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influence of 1.5D centre to centre spacing between the centre pile and 
the mini-pile group (D – diameter of centre pile). 

 
Figure 5.17  Details of the geometry of the novel pile groups used to investigate the 

influence of 2D centre to centre spacing between the centre pile and the 
mini-pile group (D – diameter of centre pile). 

Figure 5.18  Effective geometry of the enhanced centre pile with 100mm long mini-
piles installed at 1.5D centre to centre spacing with the existing centre 
pile. 

 
Figure 5.19  Effective geometry of the enhanced centre pile with 100mm long mini-

piles installed at 2D centre to centre spacing with the existing centre pile. 
 
Figure 5.20  Effective geometry of the enhanced centre pile with 200mm long mini-

piles installed at 1.5D centre to centre spacing with the existing centre 
pile. 

 
Figure 5.21  Effective geometry of the enhanced centre pile with 200mm long mini-

piles installed at 2D centre to centre spacing with the existing centre pile. 
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Figure 5.22  Tests LQ11(A) and LQ10(A).  1st loading cycle – single pile foundation 
loaded up to working load.  2nd loading cycle – enhanced pile 
foundation: Test LQ11(A) eight 100mm long mini-piles with 2D 
spacing; Test LQ10(A) sixteen 100mm long mini-piles with 2D spacing.
  

Figure 5.23  Tests LQ12(A) and LQ12(B).  1st loading cycle – single pile foundation 
loaded up to working load.  2nd loading cycle – enhanced pile 
foundation: Test LQ12(A) eight 200mm long mini-piles with 2D 
spacing; Test LQ12(B) sixteen 200mm long mini-piles with 2D spacing.
  

Figure 5.24  Tests LQ7(A), LQ10(A) and LQ11(A).  1st loading cycle – single pile 
foundations loaded up to working load.  2nd loading cycle – enhanced 
piled foundations loaded to failure: test LQ7(A) – single pile, test 
LQ10(A) enhanced pile foundation with sixteen 100mm long mini-piles 
at 3D spacing and test LQ11 enhanced pile foundation with eight 100mm 
long mini-piles at 3D spacing. 

 
Figure 5.25  Effective geometry of the enhanced centre pile with 100mm long mini-

piles installed at 2D centre to centre spacing with the existing centre pile: 
(a) Mini-pile group of 8 (Test LQ11(A)) 
(b) Mini-pile group of 16 (Test LQ10(A)). 

  
Figure 5.26  Details of the geometry of the model of novel pile groups: 

(a) Mini-pile group of 8  
(b) Mini-pile group of 16. 

 
Figure 5.27  Tests LQ11(A) and LQ12(A).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile 
foundation: Test LQ11(A) eight 100mm long mini-piles with 2D 
spacing; Test LQ12(A) eight 200mm long mini-piles with 2D spacing. 

 
Figure 5.28  Tests LQ9(A) and LQ10(B).  Enhanced pile foundations with eight mini-

piles at 1.5D centre to centre spacing.   
(a) 100mm long mini-piles (Test LQ9(A)) 
(b) 200mm long mini-piles (Test LQ10(B)). 

 
Figure 5.29  Examples of geometry of centrifuge model used to investigate caisson 

effect. 
 
Figure 5.30  Tests LQ15(A) and LQ16(A).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – novel pile group: Test 
LQ15(A) eight 200mm long mini-piles with 3D spacing; Test LQ16(A) 
eight 200mm long mini-piles with 2D spacing. 

 
Figure 5.31  Test LQ17(A).  Novel pile group with four 200mm mini-piles at 2D 

centre to centre spacing with the existing centre pile.   
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Figure 5.32  Tests LQ15(A) and LQ16(A).  Novel pile group with eight 200mm mini-
piles.  
(a) Spacing between the mini-pile group and existing centre pile of 3D.   

  (b) Spacing between the mini-pile group and existing centre pile of 2D. 
 
Figure 5.33  Tests LQ16(A) and LQ17(A).  1st loading cycle – single pile foundations. 

2nd loading cycle – novel pile group: Test LQ16(A) eight 200mm long 
mini-piles with 2D spacing; Test LQ17(A) four 200mm long mini-piles 
with 2D spacing. 

 
Figure 5.34 Tests LQ7(A), LQ14(B) and LQ18(B).  1st loading cycle – single pile 

foundation.  2nd loading cycle – Test LQ7(A) single pile foundation; Test 
LQ14(B) novel pile group (centre pile enhanced with eight 100mm long 
mini-piles with 3D spacing; Test LQ18(B) single pile foundation 
(centrifuge was not stopped between the first and second loading cycle).  
3rd loading cycle – test LQ18(B) centre pile enhanced with eight 100mm 
long mini-piles with 3D spacing.  

 
Figure 5.35 Pile improvement and caisson effect using mini-piles, trials at 

Chattenden, Kent, UK (Fernie et al., 2006). 
 
Figure 5.36 Geometry of test carried out and their performance during load testing, 

trials at Chattenden, Kent, UK (Fernie et al., 2006). 
 
 
Figure 6.1 Axial loading pile foundation device used in centrifuge model testing 

(Morrison, 1994). 
 
Figure 6.2 New loading apparatus developed for centrifuge model testing. 
 
Figure 6.3 Installation of 10mm diameter piles at 1g. 
 
Figure 6.4 Model on centrifuge swing and ready for spin up. 
 
Figure 6.5 Enhanced model pile foundations, after initial loading, with mini-pile 

groups. 
 
Figure 6.6 Pore pressure transducer at the tip of the model pile used in centrifuge 

model testing (Test LQ19). 
  
Figure 6.7 LVDT used to measure model pile displacement during centrifuge 

testing. 
 
Figure 6.8 Load cell connected to a loading pin used in centrifuge model testing. 
 
Figure 6.9 Test LQ5(A) and LQ(6) single pile foundations subjected to 1st and 2nd 

loading to failure.  An increase in pile capacity of 20% was observed 
uring 2nd loading. 
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Figure 6.10 Tests LQ7(A) and LQ13(B) single pile foundations subjected to 1st and 
2nd loading.  The piles were subjected to working load during the 1st 
cycle.  The piles were loaded to failure during the 2nd cycle. 

 
Figure 6.11 1st loading cycle - single pile foundation loaded up to working load 

(FOS=2.0), tests LQ9(A) and LQ11(A).  2nd loading cycle – enhanced 
pile foundations with 8 mini-piles 100mm long, test LQ9(A) with 1.5D 
spacing and test LQ11(A) with 2D spacing. 

 
Figure 6.12 1st loading cycle - single pile foundation loaded up to working load 

(FOS=2.0), tests LQ10(B) and LQ12(A).  2nd loading cycle – enhanced 
pile foundations with 8 mini-piles 200mm long, test LQ10(B) with 1.5D 
spacing and test LQ12(A) with 2D spacing. 

 
Figure 6.13 Tests LQ10(A) and LQ11(A).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – enhanced piled 
foundations loaded to failure: test LQ10(A) enhanced pile foundation 
with sixteen 100mm long mini-piles at 3D spacing and test LQ11 
enhanced pile foundation with eight 100mm long mini-piles at 3D 
spacing. 

 
Figure 6.14 Tests LQ12(A) and LQ12(B).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile 
foundation: Test LQ12(A) eight 200mm long mini-piles with 2D 
spacing; Test LQ12(B) sixteen 200mm long mini-piles with 2D spacing. 

 
Figure 6.15 Tests LQ11(A) and LQ12(A).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile 
foundation: Test LQ11(A) eight 100mm long mini-piles with 2D 
spacing; Test LQ12(A) eight 200mm long mini-piles with 2D spacing. 

 
Figure 6.16 Tests LQ17(A) and LQ17(B).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – novel pile group: Test 
LQ16(A) eight 200mm long mini-piles with 3D spacing; Test LQ17(B) 
four 200mm long mini-piles with 3D spacing. 

 
Figure 6.17 Tests LQ15(A) and LQ16(A).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – novel pile group: Test 
LQ15(A) eight 200mm long mini-piles with 3D spacing; Test LQ16(A) 
four 200mm long mini-piles with 3D spacing. 

 
Figure 6.18 Tests LQ16(A) and LQ17(A).  1st loading cycle – single pile foundations. 

2nd loading cycle – novel pile group: Test LQ16(A) eight 200mm long 
mini-piles with 3D spacing; Test LQ17(A) four 200mm long mini-piles 
with 3D spacing. 

 
Figure 6.19 10mm diameter pile foundation enhanced with eight mini-piles 100mm 

long with 2D spacing, where D is the diameter of the centre existing pile. 
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Figure 6.20 Tests LQ7(A), LQ14(B) and LQ18(B).  1st loading cycle – single pile 
foundation.  2nd loading cycle – Test LQ7(A) single pile foundation; Test 
LQ14(B) novel pile group (centre pile enhanced with eight 100mm long 
mini-piles with 3D spacing; Test LQ18(B) single pile foundation 
(centrifuge was not stopped between the first and second loading cycle).  
3rd loading cycle – test LQ18(B) centre pile enhanced with eight 100mm 
long mini-piles with 3D spacing.  

 
Figure 6.21 Performance of single pile foundations during 1st and 2nd loading.  Test 

LQ6(A) – centrifuge was stopped between the first and second loading.  
Test LQ19(B) – centrifuge was NOT stopped between the first and 
second loading.  

 
Figure 6.22 The effects on centre to centre spacing of the mini-piles as a result of 

change of the diameter of the mini-piles and the distance from the centre 
pile. 
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ABSTRACT 

 

In recent years development is at premium in many European cities.  With life cycles of 

25-30 years of buildings in financial cities and about 40 years in regional centres the 

ground is becoming more and more congested with redundant foundations.  As the 

underground development of services and infrastructure already confines the location of 

building foundations, redundant foundations only add to this problem.   

 

The research described in this thesis, using centrifuge model testing, describes how the 

existing pile foundations in overconsolidated clay are likely to behave when their 

loading conditions are changed by unloading caused by demolition and subsequent 

reloading.  This is done with the view to re-use the existing pile foundations for the new 

redevelopments.  The influence of the new foundations on the existing foundations is 

also described.  By re-using the foundations, the use of raw materials is reduced, the 

energy consummation for construction is reduced, the volume of soil from foundation 

construction is eliminated and the construction time significantly reduced, consequently 

reducing the whole costing of a structure.    

 

Experimental data was obtained from series of twenty one centrifuge model tests 

undertaken at 60g.  The geometry of the model was such that it was possible to test two 

sets of foundations with each test.  The performance of piles in overconsolidated clay 

when subjected to load/unload/reload cycles and the influence of supplementary piles 

used to achieve the required capacity were investigated.  The model tests include 

comparison of the behaviour of bored piles when supplemented with mini piles of 

different length, number and spacing (centre to centre distance between the mini piles 

and the existing centre pile). 

 

An increase in capacity was observed when single piles were subjected to load cycles.  

It was found that this increase in capacity is dependent on the previous loading 

conditions of the pile.  The behaviour of enhanced piles was characterised using a single 

pile test as datum test.  The influence of these novel pile groups on the existing pile was 

dependent on the number, length of the mini-piles in the group and centre to centre 

spacing between the existing and new pile foundation.    
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CHAPTER 1 

INTRODUCTION 

 

With continuous development in the urban environment the ground is becoming more 

and more congested with redundant foundations.  The underground development of 

services and infrastructure already restrict the locations of new building foundations and 

the redundant foundations only add to this problem.  The research undertaken is an 

investigation into behaviour of bored piles in overconsolidated clay when subjected to 

load cycles with the view of the re-use of the existing piles for future redevelopments.  

If the existing piles are to be re-used, then by understanding the behaviour of pile 

foundations when subjected to load cycles, a decision can be made on the magnitude of 

the load to which the existing piles can be re-loaded. 

 

If the capacity of the existing piles in not sufficient for the new development, their 

capacity will need ot be enhanced. Consequently, the research sought to explore the 

possibility of improving the capacity of the existing piles by placing a ring of new mini-

pile foundations around the existing centre pile.  This new mini-pile group was 

constructed around the existing pile that had previously been subjected to its working or 

failure load.  The geometry of the group was varied, i.e. the number of the mini-piles, 

centre to centre distance between the existing and new pile foundation and length of 

these new foundations.   

 

There are obvious advantages for redevelopment if as much as possible of the existing 

buildings can be reused to reduce the environmental impact, time and cost of the 

construction. 

  

 

1.1   Background 

 

Reuse of pile foundations is not new.  In Elizabethan times it was a common practice to 

rebuild large structures supported by the old foundations.  In recent times though, 

buildings and the expectations of their performance have changed as a result of the 
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development of the industry.  The acceptance of damage in structures has decreased.  

With construction techniques improving continuously and requirements for taller 

buildings increasing, thus dealing with greater loads, the existing foundations were 

ignored or removed and new foundations were preferred (Butcher et al., 2006).   

 

The redevelopment of inner-city sites is at a premium in many world cities and the 

number of sites where construction requires a third set of deep foundations is increasing.  

In these urban environments, underground services and infrastructure already, to some 

extent, dictate the location of building foundations and by continuing to avoid the 

existing piles the problems is exacerbated (Chapman et al. 2001)1.  If the foundations 

are not avoided, then the engineer is left with a choice of removing or re-using the 

existing foundations.  Removal of piles is time consuming, costly (up to four or more 

times the cost of constructing new piles) and environmentally damaging and it seems 

logical that there may come a time when re-use of foundations will be the only practical 

and economical solution. 

 

In 2003 the RuFUS (Reuse of pile Foundations for Urban Sites) project, funded by the 

European Union, was undertaken to provide ways to overcome technical and non-

technical barriers to re-use of foundations for sustainable development.  The project 

resulted in a “best practice handbook” (Butcher et al., 2006) on the re-use of 

foundations that included guidance on the remediation/upgrading of existing 

foundations, guidance on the measurement and analysis for testing of existing 

foundations beneath buildings to assess durability, integrity and geometrical shape and 

foundations loading performance, guidance for new foundations and documentation 

system to future proof new foundations. 

 

The barriers for reuse of foundations were also recognised during the RuFUS study.  

The owners of the present generation of city buildings do not generally possess good 

records of their foundations and there is a critical lack of information on the extent, 

location and integrity of the existing foundations.  Little is known about the changes of 

performance of pile foundations with time thus the load capacity of the foundations will 

generally not be known with confidence.   

 



3 

The research undertaken makes use of geotechnical centrifuge modelling to examine the 

behaviour of piled foundations in overconsolidated clays.  Potentially physical model 

testing is a useful method of investigating a problem.  There are sufficient data in the 

context of the large scale testing (trials at Chattenden) and a number of case histories with 

which the results from model testing can be compared.   

 

 

1.2  Methodology 

 

The aims of the research are to improve understanding of the pile soil interaction during 

load/unload/reload cycles, to investigate the influence of time on pile load carrying 

capacity and study the influence of new pile foundations on existing pile foundations 

during the life of the structure.   The following are identified as the main objectives of 

the research and form the basis for the discussion and conclusions: 

 

(i) Apparatus was developed to enable investigation of pile foundation 

behaviour with load changes associated with redevelopment of a site. 

 

(ii) The effect of the new foundations on the existing foundations was assessed.  

  

(iii) The results of the centrifuge model tests have been compared with data from 

field tests carried out at a test site in Chattenden, Kent by Cementation 

Foundations Skanska as part of the Re-use of Foundations for Urban Sites 

(RuFUS) project.  

  

 

1.3   Experimental work 

 

1.3.1  Centrifuge modelling 

 

A model has been developed, suitable for testing in a geotechnical centrifuge, such that 

it is possible to simulate load/unload/reload cycles typical of those associated with 

redevelopment of a site, in order to examine the behaviour of pile foundations in 
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overconsolidated clays.  For the first model test apparatus developed by Morrison 

(1994) was used (see Figure 1.1).  This loading device applies vertical load axially by 

dumping the water from the bucket suspended on the arm through remote controlled 

solenoid valve.  The foundations were subsequently un-loaded by adding water, through 

hydraulic slip ring, to water reservoir.  As this apparatus did not load the piles in a 

controlled way and the time required for setting up the model was long, a new loading 

apparatus was developed (see Figure 1.2).   

Four series of tests were conducted: 

 

1. The effect of load/unload/reload cycles on single pile foundations were 

investigated (see Figure 1.3). 

   

2. The effects of supplementary piles were investigated by subjecting a single 

existing pile enhanced by additional mini-piles to loading cycles (see Figure 

1.4). 

  

3. Behaviour of a novel pile group was investigated by loading a new mini-pile 

group only, when the group was constructed around a previously loaded single 

pile (see Figure 1.5).  

 

4. Loading the previously loaded single pile and mini-pile group together (old and 

new foundations), see Figure 1.6. 

 

A total of twenty one tests were undertaken testing two different foundations or 

foundations groups with each test.  In general, single piles were installed as soon as the 

model was removed from the consolidation press.  The model was allowed to come into 

pore water pressure equilibrium after spin-up of the centrifuge.  Foundations were then 

loaded to either working load or failure load.  For working load a factor of safety of 2 

was used on the ultimate load obtained from a series of centrifuge pile load tests to 

failure (load at displacement of 10% of the pile diameter).  When the first loading cycle 

had finished the centrifuge was stopped and mini-pile groups were constructed around 

one ore both of the single pile foundations.  The tests used a variety of foundation 



5 

geometries modelling the effects of the length, number and spacing of the mini-piles in 

the group on the existing pile.  The preconsolidation pressure, model soil type and the 

existing pile geometry were kept constant.  Measurements were made of displacement 

of the foundations and the load applied.  

 

 

1.4   Summary of thesis 

 

The dissertation details the approach to the research and the reasons behind it.  The 

model response in the series of tests conducted is explained and interpreted.  Chapter 2 

is a literature review of deep foundation design and behaviour during the first loading.  

Attention is given to case studies on the influence of changes in loading condition and 

time in the foundation performance.  The chapter continues by covering the design and 

behaviour of model piles and the stress history of the centrifuge soil model.  A number 

of case histories and tests carried out during the study at Chattenden as part of the 

RuFUS project are described.      

 

The design development of the centrifuge testing apparatus is described in detail and 

any limitations in the testing procedure are discussed.  Significant time was spent on 

experimental work to determine the performance of the apparatus and methods that 

were novel in terms of centrifuge testing.  This work is described in detail in Chapter 3. 

 

The centrifuge test results are presented in chapter 4.  Model testing was carried out 

over a period of about 14 months with modifications to the apparatus becoming 

necessary during this time.  Foundation load behaviour is reviewed for all load cycles to 

which they were subjected.  The chapter finishes with the assessment of increase in 

foundation load capacity when subjected to load/unload/reload cycles and foundation 

improvement with mini-pile groups. 

 

In Chapter 5 the results of the centrifuge tests are discussed and compared with field 

monitoring data and experimental data from the literature review and the study carried 

out at Chattenden by Cementation Skanska.  Patterns of foundation behaviour are 
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identified and analysed.  Shear box tests undertaken are explained and interpreted.  

Significant aspects of the test results are highlighted. 

Chapter 6 summarises the main findings of this research project.  Recommendations are 

made for further research that will enable a better understanding of the factors 

influencing foundation behaviour in load/unload/reload cycles.  The implications of the 

results of this research on design issues related to a redevelopment without the need for 

additional or up-graded foundations are discussed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 

CHAPTER 2 

LITERATURE REVIEW 
 

 

2.1  Re-use of pile foundations and novel pile groups 

 

The presence of existing deep foundations is an increasing problem in the development 

of urban areas.  Many modern buildings now leave behind a set of deep foundations and 

the foundations for new buildings have to be installed through and between this detritus.  

When other obstructions and resources in the ground are considered, such as tunnels or 

valuable archaeological deposits, on many sites the space for new foundations is scarce 

and diminishes with each wave of development.  Geotechnical engineers have an 

increasingly difficult task finding locations for additional piles and providing sufficient 

foundation capacity (Chapman et al., 2001).  Often, large transfer structures are needed 

to span over areas where no piles can be installed.  On such sites in the future, reuse of 

old foundations may allow more versatile space planning for new developments.  Reuse 

of foundations has been considered, and implemented, on several projects over the past 

decade where records of existing foundations have been available but the projects have 

been refurbishment rather than new build.   

 

Developers need to make key strategic decisions early in any site development project 

in order to determine the financial viability of the proposed development.  At such early 

stages, there are a number of risks that need to be considered.  The risks particular to 

consideration of foundation reuse include both technical and non-technical issues that 

need to be overcome (Chapman et al., 2001; Fernie, 2002), such as lack of records, 

integrity, length and location of the existing pile foundations, as well as a lack of 

information on foundation performance with time and deterioration of the original 

foundation materials.  There are also non-technical issues such as the insurance of 

buildings with re-used foundations and other aspects relating to liability (Fernie, 2002).  

It is easier to justify reuse of foundations to carry vertical loads because the capacity is 

dependent only on the pile dimensions, the geotechnical capacity and concrete strength 

and durability.  These aspects are less likely to be misjudged then the parameters that 

control lateral capacity, such as provision of reinforcement (Fernie, 2002). 
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In this project the main interest is pile foundation performance with time and the effects, 

if there are any, of the new foundations on the existing piles when these foundations are 

subjected to axial load only.  Generally, the existing piles in an urban environment are 

of the bored cast-in-place type as driven piles have seldom be used in urban situations 

(Chapman et al., 2001).  The extent and efficiency with which those foundations can be 

reused depends on the amount of information that is available (Chapman et al., 2001).  

On this point St John (2000) states that “if a building has performed satisfactorily for 

many years, the foundations must be good for at least the loads that have already been 

applied, providing the materials are not deteriorating” suggesting that when an old 

structure’s foundations have supported its imposed loads over many years without 

obvious structural distress having occurred, the old foundations have been proven 

sufficient to avoid breaching a serviceability limit state.  Furthermore, Butcher et al 

(2006) state that:- 

 

“for a foundation system that has already been tested and ‘proved’ by the application of 

the first building load, a lower factor of safety against failure may be acceptable 

compared to that for new foundations, provided that sufficient details are known”.  

 

This suggests that it may be reasonable to apply a greater load to an existing foundation 

than it was originally designed to carry.   

 

If sufficient details are not known, Butcher et al (2006) continue by stating that:- 

 

“if there are any uncertainties or there is lack of information of what is already in the 

ground, the design capacity of these foundations should be reduced”. 

 

The stress-strain behaviour of soil is typically non-linear and stiffer at small strains so 

designers prefer to use a small proportion of the available capacity of the existing piles 

in order to control the settlements.  The existing foundations will usually therefore, have 

reserves of capacity as an enhanced factor of safety is used to account for a lack of 

information or understanding.   
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For successful reuse it is not only necessary to look at foundation performance during 

the first loading conditions, it is also necessary to understand how the old foundations 

are likely to behave when their loading condition has changed, especially in comparison 

to any additional foundations which may be required (St John, 2000).   

 

There is increasing evidence that the ultimate capacity of piles increases with time.  

Wardle et al. (1992) carried out tests at a London Clay site on four instrumented 170mm 

diameter piles over a period of three years to investigate the effect of elapsed time and 

maintained load on the ultimate bearing capacity (see Figure 2.1).  The piles tested were 

two driven piles, one jacked pile and one bored pile.  An increase in the bored pile 

capacity of 47% was observed between the period of two months and three years as 

shown in the Figure 2.2.  Powell et al. (2003) also observed changes in the vertical load 

capacity of piles with time.  The data presented was on a number of steel driven and 

jacked piles in clay (see Figure 2.3).  All piles showed increase in capacity with time, 

provided they were not retested immediately.  Figures 2.4 and 2.5 show the load history 

for “pile D” tested at Canons Park and “pile A” tested at Cowden.  “Pile D” was load 

tested three times initially, after 108 days, 496 days, 1130 days and 6200 days.  No 

increase in capacity was observed during the first three load tests, as “pile D” was 

retested immediately.  In the following load cycles, pile capacity ranges from 190kN to 

290kN, an increase of 25% to 90% compared to the initial load tests.  “Pile A” was load 

tested in compression after one month, 13 months and 25 years.  After 25 years an 

increase in capacity of around 30% was observed.  “Pile A” was also load tested in 

tension.  Cooke et al. (1979) also observed an increase of the order of 60% in shaft 

resistance of jacked steel-tube piles in London Clay over a two to three year period.  

Powell et al. (2006) looked at the changes in capacity with time of bored pile 

foundations in heavily overconsolidated clay (London Clay).  The piles were tested at a 

test site (see Figure 2.6) at Lodge Hill Camp, Chattenden, Kent UK.  Some basic data 

found from characterisation of the site is shown in Figure 2.7.  In this study a total of 12 

piles with the same geometry were tested and the behaviour of two “virgin” piles and 

previously tested piles was analysed.  The virgin piles were tested at two and a half 

months, a year and three and a half years after installation (see Figures 2.8, 2.9 and 

2.10).  Virgin piles tested three and a half years after installation showed an increase in 

capacity of 25% compared with load tests carried out on pile foundations immediately 
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after installation.  However, the virgin piles showed a tendency to increasingly brittle 

behaviour with age.  The capacity of the “retested” piles was lower than the virgin piles, 

and these foundations showed no increase in capacity over the two year interval 

between tests (see Figures 2.11).  In the two year period between tests the piles were not 

subjected to any loading.            

 

Wardle et al. (1992) suggested that the increase in pile capacity with time is associated 

with a gradual “healing” of the failure surface in the soil, rather than a general increase 

in strength due to consolidation.  Chapman et al. (2001) disagreed with this stating that 

the consolidation process that occurs around a pile after installation should cause 

capacity to increase with time.  St John (2000) noted that in stiff overconsolidated clays 

undrained bearing capacity is greater after the ground beneath the foundation has fully 

consolidated although, as stated earlier, Powell et al. (2006) observed no increase in 

capacity on the piles retested after two years in heavy overconsolidated London Clay.  

Powell et al. (2006) suggest that no increase in capacity was observed due to the strain 

softening nature of London Clay.  Tomlinson (1977) suggested that soil softening may 

occur as a result of surface water entering the gap between the upper part of the pile 

shaft and the surrounding soil, created due to pile installation, and that this could lead to 

a decrease in pile capacity with time.  With driven piles, Bond et al. (1990) and Coop et 

al. (1989) observed that piles in heavily overconsolidated clay, such as London Clay, 

produced negative pore pressures and that the dissipation of these pressures would 

therefore lead to a reduction in the strength of the surrounding clay.  Conversely Wardle 

et al (1992) observed no pore pressure changes in the surrounding soil during constant 

rate of penetration load testing on driven, jacked and bored piles.  Figures 2.12, 2.13 and 

2.14 show the trend of the pore pressure response during installation of pile A, D and B 

and the response up to 100 hours after installation.  Piezometers were installed at a 

minimum radial distance of 0.3m from the centre line of the test piles as shown in 

Figure 2.1, implying that any changes in pore pressure were very small or confined to 

an area very close to the pile shaft.  Chandler et al. (1982) agree that these locally 

generated pore pressures can dissipate rapidly as the shearing zone around the pile shaft 

is very narrow.  The authors described a series of ten load tests, nine normally 

consolidated and one overconsolidated sample, on model piles installed in Speswhite 

kaolin clay.  The piles were loaded under drained conditions.                                 
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In the literature there are numerous case histories for foundation performance with time 

in coarse grained soils, where an increase in bearing capacity of pile foundations over 

time was observed (e.g. Chow et al., 1997).  One of these cases is a storehouse 

development in Hamburg harbour (König et al., 2006) where  42 year old piles were 

retested and the results were compared with original pile load test data from 1963 (see 

Figure 2.15).  The pile foundations showed a significant increase in bearing capacity 

and stiffness.  In general authors agree (e.g. St John, 2000; Chapman et al., 2001) that 

the consolidation of clay soil results in increasing capacity of piles, but in the case of 

coarse grained soil, as the consolidation process is probably finished prior to the first 

loading of the piles, the most plausible explanation for the increase in capacity is the 

relaxation of hoop stresses.  The dynamic pile installation process results in high 

tangential hoop stresses around the pile shaft and this causes a reduction in radial 

stresses after pile installation (Chow et al., 1997).  These stresses relax after a period of 

time that according to Schmertmann (1991) lead to an increase of radial stresses with 

time.      

       

In order to understand foundation performance it is important to understand the 

behaviour of the soil, in this case overconsolidated clay, and the factors influencing this 

behaviour.  It is well established that the behaviour of overconsolidated soil depends on 

the effective stress acting on it and its stress history.  For clay soils the most important 

process representing the past loading history is overconsolidation.  The deformation 

behaviour of clays including the general stress-strain relationship, shear strength and 

compressibility all depend on overconsolidation (Anandarajah, 2003).  Therefore soil 

properties will vary with depth and this variation will need to be reproduced whenever a 

stratum of soil is to be modelled. An overconsolidated soil deposit is created 

geologically by a combination of swelling and recompression, which it undergoes to 

reach its current state.  This loading is a result of processes of erosion of soil, re-

deposition of alluvial deposits and changes in the sea level, and defines the stress 

history of the deposit (Stallebrass & Taylor, 1997).  Many have attempted to relate the 

behaviour of piles to the effective stresses acting in the surrounding soil (Chandler, 

1968; Burland, 1973; Meyerhof, 1976; Parry and Swain, 1977; Randolph et al., 1979; 

Kirby and Esrig, 1980).  In order to use this approach, it is necessary to be able to 

understand the stress history of the soil around the pile.  Once the initial in situ 
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conditions have been determined, Wroth et al. (1980) state that the problem may be 

broken down and analysed in the following stages:- 

  

1. Pile installation.  

 

2. Dissipation of excess pore pressures generated by installation.  

 

3. Pile loading.   

 

When modelling foundations in clay it is considered important to install the foundations 

at the correct effective stress level.  If the stress conditions acting around the pile 

immediately before loading may be predicted, then one can notice the changes of the 

effective stress as a result of loading the pile.  Anderson et al. (1985) carried out 

laboratory tests on bored cast in situ piles in normally consolidated and 

overconsolidated clays and found that during excavation the horizontal effective stress 

(σ'h) reduced dramatically but recovered 90% of the initial “at rest” effective stress after 

only 30 days (see Figure 2.16).  The time required for stress recovery was dependent on 

the delay between boring and concreting, however, they concluded that it was probable 

that Ko values would eventually be re-established even if there was a considerable 

delay.    The radial stresses vary during pile loading, depending on the properties of the 

surrounding soil.  In overconsolidated soil the radial stresses will increase during pile 

loading (Chandler and Martins, 1982).  

 

Hyde et al (1976) noticed the similarity in the behaviour of clay under repeated loading 

compared with that under creep loading.  A series of triaxial tests with 

overconsolidation ratios of 4, 10 and 20 were investigated in this study.  The samples 

were consolidated isotropically in the triaxial cell prior to being subjected to the various 

overconsolidated ratios.  Figures 2.17 (a) and (b) show repeated load test stress path and 

stress path for creep load testing respectively.  The repeated load tests involved 

sinusoidal variation of deviator stress at a frequency of 10Hz and constant confining 

stress.  The results from the above tests were presented as a plot of strain rate against 

time using logarithmic scales.  The sinusoidal stress pulse was approximated by a step 

function which allowed the creep test results to be used to successfully predict the 
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behaviour under repeated loading.  Figures 2.18, 2.19 and 2.20 show the results from 

the repeated load tests, and Figures 2.21, 2.22 and 2.23 shows the results for creep tests.  

Despite the scatter in the results for creep tests, a set of straight parallel lines were fitted 

to the points, and the mean slopes of these lines were found to be the same for both the 

creep and repeated load tests.  It is also shown that the results are dependent on sample 

stress history.   

 

There are several other papers discussing the repeated load properties of clay (Glynn et 

al, 1969; Murayama, 1970; Lashine, 1971).  In all these papers it has been indicated that 

stress-strain-time behaviour under sustained (creep) loads follows a pattern similar to 

that experienced under cyclic loading.  If repeated loading has a positive effect on pile 

capacity, which is also shown from the results of the preliminary centrifuge tests, the 

increase in pile capacity with time could also be associated with creep loading. 

  

The requirements for position and capacities of a new building’s piles can rarely 

coincide with what is available from existing pile locations.  Unless there are particular 

site constraints which prohibit new foundation installation such as the presence of 

archaeology, tunnels or other obstructions, it will often be necessary for the existing 

foundations to be supplemented by new foundations to form the new foundation system 

(Butcher et al., 2006).  Mixing old and new piles under new pile caps is possible but 

consideration should be given to possible differential settlement of the pile cap under 

loading (St John 2000).  This is due to different pile types and also different stiffness 

response of similar pile types since the older piles have been pre-loaded.  St John (2000) 

explains that in the case where the new building has locally higher loads than the 

original, an additional pile or piles can be installed through the slab, preferably directly 

under the column in question.  Such a pile will work if sufficient load can be mobilised 

with a displacement which is compatible with the performance of the existing 

foundation under load.  

  

The spacing of piles should be considered in relation to the nature of the ground, their 

behaviour in the group and the overall cost of foundations (BS 8004 cl. 7.3.4.2. – 

Spacing of Piles).    There are generally three concerns regarding pile spacing:- 
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1. Stress changes in the soil adjacent to installed piles during construction of 

the new piles. 

  

2. Provision needs to be given in case of unexpected pile inclination during 

drilling. 

 

3. Design consideration of pile group effect. 

 

According to BS 8004, for friction piles, the spacing centre to centre should not be less 

than three times the pile diameter.  Fioravante (1998) observed increase in shaft 

resistance of a single pile belonging to a group compared to an isolated single pile due 

to the confinement offered by the surrounding piles.  Jeong and Kim (1998) investigated 

the interaction factors due to group spacing using a three dimensional non-linear finite 

element approach.  The response of groups were analysed by developing interaction 

factors.  The major parameters that influence the interaction factors significantly are the 

group spacing, the total number of piles, and the relative position of piles within the 

group.  For 1.2m diameter piles the interaction factors for centre to centre spacing of 2.5 

and 5 diameters decreases as the number of piles in the group increases.  This is 

particularly significant for groups of 9 to 25 piles.  However, when a group of piles 

exceeds 25 piles in number, further reduction becomes small (Jeong and Kim, 1998). 

 

 

2.2  Design and behaviour of deep foundations 

 

Piles provide support by mobilising frictional forces on vertical shaft surfaces and 

bearing forces beneath the base.  The predictions on the performance of pile foundations 

upon the application of ultimate axial loads are particular for soil conditions at any site 

where the piles are being installed and the behaviour of the soil at a relatively short time 

after installation.  In clay soils the frictional forces are considerably greater than the 

bearing forces, unless the base is enlarged by underreaming.  Thus the bearing capacity 

of most piles in clay soils is largely dependent on the area of the shaft surface and on the 

properties of the soil close to the shaft after the pile has been installed.   
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As a result of research in pile testing over the last fifty years the broad principles of the 

behaviour of bored piles in clay soils are widely understood.  This understanding has 

influenced the appropriate sections of the “Code of Practice for Foundations” and has 

become embodied in the design philosophy of many consulting engineers and local 

authorities as noted by Burland et al., (1974).   

 

Fleming (1992) states that when piles are subjected to gradual increasing loads, the pile-

soil system behaves in a linear-elastic manner to a point.  If the load is released at any 

stage up to this point the pile head returns to its original level.  When the load is 

increased beyond this point slippage occurs between pile shaft and soil and skin friction 

on the pile shaft will be mobilised.  When the friction has been mobilized fully the pile 

plunges downwards without any further increase in load, or a small increase in load 

produces large settlements (Fleming, 1992).       

 

2.2.1  Pile capacity 

 

The ultimate load on a pile can be defined as either the load at which settlement 

continues to increase without further additional loading or the load which causes a 

settlement of 10% of the foundation base diameter (Fleming, 1992).  In this project the 

failure load has been deemed to be the load which gives a settlement of 10% pile base 

diameter. 

 

For bored cast in situ piles in stiff overconsolidated clay the conventional method of 

estimating the load carrying capacity of a pile makes use of the undrained shear 

strength, Su, of the clay in the calculation of both end bearing and shaft resistance (Patel, 

1992).   

 

Shaft capacity of piles in clay is calculated in terms of undrained strength (Su) measured 

from quick undrained triaxial tests on undisturbed samples and an empirical adhesion 

factor, α, back calculated from pile tests such that:- 
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qs = α Su 2.1 

 

Where:  qs        – ultimate shaft capacity 

  

The value of the empirical adhesion factor, α, depends on the strength, stiffness and 

plasticity of clay, the size and type of pile and the method of installation (Tomlinson, 

1957; McClelland, 1972; Chandler et al, 1982; Patel, 1992).  This factor accounts for 

unknowns such as the effects of disturbance caused by the pile installation process.  For 

overconsolidated or stiff clay a value of α < 0.5 would be commonly used.  According 

to Skempton (1959) the adhesion developed on the shaft is less than unity, chiefly 

because the clay immediately adjacent to the pile shaft absorbs water during the drilling 

operations and from the concrete.  The method of pile construction has much improved 

since 1959 and the above is probably more relevant to tripod method of construction.  

Patel (1992) collected results from forty five tests on straight shafted bored piles.  Piles 

tested ranged in diameter from 0.35m to 1.2m and 6m to 32m length.  From these 

analyses the most important conclusions were as follows:- 

 

• The shaft adhesion factors α from Constant Rate of Penetration (CRP) tests 

were much higher than the values obtained from Maintained Load (ML) 

tests.  This difference is considered to be due to the rate effects which 

develop in CRP tests.   

 

• The results showed that:-  

αCRP = 0.5 to 0.8, average α = 0.6 

αML = 0.4 to 0.5, average α = 0.45  

 

Burland et al (1988) showed that CRP tests over-predict the actual ultimate bearing 

capacity of bored piles in London Clay.  The authors indicated that this was due to the 

rapid nature of the test.  The rapid undrained shearing of the clay generates negative 

pore pressures at the pile shaft/clay interface i.e. an increase in effective stress.   

  

The base capacity for pile foundations in stiff clay is calculated in terms of undrained 

shear strength, Su. 
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The end bearing capacity is:- 

 

qb = sc dc Nc Sub + γ H 2.2 

 

Where:    
qb - ultimate end bearing 

sc - shape factor applied to Nc 

dc   - depth factor applied to Nc 

Nc      - bearing capacity for surface strip foundation applied to Sub 

Sub - undrained strength at the foundation base 

γ H   - is often compensated for by the self-weight of the pile and therefore   

ignored 

 

 

The product of sc · dc · Nc is approximately 9.0 for circular footings where the depths 

exceed four base diameters (Skempton, 1959).  Thus:- 

   

qb = 9.0 Sub + γ H 2.3 

 

2.2.2 Design  and behaviour of pile groups  

 

Piles are normally constructed in groups of vertical, battered or a combination of 

vertical and battered piles.  The load applied to a pile group is transferred to the soil.  

The design methodology adopted when the pile group is subjected to vertical load, 

should provide calculations of the group capacity and displacement such that the forces 

are in equilibrium between the structure and the supporting piles and between the piles 

and soil supporting the piles.  The allowable group capacity is the ultimate group 

capacity divided by a factor of safety.  The ultimate capacity of pile groups in clay soil 

is the lesser of the sum of the capacities of the individual piles or the capacity by block 

failure (see Figure 2.24).     

 

The up-to-date literature on the performance of pile groups is an investigation on 

experimental testing, design and performance of pile groups constructed at the same 
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time and usually of piles with equal diameters.  When improving an existing pile 

foundation with mini-piles that have a different diameter the group becomes a 

“composite” foundation.  From now on this type of group will be referred to as a 

“novel” pile group.  The behaviour of each pile and the pile group effect in such cases 

differs from pile groups in which piles of the same diameter and material are used (Itani 

et al. 1996). 

 

In the case of novel pile groups, the difference between the mini-piles and the larger 

piles lies in the diameter and slenderness ratio, where slenderness ratio=L/d (L – pile 

length and d – pile diameter).  Thus, when subjected to axial loading, the behaviour of a 

mini-pile is mainly governed by the shaft friction mobilised at the soil pile interface.  

The base resistance is generally negligible and if it is not, it is mobilised long after the 

shaft friction has been mobilised. 

 

The behaviour of the mini-piles under loading was analysed using different testing 

methods in the FOREVER project (1993-2001).  The National Project FOREVER 

(FOundation REinforced VERtically) is a French National Project on Micropiles.  The 

project was operated by the Civil Engineering and Urban Network and took place from 

1993 to 2001.  The goal of the project was to promote the use of mini-piles, in particular 

in groups or networks, by establishing an experimental and theoretical basis for their 

specific characteristics and applications. 

 

The mechanism of mobilising the shaft friction in an axial load test of a mini-pile was 

experimentally demonstrated during the FOREVER project, by measuring the 

distribution of the compressive strain between the head and the base of the mini-pile.  It 

has been assumed that the mini-piles remain elastic during the entire loading process, an 

assumption which appears to be appropriate for most cases, thus the compressive strain 

was proportional to the applied load.  As the strain was proportional to the load, the 

strain curves may therefore be correlated to those of the stress distribution in the mini-

pile.  For small loads the mini-pile is only stressed along a part of its length and as the 

applied load increases, the stressed part increases.  The curves of the load distribution 

on the mini-pile tend to become linear and parallel in its upper part as the applied load 

increases (see Figure 2.25).  In reality, the shaft friction mobilization is more complex, 
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but these simplified assumptions are sufficient to illustrate the different phases of the 

behaviour of mini-piles under loading.  The FOREVER project showed that shaft 

friction depends significantly on the installation technique of the mini-pile (drilling tool, 

injection pressure etc).  The soil type and its properties play an important role, but the 

governing design factors are related predominantly to the interaction between the mini-

pile and the surrounding soil.  

 

The experimental data from the FOREVER National Project has shown a positive group 

effect for groups comprised of a large number of mini-piles.  It is believed that the 

group effect observed is most likely to be due to soil confinement between the mini-

piles.  The research on the behaviour of the mini-piles in the centre of the group also 

showed a similar confinement phenomenon.           

 

2.2.3 Pile settlement 

 

When the load is imposed on foundations installed in overconsolidated clays, it is 

initially taken by the pore water (i.e. the pore water pressure increases).  Due to this, the 

pore pressures around the loaded foundation are not in equilibrium with the surrounding 

pore water, and these generated pore pressures will dissipate at a rate which is governed 

by the permeability of the soil.  As the water pressure dissipates, the load will be taken 

by the soil skeleton and the soil particles will move slightly among each other and the 

soil compresses (reduces in volume), causing the settlement of the structure.  Settlement 

and differential settlements are perhaps the most important features in pile design, and 

the problem is complicated by structural stiffness, pile load redistribution, construction 

technique and group effects (Fleming, 1992).  From a series of pile load tests in London 

Clay, Skempton (1959) drew the following conclusions: 

 

• Settlement at failure load is approximately 8.5% of pile base diameter. 

 

• The shaft adhesion is fully mobilised at smaller settlements than the base 

resistance. 
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The results presented by Whitaker et al. (1966) show that the shaft and base resistance 

are mobilised at entirely different rates of settlements.  Burland et al. (1974) showed 

that shaft friction develops rapidly and linearly with settlement and is generally fully 

mobilised when the settlement is about 0.5% of the shaft diameter.  Hereafter it remains 

relatively constant irrespective of the pile settlement.  On the other hand the base 

resistance is seldom fully mobilised until the pile settlement reaches 10-20% of the base 

diameter. 

       

The shaft transfers the load to the surrounding soil by means of shear stress, which 

decreases in magnitude inversely with distance from the pile (Fleming et al., 1992).  On 

the other hand the base load displacement response requires relatively large 

displacements (10% of pile base diameter or larger) to fully mobilise the ultimate 

capacity.   

 

Fleming (1992) derived a pile settlement analysis using a composite approach 

incorporating both pile shaft and base components with elastic soil parameters and 

ultimate loads to describe the total pile response to maintained loading.  The analysis is 

based on the use of hyperbolic functions as these more accurately represent 

load/settlement behaviour of a pile.  The equations below are typical expressions for 

base and shaft settlement calculations: 

Pile base response:- 

 

ρb = (0.6 Pb pb) / (E25 db (Pb - pb)) 2.4 

  

Where:   ρb        - pile base settlement     

  Pb        – ultimate pile base load at which the load displacement is infinite 

   pb        – pile base load 

   E25         – Young’s modulus at 25% of base failure stress 

   db        – pile base diameter 
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Pile shaft response:- 

 

ρs = (Ms ds ps) / (Ps - ps) 2.5 

 

Where:   ρs        - pile shaft settlement     

  Ps        – ultimate pile shaft load 

   ps        – pile shaft load 

   Ms         – flexibility factor representing pile settlement caused by shaft friction 

   ds        – pile shaft diameter 

 

When these functions are combined and elastic pile shortening is added by a relatively 

simple procedure, an accurate model is obtained for prediction of foundation 

performance and analysis.         

When using new foundations to improve capacity of the existing piles, the settlement of 

old and new foundations have to be compatible.  The load supported previously by the 

existing pile and the time this load was supported has to be considered and compared 

with the new loads to which the foundation will be subjected to in the future.  Based on 

the information available, it is possible to design the new foundations to behave 

compatibly with the existing piles.   

 

 

2.3  Case histories of the behaviour of re-used foundations 

 

Reuse of foundations has been considered, and implemented, on several projects over 

the past decade where records of the existing foundations have been available and the 

projects have been refurbishment rather than new build. 

 

In 2003, a major refurbishment of an office building at 13 Fitzroy Street in central 

London was completed (Anderson et al, 2006).  It was intended to re-develop the 

building by re-using the existing reinforced concrete frame structure and adding a new 

extension to the existing building.  The new loading conditions from the refurbishment 

resulted in 92% of the existing pile groups to be subjected to lower loads compared to 

the original design rated value.  There was some localised overloading of the existing 
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foundations by up to 31% when compared with the original pile group capacity.  For the 

foundation layout see Figure 2.26.  

 

The ground investigation carried out in 1956, for the development of No. 13 Fitzroy 

Street and the adjacent development sites, indicated Made Ground overlying Terrace 

Gravel and London Clay.  As none of the available exploratory holes were within the 

footprint of the building the shallow strata levels beneath the structure could not be 

confirmed.  Results of undrained shear strength from the 1956 tests were found by the 

authors to be comparable with more recent data from nearby sites (see Figure 2.27).  

There was no information available on the detailed design and construction of the 

existing foundations.  However, information was available from intrusive investigation 

which determined material condition, pile geometry and load carrying capacity.   

 

Anderson et al. (2006) suggested that as the application of load over the first building 

life was successful i.e. the building performed with no evidence of structural damage 

over its designed life, a reduced factor of safety for the existing foundations could be 

used demonstrating that the existing foundations would be sufficient to support the 

proposed redevelopment loading. 

 

Vaziri et al. (2006) describe the reuse of piled foundations at Belgrave House in 

London.  The project involved demolition of a seven-storey building followed by the 

construction of a new six-storey building.  The ground conditions comprised Made 

Ground underlain by River Terrace Deposits and London Clay with the groundwater 

level one metre above the top of London Clay.  The original design drawings were 

available but the existing column grid did not coincide with the new column grid (see 

Figure 2.28).  New structures (e.g. transfer slab, transfer beams, capping beams, etc.) 

were needed in order to distribute the loads onto the existing piles.  Vaziri et al. (2006) 

suggested that if the new loads exceeded the original pile loads then there would be a 

net permanent settlement, and reduction in pile stiffness.  This would become 

progressively worse as the pile ultimate load is approached.  If this happened the 

stiffness of the pile would reduce rapidly and excessive settlement would be observed 

which would subsequently lead to pile failure.  Thus, where it was not possible or if 

there was a risk in overloading the existing piles, isolated new piles were installed.   
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The original design drawing showed that four types of piles were used to support the 

existing building, three of which were under-reamed (see Figure 2.29).  The pile size 

ranged from 600mm diameter straight shafted piles to 1200mm diameter piles with 

2800mm under-reams.  Piles were generally shown to be 20m in length. 

 

The authors concluded that pile reuse is a viable foundation solution if approached in 

the correct way.  They emphasised the importance of understanding how the existing 

piles are likely to behave when subjected to unloading by demolition of the present 

building and reloading by the development.  The authors suggested that the effect of the 

construction process taking place for the building redevelopment on the existing piles 

should be compared to a loading test on an under-reamed pile and the demolition stage 

should be compared to the unloading cycle of a pile in a maintained load test.  The 

construction is analogous to the second loading cycle of a pile load.   

       

St John and Chow (2006) describe two case studies of reuse of piled foundations which 

were successfully completed.  The first project, The Empress State Building, involved 

refurbishing (use of the basic framing and fabric of the existing building with, possibly, 

some additional structure) and the second project, Juxon House, foundation reuse. 

 

The Empress State Building was a 28 storey high concrete frame building founded on 

under-reamed piles.  For the plan of the original foundations and original pile design see 

Figures 2.30 and 2.31.  There were no pile test results found in archive data and there 

was no information to suggest that any piles were tested.  Although no pile load test 

results were found, in effect, the building loads were imposed on the existing piles for 

over forty years constituting a long-term pile load test.  The authors suggested a load 

take down analysis for the existing building to assess the previous loads applied to the 

pile foundation in order to determine the load capacity that the existing foundations 

would be reloaded to.  In order that the existing piles remained stiff on reloading, the 

authors describe that the foundation design was based on the principle of limiting the 

new pile loads to below the maximum load that they have experienced previously and 

the excess of these loads to be transferred into new straight shafted bored piles.  The 

plan of the new foundation layout is shown in Figure 2.32.  The authors conclude that it 

is very rare that the opportunity exists to determine what the actual capacity or stiffness 
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of existing piles is but in reality the performance of the piles is likely to be better 

compared to when the piles were first tested.                  

 

The redevelopment of Juxon House site involved the demolition of a ten storey office 

building and construction of a new eight storey building.  The existing structure was 

founded on a number of under-reamed and straight shafted piles (see Figure 2.33).  Prior 

to their reuse, all of the accessible existing piles were exposed and inspected for signs of 

concrete deterioration.  During demolition, the piles were unloaded and underwent some 

elastic upward rebound.  This was measured during demolition on four under-reamed 

piles and information was gained on unloading (and hence reloading) stiffness of the 

existing piles.  The new additional piles that were added, their location and number 

were chosen following an iterative process of modifications between the structural and 

geotechnical engineers.  In cases where the new piles were combined in the group with 

the existing piles, they were designed to be relatively stiff (i.e. mobilise load under 

small settlements) to be compatible with the stiff reloading response of the old under-

reamed piles.  Due to this and space restrictions, the new pile foundations were able to 

be constructed as straight shafted piles.  The plan showing the outline of the new pile 

caps is shown in Figure 2.34.   

 

Continuous Flight Auger (CFA) piles were used except on the east side of the site where 

rotary bored piles were used.  These new foundations extended below the existing 

under-reamed piles by 20m to 25m depth and were designed using an overall factor of 

safety of 3.0.  It was thought that possible interaction may exist between old and new 

foundations; only the pile length below the under-ream was considered as load carrying, 

with a factor of safety of 2.0.  This working load was compared with the working load 

obtained taking into consideration the whole pile shaft with a factor of safety of 3.0 and 

the lowest value was adopted.  The first criteria (FOS=3.0) always dictated the pile 

length. 

   

The Leigh Mills Car Park redevelopment provided an “ideal” foundations reuse case 

(Tester and Fernie, 2006).  The existing pile installation and the redevelopment were 

both carried out by Cementation Skanska, and extensive records of the original project 

had been retained.  The reserve capacity of the existing piles was utilised and the 
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existing pile groups were supplemented with mini-piles leading to a less complex 

foundation and superstructure construction and also significantly reducing programme 

and cost.  The mini-piles were chosen as a supplement as they could be installed in low 

headroom, a frequent problem in foundation reuse situations.  For the geometry of the 

composite pile groups see Figure 2.35.   

 

The composite pile group performance prediction was approached in two ways, the 

strain based and stress based approach.  The individual mini-pile settlement at working 

load was predicted and compared with the recorded settlement of the existing piles 

under load test.  As the new and old foundation had a different stiffness, a difference in 

predicted settlement between old and new foundations was observed.  This difference 

was very small, and it was considered insignificant.  The load would initially be taken 

by the stiffer elements in the group leading to a further settlement of the existing piles.  

The load would then be distributed to less stiff elements, the new mini-pile foundations.  

Checks to ensure that the existing piles were not overstressed were carried out by 

Cementation Skanska.   

 

The stress based approach looked at the capacity of the group to ensure that the spacing 

of the piles did not result in reduction of capacity and large settlement of the composite 

group.  The group was considered as a large “mono-pile” with equivalent diameter and 

founded at an equivalent toe level.  The factor of safety used in the ultimate capacity 

calculations was 3.0 and the settlement of the equivalent “mono-pile” was within 

allowable limits.                           

 

 

2.4  Trials at Chattenden   

 

The effect of new foundations on existing foundations was studied by Cementation 

Skanska at a test site in Chattenden, Kent (see Figure 2.36).  The site is a well calibrated 

London Clay site (Figure 2.37) and the tests were carried out as part of the Re-Use of 

Foundations for Urban Sites project, RUFUS.  The RUFUS project was funded by the 

European Union aiming to provide ways to overcome barriers, both technical and non-

technical, to the re-use of foundations for sustainable development.  The geometry of 
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the model for centrifuge testing was based on the geometry of a field test carried out at 

Chattenden.   

 

Shotton (2004) reported some preliminary findings on the effect of installing additional 

mini-piles and a pile cap around existing piles from the trial in Chattenden.  The 

observations were then reported in more detail by Fernie et al (2006).    

 

A total of eight tests were undertaken (see Figure 2.38 and 2.39).  The individual piles 

were installed from the ground level and were 7m long (see Figure 2.40).  The groups 

were on the same overall depth but tied together with a 1m deep cap thus the active pile 

shaft was only 6m long (see Figure 2.41).  The summary of tests undertaken is shown in 

Figure 2.42.  

 

Single piles (T40 and T44) were tested for the first time in 2002 and then retested in 

2004.  There are no records from the 2004 test for the single pile T44 due to problems 

with data capture during testing.  During the first loading the single piles both under-

performed in comparison with theory and it is believed that this is due to problems with 

the pile installation, see Figures 2.43 and 2.44.  When re-tested in 2004 pile T40 showed 

an increase in capacity of around 30% at a displacement of 10% of the pile diameter.   

 

Different pile group configurations were also investigated.  The mini-piles were of the 

same diameter (143mm) and length (7m) with a 6m active shaft, but the number and the 

spacing of the mini-piles in the group was varied.  After the test in 2004 (T40 and T44), 

six mini-piles were installed around existing pile T40 and four mini-piles were installed 

around existing pile T44.  The centre to centre distance between the existing pile and the 

mini-piles in the group for both cases was 325mm.  At the same time the grouped ring 

of six and eight mini-piles were also installed and load tested. 

 

The measured group resistance for all of the tests was less than the theoretical 

resistance.  The groups were loaded in three stages.  With the 4mm displacement case 

being chosen as the point at which the individual mini-piles reached their capacity, the 

10mm displacement as a reasonable settlement limit for a group generally and at 

ultimate capacity.  Assessments of group efficiency at 4mm settlement, 10mm 
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settlement and at ultimate are shown in the Figures 2.45, 2.46 and 2.47.  The theoretical 

ultimate capacity of test 5e was limited by the calculation for an equivalent large 

diameter pile whilst the theoretical capacity of the remainder were limited by the sum of 

the individual components. The groups (T7/T8 and T9/T10) reached their ultimate 

capacity at about 10mm displacement while the mini-pile groups supplementing an 

existing pile had one to two further load stages applied before the ultimate condition 

was reached.         

 

The investigation illustrated above showed that in a controlled and a known 

environment with good history one should be able to maximise reserve capacity by 

accepting strain as the arbiter.  In a less controlled and less understood environment a 

simple approach of global factor of safety on unaltered summations of individual 

components ultimate capacity would give a safe assessment of load carrying capacity 

that at least employs the cap reserve.  

 

 

2.5  Summary 

 

There are a number of published cases relating to the behaviour of jacked and driven 

piles when subjected to unload / reload cycles.  However, for bored piles, there is a lack 

of data on their behaviour during loading cycles. The data that is available is from 

physical model testing, numerical analysis and field studies some of which were 

introduced.  In an ideal situation a series of similar piles would be installed and loaded 

and then tested over a number of years; in this way the variations of capacity with time 

and loading conditions could be studied without any complicated additional variables.  

It is necessary to understand the behaviour of the ground during both, the first time 

loading and during unload-reload cycles.  However, from the data available, it is clear 

that the bearing capacity of piles changes with time and that there is a relationship 

between the first and second loading conditions applied to the foundations piles.   

      

It is well established that soil behaviour is directly related to stress history, together with 

the recent and anticipated stress paths.  The best approach to understand the 

performance of the foundations during loading cycles is to improve the understanding of 
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the mechanisms developed during pile loading through a combination of field studies, 

numerical analyses and physical model testing.   

 

A number of cases were presented where novel pile groups were used.  The information 

available suggests that the performance of the existing piles is influenced by the new 

pile foundations and the geometry of the novel pile groups is an issue that needs to be 

considered. 

 

There are many issues that need to be considered when the reuse of existing foundations 

for a redevelopment site is considered.  Important technical issues must be addressed to 

ensure that foundation reuse is undertaken appropriately (Butcher et al. 2006).  Apart 

from technical issues, there are issues related to provision of insurance and warranties 

that need to be addressed.  However, by reusing the existing foundations the time and 

cost of the new developments is reduced, archaeological remains are preserved and the 

impact on the environment is reduced.  Reuse of foundations can generate economic 

advantages.  Any reduction in the project time reduces the time the owner/developer is 

either paying interest on the capital outlay for the redevelopment or not receiving rental 

income (Butcher et al. 2006).  The reuse of foundations will cut the use of natural 

resources simply because new foundations will not be made and the total energy used 

on a reused foundation site will be reduced since energy to manufacture, transport and 

place the constituent material for foundations will not be required.  Furthermore, if 

existing foundations were to be removed the potential energy use in their removal and 

disposal of the materials will be avoided (Butcher et al. 2006).  For the diagrammatic 

representation of some of the major activities in foundation construction and an estimate 

of what their relative cost might be see Figure 2.48.   
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CHAPTER 3 

CENTRIFUGE MODELLING AND MODEL TEST PROCEDURE 
 

 

3.1  Introduction 

 

The potential for using the centrifuge as a modelling tool in civil engineering was 

recognized during the mid-nineteenth century by the French engineer Eduardo Philips.  

He proposed that the technique should be used for modelling the superstructure of a 

bridge. The use of centrifuge model testing for investigation of geotechnical problems 

started in the USSR between the First and Second World Wars (Schofield, 1980).  

Elsewhere its use was unknown until Mikasa (Japan) and Schofield (Cambridge) 

became aware of its potential in the 1960’s (Craig, 1995).  Due to this the first papers 

relating to geotechnical centrifuge work since 1936 were published at the International 

Society for Soil Mechanics and Foundation Engineering Conference in Mexico, 1969.  

Since then geotechnical centrifuge testing has become used extensively as demonstrated 

by contributions to specialist and general soil mechanics related conferences.  Today the 

use of geotechnical centrifuge modelling is widespread but only in academic research 

establishments with the exception of Japan which has the greatest proportion of the 

world’s geotechnical centrifuges used by both industry and academia.  Davies (1998) 

stated that centrifuge modelling is considered by some to be a highly specialist 

experimental technique used by research that has very little direct relevance to 

engineering practice.  However, centrifuge modelling has been recognised increasingly 

as a powerful technique in both geotechnical and geo-environmental engineering.   

 

Before describing the equipment used in the centrifuge tests carried out in this research 

project and analysis of these results, the basic scaling laws and errors inherent in 

centrifuge modelling are described.      
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3.2  Principles of centrifuge modelling 

 

Soil behaviour is governed by stress level and the stress history to which the soil has 

been subjected.  As a consequence there is a need to model in situ stresses that change 

with depth to reproduce the strength and stiffness aspects of soil behaviour.  The 

fundamental principle behind physical modelling is the reproduction of the stress 

distribution in the model as in the prototype.  Physical modelling using a centrifuge 

involves accelerating a model contained in a strong tub or box, at the end of a centrifuge 

arm (see Figure 3.1), to create an inertial radial acceleration field many times greater 

than the Earth’s gravity.  In the model, stress increases rapidly with depth from zero at 

the surface to values that are determined by the soil density and radial acceleration. 

   

The aim is to subject the model to a similar stress history to that assumed for the 

prototype.  This is achieved by accelerating the model (of scale 1:N) at N times Earth’s 

gravity using a centrifuge which then conveniently gives stress similarity at homologous 

points throughout the model.  

  

Thus, when tested at an inertial acceleration field of N times Earth’s gravity; the vertical 

stress σvm at depth hm in the model should be the same as at depth hp in the prototype, 

σvp. 

 

σvm = σvp 3.1 

 

Inertial stresses in the model correspond to the gravitational stresses in the prototype 

(see Figure 3.2).   

 

For the range of soil depths encountered in civil engineering the Earth’s gravity is 

uniform.  When using the centrifuge in order to generate the same stresses in the model 

as in prototype, there is a slight variation in acceleration throughout the model.  This is 

because the radial acceleration is a function of the angular velocity and radius from the 

centre of rotation.  Newton’s Second Laws of motion state that in pulling a mass out of 

a straight path into a radial path of radius r the centrifuge will impose an inward 

acceleration on the mass towards the axis of rotation of:-  
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a = ω2 r 3.2 

 

where:  ω – angular velocity (rad/sec) 

r – radius from centre of rotation (m) 

 

The effect of the radial acceleration is to increase the self weight of the model in the 

direction of its base.   

 

Thus:- 

a = N g 3.3 

 

where:  a – imposed radial acceleration 

N – gravity scaling factor 

  g – acceleration due to gravity (9.81m/s2) 

   

With careful choice of model dimensions and radial acceleration, prototype stress 

profiles which vary with depth can be simulated closely. 

 

 

3.3  Scaling laws 

 

The model is a reduced scale version of the prototype, and this needs to be related by 

appropriate scaling laws.  Having established the principles behind the creation of an 

equivalent gravity field N times greater than the Earth’s the other scaling laws will now 

be explained.  As stated earlier the fundamental principle behind centrifuge testing is the 

reproduction of the stress distribution of the prototype (Equation 3.1). 

 

For the prototype with material of density ρ, at depth hp, the vertical stress σvp is:- 

σvp = ρ g hp  3.4 

 

Therefore if the density of the material in the prototype is the same as that in the model 

and central to the theory of centrifuge modelling is the fact that the acceleration of N 
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times the Earth’s gravity is applied, then the vertical stress σvm acting at depth hm in the 

model is given by:- 

 

σvm = ρ N g hm  3.5 

 

Thus:-  

 

ρ N g hm = ρ g hp 3.6 

 

hp / hm = N 3.7 

 

Hence the scaling law for length is 1/N and it affects the geometrical properties of all 

components used in the model. 

 

The affect that a mass has on a model is a combination of the increase in force it exerts 

due to the increase in acceleration level and the reduction in soil or foundation area on 

which it acts.  The combination gives an effective scale factor for mass of 1/N3. 

 

Powrie (1986) provides a comprehensive list of scaling factors (see Table 3.1), but the 

list of scaling factors, relevant to pile foundation models, derived from the scaling 

relationship for self weight stress (1:1) and for length (1:N), are given in Table 3.2. 

 

 

3.4  Errors in centrifuge modelling 

 

Whilst a centrifuge is an extremely convenient method of generating an artificial high 

gravitational acceleration field, problems are created by the rotation about a fixed axis 

(Taylor 1995).  The effect of changing radius through the model (Equations 3.2) will 

result in model geometry moving away from a prototype.   

 

In trying to model a prototype event it is inevitable that errors will result from the 

testing procedure as it is seldom possible to replicate precisely all details of the 
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prototype.  This is because there is variation in radius over the height of the model 

causing variation in acceleration in the Equation 3.2 (see Figure 3.3). 

 

This section identifies the errors caused by the radial acceleration field in centrifuge 

model testing.   

 

3.4.1 Vertical acceleration field 

 

As stated earlier the stress distribution with depth in the model is non-linear (Taylor, 

1995).  The vertical stress at any point within the centrifuge model is calculated by 

taking the average acceleration acting upon the soil above.  As acceleration varies 

linearly with radius this corresponds to the acceleration midway between the point 

under consideration and the model surface.  Care must therefore be taken in model 

design to ensure that the over-stress at the model base and the under-stress near to the 

top are within acceptable limits.  By finding expressions for the ratios of under-stress 

(ru) and over-stress (ro) to the prototype stress at the same depth and equating the two, it 

can be shown that the least variation is obtained when the required acceleration is set at 

1/3 of model depth.  This gives a correct stress at 2/3 model depth as shown in Figure 

3.4.  

 

Equations 3.1, 3.4 and 3.5 give:-  

 

σvp = ρ g hp = ρ N g hm = σvm 3.8 

 

The nominal gravity acceleration scale N is calculated using the effective radius as 

(Equation 3.2 and 3.3):- 

  

N g = Re ω2
 3.9 

 

where:  Re – effective centrifuge radius for the model 
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If the radius to the top of the model is Rt, then:- 

 

σvm = 0∫zρ ω2  (Rt + z)dz = ρ ω2z (Rt+ z/2) 3.10 

 

If vertical stress is identical in the model and prototype at depth z=hi then:- 

 

Re = Rt + hi/2 3.11 

 

The stress variation with depth in a centrifuge model and its corresponding prototype is 

shown in Figure 3.4.  A convenient rule for minimising the error in stress distribution is 

derived by considering the relative magnitude of under and over-stress, Taylor (1995).  

The ratio of maximum under-stress, ru, which occurs at model depth 0.5hi, to prototype 

stress at that depth is given by:- 

 

ru = {0.5hiρgN-0.5hiρω2[Rt+(0.5hi/2)]} / 0.5hiρgN 3.12 

 

When combined with equations 3.9 and 3.11, this reduces to:- 

 

ru = hi / 4Re 3.13 

 

Similarly, the ratio of maximum over-stress, ro, which occurs at the base of the model, 

hm, to the prototype stress at that depth, can be shown to be:- 

 

ro = (hm-hi) / 2Re 3.14 

 

By equating the ratios of maximum under-stress (ru) and maximum over-stress (ro) the 

following is obtained:- 

ru = ro 3.15 

 

hi / 4Re = (hm – hi) / 2Re 3.16 

 

hi = (2/3)hm 3.17 
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Thus:- 

Re = Rt + hm / 3 3.18 

 

3.4.2 Radial acceleration error 

 

The inertial radial acceleration is proportional to the radius which leads to variation with 

depth in the model (Equation 3.2).  Stewart (1989) described the radial acceleration 

field acting in a direction that passes through the axis of the centrifuge.  Hence, in the 

horizontal plane there is also a change in its direction relative to vertical across the 

width of the model.  This means that there is an increasing component of lateral 

acceleration within the model as the distance from the centreline increases.  This lateral 

acceleration will be greatest at the largest offset from the centreline i.e. boundaries at 

the soil surface.  To minimise this problem the model needs to be shaped to take 

account of the radial nature of the acceleration field.  It is therefore considered good 

practice to ensure that major events occur in the central region of the model where error 

due to the radial nature of the acceleration field is small.  For the centrifuge model 

geometry see Figure 3.5.    

 

3.4.3 Model foundation orientation in gravity field 

 

Due to geometry of the centrifuge swing it was necessary to place the model 

foundations offset from the model centre line.  The axis of each foundation was offset 

by 0.1m from the centre line, as shown in Figure 3.6.  This resulted in foundation 

inclination to the resultant acceleration direction.  However, the effects of this are 

mitigated by the direction of foundation loading which is kept fully in line with the 

foundation axis.  The non-axial component of foundation load results from the net 

weight of the pile (for 10mm diameter pile 200mm long this is 2.2N load at 60g) which 

is small compared to the magnitude of the axially imposed foundation load.  The tub 

sides are orthogonal to its base allowing the soil to swell uniformly.  If the model piles 

were inclined so that they were parallel to the resultant acceleration direction, then they 

would be inclined to the principal direction of soil swelling and consolidation. 
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3.4.4 Boundary effects 

 

The range of scales at which the prototype may be modelled is controlled not only by 

the practicalities of instrumentation but also by the boundary effects imposed by the 

container.  The tub used for this research was manufactured from stainless steel and had 

a 420mm internal diameter with 400mm internal height, as shown in Figure 3.7. 

 

Phillips (1995) gives guidance on containers and states that side wall friction is always 

present to some extent and, consequently, the model should be sufficiently wide so that 

it does not create significant problems.  Craig (1995) suggests that a minimum distance 

of 5 pile diameters from the boundaries of the model container is sufficient to minimise 

such effects.  The model foundations were 11 pile diameters (i.e. 110mm) away from 

the edges of the tub and a minimum of 5 pile diameters (i.e. 50mm) from the base of the 

tub.          

  

3.4.5 Soil stress errors 

 

The model soil was prepared in a consolidation press before the model was assembled 

and placed on the centrifuge (see Figure 3.8).  The sample was subjected to vertical pre-

consolidation pressure (p'max) at the top.  Before removal from the consolidation press 

the pressure was reduced leaving the soil layer with a constant mean effective stress 

distribution (p'c) with depth.  In the equivalent prototype the mean effective stress (p'c) 

would increase with depth.  If it is assumed that the clay surface has the stress history 

corresponding to the prototype, the difference between model and prototype can be 

defined in terms of stiffness, stress and permeability thus:- 

 

- Stiffness 

Stallebrass (1990) showed that the soil bulk modulus and shear modulus are dependent 

on mean normal effective stress and overconsolidation ratio (p' and OCR).  The mean 

normal effective stress and overconsolidation ratio specify the current specific volume 

of soil.  The difference in distribution of mean effective stress (p'c) at the base of the 

model compared to the distribution in the prototype will result in higher specific volum.  

Thus, the overconsolidation ration (OCR) and therefore mean normal effective stress 



37 

(p') will be lower in the model compared to the prototype leading to a reduction in soil 

stiffness.  

- Strength 

Using critical state soil mechanics to determine failure on the critical state line the 

undrained shear strength is:- 

 

Su = (M/2) exp [(Γ-ν) / λ] 3.19 

 

As the specific volume is higher in the model than the prototype, there will be a lower 

gradient of undrained strength with depth in the model than in the prototype.  This 

reduction of undrained shear strength is confirmed by Stewart (1989) in which 

laboratory and centrifuge tests in speswhite kaolin clay showed that:-  

 

Su = 0.22 σ'v OCR0.57 3.20 

 

where:  OCR – overconsolidation ratio 

 

- Permeability 

For speswhite kaolin clay permeability is a function of voids ratio (Al-Tabbaa 1987).  

Hence, the reduction in permeability with depth will not be as rapid in the kaolin model 

as in the prototype owing to more uniform specific volume with depth. 

 

 

3.5   The geotechnical centrifuge 

 

The Geotechnical Engineering Research Centre at City University uses the Acutronic 

661 centrifuge described by Schofield and Taylor (1988) and shown schematically in 

Figure 3.9.  It combines a swing radius of 1.8m with maximum acceleration of 200g.  A 

package weight of 400kg at 100g can be accommodated and this capacity reduces 

linearly with acceleration to give a maximum 200kg at 200g; thus the centrifuge is a 

40g/tonne machine.  The package is balanced by a 1450kg counterweight that moves 

radially on a screw mechanism.  The swing platform at one end of the rotor has overall 
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dimensions of 500mm x 700mm with a usable height of 960mm in the central area 

between the arms. 

 

Four strain gauged sensors are used to detect out-of-balance operations in the base of 

the centrifuge.  The signals from these sensors are monitored and if the out-of-balance 

exceeds the pre-set maximum of 15kN than the machine is shut down automatically.  

Such a safety feature enables unmanned overnight running of the machine. 

 

The machine is situated in an aerodynamic shell which is surrounded by a block wall 

(see Figure 3.10).  This wall is in turn surrounded by a reinforced concrete containment 

shell. 

 

Electrical and hydraulic connections are available at the swing platform and are 

supplied through a stack of slip rings.  Electrical slip rings are used to transmit 

transducer signals (which are converted from analogue to digital by the on-board 

computer and may be amplified prior to transmission in bits), to communicate closed 

circuit television signals, supply power for lights or operating solenoid valves or motors 

as necessary.  The fluid slip rings may be used for water, oil or compressed air. 

  

 

3.6   Apparatus design development 

 

For the first model test a simple loading device shown in Fig.3.11 was used.  This 

loading apparatus was developed by Morrison (1994).  The loading device applies 

vertical load axially i.e. in line with the foundation.  A linear bearing at the support 

beam of the loading rig was used to control the orientation of the loading pin (see Figure 

3.12).  The loading pins were instrumented by means of load cells, as shown in Figure 

3.11, so the load acting on the pile head was measured. The vertical load was applied by 

dumping the water from the bucket suspended on the arm through a remotely controlled 

solenoid valve and then the foundations were subsequently un-loaded by adding water, 

through a hydraulic slip ring, to the water reservoir (see Figure 3.13).  Details of the 

loading apparatus by Morrison (1994) are shown in Figures 3.14, 3.15, 3.16, 3.17, 3.18, 

3.19, 3.20 and 3.21.   
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To measure the displacement of the foundations two Linearly Variable Differential 

Transformers (LVDTs) were used for each foundation.  For the first test the LVDTs for 

both piles tested were supported by a 10mm x 50mm cross-section aluminium beam.  

The ends of the beams were clamped to the top flange of the tub (Figure 3.22).  For 

details of the LVDT support see Figure 3.23 and 3.24.    

 

The preliminary test indicated that the apparatus used, though the basic principle behind 

the design was very simple, was not very practical and required a long time to prepare 

the model for testing.  

 

Following this, a period of design development for apparatus suitable to simulate 

loading, unloading and reloading associated with construction, demolition and 

reconstruction using the same pile foundations was undertaken.  The new apparatus was 

designed such that the loading reservoirs and the LVDT support plate were completely 

independent and could be assembled prior to removing the sample from the 

consolidation press (Figure 3.25)  

 

With the new apparatus the piles were loaded directly using water filled plastic 

reservoirs (Figure 3.26).  The plastic reservoirs were guided by an aluminium tube 

(Figure 3.27).  The water reservoirs rested on springs and moved vertically, thus axially 

loading and unloading the pile foundations (Figure 3.27).  Pile foundations were loaded 

using a loading pin that was connected to the base of the loading reservoir (Figure 3.28).  

As the loading reservoir was resting on the spring during testing, it was necessary that 

the spring has a sufficient stiffness to support the weight of the reservoir prior to 

loading.  At the same time the spring had to be long enough to allow further vertical 

movement of the reservoir to be able to load the piles.  Spring geometry details are 

shown on Table 3.3.  The spring had a sufficient stiffness to support the weight of the 

reservoir at 60g and allow further vertical movement when the reservoir was filled up 

with water during loading of the pile.  The foundations were loaded by filling up the 

reservoir with water (see Figure 3.29) and unloaded by emptying the reservoir through a 

solenoid valve.  For details of the base of the loading reservoir and connection to the 

solenoid valves see Figure 3.30.   Figure 3.31 shows the solenoid valves mounted on the 

centrifuge tub.  Figures 3.32 shows the plate used to connect the solenoid valves to 
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loading apparatus during testing.   The applied load was measured using a load cell that 

was connected to the loading pin.  The reservoirs and solenoid valves were supported by 

a 12mm thick aluminium plate (Figure 3.33) that were mounted, when the apparatus 

was put together, and connected to the top flange of the tub (Figure 3.34).        

 

When the new loading apparatus was developed a new support beam was also designed 

for the LVDTs.  The LVDTs were supported by 10mm x 60mm cross-section beam 

(Figure 3.35).  The beam was connected to the top flange of the tub using four M8 

threaded rods which allowed vertical movement of the support beam dependent on the 

height of the clay model (see Figures 3.36 and 3.37).     

 

 

3.7   Model container 

 

The container used for testing was a cylindrical stainless steel tub with 420mm internal 

diameter and 400mm internal height (see Figure 3.38)  It had access ports at 5mm, 

50mm 100mm, 150mm, 180mm, 200mm and 250mm above the base through which 

pore pressure transducers could be installed.  During the sample preparation an 

extension was mounted above the tub, as shown in Figure 3.39, which was removed 

when the tub was removed from the consolidation press.  For drainage a 20mm thick 

base plate was designed as shown in Figure 3.40.  The plate had a herringbone pattern 

of drainage channels machined into the aluminium surface and connected to drainage 

taps on opposite sides of the tub.  Care was taken to ensure that the ends of the drainage 

pipes were kept submerged in water to prevent air from entering the sample. 

 

    

3.8   Foundation type and installation 

 

The position, depth and layout of the model piles was based on the geometry of 

foundations used for field tests carried out by Cementation Skanska under a European 

funded project entitled Reuse of Foundations for Urban Sites (RuFUS).  Initially it was 

intended that the model piles would be made from cast resin in order to develop more 

realistic shaft friction during testing.  It was however considered important that pore 
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pressure transducers were installed at the base of the pile, so that there was a better 

understanding of load distribution between the shaft and the base of the pile.  Thus, to 

place the pore pressure transducer at the base of resin model pile, a tube was used to 

form a hollow centre of the model pile, through which the wiring from the pore pressure 

transducer could be pulled. The resin was then cast around the tube (see Figure 3.41).  

Having established the benefits of casting the piles in situ a polyurethane resin and 

aluminium trihydrate (ON) filler was obtained from Mason Chemicals.  The addition of 

this filler to the resin at a rate of 100g filler to 100g resin resulted in an easily pourable 

fluid (McNamara, 2001).  After several attempts however, the use of resin piles was 

ruled out as diameter of the piles was very narrow.  Thus, after the central tube was in 

place, the annulus between the tube and the bored hole was too small.  Due to this it was 

impossible to have a uniform distribution of resin around the central aluminium tube.    

 

As a result the model piles were made of solid aluminium rod of 10mm diameter and 

220mm length (Figures 3.42 and 3.43).  The model piles were embedded 200mm into the 

clay corresponding to 12m long piles at prototype scale at 60g (Figure 3.44).  The model 

pile foundations were installed in holes pre bored into the clay at 1g prior to placing the 

assembled model onto the centrifuge swing.  The holes were excavated using 10mm and 

5mm outside diameter thin wall stainless steel tubes (see Figures 3.45 and 3.46) which 

were guided using jigs shown in Figures 3.47 and 3.48.  Prior to placing the foundations 

in the hole a small amount of clay slurry was placed in the base of the hole using a syringe 

(see Figure 3.49).  The clay slurry was used to ensure that the pile was in good contact 

into clay.  In order to release trapped air a 0.5mm deep by 1mm wide channel was 

machined on one side of each pile (see Figure 3.50).  For the mini-piles 5mm diameter 

and 100mm, 120mm, 200mm and 220mm long solid aluminium rods were used (see 

Figures 3.51, 3.52 and 3.53).  The length of the mini-piles was varied depending whether 

their function was sacrificial and in providing a general stiffness effect or if they were to 

be loaded.  The scale factors for centrifuge model testing are shown in Table 3.2.  For the 

details of individual centrifuge model tests see Table 3.4. 

 
As the influence of the mini-pile group was also investigated there was a need to design 

the 10mm diameter central piles in such a way that the length of the pile could be 

varied; whether the mini-pile group alone was loaded or the existing pile together with 
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the mini-pile group were loaded.  Thus resulted in the 10mm diameter piles being 

formed in sections, which could be added or removed (see Figure 3.54), to suit each 

individual test requirements.   

 

Early tests concentrated on measurement of the load that was applied in the foundations 

and their displacement.  Although the tub had a sufficient number of ports it was very 

difficult to place the pore pressure transducers sufficiently close to the piles for any pore 

pressure changes to be measured during the pile loading.  It was therefore decided that 

pore pressure transducers should be installed in the base of the pile as shown in Figure 

3.54, to enable a better understanding on the proportion of load supported by the shaft 

and by the base of the pile.   

 

For all the tests undertaken the pile cap was not in contact with the clay surface, thus 

this gave no contribution to the pile performance.  The cap was used as a reference point 

for measuring the displacement of pile foundations due to loading. The displacement 

was measured using two linearly variable differential transformers (Figure 3.55) and the 

mean value from these two readings was used in the results presented.  

  

• When only the 10mm diameter piles were loaded a plate 2mm thick by 100mm 

long (see Figure 3.56) made from aluminium was connected to the pile 20mm 

above the clay surface as shown in the Figure 3.57 and 3.58.   

 

• When the pile group was loaded a plate of 2mm thickness and 100mm diameter 

was used (see Figures 3.59 and 3.60).   

 

 

3.9  Standpipe 

 

The condition of the pore water pressure equilibrium was controlled by the top and 

bottom boundaries of the clay model.  The model clay layer had an impermeable 

surface, as it was sealed with silicone oil (see Figure 3.61) with pore pressure increasing 

hydrostatically with depth. The average water table was 10mm below the surface level, 

with 14.6mm at the centre line of the swing and 0.1mm at right and left hand boundary 
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of the model.  The upper layer of the clay was theoretically in suction.  The drainage 

base plate was connected to the standpipe, as shown in Figure 3.62.  The standpipe was 

designed such that, depending on the height of the clay model, the height could be 

adjusted and the water table kept constant (see Figure 3.63).       

 

 

3.10   Instrumentation 

 

Three different types of instrumentation were used: 

 

- Pore pressure transducers 

Pressure transducers fitted with a porous ceramic front element were used to measure 

pore water pressure within the clay model.  The pore pressure transducers used were 

PDCR 81 (see Figure 3.64).  The same type of transducer without a porous stone was 

used to monitor the water level in the standpipe. 

 

- Linearly variable differential transformers (LVDT) 

LVDTs used to measure foundation and soil surface movements were Solatron DCO5 

+5mm (see Figure 3.65).  For each test pile two LVDTs were used.  The average 

reading from the two LVDTs was used as a measure of the total pile settlement when 

analysing pile settlement behaviour. 

 

- Load cell 

Load cells used to measure imposed foundation loads at the pile head were Standard 

Strain Gauge Load Cells.  The load cells used were sensors compression    

 

All instrumentation was calibrated through the centrifuge data logging to check against 

the system before each test. 
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3.11   Stress history of soil used in the tests 

 

London Clay is unfavourable for use in model testing owing to its extremely low 

permeability.  The required sample preparation time in the consolidation press for this 

material would be months.   Models for testing in clay soils are therefore usually 

prepared from kaolin owing to its relatively high permeability which minimises sample 

preparation time.  It also has well researched characteristics (Al Tabbaa, 1987).  The 

speswhite kaolin sample was prepared by consolidating clay slurry with 120% water 

content.    The sample was prepared in a consolidation press before the model was 

assembled and placed on the centrifuge.  The sample was subjected to incremental 

loading up to a vertical stress of 500kPa and than swelled back to 250kPa before being 

removed from the consolidation press.  A preconsolidation pressure of 500kPa followed 

by swelling to 250kPa was used principally to ensure that measurable movements were 

achieved.  The stress history was therefore chosen for the ability to make models that 

represented the essential characteristics of overconsoidated clay. 

 

When removed from the press the total stresses on the soil sample was zero and the 

sample was subject to high negative pore pressures.  In order to keep the effective 

stresses as close as possible to 250kPa the base drainage valves were closed and the 

exposed surface of the clay was sealed prior to and during model preparation.  All 

necessary equipment for model making and testing were prepared prior to removing the 

sample from the press, so the model making would be as quick as possible, in order to 

prevent drying of the clay as much as possible.  Undoubtedly however the model was 

affected during this time.  This is shown by the pore pressure transducers readings 

immediately after spin up of a typical test, indicating a dissipation of negative pore 

pressures of up to 150kPa (see Figure 3.66).        

 

As a result of the enhanced self weight of the model whilst spinning, the sample was 

subjected to further consolidation.  Thus the sample continued to swell throughout the 

depth of the model.  The degree of swelling of any element in a model is naturally 

dependent on its depth within the model.         
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3.12   Sample preparation 

 

As stated earlier, the clay samples for the tests were prepared from a slurry at a water 

content of approximately 120%. 

Slurry preparation was carried out in a large ribbon blade mixer.  Distilled water and dry 

kaolin in powder form or, when available, recycled material from previous tests were 

mixed until uniform slurry was achieved.  The time required for mixing when using 

recycled clay was longer compared to when clay in the powder form was used.  It often 

took over four hours for a sample to mix when using recycled clay.  Prior to use the tub 

was cleaned and all ports used for insertion of transducers were plugged.  The inside 

surface of the tub was coated with Ramonol, white grease, in order to minimise any 

boundary effects imposed by the container.  Phillips (1995) gives guidance on 

containers and states that side wall friction is always present to some extent and 

consequently, the model should be sufficiently wide so that such effects do not create 

significant problems.  Measurements of movements should, if possible, be taken on the 

model centreline to minimise the effect (McNamara, 2001).   

 

The base drainage system was covered with a 3mm thick porous plastic sheet over 

which a filter paper was placed.  The filter paper was used to prevent any loss of clay 

particles. 

 

The required thickness of the sample was 250mm.  As the clay slurry had a water 

content of 120% an extension of the tub was necessary.  The extension was 300mm 

deep with the same diameter as the tub.  The extension was bolted on the top of the tub 

and sealed using a coating of silicone grease.  The inside surface of the extension was 

also coated with Ramonol white grease.  The coating of the grease in the tub and 

extension flange contact area was sufficient when the extension was bolted tightly to the 

tub to prevent any leakage of the clay slurry.  The slurry was then placed into the tub 

using a scoop to prevent as much as possible the entrapment of air.  When the required 

amount of slurry was in place, the surface of the model was covered with a filter paper 

and porous plastic sheet to enable top drainage.  The sample was then placed in a 

consolidation press which had a loading plate that fitted tightly within the tub.  The 

loading plate was 38mm thick and was made of stainless steel.  The load was applied 
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using a hydraulic ram.  The applied load was controlled by a computer and the 

movement due to loading were measured using LVDTs.  The initial loading for all the 

tests was in a range of 25kPa and this was usually the maximum pressure achieved 

during the first day, owing to the need to prevent slurry leaks during model preparation.  

In the next two days the pressure was gradually increased until the full required pressure 

was reached.   

 

The sample was left to consolidate at 500kPa for approximately one week.  During this 

time the pore pressure transducers, LVDT and the load cells were calibrated.  After a 

week the vertical ram movements indicated by the LVDT were negligible.  The pressure 

on the sample was then reduced to 250kPa to commence swelling.  The reduction of 

pressure was carried out in a controlled manner and the sample was left to swell for at 

least 24 hours.  Pore pressure transducers were installed through ports in the wall of the 

tub using special equipment as soon as the pressure was reduced.  A stainless steel tube 

cutter was used to remove cores of clay slightly larger in diameter than the 6mm 

diameter of the pore pressure transducer head (Figure 3.67).  To ensure that the 

transducers were installed at the correct level the cutter was guided using a reamed 

ferrule that screwed into the ports.  The pore pressure transducers were removed from 

the de-airing and calibrating chamber and the stones of the transducers were coated with 

a small amount of clay slurry to prevent entrapment of air around the stone when the 

transducer was pushed in gently into the cored holes.  Further clay slurry was applied 

around the transducer cable using a modified syringe.  This ensured that no voids were 

left in the sample due to transducer installation.  During the 24 hours of swelling, full 

consolidation around the pore pressure transducers was reached. 

 

 

3.13   Model making 

   

The drainage taps at the base of the tub were closed and all the water that had collected 

was removed to prevent water content changes in the model when the loading plate was 

raised.  The extension was unbolted and removed and the tub was removed from the 

consolidation press.  The top porous plastic sheet was removed and the surface was 

gently scraped to remove the filter paper and expose the clay surface.  The edge of the 
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model was then greased and the top surface was immediately sealed with silicone oil to 

prevent drying. 

 

To avoid any boundary effects (i.e. have a 5d distance from the base of the tub) the 

minimum required depth of the sample was 250mm, leaving a 126mm distance from the 

top of the tub to the surface of the clay (Figure 3.68).  For all tests the distance between 

the top of the tub to the surface of the clay was in a range of 110mm to 125mm, except 

for the test LQ3 were the model was too deep.  Due to the set up of the loading 

apparatus, the depth of the clay sample was reduced using a scraper.   

 

A stainless steel thin wall tube was used for boring the model pile foundation using as a 

guide tool the jig and the boss shown in Figure 3.10.  For the pile installation see 

Section 3.8 foundation type and installation.  At this stage only the 10mm diameter piles 

were installed.  The model pile displacement during loading was measured using 

LVDTs resting on the pile cap during testing.  Pile displacement was measured by 

measuring the displacement of the pile cap.  Pile cap was a 2mm thick by 80mm long 

plate that was connected to the pile 20mm above the clay surface.      

 

The support plate for the LVDTs was bolted to the top flange of the tub and the vertical 

displacement of the piles measured using two LVDTs for each pile.  The surface of the 

model was then covered with 700ml of silicone oil and the model was weighed.  The 

model was then placed on the swing and the base plate of the tub bolted to the swing 

platform.  At this stage the LVDTs were zeroed and the model was complete and 

required only the loading apparatus to be placed.  The loading apparatus support plate 

was then bolted to the top flange of the tub.  The drainage control valves were already 

positioned at the edge of the loading apparatus support plate.           

  

As the old apparatus (Morrison 1994 and Qerimi et al 2006) was used only for one test 

(LQ1) the model making will not be explained for this apparatus in detail.  The initial 

stages (removal of the sample from the press, pile installation) are the same for all tests. 
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3.14   Testing 

 

After the model was removed from the press and the model piles were installed, the 

apparatus was put together and the model was placed on the centrifuge swing.  Once the 

model was on the swing the loading reservoirs were connected to the water supply.  

Connection of the transducers, standpipe, load cells and solenoid valves then followed.  

A camera and a light, to follow the reservoir movements, were positioned at the front 

side of the loading plate.  All cables were securely fastened and the model was ready for 

spin up (see Figure 3.1).  All the above operations took around 30 minutes to complete.    

All tests were at 60g.  When the model was spinning at 60g it was left for about 20 

hours for the pore pressures to come into equilibrium.  The rate of increase of the pore 

pressure was used as a guide to assess the best time to perform the test.  The tests were 

not particularly complicated and no more than two people were required to execute 

them successfully.  The foundations were loaded by filling the reservoirs with water 

through slip rings.  The water supply valves were adjusted to ensure a constant loading 

rate.  The foundations were loaded to failure (a displacement of 10% of the base 

diameter) or working load (FOS = 2) and left loaded for 10min.  The piles were then 

unloaded and the centrifuge was stopped.   

 

The loading apparatus plate and the LVDT support plate were removed.  Around the 

existing piles 20mm high plastic rings were placed and the oil from the inner side of the 

ring removed to prevent oil entering the mini-pile bores.  The existing piles were 

enhanced using mini-piles.  The mini piles were installed using the same installation 

procedure as for the existing piles.  The model was put back together and was left 

spinning for 4 hours for the pore pressures to come into equilibrium.  The foundations 

were then loaded as explained in the previous paragraph.   

 

 

3.15   Summary  

 

The geotechnical centrifuge has been briefly described.  The history, principles and 

limitations of centrifuge testing have been introduced and also the scaling laws and 

relevant errors have been explained.   
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A period of design development for apparatus suitable to simulate life, demolition and 

construction of the new structure using the same pile foundations has been explained.  

The apparatus developed by Morrison (1994) used for preliminary centrifuge model 

testing was described.  The design and the basic principles of the new loading apparatus 

developed were described and explained.     

 

The stress history of the sample to be tested was chosen to enable measurable 

movements whilst also preserving the essential characteristics of stiff overconsolidated 

clay.  The parameters that were varied have been noted.  The testing method, including 

model making and the procedure adopted for test in the centrifuge were described. 
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CHAPTER 4 

EXPERIMENTAL WORK 
 

 

4.1   Tests details 

 

A total of twenty one centrifuge tests were carried out with two foundations located on 

each model.  The testing procedure was described in section 3.14.  The test 

configurations are presented in Tables 4.1 and 4.2, where the foundation geometry and 

behaviour during testing are given.  Sample preparation and testing for each test took 

around two weeks, thus time constraints dictated that the variation of the geometry 

focused on the number of mini-piles in the group (Figure 4.1), the centre to centre 

spacing of the mini-piles with respect to the existing pile (Figure 4.2) and the length of 

mini-piles in the group (see Figure 4.3).  

 

In all tests the foundation displacement was measured using two LVDTs (see Figure 

4.4).  The load applied was measured using a load cell and miniature pore pressure 

transducers were used to measure the pore pressure in the sample.  From test LQ10 the 

model pile was designed and manufactured with a pore pressure transducer installed at 

the base.  Thus from the test LQ10 the pore pressures changes at the base of the model 

centre pile were also measured (see Figure 4.5).   

 

For all tests the soil sample was prepared from kaolin clay slurry with 120% water 

content.  The samples were prepared in a consolidation press, loaded to 500kPa then 

swell back to 250kPa prior to removing form the press.  When the sample was removed 

from the press, two 10mm diameter model piles were installed at 1g (Figure 4.6).  The 

loading apparatus was put together and fixed to the tub.  The model was then placed 

onto the centrifuge swing and spun up to 60g until the model reached a state of stress 

equilibrium at which point the piles were subjected to first loading.  The model piles 

were tested to failure load or to working load.  When these loads were reached the 

model piles were left loaded for around 10 minutes for excess pore pressures to 

dissipate.  Using the solenoid valves the loading reservoirs were drained and the model 
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piles were unloaded.  The centrifuge was then stopped and one or both piles tested were 

enhanced with a mini-pile group. 

 

- Test LQ1   

 

Test LQ1 provided information on the behaviour of pile foundations when subjected to 

unload / reload cycles and the influence of the mini-pile group on the performance of 

the existing pile.  For this test same loading apparatus developed by Morrison (1994) 

was used (see Figure 4.7).  Both pile A and B were loaded for the first time to a failure 

load (10% of the pile base diameter which was exactly 1mm displacement).  The 

mechanism of loading apparatus developed by Morrison (1994) is shown in Figure 4.8.  

The load was applied on the model piles by draining the water from the reservoirs using 

solenoid valves.  Owing to a component failure during water drainage, pile A was 

subjected to higher load compared to pile B thus pile A settled by 12mm during the first 

loading.   

 

After the first loading: 

 

• The centrifuge was stopped and pile B was enhanced using eight 100mm long 

mini-piles.  Centre to centre spacing between the existing pile and the mini-piles 

in the group was 30mm (3D, where D=10mm diameter of the existing centre 

pile), see Figure 4.9. 

   

• Piles A and B were re-loaded after conditions of equilibrium were re-

established.  The mini-pile group itself was not loaded; only the existing pile 

foundation B was loaded.   

 

• Pile foundations A and B were loaded for a third time under the same conditions 

immediately after the piles were unloaded from the second loading. 

 

The loading apparatus developed by Morrison (1994) allowed for pile loading in a 

controlled manner and the mechanism used to develop this loading apparatus was 

simple however the apparatus could not be put together prior to removing the soil 
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sample from the press.  As a result of this together with lack of experience in centrifuge 

testing and a number of unforeseen problems, the time required for preparing the model 

for the first test was around seven hours.        

 

Learning from the previous test a new loading apparatus was designed and developed 

(see Figure 4.10) to enable model preparation in as little time as possible.   The new 

apparatus was designed such that the loading reservoirs and the LVDT support plate 

were completely independent and could be assembled prior to removing the sample 

from the consolidation press.  

 

With the new apparatus, the piles were loaded directly using water filled reservoirs 

which were supported by springs whilst empty, as shown in Figure 4.10.  Pile 

foundations were loaded using a loading pin that was connected to the base of the 

loading reservoir.  The plastic reservoirs were guided by an aluminium tube.  The water 

reservoirs move vertically, thus axially loading and unloading the pile foundations.  The 

spring had a sufficient stiffness to support the weight of the reservoir at 60g and allow 

further vertical movement when the reservoir was filled with water, i.e. when loading 

the pile.  The foundations were loaded by filling the reservoirs with water through the 

slip rings of the centrifuge and unloaded by emptying the reservoirs through solenoid 

valves.  Applied loads were measured using load cells that were connected to the 

loading pin.  The reservoirs and solenoid valves were supported by a 12mm thick 

aluminium plate that was mounted on and connected to the top flange of the tub when 

the apparatus was put together.        

 

Figure 4.10 also shows the support beam that was designed for the LVDTs.  The beam 

was connected to the top flange of the tub using four M8 threaded rods which allowed 

vertical movement of the supporting beam depending on the height of the clay model.     

   

- Test LQ2 

   

The time for putting the new loading apparatus together and its performance on the 

swing were tested in test LQ2.  The settlement of the spring used to support the loading 

reservoir due to its self weight of the reservoirs at 60g was measured and compared with 
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the calculated value.  By determining the settlement of the spring at 60g the length of 

the loading pin was designed such that the piles were not loaded during spin up, thus the 

loading was completely controlled by filling and draining of the water reservoirs.  As all 

the items of the apparatus and equipment could be prepared prior to the day of the test, 

the time required for model making was reduced substantially.   

 

- Test LQ3 

 

During model preparation for test LQ3, the volume of clay slurry used was higher 

compared to the first test (i.e. LQ1).  When removed from the consolidation press the 

model was too deep, thus it had to be trimmed.  The trimming of the model was done 

with great care, but this process took around two hours leading to changes in the 

effective stress in the model due to drying of the sample and applied pressure during 

trimming.  After the model was put together it was placed in the centrifuge swing.  

Immediately after spin up some of the cables on the centrifuge arm came loose and the 

centrifuge had to be stopped to re-secure the cables.   

 

Due to the change in height of the model, owing to swelling during reconsolidation in 

flight the length required for the loading pin was miscalculated; hence the piles were 

loaded during the spin up and buried in clay by approximately 10mm.  As the model 

piles were buried prior to first loading they were 6m longer in prototype scale compared 

to model piles in test LQ1.  Nonetheless it was decided that the test should proceed so 

that, if nothing else, the apparatus could be fully tested. 

 

As the model reached a condition of pore pressure equilibrium the loading reservoirs 

were filled with water and the piles were subjected to first loading.  During the first 

loading one of the load cells was trapped (pile B) and damaged.  As a result the load 

applied to pile B was not correctly measured.   The load cell could not be used for the 

second loading thus there were no readings available for pile B during the second 

loading.  As a result of the series of problems mentioned above the data from test LQ3 

were abandoned.  Although there was not any important geotechnical research outcome 

from this test, it enabled the apparatus to be modified for the future tests.   
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- Test LQ4 

 

The following test, LQ4, had the same model geometry as test LQ1 to enable direct 

comparison of results.  The stresses applied during preparation on the consolidation 

press were 20% lower compared to the previous test.  Thus the soil model had a 

different stress history.  After the model piles were installed and the loading apparatus 

put together the sample was placed on the swing and spun up to 60g.  Pile B was 

accidentally constructed longer by 5mm in model scale compared to pile A.  After the 

pore pressures were in equilibrium the model piles were subjected to first loading.  At 

this stage there was no information on the flow of water through the slip rings during 

the centrifuge spin up at 60g, thus no adjustments were made to the water rate prior to 

testing.  During first loading it was observed that pile B was loaded at a rate that was 

considerably slower compared to the loading rate that was applied to pile A.  The rate 

was increased until a similar behaviour during loading was observed on both piles 

tested.   

 

During the first loading there was a leak at the connection of the drainage valve with the 

loading reservoir A.  Although the pile was loaded to failure the load could not be 

maintained. 

 

After the piles were subjected to first loading, the centrifuge was stopped and eight 

mini-piles 100mm long were installed at 3D (30mm) spacing from the pile B.  The 

centrifuge was spun up again to 60g.  After the pore pressures reached equilibrium the 

existing piles A and B were re-loaded to failure. 

 

- Tests LQ5, LQ6 and LQ7 

 

In tests LQ5, LQ6 and LQ7 the influence of the length of the mini-piles in the group on 

the existing central pile was investigated.  All three tests had the same model geometry.  

The only difference between the tests was that in the test LQ7 piles A and B during the 

first loading were only tested to working load.  In tests LQ5 and LQ6 piles were loaded 

to failure (10% of the pile base diameter which was 1mm displacement).  After the first 

loading the centrifuge was stopped and only pile B was enhanced with eight 200mm 
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long mini-piles.  The centre to centre spacing between the existing pile and the mini-

piles in the group was 30mm (3d, where d=10mm diameter of the existing centre pile).  

Although all of the tests were prepared using the same method, both piles A and B 

showed higher capacity in test LQ6 compared to test LQ5 (Figure 4.11). 

 

- Test LQ8 

 

The soil model for test LQ8 was prepared in the same manner as the previous tests.  

Two 10mm diameter piles 200mm embedded into clay were installed at 1g and then the 

model was placed in the centrifuge swing.  During the input of the calibration constants 

for the load cells, pore pressure transducers and the LVDTs used for testing, the load 

cell calibration constants were incorrectly input by an order of magnitude of ten.  Thus 

during testing the piles were subjected to higher load and displaced by more than 10mm 

during the first loading cycle.  After the first loading the centrifuge was stopped and 

both piles A and B were enhanced with mini-pile groups; around pile A eight 100mm 

long mini-piles with 30mm centre to centre spacing were installed and around pile B 

sixteen 200mm long mini-piles with 30mm centre to centre spacing were installed.  

After the mini-piles were installed around the existing pile B, it was noticed that the 

spacing was not the same between the existing pile and all the mini-piles in the group.  

This was a result of inaccuracies from installation approaches which was redesigned for 

future tests.                                          

 

- Tests LQ9, LQ10, LQ11, LQ12, LQ13, LQ14, LQ15, LQ16 and LQ17 

 

In the tests LQ9, LQ10, LQ11 and LQ12 the effect of number, spacing and length of 

mini piles were investigated.  The model piles were installed at 1g.  The model was then 

placed in centrifuge swing.  After conditions of pore pressure equilibrium were reached 

the model piles were subjected to first loading.  After the load was maintained for 

around 10minutes, the centrifuge was stopped.  In all tests both piles A and B were 

enhanced after the first loading.  During foundation loading, in all of the above tests, 

little or no difference was noticed in the output of the pore pressure transducers.  To get 

a better understanding of model pile behaviour during loading, and the distribution of 

the load between the shaft and the base of the model pile, it was decided to design and 
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manufacture a model pile with a pore pressure transducer installed at the base.  From the 

test LQ10 the new piles with pore pressure transducers at the base were used (see Figure 

4.5). 

 

The behaviour of the overconsolidated clays is dependent on the stress history to which 

the soil was subjected to.  In tests LQ11, LQ12 and LQ13, piles A and B were installed 

after the sample was spun up in the centrifuge until pore pressure equilibrium was 

reached.  Once the model reached equilibrium state, the centrifuge was stopped and 

model piles were installed.  The 10mm diameter piles were installed and load tested prior 

to installation of the model mini-pile foundations.  The same method as for installing the 

mini-pile foundations was used to install the 10mm diameter piles.  A plastic ring with 

150mm diameter and 20mm thick was used to prevent the surface oil from reaching the 

bored pile hole when installing the model piles.    Figure 4.12 shows the 150mm diameter 

plastic rings.  As the sample was already mounted on the centrifuge swing, there were 

restrictions on space. Due to this the initial preparation of the model took slightly longer 

compared to the previous tests. 

 

In tests LQ9 to LQ12, the centrifuge was stopped after the first loading and one or both of 

the existing piles were enhanced with the mini-pile group.  The model was then spun up 

to 60g and conditions of pore pressure equilibrium established before the existing piles 

were reloaded. 

 

In tests, LQ13 to LQ17, after the initial loading of the single piles A and B, the 

foundations were enhanced with mini-pile groups.  After the model reached pore pressure 

equilibrium only the new mini-pile groups were subjected to loading.  As the capacity of 

the loading reservoir was not sufficient to load the mini-pile groups to failure, the 

maximum settlement reached due to applied loads were recorded.  The performance of the 

piles A and B in test LQ15 was not as expected.  During the first loading the 

displacements observed were much higher than in previous load testing of the piles to 

working load.  During the second loading, only the new mini-pile group was loaded.  In 

test LQ15(A) a load of 363N for 10mm displacement was reached.  It was decided that 

the results obtained from test LQ15(B) be abandoned, as the mini-pile group was 

continuously displacing at very low applied loads.            
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- Test LQ18 

 

In all of the tests described above, after the first loading the centrifuge was stopped and 

one or both of the existing piles were enhanced with mini-pile groups.  As there was no 

information on the influence of stopping and restarting the centrifuge on pile capacity, it 

was considered an important issue to be addressed.  In test LQ18 the single model piles 

were loaded to working load after the model had reached equilibrium. The piles were 

unloaded after around 10 minutes, and the model continued to spin until the excess pore 

pressures generated during first loading dissipated.  The piles were then loaded for a 

second time to working load.   

 
After the second loading the centrifuge was stopped and mini-piles were installed 

around piles A and B.  In order to determine the effects of method of installation of the 

mini-piles on the existing pile performance, eight mini-piles 200mm long were driven at 

15mm spacing from the centre pile A (see Figure 4.13).  Around pile B eight 100mm 

long mini-piles were installed at 30mm spacing from the centre of pile B.  The 

apparatus was then put together and after the pore pressures reached equilibrium, the 

existing piles A and B were re-loaded for the third time. 

 

- Test LQ19, LQ20 and LQ21 

 

In the test LQ19, LQ20 and LQ21 10mm diameter model piles were installed at 1g prior 

to placing the model on the centrifuge swing.  The apparatus was put together and the 

model was spun up to 60g and left over night for pore pressures to reach equilibrium.  

After pore pressure equilibrium was established, the model piles were subjected to first 

loading.  The load was maintained for around 10 minutes.  In tests LQ20 and LQ21 the 

centrifuge was then stopped.  The model mini-piles were installed around the existing 

piles the centrifuge restarted and the model was left spinning until the generated pore 

pressures dissipated. Centrifuge was not stopped between the first and second loading 

cycles in test LQ19.  During the second loading cycle the existing piles were loaded 

together with the mini-pile group.  It was observed on the previous test, when the 

behaviour of the novel pile groups was investigated, that the available capacity of the 

water reservoirs was not sufficient to load the pile groups to failure.  Due to this after test 
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LQ19 the apparatus was redesigned and the capacity of the loading reservoirs was almost 

doubled (see Figure 4.14).  When re-designing the loading apparatus to increase the 

available capacity of water reservoirs, geometric constrains of the centrifuge swing had to 

be considered.  Although the reservoir capacity was enhanced, it was not sufficient to load 

the group to failure (see for example Figure 4.29).  The groups were loaded to a 

maximum available capacity and the achieved displacements were noted.  Any further 

increase in water reservoir capacity it would require a total redesign of the loading 

apparatus.   

 

As the available loading capacity of the apparatus was increased, the weight of the 

reservoirs also increased.  Due to this initial displacement of the spring at 60g was higher.  

The loading pin could not be shortened due to the geometry of the centrifuge model thus 

the position of the loading cell had to be change (Figure 4.15(a)).  To avoid any damage 

the load cell was placed above the spring for test LQ20, as shown in Figure 4.15 (b).  

During test LQ20 the load cell measured the load that was applied on the pile together 

with the load taken by the spring.  It was unsuccessfully attempted to extract the load 

applied on the piles by looking at the readings of the load cell.  It was then decided to 

place the load cell inside the spring, see Figure 4.15 (c), and repeat test LQ20.  Test LQ21 

had the same geometry as test LQ20 and it was a successful test. 

 

For the details of the model geometry for all of the above tests see Table 4.1.   

 

  

4.2   Observations and results 

 

4.2.1 Behaviour of single pile foundation when subjected to load/unloading/reload 

cycle – Tests LQ5(A), LQ6(A), LQ7(A) and LQ13(B) 

 

Tests LQ5(A), LQ6(A), LQ7(A) and LQ13(B) investigated the effects of 

load/unload/reload cycles on single pile foundations.  Two different scenarios were 

investigated: 

 

• The behaviour of piles that had initially been loaded to failure (LQ5 and LQ6)  
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• The behaviour of piles that had initially been loaded to working load (LQ7 and 

LQ13)   

 

In all of the above tests, after the pile foundations were subjected to first loading, the 

centrifuge was stopped.  Piles were then subjected to second loading after the sample 

had reached the equilibrium state.   These tests indicated an increase in capacity when 

subjected to second loading.  It was also noticed that the behaviour of piles during the 

second loading was dependent on the load to which the pile was subjected during the 

first loading. 

   

As stated in section 2.2.3, the failure load was considered to have been reached when 

the foundation had displaced by 10% of the pile base diameter.  A number of centrifuge 

tests on single piles were undertaken and in all the cases the failure load reached was 

around 100N.  To calculate the working load a factor of safety (FOS) of two was used, 

thus giving a working load of 50N.  During the second loading, in all the above tests, 

piles were loaded to failure. 

 

Figure 4.11 shows a plot of first and second loading on a single pile foundation for tests 

LQ5 and LQ6.  Both tests were performed using the same testing method and as 

expected the piles performed in a similar manner.  During the second loading an 

increase of around 20% in pile capacity was observed in both tests.   

 

In tests LQ7 and LQ13 the piles were loaded for the first time up to the working load, 

and displacements reached during loading were measured.  When subjected to first 

loading, piles in tests LQ7 and LQ13 did not perform in a same manner.  The pile in the 

test LQ13 settled more than expected.  Even though the performance of the piles during 

the first loading was different, during the second loading both piles reached an ultimate 

load capacity of around 85N (see Figure 4.16).  

                 

4.2.2 Effect of the mini-pile group on the existing pile 

 

When new foundations are required to enhance the capacity of existing piles, it is 

important to understand the effects of these new foundations on the existing piles.  This 
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research investigated the effect of new foundations on the existing piles by varying the 

geometry of the mini-pile groups (i.e. number, length and spacing of these new mini-

pile groups). 

 

4.2.2.1   Effects of spacing of mini-piles on the existing pile – Tests LQ9(A), LQ11(A), 

LQ10(B) and LQ12(A) 

 

When investigating the influence of the centre to centre spacing of the mini-pile group 

from the centre pile, three different scenarios were investigated:- 

 

1. The centre to centre distance of 1.5D between the existing pile and the new 

mini-pile foundations. 

 

2. The centre to centre distance of 2D between the existing pile and new mini-pile 

foundations. 

 

3. And the centre to centre distance of 3D between the existing pile and new mini-

pile foundations. 

 

Where D is the diameter of the existing pile and D = 10mm (see Figure 4.17).   

 

As the diameter of the existing pile and the new mini-pile foundations was different, it 

was decided to model the geometry in terms of centre to centre distance between old 

and new foundations (not between the mini-piles in the group). 

 

In all tests described, piles were loaded to working load during first loading and to 

failure load during the second loading when enhanced by the mini-pile group.  All tests 

were prepared and tested in the same manner.  The single piles were subjected to first 

loading, the centrifuge was then stopped and the mini-piles were installed.  After the 

model had reached equilibrium stresses, only the existing piles were re-loaded to failure.  

As a datum test LQ7 was used.  Test LQ7 investigated the behaviour of single pile 

foundation subjected to load/unload/reload cycles when the piles were initially loaded to 

working load.    
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There were no successful data from the tests investigating the influence of the mini-pile 

group on the existing pile when the group was installed with 3D spacing between the 

existing and new pile foundations.      

 

Tests LQ9 and LQ11 investigated the effect of eight 100mm long mini piles.  The centre 

to centre distance for test LQ9 was 1.5D and 2D for test LQ11.  Figure 4.18 shows the 

load settlement behaviour for the test LQ9 and LQ11 during first and second loading.  

For the mini-pile group with 2D spacing the load/displacement behaviour suggested a 

higher capacity by around 10% compared to the mini-pile group with 1.5D spacing. The 

same behaviour was observed for 200mm long mini-piles as well.  The 

load/displacement behaviour for the mini-pile group with 2D spacing (LQ12) suggested 

a higher capacity compared to the group with 1.5D spacing (LQ10), see Figure 4.19.  In 

this case an increase in capacity of around 15%.  

 

When compared with test LQ7 (see Figure 4.20), it can be noticed clearly that the mini-

pile group has a positive effect, in terms of improving the performance of the existing 

pile foundation.  The length of the mini-pile also influences the performance of the 

existing pile, but this will be discussed in more detail later.    

       

4.2.2.2   Effects of number of mini-piles on the existing pile – Tests LQ11(A), 

LQ10(A), LQ12(A) and LQ12(B) 

 

In tests LQ10 and LQ11 the existing piles were installed at 1g and the model was 

assembled.  The sample was then placed in the centrifuge.  After the equilibrium stress 

profile was reached the piles were loaded up to working load (50N) and the load was 

maintained for 10 minutes.  The centrifuge was then stopped and mini-pile groups were 

installed around the existing centre pile.  The effect of the number of mini-piles in the 

group on the performance of the existing pile previously loaded to working load was 

investigated.  For tests LQ11 and LQ10 100mm long mini-piles were used with 2D 

(20mm) spacing.  The initial novel pile groups investigated were based on trials carried 

out at Chattenden (Fernie et al, 2005).  Due to the geometry of the model, the maximum 

number of the mini-piles in the group that it was possible to investigate was sixteen. 
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For test LQ11 eight mini-piles were constructed around the existing pile after the first 

loading.  For test LQ10 sixteen mini-piles were constructed around the existing pile 

after the existing pile was subjected to first loading. 

 

Comparing tests LQ10 and LQ11 with the behaviour of the single pile subjected to 

load/un-load/re-load cycles when loaded for the first time to working load (test LQ7), it 

can be seen clearly that both mini-pile groups have a positive effect on the performance 

of the existing pile (see Figure 4.21).  When comparing groups of eight mini-piles (test 

LQ11) with the groups of sixteen mini-piles (test LQ10) at the same pile displacement, 

the group of eight mini-piles reached a higher load capacity compared to the group of 

sixteen mini-piles by around 10%. 

 

For test LQ12 the mini-piles were 200mm long.  Test LQ12(A) had eight mini-piles 

constructed around the existing pile and test LQ12(B) had sixteen mini-piles 

constructed around the existing pile.  When loading for the second time, the existing 

piles were not loaded to failure (the existing piles were displaced by only 4%), as the 

piles showed no more increase in load with continued displacement.  The behaviour 

observed was similar to the 100mm long mini-piles.  Eight mini-piles in a group showed 

an increase in capacity of the existing pile of just above 10% compared with a group of 

sixteen mini-piles (see Figure 4.22).            

     

4.2.2.3  Effects of length of mini-piles on the existing pile – Tests LQ11(A), LQ12(A), 

LQ10(A) and LQ12(B) 

 

The effects of the length of the mini-piles in the group on the performance of the 

existing piles were investigated.  Groups with 100mm and 200mm long mini-piles were 

considered.  In test LQ10(A), LQ11(A), LQ12(A) and LQ12(B) the existing piles 

during the first loading were loaded up to working load. 

 

In tests LQ11(A) and LQ12(A), see Figure 4.23, the groups investigated were of eight 

mini-piles with 2D spacing.  In tests LQ10(A) and LQ12(B), see Figure 4.24, the groups 

investigated were of sixteen mini-piles with 2D spacing. 
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During the first loading of piles in tests LQ11 and LQ10 model piles displaced more 

compared to the performance observed in tests LQ12 (A) and (B).  When subjected to a 

second loading cycle the existing piles in test LQ11 and LQ10 were loaded until the 

piles reached displacements of 10% of the pile diameter.  In tests LQ12 (A and B) the 

existing piles were displaced by only up to 4% of existing pile diameter, as there was no 

more capacity available in the water reservoirs for further loading.    

  

Comparing test LQ10, LQ11 and LQ12, at pile foundation vertical displacements of 

4%, the 200mm long mini-pile increase the capacity of the existing pile by around 20% 

compared to the 100mm long mini-piles (see Figures 4.25 and 4.26).  The same 

performance as described above was observed for mini-pile groups of eight and sixteen 

mini-piles. 

 

4.2.3 Behaviour of novel pile group foundation when loading the mini-pile group only 

– LQ17(A), LQ17(B), LQ16(A), LQ15(A) and LQ13(A) 

 

The behaviour of a novel pile group, when loading the pile group only, was investigated 

by varying the spacing, number and length of the mini-piles in the group.  The geometry 

of the groups investigated in this research was different from the pile groups used 

normally in the construction industry as it contained a preloaded existing pile at the 

centre of the group.  Thus it was considered important to investigate the performance of 

these novel pile groups when loading the new mini-pile group only. 

   

For all subsequent tests the same testing procedure was followed.  Single piles were 

installed and tested to working load after the equilibrium stresses were reached.  The 

centrifuge was then stopped and the mini-piles were installed around the existing pile.  

After the pore pressures reached the equilibrium values, the mini-pile groups were 

loaded to failure or to the maximum available capacity of the loading reservoir.   

 

The spacing of 2D and 3D between the existing pile and the mini-pile group was 

investigated for pile groups of four (LQ17) and eight mini-piles (LQ16, LQ15).  In all 

cases the mini-piles were 200mm long.  Figure 4.27 and Figure 4.28 show that the pile 

groups with 2D spacing performed better compared to the groups with 3D spacing. 
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The performance of four mini-piles with a group of eight mini-piles was compared.  For 

all the tests the mini-piles were 200mm long.  The performance was compared for 2D 

spacing (tests LQ17(A) and LQ16(A)).  From Figures 4.29 it can be observed that the 

mini-pile group of eight performed better compared to the group of four mini-piles.   

 

As the test results for LQ15(B) were abandoned, there were no results available to make 

a direct comparison between the performance of 100mm and 200mm long mini-piles.                     

 

4.2.4 Behaviour of novel pile group foundations when loading the existing and new 

foundation – LQ7(A), LQ18(B) and LQ14(B) 

 

If the existing foundation capacity is not sufficient for the new development it was 

suggested that the capacity can be enhanced by placing a mini-pile group around the 

existing pile.  The influence of the geometry of the group was discussed in section 4.2.2.   

 

In tests LQ7, LQ18 and LQ14, the 10mm model piles were installed at 1g and then the 

model was placed in the centrifuge.  The single piles were tested up to working load 

after the pore pressure transducers reached equilibrium pressures.  After the load was 

maintained for 10 minutes, the piles were unloaded and the centrifuge was stopped.  In 

test LQ18 the piles were loaded for a second time without stopping the centrifuge after 

the first loading.   

 

After the centrifuge was stopped, in tests LQ18 and LQ14, the mini-piles were installed 

around the existing pile.  The mini-pile group geometry was the same for both tests; 

eight 100mm long mini-piles with 3D spacing.   

 

After the pore pressures reached equilibrium the foundations were load tested.  In tests 

LQ7 and LQ18 the existing pile only was loaded.  In test LQ14 the existing pile 

foundation was reloaded together with the mini-pile group.   

 

During the first loading foundation behaviour in tests LQ7 and LQ18 was similar whilst 

the model pile in test LQ14 displaced more for the same applied load.  As expected, 

during the second loading the enhanced pile (LQ18) performed better compared to a 
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single pile foundation.  When loading the existing pile together with the pile group the 

capacity obtained from the novel group was, as expected, much higher (see Figure 

4.30).                 

 

4.2.5 Effects of method of pile installation – LQ18(B) and LQ10(B) 

 

Following the tests on the performance of the existing single pile foundations with mini-

pile group around, a test was undertaken to investigate the influence of the installation 

of the mini-piles on the capacity of the existing pile.  In the initial tests the mini-piles 

were installed by boring a 5mm diameter hole in the clay using a thin wall 5mm outer 

diameter tube.  A small amount of clay slurry was placed into the hole to ensure that the 

mini-piles were in contact with the clay model and then, using a guiding boss, the mini-

piles were installed.     

 

In test LQ18 after the existing pile was subjected to first and second loading the 

centrifuge was stopped and eight mini-piles were driven around the existing pile at 1g.  

This was done in order to investigate the effect of the method of model pile installation 

on the foundation performance during testing.  The centre to centre distance between the 

existing pile and the piles in the mini-pile group was 1.5D and the mini-piles were 

200mm long.  The loading apparatus was then put together and the model placed on the 

swing and spun up to 60g.  After pore pressure equilibrium was reached the existing pile 

was re-loaded to failure.    

 

The results obtained from test LQ18 were compared with test LQ10.  Test LQ10 had the 

same model geometry as test LQ18.  In test LQ10 the mini-piles were bored in place 

after the existing pile was subjected to first loading.  The difference in the foundation 

behaviour between the tests LQ10 and LQ18 was very small.  The load taken by the pile 

in test LQ18 was slightly higher compared to test LQ10 (see Figure 4.31).  However, as 

the existing centre pile was loaded twice before the mini-piles are installed in test LQ18, 

it would be expected that the single pile in test LQ18 would perform better compared to 

the pile loaded only once prior to the mini-pile group installation (test LQ10).   
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4.2.6 Effects of stress history prior to and after pile installation of the centrifuge 

model on the behaviour of single pile foundations during loading - LQ7(A), 

LQ7(B), LQ13(A), LQ13(B), LQ5(A), LQ6(A), LQ19(A) and LQ19(B) 

 

4.2.6.1 Effects of stress history after pile installation – LQ5(A), LQ6(A), LQ19(A) and 

LQ19(B) 

  

During each centrifuge spin up two foundations were tested.  After the first loading the 

centrifuge was stopped and one or both pile foundations were enhanced with different 

geometry mini-pile groups, depending on what was investigated at the time.  In order to 

confirm if stopping/restarting the centrifuge had any effect on pile capacity it was 

decided to load foundations for the second time without stopping the centrifuge after the 

foundations were loaded for the first time.  In test LQ19 the single pile foundations were 

installed at 1g prior to placing the assembled model onto the centrifuge swing.  After 

equilibrium was reached the foundations were loaded to failure for the first time.  The 

performance of the foundations during the first loading was in good agreement with the 

previous test as shown in Figure 3.32.  The model was left spinning and after pore 

pressure equilibrium was reached the foundations were loaded to failure for a second 

time.   

 

The pile foundation behaviour from test LQ19 was compared with tests LQ5 and LQ6.  

In tests LQ5 and LQ6 the centrifuge was stopped between first and second loading.  In 

Figure 4.32 the results from the first and second loading for test LQ5, LQ6 and LQ19 

are presented.  It can be see from the graph that the time that the centrifuge was stopped 

between first and second loading appeared to have no effect on the foundation 

performance.    

 

4.2.6.2 Effects of stress history prior to pile installation – LQ7(A), LQ7(B), LQ13(A) 

and LQ13(B) 

 

Ideally the model pile foundations would have been installed during flight.  Installation 

would have taken place after equilibrium stresses were reached.  This, however, was not 

attempted due to complexity of the apparatus and the installation procedure.  To 
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determine if the behaviour of the piles during loading would have been different if piles 

were installed after the soil model had reached the equilibrium condition, in test LQ13 

the model was placed in the swing as soon as it was removed from the consolidation 

press.  When the model reached equilibrium stresses the centrifuge was stopped.  Model 

piles were installed using a 10mm outer diameter thin wall tube for boring.  To stop the 

surface oil from entering in the bored holes, 20mm high plastic rings were placed 

around the intended position of the centre piles.  The model was then put together and 

the centrifuge was restarted.  After pore pressure equilibrium was reached the piles were 

subjected to first loading.  The model piles in test LQ7 were installed at 1g after the 

model was removed from the consolidation press.  When comparing the performance of 

test piles LQ7 and LQ13 (see Figure 4.16), initially the pile performance from both tests 

was quite similar.  As the load increased to working load the single pile in test LQ13 

settled significantly more compared to the pile in test LQ7.  During second loading the 

performance observed in tests LQ7 and LQ13 was similar as shown in Figure 4.16.  The 

performance of the piles when reloaded appears not to be influenced by the stress 

history of the model prior to pile installation.  As for the difference in behaviour during 

first loading the pile installation method for test LQ7 was a more practical and 

controlled operation compared to the method used for test LQ13 where the piles were 

installed with the model placed on the centrifuge swing.     

 

 

4.3   Pore pressures 

 

Druck PDCR81 pore pressure transducers were installed at various depths within the 

model as shown in Figure 4.33.  The principal purpose for using the pore pressure 

transducers was to determine the time at which the model reached pore pressure 

equilibrium. From test LQ10 onwards the pore pressure transducers were installed at the 

base of the model pile foundations (see Figure 4.5).  During the consolidation period on 

the swing, pore pressures at the base of the piles were used as those installed in the soil 

model to determine equilibrium conditions.  During the pile loading the pore pressures 

at the base of the piles were used to give an indication of the load distribution between 

the shaft and the base of the model piles.    In cases where some of the pore pressure 

transducers failed during testing, the model was left spinning long enough to be certain 
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that the pore pressure equilibrium was reached based on the timings from previous tests.  

During the test series the thickness of the clay model was consistently 250mm + 10mm, 

thus the time required for the model to reach pore pressure equilibrium was well known 

and in the range of 12 hours.  

 

A typical response of the pore pressure transducers during pile loading is shown in 

Figure 4.34.  There was no response from the pore pressure transducers installed in the 

clay during pile loading.  The pore pressure transducers in the base of the model pile 

however, did respond to pile loading and the excess pore pressures were found to 

dissipate very quickly.  The equilibrium pressures after the first loading were reached 

far quicker compared to the time required to reach equilibrium prior to first loading of 

the piles.  These equilibrium pressures were usually higher compared to initial values 

due to changes on the stress conditions during model preparation (i.e. stopping the 

centrifuge, installing the model mini-piles and spinning up the model for the second 

time). 

 

 

4.4   Summary 

 

The programme of tests conducted and the reasons for the developments in testing taken 

has been described.  A number of different events that may have had an impact on the 

results have been investigated.   

 

The single piles showed an increase in capacity when re-loaded.  The behaviour of the 

piles during the second loading is dependant on magnitude of load to which the piles 

were initially subjected.  The results from test LQ19 show that stopping and restarting 

the centrifuge had no effect on the load capacity of the existing piles during second 

loading.   

       

Apart from looking at the behaviour of single piles subjected to load/unload/reload 

cycles the influence of the mini-pile group on the existing pile was investigated.  From 

the results presented it is clear that the mini-pile group does influence the behaviour of 

the existing pile.  The influence of the group was considered in terms of length, spacing 
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and number of the mini-piles in the group.  The 200mm long mini-piles, spacing of 2D 

and the groups of eight mini-piles suggested better performance compared to 100mm 

long mini-piles, spacing of 3D and groups of sixteen mini-piles respectively. 

  

The method used for installation of the mini-piles in the group appears not to affect the 

performance of the existing piles when re-loaded.  Both driven and bored mini-piles 

were investigated. 

 

Behaviour of novel pile groups of four, eight and sixteen mini-piles were investigated 

when loading the pile group only and also when loading the existing pile together with 

the mini-pile group.  In all tests presented the geometry of the models was such that the 

existing pile was at the centre of the group.  For all the cases the existing piles were 

loaded up to working load during the first loading.  During the second loading the 

foundations were loaded to failure or if failure was not reached, to the maximum 

capacity available from the loading reservoir.   As expected the maximum capacity was 

achieved when loading the existing pile together with the mini-pile group.   
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 CHAPTER 5 

DISCUSSION 

 

5.1   Introduction 

 

This chapter presents a summary of the observations made from a series of centrifuge 

tests undertaken and provides explanations of the performance observed.  In order to 

enable the results to be of maximum use, the results are presented within a context 

relating to the specific problem of establishing the trends of behaviour of re-used piles.  

This investigation will aim to determine points relevant to foundation reuse.   

 

Reuse of existing piles has been very hitherto limited.  Ground congestion is one of the 

prime drivers for the re-use of foundations in the urban environment.  Urban centres are 

developing continuously thus the re-use of piles will become even more critical with 

time.   

 

In order to re-use the existing piles the following needs to be considered:- 

 

• Verification of capacity of elements considered for re-use. 

 

• The condition of construction materials, i.e. durability of materials used for 

foundation construction. 

       

• Understanding of the soil structure interaction during load cycles. 

   

• Understanding of strain compatibility when mixing old and new foundations   

 

As stated earlier, this study looks at the behaviour of straight shafted piles in 

overconsolidated soils when subjected to load/un-load/re-load cycles and the influence 

of new foundations on the existing piles.  No consideration is given to changes in the 

properties of the construction materials with time.     
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The soil and its variability are the most important factors in reuse of foundations.  The 

re-used foundations will behave differently during loading depending on the stress 

history to which the soil, where these foundations were installed, was subjected.  All 

soils are basically frictional materials with strength being provided by the friction 

resistance between soil particles.  During construction processes soil will be loaded and 

unloaded.  As the soils are loaded and unloaded they will compress and swell.  This will 

lead to volume changes in soil, which involve rearrangement of the soil grains and 

seepage of water, thus changing the effective stress around the foundations and 

influencing their performance during loading.       

 

When modelling the behaviour of the single pile foundations during loading/un-

loading/re-loading cycles and the behaviour of the novel pile group foundations, 

attempts were made to model the performance of an overall prototype scale scenario 

when foundations are considered to be re-used.  For typical centrifuge model test 

geometry see Figure 5.1.  The model piles were installed at 1g due to simplicity of 

model preparation.  Any changes in the soil surface during testing were measured using 

an LVDT (see Figure 5.2) located between the two model pile foundations tested (see 

Figures 5.3).         

 

After equilibrium pore pressures were reached the pile foundations were load tested.  In 

Figure 5.4 pore pressure responses during loading are shown.  There were no changes 

measured during loading of the pile foundations on the pore pressure transducers in the 

soil mass.  However, the pore pressure transducers at the base of the model piles do 

react during foundation loading, showing that the excess pore pressures generated 

dissipate very quickly and that pore pressure changes are very local.  After the first 

loading cycle the centrifuge was stopped.  One or both existing piles were enhanced 

with a group of mini-piles (see Figure 5.5), and the influence of the geometry of the 

mini-pile group on the performance of the existing pile during re-loading was 

investigated. 

 

The outline, as referred to in Chapter 4, is used to explore trends in results.    
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5.2   The behaviour of single pile during load-unload-reload cycles 

 

Modelling a field situation will always require some idealisation.  The model piles were 

straight shafted smooth aluminium rods (Figure 5.6), designed to represent 12m long 

piles with a 0.6m diameter of prototype scale (see Table 5.1).  The capacity of the 

model piles was calculated using the same method as shown in section 2.2.1.   

 

Soil behaviour is a direct function of past stress history, together with the recent and 

anticipated stress path.  Various relationships have been proposed by Skempton (1957), 

Bjerrum (1973) and Lerouil et al. (1985) to link the undrained shear strength and 

effective vertical stress in one dimensional normal compression via peak values 

obtained from field vane shear tests.  By using the Bjerrum‘s factor, µ, the following 

relationship was suggested by Muir Wood (1990):- 

 

µSu /  σ'v = 0.22  5.1 

 

When allowance is made for overconsolidated ratio, then it has been found by Nunez 

(1989), Phillips (1987) and Springman (1989) as part of their research carried out at 

Cambridge University, that for the current effective vertical stress:- 

 

Su /  σ'v = aOCRb  5.2 

 

Garnier (2002) suggested, for Speswhite Kaolin clay, the following relationship 

between undrained shear strength, overconsolidation ratio and vertical effective stress:- 

 

Su = 0.19 σ'v (OCR)0.59 5.3 

 

Springman (1989) proposed the following relationship which represents the mean value 

obtained from a series of vane shear tests conducted in-flight in the centrifuge:- 

 

Su = 0.22 σ'v (OCR)0.706 5.4 
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Using Equations 5.3 and 5.4 the distributions of undrained shear strength, after 

equilibrium of the centrifuge model was reached at 60g, were calculated and are shown 

in Figure 5.7.  Also included in Figure 5.7 is the relationship between undrained shear 

strength with overconsolidation ratio and vertical effective stress as suggested by 

Stewart (1989), equation 3.20.  For the purpose of this research the undrained shear 

strength was estimated based on the findings by Springman (1989).          

 

The initial assumptions on the value of the adhesion factor, α, were too high, thus giving 

a higher calculated ultimate load for the piles, compared to that obtained from the 

centrifuge model tests.  The value of the empirical adhesion factor, α, depends on a 

number of factors (Patel, 1992), such as:- 

 

• strength stiffness and plasticity of clay 

 

• the size and type of pile 

 

• method of pile installation 

 

Side friction is a measure of shear strength of the bond between the material of the pile 

and the soil mass.  The ultimate skin friction of pile shafts is related to the horizontal 

effective stress acting on the shaft and the effective angle of friction between the pile 

and the clay.  When a pile is extracted from fine grained soil, a thin layer of soil is 

invariably adhered to the pile shaft.  This indicates that the actual skin friction is greater 

than the shear strength of the soil and that before full skin friction is mobilized, 

settlement of the pile is the result of shear deformation of the surrounding soil.  

 

In the centrifuge testing, when the model piles were extracted from the soil, there was 

no layer of soil adhered to the pile shaft.  This was also confirmed during shear box 

testing.  When the shear box model was pulled apart, there was no clay adhering to the 

surface of the test plate.  Thus the shear strength of the soil, in the centrifuge model 

testing, was greater than the skin friction between the pile and the clay, which explains 

the low values obtained for the adhesion factor α (α = 1.12).     
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The vertical displacement of the piles during testing was measured using two LVDTs, 

and the average reading was used for the analysis of the test data (Figure 5.8).  The load 

applied to the model piles was measured using a load cell (Figure 5.9), which was 

connected at the loading pin.  

 

Single pile foundations were tested for up to three loading cycles.  In tests LQ5, LQ6, 

LQ7 and LQ13 the centrifuge was stopped between the loading cycles (see Table 5.2).  

In tests LQ18 and LQ19 the centrifuge was not stopped between the first and second 

loading cycles (see Table 5.3).  From the above tests it was observed that the single pile 

foundation initially loaded up to ultimate load (foundation displacement due to loading 

up to 10% of the pile base diameter), when reloaded showed an increase in capacity of 

20% (see Figure 5.10).  The single pile foundations that were initially loaded to working 

load, when reloaded to failure reached a lower ultimate load by 15% compared to the 

piles loaded to failure for the first time (Figure 5.11).  

 

Pile foundations in tests LQ5 and LQ6 were subjected to a third loading cycle 

immediately after the second load cycle (see Figure 5.12).  The capacity of the model 

pile foundations increased compared to the second loading cycle. 

 

For all the above tests, the piles were loaded for a period of 10min to represent a pile 

subjected to loading while the building is still standing.  The same loading procedure 

was adopted for the second and third loading cycles. 

   

In all the above tests pile foundations showed an increase in stiffness during second 

loading (i.e. foundations experienced lower displacements for higher loads).  When 

foundations were subjected to the third loading cycle (LQ5 and LQ6) the pile 

foundation stiffness was lower compared to the performance during the second loading 

cycle, as the piles were re-tested prior to equilibrium pore pressures being reached.   

 

During the increase and decrease of the pore pressure on the clay sample throughout 

preparation of the model and during testing, the vertical and horizontal effective stresses 

(σ'v and σ'h) are continually changing.  The horizontal effective stress is stress history 
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dependent and is calculated from the coefficient of earth pressure at rest (Ko) and 

vertical effective stress:- 

 

σ'h = Ko σ'v 5.5 

         

For normally consolidated deposits the coefficient of earth pressure at rest (Konc) is 

given by (Mayne and Kulhawy, 1982) as:-  

 

Ko = 1 – sinφ' 5.6 

 

Where:       φ' – the angle of friction 

 

When the normally consolidated deposits are unloaded the ratio of horizontal and 

vertical effective stresses (σ'h / σ'v) changes.  The way that the earth pressure coefficient 

changes as a result of variation in vertical effective stresses is relatively complex.  The 

influence of the stress history was described by Burland et al. (1979) and Mayne and 

Kulhawy (1982) by way of similar diagrammatic representations.  Mayne and 

Kulhaway (1982) put together a data from over 170 different soils and concluded that 

for overconsolidated clays:- 

 

Ko = (1 – sinφ') (OCR)sinφ' 5.7 

 

Where:       φ′ is the friction angle and OCR is the overconsolidation ratio. 

    

Al-Tabbaa (1987) investigated the behaviour of Speswhite Kaolin using an 

instrumented odometer and found that:-  

 

Ko = 0.69 (OCR)0.46 5.8 

 

Using the equation 5.3 the distribution of the horizontal stresses in the centrifuge sample 

can then be calculated.   
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Hence, the initial loading conditions influence foundation performance during reloading 

and the behaviour of pile foundations on the overconsolidated clay is dependent on the 

stress history to which the soil is subjected.             

 

5.3   Effect of new mini-piles group on the existing pile foundation 

 

When the capacity of the existing pile is not sufficient for the new development, the 

capacity may be improved if a ring of sacrificial mini-piles is installed around it.  The 

influence of these new foundations on the performance of the existing pile was 

investigated by changing the geometry of the group.  The number of the mini-piles, the 

length and the spacing between the existing pile and the mini-piles were all varied (see 

Table 5.4).  It was observed that the capacity of a single pile belonging to a group is 

different from that of an isolated single pile due to the confinement offered by the 

surrounding piles.     

 

5.3.1   The influence of the centre to centre distance between the existing pile and mini-

piles on the existing pile capacity 

 

When looking at the influence of spacing between the centre pile and the mini-pile 

group on the performance of the existing pile foundation both 100mm and 200mm long 

mini-piles were investigated (see Table 5.4).  The increase in capacity observed, when 

using a group of eight mini-piles, for the 1.5D spacing was lower compared to the 2D 

spacing by 10% and 15% for the 100mm and 200mm long mini-piles respectively (see 

Figures 5.13 and 5.14).  When comparing with the single pile foundation subjected to 

load-unload cycles the performance of the existing pile was improved by the sacrificial 

piles in a range from 17% to 60% (see Figure 5.15). 

 

Figures 5.16 and 5.17 show a plan view of the geometry of the novel pile groups, when 

the centre piles were enhanced using 100mm and 200mm long mini-piles at 1.5D and 

2D spacing.  The installation of the mini-pile group confines the soil around the existing 

pile, thus an increase in capacity was observed on re-testing the existing pile.  The 

effective geometry of the enhanced centre pile observed from the centrifuge model tests 

is shown in Figures 5.18 and 5.19 for 100mm long mini-piles.  No contribution from the 
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mini-pile group was considered when back calculating below the toe level of the mini-

pile group as the foundations tested were on clay soils (i.e. main contribution to pile 

capacity is from the shaft friction).  

 

The effect on the performance of the centre pile of the 200mm long mini-piles up to 

100mm depth (i.e. the length of previously described model mini-piles) was considered 

to be the same as for the 100mm long mini-piles.  The behaviour of the enhanced centre 

pile during centrifuge model testing is shown in Figures 5.20 and 5.21 for 200mm long 

mini-piles.                

 

It would be expected that the increase in capacity would be higher when the mini-pile 

group is installed closer to the centre pile.  Installation of the mini-pile group closer to 

the existing pile disturbs soil more in close proximity to the centre pile compared to the 

mini-piles installed further from the centre pile.  The increase in pore pressures, due to 

mini-pile installation, causes the reduction of the effective stresses around these new 

pile foundations.  When the mini-pile groups were installed closer to the existing pile 

this change in effective stress has a greater effect on the behaviour of the existing pile 

when re-tested compared to the influence of the mini-pile group spaced further away 

from the existing centre pile.   

 

The pore pressure transducers were located at different heights at the centre of the soil 

model, thus the soil model was far less disturbed due to mini-pile installation in the 

proximity of the pore pressure transducers.  Although the existing pile was retested after 

pore pressure equilibrium was reached in the soil model, there is no information 

available to determine the effective stresses around the existing pile, as no pore pressure 

transducer could be installed next to the pile shaft.  If the existing piles were retested 

after a longer period of time of the model spinning in the centrifuge, than it would be 

expected that the closer spaced mini-pile group would improve the existing pile 

foundation more as the excess pore pressures would have dissipated to the equilibrium 

state and the effective stresses would have increased.   
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The centrifuge tests showed that by increasing the centre to centre spacing between the 

centre pile and the mini-pile group, the effective diameter of the centre pile increased by 

approximately the same percentage as the pile spacing. 

 

5.3.2  The influence of the number of mini-piles on the existing pile capacity 

 

The number of the mini-piles in the group also influenced the performance of the 

existing pile when reloading.  For 2D centre to centre spacing between the existing pile 

and the mini-piles, groups of eight and sixteen mini-piles were investigated as shown in 

Figure 5.22.  It was observed that for both 100mm and 200mm long mini-piles the 

group of eight mini-piles suggested a higher capacity compared to a group of sixteen 

mini-piles by 10% (see Figure 5.23).  The performance of the existing pile was 

enhanced by 17% to 60% when comparing with the performance of a single pile during 

reloading (see Figure 5.24). 

 

The effective diameter of the enhanced pile foundations with eight and sixteen mini-

piles is shown in Figure 5.25.  Mini-pile installation will change the stress conditions 

around the existing pile.  By increasing the number of the mini-piles in the group the 

change in the stress conditions around the existing pile will be more significant.  Also as 

the spacing between the existing centre pile and mini-piles in the group remains the 

same, the spacing between the mini-piles within the group will reduce as the number of 

the mini-piles increases (see Figure 5.26). 

 

The existing centre pile was re-loaded after the pore pressure transducers in the soil 

mass and at the base of the model piles reached equilibrium stresses.  In all tests there 

was no reaction observed on the pore pressure transducers installed in the soil mass 

during foundations loading.  Thus, the equilibrium readings of the pore pressure 

transducers in the soil mass do not represent the stresses in the soil surrounding the 

centre pile.  If the existing model pile was tested after the excess pore pressures have 

fully dissipated, it would be expected that the existing pile would reach a higher load 

capacity when the number of the mini-piles in the group has increased.          
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5.3.3  The influence of the length of mini-piles on the existing pile capacity 

 

Not surprisingly the length of the mini-piles has been shown to play an important part 

on the performance of the enhanced pile foundation.  In all the geometries tested 

200mm long mini-piles performed better compared to the 100mm long mini-piles by 

20% (see Figures 5.27).   

 

The sacrificial mini-piles increase the stiffness of the soil, thus improving the capacity 

of the existing pile when re-loading.  As the existing pile is loaded, this load is 

distributed along the length of the pile until the soil strength is fully mobilised.  Thus by 

increasing the length of the mini-piles the performance of the existing centre pile is 

enhanced as shown in Figure 5.28.   

 

The increase in capacity in the top sections of the model piles (i.e. the top 100mm of the 

embedded length) is the same for 100mm and 200mm long mini-piles as the number 

and spacing of mini-piles in the group was the same.  The 200mm long mini-piles 

influence the performance of the centre pile along the whole length of the pile, thus 

improving the performance of the existing centre pile by 20% more compared to 

100mm long mini-piles.         

 

 

5.4   Caisson effect – Loading mini-pile group only 

 

In section 5.3 it is shown how the geometry of the mini-pile group influences the 

performance of the previously loaded centre pile.  In this section the influence of the 

preloaded centre pile on the performance of the mini-pile group will be investigated.  

For all tests undertaken the pile groups incorporated preloaded existing piles at the 

centre of the group thus these groups will be referred to from now on as ‘novel pile 

groups’.  Although the length, number and spacing of the mini-piles tested was varied 

(see Table 5.4) the testing procedure was the same for all tests.  The geometry of the 

central preloaded pile was also not varied (see Figure 5.29). 
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For all tests the centre pile was initially load tested, the centrifuge was then stopped and 

the mini-piles were installed at 1g.  The centrifuge was re-started and after the 

equilibrium pore pressures were reached, the mini-pile groups were loaded.  The above 

described geometry (i.e. with preloaded centre pile) of the novel pile groups are 

generally not practiced in the construction industry.  Piles are normally constructed in 

groups of vertical, raking or a combination of vertical and raking piles.  The design 

methodology adopted when the pile group is subjected to vertical load, should provide 

calculations of the group capacity and displacement such that the forces are in 

equilibrium between the structure and the supporting piles.  The ultimate capacity of 

pile groups in clay soil is the lesser of the sum of the capacities of the individual piles or 

the capacity by block failure.   

     

Due to limitations of the loading apparatus the groups of eight and sixteen mini-piles 

investigated could not be loaded to failure.  Thus, all of the analyses of the novel pile 

group performance were based on considering the mini-pile group performance as a 

block and at pile displacement of 0.1mm due to loading.  It was observed that the pile 

groups with 2D spacing from the centre pile performed better compared to the groups 

with 3D spacing, where D is the diameter of the existing centre pile (see Figure 5.30).  

The novel pile groups tested were of four and eight mini-piles.  The capacity obtained 

from centrifuge model tests at 0.1mm displacement for a novel pile group of four, at 3D 

spacing from the centre pile, was equivalent to the performance of a single pile with 

diameter D (diameter of the existing centre pile).  For the spacing of 2D the group 

performance was equivalent to a pile with diameter of 1.2D (see Figure 5.31).  The 

performance of novel groups of eight mini-pile with 3D and 2D spacing from the centre 

pile at 0.1mm displacement was equivalent to a single pile with a 2D and 2.2D diameter 

respectively (see Figure 5.32).  The difference in the increase in capacity in groups of 

four and eight mini-piles, when the spacing from the centre pile has changed is due to 

the fact that the mini-piles within the group have different spacing between each other.  

Thus the results as expected are dependant on the mini-pile to mini-pile interaction.   

 

Tests are performed on small diameter mini-piles in overconsolidated clay, thus the 

shaft capacity is the main parameter influencing the performance of the group.  For the 

same diameter and number of mini-piles, the group consisting of longer mini-piles 
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could be expected to perform better compared to the group with short mini-piles.  As the 

test results for 100mm long mini-piles were abandoned, there were no results available 

to make a direct comparison between the performance of 100mm and 200mm long 

mini-piles.                     

 

By increasing the number of mini-piles in the group, the capacity of the group was, as 

expected, higher (see Figure 5.33).  The performance of the novel pile groups was 

compared at 0.1mm displacement due to loading of the model piles, as the capacity of 

the loading reservoirs was not sufficient to load test the novel pile groups to failure.  

When considering the performance as a block failure, it was observed that the 

performance of the novel pile group of four mini-piles at 0.1mm displacement was 

equivalent to the performance of a single pile with 1.2D, where D equals the diameter of 

the centre pile (see Figure 5.33(a)).  The capacity of the novel pile group of eight mini-

piles at 0.1mm displacement was equivalent to a pile of 2.2D (D is the diameter of the 

centre pile), as shown in Figure 5.33(b).  When the centre to centre spacing from the 

centre pile was increased to 3D, the performance of novel pile groups of four and eight 

mini-piles at 0.1mm displacement was equivalent to the performance of a single pile 

with a diameter of D and 2D respectively.  As explained earlier the performance of the 

novel pile groups was also dependent on the spacing of the mini-piles within the group. 

 

The basic principle of the performance of the novel pile groups were similar to the 

groups consisting of the piles constructed at the same time and usually with equal 

diameters.  As the available capacity of the loading apparatus was insufficient to load 

the pile group to failure and the number of tests undertaken was very limited the 

performance of the novel pile groups needs further investigation.              

 

  

5.5   Novel pile group – Loading existing and new foundations 

 

The performance of the existing piles when loaded together with the new mini-pile 

foundation group was also investigated.  Due to limitations of the capacity of the 

loading apparatus only the group of eight mini-piles was considered for these analyses.  

There are no results for any other novel group geometry with which they can be 
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compared.  The group investigated consisted of a preloaded centre pile and eight 

100mm long mini-piles.  The centre to centre spacing between the existing pile and the 

mini-piles in the group was 3D.  For all tests considered (LQ7, LQ18 and LQ14) the 

single piles were installed and tested to working load.  The centrifuge was then stopped.  

Only the foundations in tests LQ18 and LQ14 were enhanced with the same geometry 

mini-pile group (eight 100mm long mini-piles with 3D spacing).  The foundations were 

then re-tested.  In test LQ14 the existing pile foundation was reloaded together with the 

pile group.  For details of the tests LQ7, LQ14 and LQ18 see Table 5.5.  

 

During the first loading, foundation behaviour in tests LQ7 and LQ18 was similar.  The 

model pile in test LQ14 displaced more for the same applied load, compared to the 

model piles in tests LQ7 and LQ18.  As expected, during the second loading, the 

enhanced pile (LQ18) performed better compared to a single pile foundation and when 

loading the existing pile together with the pile group the capacity obtained from the 

novel group was even higher (see Figure 5.34).  The capacity of the group when loading 

the existing pile together with the mini-pile group was higher than the sum of the 

individual elements of the group at 1mm displacement.       

  

As the geometries investigated in a pile group consisted of elements installed at 

different times, with a different geometry and subjected to different loading conditions, 

the question immediately arises as to what comparative order of settlement should be 

used to define failure.  In this situation the foundations should be designed in such a 

way that the settlements, and particularly the differential settlements of the structure, 

remain within tolerable limits.        

 

               

5.6   Consideration of the test results with field monitoring data  

 

The behaviour of the centrifuge model tests was categorised with the observation made 

on the tests performed by Cementation Skanska as part of the RUFUS project (Trials at 

Chattenden).  As part of the trials at Chattenden the performance of the single piles 

subjected to repeated loading and the influence of the new mini-pile foundations on the 

performance of the existing pile were investigated.  The site and the centrifuge model 
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possess some elements that are geometrically similar as shown in Figure 5.35; although 

during centrifuge testing there was no influence on the foundation performance from the 

pile cap as the cap was modelled above the clay surface (see Figure 5.36).              

 

The field test showed an increase in capacity of the single piles of around 30% at a 

displacement of 10% of the pile diameter when re-tested after two years.  In the 

centrifuge tests an increase in capacity of 20% was observed when re-testing single 

piles.  This seems reasonable owing to the much greater soil stiffness in the field 

compared to the centrifuge model therefore re-loading might have a relatively greater 

effect.  It should be noted that during the first loading in the field, both single piles 

tested, underperformed in comparison with theory as did the centrifuge model piles.  It 

is believed that this was due to problems with the pile installation (Fernie et al, 2006).   

 

The measured group resistance for field test T40 was approximately the same with the 

theoretical resistance.  The pile groups tested had a different configuration compared to 

centrifuge model.  It would have been preferable to have the same pile group geometry 

to facilitate better comparison between field trials and centrifuge model testing.  The 

pile group tested at Chattenden were tied together with a 1m deep cap and only the 

influence of the number of the mini-piles in the group was investigated.  After the single 

piles were subjected to a second loading cycle, six mini-piles were installed around one 

of the piles (pile T40) and four mini-piles were installed around the other (T44) with the 

same spacing and overall depth.  At the same time the grouped ring of six and eight 

mini-piles were also installed and load tested.       

 

The pile groups were loaded tested in three stages: 

 

• With the 4mm displacement case being chosen as the point at which the 

individual mini-piles reached their capacity. 

 

• The 10mm displacement as a reasonable settlement limit for a group generally. 

  

• Loaded to ultimate (failure). 
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The groups (T7/T8 and T9/T10) reached their ultimate capacity at about 10mm 

displacement while the mini-pile groups supplementing an existing pile had one to two 

further load stages applied before the ultimate condition was reached. 

 

As stated earlier, the geometry of the groups tested during field trial was different 

compared to centrifuge model geometry, however, the results from both field data and 

centrifuge model testing show a good correlation when predicting the performance of 

the novel pile groups. 

 

 

5.7   Summary  

 

The model testing has enabled a clear understanding of the model behaviour.  A good 

quality of data has been acquired from a series of tests in which a number of 

geometrical parameters were varied to enable a better understanding of pile 

performance when these foundations are re-used. 

 

The results of the centrifuge tests have been compared and discussed and the reasons for 

the observed behaviour are explained and justified.  The consistency in data has been 

assessed.  The limitations of the testing procedure and the testing apparatus have been 

explained and considered especially where this has resulted in incomplete test data. 

Although the testing apparatus capacity was insufficient to load the pile groups to 

failure it did provide sufficient consistency to confirm that the existing pile foundations 

can be reused for new development, provided the foundations are in good condition, and 

it has been established that the capacity of these foundations can be improved using 

mini-pile groups.   

 

In tests undertaken it was observed that the capacity of the existing foundations 

increased by up to 20% during reloading, and that this increase in capacity was 

dependant on the stress history to which the foundation was subjected.   

 

The mini-pile groups have been found to influence the performance of the existing 

foundations.  By varying the geometry of the group the range of this influence has been 
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assessed.  Although it is expected that when the pile group is closely spaced it will 

behave as a single large diameter pile, the results showed that the mini-pile groups 

appear to improve the capacity of the existing piles less when they are more closely 

spaced.  The piles were re-tested after the equilibrium pore-pressures had been reached, 

but there were no pore-pressure transducers placed within the group, thus it is believed 

that the disturbance of the soil in the vicinity of the existing piles led to the observations 

that were made.  Chandler et al. (1982) stated that the difference between the adhesion 

factors (α) back calculated from the model tests and those normally encountered in 

practice highlight the effects of disturbance caused by most pile installation techniques.  

The same phenomenon was observed when the number of the mini-piles in the group 

was increased.  Due to installation of more mini-piles within the group, the ground 

around the existing pile was disturbed leading to less increase in capacity compared to 

when less mini-piles were used with the same length and distance from the centre of the 

existing pile.     

 

The length of the mini-piles was also found to be an important factor affecting the 

behaviour of the existing piles when reloaded.  Longer mini-piles improved the capacity 

of the existing piles more compared to shorter mini-piles.  The longer mini-piles appear 

to provide a stiffening effect along the length of the existing piles, thus leading to the 

higher capacities observed after mini-pile group installation. 

 

The testing of the mini-pile groups was not up to failure load as the capacity of the 

loading apparatus was not sufficient to reach these loads for the groups tested.  The 

behaviour of novel pile groups was investigated in terms of the spacing, number and 

length of the mini-piles in the group.  Prior to mini-pile group installation and testing, a 

single pile was installed at the centre of the group and load tested to failure. 

 

The performance of the mini-pile group was in agreement with current information 

available for the performance of mini-pile groups.  Closely spaced groups (2D spacing) 

performed better compared with groups with the same number and length of mini-piles 

but with a spacing of 3D from the existing centre pile.  The shaft capacity is proven to 

be the main contributor of the performance of the mini-piles in overconsolidated clay 

soils thus longer mini-piles do show a higher capacity compared to short mini-pile 
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groups with same number and spacing.  Finally, by increasing the number of the mini-

piles in the group the overall capacity of the group was increased. 

 

As stated in earlier chapters the ground is becoming more congested with the every new 

development.  By reusing the existing foundations the time, cost of construction and the 

impact on the environment will be reduced.    
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 
 

6.1  Introduction 

 

There are obvious advantages for redevelopment if as much as possible of the existing 

building foundations can be reused to reduce the environmental impact, time and cost of 

the construction.  The research undertaken is an investigation into behaviour of bored 

piles in overconsolidated clay when subjected to load cycles and foundation 

improvement using new mini-pile group with the view of the re-use of the existing piles 

for future redevelopments.   

 

The work presented here investigates aspects of performance of single pile foundations 

subjected to load/unload/reload cycles.  If existing piles are to be re-used, it is necessary 

to first understand the behaviour of pile foundations when subjected to load cycles, so 

that a decision can be made on the magnitude of the load to which the existing piles can 

be re-loaded.  An increase in capacity was observed when pile foundations were 

subjected to load cycles.   

 

In the case that the existing piles had insufficient capacity for the new development, the 

research also sought to explore if the capacity of an the existing pile could be improved 

by placing around it a ring of new mini-pile foundations.   The new mini-pile group was 

constructed around the existing pile that had previously been subjected to its working or 

failure load.  The geometry of the group was varied, i.e. the number of the mini-piles, 

centre to centre distance between the existing and new pile foundation and length of 

these new foundations.   

 

In this chapter the experimental approach and main findings of the work are 

summarised.  During the course of this research a number of avenues of exploration 

have been pursued and recommendations for further work are made. 
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6.2  Experimental procedure 

 

A total of twenty one tests were carried out using the geotechnical centrifuge at City 

University, London.  In each test two piles of 12m deep, in prototype scale, were tested.  

Initially same apparatus developed by Morrison (1994) was used (see Figure 6.1).  As 

the time required for the preparation of the model for testing was too long a new 

apparatus was designed and manufactured (Figure 6.2).  The design for the new 

apparatus was such that most could be put together prior to testing.  The pile 

foundations were loaded using plastic reservoirs with the facility of filling and emptying 

water in flight.  The reservoirs rested on a spring with a sufficient stiffness to support 

the weight of an empty reservoir.  Thus the foundation loading was performed in a 

controlled manner with no load applied to the pile during consolidation.  The load was 

applied to the pile head using a loading pin connected at the base of the plastic reservoir 

and the load was measured using a load cell connected to the loading pin.  The LVDT 

support was manufactured as an independent part of the loading apparatus and designed 

such that it could be easily adjusted depending on the height of the model using four 

threaded rods to connect to the flange of the tub.                

 

Comparison was made between the behaviour of foundations during first loading to the 

behaviour during the second and third loading cycle.  The influence of the mini-pile 

groups was also investigated in several tests in which the number, spacing and the 

length of the mini-piles in the group were varied.  Mini-piles in groups of four, eight 

and sixteen piles with 6m and 12m length of prototype scale were investigated.  The 

centre to centre distance between the mini-piles and the existing centre pile of 1.5D, 2D 

and 3D (where D is the diameter of the centre pile) were investigated.   

 

The centrifuge models were made from overconsolidated Speswhite kaolin clay 

prepared from slurry with 120% water content.  The single 10mm diameter piles were 

installed at 1g (Figure 6.3).  The model was then put together and placed on the swing 

(Figure 6.4).  When an acceleration of 60g was reached, models were left to reach 

effective stress equilibrium prior to subjecting the piles to the first loading conditions.  

After the first load-unload cycle the centrifuge was stopped and one or both foundations 
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were enhanced using mini-pile groups (Figure 6.5).  The models were left to achieve 

conditions of effective stress equilibrium prior to retesting.       

 

Miniature pore pressure transducers were used to monitor the changes of the pore 

pressure in the sample (Figure 6.6).  The displacements of each foundation were 

measured by two LVDTs and the average reading was used for the analysis (Figure 6.7).  

The load cells used for testing are shown in Figure 6.8.    

 

A broad literature review concerning reuse of pile foundations and foundation design 

has been carried out as part of this project.  The influence of time, loading cycles and 

new foundations on the existing piles was considered.  There are conflicting views on 

the behaviour of piles during reloading in overconsolidated clays.  A great deal of 

literature focuses on case studies where existing pile foundations have been reused.   

 

6.3  Conclusions 

 

This project focuses on the performance of existing piles during reloading assuming no 

deterioration of the pile material has taken place.  The improvement of the performance 

of the existing piles was investigated when using different geometry mini-pile groups.  

Centrifuge model testing and field monitoring data have illustrated the behaviour of the 

existing piles and the positive effect of the existing pile capacity improvement 

technique.   

 

The pile foundation performance observed in the centrifuge model tests has been 

consistent thus allowing the following conclusions to be drawn:- 

 

• When the single pile foundation, which was initially loaded to failure 

(foundation displacement of 10% of the pile base diameter), was reloaded the 

foundation showed an increase in capacity of about 20% (Figure 6.9). 

 

• The single pile foundations which were initially loaded to working load, when 

reloaded to failure, reached a lower ultimate load by about 15% compared to the 



90 

piles loaded to failure for the first time (Figure 6.10).  Hence the initial loading 

conditions influence foundation performance during reloading. 

 

All tests in which the existing pile foundations were enhanced with the sacrificial mini-

pile group, were compared to the performance of a single pile foundation when 

subjected to the same loading conditions.  In all the cases presented the introduction of 

mini-pile groups around the existing pile had a positive effect on the performance of the 

existing pile during reloading.  This improvement in performance of the existing pile 

during reloading was dependent on the number of the mini-piles used in the group, the 

length of the mini-piles and also the centre to centre spacing between the existing pile 

and mini-pile foundations. 

 

When considering the influence of spacing between the centre pile and the mini-pile 

group on the performance of the existing pile foundation, both 100mm and 200mm long 

mini-piles were investigated.  The increase in capacity observed, when using a group of 

eight mini-piles, for the 1.5D spacing was lower compared to the 2D spacing by 10% 

and 15% for the 100mm and 200mm long mini-piles respectively (Figures 6.11 and 

6.12).   

 

The number of the sacrificial mini-piles in the group also influenced the performance of 

the existing pile when reloading.  Mini-piles groups of eight and sixteen, with 2D centre 

to centre spacing between the existing pile and mini-pile group, were investigated.  It 

was observed that for both 100mm and 200mm long mini-piles the group of eight mini-

piles resulted in higher group capacity compared to a group of sixteen mini-piles by 

10% (Figures 6.13 and 6.14). 

   

When comparing with the single pile foundation subjected to load-unload cycles the 

performance of the existing pile was improved by the sacrificial piles in a range from 

17% to 60%.   

 

The length of the mini-piles has been shown to play an important part in the 

performance of the enhanced pile foundation.  In all geometries tested 200mm long 
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mini-piles performed better compared to 100mm long mini-piles by about 20% (Figure 

6.15).   

 

The sacrificial mini-piles provided an increase in capacity to the existing piles when 

reloading the existing pile only.  The performance of novel pile groups was also 

investigated in terms of number, spacing and length of the mini-piles within the group.  

The geometry of these novel pile groups incorporated a preloaded existing pile at the 

centre of the group.  Centrifuge testing showed that the groups with 2D spacing from 

the centre pile performed better than the groups with 3D spacing (Figure 6.16).  The 

performance of 200mm long mini-piles was compared to the 100mm long mini-piles, 

see Figure 6.17. Finally by increasing the number in the group a higher capacity was 

achieved (Figure 6.18).  Only groups of four and eight mini-piles were investigated in 

this series of experiments. 

 

Reloading the existing pile together with the new pile foundation group was also 

investigated but only one scenario was considered.  The group investigated consisted of 

a preloaded to working load centre pile enhanced with eight 100mm long mini-piles.  

The centre to centre spacing between the existing pile and the mini-piles in the group 

was 3D (Figure 6.19).  The results were compared to the performance of the single pile, 

single pile surrounded by sacrificial mini-piles and a mini-pile group.  The capacity of 

the group when loading the existing pile together with the mini-pile group was higher 

than the sum of the individual elements of the group at 1mm displacement (Figure 

6.20).                      

 

 

6.4   Limitations and implications of these results 

 

The difficulty posed by soil is that its behaviour is very much influenced by its stress 

state and stress history.  Therefore soil properties will vary with depth and this variation 

needs to be reproduced whenever a stratum of soil is to be modelled.  For the centrifuge 

model testing Speswhite Kaolin clay was used as a model ground.  As kaolin clay has 

much higher permeability compared to London Clay, the time required for model 

preparation is considerably reduced.    
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The model piles used for the centrifuge testing were made from smooth aluminium rod 

(see Figure 6.6).  From the centrifuge model tests and the shear box test it was 

concluded that the adhesion factor for the model piles was much lower compared to the 

values used in design of cast in situ concrete foundations in, for example, London Clay.  

It was initially intended to use resin model piles to achieve a more realistic 

representation of the soil / pile interface of concrete bored piles but this was abandoned 

owing to difficulties in obtaining consistent model piles.  This method would also have 

proved difficult to incorporate pore pressure transducers into base of pile. 

   

Other limitation of the work carried out was installation of bored pile foundations at 1g 

rather then during flight at the required scale factor.  There were no attempts made to 

install pile foundations in flight thus there are no results to be compared to observe the 

effect of the method of installation on foundation performance.  Mini-pile groups were 

also installed at 1g.  After the existing piles were subjected to first loading the 

centrifuge was stopped and one or both existing piles were enhanced by different 

geometry mini-pile groups.  It was however demonstrated that stopping and restarting 

the centrifuge after the first loading had no effect on the existing foundation 

performance when reloaded (Figure 6.21)  

 

The re-use of pile foundations is a positive step towards improving sustainability in 

construction.  This is because the cost and time of new development and the impact on 

the environment will be reduced.  In general, piles showed increase in capacity when 

subjected to load-unload-reload cycles and also when the existing piles were surrounded 

by a sacrificial mini-pile group.  When loading the existing piles together with a new 

mini-pile foundation group, the capacity obtained was higher than the sum of the 

individual elements of the novel pile group.      

 

 

6.5   Recommendations for further research            

 

The development of a new centrifuge modelling technique that would enable pile 

installation during flight would allow the prototype installation procedure to be 

followed more closely.  This would also allow a more realistic investigation of bored 
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pile behaviour during load-unload-reload cycles and the influence of the new 

foundations on the existing piles.  While this is probably unfeasible for rotary bored 

piles it may be possible for Continuous Flight Auger (CFA) piles.     

 

In the tests undertaken in this project the influence of only a few parameters on pile 

foundation behaviour has been investigated.  When investigating the behaviour of single 

pile foundation or pile group, no contribution of the pile cap was considered.  For 

completeness, the influence of the pile cap should be explored since it could provide 

significant increase in the overall capacity of the foundations.     

 

As stated earlier the length of the mini-piles and centre to centre spacing between the 

existing pile and mini-pile group was varied.  The influence of the diameter of the mini-

piles on the existing foundation should also be investigated.  When investigating the 

influence of the mini-pile groups on the performance of the existing pile during re-

loading it was decided to use the diameter of the existing pile as a normalising factor. 

Therefore, by varying the diameter of the mini-piles in the group, the spacing of the 

mini-piles within the group will change if the normalising factor is still the diameter of 

the existing piles and is kept as a constant (Figure 6.22).  By varying the diameter of the 

mini-piles in the group a better understanding of the “caission” effect and the influence 

on the performance of the existing pile when re-loading could be attained. 

 

No investigations were carried out to explore the influence of the material integrity of 

foundation elements when these foundations are considered for re-use.  Defects may 

occur during foundation construction or the life of the structure and these defects need 

to be investigated in order to determine their influence on foundation performance 

during reloading.  The defects due to demolition need to be investigated as well.  How 

does the pile respond to heave in unloading, and does the cracking due to heave effect 

the performance of pile foundations on reloading.        

 

Continued monitoring of performance of pile foundations during the first loading and 

during the demolition of the existing structure would provide much needed additional 

data to enable the prediction of foundation performance during reloading.         
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Quantity 

 

 

Prototype wall 

 

Model wall 

 

length 

self weight stress 

stress x area 

strain 

curvature 

Young’s modulus  (E) 

 

 

1 

1 

1 

1 

1 

1 

 

1/N 

1 at N gravities 

1/N2 

1 

N 

1 

The following are expressed per metre length 1/N metre length 

 

moment of inertia (I) 

intensity of load 

shear force 

bending moment 

 

1 

1 

1 

1 

 

1/N4 

1/N 

1/N2 

1/N3 

 
Table 3.1 Scale factors for centrifuge tests on model diaphragm walls 

(after Powrie 1986). 

 

 

Quantity 

 

 

Example 

 

Scale factor 

 

Prototype 

 

Model 

No. of g - - 1 60 

Length Pile diameter 

Pile length 

Mini-pile diameter 

Mini-pile length 

 

1/N 

0.6m 

12m 

0.3m 

6m 

0.01m 

0.2m 

0.005m 

0.1m 

 

Table 3.2 Scale factors for centrifuge tests on model pile foundation. 
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Table 3.3. Details of spring design used to support the loading reservoir for 
centrifuge model testing.  
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Test Pile First 

Loading 

Second Loading 

LQ1 A Single Pile Single Pile 

 B Single Pile 8MP 3D 100mm 

LQ2   New Apparatus 

    

LQ3 A   

 B   

LQ4 A Single Pile Single Pile 

 B Single Pile 8MP 3D 100mm 

LQ5 A Single Pile Single Pile 

 B Single Pile 8MP 3D 200mm 

LQ6 A Single Pile Single Pile 

 B Single Pile 8MP 3D 200mm 

LQ7 A Single Pile Single Pile 

 B Single Pile 8MP 3D 200mm 

LQ8 A Single Pile 8MP 3D 100mm 

 B Single Pile 16MP 3D 200mm 

LQ9 A Single Pile 8MP 1.5D 100mm 

 B Single Pile 16MP 3D 100mm 

LQ10 A Single Pile 16MP 2D 100mm 

 B Single Pile 8MP 1.5D 200mm 

* LQ11 A Single Pile 8MP 2D 100mm 

 B Single Pile 8MP 1.5D 200mm 

* LQ12 A Single Pile 8MP 2D 200mm 

 B Single Pile 16MP 2D 200mm 

* LQ13 A Single Pile  8MP 3D 100mm – Loading PG 

only 

 B Single Pile Single Pile 

LQ14 A Single Pile  16MP 2D 200mm 

 B Single Pile 8MP 3D 100mm – Loading EP & 

PG 
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LQ15 A Single Pile 8MP 3D 200mm – Loading PG 

 B Single Pile 8MP 2D 100mm – Loading PG 

LQ16 A Single Pile 8MP 2D 200mm – Loading PG 

 B Single Pile 16MP 2D 100mm – Loading PG 

LQ17 A Single Pile 4MP 2D 200mm – Loading PG 

 B Single Pile 4MP 3D 200mm – Loading PG 

LQ18 A Single Pile/ 

Single Pile 

Driven - 8MP 1.5D 200mm 

 B Single Pile/ 

Single pile 

8MP 3D 100mm 

LQ19 A Single Pile/ 

Single Pile 

4MP 3D 200mm – Loading 

EP+PG 

 B Single Pile/ 

Single pile 

8MP 2D 100mm  

LQ20 A Single Pile 4MP 2D 200mm – Loading 

EP+PG 

 B Single Pile 4MP 3D 200mm – Loading 

EP+PG 

LQ21 A Single Pile 4MP 2D 200mm – Loading 

EP+PG 

 B Single Pile 4MP 3D 200mm – Loading 

EP+PG 

 
 
* Piles installed after the sample was accelerated to 60g for 12h  
 
 
Table 3.4 Details of tests conducted. 
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Test Pile First 

Loading 

Second Loading 

LQ1 A Single Pile Single Pile 

 B Single Pile 8MP 3D 100mm 

LQ2   New Apparatus 

    

LQ3 A   

 B   

LQ4 A Single Pile Single Pile 

 B Single Pile 8MP 3D 100mm 

LQ5 A Single Pile Single Pile 

 B Single Pile 8MP 3D 200mm 

LQ6 A Single Pile Single Pile 

 B Single Pile 8MP 3D 200mm 

LQ7 A Single Pile Single Pile 

 B Single Pile 8MP 3D 200mm 

LQ8 A Single Pile 8MP 3D 100mm 

 B Single Pile 16MP 3D 200mm 

LQ9 A Single Pile 8MP 1.5D 100mm 

 B Single Pile 16MP 3D 100mm 

LQ10 A Single Pile 16MP 2D 100mm 

 B Single Pile 8MP 1.5D 200mm 

* LQ11 A Single Pile 8MP 2D 100mm 

 B Single Pile 8MP 1.5D 200mm 

* LQ12 A Single Pile 8MP 2D 200mm 

 B Single Pile 16MP 2D 200mm 

* LQ13 A Single Pile  8MP 3D 100mm – Loading PG 

only 

 B Single Pile Single Pile 

LQ14 A Single Pile  16MP 2D 200mm 

 B Single Pile 8MP 3D 100mm – Loading EP & 

PG 
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LQ15 A Single Pile 8MP 3D 200mm – Loading PG 

 B Single Pile 8MP 2D 100mm – Loading PG 

LQ16 A Single Pile 8MP 2D 200mm – Loading PG 

 B Single Pile 16MP 2D 100mm – Loading PG 

LQ17 A Single Pile 4MP 2D 200mm – Loading PG 

 B Single Pile 4MP 3D 200mm – Loading PG 

LQ18 A Single Pile/ 

Single Pile 

Driven - 8MP 1.5D 200mm 

 B Single Pile/ 

Single pile 

8MP 3D 100mm 

LQ19 A Single Pile/ 

Single Pile 

4MP 3D 200mm – Loading 

EP+PG 

 B Single Pile/ 

Single pile 

8MP 2D 100mm  

LQ20 A Single Pile 4MP 2D 200mm – Loading 

EP+PG 

 B Single Pile 4MP 3D 200mm – Loading 

EP+PG 

LQ21 A Single Pile 4MP 2D 200mm – Loading 

EP+PG 

 B Single Pile 4MP 3D 200mm – Loading 

EP+PG 

 
 
* Denotes piles installed after the sample was spun up at 60g for 12h  
 
 
Table 4.1 Details of the centrifuge tests conducted. 
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Pile A       

Test 1st loading   2nd loading   
3rd 
loading 

Geometry after the first 
Loading 

              
Test 1 65   110   60 Single Pile 
              
Test 2 Sand           
              
Test 3             
              
Test 4 70   81   90 Single Pile 
              
Test 5 110   130   135 Single Pile 
              
Test 6 115   140   150 Single Pile 
              
Test 7 50   85     Single Pile 
              
Test 8 90   140     8MP L=100mm 
              
Test 9 50   103     8MP L=100mm cc=1.5D 
              
Test 10 50   100     16MP L=100mm cc=2D 
              
Test 11 50   113     8MP L=100mm cc=2D 
              
Test 12 50   138     8MP L=200mm cc=2D 
              
Test 13 50   111     8MP L=100mm cc=3D – PG 
              
Test 14 30   73     16MP L=200mm cc=2D 
              
Test 15 50   363     8MP L=200mm cc=3D – PG 
              
Test 16 50   390     8MP L=200mm cc=2D – PG 
              
Test 17 50   162     4MP L=200mm cc=2D – PG 
              

Test 18 50   50   120
8MP(Driven) L=100mm 
cc=1.5D 

              

Test 19 94   135   318
4MP L=200mm cc=3D - 
EP+PG 

              

Test 20 -   -   - 
4MP L=200mm cc=2D - 
EP+PG 

              

Test 21 86   347     
4MP L=200mm cc=2D - 
EP+PG 

       
Table 4.2a  Details of the centrifuge tests conducted and maximum loads applied  - Pile A. 
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Pile B       

Test 1st loading   2nd loading   3rd loading 
Geometry after the first 
Loading 

              
Test 1 65   85   90 8MP L=100mm 
              
Test 2 Sand           
              
Test 3             
              
Test 4 110   120   135 8MP L=100mm 
              
Test 5 100   128   138 8MP L=200mm 
              
Test 6 185   190   205 8MP L=200mm 
              
Test 7 50   130     8MP L=200mm 
              
Test 8 100   95     16MP L=200mm 
              
Test 9 50   93     16MP L=100mm cc=3D 
              
Test 10 50   119     8MP L=200mm cc=1.5D 
              
Test 11 50   82     8MP L=200mm cc=1.5D 
              
Test 12 50   122     16MP L=200mm cc=2D 
              
Test 13 50   88     Single Pile 
              

Test 14 50   345     
8MP L=100mm cc=3D – EP 
& PG 

              
Test 15 50   73     8MP L=100mm cc=2D - PG 
              
Test 16 50   430     16MP L=100mm cc=2D - PG 
              
Test 17 70   130     4MP L=200mm cc=3D - PG 
              
Test 18 50   50   127 8MP L=100mm cc=3D  
              
Test 19 116   140   169 8MP L=100mm cc=2D 
              

Test 20 -   -   - 
4MP L=200mm cc=3D - 
EP+PG 

              

Test 21 55   382     
4MP L=200mm cc=3D - 
EP+PG 

       
Table 4.2b  Details of the centrifuge tests conducted and maximum loads applied  - Pile A. 
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Quantity 

 

 

Example 

 

Scale factor 

 

Prototype 

 

Model 

No. of g - - 1 60 

Length Pile diameter 

Pile length 

Mini-pile diameter 

Mini-pile length 

 

1/N 

0.6m 

12m 

0.3m 

6m 

0.01m 

0.2m 

0.005m 

0.1m 

 

Table 5.1 Scale factors for centrifuge tests on model pile foundation. 

 

 

      
      

Test 1st loading   2nd loading   3rd loading
            
LQ5(A) 110  130  135 
       
LQ6(A) 115  140  150 
       
LQ7(A) 50  85   
       
LQ13(B) 50  88   
       
      
Table 5.2 Details of the centrifuge tests conducted on single piles. 
 Centrifuge was stopped between loading cycles.  
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Test 1st loading   2nd loading  
         
LQ18(A) 50  50  
      
LQ18(B) 50  50  
      
LQ19(A) 94  135  
      
LQ19(B) 116  140  
      
     
Table 5.3 Details of the centrifuge tests conducted on single piles. 
 Centrifuge was not stopped between loading cycles. 
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Pile A       
Test 1st loading   2nd loading  3rd loading Geometry after the first Loading 
             
Test 8 90   140    8MP L=100mm 
             
Test 9 50   103    8MP L=100mm cc=1.5D 
             
Test 10 50   100    16MP L=100mm cc=2D 
             
Test 11 50   113    8MP L=100mm cc=2D 
             
Test 12 50   138    8MP L=200mm cc=2D 
             
Test 14 30   73    16MP L=200mm cc=2D 
             

Test 18 50   50  120
8MP(Driven) L=100mm 
cc=1.5D 

             
       
Pile B       
Test 1st loading   2nd loading  3rd loading Geometry after the first Loading 
             
Test 4 110   120  135 8MP L=100mm 
             
Test 5 100   128  138 8MP L=200mm 
             
Test 6 185   190  205 8MP L=200mm 
             
Test 7 50   130    8MP L=200mm 
             
Test 8 100   95    16MP L=200mm 
             
Test 9 50   93    16MP L=100mm cc=3D 
             
Test 10 50   119    8MP L=200mm cc=1.5D 
             
Test 11 50   82    8MP L=200mm cc=1.5D 
             
Test 12 50   122    16MP L=200mm cc=2D 
             
Test 18 50   50  127 8MP L=100mm cc=3D  
             
Test 19 116   140  169 8MP L=100mm cc=2D 
             
       
Table 5.4  Details of the centrifuge tests conducted and maximum loads applied. 
 Novel pile groups.     
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Figure 1.1 Axial loading pile foundation device used in centrifuge model testing 

(Morrison, 1994). 
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Figure 3.21 Loading pin used to axially load piles during centrifuge model testing.   
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Figure 3.22 Linearly Variable Differential Transformers (LVDT) support clamped at 

the flange of the tub used for the first centrifuge model test. 
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Figure 3.23 Details of aluminium beams used for supporting Linearly Variable 

Differential Transformers used for centrifuge model testing. 
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Figure 3.24 Linearly Variable Differential Transformers (LVDT) support used for the 

first centrifuge model testing. 
 
 
 

 
 
 
Figure 3.25 New loading apparatus developed for centrifuge model testing. 
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Figure 3.26 76.2 mm diameter plastic loading reservoir. 
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Figure 3.27 Plastic loading reservoir supported by a spring whiles empty. 
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Figure 3.28 Loading pin and the loading pin base used for connecting to the base of 

the water reservoir. 
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Figure 3.29 Brass pipes, connected to centrifuge slip rings, used to fill the loading 

reservoirs with water during centrifuge model testing. 
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Figure 3.30 Base of the loading reservoir and details of the connection to solenoid 

valves. 
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Figure 3.31 Solenoid valves used to drain the water from the loading reservoirs 

during foundation unloading. 
 
 
 

 
 
Figure 3.32 Aluminium plate used to connect the solenoid valves to the loading 

apparatus. 
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Figure 3.33 12mm thick aluminium plate used to support the loading apparatus and 

solenoid valves. 
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Figure 3.34 Loading reservoirs, guide tubes, springs and solenoid valves put together 

prior to mounting on the centrifuge tub. 
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Figure 3.35 Details of the new developed and manufactured LVDT support used for 

centrifuge model testing. 
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Figure 3.36 The LVDT support beam connected to 8mm threaded rod with the ability 

to move vertically depending on the thickness of the clay model. 
 
 

 
 
 
Figure 3.37 The LVDT support mounted and connected to the flange of the tub. 
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Figure 3.38 Centrifuge stainless steel tub with access ports through which the pore 

pressure transducers were installed. 
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Figure 3.39 Stainless steel model tub and extension used for centrifuge model 

preparation. 
 
 
 

 
 
 
Figure 3.40 Drainage base plate. 
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Figure 3.41 Proposed design for resin model piles to be used for centrifuge model 

testing. 
 
 
 
 

 
 
Figure 3.42 Aluminium model pile used for centrifuge model testing. 
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Figure 3.43 Model pile made of aluminium sections with the pore pressure transducer 

at the base (Test LQ10). 
 
 
 
 
 

 
 
 
Figure 3.44 10mm diameter piles embedded 200mm into the soil sample 
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Figure 3.45 Details of tool used for installing bored model piles. 
 
 
 

 
 
 
Figure 3.46 Stainless steel tubes used for model pile installation. 
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Figure 3.47 Detail of jig used for model pile installation. 
 
 
 
 
 

 
 
 
Figure 3.48 Model pile installation at 1g using a template to position and install piles. 
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Figure 3.49 Prior to model pile installation a small amount of clay slurry is placed 

into the bored hole to ensure that the model pile is in good contact with 
clay model.  

 
 
 
 

 
 
Figure 3.50 10mm diameter model pile with a groove for de-airing during 

installation. 
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Figure 3.51 120mm and 220mm model mini-pile foundations. 
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Figure 3.52 Details of model mini-pile foundations used for centrifuge model testing.  
 
 
 
 
 

 
 
 
Figure 3.53  Mini-pile groups removed from the model soil after testing (Test LQ16). 
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Figure 3.54 10mm diameter model with a pore pressure transducer at the base. 
 
 
 
 
 
 

 
 
 
Figure 3.55 Geometry of the single pile centrifuge model test. 
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Figure 3.56 100mm by 20mm aluminium plate used when testing the performance of 

single model pile foundation. 
 
 
 
 
 
 
 

 
 
 

Figure 3.57 Model plate connected to the pile head 20mm above the clay surface.  
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Figure 3.58 Details of connection of the model plate and aluminium model pile. 
 
 
 
 
 
 
 

 
 
 
Figure 3.59  Details of the pile cap used for centrifuge model testing of the novel pile 

groups. 
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Figure 3.60  100mm diameter aluminum plate used when testing the performance of 

novel pile groups. 
 
 
 
 

 
 
 
Figure 3.61  The model clay with an impermeable surface sealed with silicon oil. 
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Figure 3.62 Connection between the drainage base plate to the standpipe. 
 
 
 

 
 
Figure 3.63 Detail of standpipe developed for centrifuge model testing. 
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Figure 3.64 Pore pressure transducers in calibration chamber used for centrifuge 

model testing. 
 
 
 

 
 
 
Figure 3.65 LVDT used for centrifuge model testing. 
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Figure 3.66 Pore pressure distribution during centrifuge model testing. 
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Figure 3.67 Method of ensuring correct positioning of pore pressure transducers 

within model (McNamara, 2001). 
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Figure 3.68 Geometry details of the centrifuge model. 
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Figure 4.1 Geometry of the centrifuge model; groups of eight and four mini-piles. 
 
 
 
 
 

 
 
 
Figure 4.2 Examples of the geometry of the novel pile groups tested. 
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Figure 4.3 Examples of the geometry of novel pile groups with 100mm and 200mm 

long mini-piles. 
 
 
 
 

 
 

 
 
 
Figure 4.4 LVDT used to measure model pile displacement during centrifuge 

testing. 
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Figure 4.5  Model pile made of aluminium sections with the pore pressure transducer 

at the base. 
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Figure 4.6  10mm diameter piles installed at 1g and embedded 200mm into the soil 

sample. 
 
 

 
 
 
Figure 4.7  Axial loading pile foundation device used in centrifuge model testing 

(Morrison, 1994). 
 
 
 

Counter weight 

Linear bearing for  
vertical loading 

Load cell 

To solenoid valve 

Recharge 
water 

Bucket with facility for  
filling and emptying in flight 

 

Loading pin 

10mm diameter model piles 



203 

 
 

 
 
 
Figure 4.8  Mechanism of foundation loading device by Morrison (1994). 
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Figure 4.9  Test LQ1 – Geometry of the centrifuge model after piles A and B were 

subjected to first loading. 
 
 
 
 

 
 
 
Figure 4.10  New loading apparatus developed for centrifuge model testing. 
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Figure 4.11  Test LQ5(A) and LQ(6) single pile foundations subjected to 1st and 2nd 

loading to failure.  An increase in pile capacity of 20% was observed 
during 2nd loading. 
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Figure 4.12  Plastic rings used to prevent the surface oil getting into bored holes 

during the installation of the model piles, after the model was spun up in 
centrifuge. 
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Figure 4.13  Test LQ18(A).  Pile foundations subjected to three loading cycles.  The 

centrifuge was not stopped between the first and second loading cycle. 
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Figure 4.14  The new loading reservoirs developed to increase the load applied during 

centrifuge testing of novel pile groups. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enhanced water 
reservoir used 
for pile loading 



209 

 
 
                     (a)            (b)          (c) 
 
 
Figure 4.15  Details of the geometry of the loading apparatus for tests: (a) LQ1 to 

LQ19, (b) LQ20 and (c) LQ21. 
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Figure 4.16  Tests LQ7(A) and LQ13(B) single pile foundations subjected to 1st 

loading and 2nd loading.  The piles were subjected to working load 
during the 1st cycle.  The piles were loaded to failure during the 2nd cycle. 

 
 
 
 

 
 
 
Figure 4.17  Details of the geometry of the novel pile groups used to investigate the 

influence of centre to centre spacing between the centre pile and the 
mini-pile group. 
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Figure 4.18  1st loading cycle - single pile foundation loaded up to working load 

(FOS=2.0), tests LQ9(A) and LQ11(A).  2nd loading cycle – enhanced 
pile foundations with 8 mini-piles 100mm long, test LQ9(A) with 1.5D 
spacing and test LQ11(A) with 2D spacing. 
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Figure 4.19  1st loading cycle - single pile foundation loaded up to working load 

(FOS=2.0), tests LQ10(B) and LQ12(A).  2nd loading cycle – enhanced 
pile foundations with 8 mini-piles 200mm long, test LQ10(B) with 1.5D 
spacing and test LQ12(A) with 2D spacing. 
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Figure 4.20  The performance of tests LQ7(A), LQ9(A), LQ10(B) and LQ12(A) 

during second loading cycle.  During testing only the existing centre pile 
was loaded. 
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Figure 4.21  Tests LQ7(A), LQ10(A) and LQ11(A).  1st loading cycle – single pile 

foundations loaded up to working load.  2nd loading cycle – enhanced 
piled foundations loaded to failure: test LQ7(A) – single pile, test 
LQ10(A) enhanced pile foundation with sixteen 100mm long mini-piles 
at 3D spacing and test LQ11 enhanced pile foundation with eight 100mm 
long mini-piles at 3D spacing. 
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Figure 4.22  Tests LQ12(A) and LQ12(B).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile foundation: 
Test LQ12(A) eight 200mm long mini-piles with 2D spacing; Test 
LQ12(B) sixteen 200mm long mini-piles with 2D spacing.  
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Figure 4.23  Tests LQ11(A) and LQ12(A).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile foundation: 
Test LQ11(A) eight 100mm long mini-piles with 2D spacing; Test 
LQ12(A) eight 200mm long mini-piles with 2D spacing. 
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Figure 4.24  Tests LQ10(B) and LQ12(A).  1st loading cycle – single pile foundations 

loaded up to working load.   2nd loading cycle – enhanced pile 
foundations with eight 200mm long mini-piles.  Test LQ10(B) with 1.5D 
pile spacing.  Test LQ12(A) with 2D pile spacing. 
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Figure 4.25  The performance of tests LQ7(A), LQ11(A) and LQ12(A) during 2nd 

loading cycle.  In all tests only the centre pile was loaded. 
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Figure 4.26  The performance of tests LQ7(A), LQ10(B) and LQ12(B) during 2nd 

loading cycle.  In all tests only the centre pile was loaded. 
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Figure 4.27  Tests LQ17(A) and LQ17(B).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – novel pile group: Test 
LQ17(A) four 200mm long mini-piles with 3D spacing; Test LQ17(B) 
four 200mm long mini-piles with 3D spacing. 
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Figure 4.28  Tests LQ15(A) and LQ16(A).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – novel pile group: Test 
LQ15(A) eight 200mm long mini-piles with 3D spacing; Test LQ16(A) 
eight 200mm long mini-piles with 2D spacing. 
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Figure 4.29  Tests LQ16(A) and LQ17(A).  1st loading cycle – single pile foundations. 

2nd loading cycle – novel pile group: Test LQ16(A) eight 200mm long 
mini-piles with 2D spacing; Test LQ17(A) four 200mm long mini-piles 
with 2D spacing. 
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Figure 4.30 Tests LQ7(A), LQ14(B) and LQ18(B).  1st loading cycle – single pile 

foundation.  2nd loading cycle – Test LQ7(A) single pile foundation; Test 
LQ14(B) novel pile group (centre pile enhanced with eight 100mm long 
mini-piles with 3D spacing; Test LQ18(B) single pile foundation 
(centrifuge was not stopped between the first and second loading cycle).  
3rd loading cycle – test LQ18(B) centre pile enhanced with eight 100mm 
long mini-piles with 3D spacing.  
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Figure 4.31  Tests LQ10(B) and LQ18(A).  1st loading cycle up to working load – 

single pile foundation.  2nd loading cycle – Tests LQ10(B) centre pile 
enhanced with eight bored 200mm long mini-piles with 1.5D spacing; 
Test LQ18(A) – single pile foundation (centrifuge was not stopped 
between the first and second loading cycle).  3rd loading cycle – test 
LQ18(B) centre pile enhanced with eight driven 200mm long mini-piles 
with 1.5D spacing.  

 
 
 



224 

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

Measured displacement / Pile diameter (%)

M
ea

su
re

d 
lo

ad
 (N

)

LQ5(A) - First Loading

LQ5(A) - Second Loading

LQ6(A) - First Loading

LQ6(A) - Second Loading

LQ19(A) - First Loading

LQ19(A) - Second Loading

LQ19(B) - First Loading

LQ19(B) - Second Loading
 

 
Figure 4.32  Performance of single pile foundations during 1st and 2nd loading.  Tests 

LQ5(A) and LQ6(A) – centrifuge was stopped between the first and 
second loading.  Tests LQ19(A) and LQ19(B) – centrifuge was NOT 
stopped between the first and second loading.  
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Figure 4.33 Centrifuge stainless steel tub with access ports through which the pore 

pressure transducers were installed. 
 
 
 

-100

-80

-60

-40

-20

0

20

40

60

0 20000 40000 60000 80000 100000
Time (s)

Po
re

 p
re

ss
ur

e 
(k

Pa
)

PPT 22 (LQ1)
PPT 24 (LQ1)

 
 
Figure 4.34 Typical pore pressure measurements with time during centrifuge model 

testing (Test LQ1).   
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Figure 5.1 Geometry of a typical model used for centrifuge testing. 
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Figure 5.2 Typical soil surface compression and swelling measurements with time 
during centrifuge model testing (Test LQ6).   
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Figure 5.3 The LVDTs used to measure pile settlements during loading and changes 

in the model soil surface during testing. 
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Figure 5.4 Pore pressure transducer response during centrifuge model testing. 
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Figure 5.5 Typical geometry of model used to investigate the performance of 

enhanced pile foundation. 
 

 
 
Figure 5.6 Aluminium model pile used for centrifuge model testing. 
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Figure 5.7 Distribution of undrained shear strength after equilibrium of the 

centrifuge model was reached at 60g based on the findings by Garnier 
(2002), Springman (1989) and Steward (1989). 
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Figure 5.8 Geometry of the single pile model and the LVDTs used to measure 

displacements during testing. 
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Figure 5.9 Loading pin used to axially load piles during centrifuge model testing 

and load cell used to measure the load applied.   

Pile Cap 

Load Cell 

Loading pin 



233 

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

Measured displacement / Pile diameter (%)

M
ea

su
re

d 
lo

ad
 (N

)

LQ5(A) - First Loading
LQ5(A) - Second Loading

LQ6(A) - First Loading
LQ6(A) - Second Loading

 
 
Figure 5.10  Test LQ5(A) and LQ(6) single pile foundations subjected to 1st and 2nd 

loading to failure.  An increase in pile capacity of 20% was observed 
during 2nd loading. 
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Figure 5.11  Tests LQ7(A) and LQ13(B) single pile foundations subjected to 1st and 

2nd loading.  The piles were subjected to working load during the 1st 
cycle.  The piles were loaded to failure during the 2nd cycle. 
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Figure 5.12  Tests LQ6 – Single pile foundations subjected to three loading cycles. 
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Figure 5.13  1st loading cycle - single pile foundation loaded up to working load 

(FOS=2.0), tests LQ9(A) and LQ11(A).  2nd loading cycle – enhanced 
pile foundations with 8 mini-piles 100mm long, test LQ9(A) with 1.5D 
spacing and test LQ11(A) with 2D spacing. 
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Figure 5.14  1st loading cycle - single pile foundation loaded up to working load 

(FOS=2.0), tests LQ10(B) and LQ12(A).  2nd loading cycle – enhanced 
pile foundations with 8 mini-piles 200mm long, test LQ10(B) with 1.5D 
spacing and test LQ12(A) with 2D spacing. 
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Figure 5.15  The performance of tests LQ7(A), LQ9(A), LQ10(B) and LQ12(A) 

during second loading cycle.  During testing only the existing centre pile 
was loaded. 

 
 

 
 

Figure 5.16  Details of the geometry of the novel pile groups used to investigate the 
influence of 1.5D centre to centre spacing between the centre pile and the 
mini-pile group (D – diameter of centre pile). 
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Figure 5.17  Details of the geometry of the novel pile groups used to investigate the 

influence of 2D centre to centre spacing between the centre pile and the 
mini-pile group (D – diameter of centre pile). 

 
 
 
 

 
 

 
Figure 5.18  Effective geometry of the enhanced centre pile with 100mm long mini-

piles installed at 1.5D centre to centre spacing with the existing centre 
pile. 
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Figure 5.19  Effective geometry of the enhanced centre pile with 100mm long mini-

piles installed at 2D centre to centre spacing with the existing centre pile. 
 

 

 
 

Figure 5.20  Effective geometry of the enhanced centre pile with 200mm long mini-
piles installed at 1.5D centre to centre spacing with the existing centre 
pile. 
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Figure 5.21  Effective geometry of the enhanced centre pile with 200mm long mini-

piles installed at 2D centre to centre spacing with the existing centre pile. 
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Figure 5.22  Tests LQ11(A) and LQ10(A).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile foundation: 
Test LQ11(A) eight 100mm long mini-piles with 2D spacing; Test 
LQ10(A) sixteen 100mm long mini-piles with 2D spacing.  
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Figure 5.23  Tests LQ12(A) and LQ12(B).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile foundation: 
Test LQ12(A) eight 200mm long mini-piles with 2D spacing; Test 
LQ12(B) sixteen 200mm long mini-piles with 2D spacing.  
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Figure 5.24  Tests LQ7(A), LQ10(A) and LQ11(A).  1st loading cycle – single pile 

foundations loaded up to working load.  2nd loading cycle – enhanced 
piled foundations loaded to failure: test LQ7(A) – single pile, test 
LQ10(A) enhanced pile foundation with sixteen 100mm long mini-piles 
at 3D spacing and test LQ11 enhanced pile foundation with eight 100mm 
long mini-piles at 3D spacing. 
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 (a)       (b) 
 
 
Figure 5.25  Effective geometry of the enhanced centre pile with 100mm long mini-

piles installed at 2D centre to centre spacing with the existing centre pile: 
(a) Mini-pile group of 8 (Test LQ11(A)) 
(b) Mini-pile group of 16 (Test LQ10(A)). 
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  (a)           (b) 
 
Figure 5.26  Details of the geometry of the model of novel pile groups: 

(a) Mini-pile group of 8  
(b) Mini-pile group of 16. 
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Figure 5.27  Tests LQ11(A) and LQ12(A).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile foundation: 
Test LQ11(A) eight 100mm long mini-piles with 2D spacing; Test 
LQ12(A) eight 200mm long mini-piles with 2D spacing. 
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    (a)             (b) 
 
Figure 5.28  Tests LQ9(A) and LQ10(B).  Enhanced pile foundations with eight mini-

piles at 1.5D centre to centre spacing.   
(a) 100mm long mini-piles (Test LQ9(A)) 
(b) 200mm long mini-piles (Test LQ10(B)). 
 
 
 
 
 

 
 
 
Figure 5.29  Examples of geometry of centrifuge model used to investigate caisson 

effect. 
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Figure 5.30  Tests LQ15(A) and LQ16(A).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – novel pile group: Test 
LQ15(A) eight 200mm long mini-piles with 3D spacing; Test LQ16(A) 
eight 200mm long mini-piles with 2D spacing. 
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Figure 5.31  Test LQ17(A).  Novel pile group with four 200mm mini-piles at 2D 

centre to centre spacing with the existing centre pile.   
 
 
 
 
 
 
 
 
 
 
 
 

D 

1.2D 

2D 

Existing 
centre 
pile 

Mini-pile 



251 

 
 

   (a) 
 

 
 
         (b) 
 
 
Figure 5.32  Tests LQ15(A) and LQ16(A).  Novel pile group with eight 200mm mini-

piles.  
(a) Spacing between the mini-pile group and existing centre pile of 3D.   

  (b) Spacing between the mini-pile group and existing centre pile of 2D. 
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Figure 5.33  Tests LQ16(A) and LQ17(A).  1st loading cycle – single pile foundations. 

2nd loading cycle – novel pile group: Test LQ16(A) eight 200mm long 
mini-piles with 2D spacing; Test LQ17(A) four 200mm long mini-piles 
with 2D spacing. 
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Figure 5.34 Tests LQ7(A), LQ14(B) and LQ18(B).  1st loading cycle – single pile 

foundation.  2nd loading cycle – Test LQ7(A) single pile foundation; Test 
LQ14(B) novel pile group (centre pile enhanced with eight 100mm long 
mini-piles with 3D spacing; Test LQ18(B) single pile foundation 
(centrifuge was not stopped between the first and second loading cycle).  
3rd loading cycle – test LQ18(B) centre pile enhanced with eight 100mm 
long mini-piles with 3D spacing.  
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Figure 5.35 Pile improvement and caisson effect using mini-piles, trials at 

Chattenden, Kent, UK (Fernie et al., 2006). 
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Figure 5.36 Geometry of test carried out and their performance during load testing, 
trials at Chattenden, Kent, UK (Fernie et al., 2006). 



256 

 
 
 
Figure 6.1 Axial loading pile foundation device used in centrifuge model testing 

(Morrison, 1994). 
 
 
 

 
 
 
Figure 6.2 New loading apparatus developed for centrifuge model testing. 
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Figure 6.3 Installation of 10mm diameter model piles at 1g. 
 
 

 
 
 
Figure 6.4 Model on centrifuge swing and ready for spin up. 
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Figure 6.5 Enhanced existing model pile foundations, after initial loading, with 

mini-pile groups. 
 
 

 
 
 
Figure 6.6 Pore pressure transducer at the tip of the model pile used in centrifuge 

model testing (Test LQ19). 
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Figure 6.7 LVDT used to measure model pile displacement during centrifuge 

testing. 
 
 
 

 
 
 
Figure 6.8  Load cell connected to a loading pin used in centrifuge model testing. 
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Figure 6.9  Test LQ5(A) and LQ(6) single pile foundations subjected to 1st and 2nd 

loading to failure.  An increase in pile capacity of 20% was observed 
during 2nd loading. 
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Figure 6.10  Tests LQ7(A) and LQ13(B) single pile foundations subjected to 1st and 

2nd loading.  The piles were subjected to working load during the 1st 
cycle.  The piles were loaded to failure during the 2nd cycle. 
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Figure 6.11  1st loading cycle - single pile foundation loaded up to working load 

(FOS=2.0), tests LQ9(A) and LQ11(A).  2nd loading cycle – enhanced 
pile foundations with 8 mini-piles 100mm long, test LQ9(A) with 1.5D 
spacing and test LQ11(A) with 2D spacing. 

 
 
 
 
 
 
 



263 

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10
Measured displacement / Existing pile diameter (%)

M
ea

su
re

d 
lo

ad
 (N

)

LQ10(B) - First Loading
LQ10(B) - Second Loading - 1.5D
LQ12(A) - First Loading 
LQ12(A) - Second Loading - 2D

 
 
Figure 6.12  1st loading cycle - single pile foundation loaded up to working load 

(FOS=2.0), tests LQ10(B) and LQ12(A).  2nd loading cycle – enhanced 
pile foundations with 8 mini-piles 200mm long, test LQ10(B) with 1.5D 
spacing and test LQ12(A) with 2D spacing. 

 
 
 
 
 
 
 



264 

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10

Measured displacement / Pile diameter (%)

M
ea

su
re

d 
lo

ad
 (N

)

LQ11(A) - First Loading
LQ11(A) - Second Loading - 8MP
LQ10(A) - First Loading
LQ10(A) - Second Loading - 16MP

 
Figure 6.13  Tests LQ10(A) and LQ11(A).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – enhanced piled 
foundations loaded to failure: test LQ10(A) enhanced pile foundation 
with sixteen 100mm long mini-piles at 3D spacing and test LQ11 
enhanced pile foundation with eight 100mm long mini-piles at 3D 
spacing. 
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Figure 6.14  Tests LQ12(A) and LQ12(B).  1st loading cycle – single pile foundation 
loaded up to working load.  2nd loading cycle – enhanced pile foundation: 
Test LQ12(A) eight 200mm long mini-piles with 2D spacing; Test 
LQ12(B) sixteen 200mm long mini-piles with 2D spacing. 
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Figure 6.15  Tests LQ11(A) and LQ12(A).  1st loading cycle – single pile foundation 

loaded up to working load.  2nd loading cycle – enhanced pile foundation: 
Test LQ11(A) eight 100mm long mini-piles with 2D spacing; Test 
LQ12(A) eight 200mm long mini-piles with 2D spacing. 
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Figure 6.16  Tests LQ17(A) and LQ17(B).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – novel pile group: Test 
LQ16(A) eight 200mm long mini-piles with 3D spacing; Test LQ17(B) 
four 200mm long mini-piles with 3D spacing. 
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Figure 6.17  Tests LQ15(A) and LQ16(A).  1st loading cycle – single pile foundations 

loaded up to working load.  2nd loading cycle – novel pile group: Test 
LQ15(A) eight 200mm long mini-piles with 3D spacing; Test LQ16(A) 
four 200mm long mini-piles with 3D spacing. 
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Figure 6.18  Tests LQ16(A) and LQ17(A).  1st loading cycle – single pile foundations. 

2nd loading cycle – novel pile group: Test LQ16(A) eight 200mm long 
mini-piles with 3D spacing; Test LQ17(A) four 200mm long mini-piles 
with 3D spacing. 
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Figure 6.19  10mm diameter pile foundation enhanced with eight mini-piles of 

100mm long with 2D spacing, where D is the diameter of the centre 
existing pile. 
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Figure 6.20 Tests LQ7(A), LQ14(B) and LQ18(B).  1st loading cycle – single pile 

foundation.  2nd loading cycle – Test LQ7(A) single pile foundation; Test 
LQ14(B) novel pile group (centre pile enhanced with eight 100mm long 
mini-piles with 3D spacing; Test LQ18(B) single pile foundation 
(centrifuge was not stopped between the first and second loading cycle).  
3rd loading cycle – test LQ18(B) centre pile enhanced with eight 100mm 
long mini-piles with 3D spacing.  
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Figure 6.21  Performance of single pile foundations during 1st and 2nd loading.  Test 

LQ6(A) – centrifuge was stopped between the first and second loading.  
Test LQ19(B) – centrifuge was NOT stopped between the first and 
second loading.  
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Figure 6.22  The effects on centre-to-centre spacing of the mini-piles as a result of 

diameter change of the mini-piles and the distance from the centre pile. 
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