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Abstract: An in�nite class of 4d N = 1 gauge theories can be engineered on the
worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of setup has
multiple applications, ranging from the gauge/gravity correspondence to local model
building in string phenomenology. Brane tilings fully encode the gauge theories on the
D3-branes and have substantially simpli�ed their connection to the probed geometries.
The purpose of this paper is to push the boundaries of computation and to produce
as comprehensive a database of brane tilings as possible. We develop e�cient imple-
mentations of brane tiling tools particularly suited for this search. We present the �rst
complete classi�cation of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and
the corresponding brane tilings. This classi�cation is of interest to both physicists and
mathematicians alike.
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1 Introduction

A powerful approach for engineering 4d N = 1 gauge theories in string theory consists
of realizing them on the worldvolume of D3-branes probing singular Calabi-Yau (CY)
3-folds. The case in which the CY 3-fold is toric is extremely rich, yet particularly
tractable.

More than a decade has passed since the �rst systematic treatment of the ques-
tion \what is the gauge theory given an arbitrary toric CY3?" [1]. A �rst approach
for addressing this problem was theInverse Algorithm, which generates the quiver
and superpotential for a given toric singularity via partial resolution of an appropriate
C3=(ZN � ZM ) orbifold. In practice, a chief bottleneck of this method was the exponen-
tial running time necessary for �nding dual cones needed for partial resolution. Later,
the connection between toric geometry and gauge theory was tremendously simpli�ed
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with the advent of brane tilings [2{4], which have become the standard tools in this
�eld. Brane tilings are Type IIB con�gurations of branes related to D3-branes at toric
singularities by T-duality. Throughout this paper, we will equivalently refer to brane
tilings as dimer models.

Con�gurations of D3-branes probing toric CY 3-folds have found a myriad of ap-
plications. In physics, they include: the understanding that toric duality is Seiberg
duality [5, 6], one of the most fertile grounds for testing the AdS/CFT correspon-
dence [4, 7{9], connections to mirror symmetry and tropical geometry [10], local string
phenomenology [11, 12], and bipartite �eld theories [13{19].

In parallel, in mathematics, the dialogue between gauge theory and the geome-
try and combinatorics of toric CY 3-folds also engendered numerous developments,
including: new directions in Calabi-Yau algebras and quiver representations [20{26],
non-commutative crepant resolutions of toric singularities [27{31], connections with
Grothendieck's dessins d'enfants and certain isogenies of elliptic curves [32{35] and a
geometric perspective on cluster algebras [36{39].

The purpose of this paper is to push the boundaries of computation and to produce
as comprehensive a database of brane tilings as possible. We will develop e�cient
implementations of dimer model tools particularly suited for this search and develop
a catalogue of explicit brane tilings for a large class of toric geometries. We will also
generate new computational tools, in the form ofMathematicamodules, which we will
make publicly available [40]. We expect a wide range of researchers will �nd this novel
toolkit useful.

Until now, a large database of explicit brane tilings was lacking and we envision
many applications for such a catalogue in both physics and mathematics. In our case,
we plan to use these theories in the near future as starting points for a systematic and
large scale investigation of phenomenological local models in string theory, following
[11, 12].

The organization of this paper is as follows. Sectionx2 reviews brane tilings and
outlines how to construct new ones by means of partial resolution. Sectionx3 summa-
rizes the existing classi�cations of brane tilings. Sectionx4 classi�es all independent
toric diagrams up to area 8. Sectionx5 presents brane tilings for all toric CY 3-folds
with toric diagrams of area 6, 7 and 8.1 We collect our conclusions and directions
for future research in sectionx6. Appendix xA explains the Mathematica modules we
created for manipulating brane tilings.

1All the brane tilings for lower toric diagram areas can be found in [3, 4]. The few missing cases
can be immediately determined from gauge theory information presented in [41].
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2 Brane Tiling Technology

In this section we present a lighting review of brane tiling technology. In order to set
up the stage for our computations, we also review the basics of the connection between
brane tilings and geometry and the implementation of partial resolution in terms of
them. We refer the interested reader to [3, 4, 42, 43] and references therein for further
details.

2.1 D3-Branes Probing Toric CY 3-Folds and Brane Tilings

The 4d N = 1 gauge theories living on the worldvolume of D3-branes probing a�ne
toric CY 3-folds are described by bipartite graphs onT2 called brane tilings [2{4]. In
fact a brane tiling is a physical brane con�guration, related to the D3-branes at a toric
singularity by T-duality, consisting of an NS5-brane wrapping a holomorphic surface
from which D5-branes are suspended. The geometry of a non-compact toric CY 3-fold
is captured by atoric diagram, which is convex lattice polygon.2 The probed CY3 arises
as the vacuum moduli space of the gauge theory on the D3-branes, which is de�ned by
the vanishing ofD- and F -terms.

A brane tiling encodes a 4d N = 1 quiver gauge theory as follows:

1. Every face (say labeled byi ) corresponds to aU(N i ) gauge group factor in a
product gauge group structure.

2. Every edge between facesi and j corresponds to a bifundamental chiral �eldX ij

of U(N i ) � U(N j ). If i is equal to j , then X ii is an adjoint �eld of U(N i ). The
orientation of �elds is a convention, e.g. clockwise and counterclockwise around
black and white nodes of the tiling, respectively.

3. Every node corresponds to a monomial term in the superpotential, obtained by
multiplying all the edges adjacent to the node. Like the orientation of chiral
�elds, the sign of the monomial is controlled by the color of the node.

In order to illustrate these ideas, below we present an explicit example that corre-
sponds to the complex cone overF0.3 The red dashed lines indicate the boundary of
the unit cell.

2An a�ne toric variety of complex dimension n is usually described by a convex polyhedral cone
in Rn but the Calabi-Yau condition imposes the extra condition that the endpoints of the vector
generators of the cone are co-hyperplanar. Thus for 3-folds, the toric diagram can be taken to be a
convex lattice polygon in 2d.

3In fact there are two toric phases, i.e. two theories described by brane tilings, for this geometry.
They are related by Seiberg duality [5].
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Toric Diagram Brane Tiling Gauge Theory
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W = ! ab! cdX a
12X

c
23X

b
34X

d
41 (2.1)

X a
12 X a

23 X a
34 X a

41 (2.2)

Tiling Quiver Toric Diagram

We see that there are 4 gauge group factors and for convenience we take allNi = 1,
we have anU(1)4 theory. There are 8 edges, denoting the 8 ÞeldsX a

i,i +1 for a = 1, 2
and i = 1, 2, 3, 4 modulo 4. Finally, expanding out the Levi-Civita symbols, there are
4 monomial terms in the superpotential.

2.2 Geometry and Perfect Matchings

Perfect matchingsare combinatorial objects that play a central role in the study of
bipartite graphs. A perfect matchingp is deÞned as a collection of edges in the brane
tiling such that every node is the endpoint of exactly one edge inp.

Perfect matching substantially simplify the connection between brane tilings and
geometry. Let us consider the following map between chiral Þelds in the quiverX i ,
equivalently edges in the brane tiling, and perfect matchingspµ

X i =
c!

µ=1

pPiµ
µ , (2.3)

with c is the total number of perfect matchings [12]. The P-matrix summarize the edge
content of perfect matchings and is deÞned as follows

Piµ =
"

1 if X i ! pµ

0 if X i /! pµ
(2.4)
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2.2 Geometry and Perfect Matchings

Perfect matchingsare combinatorial objects that play a central role in the study of
bipartite graphs. A perfect matchingp is de�ned as a collection of edges in the brane
tiling such that every node is the endpoint of exactly one edge inp.

Perfect matching substantially simplify the connection between brane tilings and
geometry. Let us consider the following map between chiral �elds in the quiverX � ,
equivalently edges in the brane tiling, and perfect matchingsp�

X � =
cY

� =1

pP��
� ; (2.1)

wherec is the total number of perfect matchings. TheP-matrix summarizes the edge
content of perfect matchings and is de�ned as follows

P�� =
�

1 if X � 2 p�

0 if X � =2 p�
(2.2)

A remarkable feature of the map in (2.1) is that when chiral �elds are expressed in terms
of perfect matching variables in this way, allF -terms automatically vanish. Perfect
matchings are thus in one-to-one correspondence with �elds in the GLSM description
of the toric CY 3-fold, namely points in its toric diagram [3].

Perfect matchings and the toric diagram can be e�ciently determined using the
Kasteleyn matrix K . We de�ne K as the adjacency matrix of the graph in which rows
are indexed by black nodes and columns are indexed by white nodes, i.e. for every edge
X � in the bipartite graph between nodesb � and w � , we introduce a contributionX � to
the K �� entry. In addition, whenever an edge crosses the boundary of the unit cell in the
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x and/or y directions, we multiply the contribution by x � 1 andy� 1 weights, respectively.
The exponents are positive or negative depending on whether the crossing occurs in the
positive or negative direction, which is determined by conventionally orienting edges
from white to black nodes.

Let us consider a concrete example. Figure 1 shows the quiver diagram for the
suspended pinch point (SPP). The corresponding superpotential is

W = X 12X 21X 22 � X 22X 23X 32 + X 13X 23X 31X 32 � X 12X 13X 21X 31 : (2.3)

1 3 

2 

Figure 1 . Quiver diagram for SPP. Nodes represent gauge groups. The arrow fromi ! j
corresponds to the chiral �eld X ij .

All this information is encoded in the brane tiling shown in Figure 2.

2 

1 

2 

1 

3 

2 

1 

3 

2 

1 

3 3 

2 

1 1 

w[1] 

w[2] 

b[2] 

b[1] 

x 

y 

Figure 2 . Brane tiling for SPP.

The superpotential has four terms, which are represented in the brane tiling by
two white and two black nodes. We have labeled the nodes in blue to facilitate the
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construction of the Kasteleyn matrix, which is given by

K =

0

B
@

w[1] w[2]
b[1] X 22 x X 23 + X 32 x
b[2] X 12 + X 21 x X 31 y + X 13 xy

1

C
A : (2.4)

The determinant of the Kasteleyn matrix generates the perfect matchings. In this case,
we get

detK = � X 12X 23� (X 21X 23+ X 12X 32) x � X 21X 32 x2+ X 22X 31 xy+ X 13X 22 x2y : (2.5)

Every monomial in this expression corresponds to a perfect matching. Furthermore,
the powers ofx and y indicate their position in the toric diagram, as shown in Figure
3. The perfect matching can be summarized in theP-matrix as follows

P =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

p1 p2 p3 p4 p5 p6

X 22 0 0 0 0 1 1
X 12 1 0 1 0 0 0
X 21 0 1 0 1 0 0
X 23 1 1 0 0 0 0
X 32 0 0 1 1 0 0
X 31 0 0 0 0 1 0
X 13 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
A

: (2.6)

p1 p2 , p3 p4  

p5  p6  

Figure 3 . Toric diagram for SPP. We indicate the perfect matching associated to each point.

2.3 Partial Resolution and Brane Tilings

Brane tilings completely solved the problem of �nding the gauge theory associated to a
generic toric CY 3-fold and vice versa. There are well established procedures for going
from brane tilings to geometry and in the opposite direction: thefast forward [3] and
fast inverse algorithms[10, 44], respectively. One of the main goals to this paper is
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to develop a practical approach to determine the brane tiling associated to a general
toric diagram. While the fast inverse algorithm provides an answer to this question,
its automation remains challenging. We thus opt for an alternative approach, which
admits a rather simple computer implementation.

Our strategy will be to perform partial resolution, which translates to higgsing
in the gauge theory. In terms of brane tilings, it corresponds to removing the edges
associated to the �elds acquiring non-zero vacuum expectation values (vevs). We will
exploit the map between perfect matchings and �elds in the gauge theory to system-
atically identify the vevs that are turned on when certain points in the toric diagram
are deleted.

Any geometry for which the brane tiling is known can be used as the starting
point for partial resolution. There are two canonical classes of initial theories that have
been broadly used in the literature for this purpose. The �rst one isC3=(Zm � Zn )
orbifolds, with the two generators of the orbifold group acting onC3 as: (X; Y; Z ) 7!
(ei 2�=N X; e� i 2�=N Y; Z) and (X; Y; Z ) 7! (X; ei 2�=M Y; e� i 2�=M Z). The resulting toric
diagram is shown in Figure 4.a, and the corresponding brane tiling is an hexagonal
lattice with an N � M unit cell. The second standard class of starting points areZm � Zn

orbifolds of the conifoldC. Given the de�ning equation for the conifoldxy = uv, the two
generators of the orbifold group act as follows: (x; y; u; v) 7! (ei 2�=N x; e� i 2�=N y; u; v) and
(x; y; u; v) 7! (x; y; ei 2�=M u; e� i 2�=M v). The toric diagram for this class of geometries is
shown in Figure 4.b and the brane tiling is a square lattice with anN � M unit cell.
We will adopt the orbifolds of the conifold as our initial theories.

n 

m 

(a) 

n 

m 

(b) 

Figure 4 . Toric diagrams for: a) C3=(Zm � Zn ) and b) C=(Zm � Zn ). We will use the second
class of geometries as the starting points for partial resolution.

We now illustrate the dimer implementation of partial resolution with an explicit
example. Let us derive the brane tiling for the SPP from aC=(Zm � Zn ) orbifold.
Considering the toric diagrams, it is clear that it would be su�cient to start from C=Z2.
However, in order to demonstrate the methods in a more involved partial resolution,
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let us useC=(Z2 � Z2) as the initial theory. The brane tiling for C=(Z2 � Z2) is shown
in Figure 5.4
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2 
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1 

1 

2 

2 

1 
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5 

5 
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8 
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6 

6 

4 

w[1] 

w[2] 

w[2] 

w[1] 

b[1] 

b[2] 

b[2] 

b[1] 

b[3] 

b[4] 

b[4] 

b[3] 

w[3] 

w[4] 

w[4] 

w[3] 

b[1] 

b[2] 

b[2] 

b[1] 

w[1] 

w[2] 

w[2] 

w[1] 

b[3] 

b[4] 

b[4] 

b[3] 

w[3] 

w[4] 

w[4] 

w[3] 

3 3 

Figure 5 . Brane tiling for C=(Z2 � Z2).

The Kasteleyn matrix is given by

K =

0

B
B
B
B
B
@

w[1] w[2] w[3] w[4]
b[1] X 13 X 32 X 41 X 24

b[2] X 51 y X 25 X 16 y X 62

b[3] X 37 x X 83 x X 74 X 48

b[4] X 75 xy X 58 x X 67 y X 86

1

C
C
C
C
C
A

: (2.7)

We obtain the perfect matchings by computing the determinant of the Kasteleyn ma-
trix. They are summarized in the followingP-matrix:
0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

(0 ; 0) (1 ; 0) (2 ; 0) (1 ; 1) (2 ; 1) (2 ; 2) (0 ; 2) (1 ; 2) (2 ; 2)
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24

X 13 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
X 16 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1
X 24 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1
X 25 1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
X 32 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0
X 37 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
X 41 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0
X 48 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
X 51 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0
X 58 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
X 62 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0
X 67 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0
X 74 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
X 75 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1
X 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1
X 86 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(2.8)

4There are other brane tilings for C=(Z2 � Z2), which correspond to additional toric phases obtained
from this one by Seiberg duality.
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where in the top row we have indicated the corresponding point in the toric diagram,
which is shown in Figure 6. The signi�cance of the rows that are highlighted in blue
will be discussed soon.

p1 p2 , p3 p4 

p5 , p6 p19 , p20 
p7 ,É, p 18 

p21 p22 , p23 p24 

Figure 6 . Toric diagram for C=(Z2 � Z2) We indicate the perfect matching associated to
each point and a possible embedding of the SPP toric diagram (in red).

Figure 6 shows a possible way of embedding the toric diagram of SPP, shown in
red, into the one for C=(Z2 � Z2). According to (2.2), we should regard chiral �elds
as products of perfect matchings. The vev of a chiral �eld results from the product
of the vevs of its perfect matching constituents. Then, a chiral �eld gets a vev and is
removed from the brane tiling only when all the perfect matchings that contain it are
deleted. Even after picking an embedding of the �nal toric diagram into the parent one
there are, in general, multiple ways of achieving the desired partial resolution. For the
embedding in Figure 6, one possibility is to turn on vevs forf X 16; X 24; X 32; X 48; X 51g.
The corresponding rows in theP-matrix are highlighted in blue in (2.8). It is straight-
forward to verify that this set of vevs achieves the desired resolution. Some perfect
matchings can be removed from the surviving points in the toric diagram. For exam-
ple, all but p15 are deleted in the point that originally containsp7; : : : ; p18. Similarly,
p19 is removed while leavingp20 for that point. Figure 7 shows the �nal toric diagram.

Having established the vevs that implement the desired partial resolution to the
SPP, the associated brane tiling is obtained by deleting the corresponding edges in
Figure 5. When doing so, a pair of 2-valent nodes is generated. Such nodes correspond
to mass terms in the superpotential. Massive �elds are easily integrated out in terms
of brane tilings [3]. The �nal result is precisely the brane tiling in Figure 2, which
corresponds to the quiver in Figure 1 and the superpotential (2.3).
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p1 p2 , p3 p4  

p15  p20  

Figure 7 . Toric diagram for SPP obtained by partial resolution of C=(Z2 � Z2).

2.4 Brane Tiling Consistency

Not every bipartite graph on a 2-torus corresponds to aconsistent brane tilingand
hence de�nes a well-behaved 4d N = 1 gauge theory. In fact, higgsing of consistent
brane tilings can lead to inconsistent ones. It thus becomes imperative to check the
consistency of the brane tilings generated via partial resolution.

Inconsistent brane tilings may naively seem to correspond to toric CY3's, but fail
more subtly. The problems of inconsistent tilings manifest at all levels: the gauge
theory, the D-brane con�guration and its algebraic description. By now, this subject
has been studied in depth and is well understood. We refer the interested readers to
[24, 44{49] and references therein for detailed discussions.

Consistency can be determined using multiple diagnostics, all of which are closely
related. They range from physical considerations regarding the positivity ofR-charges
to graph-theoretic tests based on intersection properties of zig-zag paths. The latter
condition is closely related to the concept ofreducibility of brane tilings. A brane tiling
is reducible, or equivalently inconsistent, if the number of faces can be decreased by
deleting edges while preserving the toric diagram. On the other hand, the number of
gauge groups should be equal to the area of the toric diagram, measured in terms of
elementary triangles. These two points lead to a simple criterion for consistency of
brane tilings, which is particularly well-suited for partial resolution. A brane tiling is
inconsistent whenever the number of faces is larger than the area of the toric diagram.
When this occurs, the brane tiling can be cured and turned into a consistent one by
removing certain edges, i.e. by turning on vevs, without modifying the toric diagram.

This clari�es how inconsistent brane tilings can arise when partial resolution is not
properly implemented. Sometimes, given an initial toric diagram and its corresponding
brane tiling, a target toric diagram may be obtained by turning on an incomplete
collection of vevs.5 To avoid inconsistent tilings we should make sure that the set of
vevs not only gives rise to the desired toric diagram but that it is alsomaximal.

5This was not a possibility in the example discussed in the previous section.

{ 10 {



3 Existing Classi�cations

A plethora of explicit brane tilings have been constructed in the literature. Below we
summarize the existing systematic classi�cations ofclassesof models. Several addi-
tional scattered examples exist.

� Del Pezzo surfaces [3]. The brane tilings for all toric phases for cones over toric del
Pezzo surfacesdPn , n = 0; : : : 3, have been classi�ed. Even before the development
of brane tilings, the corresponding gauge theories were determined in [1, 5, 6, 50,
51].

� Abelian orbifolds ofC3 [52{56]. It is straightforward to construct the brane tilings
for abelian orbifolds of arbitrary geometries by appropriately enlarging the unit
cell. The geometric action of the orbifold group is encoded in the periodicity
conditions. However, a systematic classi�cation of the orbifold possibilities of
geometries beyondC3 does not currently exist.

� The Y p;q [7] and La;b;c [4, 8, 9] in�nite families. In fact the Y p;q theories are
fully contained within the La;b;c class. The toric diagrams for these geometries
have four external edges. Explicit metrics for theY p;q and La;b;c Sasaki-Einstein
manifolds were introduced in [57{60]. The construction of the gauge theories for
these geometries had a substantial impact on the AdS5/CFT 4 correspondence
with N = 1 supersymmetry. It allowed re�ned tests of the correspondence for
the in�nite classes of dual pairs.

� The X p;q family [61]. The toric diagrams for these geometries have �ve external
edges. While this classi�cation was not performed in the language of brane tilings,
it is straightforward to translate it.

� Finally, [62] classi�ed all brane tilings up to six superpotential terms. These
theories are substantially simpler than the ones studied in this paper.

4 The Geometries

A primary goal of this paper is to construct brane tilings for all toric CY 3-folds
with toric diagrams up to area 8. The relative simple cases of area 1 to 5 have been
extensively studied and brane tilings are known for all of them. We will thus concentrate
on areas 6 to 8. As mentioned earlier, part of our motivation for focusing on these
geometries has to do with applications to local string phenomenology along the lines
of [11, 12].
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The �rst step in our survey is thus to identify these geometries, i.e. their toric
diagrams. To do so, we need to determine, for every area, all theSL(2; Z) inequivalent
convex polytopes inZ2. Interestingly, these toric diagrams have only been established
for areas 6 and 7 by mathematicians [63, 64], whose results we reproduce. We �nd
that the number of independent toric diagrams with area 6, 7 and 8 are 13, 11 and
27, respectively. Below we present all independent toric diagrams up to area 8. For
completeness, we include those for areas 1 to 5. For every toric diagram we provide an
arbitrary triangulation, in order to make its area manifest.

1 1 2

1 2 3

Table 1 : Toric diagrams of areas 1, 2 and 3.

1 2 3

4 5 6 7

Table 2 : Toric diagrams of area 4.

1 2

3 4 5 6

Table 3 : Toric diagrams of area 5.
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1 2

3 4 5

6 7 8 9

10 11 12 13

Table 4 : Toric diagrams of area 6.

1 2

3 4

5 6 7

8 9 10 11

Table 5 : Toric diagrams of area 7.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23

24 25

26 27

Table 6 : Toric diagrams of area 8.
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5 Results

We now present the classi�cation of brane tilings obtained when implementing the ideas
outlined in sectionx2 to the geometries presented in sectionx4. We provide one brane
tiling per geometry for toric diagrams with areas 6 to 8. Below, the order of toric
diagrams is as given in Tables 4, 5 and 6. While some of these theories have previously
appeared in the literature, ours is the �rst exhaustive classi�cation. Generically, there
can be multiple brane tilings for a given CY3. It is straightforward to generate all of
them by systematically acting with Seiberg duality on the brane tilings that we present.

The geometries associated to toric diagrams without internal points give rise to
non-chiral gauge theories, which are not so interesting from a model building point of
view. For areas 6 to 8, they correspond to cones overLa;b;a manifolds [4].

5.1 Area 6

Toric Diagram Brane Tiling Quiver
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+ X 33 X 34 X 43 + X 35 X 53 X 55 + X 56 X 66 X 65 + X 12 X 21 X 16 X 61 + X 24 X 44 X 42
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5.2 Area 7

Toric Diagram Brane Tiling Quiver
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W = � X 24 X 43 X 32 � X 25 X 56 X 62 � X 57 X 78 X 85 � X 17 X 73 X 31 � X 14 X 43 X 31 � X 24 X 46 X 62 � X 56 X 68 X 85 � X 17 X 78 X 81

+ X 24 X 46 X 62 + X 56 X 68 X 85 + X 17 X 78 X 81 + X 14 X 43 X 31 + X 24 X 43 X 32 + X 25 X 56 X 62 + X 57 X 78 X 85 + X 17 X 73 X 31
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Toric Diagram Brane Tiling Quiver

W = � X 13 X 32 X 24 X 41 � X 15 X 56 X 61 � X 57 X 78 X 85 � X 24 X 47 X 72 � X 13 X 36 X 61 � X 56 X 68 X 85 � X 47 X 78 X 84

+ X 13 X 36 X 61 + X 56 X 68 X 85 + X 47 X 78 X 84 + X 13 X 32 X 24 X 41 + X 15 X 56 X 61 + X 57 X 78 X 85 + X 24 X 47 X 72

W = � X 14 X 43 X 31 � X 17 X 75 X 56 X 61 � X 58 X 87 X 75 � X 38 X 84 X 43 � X 14 X 46 X 61 � X 28 X 87 X 72 � X 28 X 84 X 42

+ X 14 X 46 X 61 + X 17 X 75 X 56 X 61 + X 28 X 87 X 72 + X 38 X 84 X 43 + X 58 X 87 X 75 + X 28 X 84 X 42 + X 14 X 43 X 31

Toric Diagram Brane Tiling Quiver

W = � X 24 X 43 X 32 � X 26 X 65 X 52 � X 37 X 75 X 58 X 83 � X 14 X 45 X 52 X 21 � X 18 X 86 X 67 X 71

+ X 24 X 45 X 52 + X 26 X 67 X 75 X 52 + X 14 X 43 X 37 X 71 + X 58 X 86 X 65 + X 18 X 83 X 32 X 21
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Toric Diagram Brane Tiling Quiver

W = � X 34 X 45 X 53 � X 37 X 74 X 46 X 63 � X 38 X 86 X 63 � X 18 X 86 X 61 � X 18 X 82 X 25 X 51 � X 17 X 72 X 21

+ X 38 X 86 X 63 + X 34 X 46 X 63 + X 18 X 82 X 21 + X 18 X 86 X 61 + X 25 X 53 X 37 X 72 + X 17 X 74 X 45 X 51

W = � X 35 X 54 X 43 � X 36 X 67 X 73 � X 48 X 86 X 64 � X 15 X 54 X 41 � X 23 X 35 X 57 X 72 � X 16 X 62 X 28 X 81

+ X 35 X 57 X 73 + X 28 X 86 X 67 X 72 + X 15 X 54 X 48 X 81 + X 35 X 54 X 43 + X 23 X 36 X 62 + X 16 X 64 X 41

W = � X 35 X 54 X 43 � X 37 X 74 X 46 X 63 � X 56 X 68 X 85 � X 16 X 68 X 81 � X 13 X 32 X 28 X 81 � X 12 X 27 X 71

+ X 35 X 56 X 63 + X 46 X 68 X 85 X 54 + X 16 X 68 X 81 + X 12 X 28 X 81 + X 13 X 37 X 71 + X 27 X 74 X 43 X 32

W = � X 24 X 43 X 35 X 52 � X 26 X 63 X 32 � X 14 X 47 X 78 X 86 X 61 � X 24 X 47 X 72 � X 15 X 58 X 81

+ X 24 X 47 X 72 + X 24 X 43 X 32 + X 14 X 47 X 78 X 81 + X 15 X 52 X 26 X 61 + X 35 X 58 X 86 X 63
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Toric Diagram Brane Tiling Quiver

W = � X 12 X 23 X 31 � X 16 X 64 X 45 X 51 � X 27 X 74 X 48 X 82 � X 13 X 37 X 71 � X 35 X 56 X 63 � X 57 X 78 X 85

+ X 13 X 35 X 51 + X 45 X 57 X 74 + X 12 X 27 X 71 + X 16 X 63 X 31 + X 48 X 85 X 56 X 64 + X 23 X 37 X 78 X 82

W = � X 46 X 65 X 54 � X 45 X 57 X 74 � X 68 X 87 X 76 � X 16 X 67 X 71 � X 25 X 53 X 38 X 82 � X 13 X 34 X 42 X 21

+ X 46 X 67 X 74 + X 57 X 76 X 65 + X 16 X 68 X 82 X 21 + X 13 X 38 X 87 X 71 + X 25 X 54 X 42 + X 34 X 45 X 53

W = � X 26 X 64 X 45 X 52 � X 37 X 74 X 48 X 83 � X 16 X 63 X 35 X 51 � X 17 X 72 X 28 X 81

+ X 28 X 83 X 35 X 52 + X 17 X 74 X 45 X 51 + X 26 X 63 X 37 X 72 + X 16 X 64 X 48 X 81
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Toric Diagram Brane Tiling Quiver

W = � X 15 X 54 X 46 X 61 � X 14 X 47 X 71 � X 28 X 87 X 75 X 52 � X 38 X 84 X 46 X 63 � X 23 X 34 X 42

+ X 15 X 52 X 23 X 38 X 87 X 71 + X 47 X 75 X 54 + X 28 X 84 X 42 + X 14 X 46 X 61 + X 34 X 46 X 63

W = � X 13 X 32 X 24 X 41 � X 15 X 56 X 61 � X 27 X 75 X 56 X 68 X 82 � X 36 X 64 X 43 � X 48 X 87 X 74

+ X 13 X 36 X 61 + X 56 X 68 X 87 X 75 + X 27 X 74 X 43 X 32 + X 15 X 56 X 64 X 41 + X 24 X 48 X 82

W = � X 34 X 45 X 53 � X 36 X 67 X 73 � X 18 X 86 X 61 � X 24 X 48 X 82 � X 47 X 75 X 54 � X 13 X 37 X 71 � X 16 X 62 X 21 � X 28 X 85 X 52

+ X 34 X 47 X 73 + X 16 X 67 X 71 + X 28 X 86 X 62 + X 48 X 85 X 54 + X 37 X 75 X 53 + X 13 X 36 X 61 + X 18 X 82 X 21 + X 24 X 45 X 52
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Toric Diagram Brane Tiling Quiver

W = � X 13 X 32 X 24 X 41 � X 16 X 62 X 25 X 51 � X 37 X 74 X 48 X 83 � X 58 X 86 X 67 X 75

+ X 13 X 37 X 75 X 51 + X 25 X 58 X 83 X 32 + X 16 X 67 X 74 X 41 + X 24 X 48 X 86 X 62

W = � X 46 X 65 X 54 � X 45 X 57 X 74 � X 68 X 87 X 76 � X 16 X 67 X 71 � X 24 X 43 X 38 X 82 � X 13 X 35 X 52 X 21

+ X 46 X 67 X 74 + X 57 X 76 X 65 + X 16 X 68 X 82 X 21 + X 13 X 38 X 87 X 71 + X 24 X 45 X 52 + X 35 X 54 X 43

W = � X 34 X 45 X 53 � X 36 X 67 X 73 � X 18 X 86 X 61 � X 28 X 84 X 42 � X 47 X 75 X 54 � X 13 X 37 X 71 � X 16 X 62 X 21 � X 25 X 58 X 82

+ X 34 X 47 X 73 + X 16 X 67 X 71 + X 28 X 86 X 62 + X 25 X 54 X 42 + X 37 X 75 X 53 + X 13 X 36 X 61 + X 18 X 82 X 21 + X 45 X 58 X 84
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Toric Diagram Brane Tiling Quiver

W = � X 12 X 23 X 32 X 21 � X 34 X 45 X 54 X 43 � X 56 X 67 X 76 X 65 � X 78 X 81 X 18 X 87

+ X 23 X 34 X 43 X 32 + X 45 X 56 X 65 X 54 + X 67 X 78 X 87 X 76 + X 81 X 12 X 21 X 18

W = � X 11 X 12 X 21 � X 22 X 23 X 32 � X 34 X 45 X 54 X 43 � X 56 X 67 X 76 X 65 � X 78 X 81 X 18 X 87

+ X 11 X 18 X 81 + X 22 X 21 X 12 + X 23 X 34 X 43 X 32 + X 45 X 56 X 65 X 54 + X 67 X 78 X 87 X 76

W = � X 11 X 12 X 21 � X 22 X 23 X 32 � X 33 X 34 X 43 � X 44 X 45 X 54 � X 56 X 67 X 76 X 65 � X 78 X 81 X 18 X 87

+ X 11 X 18 X 81 + X 22 X 21 X 12 + X 33 X 32 X 23 + X 44 X 43 X 34 + X 45 X 56 X 65 X 54 + X 67 X 78 X 87 X 76

{ 31 {



Toric Diagram Brane Tiling Quiver

W = � X 11 X 12 X 21 � X 22 X 23 X 32 � X 33 X 34 X 43 � X 44 X 45 X 54 � X 55 X 56 X 65 � X 66 X 67 X 76 � X 67 X 78 X 87 X 76

+ X 11 X 18 X 81 + X 22 X 21 X 12 + X 33 X 32 X 23 + X 44 X 43 X 34 + X 55 X 54 X 45 + X 66 X 65 X 56 + X 78 X 81 X 18 X 87

W = � X 11 X 12 X 21 � X 22 X 23 X 32 � X 33 X 34 X 43 � X 44 X 45 X 54

� X 55 X 56 X 65 � X 66 X 67 X 76 � X 77 X 78 X 87 � X 88 X 81 X 18

+ X 11 X 18 X 81 + X 22 X 21 X 12 + X 33 X 32 X 23 + X 44 X 43 X 34

+ X 55 X 54 X 45 + X 66 X 65 X 56 + X 77 X 76 X 67 + X 88 X 87 X 78

6 Conclusions

Since their introduction, brane tilings have hugely simpli�ed the connection between
gauge theories on D3-branes and the toric CY 3-folds they probe. While given an arbi-
trary toric singularity there are well-de�ned methods for obtaining the corresponding
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brane tiling, it is of great interest to work out catalogues of explicit examples. Such
databases are useful, for example, for uncovering general properties of these theories
and for identifying the best models for speci�c applications.

In this paper, we classi�ed all toric CY 3-folds with toric diagrams up to area 8 and
constructed a brane tiling for each of them. To do so, we developed implementations
of dimer model techniques speci�cally tailored for partial resolution. We also created
computational modules for a wide range of manipulations and computations involving
brane tilings. They can be accessed at [40].

There are various directions for future investigation. First, additional information
can be added to our catalogue. We found one brane tiling for every toric CY3 but,
generically, each geometry is associated to more than one brane tiling. These so-called
toric phasesare related to each other by Seiberg duality and it would be interesting
to provide a complete classi�cation of them for the geometries in our list. Ideally, we
would also like to determine extra data such asR-charges,j -invariants for the dessins,
etc.

In future work, we plan to use our classi�cation of brane tilings as the starting point
for local model building of Standard Model (SM)-like theories with realistic spectra,
hierarchies of masses, 
avor mixings, etc. The main idea of this kind of construction is
to consider a singularity that gives rise to a reasonable spectrum, such as the cone over
dP0 and embed it into a slightly larger one, such as the cone overdP3. This particular
example was studied in great detail in [11, 12], with encouraging results. The �nite
size of the resolved cycles map to non-vanishing vevs for the scalar components of some
bifundamental chiral multiplets. By construction, the resulting low energy theory is
the desired SM quiver, but with the vevs appearing as new parameters that can be
tuned to control the 
avor structure. These vevs appear in very speci�c ways in the
superpotential, leading to a constrained and predictive scenario. We will undertake
a systematic large scale investigation of local model building using the entire set of
area 6 to 8 toric CY 3-folds as parent geometries. We will identify those that are
phenomenologically promising and work out the detailed features of the low energy
theories.
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A Computational Modules

We created variousMathematica modules that implement the ideas presented in this
paper. Their applicability goes well beyond the classi�cation of brane tilings we pre-
sented and should be useful for a wide community. They are publicly available at [40].
Here we summarize some of the basic commands.

So far the package is for a standardUnix environment, where the default directory
for storing the intermediate output is the user's home directory$HOME.

The m� n rectangular brane tilings forC=Zm � Zn play a central role in our studies,
since we use them as simple starting points for partial resolution. For this reason, we
created a module calledRecDimerModels[m, n] , which generates the brane tiling for
C=(Zm � Zn ) with all its elements properly labeled and generates its Kasteleyn matrix.
The intermediate data is stored in the �le$HOME.dimer.model.tmp.txt .

Next, the ToricInfo[ KM ] module takes a Kasteleyn matrix as input and pro-
duces the corresponding perfect matchings and toric diagram.

For triangulating toric diagrams, we provideTriangDimer[ ToricP ts] , which is a
modi�ed version of the DelaunayMesh[] command inMathematica.

The moduleRemovePoints[KM , P tsremove] generates all possible collections of
vevs, or equivalently edges to be removed, that give rise to a desired partial resolution
de�ned by a starting toric diagram and the points we want to delete from it (Ptsremove).
The data is loaded in$HOME.dimer.model.tmp.txt . This is the most computationally
intensive module, even though we use parallel computing and an optimized algorithm
to enumerate all collections of removed edges. The output is in the form of a list
containing all the possible higgsings (PossibleHiggsings). With this information, it is
straightforward to determine the brane tiling resulting from any of these higgsings using
HiggsingDimerSU[Kmatrix , possiblehiggsing] . This module also produces the quiver
and superpotential for the brane tiling.

Algorithm 1 provides a brief summary of how these modules were exploited for the
classi�cation of brane tilings carried out in this paper.
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Algorithm 1 Classi�cation of dimer models for all toric diagrams with a given area
Initialise Models as empty set. . used as storing physical models.
Load PSets as all the inequivalent toric diagrams with a given area.
for toric in PSets do

De�ne Kmatrix by using RecDimerModels[m, n] . The integersm and n must
de�ne a rectangular toric diagram in whichtoric can be embedded.

De�ne ptsremoveas the set containing points to be removed from the rectangular
toric diagram.

DeterminePossibleHiggsings, the collections of vevs that produce a given partial
resolution, usingRemovePoints[Kmatrix , ptsremove] .

for possiblehiggsingin PossibleHiggsingsdo
Use HiggsingDimer[ Kmatrix , higgsantz] to compute the brane tiling,

quiver and superpotential for everypossiblehiggsing.
Save this information into Models.

end for
end for
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