| p2 |J, γ, φ� = �mω

2

�
1 + 4J sin2 γ + τJ (6γ sin 2γ + cos 2γ − 2) (3.12)

+τJ2(4γ sin 2γ + cos 4γ − 1)
�
.

These two expressions may be used to compute the expectation value of h, as defined in

(3.3), with regard to the GZ-coherent states. The remaining term in h only needs to be

computed to zeroth order to achieve an overall accuracy of order τ . We therefore calculate

�J, γ, φ| p2x2 + x2p2 + 2xp2x |J, γ, φ� = �2(1 + 4J + 2J2 − 2J2 cos 4γ) +O(τ). (3.13)

Summing the contributions from (3.10), (3.11) and (3.12), together with the required pre-

factors to make up the Hamiltonian h, yields the action identity (2.4) as expected. We

remark that this crucial identity was violated in [29].

Employing the above quantities we can also investigate how close the coherent states

approach the minimum uncertainty product. Assembling the required expectation values

we then obtain

∆x2 = �J, γ, φ|x2 |J, γ, φ� − �J, γ, φ|x |J, γ, φ�2 = �

2mω
[1 + τJ(cos 2γ − 2γ sin 2γ)] ,(3.14)

∆p2 = �J, γ, φ| p2 |J, γ, φ� − �J, γ, φ| p |J, γ, φ�2 = �mω

2
[1− τJ(cos 2γ − 2γ sin 2γ)] , (3.15)

and therefore

∆x∆p =
�

2
+O(τ2). (3.16)

Thus the states |J, γ, φ� saturate the minimal uncertainty in a simultaneous measurement
of x and p and therefore constitute squeezed states for all values of J and γ up to first

order in perturbation theory.

Using (3.10) we also verify Ehrenfest’s theorem (2.6) for the operators x

i�
d

dt
�J, γ + tω, φ|x |J, γ + tω, φ� = �J, γ + tω, φ| [x, h] |J, γ + tω, φ� , (3.17)

= �J, γ + tω, φ| i�
m
p+

iτω

2
(px2 + x2p+ 2xpx) |J, γ + tω, φ�

= −i�3/2



2Jω

m

�
sin γ̂ + τ

�
1

2
sin γ̂ + cos γ̂

�
(J + 1)γ̂ +

3

2
J sin 2γ̂

���

and p

i�
d

dt
�J, γ + tω, φ| p |J, γ + tω, φ� = �J, γ + tω, φ| [p, h] |J, γ + tω, φ� , (3.18)

= �J, γ + tω, φ| − i�mω2x− iτω(px2 + x2p) |J, γ + tω, φ�
= −i

√
2Jm�3/2ω3/2

�
cos γ̂ +

τ

4
[(3J + 2) cos γ̂ − 4(J + 1)γ̂ sin γ̂ − 3J cos 3γ̂]

	
.

For convenience we abbreviated here γ̂ := γ + tω.

— 6 —
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3.2 Obervables in the non-Hermitian system

As stated, the system we actually wish to investigate is described by the non-Hermitian

Hamiltonian (3.1) with a non-trivial commutation relation (3.2) for its associated observ-

ables X and P . In order to test the inequality (2.5) we need to compute

�J, γ,Φ|X |J, γ,Φ�η =



2J�

mω

�
cos γ +

τ

2
sin γ(J sin 2γ − 2γ(1 + J))

	
, (3.19)

�J, γ,Φ|X2 |J, γ,Φ�η =
�

2mω

�
1 + 4J cos2 γ + τ [1 + J(2− 2 cos 2γ − 6γ sin 2γ) (3.20)

+ 2J2 sin 2γ(sin 2γ − 2γ)]
�
.

We note here that the actual computation has been carried out by translating first all

quantities to a Hermitian setting and then following the same reasoning as in the previous

subsection. Combining (3.19) and (3.20) then yields

∆X2 = �J, γ,Φ|X2 |J, γ,Φ�η − �J, γ,Φ|X |J, γ,Φ�2η (3.21)

=
�

2mω
[1 + τ (1 + J(2− 2γ sin 2γ − cos 2γ))] .

The computation for the expectation values of P is simpler, since the metric commutes

with p, such that

�J, γ,Φ|P |J, γ,Φ�η = �J, γ, φ| p |J, γ, φ� , and �J, γ,Φ|P 2 |J, γ,Φ�η = �J, γ, φ| p2 |J, γ, φ� ,
(3.22)

and therefore

∆P 2 = ∆p2. (3.23)

Expanding finally (3.21) and (3.23), we obtain

∆X∆P =
�

2

�
1 +

τ

2

�
1 + 4J sin2 γ

�	
=
�

2

�
1 + τ̂ �J, γ,Φ|P 2 |J, γ,Φ�

�
. (3.24)

This means that also in the non-Hermitian setting the minimal uncertainty product for the

observables X and P , commuting as specified in (3.2), is saturated. Thus to first order in

perturbation theory also the GZ-coherent states |J, γ,Φ� are squeezed states, remarkably
this holds irrespective of the values for J and γ.

Apparently this result was also obtained in [29], but our disagreement with the results

presented in there is at least fourfold. Firstly, the authors used the incorrect representation

for the canonical variables X and P as mentioned earlier. Secondly the authors computed

conceptually the wrong expectations values even when using their representation. Thirdly,

the authors only take the first order in (3.5) into account and therefore miss out various

terms contributing to the first order calculation in τ . Finally, even ignoring the previous

three points and adopting all the wrong concepts used in [29], we disagree on a purely

computational level with many of the expressions presented in there.

— 7 —
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Next we also verify Ehrenfest’s theorem (2.6) for the operators X

i�
d

dt
�J, γ + tω,Φ|X |J, γ + tω,Φ�η = �J, γ + tω,Φ| [X,H] |J, γ + tω,Φ�η , (3.25)

= �J, γ + tω,Φ| i�
m
(P + τ̌P 3) |J, γ + tω,Φ�η

= −i�3/2



2Jω

m

�
sin γ̂ + τ

�
(J + 1)γ̂ cos γ̂ +

1

2
sin γ̂(2 + J − 3J cos 2γ̂)

��

and the operator P

i�
d

dt
�J, γ + tω,Φ|P |J, γ + tω,Φ�η = �J, γ + tω,Φ| [P,H] |J, γ + tω,Φ�η , (3.26)

= �J, γ + tω,Φ| − im�ω2
�
X +

τ̌

2
XP 2 +

τ̌

2
P 2X

�
|J, γ + tω,Φ�η

= −i
√
2Jm�3/2ω3/2

�
cos γ̂ +

τ

4
[(3J + 2) cos γ̂ − 4(J + 1)γ̂ sin γ̂ − 3J cos 3γ̂]

	
.

Taking now for simplicity γ = 0, differentiating (3.25) once again and combining it with

(3.26) we obtain the corresponding identity to Newton’s equation of motion

�J, tω,Φ| Ẍ |J, tω,Φ�η = −ω2 �J, tω,Φ|X +
τ̌

2
(3XP 2+3P 2X +2PXP ) |J, tω,Φ�η , (3.27)

The relations (3.25) and (3.26) were not recovered in [29], where the comparison between

the left and right hand sides mismatched. Instead of (3.27) the authors proposed a "cor-

respondence principle with twist". According to our argumentation this is incorrect and

there is in fact no reason to assume the Newton’s equation is simply the same as the one for

the standard harmonic oscillator. The reason for the discrepancy are the aforementioned

conceptual and computational mistakes in [29].

4. Fractional revival structure

Further insights into the comparison between the classical and quantum description can

be obtained from the revival time for wave packets. For a general wave packet of the form

ψ =
�

cnφn sufficiently well localized, i.e. being governed by sub-Poissonian statistics,

near a submode n = n̄ with energy En̄, it was argued in [30] that beside the revival of the

classical-like wave packet after the classical period Tcl = 2π�/ |E′n̄| one may also encounter
so-called fractional revivals. These partial revivals of the original wave packet occur at

times p/q(Trev), with coprime integers p, q and the revival time given by Trev = 4π�/ |E′′n̄|.
Depending on the values of p and q one can interpret the emerging features as different

types of superpositions of classical-like wave packets.

For the case at hand we may follow [23] and expand the energy En in the expression

for the wave packets (2.1)

|J, ωt, φ� =
∞�

n=0

cn(J) exp(−itEn/�) |φn� , (4.1)

— 8 —
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with weighting function cn(J) = Jn/2/N (J)
√
ρn, about n̄ := �n� = Jd lnN 2(J)/dJ . To

first order in perturbation theory we then easily compute

�n� = J − τ

�
J +

J2

2

�
+O(τ2), and

�
n2
�
= J +J2− τ

�
J + 3J2 + J3

�
+O(τ2), (4.2)

such that

∆n2 =
�
n2
�
− �n�2 = J − τ

�
J + J2

�
+O(τ2). (4.3)

Consequently the Mandel parameter Q [31] turns out to be negative

Q :=
∆n2

�n� − 1 = −Jτ
2

+O(τ2) < 0, (4.4)

suggesting a sub-Poissonian statistics. This implies that we have a strong localization

around n̄ required for the possibility of the revival of the classical-like sub-wave packet.

According to the above expressions we compute the classical period and the revival time

to

Tcl =
2π

ω
− τ

ω
(1 + 2J)π, and Trev =

4π

ωτ
. (4.5)

We now use these quantities to analyze the behaviour of the autocorrelation function

A(t) := |�J, γ, φ |J, γ + tω, φ�|2 =
����J, γ,Φ |J, γ + tω,Φ�η

���
2
. (4.6)

In order to find a set of meaningful values for our free parameters J , τ and also to find

an appropriate upper limit cutoff in the sum (4.1), let us first investigate the weighting

function cn(J).

0.0 2.5 5.0 7.5 10.0
0.0

0.1

0.2

0.3

0.4

  J = 1.5
  J = 3

------- J = 4.5

(a)

|c
(J

)|
2

n 0 5 10 15 20 25
0.00

0.06

0.12

0.18

0.24   J = 3
  J = 6

- - - -  J = 15

(b)

|c
(J

)|
2

n

Figure 1: (a) Weighting function for τ = 0.1 with �n� = 1.24, 2.25, 3.04 for J = 1.5, 3, 4.5,

respectively and (b) τ = 0.01 with �n� = 2.93, 5.76, 13.72 for J = 3, 6, 15, respectively.

For the chosen values we observer in figure 1 that the wave packets are well localized

around n̄ resulting from (4.2), such that the prerequisite for the validity of the analysis in

[30] is given. Increasing the values of J for fixed τ we observe negative values for |c(J)|2
for large values of n, which clearly indicates that our pertubative expressions are no longer
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 J = 1.5(a)A(t)

t 0 500 1000 1500 2000 2500
0.00

0.25

0.50

0.75

1.00
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Trev/4
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 J = 6(b)A(t)

t

Trev/2

Figure 2: (a) Autocorrelation function as a function of time for J = 1.5, τ = 0.1, ω = 0.5, � = 1,

γ = 0, Tcl = 10.05 and Trev = 251.32; (b) Autocorrelation function as a function of time for J = 6,

τ = 0.01, ω = 0.5, � = 1, γ = 0, Tcl = 11.74 and Trev = 2513.27.

valid in that regime. We also note that n ≈ 50 will be a sufficiently good value to terminate

the sum in the expression for the autocorrelation function (4.1) analyzed in figure 2.

In panel (a) of figure 2 we clearly observe local maxima at multiples of the classical

period Tcl. As explained in [30] the first full reconstruction of the original wave packet is

obtained at Trev/2 which is clearly visible in panel (a). The fractional revivals are better

observed for smaller values of τ as depicted in panel (b). In that scenario the classical

periods are so small as compared to the revival time that they are no longer resolved. We

clearly observe a number of fractional revivals, such as for instance Trev/4 corresponding

to the superposition of two classical-like sub-wave packets and others as indicated in the

figure.

Notice that our expression and our analysis presented here differs once again from the

one in [29], where for instance the mandatory revival at Trev/2 was not observed.

5. Conclusions

Our central results is the construction of explicit expressions for the GZ-coherent states

for a non-Hermitian system on a noncommutative space leading to a generalized version of

Heisenberg’s uncertainty relation. We showed that these states are squeezed for all values

of J and γ as they saturate the minimal uncertainty. Crucially we established two of the

nontrivial GZ-axioms are satisfied. First of all the states are shown to be temporarily

stable, i.e. they remain coherent under time evolution, and second the states satisfy the

action identity (2.4) allowing for a close relation to a classical description in terms of

action angle variables. We also demonstrated that when using the appropriate metric

Ehrenfest’s theorem is satisfied for the observables X and P . The desired resemblance

of the coherent states with a classical description was further underpinned by an analysis

of the revival structure exhibiting the typical quasiclassical evolution of the original wave

packet. It should be noted that in the considered case the wave packet revival time (4.5)

— 10 —



Squeezed coherent states for noncommutative spaces

depends explicitly on the deformation parameter τ , such that a possible measurement could

distinguish between a noncommutative and a standard commutative space. For instance, in

the order of femtoseconds half and quarter revivals have been observed experimentally [32]

for molecular wave packets described by anharmonic oscillator potentials with eigenenergies

similar to (3.4). Our analysis holds to first order perturbation theory in τ and of course it

would be very interesting to extend this to higher order or eventually to the exact case.

There are various other directions into which our analysis might be taken forward. For

instance, different types of models might exhibit a varied behaviour. More challenging is a

construction for such states in higher dimensions. A systematic comparison with different

types of coherent states would be insightful, especially with rare constructions related to

non-Hermitian Hamiltonians [33].

Acknowledgments: SD is supported by a City University Research Fellowship. AF

thanks Carla Faria for useful comments and discussions.

A. Appendix

We present here a sample computation in order to make our results transparent and re-

producible. In addition, we highlight the differences compared to [29]. One of the simplest

computation in this context is to evaluate the expectation value of the annihilation oper-

ator (3.8). The evaluation of expectation values for different types of operators is more

involved, but goes along the same lines. Using the expression for (2.1) we compute

�J, γ, φ| a |J, γ, φ� = 1

N 2

∞�

n,m=0

J(m+n)/2 exp [iγ(em − en)]√
ρmρn

�φm|a |φn� . (A.1)

With the expansion of |φn� to first order in τ we obtain

�φm|a |φn� =
√
nδm,n−1 +

τ

16

�

(n+ 1)4

√
n−



(n− 3)4

√
n− 4

�
δm,n−5 (A.2)

+
τ

16

�

(n+ 1)4

√
n+ 4−



(n− 3)4

√
n
�
δm,n+3,

=
√
nδm,n−1 +

τ

4



(n+ 1)(n+ 2)(n+ 3)δm,n+3,

such that

�J, γ, φ|a |J, γ, φ� =
∞�

n=1

√
nJn−1/2eiγ(en−1−en)

N 2√ρn−1ρn
+τ

∞�

n=0

Jn+3/2


(n+ 1)3eiγ(en+3−en)

4N 2√ρn+3ρn
+O(τ2).

(A.3)

The last sum has been ignored in [29], but is an important contribution to order τ . Using
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en−1 − en = −1− nτ and ρn = ρn−1en the first sum in (A.3) is evaluated as

e−iγ

N 2

∞�

n=1

Jn−1/2e−iγnτ

ρn−1


1 + τ

2 (1 + n)
=
e−iγ

N 2

∞�

n=1

Jn−1/2

ρn−1

�
1− τ

4
(1 + n+ 4iγn)

	
+O(τ2),(A.4)

=
e−iγ√
J





�
1− τ

4

�
∞�

n=1

Jn

ρn−1

∞�

n=0

Jn

ρn

− τ

4
(1 + 4iγ)

∞�

n=1

nJn

ρn−1

∞�

n=0

Jn

ρn




+O(τ2), (A.5)

=
√
Je−iγ

�
1− τ

4
(2 + J + 4iγ(1 + J))

	
+O(τ2). (A.6)

For the second sum in (A.3) we use en+3−en = 3+3τ(2+n) and ρn+3 = ρnen+3en+2en+1,

such that it becomes

τ
∞�

n=0

Jn+3/2
√
(n+1)3eiγ(3+3τ(2+n))

4N 2ρn
√
en+3en+2en+1

+O(τ2) =
τJ3/2e

3iγ

4N 2

∞�

n=0

Jn

ρn
+O(τ2) =

τJ3/2e
3iγ

4
+O(τ2).

(A.7)

Collecting (A.6) and (A.7) we obtain (3.8). Similarly we compute the expectation values

for x2, p2, x2p2 etc by converting them first into expressions involving the a and a† and

then using the arguments from above. For the noncommutative scenario we convert first

to a setting involving Hermitian operators. For instance, we use

�J, γ,Φ|X |J, γ,Φ�η = �J, γ, φ|x+
τ̌

2
(p2x+ xp2) |J, γ, φ�+O(τ2) (A.8)

and compute the right hand side as explained above.
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