KLESHCHEV’S DECOMPOSITION NUMBERS AND BRANCHING COEFFICIENTS IN THE FOCK SPACE

JOSEPH CHUANG, HYOHE MIYACHI, AND KAI MENG TAN

Abstract. We give combinatorial descriptions of some coefficients of the canonical basis of the q-deformed Fock space representation of $U_q(\hat{s}l_e)$ and of some matrix entries for the action of the Chevellay generators f_i with respect to the canonical basis. These are q-analogues of results of Kleshchev on decomposition numbers and branching coefficients for symmetric groups and Schur algebras.

1. Introduction

Throughout we fix an integer $e \geq 2$. Lascoux, Leclerc, and Thibon [7, 9] used the representation theory of the quantum affine algebra $U_q(\hat{s}l_e)$ to introduce for every pair of partitions λ and σ a polynomial $d_{\lambda\sigma}(q)$ with integer coefficients (which depends on e). They conjectured these polynomials to be q-analogues of decomposition numbers for Hecke algebras and quantized Schur algebras at complex e-th roots of unity. These conjectures were proved by Ariki [1] and by Varagnolo-Vasserot [16] respectively, and these polynomials are now often called q-decomposition numbers.

Leclerc’s lectures [8] are a good introduction to this subject as well as a convenient reference for the results we need here.

In [6, Theorem 1.10], Kleshchev gave a combinatorial description in terms of what he calls ‘latticed subsets’ of the decomposition numbers of symmetric groups (i.e., multiplicities of simple modules D^{μ} in Specht modules S^{λ}) in cases where the partition μ is obtained from λ by moving a single node. He also provided a description in terms of ‘normal nodes’ of the branching coefficient (i.e., the multiplicity of the simple module D^{ν} in the restricted simple module $D^{\mu} \uparrow_{S_n-1}^{S_n}$) when ν is obtained from μ by removing a node ([8, Theorem 1.4]). This branching coefficient may also be described as the multiplicity of the projective cover $P(D^{\mu})$ in a direct sum decomposition of the induced projective cover $P(D^{\nu}) \uparrow_{s_n}^{s_e}$. In this paper, we give analogues of these results for the q-decomposition numbers. When we apply Ariki’s and Varagnolo-Vasserot’s theorems, we then obtain the corresponding decomposition numbers and branching coefficients for Hecke algebras and quantized Schur algebras at complex e-th roots of unity.

This paper is organized as follows: in section 2, we introduce the background theory and obtain some useful preliminary results. In section 3, we review the theory of sign sequences and set up the machinery necessary for the proof of the main theorems of this paper. We then state and prove the
main theorems in section 4, and finally conclude with an example illustrating
the main theorems.

Acknowledgement

We thank Bernard Leclerc for his comment on generalising the results
of this paper. The second author thanks Yoshihisa Saito for the helpful
discussions on the relationship between canonical bases and perverse sheaves.
The third author acknowledges support by Academic Research Fund R-146-
000-043-112 of National University of Singapore.

2. Background

2.1. Partitions. Let \(P_n \) be the set of partitions of a nonnegative integer \(n \),
and let \(P = \bigcup_n P_n \) be the set of all partitions. The standard dominance
ordering on \(P_n \) is denoted by \(\triangleright \). We identify a partition \(\lambda = (\lambda_1, \lambda_2, \ldots) \)
with its Young diagram

\[
\{(j, k) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \mid 1 \leq k \leq \lambda_j\}.
\]

The residue of a node \((j, k)\) in a Young diagram \(\mu \) is the residue class of
\((k - j) \) modulo \(e \). If \((j, k)\) has residue \(r \), we say that \((j, k)\) is an \(r \)-node.
If in removing \((j, k)\) from \(\mu \), we obtain a Young diagram \(\lambda \) then \((j, k)\) is both
a removable \(r \)-node of \(\mu \) and an indent \(r \)-node of \(\lambda \).

2.2. The Fock space representation. The algebra \(U_q(\widehat{\mathfrak{sl}}_e) \) is the asso-
ciative algebra over \(\mathbb{C}(q) \) with generators \(e_r, f_r, k_r, k_r^{-1} \) \((0 \leq r \leq e - 1) \),
\(d, d^{-1} \) subject to some relations (see, for example, \([8, \S 4]\)). An important
\(U_q(\widehat{\mathfrak{sl}}_e) \)-module is the Fock space representation \(F \) \([3, 14]\), which has a basis
\(\{s(\lambda) \mid \lambda \in \mathcal{P}\} \) as a \(\mathbb{C}(q) \)-vector space. In fact, \(F \) admits another action
by the Heisenburg algebra which commutes with the action of \(U_q(\widehat{\mathfrak{sl}}_e) \), and
these two actions in effect make \(F \) a \(U_q(\widehat{\mathfrak{gl}}_e) \)-module.

For our purposes an explicit description of the action of just the \(f_r \)'s on
\(F \) will suffice.

Let \(\lambda \) be a partition with indent \(r \)-node \((j, k)\), and write \(\mu \) for the
partition obtained from \(\lambda \) by adding \((j, k)\). Let \(N(\lambda, \mu) \) be the number of indent
\(r \)-nodes of \(\lambda \) that are situated to the right of \((j, k)\) minus the number of
removable \(r \)-nodes of \(\lambda \) situated to the right of \((j, k)\). We have

\[
f_r(s(\lambda)) = \sum_{\mu} q^{N(\lambda, \mu)} s(\mu),
\]

where the sum is over all Young diagrams \(\mu \) obtained from \(\lambda \) by adding an
indent \(r \)-node.

In \([9]\), Leclerc and Thibon introduced an involution \(x \mapsto x^\dagger \) on \(F \), having
the following properties (among others):

\[
a(q)x = a(q^{-1})x^\dagger, \quad \text{and} \quad f_r(x) = f_r(x^\dagger) \quad (a \in \mathbb{C}(q), \ x \in F).
\]

There is a distinguished basis \(\{G(\sigma) \mid \sigma \in \mathcal{P}\} \) of \(F \) having the following characterization (\([9, \text{Theorem 4.1}]\)):

\[\text{We are following the terminology used in [6] and [8]; Kleshchev has since used the term addable nodes in more recent papers.}\]
DECOMPOSITION NUMBERS AND BRANCHING COEFFICIENTS

(1) $G(\sigma) \equiv s(\sigma) \pmod{qL}$, where L is the $\mathbb{Z}[q]$-lattice in F generated by \{s(\lambda) | \lambda \in \mathcal{P}\}.

(2) $\overline{G(\sigma)} = G(\sigma)$.

This basis is in fact the canonical basis of F as a $U_q(\widehat{\mathfrak{sl}}_e)$-module in the sense of [9].

Let $\langle -,-\rangle$ denote the inner product on F for which \{s(\lambda) | \lambda \in \mathcal{P}\} is orthonormal. Then the q-decomposition number $d_{\lambda \sigma}(q)$ is defined as $\langle G(\sigma), s(\lambda) \rangle$, the coefficient of $s(\lambda)$ in $G(\sigma)$.

The q-decomposition numbers enjoy the following property:

Theorem 2.1 ([13, 3.1] [5, Theorem 9, Proposition 11, Corollary 14]). We have

$$d_{\sigma \sigma}(q) = 1,$$

$$d_{\lambda \sigma}(q) \in q\mathbb{N}_0[q] \quad \text{for all } \lambda \neq \sigma.$$

Furthermore, $d_{\lambda \sigma}(q) \neq 0$ only if $\sigma \trianglerighteq \lambda$ and λ and σ have the same e-core.

The deepest part of this theorem is the positivity of the q-decomposition numbers, which follows from Lusztig’s geometric approach to canonical bases. We shall require another positivity property of the canonical basis of F. While it is a direct consequence of Lusztig’s work [11, 12] and Schiffman’s solution [15] to Varagnolo-Vasserot’s conjecture [16], we could not find a convenient reference so we briefly review the argument here.

Let U^-_e be the generic Hall algebra of type $A^{(1)}_e-1$. It contains the negative part of $U_q(\widehat{\mathfrak{sl}}_e)$ as a proper subalgebra. Lusztig [11] defines a canonical basis B of U^-_e in terms of perverse sheaves.

Theorem 2.2 (Lusztig). For any two canonical basis elements b and b' of U^-_e, the coefficients of the expansion of bb' in terms of the canonical basis B belong to $\mathbb{N}_0[q,q^{-1}]$.

This result is stated explicitly by Lusztig [11, 11.5(a)], at least for the canonical basis in the negative part of $U_q(\widehat{\mathfrak{sl}}_e)$; the argument for the Hall algebra is the same. To explain this we use the notation in the proof of [16, 7.5]. The point is that the convolution $*$ is defined by Lusztig on the categories $D^b_{\text{Gut}}(E_U)$’s themselves. So the convolution product of simple perverse sheaves on E_U and E_W is a direct sum of shifts of simple perverse sheaves on E_V. As the elements of B are defined (see, e.g., [16, 3.5]) as Frobenius traces of simple perverse sheaves on various E_U’s, we get the claim.

The Chevalley generators f_r of the negative part of $U_q(\widehat{\mathfrak{sl}}_e)$ are, via the embedding into U^-_e, elements of B (see, e.g., [16, 7.5]). Hence we have

Corollary 2.3. For any canonical basis element $b \in B$ and any Chevalley generator f_r of U^-_e, each coefficient of the expansion of f_rb in terms of the canonical basis B belongs to $\mathbb{N}_0[q,q^{-1}]$.

Now Varagnolo and Vasserot [15, 6.2] described an action of the Hall algebra U^-_e on the Fock space F extending the action of the negative part of $U_q(\widehat{\mathfrak{sl}}_e)$, and their conjecture that

$$Bs(\emptyset) = \{G(\lambda) | \lambda \in \mathcal{P}\}$$
Proposition 2.4. If we write $f_r(G(\sigma)) = \sum_{\rho} a_\rho(q)G(\rho)$, then $a_\rho(q) \in \mathbb{N}_0[q,q^{-1}]$ for all ρ. We also have $a_\rho(q) = a_\rho(q^{-1})$.

Proof. For $\sigma \in \mathcal{P}$ choose $b_\sigma \in B$ such that $b_\sigma s(\emptyset) = G(\sigma)$. Then, by Corollary 2.3 we can write

$$f_r b_\sigma = \sum_{m} c_m(q) b_m,$$

where $c_m(q) \in \mathbb{N}_0[q,q^{-1}]$. Since

$$\sum_{m} c_m(q) b_m s(\emptyset) = f_r b_\sigma s(\emptyset) = f_r G(\sigma)$$

and each $b_m s(\emptyset) = G(\rho)$ for some ρ, we are done with the first assertion. The second assertion follows from the fact that $f_r(G(\sigma))$ and $G(\rho)$ are all $\bar{\sigma}$-invariant.

□

2.3. Some other useful results. We collate together some results which we shall require.

Theorem 2.5. [2] Theorem 1] Let $\lambda = (\lambda_1, \lambda_2, \ldots)$ and $\mu = (\mu_1, \mu_2, \ldots)$ be partitions.

(1) (Row removal) Suppose that $\lambda_1 + \cdots + \lambda_r = \mu_1 + \cdots + \mu_r$ for some r and let

$$\lambda^{(0)} = (\lambda_1, \ldots, \lambda_r), \quad \mu^{(0)} = (\mu_1, \ldots, \mu_r),$$

$$\lambda^{(1)} = (\lambda_{r+1}, \lambda_{r+2}, \ldots), \quad \mu^{(1)} = (\mu_{r+1}, \mu_{r+2}, \ldots).$$

Then $d_{\lambda \mu}(q) = d_{\lambda^{(0)} \mu^{(0)}}(q) d_{\lambda^{(1)} \mu^{(1)}}(q)$.

(2) (Column removal) Suppose that $\lambda_1' + \cdots + \lambda_r' = \mu_1' + \cdots + \mu_r'$ for some r and let

$$\lambda^{(0) \prime} = (\lambda_1', \ldots, \lambda_r'), \quad \mu^{(0) \prime} = (\mu_1', \ldots, \mu_r'),$$

$$\lambda^{(1) \prime} = (\lambda_{r+1}', \lambda_{r+2}', \ldots), \quad \mu^{(1) \prime} = (\mu_{r+1}', \mu_{r+2}', \ldots).$$

Then $d_{\lambda \mu}(q) = d_{\lambda^{(0) \prime} \mu^{(0) \prime}}(q) d_{\lambda^{(1) \prime} \mu^{(1) \prime}}(q)$.

The following lemma is clear.

Lemma 2.6. Suppose $a_1(q) + f_1(q) = a_2(q) + f_2(q)$, with $a_1, a_2 \in \mathbb{C}[q,q^{-1}]$, $a_1(q^{-1}) = a_1(q)$, $a_2(q^{-1}) = a_2(q)$ and $f_1, f_2 \in q\mathbb{C}[q]$. Then $a_1 = a_2$ and $f_1 = f_2$.

Proposition 2.7. Suppose $f_r(G(\lambda)) = \sum_{\nu} \nu \chi(q)G(\nu)$, and $(a_\mu(q)G(\mu), s(\tilde{\lambda})) \neq 0$ where $\tilde{\lambda}$ is the partition obtained from λ by adding an indent r-node lying on row b. Then μ is obtained from λ by adding $k + 1$ indent r-nodes, on rows $a_0, a_1, a_2, \ldots, a_k$ say, and removing k removable r-nodes, on rows b_1, b_2, \ldots, b_k say, $(k \geq 0)$ with

$$a_0 < b_1 < a_1 < b_2 < a_2 < \cdots < b_k < a_k \leq b.$$
Proof. As \(\langle a_\mu(q)G(\mu), s(\hat{\lambda}) \rangle \neq 0 \), we have \(a_\mu(q), d_{\lambda_\mu}(q) \neq 0 \), so that \(\mu \geq \hat{\lambda} \) by Theorem 2.1. Furthermore, \(\langle f_r(G(\lambda)), s(\mu) \rangle \neq 0 \) by Proposition 2.3. Since

\[
\langle f_r(G(\lambda)), s(\mu) \rangle = \sum_{\tilde{\mu}} d_{\tilde{\mu}\lambda}(q) \langle f_r(s(\tilde{\mu})), s(\mu) \rangle,
\]

where the sum runs over all partition \(\tilde{\mu} \) obtained from \(\mu \) by removing a removable \(r \)-node, we have \(d_{\tilde{\mu}\lambda}(q) \neq 0 \) for at least one such \(\tilde{\mu} \). Fix one such \(\tilde{\mu} \), say obtained from \(\mu \) by removing the \(r \)-node on row \(a \). We have \(\lambda \geq \hat{\mu} \) by Theorem 2.1, and together with \(\mu \geq \hat{\lambda} \), we see that

\[
\sum_{i=1}^{j} \lambda_i \geq \sum_{i=1}^{j} \tilde{\mu}_i \geq \sum_{i=1}^{j} \lambda_i
\]

whenever \(j < \min(a,b) \) or \(j \geq \max(a,b) \), so that \(\lambda_i = \tilde{\mu}_i \) whenever \(i < \min(a,b) \) or \(i > \max(a,b) \). Furthermore, if \(b < a \), then

\[
\sum_{i=1}^{b} \lambda_i \geq \sum_{i=1}^{b} \tilde{\mu}_i \geq \sum_{i=1}^{b} \lambda_i + 1,
\]

giving \(\lambda_b \geq \tilde{\mu}_b \geq \lambda_b + 1 \), a contradiction. Thus \(b \geq a \). Furthermore, for each \(a \leq j < b \), we have \(\sum_{i=a}^{j} \tilde{\mu}_i + 1 \geq \sum_{i=a}^{j} \lambda_i \geq \sum_{i=a}^{j} \tilde{\mu}_i \), which simplifies to

\[
0 \leq \sum_{i=a}^{j} (\lambda_i - \tilde{\mu}_i) \leq 1.
\]

Hence, we conclude that \(\hat{\mu} \) is obtained from \(\lambda \) by adding \(k \) indent nodes, on rows \(a_1, a_2, \ldots, a_k \) say, and removing \(k \) removable nodes, on rows \(b_1, b_2, \ldots, b_k \) say, with

\[
a \leq b_1 < a_1 < b_2 < a_2 < \cdots < b_k < a_k \leq b.
\]

It remains to show all the removable and indent nodes involved have residue \(r \).

Let \(\lambda^{(i)} = (\lambda_{b_1}, \lambda_{b_1+1}, \ldots, \lambda_{a_i}) \) and \(\tilde{\mu}^{(i)} = (\tilde{\mu}_{b_1}, \tilde{\mu}_{b_1+1}, \ldots, \tilde{\mu}_{a_i}) \) for each \(1 \leq i \leq k \). Then since \(d_{\tilde{\mu}\lambda}(q) \neq 0 \), we have \(d_{\tilde{\mu}^{(i)}\lambda^{(i)}}(q) \neq 0 \) for all \(i \) by row removal theorem (Theorem 2.5(1)). Thus, for each \(i \), \(\tilde{\mu}^{(i)} \) and \(\lambda^{(i)} \) have the same \(r \)-core by Theorem 2.1, and hence the nodes \((b_i, \lambda_{b_i})\) and \((a_i, \lambda_{a_i} + 1)\) have the same residue. As \(\hat{\lambda} \) is obtained from \(\mu \) by adding indent nodes on rows \(b_1, b_2, \ldots, b_k, b \) and removing removable nodes on rows \(a, a_1, a_2, \ldots, a_k \), and \(d_{\tilde{\mu}\lambda}(q) \neq 0 \), we can apply an argument similar to the above to conclude that the nodes \((b_1, \mu_{b_1} + 1)\) and \((a_i-1, \mu_{a_{i-1}})\) have the same residue, where \(b_{k+1} = b \) and \(a_0 = a \).

Thus all the nodes involved have the same residue, which must be \(r \) as this is the residue of \((b, \lambda_b + 1)\) and \((a, \mu_a)\). \(\Box \)
3. Sign sequences

In this section, we review the theory of sign sequences introduced by Kleshchev in [6], and set up the machinery necessary for the proof of the main theorems of next section.

Definition 3.1. Let $T = (t_1, \ldots, t_u)$ be a finite sequence with each $t_v \in \{\pm 1\}$. We call T a sign sequence.

For $0 \leq i < j \leq u+1$, we denote the sign subsequence $(t_{i+1}, t_{i+2}, \ldots, t_{j-1})$ of T by T^j_i. (Thus, $T^0_{u+1} = T$.)

The set (of integers) associated to T^j_i, denoted by $S(T^j_i)$, is $\{i+1, i+2, \ldots, j-1\}$.

We also write $|v|$ for $\sum_{i=v}^u t_i$.

Note. Our notation T^j_i equals the notation $T(i+1, j-1)$ used by Kleshchev in [6].

We pair the elements of $S(T)$ up using the following algorithm:

1. v is paired with $v+1$ whenever $t_v = 1$ and $t_{v+1} = -1$;
2. whenever v and w are as yet unpaired, with $v < w$, $t_v = 1$ and $t_w = -1$; and for all $v+1, v+2, \ldots, w-1$ are all paired, we pair v with w.

Definition 3.2. Denote the sets of paired and unpaired $v \in S(T)$ by $P(T)$ and $U(T)$ respectively. Furthermore, for $\Delta \in \{S, P, U\}$, write $\Delta^+(T)$ for $\{v \in \Delta(T) \mid t_v = 1\}$, and similarly define $\Delta^-(T)$.

The pairing of elements of $S(T)$ induces an involution p_T on $P(T)$.

Example. Let $T = (1, 1, -1, -1, -1, 1, -1, 1)$. Then $U^-(T) = \{5\}$, $U^+(T) = \{8\}$, $P^-(T) = \{3, 4, 7\}$, $P^+(T) = \{1, 2, 6\}$, and $p_T(1) = 4$, $p_T(2) = 3$, $p_T(6) = 7$.

We note the following easy consequences arising from this pairing:

Lemma 3.3.

(1) If $v \in P^+(T)$ and $v < w < p_T(v)$, then $w \in P(T)$ with $v < p_T(w) < p_T(v)$.
(2) If $v, w \in P^+(T)$ with $v < w$, then either $v < w < p_T(w) < p_T(v)$ or $v < p_T(v) < w < p_T(w)$.
(3) For all $v \in U^-(T)$ and for all $w \in U^+(T)$, we have $v < w$.
(4) $|T| = |U^+(T)| - |U^-(T)|$.

Given a subsequence T^j_i of T, we can also pair the elements of $S(T^j_i)$ using the same algorithm. We note that this process is just a ‘restriction’ of the pairing of elements of $S(T)$. More precisely, we have

$P(T^j_i) = \{v \in P(T) \mid i < v, p_T(v) < j\}$.

Definition 3.4. We say T^j_i is latticed if $U^-(T^j_i) = \emptyset$ (equivalently, if $S^-(T^j_i) = P^-(T^j_i)$).

Note. The empty sign sequence is latticed.

Lemma 3.5. Let $T = (t_1, t_2, \ldots, t_u)$ be a sign sequence, and suppose $v \in S^+(T)$. Then $v \in U^+(T)$ if and only if T^u_{v+1} is latticed.
Proof. If T^u_{v+1} is latticed, then v has no pair in $S(T)$, i.e. $v \in U^+(T)$. Conversely, if $v \in U^+(T)$, and $w \in S^-(T^u_{v+1})$, then $w \in P^-(T)$ by Lemma 3.3(3). Furthermore, by Lemma 3.3(1), $v < p_T(w)$, so that $w \in P^-(T^u_{v+1})$. □

Lemma 3.6. If T^i_j is latticed, then T^i_v is latticed for all v with $i < v \leq j$.

Proof. If $w \in S^-(T^i_j)$, then $w \in S^-(T^i_v) = P^-(T^i_j)$. Thus $i < p_T(w) < w \leq v$, so that $w \in P^-(T^i_v)$. □

Definition 3.7. A set $A = \{a_1, a_2, \ldots, a_s\}$ ($a_1 < a_2 < \cdots < a_s$) is a latticed subset for T^i_j if the following conditions hold:

1. $A \subseteq S^-(T^i_j)$;
2. $T^u_{a_k+1}$ is latticed for all $0 \leq k \leq s$ (where $a_0 = i$ and $a_{s+1} = j$).

We allow the possibility of $s = 0$ which corresponds to the case $A = \emptyset$.

Note. If $w \in U^-(T^i_j)$, then $w \in U^-(T^i_k)$ for all $i \leq k < w < l \leq j$. Thus any latticed subset for T^i_j necessarily contains $U^-(T^i_j)$ as a subset.

Remark. Our definitions of latticed sign sequences and latticed subsets are equivalent to those given in Definitions 1.2 and 1.8 of [6] respectively.

As an immediate consequence of Lemma 3.6, we have

Corollary 3.8. If A is a latticed subset for T^i_j, then $A \cap S(T^i_v)$ is a latticed subset for T^i_v for all v with $i < v \leq j$.

Proposition 3.9. Let $A = \{a_1, a_2, \ldots, a_s\} \subseteq S^-(T^i_j)$ ($a_1 < a_2 < \cdots < a_s$). Then

$$\overline{A} = A \cup \bigcup_{k=0}^{s} U^-(T^u_{a_k+1})$$

is a latticed subset for T^i_j (where $a_0 = i$ and $a_{s+1} = j$), and is the unique minimal latticed subset for T^i_j containing A.

We call \overline{A} the closure of A for T^i_j.

Proof. It is easy to see that \overline{A} is a latticed subset for T^i_j. Let B be a latticed subset for T^i_j containing A. If $w \in U^-(T^u_{a_k+1})$, then $w \in U^-(T^l_{a_k+1})$ for all $a_k \leq l < w < l_2 \leq a_{k+1}$; thus $w \in B$. This shows that $\overline{A} \subseteq B$. □

Definition 10. Let $N^-(T)$ denote the set of maximal elements of latticed subsets for T, i.e.

$$N^-(T) = \{v \in S^-(T) \mid v = \max(A) \text{ for some latticed subset } A \text{ for } T\}.$$

Lemma 11.

1. We have $v \in N^-(T)$ if and only if $v \in S^-(T)$ and T^u_{v+1} is latticed.
2. If $U^-(T) \neq \emptyset$, then $\max(U^-(T)) \in N^-(T)$. Moreover, $w \notin N^-(T)$ for all other $w \in U^-(T)$.

Proof. For part (1), the forward direction is clear from definition; conversely, if T^u_{v+1} is latticed, then v is the maximal element of the closure of $\{v\}$ in T. Part (2) follows since $U^-(T)$ is the closure of \emptyset for T, while part (3) follows immediately from part (1). □
Given a latticed subset A for T^w_0 with $w \in S^+(T)$, write \hat{A} for $A \cup U^-(T^{w+1})$. Then \hat{A} is a latticed subset for T. Note that, by Lemma 3.5, we have $\hat{A} = \emptyset$ if and only if $A = \emptyset$ and $w \in U^+(T)$.

Given a nonempty latticed subset B for T, write $\tau(B)$ for $B \setminus \{\max(B)\}$. Then $\tau(B)$ is a latticed subset for $T_0^{\max(B)}$ by Corollary 3.8. Let

$$L^+ = \{(A, w) \mid A \text{ is a latticed subset for } T_0^w, w \in S^+(T)\}$$

$$\setminus \{(\emptyset, w) \mid w \in U^+(T)\},$$

$$L^- = \{(B, x) \mid B \text{ is a latticed subset for } T_0^w, x \in N^-(T)\}.$$

Note that if $(B, x) \in L^-$, then $B \cup \{x\}$ is a latticed subset for T; in particular, $U^-(T) \subseteq B \cup \{x\}$, with equality if and only if

$$(B, x) = (\tau(U^-(T)), \max(U^-(T))).$$

Proposition 3.12. Let $\alpha : L^+ \mapsto L^-$, $(A, w) \mapsto (\tau(A), \max(A))$ and let $(B, x) \in L^-$. Then

$$\alpha^{-1}\{(B, x)\} = \{(B \cup \{x\}, w) \mid w \in U^+(T), w > x\} \cup M,$$

where $M = \{(B \cap S(T^w_0), w_0) \mid w_0 = \max(y \in P^+(T) \mid \tau(y) \in B \cup \{x\}) \text{ unless } B \cup \{x\} = U^-(T), \text{ in which case, } M = \emptyset.$$

Proof. Observe first that $\alpha(A, w) = (B, x)$ if and only if

$$\hat{A} = A \cup U^-(T^{w+1}) = B \cup \{x\}.$$

If $w \in U^+(T)$, then this condition reduces to $A = B \cup \{x\}$, since $U^-(T^{w+1}) = \emptyset$ by Lemma 3.5, thus, $\alpha(A, w) = (B, x)$ if and only if $A = B \cup \{x\}$ and $x < w$. Furthermore, if $\alpha(A_1, w_1) = (B, x) = \alpha(A_2, w_2)$ for some $w_1, w_2 \in P^+(T)$ with $w_1 < w_2$, then $\tau(w_2) > w_2 > w_1$, so that $\tau(w_2) \in \hat{A}_2 \setminus \hat{A}_1$, contradicting $\hat{A}_1 = B \cup \{x\} = \hat{A}_2$. Thus, there exists at most one (A, w) with $w \in P^+(T)$ such that $\alpha(A, w) = (B, x)$. As $\tau(w) \in \hat{A} \setminus U^-(T)$ if $w \in P^+(T)$, we see that there does not exist (A, w) with $w \in P^+(T)$ such that $\alpha(A, w) = (B, x)$ if $B \cup \{x\} = U^-(T)$. It remains then to show that $\alpha(A_0, w_0) = (B, x)$ whenever $B \cup \{x\} \neq U^-(T)$, where $A_0 = B \cap S(T^w_0)$.

By Corollary 3.8, A_0 is a latticed subset of T^w_0. Since $U(T^{w_0}_{\tau(w)}) = \emptyset$ by Lemma 3.3(1), we have

$$U^-(T^{w+1}_w) = \{\tau(w_0)\} \cup U^-(T^{w+1}_{\tau(w_0)}).$$

Thus $\hat{A}_0 = A_0 \cup U^-(T^{w+1}_w)$ is the closure of $A_0 \cup \{\tau(w_0)\}$ for T, and since $A_0 \cup \{\tau(w_0)\} \subseteq B \cup \{x\}$, we have $\hat{A}_0 \subseteq B \cup \{x\}$ by Proposition 3.9. Conversely, if $b \in B \cup \{x\} \setminus A_0$, then $b > w_0$. If $b \in P^-(T)$, then $\tau(b) \leq w_0$ by maximality of w_0, so that $b \in U^-(T^{w+1}_w)$. On the other hand, if $b \in U^-(T)$, then certainly $b \in U^-(T^{w+1}_w)$. Thus $B \cup \{x\} \setminus A_0 \subseteq U^-(T^{w+1}_w)$, so that $B \cup \{x\} \subseteq A_0 \cup U^-(T^{w+1}_w) = A_0$. Hence $\hat{A}_0 = B \cup \{x\}$. □

In the corollary below, we use the notation $[k]$ to denote $q^{1-k} + q^{3-k} + \ldots + q^{k-3} + q^{k-1}$ for $k \in \mathbb{Z}^+$.
Corollary 3.13. Let \((B, x) \in L^−\). Then
\[
\sum_{(A, w) \in \alpha \setminus \{B, x\}} q^{1+2|A|+|T_0^w|−|T_0^w|^{u+1}} = [1 + |T_0^{u+1}|]q^{1+2|B|+|T_0^w|} − \varepsilon,
\]
where \(\varepsilon = 0\) unless \(B \cup \{x\} = U^−(T)\), in which case, \(\varepsilon = q^{-|T|}\).

Proof. By Proposition 3.12, for each \((A, w) \in \alpha \setminus \{B, x\}\) with \(w \in U^+(T)\), we have \(w > x\) and \(A = B \cup \{x\}\), so that
\[
q^{1+2|A|+|T_0^w|−|T_0^w|^{u+1}} = q^{1+2|B|+|T_0^w|+|T_0^{x+1}|−2|T_0^{u+1}|}.
\]
Moreover, the only other possible element of \(\alpha \setminus \{B, x\}\) is \((B \cap S(T_0^{w_0}), w_0)\) where
\[
w_0 = \max\{y \in P^+(T) \mid pt(y) \in B \cup \{x\}\},
\]
and this contributes
\[
q^{1+2|B|+|T_0^w|−|T_0^{u+1}|}
\]
to the sum. Note further that if \(B \cup \{x\} = U^−(T)\), then
\[
q^{1+2|B|+|T_0^w|−|T_0^{u+1}|} = q^{-|T|}.
\]
The Corollary thus follows. \(\square\)

4. Main results

Throughout this section, we fix a residue class \(r\) modulo \(e\). We denote the set of indent (resp. removable) \(r\)-nodes of a partition \(\lambda\) by \(I(\lambda)\) (resp. \(R(\lambda)\)).

We label the elements of \(I(\lambda) \cup R(\lambda)\) as follows: \(I(\lambda) \cup R(\lambda) = \{c_1, c_2, \ldots, c_u\}\) such that if \(c_v\) is situated to the left of \(c_w\) then \(v < w\). The partition \(\lambda\) induces a sign sequence \(T(\lambda) = (t_1, t_2, \ldots, t_u)\) where \(t_v = 1\) if \(c_v \in R(\lambda)\), and \(t_v = -1\) if \(c_v \in I(\lambda)\). If \(c_v \in I(\lambda)\) (resp. \(R(\lambda)\)), we denote the partition obtained from \(\lambda\) by adding (resp. removing) \(c_v\) as \(\lambda^v\) (resp. \(\lambda_{\mid v}\)).

In the statements of the main theorems below, \(\lambda \in \mathcal{P}\) with \(T(\lambda) = (t_1, \ldots, t_u)\), and \([k]\) = \(q^{1-k} + q^{3-k} + \cdots + q^{k-3} + q^{k-1}\) for any \(k \in \mathbb{Z}^+\).

Theorem 4.1. Suppose \(f_r(G(\lambda)) = \sum_{\mu} a_\mu(q) G(\mu)\). Let \(v \in S^−(T(\lambda))\). Then
\[
a_{\lambda^v}(q) = \begin{cases}
1 + |T(\lambda)^{u+1}_v|, & \text{if } v \in N^−(T(\lambda)); \\
0, & \text{otherwise}.
\end{cases}
\]
Furthermore, if \(i_k \in S^−(T(\lambda))\), \(j_k \in S^+(T(\lambda))\) for \(k = 1, 2, \ldots, s\) with \(i_1 < j_1 < i_2 < j_2 < \cdots < i_s < j_s < v\), then
\[
a_{\lambda^v_{i_1 j_1 \cdots i_s j_s}}(q) = 0.
\]

Remark. Note that \(a_\mu(q)\) is the \(q\)-analogue of branching coefficients. The first assertion of Theorem 4.1 agrees with Theorem 1.4 of [6] upon specialization at \(q = 1\) with \(e = p\) and \(p\)-regular, since a removable \(r\)-node \(c_w\) of \(\lambda\) is normal if and only if \(T(\lambda)^{u+1}_w\) is latticed, so that \(c_v\) is a normal node of \(\lambda^v\) if and only if \(v \in N^−(T(\lambda))\) by Lemma 3.11(1).

Theorem 4.2. Let \(v \in S^−(T(\lambda))\) and \(w \in S^+(T(\lambda))\) with \(v < w\). Then
\[
d_{\lambda^v_{\mid w}, \lambda}(q) = \sum_A q^{1+2|A|+|T(\lambda)^w_v|},
\]
where the sum runs over all latticed subsets \(A\) for \(T(\lambda)^w_v\).
Proof. We prove Theorems 4.1 and 4.2 simultaneously by induction. For \(\lambda = \emptyset \in \mathcal{P}_0 \), Theorem 4.2 holds trivially.

Let \(\lambda \in \mathcal{P}_n \) and \(v \in S^{-}(T(\lambda)) \), and suppose that Theorem 4.2 holds for all partitions \(\mu \in \mathcal{P}_m \) with \(m \leq n \), and Theorem 4.1 holds for all \(x \in S^{-}(T(\lambda)) \) with \(x > v \). Let \(f_\gamma(G(\lambda)) = \sum_{q} a_{\lambda}(q)G(\mu) \). Write \(T(\lambda|x|) \) for \(T(\lambda)_{x|}^{v+1} \).

By Proposition 2.7, Lemma 3.11(3) and induction hypothesis, we have

\[
\langle f_\gamma(G(\lambda)), s(\lambda|x|) \rangle = \sum_{\mu} (a_{\lambda}(q)G(\mu), s(\lambda|x|))
\]

\[
= \sum_{x \in N^{-}(T) \cup \{v\}} (a_{\lambda|x|}(q)G(\lambda|x|), s(\lambda|x|))
\]

\[
= a_{\lambda|x|}(q) + \sum_{x \in N^{-}(T)} [1 + |T(\lambda)x|]d_{\lambda|x|,\lambda|x|}(q).
\]

On the other hand, we also have

\[
\langle f_\gamma(G(\lambda)), s(\lambda|x|) \rangle = \langle f_\gamma(s(\lambda)), s(\lambda|x|) \rangle + \sum_{w \in S^{+}(T)} d_{\lambda|x|\downarrow_{w},\lambda}(q)f_\gamma(s(\lambda|x|\downarrow_{w})), s(\lambda|x|))
\]

\[
= q^{-|T|} + \sum_{w \in S^{+}(T)} \sum_{A} q^{1+2|A|+|T(\lambda)|_{x|}^{v+1}},
\]

where \(A \) runs over all the latticed subsets for \(T(\lambda)|_{x|}^{v+1} \).

If \(v \notin N^{-}(T(\lambda)) \), then \(U^{-}(T) \neq \emptyset \) by Lemma 3.11(1), so that \(\emptyset \) is not a latticed subset for \(T_{x|}^{v} \) for all \(w \in U^{+}(T) \). By Corollary 3.13 (1) can be rewritten as

\[
\sum_{x \in N^{-}(T)} \sum_{B} [1 + |T(\lambda)x|]q^{1+2|B|+|T(\lambda)|_{x|}^{v}}
\]

where \(B \) runs over all the latticed subsets for \(T(\lambda)|_{x|}^{v} \). By induction hypothesis and row removal theorem (Theorem 2.5(1)), we have

\[
\sum_{B} q^{1+2|B|+|T(\lambda)|_{x|}^{v}} = d_{\lambda|x|,\lambda|x|}(q),
\]

except possibly when \(x = \max(N^{-}(T)) \). Comparing (2) with (*) and using Lemma 2.6, we see that \(a_{\lambda|x|}(q) = 0 \), and \(\sum_{B} q^{1+2|B|+|T(\lambda)|_{x|}^{v}} = d_{\lambda|x|,\lambda|x|}(q) \) for \(x = \max(N^{-}(T)) \) as well.

If \(v \in N^{-}(T(\lambda)) \), then \(U^{-}(T) = \emptyset \) by Lemma 3.11(1), and hence \(\emptyset \) is a latticed subset for \(T(\lambda)|_{v}^{w} \) for all \(w \in U^{+}(T) \). Thus, by Corollary 3.13 (1) can be rewritten as

\[
q^{-|T|} + \sum_{w \in U^{+}(T)} q^{1+|T(\lambda)|_{x|}^{v}+1} + \sum_{x \in N^{-}(T)} \sum_{B} [1 + |T(\lambda)x|]q^{1+2|B|+|T(\lambda)|_{x|}^{v}}
\]

\[
= [1 + |T|] + \sum_{x \in N^{-}(T)} \sum_{B} [1 + |T(\lambda)x|]q^{1+2|B|+|T(\lambda)|_{x|}^{v}},
\]

where \(B \) runs over all the latticed subsets for \(T(\lambda)|_{x|}^{v} \). Using arguments similar to the above, we get \(a_{\lambda|x|}(q) = [1 + |T|] \), and \(\sum_{B} q^{1+2|B|+|T(\lambda)|_{x|}^{v}} = d_{\lambda|x|,\lambda|x|}(q) \) for all \(x \in N^{-}(T) \).
Now, let \(\rho = \lambda^{i_1} \cdots j_1 \cdots i_s \downarrow j_s \), with \(i_1 < j_1 < \cdots < i_s < j_s < v \). Then by row removal theorem (Theorem 2.5(1)), we have
\[
\langle f_r(G(\lambda)), s(\rho^v) \rangle = \sum_{x \in S^+(T)} d_{\rho^v \downarrow x, \lambda} (q) \langle f_r(s(\rho^v \downarrow x)), s(\rho^v) \rangle
\]
\[
= \sum_{x \in S^+(T)} d_{\rho \lambda}(q) d_{\lambda^v \downarrow x, \lambda}(q) \langle f_r(s(\lambda^v \downarrow x)), s(\lambda^v) \rangle
\]
\[
= d_{\rho \lambda}(q) \sum_{y \in N^{-}(T) \cup \{v\}} a_{\lambda^v}(q) d_{\lambda^v \downarrow y, \lambda^v}(q)
\]
\[
= \sum_{y \in N^{-}(T) \cup \{v\}} a_{\lambda^v}(q) d_{\rho^v \downarrow y, \lambda^v}(q)
\]
\[
= \langle \sum_{y \in N^{-}(T) \cup \{v\}} a_{\lambda^v}(q) G(\lambda^v), s(\rho^v) \rangle.
\]
This implies \(a_{\rho^v}(q) G(\rho^v), s(\rho^v) = 0 \) by Proposition 2.4, so that \(a_{\rho^v}(q) = 0 \). Thus Theorem 4.1 holds for \(v \).

Now, suppose \(\mu \in P_{n+1} \). Note that the decomposition number \(d_{\mu^v \downarrow w, \mu}(q) \) can be obtained by induction hypothesis and Theorem 2.5 except when \(w \) indexes the removable node in the top row of the Young diagram of \(\mu \) and \(v \) indexes the bottom indent node in the first column. For this case, let \(\lambda = \mu^v \downarrow w \), and we have seen above that
\[
d_{\mu^v \downarrow w, \mu}(q) = d_{\lambda^v \downarrow, \lambda^v}(q)
\]
\[
= \sum_{B} q^{1+2|B|+|T(\lambda^w)|}
\]
\[
= \sum_{A} q^{1+2|A|+|T(\mu^w)|},
\]
where \(A \) runs over the latticed subsets for \(T(\mu)^w \). Thus Theorem 4.2 holds for \(\mu \), and this completes our proof. \(\square \)

Remark. Since both \(d_{\lambda}(q) \) and the decomposition numbers of symmetric groups obey the row removal theorem, it follows from Theorem 4.2 Theorem 1.10 of [6] and Ariki’s theorem [10] that the decomposition number indexed by partitions \(\lambda \) and \(\mu \) (with \(\mu \) \(p \)-regular) of the Hecke algebra at a complex \(p \)-th root of unity coincide with that of the symmetric group in characteristic \(p \) when \(\lambda \) is obtained from \(\mu \) by alternately removing a removable node and adding an indent node. This further implies that the corresponding adjustment matrix entry indexed by such a pair of partitions is zero. As Theorem 1.10 of [6] can be extended to an analogue for the Schur algebras, the adjustment matrix entry, from the quantized Schur algebra at a complex \(p \)-th root of unity to the classical Schur algebra in characteristic \(p \), indexed by such a pair of partitions (where \(\mu \) need not be \(p \)-regular), is also zero.

We conclude this paper with an example illustrating the main theorems.

Example. Let \(e = 2 \), and \(\lambda = (5, 3^2, 1) \), and \(r = 0 \).
Young diagram of $\lambda = (5, 3^2, 1)$.

Then $T(\lambda) = (-1, -1, 1, -1, 1)$. Let $f_0(G(\lambda)) = \sum_{\mu} a_{\mu}(q) G(\mu)$. Then

\[a_{(5,4,3,1)}(q) = a_{(5,3^2,2)}(q) = [2] = q + q^{-1}, \]
\[a_{(5,3^2,1^2)}(q) = a_{(5,4,2^2)}(q) = a_{(5,4,2,1^2)}(q) = 0, \]

and

\[d_{(4^2,3,1),(5,3^2,1)}(q) = d_{(5,3,2^2),(5,3^2,1)}(q) = q, \]
\[d_{(5,3,2,1^2),(5,3^2,1)}(q) = q^2, \]
\[d_{(4^2,3^2,2),(5,3^2,1)}(q) = q + q^3, \]
\[d_{(4^2,3^2,1^2),(5,3^2,1)}(q) = q^2 + q^4. \]

Using row removal theorem (Theorem 2.5(1)), we further have

\[d_{(4^2,3^2,1),(5,3^2,1)}(q) = q^2, \quad \text{and} \quad d_{(4^2,2^2,1),(5,3^2,1)}(q) = q^3. \]

References

(J. Chuang) Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom.

E-mail address: joseph.chuang@bris.ac.uk

(H. Miyachi) Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.

E-mail address: miyachi@math.nagoya-u.ac.jp

(K. M. Tan) Department of Mathematics, National University of Singapore, 2, Science Drive 2, Singapore 117543.

E-mail address: tanks@nus.edu.sg