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Abstract

An ideal observer will give equivalent weight to sources of information that are equally reli-

able. However, when averaging visual information, human observers tend to downweight or

discount features that are relatively outlying or deviant (‘robust averaging’). Why humans

adopt an integration policy that discards important decision information remains unknown.

Here, observers were asked to judge the average tilt in a circular array of high-contrast grat-

ings, relative to an orientation boundary defined by a central reference grating. Observers

showed robust averaging of orientation, but the extent to which they did so was a positive

predictor of their overall performance. Using computational simulations, we show that

although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances

performance in the presence of “late” noise, i.e. which corrupts decisions during integration.

In other words, robust decision strategies increase the brain’s resilience to noise arising in

neural computations during decision-making.

Author summary

Humans often make decisions by averaging information from multiple sources. When all

the sources are equally reliable, they should all have equivalent impact (or weight) on the

decisions of an “ideal” observer, i.e. one with perfect memory. However, recent experi-

ments have suggested that humans give unequal weight to sources that are deviant or

unusual, a phenomenon called “robust averaging”. Here, we use computer simulations to

try to understand why humans do this. Our simulations show that under the assumption

that information processing is limited by a source of internal uncertainty that we call

“late” noise, robust averaging actually leads to improved performance. Using behavioural

testing, we replicate the finding of robust averaging in a cohort of healthy humans, and

show that those participants that engage in robust averaging perform better on the task.

This study thus provides new information about the limitations on human decision-

making.
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Introduction

Decisions about the visual world often require observers to integrate information from multi-

ple sources. An ideal observer will give each source a weight that is proportional to its reliabil-

ity. Thus, where all sources are equally trustworthy, the best policy is simply to average the

available features or decision information. For example, a decision about which fruit to buy at

the supermarket might involve averaging the estimated size and colour of the produce, or a

wager about which football team will win might be made after averaging the speed and skill of

all the players on a team [1].

Previous studies have investigated how humans average perceptual information by present-

ing participants with array composed of multiple visual elements and asking them to report

the mean size, colour or shape of the items displayed [2–6]. Interestingly, recent reports sug-

gest that human averaging judgments do not resemble those of an ideal observer [7–10].

Rather, when averaging, humans tend to downweight or discount visual features that are

unusual or outlying with respect to the distribution of features occurring over recent trials

(“robust averaging”). Haberman and Whitney first showed that observers discount emotional

deviants when averaging the expression in human faces [7]. Subsequently, de Gardelle, Sum-

merfield and colleagues provided evidence that observers discount outlying colour or shape

values during averaging of features in a multi-element array [8, 9]. Control analyses ruled out

the possibility that the observed effect was an artefact of hardwired nonlinearities in feature

space. Together, these studies suggest that humans are “robust averagers”, overweighting inli-

ers relative to outliers rather than giving equal weight to all elements (although see [11] for a

failure to replicate this finding using a 2-alternative forced choice averaging task).

According to a widely-accepted framework with its roots in Bayesian decision theory [1, 12],

robust averaging is suboptimal. Intuitively, robust averaging discards information about the stimu-

lus array, and should thus reduce performance relative to a policy that integrates the stimulus fea-

ture values evenly. Why, then, do humans give more weight to inliers than outliers during

integration of decision information? Here, we tackled this question using psychophysical testing of

human observers and computational simulation. We asked participants to average the orientation

(tilt) in a circular array of gratings, relative to a central reference grating that either (i) remained

the same or (ii) varied in a trial-wise fashion over a block of trials. This latter manipulation allowed

us to test whether robust averaging is still observed even when the distribution of sensory informa-

tion is uniform around the circle and varies randomly from trial. Using this approach, we show

that human robust averaging can be conceived of as a policy that rapidly allocates limited resources

(gain; see Eq 2 below) to items that are closest to the category boundary (or indifference point).

Although this policy is suboptimal in the absence of noise, it has a surprising protective effect on

decisions that are corrupted by “late” noise arising during or beyond information integration.

Our manuscript is organised as follows. We begin by describing the behaviour of a cohort

of human observers performing the orientation averaging task. Next, we describe a simple psy-

chophysical model in which feature values (tilt, relative to a reference value) are transformed

nonlinearly before being averaged to form a decision variable. This variable is corrupted with

“late” (post-averaging) noise and then used to determine model choices. This model accounts

better for human behaviour (including observed robust averaging) than a rival account, based

on an ideal observer, that replaces the initial nonlinear step with a purely linear multiplicative

transformation. Next, we use simulations to explore the properties of this model. We show

that as we increase late noise, a model that engages in robust averaging comes to outperform

the linear model, i.e. achieves higher simulated choice accuracy. Finally, we return to the

human data, and show that for both model and humans, the use of a robust averaging strategy

is a positive predictor of decision accuracy, in particular under high estimated late noise.

Robust averaging and decision noise
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Results

Human participants (N = 24) took part in two psychophysical testing sessions separated by

approximately one week. On each of 2048 trials, they viewed an array of 8 high-contrast grat-

ings presented in a ring around a single central (reference) grating (Fig 1). The grating orienta-

tions were drawn from a single Gaussian distribution with mean μ � {-20˚, -10˚, 10˚, 20˚} and

standard deviation σ � {8˚, 16˚} relative to the reference. Their task was to report whether the

average orientation in the array was clockwise (CW) or counter clockwise (CCW) of the cen-

tral grating. The reference grating was drawn uniformly and randomly from around the circle,

and varied on either a trial-by-trial (variable reference) or block-by-block (fixed reference)

fashion. Fixed and variable reference conditions occurred in different sessions whose order

was counterbalanced over participants. Fully informative feedback was administered on every

trial.

Human behaviour

Mean accuracy and standard errors of mean (S.E.M.) for the human participants (lines) are

shown in Fig 2. Participants responded more slowly when the orientation mean approached

the reference (main effect of |μ|: F1,20 = 47.14 p< 0.0001) and when the orientation variance

increased (main effect of σ: F1,20 = 6.84, p = 0.017). They also made more errors for lower val-

ues of |μ| (F1,20 = 397.1, p< 0.0001) and higher values of σ (F1,20 = 116.1, p< 0.0001). Directly

comparing the low |μ| low σ condition (‘low-low’) to the high |μ| high σ condition (‘high-

high’), participants made more errors and are slower under high-high condition (accuracy:

F1,20 = 48.53, p< 0.001; RT: F1,20 = 20.67, p< 0.001) even though the|μ| to σ ratio is identical

in these two conditions. This result replicates previous findings [8].

As expected, participants were overall faster (F1,20 = 64.4, p< 0.0001) and more accurate

(F1,20 = 89.95, p< 0.0001) in the fixed reference than variable reference condition. An

Fig 1. Schematic demonstration of the stimulus array. The task was to report whether the average

orientation of the outer ring of gratings fell clockwise or counter clockwise of the orientation of the central

(reference) grating.

https://doi.org/10.1371/journal.pcbi.1005723.g001
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interaction between mean and session was observed for both RT (F1,20 = 9.63, p< 0.001) and

accuracy (F1,20 = 5.83, p = 0.025) indicated that the cost incurred by lower values of μ was

greater under the fixed than variable reference condition. No interactions between session and

feature variance were observed. There was a significant interaction for both accuracy (F1,20 =

4.18, p = 0.41) and RT (F1,20 = 8.06, p = 0.01) with sessions for the low-low and the high-high

condition, showing that the relative performance cost for the high-high condition was lower

under the variable reference condition. These findings indicate that our manipulation of fixed

vs. variable reference successfully influenced human categorisation performance, and that μ
and σ have comparable impact on accuracy and RT to that described in previous studies [8, 9].

The same results were obtained when this analysis was carried out on d’ rather than % correct

values (see S1 Fig, and S1 Table).

Next, to probe for robust averaging, we measured the influence that each feature carried on

the decision, as a function of its angle relative to the reference (see methods). Fig 3A shows the

average regression coefficient (weight) associated with each of 8 bins of the feature values (i.e.

orientations relative to reference) for the session with fixed reference (red line) and the session

with variable reference (green line). The shaded area shows the standard error of the mean

across observers. We first compared the coefficients with a factorial ANOVA, crossing the fac-

tors of session (fixed vs. variable reference) and bin. Consistent with the accuracy data above,

this yielded a main effect of session (F1,20 = 59.54, p< 0.001). However, there was also a main

effect of bin (F2.02,40.37 = 6.23, p = 0.004) with no interaction between these factors (p = 0.31).

Next, for each session, we directly compared the weights associated with (i) the four inlying

bins (bin 3, 4, 5, 6] and (ii) the four outlying bins (bin 1, 2, 7, 8]. In both sessions, participants

gave more weight to those samples falling in inlying than outlying bins (fixed reference: t20 =

7.8, p< 0.0001; variable reference: t20 = 6.3, p< 0.0001). In other words, under both fixed and

variable reference, participants displayed a pattern of behaviour consistent with a “robust aver-

aging” policy for orientation.

Model fitting

We fit our data with a simple psychophysical model (power model; see methods). Each array

element i was characterised by a feature value Xi that was proportional to its orientation,

recoded to be relative to the reference (in radians, i.e. in the range -0.79rad to 0.79rad

Fig 2. Model and human data. Mean accuracy and the standard error of mean of human (grey lines) and

model (green dots) for high and low variance conditions, with low mean (i.e. orientation close to the reference;

light grey lines) and high mean (dark grey lines). Panel A shows performance in the fixed reference session,

and the panel B shows the variable reference condition.

https://doi.org/10.1371/journal.pcbi.1005723.g002
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corresponding to -45˚ to +45˚. The model computes a decision value (DV) by transforming X
with a nonlinear function parameterised by an exponent k, and summing the resulting values:

DV ¼
X8

i¼1

signðXiÞ � jXij
k

The functions mapping X onto DV under different levels of k (red to blue lines respectively)

are shown in Fig 4A. For the special case k = 1, the transfer function is linear, and DV is equiv-

alent to the simple sum of Xi; this is the rule used by the experimenter to determine feedback.

Next, we calculated choice probabilities by passing the DV through a sigmoidal choice func-

tion with the inverse-slope (s; see methods). Varying the inverse-slope of the choice function is

approximately equivalent to assuming that decision values are corrupted with varying levels of

zero-mean Gaussian noise at a post-averaging stage (e.g. “late” noise), with high values of s
(shallower slope) implying more late noise and thus lower sensitivity. This model allowed us to

obtain best-fitting values of k and s for each participant in both fixed and variable reference

Fig 3. Parameter estimates of orientation of each grating relative to the reference. The y-axis shows

parameter estimates for a probit regression in which the angles of orientation of each grating (relative to the

reference) were used to predict choice. Angles were tallied into 8 bins, from most negative to most positive

relative to the reference, so that each parameter estimate shows the relative weight given to a particular

portion of feature space. The x-axis shows the bin center of each bin. The inverted-U shape of the curve is a

signature of robust averaging. Shaded areas are the standard error of mean. (A) Weighting functions

estimated using human choices (B) Weighting functions for recreated model choices using the best fitting

parameters from the power model using the best fitting parameters from human data. (C) Weighting functions

for simulated model choice under a case in which angles are linearly mapped onto DV.

https://doi.org/10.1371/journal.pcbi.1005723.g003
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conditions, using maximum likelihood estimation. Values of k and s for each participant are

plotted in Fig 4B.

We observed that values for the inverse-slope of the choice function s were steeper in the

fixed than variable reference condition (t20 = 4.27, p< 0.001), consistent with lower perfor-

mance in the variable reference condition. This is likely to reflect the additional processing

cost for recoding raw orientations relative to the reference when the latter changed from trial

to trial. Values of k did not differ between the fixed and variable reference conditions (p =

0.93), but for both conditions, best-fitting values of k were lower than 1 (fixed: t20 = 9.41, p<
0.0001; variable: t20 = 3.15, p = 0.005). This is consistent with a compression of those array ele-

ments that were outlying relative to the reference, i.e. a robust averaging policy. To confirm

that the model was showing robust averaging, we then created model choices under the best-

fitting parameterisation, by randomly simulating binary choices from the estimates of choice

probability using the best-fitting model. Using this approach, we were able to recreate the pat-

tern of accuracy (Fig 2, dots) and weighting profile (Fig 3B) displayed by human participants.

In other words, the model displayed comparable costs to humans in each condition, and

exhibited the same tendency to engage in robust averaging.

Fig 4. Mapping sensory inputs to decision values. (A) Left panel: the different functions that map feature

values (angles relative to the reference in radians) to decision values for the power model. Coloured lines

represent functions for different values of k from 0.1 to 2, with low values represented by reddish lines and high

values represented by bluish lines. Right panel: the equivalent functions for the equivalent gain linear model. In

the left and right panels, models with equivalent gain are represented with lines of equivalent colour. (B) The

best fitting k values (left panel) and s values (right panel) in human for fixed reference (x-axis) and variable

reference session (y-axis).

https://doi.org/10.1371/journal.pcbi.1005723.g004
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In the model, robust averaging occurs because of the nonlinear form of the function that

maps X, the feature values, onto DV, the decision values, which is steeper in the centre (near 0)

and shallower at the edges (far from 0). As a control, we tested the weighting profile observed

when X is linearly mapped onto DV. This confirmed that a linear transformation of feature val-

ues did not give rise to robust averaging (Fig 3C). Parameter recovery simulation (see meth-

ods) confirmed that k and s were fully identifiable for the power model (shown by S2 Fig that

actual parameters and recovered parameters fall close to the identity line).

As thus described, our model assumes no noise in the encoding of each individual grating.

This assumption follows from the fact that in the experiment, each individual array element

(grating) was presented with full contrast and thus the orientation should have been relatively

easy to perceive. For example, using a similar stimulus array, one report finds estimates of

equivalent encoding noise in the range of 2–6˚ when contrast values exceed about 0.3 [13].

Moreover, although we additionally randomised the latency with which arrays were presented

at 4 levels (250, 500, 750 or 1000 ms). Long presentation latencies led to longer RT on correct

choices (F2.47,56.73 = 8.65, p< 0.001), but this factor had no influence on accuracy (p = 0.42; S3

Fig). Nevertheless, to test this explicitly, we fit a variant of the model in which feature values Xi

were corrupted by “early” noise alone–a source of variance that arises before any nonlinearity

and averaging, that corrupts each tilt independently relative to the reference (see methods).

This model failed to capture the robust averaging effect because the introduction of early noise

with power transformation would lead to a more stochastic choice pattern. The same feature

value that are corrupted by random early noise would sometimes drive the decision to one

choice and sometimes to the other choice. We formally compared this “Early noise only”

model to our “Late noise only” model, i.e. to that with k and s described above, finding that it

fits the conditionwise accuracy worse in both the fixed reference session (t20 = 8.06, p<

0.0001) and the variable reference session (t20 = 7.97, p< 0.0001; S4C Fig).

Our model describes the computations that underlie human choices in a simplified fashion,

using power-law transducers. However, these functions are intended to describe the output of

computations that occur at individual neurons. To demonstrate how transfer functions of this

form might arise, we additionally simulated decisions with a population coding model, in

which features are processed by a bank of simulated neurons with tuning functions of variable

amplitude (see methods). By assuming the height of tuning functions for neurons coding inli-

ers or outliers can vary, we showed in S5 Fig that we can recreate the family of transfer func-

tions shown in Fig 4A. Given that we could recreate the power-law transducer functions using

this model, it is unsurprising that the population coding model was also able to recreate the

pattern of accuracy (S6 Fig) and the weighting profile (S7 Fig) displayed by human partici-

pants. However, we chose to model our data with the simpler, psychophysical variant of the

model, because it does not require additional assumptions that are not germane to our main

points (e.g. the range of tuning widths for the neuronal population).

Understanding drivers of model performance

Next, turning to our main point, we used simulation to understand how model performance

varied under different levels of late noise and degree of robust averaging by exploring different

values of s and k. Model performance (simulated decision accuracy) for the power model under

different values of k and s is shown in Fig 5A (left panel). As expected, performance worsens

with increasing late noise (bluish lines). However, performance also depends on k. When late

noise s is higher, the model performs better with lower values of k (i.e. those that yield robust

averaging). Notably, performance is best with values of k that are lower than 1, i.e, under a pol-

icy that distorts feature information rather than encoding the feature values linearly.

Robust averaging and decision noise
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One trivial reason why model performance might grow as k is reduced relates to the scaling

of the decision values DV that are produced when Xi is transformed. After passage through the

sigmoidal choice function, larger values of DV will yield choice probabilities that are closer to

0 or 1 and thus increase model performance. To adjust for this, we first calculated the scaling

of the decision values that resulted from each transfer function parameterised by a different

value of k, as follows:

g ¼
2

1þ k

This gain normalisation term is proportional to the integral of the absolute value of the

curves in Fig 4A. This normalisation thus adjusts for the expected gain (i.e. proportional

increase or decrease in DV) that would be incurred by the nonlinear transducer (in the theo-

retical case in which there is a flat distribution of features). The normalization thus allowed us

to compare nonlinear and linear models with equivalent gain.S8 Fig shows the resulting value

of g for each corresponding k. We then compared the performance of the model under each

transfer function with an equivalent linear model, in which decision values were computed

under k = 1 (no compression) but rescaled by g. This is equivalent to assuming that decisions

are limited by a fixed resource (or gain), for example an upper limit on the aggregate firing

rates produced by a population of neurons.

Creating this family of yoked linear and nonlinear models allowed us to directly assess the

costs and benefits to performance of different values of k in a way that controlled for the level

of gain. This can be seen in Fig 5B, where we plotted the difference in accuracy between the

linear model and a power model that is matched for gain. The red areas in lower left show that

when late noise is higher, performance benefits when the model engages more strongly in

robust averaging (k< 1). In other words, a policy of allocating gain to inliers rather than outli-

ers protects decisions against late noise.

Fig 5. Model accuracy. (A) Simulated model accuracy for the power model under different values of exponent k (bottom x-axis,

corresponding g is plotted on the top x-axis) and late noise (s; in a range of 0.05 to 5) in coloured lines with reddish (bluish) lines

show simulations with lowest (highest) late noise. The black line is the accuracy of the model when items were allocated with

equivalent gain and equally integrated (k = 1) (B) After simulating model accuracy of the equivalent gain linear model, performance

difference between the power model and the linear model is shown in the coloured surface. Positive values (yellow-red) show

parameters where the nonlinear model performance is higher than equivalent linear variants, and negative values (cyan-blue)

show the converse. Best fitting k and s for each subject of the fixed (dark grey dots) and variable reference session (light grey dots)

were displayed to show the performance gain relative to using linear weighting scheme.

https://doi.org/10.1371/journal.pcbi.1005723.g005
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At first glance, this effect might seem counterintuitive. Why should allocating gain prefer-

entially to one portion of feature space prior to averaging benefit performance, if overall gain

is equated? One way of thinking about the difference between a power model (with parameter

k) and a linear model with equivalent gain g is that whereas linear model allocates gain evenly

across feature space (i.e. equivalently to inliers and outliers), the power model with k< 1

focusses gain on those items that are closest to the category boundary, where the transfer func-

tion is steepest. Because the overall distribution of features across the experiment is Gaussian

with a mode close to the boundary, this means that the power model allocates gain more effi-

ciently, i.e. towards those features that are most likely to occur. We have previously described

such “adaptive gain” phenomena in other settings [14, 15].

To verify this contention, we repeated our simulation with a new simulated set of input val-

ues X that were drawn from a uniform random distribution with respect to the reference,

rather than using the Gaussian distributions of tilt values that were viewed by human observ-

ers. This simulation revealed no performance advantage for robust averaging. Rather, under

uniformly distributed features the best policy was to avoid the nonlinear step and simply aver-

age the feature values, as predicted by the ideal observer framework. This is shown in Fig 6,

where best performance under the lowest late noise case occurs when feature values are equally

integrated. Under high late noise, values of k< 1 lead to relatively better performance than

when all features are equally integrated. However, there is no performance gain for robust

averaging compared to the equivalent gain linear model, meaning that unlike in Fig 5, the per-

formance gain shown in Fig 6 is purely due to a larger scaling of input to output values under

k< 1. This is in fact confirmed by a separate sequential number integration experiment with a

different class of stimulus—symbolic numbers. The study showed that that the optimal k val-

ues under high late noise is greater than 1 since the stimulus were drawn from a uniform dis-

tribution [16].

Linking decision policy to performance

These explorations allow us to make a new and counterintuitive prediction for the human

data. If late noise is high, then rather than hurting decision performance, robust averaging

should help. We tested this contention using an analysis approach based on multiple

Fig 6. Model accuracy under uniform distributions. Panels A and B are equivalent to panel A and B for Fig 5. However, here the

simulations are performed by drawing feature values from uniform random distributions, rather than those used in the human

experiment.

https://doi.org/10.1371/journal.pcbi.1005723.g006
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regression. For each participant, we split trials into two groups (even and odd). We first

obtained the best-fitting k and s parameters for each participant using even trials. Then, using

multiple regression, we estimated multiplicative coefficients that best describe the relationship

between the best-fitting parameters for each subject and performance on (left out) odd trials,

separately for the fixed and variable reference sessions:

cor ¼ b0 þ b1kþ b2sþ b3s � k

Where cor is a vector of mean accuracies (one accuracy for each subject per session), and k
and s are vectors of corresponding best-fitting parameters. In the variable reference condition,

both k and s were significant negative predictors of performance (k: β1 = -0.14, t17 = -2.51,

p = 0.022, 95% CI [-0.032–0.26]; s: β2 = -0.041, t17 = -7.15, p< 0.001, 95% CI [-0.03–0.052]). In

other words, in the variable reference condition, where late noise is intrinsically higher, low val-

ues of k led to enhanced performance across the human cohort. In the fixed reference session,

neither k nor s was significant predictors of performance (p = 0.56 and p = 0.16 respectively),

but their interaction was significant (β3 = -0.13, t17 = -2.88, p = 0.01, 95% CI [-0.04–0.21]). In

other words, in the fixed reference condition, predicted performance was higher under lower k
only for those participants with higher estimated late noise s. These findings confirm that in our

experiment, robust averaging conferred a benefit on performance under high late noise.

Discussion

Human observers have previously been shown to be “robust averagers” of low-level visual fea-

tures such as shape and colour [8, 9], and even of high-dimensional stimuli such as faces [7].

Here, we add to these earlier findings, describing robust averaging of the tilt of a circular array

of gratings. However, the focus of the current experiment was to use computational simula-

tions to understand why humans engage in robust averaging. We describe a simple psycho-

physical model in which features values are transformed nonlinearly prior to averaging. This

model assumes the decisions are limited by a fixed resource, and that gain is allocated differen-

tially across feature space, giving priority to inliers–those features that fall close to the category

boundary. Through simulations, we find that in our experiment, this relative discounting of

outliers gives a boost to performance when decisions are additionally corrupted by “late”

noise, i.e. noise arising during, or beyond, the integration of information.

Previously, robust averaging has been considered a suboptimal policy that incurs an unnec-

essary loss by discarding relevant decision information [17]. The current work offers a new

perspective, suggesting that robust averaging is a form of bounded rationality. If we consider

an observer whose neural computations are not corrupted by late noise, it is true that robust

averaging incurs a cost relative to perfect averaging. However, here we consider decisions as

being constrained not just by sources of noise that are external to the observer, or that arise

during sensory transduction, but also capacity limits in human information processing. Pro-

cessing capacity allows a multiplicative gain to be applied to feature values, with higher gain

ensuring that feature values are converted to cumulative decision values that fall further from

the category boundary (here, the reference orientation). When decision values are further

from the category boundary, they are more resilient to “late” noise, which might otherwise

drive them to the incorrect side of the category boundary, thereby forcing an error. However,

when gain is limited, it must be allocated judiciously. Our simulations show that allocating

gain to stimuli that are most likely to occur confers a benefit on performance, and suggest that

humans may adopt a robust averaging policy in order to maximise their accuracy on the task.

One longstanding hypothesis states that neural systems will maximise the efficiency of

information encoding by allocating the highest resources (e.g. neurons) to those features that
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are most likely to occur [18]. For example, enhanced human sensitivity to cardinal angles of

orientation (those close to 0˚ and 90˚) may reflect the prevalence of contours with this angle in

natural scenes [19]. Indeed, neural systems learning via unsupervised methods will naturally

learn to represent features in proportion to the frequency with which they occur. Here, we

make a related argument for neural gain control. The efficiency of gain control allocation

depends on the distribution of features that occurs in the local environment. Allocating gain to

features that are rare or unexpected, even when they are more diagnostic of the category, is

inefficient, as resources are “wasted” in feature values that are highly unlikely to occur; whereas

allocating gain to those features that occur most frequently will confer the greatest benefit.

This benefit, however, is only observable when decisions are corrupted by “late” noise, i.e. that

arising beyond information averaging. This finding has important implications for our under-

standing of what may be the “optimal” policy for performing a categorisation task. The ideal

observer framework allows us to write down a decision policy that will maximise accuracy for

an observer that is limited not by capacity but by noise arising in the external environment.

Here, we show an example where the policy that is optimal for an unbiased, noiseless observer

is not the one that maximises accuracy for healthy humans.

The current study adds to an emerging body of work that the human brain may have

evolved perceptual processing steps that squash, compress or discretise feature information in

order to make decisions robust to noise [15]. In another recent line of work, participants were

asked to compare the average height of two simultaneously-occurring streams of bars [20] or

average value of two streams of numbers [21]. Human choices were best described by a model

which discarded information about the locally weaker item, but this “selective integration” pol-

icy paradoxically increased simulated performance under higher late noise. As described here,

participants seemed to adjust their decision policy to account for their own internal late noise:

participants with higher estimated late noise were more likely to engage in robust averaging.

Like selective integration, thus, robust averaging is a decision policy that discards decision

information but paradoxically confers a benefit on choice.

Additionally, the design of our study allows us to draw conclusions about the timescale

over which gain allocation occurs. In previous work, robust averaging was found to vary with

the overall distribution of features present in a block of trials. For example, when averaging

Gaussian-distributed features in a red-to-purple colour space, purple features were relatively

downweighted, but when averaging in a red-to-blue colour space, purple features were rela-

tively upweighted [8]. In other words, the allocation of gain to features depended on the overall

distribution of features in the block of trials, with the most frequently-occurring (i.e. expected)

items enjoying preferential processing. Here, we saw no difference in robust averaging be-

tween a fixed reference condition (in which the Gaussian distribution of orientations remained

stable over a prolonged block of trials) and a variable reference condition (in which the Gauss-

ian distribution of orientations changed from trials to trial, and was uniform over the entire

session). In other words, any adaptive gain control was set by the reference, and thus occurred

very rapidly, i.e. within the timescale of a single trial. Evidence for remarkably rapid adaptive

gain control has been described before. Indeed, short-lag repetition priming may be consid-

ered a form of gain control [22], in which the prime dictates which features should be pro-

cessed preferentially [10]. During sequential averaging, the behavioural weight and neural gain

applied to a feature depend on its distance from the cumulative average information viewed

thus far, as if features pass through an adaptive filter with nonlinear form [14]. These observa-

tions are consistent with the theoretical framework that we propose here.

Finally, we discuss some limitations of our approach. Firstly, our model uses a simple power

function to describe the nonlinear transformation of inputs prior to averaging. We chose this

function for mathematical convenience–it provides a simple means of parameterizing the

Robust averaging and decision noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005723 August 25, 2017 11 / 19

https://doi.org/10.1371/journal.pcbi.1005723


mapping function feature to decision information in a way that privileges inliers (k< 1) or out-

liers (k> 1). However, other forms of nonlinear transformation that are not tested here may

also account for the data. Secondly, our best-fitting model assumes zero sensory encoding noise

(or ‘early’ noise). Adding early noise to the model did not change qualitatively the benefit of

robust averaging under higher late noise, unless it becomes performance-limiting in itself.

However, in other settings, early noise will be an important limiting factor on performance.

Although we found that our “late noise only” model fit better than an “early noise only” model,

we do not wish to claim that there is no early noise in our task. Since the current experiment

was not designed to estimate the level of early noise, it may be of interest to directly manipulate

both early and late noise in future experiments.

Methods

Ethics statement

The study was approved by the Medical Science Interdivisional Research Ethics Committee

(MS IDREC) of the Central University Research Ethics Committee from the University of

Oxford (approval number: MSD-IDREC-C1-2009/1). Participants provided written consent

before the experiment in accordance with local ethical guidelines.

Participants

24 healthy human observers (9 males, 15 females; age 23.4±4.7) participated in two testing ses-

sions that occurred one week apart. The order of testing sessions was counterbalanced across

participants. The task was performed whilst seated comfortably in front of a computer monitor

in a darkened room. Participants received £25 in compensation.

Task and procedure

All stimuli were created using the Raphaël JavaScript library and presented with the web

browser–Chrome Version 49.0.2623.87 on desktop PC computers. The monitor screen refresh

rate was 60Hz. Each session consisted of 8 blocks of 128 trials each. On each trial, following a

fixation cross of 1000ms duration, participants viewed an array of 8 square-wave gratings with

random phase (2.33 cycles/degree, 0.33 RMS contrast, 1.72 degrees visual angle per grating)

arranged in a ring 7.82 degrees from the center of the screen (Fig 1). The array was presented

for a fixed duration against a grey background in each block (250ms, 500ms, 750ms or

1000ms; this manipulation had little impact on accuracy, and we collapsed across it for all anal-

yses). A single Gabor patch was presented in the centre of the ring contiguous with the array

elements (3.49 cycles/degree, 0.33 RMS contrast, 1.15 degrees visual angle). Participants were

asked to judge as rapidly and accurately as possible whether the mean orientation of the array

of 8 peripheral gratings fell clockwise (CW) or counter clockwise (CCW) of the orientation of

the central grating. Feedback was provided immediately following each response: the fixation

cross turned green on correct trials for 500ms, and red on incorrect trials for 2500ms. Partici-

pants received instructions and completed a training block of 32 trials prior to commencing

each session. During the training block, the central grating patch and the array of grating

patches remained on the screen for 1 minute or until participants made a response.

Design

Orientations were sampled from Gaussian distributions with means of R+μ where R is the ref-

erence grating orientation, and variances of σ2 on each trial. We crossed μ and σ as orthogonal

factors in the design, drawing the orientation mean (in degrees) from μ � {-20˚,-10˚,10˚,20˚}
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and orientation standard deviation σ � {8,16}. Levels of μ and σ are counterbalanced and the

order of presentation is randomised across trials in every block. To ensure that the sampled

orientations matched the expected distribution with the given μ and σ, resampling of orienta-

tion values occurred until the mean and standard deviation of orientation values fell within 1˚

tolerance of the desired μ and σ. We refer to each of the 8 gratings in the array as a “sample” of

feature values. Reference orientations were drawn randomly and uniformly from around the

circle. There was a total of 8 blocks per session, leading to a total of 1024 trials per session. In

the fixed-reference session, the reference orientation remained fixed over each block of 128 tri-

als. In the variable-reference session, the reference orientation changed from trial to trial. Our

experiment thus had a 2 (fixed vs. variable reference) x 2 (μ = 10, μ = 20) x 2 (σ = 8, σ = 16) fac-

torial design.

Analysis

3 subjects were excluded from all analyses due to lower-than-60%-accuracy performance in

either of the reference condition. Data were analysed using ANOVAs and regressions at the

between-subjects (group) level. A threshold of p< 0.05 was imposed for all analyses, and we

used a Greenhouse-Geisser correction for sphericity where appropriate, so that some degrees

of freedom (d.f.) are no longer integers. We first compared accuracy and reaction times for dif-

ferent levels of μ and σ in each session. Next, we used probit regression to estimate the weight

with which each sample influenced choices, as a function of its position relative to the refer-

ence angle in both fixed and variable reference session. For all analyses, we excluded 13% of

trials (‘wraparound’ trials) that contained one or more orientations that were >0.79rad or <

0.79rad (equivalent to>45˚ or <-45˚) relative to the reference, thereby ensuring that we

were working within a space in which feature values X were approximately linearly related to

angle of orientation. A further 0.2% of trials on which no response was registered were also

excluded.

For each sample i on trial t, we assumed that orientations in the sensory space were being

recoded as orientations relative to reference in the decision space, and thus refer to the feature

values X as the orientation relative to the reference. After excluding ‘wraparound’ orientations,

all orientations fell within the range of -0.79rad to 0.79rad (equivalent to ±45˚). To compute

weighting functions, we created for each participant a predictor matrix by tallying values of

X within each of 8 equally spaced bins (in feature space) with centres between -0.75rad and

0.75rad on a trial-by-trial basis. Values from each bin were entered competitive regressors to

regressed against participants’ choices using probit regression. Fig 3 is showing the beta

weights associated with each bin modulated by the sum of feature values (X) within that bin.

Modelling

Power model. Each element i was characterised by a feature value Xi in radians (in the

range -0.79rad to 0.79rad) that was proportional to its orientation relative to the reference. Our

model assumes that the decision value (DV) that determined choice on each trial was com-

puted by transforming orientations relative to reference using a power-law transducer parame-

terised by an exponent k.

DV ¼
X8

i¼1

signðXiÞ � jXij
k

ð1Þ

The functions that map feature value X onto decision values DV for low and high values of

k. For the special case k = 1, the DV is equivalent to the simple sum of Xi; this is the rule used
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by the experimenter to determine feedback. Next, we calculated choice probabilities by passing

the DV through a sigmoidal choice function (see choice probability function and Eq 5) with

the inverse-slope s. Higher values of s imply shallower slopes and thus greater “late” noise. The

sign of sum of Xi always reflect the sign of the mean of the distribution in which Xi was being

drawn from, which we used for providing feedback.

Equivalent gain factor. Different levels of the exponent k vary the convexity or the con-

cavity of the functions shown in Fig 4A. By considering the integral of the absolute of these

functions, it is easy to see that k in turn varies the overall scaling of any hypothetically occur-

ring feature values onto DV. When k< 1, average (absolute) values of DV are inflated, and

thus pushed away from the category boundary, increasing simulated performance. We wished

to ensure that model comparisons cannot be trivially explained by this unequal scaling of fea-

ture values to decision variable under different levels of k. To correct for this, we thus com-

puted the equivalent gain factor (g) that quantifies the average increase in absolute DV under

different levels of k:

g ¼
2

1þ k
ð2Þ

The quantity g is equal to

P
Fk

P
F

where F is a hypothetical space of features (here, positive

only for convenience) that could occur in the experiment. Multiplying equivalent linear

models by g thus corrects for the inflation that would occur under differing values of k. We

implemented this correction when comparing equivalent linear and nonlinear models with

parameter k, either by multiplying the input features of the linear model by g, or equivalently,

by dividing the output of the nonlinear model by g. Importantly, this correction was applied

over the features that could occur, not the features that did occur under our mixture of Gauss-

ian-distributed categories. It is for this reason that the nonlinear model leads to improved pre-

dicted performance in the experiment we conducted, but not in a simulated experiment in

which features were uniformly drawn from across feature space (Fig 6).

Equivalent gain linear model. For each nonlinear model variant k in the power model,

we compute DV using a linear model with equivalent gain factor, i.e. a model with the follow-

ing form:

DVlinear ¼
X8

i¼1

Xi � g ð3Þ

Where DVlinear refers to the cumulative decision value of all feature value Xi after applied

with equivalent gain– g. This ensures that each nonlinear power model is compared to a linear

model with an equivalent total input-to-output scaling of decision values. Using this approach,

we could thus compare the benefits of allocating gain preferentially to inliers (k< 1) or outliers

(k> 1) to allocating gain evenly across feature space (k = 1), under the assumption that neural

resources were limited to a fixed value defined by g, for example the total number of spikes

across population of neurons sensitive to orientations. The model comparison of power model

against the equivalent gain model is mathematically identical to comparing model perfor-

mance for k< 1 or k> 1 against k = 1 of a power model which is normalised by g in this form:

DVconstant ¼
DV
g

ð4Þ

Where DVconstant refers to the decision variable with constant gain across different levels of

k. Under a k< 1 case, inlying items will be allocated with more resources at the expense of
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depriving resources from outlying items, while under a k> 1 case, outlying items will be allo-

cated with more resources at the expense of inlying items. Any difference in simulated model

performance of nonlinear transformation of feature values across different values of k are not

due to differential resources in a linear model.

Choice probability function. A choice function with a noise-term s was used to transform

DV of each model into choice probabilities. These choice probabilities are then used for maxi-

mum likelihood estimation. We used a choice function of the following form:

CP ¼
1

1þ e� DVs
ð5Þ

We ensured via visual inspection that the resulting fits were convex over this search space.

We then used parametric tests to assess whether the resulting best-fitting parameters differed

positively (indicating upweighting of outliers) or negatively (indicating downweighting of out-

liers) from 1. For each participant, we searched exhaustively over values of k (in the range 0.02

to 2) and s (in the range 0.05 to 10) that minimised the negative log likelihood of the model.

Early noise only model. To test our assumption that early sensory noise (noise arise prior

to averaging) alone cannot explain subjects’ choice behaviour, we created a model where each

feature value Xi was corrupted by εi, a sample of noise drawn independently from a Gaussian

distribution zero mean and standard deviation ξ:

xi ¼ Xi þ εi ð6Þ

After transforming x with exponent k using Eq 1, we converted the summed of x values into

a choice probability of 0 or 1 depending of its sign (i.e. via a step function) on a trial-by-trial

basis. We fit this model to psychometric functions, by computing the conditional probability

of a clockwise response p(CW) given the presence of a feature Xi (sorted in to 9 equally spaced

bins between -0.75rad to 0.75rad). We did this separately for the fixed reference session and var-

iable reference session in humans. Using a grid search method, we identified best-fitting for ξ
among 20 linearly spaced values from 0 to 3 for each subject and reference condition (fixed,

variable) by minimising the MSE between the predicted and observed psychometric functions.

S4A Fig shows both human psychometric functions and those predicted by this early noise

only model, as well as late noise only model described above, which is parameterised by k and

s (and thus has an equivalent number of free parameters).

Having identified the best-fitting parameters, we used these to predict accuracy for each

level of mean and variance, and the weighting function in the fixed and variable reference con-

ditions. The weighting function obtained from best fitting parameterisation of the model is

shown on S4B Fig and model fits of accuracies can be seen in S4C Fig. The early noise only

model failed to predict the presence of robust averaging and incorrectly predicted that accu-

racy would not vary as a function of the variance in the stimulus array, and was thus unable to

account for human data.

Population coding power model. As with the power model, we assume that feature values

were recoded from presented orientations relative to the reference into a linear space spanning

between –3 and 3 (e.g. radians) where 0 is the value of the reference. We assumed a population

of 600 neurons (M = 600) whose tuning curves are linearly spaced across the feature space.

The tuning curve for any neuron, j, is defined as a Gaussian probability density function cen-

tred at the neuron’s preferred feature value, fj, and with a tuning width fixed across the popula-

tion, ε, specified by an additional free parameter. The amplitude of each neuron’s tuning curve

(i.e. its maximum firing rate) was controlled by a gain factor which is a function of the
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neuron’s preferred feature value, fj, and the power law:

Gj ¼ jfjj
k� 1

ð7Þ

Where Gj represents the gain, G, applied to neuron, j, whose preferred feature value is fj,
and a free parameter, k, controls the gain applied across the feature space in the neural popula-

tion. The firing rate, Rji, for each neuron j given a particular stimulus, Xi, is computed as:

Rji ¼ N Xi; fj; ε
� �

� Gj �
r

M
ð8Þ

Where N(Xi, fj, ε) correspond to the probability density of a Gaussian with mean, fj, and

variance, ε, evaluated at point, Xi. To adjust for the scaling of output values, the product of the

Gaussian density function and gain function is additionally scaled by r

M, which is the ratio of

range of the linear space in radians (ρ) to the number of neurons (M). This ensures that the

output of the population activity R will remained invariant to these factors of no interest in our

model. Lastly, the model’s estimate of a stimulus, Xi, is a computed from the population of

neurons as follows:

Yi ¼
X600

j¼1

Rji � fj ð9Þ

Where R is the population activity vector for Xi. Firing rate (Rji) of each neuron j is weighted

by the corresponding neuron’s preferred feature value (fj) before summation to get the model

estimate for stimulus (Θi). This is then used for computing the cumulative decision values

(summation of model estimated angles) on a trial by trial basis for computing choice probabil-

ity using Eq 5 and negative log-likelihood for model fitting.

Parameter recovery. To test the ability of the fitting procedure to accurately identify the

parameters of the best-fitting power model. We sampled 20 equally-spaced values of k (in the

range of 0.02 to 2) and s (in the range of 0.05 to 10). For each k and s combination, we trans-

formed a set of orientations presented to subjects in the experiment using the given k and com-

puted the choice probability of the DV with the given s. Then we compared the trial-to-trial

estimated choice probability against a random probability drawn from a uniform distribution

with a range of 0 to 1 to generate model choices. We then used these artificial choices to

recover best-fitting values of k and s via maximum likelihood estimation.

Model performance simulation. We simulated model performance (decision accuracy)

under different k in a range of 0.02 to 2 and s in a range of 0.05 to 5 for the power model. For

each combination of k and s, trial-to-trial estimate of DV was computed and transformed into

choice probability using Eq 5. Model choices were created by comparing the choice probability

against a probability drawn randomly from a uniform distribution. Model accuracy was com-

puted as the proportion of model choices that were the same as the pre-defined correct choice,

which is simply determined by the sign of the sum of X.

Supporting information

S1 Table. ANOVA results on the d’ analysis.

(DOCX)

S1 Fig. d’ analysis. d’ for each level of |μ| (mean) and σ (variance) conditions were computed

separately for fixed reference (Left panel) and variable reference session (Right panel). The

grey lines correspond to human’s average d’ for low mean (light grey) and high mean

Robust averaging and decision noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005723 August 25, 2017 16 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005723.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005723.s002
https://doi.org/10.1371/journal.pcbi.1005723


conditions (dark grey). The green dots correspond to the model fits for each condition (low

mean in light green dots and high mean in dark green dots).

(EPS)

S2 Fig. Parameter recovery. Recovered parameters (y-axis) plotted against the actual parame-

ters (x-axis) for k (left panel) and s (right panel). Black line is the identity line.

(EPS)

S3 Fig. Performance under different presentation duration conditions. Mean and standard

error of mean for |μ| on accuracy (left panel) and reaction times (right panel) under different

presentation durations (x-axis) in fixed (dark grey line) and variable reference session (light

grey line).

(EPS)

S4 Fig. Model comparison of early noise only model and late noise only model. (A) Model

psychometric functions (dotted line for “EN only” model and thin solid line for “LN only”

model) were plotted against humans (darker coloured dots). Both models successfully capture

human psychometric functions of the fixed reference and the variable reference sessions (red

vs. green). (B) Recreation of the weighting function under simulated choices from the best fit-

ting parameterisation of the early noise model. This model failed to replicate human robust

averaging as shown in Fig 3A. (C) Condition-wise mean accuracy and standard error of mean

of the “EN only” model (pinkish dots) and the “LN only” model (bluish dots) superimposed

on human accuracies (grey lines). Left panel shows the performance in the fixed reference ses-

sion, and the right panel shows that of the variable reference condition.

(EPS)

S5 Fig. Feature values and decision values generated by a population coding power model.

Transfer functions that showed feature values were being transformed into decision values in

nonlinear ways under different values of k (coloured lines, in a range of 0.02 to 2), similar to

transfer functions shown in Fig 4A, which were generated by a simple power model. Tuning

width of neurons (ε) was assumed to be 0.5 in this illustration.

(EPS)

S6 Fig. Simulated accuracy under best-fitting parameterisation of population coding. Simi-

lar figure shown in Fig 2, this figure is showing the mean (and standard error of mean) accu-

racy of human (grey lines). Green dots represent the simulated mean accuracy (and standard

error of mean) using best-fitting parameters yield from humans with the population coding

power model.

(EPS)

S7 Fig. Recreation of parameter estimates using the population coding model. This figure

is the same as Fig 3B, but instead of using the simple power model, model choices were simu-

lated using the population coding power model under best-fitting parameterisation of 3

parameters (ε, k, s).
(EPS)

S8 Fig. Exponent k and gain (g). Lower values k (darker dots) have higher multiplicative gain,

therefore the corresponding g is higher for low value of k.

(EPS)

S1 File. Data that supports the findings of this study. It requires MATLAB to access.

(MAT)
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