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ABSTRACT 

Structural members of reinforced concrete (R/C) buildings designed according to older, less 
stringent seismic codes are often vulnerable to shear or flexure-shear failure followed by axial 
failure. Thus, such substandard R/C structures are susceptible to vertical collapse, which pertains 
to the exceedance of vertical resistance of columns and connecting beams and can lead to the 
whole structure – or a substantial part of it – undergoing collapse.  

The largest database of shear and flexure-shear critical R/C columns cycled well beyond the 
onset of shear failure and/or up to the onset of axial failure is compiled and empirical 
relationships are developed for key parameters affecting the response of such members after 
the initiation of shear failure. A novel shear hysteresis model is proposed employing these 
relationships, based on experimental observations that deformations after the onset of shear 
failure tend to concentrate in a specific member region.  

A computationally efficient finite element model of the member-type is proposed, using the 
above shear hysteretic model and combining it with displacements arising from flexural and 
bond-slip deformations to get the full lateral force-lateral displacement response. It accounts 
for the interaction between flexural and shear deformations inside the potential plastic hinges, 
the distribution of flexural and shear flexibility along the element, as well as the location and 
extent of post-peak shear damage, without relying on assumptions about the bending moment 
distribution and avoiding shortcomings of previous beam-column models pertinent to numerical 
localisation. Thus, the full-range hysteretic response of substandard R/C elements can be 
predicted up to the onset of axial failure subsequent to shear failure with or without prior 
flexural yielding, while simultaneously accounting for potential flexural and anchorage failure 
modes.  

The proposed model is implemented in a finite element structural analysis software and its 
predictive capabilities are verified against quasi-static cyclic and shake-table test results of 
column and frame specimens. The model is shown to be sufficiently accurate not only in terms 
of total response, but more crucially in terms of individual deformation components. Overall, it 
is believed that the accuracy, versatility and simplicity of this model make it a valuable tool in 
seismic analysis of complex substandard R/C buildings. 

An experimental investigation of shear and flexure-shear critical R/C elements is carried out with 
the aim of independently validating the beam-column model. Furthermore, an opportunity is 
provided to verify the model’s underlying assumptions, which is of paramount importance for 
the reliability of its analytical predictions. The experiments were designed in such a manner as 
to investigate the effect of vertical load redistribution from axially failing members on the lateral 
post-peak response of neighbouring columns.  
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Chapter 1: INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Reinforced concrete (R/C) buildings designed according to older, less stringent seismic codes – 

or even without adhering to any code – represent a large part of the total building stock 

worldwide. Naturally, this applies to developing earthquake-prone countries, where the state of 

the art in construction technology and structural design is lagging – or at least was lagging in 

previous decades–, and where regulation of construction and policies on the required safety 

margins of structures has followed a slow pace.  Nevertheless, this also applies to many 

developed earthquake-prone countries, largely due to the building boom of the decades 

following the 2nd World War that resulted in creating a sizeable stock of buildings perhaps 

compliant to contemporary guidelines, but largely considered substandard given the current 

seismic codes, technology and state-of-the-art.  

Such buildings, often referred to as substandard or non-ductile buildings owing to their limited 

deformability, are susceptible to progressive collapse. This comprises the succession of failure 

of structural elements leading to the whole structure – or a substantial part of it – undergoing 

collapse. The types and causes of progressive collapse can vary; they are broadly classified into 

side-sway collapse that takes place when seismic lateral forces exceed the lateral resistance of 

the structure and vertical collapse, which pertains to the exceedance of vertical resistance of 

columns and connecting beams (Matsukawa et al., 2012). Post-earthquake reconnaissance has 

shown that the latter is the most common scenario for R/C frame buildings, primarily due to 

failure of columns or beam-column joints (Ghannoum et al., 2008), and non-ductile R/C buildings 

are reportedly much more prone to vertical collapse compared to modern ductile structures 

(Liel, 2008).  

This is not surprising, since the quality of construction in older buildings is typically much lower 

than buildings designed nowadays – including lower-strength concrete, lower longitudinal 

reinforcement content, inadequate, widely spaced or poorly detailed transverse reinforcement 

and insufficient anchorage of longitudinal bars –, and modern design concepts like capacity 

design and the provision of dissipative zones are lacking. This renders the vertical elements of 

these buildings vulnerable to various failure modes, for instance flexural hinging, buckling of 
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steel bars or crushing of concrete due to excessive axial loading, anchorage failure, as well as 

shear failure; the latter may occur subsequently, or even prior, to yielding of their longitudinal 

reinforcement and can eventually lead to loss of axial load capacity of vertical elements, through 

disintegration of the poorly confined concrete core and the consequent axial load resistance 

decrease (Sezen & Moehle, 2006).  

This research work will focus on the latter mode of failure, i.e. axial failure of R/C columns 

subsequent to shear failure and (potentially) yielding. This is a rather complex phenomenon 

governed by highly non-linear softening response, progressive damage accumulation and it is 

subject to many uncertainties. It must be appropriately modelled, in order to describe the full-

range response (up to collapse) of sub-standard R/C frame and dual structures to strong ground 

motions. Previous research has focussed on modelling this type of response to some extent, 

however disregarding important aspects of this phenomenon, as will be highlighted later on.  

Full-range analysis of structures is a necessity if vulnerability assessment is sought that would 

include the critical limit states of significant damage and collapse.  This is not just a desirable 

step forward for structural engineering research, but also relevant to further improving the 

safety of millions of people residing, working or spending part of their leisure time in such sub-

standard buildings. 

1.2 OBJECTIVES & SCOPE  

An experimental investigation of shear and flexure-shear critical R/C elements is carried out with 

the objective of demonstrating that displacements beyond the onset of shear failure are 

attributed to shear and concentrate in a region defined by diagonal failure planes. Furthermore, 

the effect of vertical load redistribution from axially failing members on the lateral post-peak 

response of neighbouring columns is investigated for the first time.  

The main objective of this research project is to put forward a computationally efficient finite 

element model of the beam-column type able to accurately predict the hysteretic non-linear 

response of elements of sub-standard R/C structures up to the onset of axial failure following 

shear failure with or without prior flexural yielding, while simultaneously accounting for 

potential flexural and anchorage failure modes. In order to achieve this, it ought to appropriately 

account for shear and flexural deformations at a local level, the interaction between them inside 

the potential plastic hinges of an element, the distribution of flexural and shear flexibility along 

the element, as well as the location and extent of shear damage, without relying on assumptions 

about the bending moment distribution, which generally changes during seismic loading.  
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Some R/C columns may sustain simultaneous shear and axial failure with substantially reduced 

deformation capacity, which jeopardises the entire structure, thus constituting a priority in a 

pre-seismic retrofit context. Therefore, simplified criteria will be sought for this particular class 

of elements, in order for their identification to be accelerated and not require analysis of the 

entire structure or even individual members. 

The contributions summarised in the aforementioned objectives are believed to have 

noteworthy implications regarding the more accurate and reliable assessment and collapse 

analysis of existing R/C structures. Moreover, they advance the state-of-the-art in vulnerability 

assessment using nonlinear analysis methods that directly capture member collapse rather than 

accounting for it using simplifying (and often arbitrary) assumptions. 

1.3 THESIS ORGANISATION  

The stated objectives of the PhD are met as described in the next chapters, divided into three 

major parts: (i) the compilation of a database and – based on this –proposed empirical 

relationships and simplified failure criteria, (ii) the design of, and the obtained results from, an 

experimental investigation involving six cantilever shear and flexure-shear critical columns, and 

(iii) the development and verification of a beam-column finite element model. 

Chapter 2 provides a comprehensive summary of existing literature regarding the 

aforementioned topics. A critical review of member-type models predicting the response of sub-

standard R/C elements is included as well as existing empirical relationships used to predict 

various key post-peak response parameters. Moreover, observations regarding specimens 

susceptible to simultaneous shear and axial failure and conclusions drawn from experimental 

investigations of R/C members’ post-peak response are summarised. 

In chapter 3, the compilation of the largest database (to date) of shear and flexure-shear critical 

elements, which were cycled well beyond the onset of shear failure and/or up to the onset of 

axial failure, is presented. Descriptive statistics of the main characteristics of the specimens as 

well as data extraction and processing considerations are provided. 

In chapter 4, the theoretical basis adopted herein for the modelling of the post-peak response 

of shear and flexure-shear critical specimens is presented. Appropriate empirical relationships 

are put forward for key parameters, i.e. the inclination of the diagonal shear failure plane, the 

rate of strength degradation after the initiation of shear failure as well as the shear deformation 

associated with the onset of axial failure. 
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In chapter 5, sub-standard R/C columns failing simultaneously in shear and axial failure are 

investigated. Existing observations on the circumstances leading to specimens being susceptible 

to such failure are evaluated. Novel criteria aiming to identify members susceptible to 

simultaneous failure without the need for analysis of the entire structure or even individual 

components, are put forward. The empirical relationship previously proposed for the post-peak 

deformability as well as a well-established existing model are evaluated in the context of 

simultaneous shear-axial failure. 

In chapter 6, the design and fabrication of an experimental series of six cantilever columns is 

presented. The purpose is to investigate the effect of vertical load redistribution on the lateral 

post-peak response of shear and flexure-shear critical R/C columns neighbouring axially failing 

vertical members. Therefore, cyclic tests are carried out, with the axial load increasing just 

before or after the onset of shear failure. Furthermore, another objective is to investigate if 

displacements beyond the onset of shear failure are attributed to shear and concentrate in a 

region defined by diagonal failure planes.  

In chapter 7, the results of this experimental campaign are presented in detail. All relevant 

information in terms of damage progression, lateral and axial response is included. Furthermore, 

light is shed on various issues regarding the overall response of the specimens, for instance their 

energy dissipation capacity, stiffness variation throughout the tests, concentration of damage 

after the onset of shear failure and some topics related to the testing procedure per se. 

In chapter 8, a novel shear hysteretic model is proposed, based on the previously proposed 

empirical relationships and the afore-described concentration of damage after the onset of 

shear failure. A computationally efficient member-type finite element model for the hysteretic 

response of shear and flexure-shear critical R/C frame elements up to the onset of axial failure 

is presented, incorporating this shear hysteresis model. Being based on local deformation 

quantities in lieu of inter-storey displacements, it can account in an unbiased way for the 

interaction of inelastic flexural and shear deformations, including the gradual decrease of an 

element’s shear resistance, and more reliably predict the location and extent of shear damage 

subsequent to shear failure, avoiding shortcomings of previous models.  

In chapter 9, the beam-column element is verified against a multitude of experimental tests, 

including quasi-static R/C column tests and dynamic shake-table tests on R/C frames. Wherever 

feasible, comparisons are shown not only in terms of total response, but also with regard to 

individual deformation components. Additionally, the specimens tested in this study with 

increasing axial load are analysed. 
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In the final chapter (10) of the thesis, the work performed is summarised and the main 

conclusions are outlined. Last but not least, recommendation for future research work in this 

area are made. 
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Chapter 2: LITERATURE REVIEW 

A summary as well as critical evaluation of the existing literature pertinent to the subjects 

touched upon in this thesis will be herein included. Topics relevant to the collapse of R/C 

structures, post-peak response of sub-standard R/C components as well as modelling of this 

response will be presented. 

2.1 COLLAPSE OF R/C STRUCTURES 

Many existing R/C structures have been designed according to older, less stringent seismic codes 

compared to current guidelines or might not have been designed to withstand seismic loads at 

all. Therefore, they are quite vulnerable to damage from earthquake loading, potentially even 

leading to collapse of the whole structure or a major part of it. This takes place in a progressive 

manner starting with the failure of one or few elements and propagating through the structure, 

thus termed progressive collapse (Starossek, 2008). Progressive collapse scenarios are broadly 

classified into (1) side-sway collapse, which takes place when seismic lateral forces exceed the 

lateral capacity of the structure, and (2) vertical collapse that pertains to exceeding the 

structure’s vertical bearing capacity (Matsukawa et al., 2012). The former is more common in 

ductile frames, which can attain larger lateral displacements and are influenced considerably by 

P-δ phenomena. On the other hand, non-ductile R/C frames usually undergo the latter mode of 

collapse, their elements losing their vertical capacity before excessive lateral displacements can 

be reached (Liel, 2008; Adam & Ibarra, 2014). 

Loss of axial load capacity of vertical R/C elements has been shown through post-earthquake 

reconnaissance to be one of the most common reasons of vertical collapse of older R/C frame 

buildings (Ghannoum et al., 2008). Axial failure of a column can occur after the onset of shear 

failure, subsequently, or even prior, to yielding of the longitudinal reinforcement, through 

disintegration of the poorly confined concrete core of the column with continuous lateral cycling 

(Sezen & Moehle, 2006). A large fraction of the vertical load carried by a failing member is 

subsequently redistributed to neighbouring vertical elements through the adjacent horizontal 

members, which leads to a significant increase of axial load acting on the neighbouring R/C 

columns. The ability of a structural system to resist progressive collapse in such a ‘scenario’ 

hinges on both the ability of horizontal elements (beams and slabs) to transfer the loads being 

redistributed to adjacent vertical elements and the vertical elements’ ability to resist them 

without considerably losing their strength and deformability (Lodhi, 2012).  
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Existing research work has looked extensively into the adjacent horizontal elements' capacity to 

redistribute vertical loads, neglecting the neighbouring columns or assuming they are capable 

of bearing the extra axial load. Several analytical studies, experimental programmes and field 

studies have highlighted that R/C beams and slabs adjacent to a failing column redistribute the 

loads initially via frame (or Vierendeel) action, followed by compressive arch action of the beams 

and membrane action of the slabs, as the vertical displacement increases, eventually turning 

into catenary action with the whole depth being in tension (Sasani et al., 2007; Sasani & 

Sagiroglu, 2008; He & Yin, 2008; Izzuddin et al., 2008; Vlassis et al., 2008; Yi et al., 2008; Sasani 

& Sagiroglu, 2010; Li et al., 2011; Choi & Kim, 2011; Jahromi et al., 2012; Yu & Tan, 2013; Lew et 

al., 2014; Li et al., 2014; Palmisano, 2014). The General Services Administration guidelines (GSA, 

2013) also focus on load redistribution systems of gravity loads to neighbouring vertical load-

bearing elements without any particular mention to the neighbouring vertical elements 

themselves.  

Nonetheless, an abrupt increase of the axial load in vertical elements neighbouring an axially 

failing column takes place – in addition to potential increase of shear or deformation demands 

– and they ought to be checked in order to perform an accurate assessment of the ability of the 

structure to arrest progressive collapse. Xu & Ellingwood (2011) accounted for this via 

considering the potential buckling of neighbouring vertical elements in a design procedure 

against progressive collapse of steel buildings. However, only in one noteworthy study of R/C 

buildings has it been attempted to account for this effect, modelling shear and axial failure of 

the columns of an R/C frame building that were judged as the most critical based on preliminary 

analyses (Murray & Sasani, 2013). Their shear strength model could take the variation of axial 

load into consideration. Nonetheless, the post-peak shear strength degradation rate was 

assigned a value based on results from similar columns cycled under constant axial load, without 

considering the effect of axial load increase or decrease. Additionally, the onset and rate of axial 

strength degradation were also assumed based on past experimental results. Furthermore, 

although the structure was representative of older construction, the anchorage slip as well as 

shear deformations were not taken into account in the analyses. Naturally, the effect of vertical 

load redistribution can be readily taken into account using member-type elements that account 

for axial-flexure interaction, in the case of flexure-critical elements. However, this is not the case 

for shear or flexure-shear critical elements of older R/C structures – which are the focus of this 

thesis – modelled through beam-column models explicitly accounting for shear response, where 

this effect has not been modelled appropriately yet. 

Another common assumption in collapse analysis is that of undamaged vertical elements, e.g. 

assuming uncracked cross-sections. Τhis might be appropriate for blast-induced, vehicular 
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impact or similar collapse scenarios, where damage can be largely assumed localised in a single 

structural element or a small set of elements. Nevertheless, earthquake-induced collapse 

scenarios pose a further difficulty in that there is global damage in a large part, if not all, of the 

building even before the loss of a column's vertical load-bearing capacity. Therefore, the damage 

state of a column neighbouring an axially failed vertical member has to be appropriately taken 

into account in a realistic earthquake-induced progressive collapse assessment, e.g. as 

attempted to be done by Murray & Sasani (2013). 

Previous experimental studies looking into the non-linear, especially the post-peak, lateral 

response of substandard R/C columns have looked extensively at the response under constant 

vertical load (e.g. Lynn et al., 1996; Yoshimura & Yamanaka, 2000; Yoshimura & Nakamura, 2002; 

Nakamura & Yoshimura, 2002; Ousalem et al., 2003; Yoshimura et al., 2004; Matamoros & 

Woods; 2010) as well as variable axial load corresponding to an exterior column case, i.e. axial 

load proportional to the lateral force acting on the column (e.g. Ramirez & Jirsa, 1980; Ousalem 

et al., 2002; Sezen & Moehle, 2006). Recently, Nakamura & Yoshimura (2014) investigated the 

effect that decreasing axial load has on the lateral non-linear response of substandard columns, 

thus simulating the response of a column that starts failing axially and its axial load starts 

decreasing correspondingly due to vertical load redistribution. All these studies are presented 

in the next section; the most relevant conclusions are presented and the subsequent parts of 

the project are based upon them to a greater or lesser extent. 

To the writer’s best knowledge, the effect of vertical load redistribution on the non-linear post-

peak response of shear and flexure-shear critical R/C columns neighbouring failing vertical 

members has thus far not been investigated at all.  

2.2 POST-PEAK RESPONSE OF R/C MEMBERS 

Traditionally, experimental tests of R/C columns would terminate after a slight degradation of 

strength, at around 80-85% of the maximum strength, being conservative as to the available 

displacement capacity of R/C members. The experiments falling into this category do not provide 

sufficient information on the post-peak response of R/C members. Similarly, analytical models 

would consider the peak of the response or the point of 80-85% of the maximum strength as 

the ultimate state. Nonetheless, there has been a recent shift of interest in the post-peak 

domain inside the engineering research community, chiefly during the last 20 years. This has 

produced a sizeable amount of data with regard to the post-peak response in general and 

particularly to the onset of axial failure of columns. Some of the most salient experimental and 

analytical works along with their main observations will be presented herein. 
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Ramirez & Jirsa (1980) performed experimental tests on similar 2/3-scaled short columns under 

cyclic lateral loading and varying or constant compressive or tensile axial load. Compressive load 

was found to increase the shear strength degradation, while tension decreased it, compared 

with a specimen with no axial load. They claim that tension results in a smaller part of the 

concrete core resisting shear, so more transverse reinforcement capacity can contribute to 

carrying the shear force experienced by the column, instead of being used as concrete core 

confinement, and less damage is inflicted on the concrete crack surfaces during cycling. Varying 

axial loads between tension and compression seemed to decrease the deterioration as much as 

applying a constant tensile axial force. 

Lejano et al. (1995) conducted an experimental programme to study the deformation 

characteristics of short double-curvature R/C columns with high-strength concrete under quasi-

static cyclic loading as well as high or fluctuating axial load (Figure 2-1). It was observed that 

specimens under compressive axial loads tend to exhibit high shear deformations in the post-

peak part of the response. As an example, the deformation components of the response of one 

specimen (C-2), which was subjected to very high compressive axial load, is shown herein (Figure 

2-2). δs denotes shear deformation, δf flexural deformation and the additional deformation, δa, 

is assumed to derive mainly from anchorage slippage. 

 
 

(a) (b) 

Figure 2-1: (a) Specimen details and (b) test set-up. (Lejano et al. 1995) 
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Figure 2-2: Deformation components of specimen C-2’s response. (Lejano et al. 1995) 

Lynn et al. (1996) conducted tests on eight full-scale square R/C columns with light and poorly 

detailed reinforcement, undergoing quasi-static cyclic lateral loading, while having a constant 

axial load. Sezen & Moehle (2006) performed four more tests on similar specimens, including 

one with monotonic lateral loading under constant axial load, as well as cyclic tests with varying, 

high constant and low constant axial load (Figure 2-3). Subsequently, four more specimens with 

similar geometry and test configuration were conducted (Matamoros et al., 2008; Matchulat, 

2009; Woods, 2009), to record the response of specimens after the onset of axial failure. Lastly, 

eight more experiments were carried out (Henkhaus et al., 2013), including columns with two 

different aspect ratios as well as uniaxial and biaxial loading. These compose an experimental 

series amounting to 24 similar specimens, which is very important for studying the effects of 

individual variables on the post-peak response. Some of their main conclusions and findings 

regarding post-peak response of sub-standard R/C columns were: 

 Loss of gravity load capacity occurred soon after the loss of lateral load capacity, in 

specimens governed by shear. On the contrary, in flexure-shear specimens, the gravity 

load capacity was lost at relatively large lateral displacements (Lynn et al., 1996). 

 Higher axial load was found to shift the failure type from flexure-shear to shear and to 

reduce the lateral displacement at the onset of shear as well as axial failure significantly, 

leading in general to a more brittle response (Sezen & Moehle, 2006; Matchulat, 2009; 

Woods, 2009). Moreover, it leads to a far higher post-peak degradation of axial as well 

as lateral resistance (Matchulat, 2009; Matamoros et al., 2008), although it is beneficial 

for the pre-peak lateral resistance of a column, as is well-known. 

 Monotonic loading, as compared to cyclic, allows for higher lateral displacement at axial 

failure (Sezen & Moehle, 2006). 

 Larger longitudinal reinforcement ratio results in higher lateral drift ratio at the onset of 

shear as well as axial failure (Woods, 2009). 
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 Increased number of cycles per displacement level (6 cycles as opposed to 3) were found 

to decrease the lateral drift ratio at the onset of shear as well as axial failure, based on 

the aforementioned tests (Woods, 2009; Henkhaus et al., 2013) and a subsequent 

comparative analysis of the results (Simpson & Matamoros, 2012).  

 Higher aspect ratio and transverse reinforcement ratio increase the lateral drift ratio at 

the onset of axial failure (Henkhaus et al., 2013). Shorter specimens were found to attain 

a higher drift at axial failure in another study, however (Simpson & Matamoros, 2012).  

 The use of larger ties at larger spacing, the general reduction of transverse 

reinforcement, increased number of cycles per displacement level and biaxial loading 

instead of uniaxial were found to cause a higher post-peak lateral strength degradation 

(Henkhaus et al., 2013). Biaxial loading has been found to be even more influential than 

the number of cycles per displacement level (Simpson & Matamoros, 2012). 

 Columns with higher initial axial load ratio run a higher risk of sudden collapse after the 

onset of axial failure, as they can maintain a far lower fraction of axial load, as opposed 

to columns with lower initial axial load ratio that can carry a reduced axial load for higher 

drifts. So, redistribution of axial loads in case of progressive collapse might not be 

possible in the former, contrary to the latter category (Woods & Matamoros, 2010). 

 Sudden decrease of axial strength and increase of axial shortening take place at the 

onset of axial failure (Matchulat, 2009). 

 Damage was observed to concentrate at a localised region along the specimen after the 

onset of shear failure (Henkhaus et al., 2013). 

 

 

 

(a) (b) 

Figure 2-3: (a) Specimen-1 design and (b) test set-up. (Sezen & Moehle, 2006) 

Ghannoum et al. (2012) performed tests pseudo-statically and dynamically at various velocities. 

The columns were flexure-shear critical, a 1/3-scale version of the aforementioned (Figure 2-3). 
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They observed that there was a 30% increase in strength in dynamic tests (as compared to the 

quasi-static one), due to the strain rate effect on the yield strength of the longitudinal bars, 

which increases the flexural resistance of the column. However, this increase was constant 

regardless of the velocity of the test, although the strength increase would be expected to be 

proportional to the strain rate. The dynamic tests also showed higher displacement capacities, 

but also higher cyclic shear strength degradation rates. 

Ousalem et al. (2002) performed experimental tests on six square one-third-scaled R/C columns 

undergoing cyclic lateral loading and constant or variable axial loads (Figure 2-4). Ousalem et al. 

(2003) conducted seven more experiments on similar specimens, except for two of them having 

a lower aspect ratio, with different loading protocols. Comparative analysis was subsequently 

carried out (Ousalem et al., 2004). Relevant conclusions drawn were: 

 Higher transverse reinforcement ratio resulted in higher maximum shear strength and 

lateral displacement at axial failure (Ousalem et al., 2002). 

 Increased axial load led to higher shear strength as expected, but lower lateral 

displacement at axial failure as well as axial deformations of the column. It also resulted 

in a steeper failure plane (Ousalem et al., 2002; Ousalem et al., 2004). 

 Varying axial load led to milder degradation of axial stiffness, higher shear resistance, 

larger lateral displacement and lower shear degradation (Ousalem et al., 2002; Ousalem 

et al., 2004). 

 Shear strength had degraded to nearly zero when axial collapse occurred along inclined 

planes. At the onset of axial collapse, longitudinal bars were found to buckle 

simultaneously with hoops opening (Ousalem et al., 2003). 

 Fewer reversals of larger displacement amplitude resulted in less but wider cracks, 

which led in turn to less pronounced shear strength degradation and higher 

deformability. In specimens with low transverse reinforcement, however, the lateral 

loading type had no effect on the maximum lateral drift attained. Moreover, fewer 

reversals led to higher shear strength in the primary direction, attributed to the lack of 

low-amplitude reversal damage. Nevertheless, lower shear strength was attained in the 

opposite direction, due to the influence of shear cracking and shear strength 

degradation in the primary direction (Ousalem et al., 2003; Ousalem et al., 2004). 

 Lower aspect ratio resulted in increased shear strength, but decreased lateral 

deformability (Ousalem et al., 2003). 

 Axial load ratio as well as transverse reinforcement were found to have a significant 

effect on the failure plane inclination, especially in the case of varying axial load. The 
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lateral loading protocol type did not have a significant influence on it (Ousalem et al., 

2004). 

 
(a) 

 
(b) 

Figure 2-4: (a) Specimen design and (b) test set-up. (Ousalem et al. 2002) 

Yoshimura & Yamanaka (2000) carried out experiments on six cantilever R/C columns, with 

monotonic, uniaxial and biaxial cyclic lateral loading and relatively low constant axial loading. 

Half of them were designed to fail in shear prior to flexural yielding and half of them after 

yielding. Nakamura & Yoshimura (2002) tested four short specimens in a double-curvature 

setup, with monotonic and cyclic lateral loading. Yoshimura & Nakamura (2002) tested six 

specimens similarly, designing them to fail in shear. Yoshimura et al. (2003) tested eight more 

specimens of a slightly higher aspect ratio. Comparisons within this large series of specimens 

resulted in plenty of conclusions drawn in later publications (Yoshimura et al., 2004; Yoshimura, 
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2008). Nakamura & Yoshimura (2012) performed shake-table tests on half- and full-scale R/C 

columns up to axial collapse, with natural earthquake recordings of increasing amplitude. 

Nakamura & Yoshimura (2014) undertook an extensive experimental programme, including 

sixteen full-scale column specimens, which were loaded with lateral monotonic or cyclic load 

and a constant axial force, which was decreased to a fraction of the initial value in the post-peak 

domain of the response. Figure 2-5 summarises the specimen design and test set-up 

characteristics of most of the aforementioned experimental programmes. Many conclusions 

have been drawn throughout these years of experimental work, the most important of which 

are: 

 Shear strength at the onset of axial failure reaches about 10% of the maximum strength 

(Yoshimura & Yamanaka, 2000). It was found to degrade to about zero in other studies 

(Yoshimura & Nakamura, 2002; Nakamura & Yoshimura, 2002). Later, it was found to be 

negligible in shear critical elements, but much larger (about 90% of the maximum 

strength) in flexure-shear critical ones, based on the two flexure-shear and five shear 

critical specimens of this study (Yoshimura et al., 2003). 

 Axial load ratio plays a major role in lateral and vertical displacements as well as 

dissipated energy at the onset of axial collapse, i.e. increased axial load results in a 

decrease in all of them (Nakamura & Yoshimura, 2002). 

 The maximum attainable displacement seems to decrease as the longitudinal 

reinforcement ratio decreases. This is also reinforced by the finding that longitudinal 

bars sustain much higher strains near the diagonal failure plane than in the rest of the 

column, so they transfer a larger part of the axial force at the crack, where concrete is 

not able to (Yoshimura & Nakamura, 2002). Later, it was concluded that there is a 

positive correlation between these two quantities for shear critical elements, but a 

negative one for flexure-shear critical ones (Yoshimura, 2008). 

 As a consequence of the previous comments, the longitudinal reinforcement axial load 

ratio (defined as the axial load over the axial yield strength of the longitudinal 

reinforcement), seems to correlate better with the lateral drift at axial failure than the 

classical axial load ratio (Yoshimura & Nakamura, 2002). Later, they claim that this 

parameter is a very good predictor for shear critical specimens, but not for flexure-shear 

critical ones (Yoshimura et al., 2003). 

 Loading history seems to be an important factor affecting deformability. Cyclic tests 

achieve around 30% less maximum drift ratio than monotonic ones (Yoshimura & 

Nakamura, 2002). It was still around 30% with small deviations depending on the axial 

load history, in later experiments (Nakamura & Yoshimura, 2014). On the other hand, it 
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was found that for columns with small hoop ratio that fail in shear, collapse drifts are 

almost independent of the loading history (Nakamura & Yoshimura, 2012).  

  
(a) (b) 

 
(c) 

 
 

(d) (e) 

Figure 2-5: (a) Specimen design and (b) test set-up (Yoshimura & Yamanaka, 2000). (c) Specimen design 
(Yoshimura & Nakamura, 2002). (d) Design of specimen No. 1 (Yoshimura et al., 2003). (e) Test set-up 

(Nakamura & Yoshimura 2002). 

 Sudden increase of axial shortening is observed at the onset of axial failure (Nakamura 

& Yoshimura, 2002). 
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 In shear critical elements, a diagonal crack is formed at the column mid-height at shear 

failure. This crack widens as lateral deformation increases and collapse occurs due to 

the reduction of the axial capacity due to buckling of the reinforcement bars, 

simultaneously with an increase in the axial force carried by them (Yoshimura et al., 

2003). 

 Columns whose axial load is reduced at some point inside the post-peak response, 

exhibit higher lateral drifts at the onset of axial failure as well as lower post-peak 

strength degradation rate. The larger the decrease and the sooner it happens, the higher 

the displacement attained (Nakamura & Yoshimura, 2014).  

 It was observed that drifts tend to shift in one direction for columns under seismic 

motions. Therefore, it is suggested that monotonic tests could be more suitable as 

capacity indicators rather than cyclic ones, when quasi-static tests are conducted 

(Nakamura & Yoshimura, 2012). 

The last remark seems to agree well with that of Lignos & Krawinkler (2012). They reason that 

approaching collapse member hysteresis loops tend to become extremely asymmetric, 

observing a ratcheting phenomenon of lateral deformation. Therefore, symmetric cyclic lateral 

loading that has been the norm in experimental testing does not really provide useful 

information on the expected behaviour. On the contrary, cyclic deformation to low inelastic 

displacements followed by monotonic loading to collapse would be ideal for this purpose. The 

ideal case would be to have both monotonic and cyclic experiments with many different 

deformation protocols, in order to calibrate correctly all degradation mechanisms (Haselton et 

al., 2009). 

Kato et al. (2006) conducted lateral cyclic experiments on 26 specimens with variable concrete 

strength, axial loads and hoop detailing. They concluded that the effect of hoop detailing on the 

lateral deformation at axial failure was significant for small axial load ratio; as the latter 

increases, this impact fades. Moreover, it is shown that axial failure can initiate long before the 

shear strength of an R/C member degrades significantly.  

Tran (2010) performed experimental tests on ten R/C columns of square or rectangular section, 

with different aspect and axial load ratios (Figure 2-6). It was concluded that: 

 Increasing axial load and decreasing aspect ratio had a detrimental effect on both 

lateral deformation at axial failure and total dissipated energy up to that point. In 

addition, they resulted in a predominance of shear over flexural displacements, 

potentially shifting the failure mode from flexure-shear to shear. 
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(a) (b) (c) 

 
(d) 

Figure 2-6: Design details of (a) square specimens with aspect ratio of 2.4, (b) square specimens with 
aspect ratio of 1.7, (c) rectangular specimens with aspect ratio of 1.7. (d) Τest set-up. (Tran, 2010) 

 There were two distinct failure modes in the tests. In square columns, a steep shear 

crack was formed at shear failure, along which sliding occurred at axial failure. At that 

stage, longitudinal bar buckling and fracture of transverse bars took place along the 
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developed failure plane. On the other hand, the rectangular columns were controlled 

by a combination of shear and bond-split, with vertical cracks forming along the height 

of the column. At axial failure, crushing of concrete, buckling of longitudinal bars and 

fracture of transverse bars occurred across a damaged zone. 

In NIST GCR 10-917-7 (NEHRP, 2010), it was observed that the axial failure drift increases with 

decreasing aspect and axial load ratio, increasing longitudinal and transverse reinforcement 

ratio, lower number of displacement cycles, hoops of smaller diameter placed at closer spacing 

(under constant transverse reinforcement ratio) and uniaxial instead of biaxial displacement 

protocol. 

 

Simultaneous shear and axial failure  

As a rule, shear and flexure-shear critical vertical load bearing members do possess some 

displacement capacity even after initiation of shear failure, in fact rather significant in some 

cases. In other words, after the onset of shear failure, their lateral displacement can increase 

further accompanied by the corresponding deterioration of their lateral strength. Nonetheless, 

there is a subset of columns that can collapse axially immediately after their shear failure 

(Henkhaus et al., 2009). This most daunting phenomenon is commonly referred to as 

“simultaneous shear and axial failure” in the literature. It is of paramount significance, because 

the collapse mode of the whole structure can be adversely affected by such members, leading 

to redistribution of vertical loads at usually low lateral drifts, and the probability that the 

structure collapses can thus be greatly increased. 

Determining which columns are susceptible to such failure, however, is not a straightforward 

task. Relevant observations have been made by researchers in the past on possible 

circumstances leading to this phenomenon, but no criterion has been proposed. Some 

experimental evidence suggests that simultaneous shear and axial failure occurs when the 

applied axial load is about equal to, or greater than, the axial capacity of the longitudinal 

reinforcement (Matchulat, 2009). Elsewhere, it was shown that columns that experienced such 

failure had a ratio of axial load over yield strength of longitudinal reinforcement greater than 

0.65 and had the highest ratios of axial load to buckling capacity of the longitudinal 

reinforcement in a subset of 11 columns examined (Matamoros & Woods, 2010). Henkhaus et 

al. (2009) studied a dataset of 40 columns cycled up to axial failure. They noted that the 4 of 

them that did fail in simultaneous shear and axial failure had transverse reinforcement ratios of 

ρw ≥ 0.06% and axial load levels of v ≤ 0.3, contrary to what ASCE/SEI 41-06 (ASCE 2006) 

predicted for members with such characteristics. Yoshimura et al. (2003) observed that axial 
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failure occurred simultaneously with shear failure in shear-flexure critical elements quite 

suddenly and pertaining to crushing of concrete and buckling of longitudinal bars at the plastic 

hinge region. On the other hand, in shear critical specimens, axial collapse occurred when shear 

strength degraded almost completely. Their finding was based on an experimental series 

comprising 8 column tests. Eurocode 8-3 (CEN, 2005), on the other hand, does not provide for 

post-peak response of elements undergoing shear failure, considering it as a brittle failure and 

merely adopting a maximum strength criterion, due to the code-like conservative nature of 

basing on a significant-damage rather than a near-collapse damage state. 

 

Frame effect 

Elwood & Moehle (2003) conducted a shake-table test on two RC Frames, studying their 

behaviour up to axial collapse. Gradual redistribution of vertical loads was observed through a 

dynamic process of oscillation of the mass above an axially failed column and bending of the 

connecting beam. During axial failure, there seemed to be few large pulses that decreased the 

axial resistance and axial column deformation rapidly, combined with smaller oscillations that 

slowly decreased them even further. Of course, due to the nature of the phenomenon, there 

was a transient dynamic amplification of the redistributed vertical loads owing to the inertial 

forces arising from the vertically accelerating mass associated with the loss of axial load support. 

The dynamic amplification factor was not that high because the complete loss of axial resistance 

happened over 5.5 s, reaching a maximum of 1.5 and subsequently converging to 1.0 with minor 

oscillations. 

Another shake-table test, conducted by Wu et al. (2008a), reveals that there are dynamic 

oscillations of a column’s axial load during experiments, occasionally substantial. Therefore, 

applying any axial failure criterion in an absolute sense could lead to underestimation of axial 

collapse. In other words, the axial load might decrease to nearly zero at the highest lateral 

displacement of a cycle, but it picks up again when passing through the balance (i.e. vertical) 

position. Another study (Wu et al., 2008b) showed that the shear strength of R/C short columns 

was greater for dynamic shake-table tests than for cyclic static tests, probably attributed to the 

strain rate effect. Displacements at the onset of shear failure were similar, however. 

Last but not least, judging from shake-table frame tests as well as from Matchulat’s (2009) 

individual column tests, there seems to be “life after axial failure”. Matchulat (2009) has shown 

that columns can continue being cycled after axial failure, albeit with reduced lateral strength 

and stiffness (e.g. specimen 2 in Figure 2-7). Ghannoum & Moehle (2012) also underlined the 

frame-effect on an individual column: due to partial redistribution of the axial load to 
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neighbouring elements, the axial strength will not be suddenly lost as in individual-specimen 

experiments; even after it is reduced, the system can find a balance state and cycling can 

normally proceed, provided that neighbouring columns can bear the higher axial load of the 

axially failed column, while the latter will continue being cycled with decreased axial and lateral 

strength and stiffness. 

  

(a) (b) 

Figure 2-7: Response of specimen 2 in terms of (a) lateral load vs. lateral drift, and (b) axial strain vs. 
axial force. (Matchulat, 2009) 

Ghannoum & Moehle (2012) also highlight the influence of low-cycle fatigue on strength 

deterioration of a column, especially when subjected to long-duration seismic motions. 

Therefore, they claim that both cyclic-based as well as deformation-based damage should be 

taken into account in analytical models. 

2.3 MODELLING OF R/C MEMBERS 

There are generally three different modelling approaches for the seismic structural analysis of 

an R/C structure (Mazars & Millard, 2009):  

a) Macro-scale or global approach, i.e. empirical macro-models that represent the 

behaviour of R/C members, like beams, columns, walls, or even larger subassemblies of 

a building. These connect deformation quantities – curvature, shear strain, extension, 

lateral displacement etc. – with global stress quantities – moment, shear or axial load. 

b) Meso-scale or semi-global approach, i.e. multi-fibre or multi-layer models. These rely on 

a finer discretisation of an element in layers or fibres and the assignment of the uniaxial 

law of each material, in order to get a representative behaviour of the whole element 

through integration. 

c) Micro-scale approach, i.e. fine 2D or 3D models. These represent the material behaviour 

at a much smaller scale and can reveal both the local as well as global response of a 
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structure with great accuracy, contingent on the quality of the chosen constitutive laws, 

assigned boundary conditions and discretisation. 

In principle, the accuracy improves moving down the scale of modelling. However, the 

computational cost involved increases proportionally. This is the main reason, why a micro-scale 

approach can only be used for more detailed representations of R/C elements, without too 

complex geometrical or loading conditions, e.g. for better understanding of models during an 

experiment (Mazars & Millard, 2009). Meso- and macro-scale approach can be used in analyses 

of more complex subassemblies or even entire R/C structures. 

 

Member-type analytical models 

Modelling of R/C members under lateral loading should consider all three components of 

deformation , i.e. flexural, anchorage slip, and shear (Mergos & Kappos, 2012). The former can 

be captured quite accurately by the available finite element models providing an accurate 

prediction of the hysteretic response of code-conforming members. Nevertheless, the other two 

deformation components readily become significant, when dealing with sub-standard members. 

Furthermore, the post-peak response of shear and flexure-shear critical R/C elements has to be 

appropriately captured, in order to correctly assess the degrading behaviour of sub-standard 

structures, especially when it comes to predicting the initiation and cascade of progressive 

collapse.  

In addition, for analytical models to be realistic and reliable in describing the response of R/C 

members up to significant-damage and/or near-collapse damage states, they should be able to 

reliably predict the location and extent of shear damage after the onset of shear failure, duly 

accounting for localisation effects. Localisation is a ubiquitous and multifaceted phenomenon in 

structural engineering. Simple, yet well-known examples are “necking” in tensile loading of steel 

and other metals as well as the concentration of damage at a specific region of a concrete 

specimen under compressive loads or the tensile crack region under tension (e.g. Calabrese et 

al., 2010).  

It has been observed experimentally that in plastic hinge regions shear strength decreases, even 

if no yielding of the transverse reinforcement has taken place (Ozcebe & Saatcioglu, 1989; Lee 

& Watanabe, 2003). Also, shear deformations increase considerably, despite the fact that shear 

demand remains practically constant (Mergos & Kappos, 2012). The cause of these is the 

increase of the tensile strains perpendicular to the existing cracks, which decreases the effective 

compressive strength of concrete, hence the concrete contribution to shear strength. This 

phenomenon is known as shear-flexure interaction and it impacts the response of flexure-shear 
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critical members, i.e. members that fail in shear after having experienced flexural yielding. 

Several models have been developed to predict the maximum shear strength of a member and 

its degradation with ductility demand, accounting for the aforementioned interaction. Amongst 

them are the model by Priestley et al. (1994), Sezen & Moehle (2004), and a more recent one 

based on statistical analysis of a large number of tests of  flexure-shear critical column 

specimens, by Biskinis et al. (2004). 

Initial efforts to model the seismic response of R/C elements were focused on flexural response 

and used concentrated inelasticity models (e.g. Giberson, 1967), assuming that inelasticity is 

lumped in rotational springs at the member ends. In these models, shear deformation can be 

taken into account either by modifying the hysteretic rules of the rotational springs (e.g. Roufaiel 

& Meyer, 1987) or by adding translational shear springs (e.g. Thom, 1983). There have been 

several lumped inelasticity models for the cyclic lateral behaviour of shear-deficient R/C 

elements that take into account shear deformation and the effect of shear-flexure interaction 

(Figure 2-8) (e.g. Ricles et al., 1998; Pincheira et al., 1999; Lee & Elnashai, 2001; Sezen & 

Chowdhury, 2009). Some of them also extend into the post-peak domain of the response, even 

predicting the onset of axial failure of an element (e.g. Sezen & Chowdhury, 2009) (Figure 2-9), 

which is a critical point in assessing the behaviour of an existing structure, as it signals the 

initiation of vertical load redistribution and possibly progressive collapse. Lumped inelasticity 

models, albeit computationally efficient, are bound by limitations regarding their ability to 

predict inelastic response. Specifically, they cannot capture the gradual spread of inelasticity, 

they rely on assumptions regarding the moment distribution in structural elements and they 

cannot provide information regarding the actual distribution of deformations and damage along 

structural elements. 

To tackle these limitations, ‘distributed’ inelasticity models (e.g. Soleimani et al. 1979; Valles et 

al. 1996; Mergos & Kappos 2012; Hellesland & Scordelis 1981; Spacone et al., 1996; Ranzo & 

Petrangeli 1998; Filippou et al. 1992; Ceresa et al. 2007; Lee & Filippou, 2009) were proposed. 

These either capture the inward penetration of inelasticity from the ends of an element 

(plastification zones of variable length) or define inelasticity at cross-section level (Figure 2-10). 

Distributed inelasticity models can be divided into two main categories: displacement-based 

(e.g. Hellesland & Scordelis, 1981) and force-based (e.g. Spacone et al., 1996). The latter do not 

rely on assumptions regarding the displacement and curvature fields and, therefore, are 

considered more effective in modelling the inelastic response of structural elements.  
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(a) (b) 

Figure 2-8: (a) Schematic representation of member-type model, and (b) shear hysteretic model. 
(Pincheira et al., 1999) 

 
 

(a) (b) 

Figure 2-9: (a) Shear monotonic envelope, and (b) shear hysteresis rules. (Sezen & Chowdhury, 2009) 

The first distributed inelasticity elements, both force and displacement-based, focused solely on 

flexural response (e.g. Soleimani et al., 1979; Hellesland & Scordelis, 1981; Spacone et al., 1996). 

These models are generally able to capture adequately the response of flexure-dominated R/C 

elements. In addition, a significant number of distributed inelasticity models have been 

developed to account for shear flexibility and shear-flexure interaction effects (e.g. Filippou et 

al., 1992; Vecchio & Emara, 1992; Ravi Mullapudi & Ayoub, 2010; Saritas & Filippou, 2009; Ranzo 

& Petrangeli, 1998; Petrangeli et al., 1999; Martinelli, 2008; Ceresa et al., 2007; Ceresa et al. 

2009; Bairan & Mari, 2007; Mohr et al., 2010; Mazars et al., 2006; Guner & Vecchio, 2012; Marini 

& Spacone, 2006) (Figure 2-11 and Figure 2-12). These elements consider interaction of flexural 

and shear deformations at section level, either by using mechanical models like the smeared 

crack theory, damage mechanics, or micro-plane theory (Ceresa et al., 2007; Ceresa et al., 2009), 

or by adopting phenomenological V – γ (shear force vs shear strain) laws (e.g. Marini & Spacone, 

2006; Mergos & Kappos, 2012). Few amongst these models (e.g. Marini & Spacone, 2006; 

Baradaran-Shoraka & Elwood, 2013) can also address the response after the onset of shear 

failure (Figure 2-13 and Figure 2-14). 
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Figure 2-10:  Fibre element scheme of beam element. (Spacone et al., 1996) 

 

 

(a) (b)  

Figure 2-11: (a) Sub-elements composing the beam element, and (b) hysteretic shear model. (Filippou et 
al., 1992) 
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(a) (b)  

Figure 2-12: (a) Fibre element scheme, and (b) truss idealisation of a beam segment for identification of 
shear monotonic response. (Ranzo & Petrangeli, 1998) 

 

 

(a) (b)  

Figure 2-13: (a) Possible shear envelopes, and (b) shear hysteretic model. (Marini & Spacone, 2006) 

Distributed inelasticity models have been found to suffer from numerical localisation issues in 

the post-peak range of the response, i.e. in the softening regime (Calabrese et al., 2010). 

Numerical localisation should not be confused with the physical localisation occurring in 

structural elements during their softening response, as described previously; it is actually an 

inherent flaw of these finite elements, owing to their numerical formulation. It manifests as a 

steady increase of local deformations at the section where failure initiates as the number of 

integration points and/or mesh refinement increases, at the same value of total displacement 

demand. This occurs because when softening is developed, inelasticity is concentrated solely at 
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the most stressed integration point (controlling section) and the associated integration length 

(Figure 2-15). Therefore, the global and local predictions of distributed inelasticity elements 

depend on the applied finite element mesh or adopted numerical integration scheme (number 

and location of integration points) and therefore are not objective (Figure 2-16). To restore 

objectivity, several researchers have proposed regularisation techniques to overcome the 

problem of numerical localisation in the case of softening flexural response (e.g. Scott & Fenves, 

2006; Coleman & Spacone, 2001; Calabrese et al., 2010). These techniques aim at providing 

objective solutions that are realistic and physically meaningful in terms of the magnitude and 

spread of local deformations after the onset of flexural failure (Figure 2-17). Nonetheless, to the 

best of the writer’s knowledge, no previous study has addressed regularisation of the post-peak 

response in the case of shear failure; addressing this could lead to objective prediction of the 

shear response at a local as well as global level. 

 

 
(a) (b)  

Figure 2-14: (a) Beam-column element in series with zero-length springs, and (b) hysteretic laws for zero-
length springs. (Baradaran-Shoraka & Elwood, 2013) 
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Figure 2-15: Numerical localisation in force-based elements in the case of softening response. (Coleman 
& Spacone, 2001) 

 
 

Figure 2-16: Example of numerical localisation (non-objective response) in the case of softening 
response. (Calabrese et al., 2010) 
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(a) 

 
(b) 

Figure 2-17: R/C frame response with zero strain-hardening (a) without regularisation (non-objective 
response), and (b) with regularisation (objective response). (Coleman & Spacone, 2001) 

Advanced, structural-mechanics-based, shear models like the Modified Compression Field 

Theory (e.g. Vecchio & Collins, 1986) (Figure 2-18) or the Softened Truss and Membrane Models 

(Hsu, 1988; Hsu & Zhu, 2002), have proven to be rather accurate, but are limited to pre-peak 

shear behaviour. More recently, the Axial-Shear-Flexure Interaction approach was proposed 

(Mostafaei & Kabeyasawa, 2007), addressing post-peak shear response in addition to pre-peak. 

Nonetheless, these approaches involve high computational demand due to their iterative nature 

and do not capture the hysteretic response of R/C elements, hence do not readily lend 

themselves to use in seismic analysis of complex R/C structures. 

There is a multitude of simplified shear models proposed over the years, predicting the shear 

response of an R/C member in terms of shear force against shear deformation or displacement 

(e.g. Takayanagi et al., 1979; Maruyama & Jirsa, 1979; Ozcebe & Saatcioglu, 1989; Elwood, 2004; 

Sezen, 2008; LeBorgne & Ghannoum, 2013) (Figure 2-19b). They can be used in series with any 

element predicting flexural and possibly anchorage slip displacements to calculate the complete 
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lateral response of a member, no matter if it is a concentrated or distributed inelasticity model 

(e.g. Figure 2-19a). The most widely used model is arguably the cyclic model proposed by Ozcebe 

& Saatcioglu (1989) for the up-to-peak response of flexure-shear critical members (Figure 2-20). 

Various improvements on the original model have been proposed in later publications (e.g. Lee 

& Elnashai, 2001; Mergos & Kappos, 2008), mainly with a view to incorporating it into an inelastic 

dynamic analysis framework. 

 
 

Figure 2-18: The modified compression-field theory for membrane elements. (Vecchio & Collins, 1986) 

Several models adopt assumptions in the post-peak range that are not always appropriate and 

might lead to deviations in the resulting behaviour. For instance, the shear strength is typically 

considered zero at the point of axial failure, although this is not always the case. On top of this, 

the post-peak descending branch slope is not explicitly considered, i.e. the descending branch is 

assumed to be the “connecting line” between the points of shear and axial failure (e.g. Sezen, 

2008; Elwood, 2004) (Figure 2-19a), falling short of predicting the experimentally recorded 

response. Moreover, some models consider a residual strength branch without solid 

experimental basis (e.g. Ricles et al., 1998; Pincheira et al., 1999; Leborgne & Ghannoum, 2013) 

(Figure 2-8b and Figure 2-19b). Such assumptions will be addressed in this thesis (see sections 

4.3 and 4.4). 
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(a) (b)  

Figure 2-19: (a)Shear spring in series with lumped or distributed inelasticity beam-column element, and 
(b) shear backbone curve and hysteretic laws. (LeBorgne & Ghannoum, 2013) 

 
 

Figure 2-20: Shear hysteresis model. (Ozcebe & Saatcioglu, 1989) 

A clear distinction should be made between different kinds of strength degradation, i.e. cyclic 

and in-cycle. It is a matter of importance, as highlighted by FEMA P440A (ATC, 2009), especially 

in the pursuit of realistically capturing the progressive collapse of a structural system.  Cyclic 

strength degradation is the reduction of the strength of an R/C member or a system resulting 

from cyclic load reversals. This can be modelled as a function of the peak displacement reached 

(Figure 2-21a) or of the total hysteretic energy dissipated (Figure 2-21b) or as a combination of 

both. In-cycle strength degradation, on the other hand, is the strength reduction occurring 

within a cycle (Figure 2-22). This results from P-δ effects as well as longitudinal reinforcement 

bar buckling or fracture, concrete strength softening and other phenomena related to material 

nonlinearities in reinforced concrete structures (ATC, 2009). 
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(a) (b) 

Figure 2-21: Examples of cyclic strength degradation as a function of (a) increasing inelastic 
displacement, and (b) repeated cyclic displacement. (ATC, 2009) 

 

Figure 2-22: Example of in-cycle strength degradation. (ATC, 2009) 

An example of how vital this differentiation is, particularly in the study of structural collapse, is 

displayed in Figure 2-23, wherein the response of two different systems following two different 

loading protocols is shown (ATC, 2009). The first system models only cyclic strength degradation 

(Figure 2-23a,c), while the other only  in-cycle (Figure 2-23b,d).  In the first loading protocol 

(Figure 2-23a,b), the resulting response is very similar in both systems. In the case of the second 

protocol (Figure 2-23c,d), however, the behaviour is similar in the beginning, but diverges vastly 

after the second cycle. The first system experiences high deformation, maintaining a 

considerable level of lateral resistance, whereas the second one is led to total loss of strength. 

Therefore, significant attention should be paid to the calibration of each type of strength 

degradation. An apparent degradation in lateral strength of a test specimen can often be 

misleading and lead to wrong categorisation between the two, hence rendering the calibrated 

parameters potentially useless for other loading paths.  

Similarly, the distinction between the capacity boundary and the cyclic envelope should be 

underlined (ATC, 2009). The former refers to the maximum strength attainable by a structural 

member at any given displacement level, hence defining an outer limit of the force-displacement 
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relationship. The latter, however, constitutes the envelope of the cyclic behaviour of a structural 

member from a given test and is largely dependent on the loading protocol (ASTM-E2126, 2011). 

The ideal method for obtaining the capacity boundary of a member or a structural system is 

through a monotonic test (ATC, 2009). The cyclic degradation parameters are to be estimated, 

naturally, through cyclic tests; ideally, cyclic tests should have been conducted with various 

loading protocols. Nonetheless, the availability of sets of monotonic and cyclic (with multiple 

loading paths) tests is very limited. Considerable judgment must be exercised and the results 

must be treated with caution, since many different combinations of initial capacity boundary 

and degradation parameters might lead to the same result observed in one particular test. If a 

given cyclic envelope is used as capacity boundary in another test with equal or lower 

displacement steps, not much discrepancy will arise. Nevertheless, in cases of larger 

displacement steps, the response will be affected, underestimating the member’s capacity. 

 
(a) (b) 

 
(c) (d) 

Figure 2-23: Hysteretic response for systems subjected to two different loading protocols, (a, b) one with 
many cycles with a small displacement step, and (c, d) one with few initial cycles and a pulse-type 

displacement at the end. (a, c) The first system models only cyclic strength degradation, (b, d) while the 
second only in-cycle degradation. (ATC, 2009) 
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Analytical prediction of onset of axial failure 

Several studies have focussed on predicting the onset of axial failure of an R/C column. The 

pioneering work towards this goal was performed by Elwood & Moehle (2005a) and was based 

on the concept of the shear-friction model, i.e. the idealisation of a distinct inclined failure plane 

forming at shear failure with friction between the discrete upper and lower parts of the column 

(including aggregate interlock and dowel action of the reinforcement), a compression force 

normal to the crack and forces from the longitudinal and transverse reinforcements. When 

external loads exceed friction and sliding of one part of the column against the other along the 

diagonal crack starts or the axial capacity of the longitudinal bars is exceeded, axial failure of the 

column initiates. The proposed semi-empirical equation is the following: 
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where Δa/L is the lateral inter-storey drift of the column at axial failure, 65o is the assumed shear 

failure plane inclination with respect to the cross-section line, N is the axial load, s is the spacing 

between consecutive hoops, Asw and fyw the area and yield strength of transverse reinforcement 

and dc the depth of the column core from centreline to centreline of the ties. This equation was 

based on 12 uniaxially loaded columns (Lynn et al., 1996; Sezen & Moehle, 2006), which 

experienced flexural yielding, shear failure and axial collapse and which had quite a limited range 

of characteristics; shear strength is assumed to have degraded to zero when sliding begins. 

 

Figure 2-24: Concentration of damage after the onset of shear failure. (Elwood & Moehle, 2005a) 

Elwood & Moehle (2005a) also mention that after shear failure, damage concentrates at a 

specific region (Figure 2-24), hence a Concentrated Drift Ratio (CDR) might be more appropriate 

than the Inter-storey Drift Ratio (IDR), however the latter is more consistent with the parameters 
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used in performance-based design methodologies. For instance, Figure 2-24 shows columns 

with the same CDR, nevertheless resulting in different IDR due to their difference in aspect ratio. 

Elwood & Moehle’s (2005a) model predicted a significantly conservative value of drift at axial 

failure for a column with high longitudinal reinforcement (Woods & Matamoros, 2010), 

indicating that longitudinal reinforcement should be taken into account in an axial capacity 

model. Yoshimura et al. (2003) also applied this model to their specimens. It has good 

correlation with those that had an axial load over longitudinal reinforcement yield capacity 

higher than 0.6, but very poor with the rest. They propose that longitudinal reinforcement be 

taken into account in the compression carrying capacity, to improve the model’s accuracy. 

Furthermore, it has been proposed to include reduction factors for protocols with more cycles 

per displacement level, as well as biaxial loading (Simpson & Matamoros, 2012). Last but not 

least, it was proposed that the axial limit curve be shrank or be made steeper with increasing 

damage of the column (Elwood & Moehle, 2003). 

Ousalem et al. (2004) developed a similar model, adopting slightly different assumptions. They 

assumed that the column shear strength at axial failure is negligible, they took into account the 

dowel action of the longitudinal reinforcement as a separate force, but they neglected its axial 

capacity due to probable buckling of the bars at that stage. They expressed the lateral drift ratio 

at axial failure as:  
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where ρw is the transverse reinforcement (volumetric) ratio, fc is the concrete compressive 

strength and ν the axial load ratio (v = N / (Ag   fc) ). Their expression was not very accurate and 

was based on a pool of data from 24 flexure-shear critical column tests, half of which were taken 

into account in the previously mentioned model (Elwood & Moehle, 2005a). They proposed that 

more parameters, like the column slenderness and the type of loading, be taken into account to 

improve the model. They also proposed that an upper limit be considered for Eq. 2-2 at a 

displacement level, which sub-standard columns would not be expected to exceed; based on 

the available dataset they proposed 9%, which could be refined with the addition of further 

data. 

Matamoros & Von Ramin (2005) studied the deterioration of shear carrying mechanisms, which 

were identified as aggregate interlock, compression zone strength, arch and truss action. They 

take into account the decrease of the shear carried by the concrete in the damaged hinge region 
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as the lateral deformation increases, with the consequent higher demand on the transverse 

reinforcement. They assume this strength reduction begins at yielding. Furthermore, the truss 

shear strength component degrades with increasing drift ratio, albeit much less and not up to 

total loss of strength, i.e. there is a residual truss strength. Through analysing this residual 

strength, they proposed an expression of the drift ratio at axial failure. However, the data used 

for calibration were quite limited, i.e. only 11 flexure-shear critical lightly reinforced columns.  

Zhu et al. (2007) developed a probabilistic model for the lateral drift of flexure-shear critical R/C 

columns at axial failure, largely based on, and very similar to, the aforementioned shear-friction 

model (Elwood & Moehle, 2005a), calibrated against 28 experimental tests. The median 

prediction is defined as: 
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More information on the this model can be found in the original publication by Zhu et al. (2007). 

They propose that a larger range of parameters be taken into account to improve its predictive 

strength; an important extension would be to take into account columns having failed in pure 

shear failure.  

Yoshimura (2008) proposed two purely empirical models for the prediction of the drift ratio at 

axial failure, one for shear and one for flexure-shear critical R/C columns.   A very interesting 

feature of these models is that, although the axial load and transverse reinforcement ratios 

influence the drift similarly in both failure modes, the longitudinal reinforcement ratio seems to 

have inverse effect on each one. In shear critical members, it increases their deformability, while 

it decreases it in members that have yielded in flexure. This has to do with the mechanisms of 

failure in each mode, which have been analysed further above. The expressions are as follows: 
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where S and FS denote shear and flexure-shear critical specimens, respectively, and ρl is the 

longitudinal reinforcement ratio. 
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Ousalem & Kabeyasawa (2006) studied axial failure, based on a previously proposed model by 

Uchida & Uezono (2003). They assumed the existence of a shear-damaged zone (Figure 2-25b), 

rather than a clear diagonal crack that was assumed in the previous model (Figure 2-25a). 

Results from previously published experiments carried out by the same authors as well as others 

exhibited the assumed behaviour of localisation of the damage at a given region leading up to 

axial collapse.  

Based on the photographic documentation of a plethora of shear-failed members assembled 

herein (see chapter 3 and chapter 4), the failure mode along a diagonal crack (Figure 2-25a) is 

the norm. A well-defined shear-damaged zone mode (Figure 2-25b) is very rare and was only 

seen in specimens under monotonic lateral loading or limited cycling and subsequent monotonic 

push until collapse (Nakamura & Yoshimura, 2002; Yoshimura et al., 2003). It is not clear if and 

how it could develop under purely cyclic lateral loading. 

Kato et al. (2009) proposed two models for axial failure drift capacity, one for shear and one for 

flexure-shear critical R/C columns, both based on the shear-friction concept. The former consists 

of two components, the deformation up to the peak point and the descending branch one. The 

flexure-shear model additionally includes the flexural yielding deformation plus the plastic 

deformation up to the point of the onset of lateral failure. It was assumed that the longitudinal 

reinforcement does not contribute in the case of prior flexural yielding and that the deformation 

up to the peak point of shear-critical elements is almost negligible, when compared to the post-

peak deformation.  

  

(a) (b) 

Figure 2-25: Mechanism at the onset of axial failure assumed by (a) Uchida & Uezono (2003), and (b) 
Ousalem & Kabeyasawa (2006). 

Matsukawa et al. (2012) developed a theoritical model for the deterioration of the axial capacity 

of a column, based on the assumptions that: the cover concrete has spalled off completely due 

to cyclic loading, the influence of the transverse reinforcement on the axial load capacity is 

negligible, all axial capacity is attributed to the longitudinal reinforcement, the steel follows an 

elastic-perfectly-plastic behaviour (i.e. no hardening) and the lateral strength of the column 
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deteriorates to zero at axial failure. The basic concept is that, besides vertical loads, extra 

stresses act on the longitudinal bars due to P-δ effects, the compressive part of which is added 

on the initial axial stress. Equilibrium of stresses at axial failure gives the maximum lateral drift 

possible, i.e. the lateral drift at axial failure. Rearranging the equation, one can get the residual 

axial capacity at any deformation level.   

Matsukawa et al. (2013) improved the model, adding the effect of transverse reinforcement on 

the axial load capacity, via confining the crushed concrete core. They applied their complete 

analytical model to five different R/C frames that they tested. The shear behaviour prediction 

was not very satisfactory in the pre-peak region, but it was better in the post-peak part of the 

response, capturing decently the overall trends. The axial capacity along with the axial collapse 

prediction was in reasonable agreement with the experimental results in the case of the two 

more brittle frames, while the agreement was poor in the other specimens, underestimating 

their resistance and deformability. 

Tran & Li (2013) proposed another shear-friction model, based on a database of 47 columns of 

various characteristics, which sustained axial failure. The semi-empirical model is based on 

reinforcement characteristics, concrete strength, cross-section area, axial force and 

displacement ductility of the member and is applicable in elements with or without prior yielding 

of the longitudinal reinforcement. It is assumed that lateral demand is negligible when axial 

collapse is reached, the failure plane inclination is considered constant and when the shear 

strength starts degrading, the subsequent deformation is assumed to derive solely from sliding 

across the shear failure plane. Comparing some experimental results with the predicted 

deformation from this model and a previous one (Elwood & Moehle, 2005a), the proposed one 

seems to yield slightly better predictions (Tran, 2010); however, the failure type and the 

characteristics of the compared elements are different from what the latter model was 

calibrated against. The model by Tran & Li (2013) was calibrated against a database with much 

broader characteristics, including columns of various aspect ratios, with more dense transverse 

reinforcement and higher longitudinal reinforcement ratio, but it is much more complex than 

the model proposed by Elwood & Moehle (2005a). 

Pham & Li (2013), based on their experimental work, observed there are two distinct modes of 

axial failure. The first one is the aforementioned sliding along the critical shear failure plane. The 

second one, though, derives from vertical bond-splitting cracks and they concluded that Elwood 

& Moehle’s (2005a) model, which is based on the assumption of a critical shear failure plane 

having formed, cannot predict the axial failure lateral drift in this case. This was also observed 

by Tran (2010). It is also noted that in specimens failing in bond-split there seems to be a residual 

branch, unlike specimens failing along a diagonal plane. 
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Analytical prediction of inclination of shear failure plane 

The inclination of the diagonal shear failure plane, or herein termed critical shear crack angle, 

does not necessarily coincide with the angle of the first shear cracks that appear on a specimen. 

It is the angle corresponding to the failure plane that forms at shear failure and is generally 

different from the initial crack inclination. According to Elwood & Moehle (2005a), a first 

principles approach – i.e. calculating the nominal principal tension stress angle when the tensile 

capacity of concrete is reached under combined shear and axial load – will result in angles 

steeper than those experimentally recorded. They proposed a simple relation (although they 

used an average value of 25o for their axial capacity model), based only on the 12 columns tested 

by Sezen & Moehle (2006) and Lynn et al. (1996), and impose a geometrical minimum, which 

would apply in cases of columns with low aspect ratio: 
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where θ is herein measured from the longitudinal axis, Ag is the gross cross-section area of the 

member, Asl is the area of the longitudinal reinforcement, fyl is the yield strength of the 

longitudinal reinforcement and Lcl is the clear length of the member. 

Chang (1993) used limit analysis to calculate the shear crack angle, differentiating between three 

different categories, corresponding to (1) simultaneous yielding of longitudinal and transverse 

reinforcement (Eq. 2-6a), (2) yielding of transverse reinforcement and crushing of concrete (Eq. 

2-6b), and (3) crushing of concrete while the reinforcement remains elastic in both directions 

(Eq. 2-6c): 
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with Lcf being the length of the column up to the contraflexure point. The lowest value of τu 

defines the failure mode, and the corresponding angle is to be used. The minimum reportedly 

corresponds to the rocking effect (Eq. 2-6d) and is exactly the same as the one imposed by 

Elwood & Moehle (2005a) above, assuming that the top bending moment is equal to the bottom. 

Kim & Mander (1999) used an energy minimisation of external work approach, taking into 

account shear and flexural displacements, to calculate the angle where shear cracking will occur: 
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where ζ is a boundary condition constant, equal to 0.5704 for fixed-fixed and 1.5704 for fixed-

pinned columns; n is the ratio of the modulus of elasticity of steel over that of concrete. In their 

study, the (well-known from strut-and-tie models) assumption of two separate region types 

along elements with respect to cracking was made (Figure 2-26). In the B-region, the Bernouli 

hypothesis applies, while the other is the D-region or disturbed region, which occurs near 

concentrated loads, corners, openings and other discontinuities. The cracking inclination is 

constant in the former and variable in the latter and they assumed that the steepest angle of 

the disturbed region is equal to the constant crack angle of the undisturbed region (Figure 

2-26c). 

 

Figure 2-26: Distinction between the (a) undisturbed (B-type), and (b) disturbed (D-type) region of a 
specimen, according to the shear cracks that are developed. (c) The most common case is a combination 

of both along the member. (Kim & Mander 1999) 
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Ousalem et al. (2003) developed an empirical relationship for the inclination of the critical shear 

crack angle as part of a shear-friction model. The expression is the following: 
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PART I: INVESTIGATION OF THE POST-PEAK RESPONSE OF 

SHEAR-DEFICIENT R/C MEMBERS  
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Chapter 3: DATABASE COMPILATION 

For the purpose of investigation of R/C member post-peak response, a large database of shear 

and flexure-shear critical elements, which were cycled well beyond the onset of shear failure or 

for which clear photographic evidence of their shear cracking was available, was compiled. It 

comprises 151 rectangular R/C columns, 68 of which have sustained flexure-shear failure 

(hereafter noted as “FS”) and 83 shear failure (hereafter noted as “S”). To the best of the writer’s 

knowledge, it includes the largest collection (to date) of rectangular R/C columns cycled well 

into the post-peak domain after the onset of shear failure (116) and/or eventually failing axially 

(89). Their main characteristics are summarised below and the specimens are presented in detail 

in Table A-1 (Appendix A: Database Specimens, below). Some of them were taken from the 

SERIES database (Perus et al., 2014), while most of them were obtained directly from original 

sources. 

3.1 DESCRIPTIVE STATISTICS 

The ranges of the main characteristics of the database specimens in terms of longitudinal 

reinforcement ratio (ρl), transverse reinforcement ratio (ρw), stirrup spacing over effective depth 

(s/d), aspect ratio (Ls/d), maximum shear stress ratio (τmax/√fc) and axial load ratio (ν) (3 

specimens in tension are presented separately) are summarised in Table 3-1 and are presented 

in detail further on, using histograms (Figure 3-1 to Figure 3-4). The most important design 

parameters provided by the researchers in the respective reports/papers as well as 

dimensionless parameters, derived from combination of primary parameters, are included 

(Figure 3-1 and Figure 3-2). Qualitative parameters are also included (Figure 3-3 and Figure 3-4); 

these are used to describe each specimen and its behaviour, categorising it without resorting to 

numerical values, as opposed to the measurable quantitative parameters. 

Table 3-1: Main specimen characteristics of the database. 

 Min Mean Max 

ρl (%) 0.16 2.25 4.76 

ρw (%) 0.08 0.38 1.59 

s/d 0.11 0.44 2.52 

Ls/d 0.90 1.94 4.29 

τmax / √fc 0.22 0.57 1.23 

ν (compressive) 0.00 0.27 0.80 

ν (tensile) -0.26 -0.15 -0.07 

 

The test configuration type is divided into cantilever (C), double-curvature (DC) and hammer-

head specimens (HH) (Figure 3-5), in line with the PEER categorisation (Berry et al., 2013). The 

hoop configuration is divided into multiple types, again in line with the PEER categorisation; 

http://www.dap.series.upatras.gr/
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there are specimens with interlocking (I), rectangular (R), rectangular and diagonal (RD), 

rectangular and interlocking (RI) ties, rectangular ties and J-hooks (RJ) and U-bars with J-hooks 

(UJ) (Figure 3-6).  The loading type is annotated as CD for specimens with cyclic response 

exhibiting post-peak descending branch parts (i.e. in-cycle strength degradation, or parts with 

negative stiffness), CS for cyclic ones without in-cycle strength degradation, M for specimens 

with purely monotonic response, MC for specimens with monotonic response after initial cycling 

up to a point (before the onset of shear failure) and NO for the specimens without post-peak 

response, due to simultaneous shear-axial failure (Figure 3-4). 

  
(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 3-1: Distribution of specimens’ (a) concrete compressive strength, (b) longitudinal reinforcement 
yield strength, (c) transverse reinforcement yield strength, (d) axial load ratio, (e) longitudinal 

reinforcement ratio, and (f) transverse reinforcement ratio, in the database. 
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(a) (b) 

Figure 3-2: Distribution of (a) aspect ratio, and (b) hoop spacing over effective depth, in the database. 

  
(a) (b) 

Figure 3-3: Distribution of (a) test configuration type, and (b) hoop type, in the database.  

 

Figure 3-4: Distribution of loading type in the database. 

 

Figure 3-5: Column test configuration types. (Berry et al., 2013) 
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Figure 3-6: Hoop configuration types. (Berry et al., 2013) 

3.2 DATA COLLECTION AND PROCESSING 

3.2.1 P-δ Correction 

Due to lateral deflections during cycling, the axial load acting on the specimen produces a 

secondary moment at the cantilever base (P x δ) (Figure 3-7). This can be considered a linear 

function along the height of the specimen (Figure 3-7c). In reality, however, the secondary 

moment follows the deflected shape of the specimen (Figure 3-7b). P-δ correction has been 

applied to the force data gathered in this database considering the distribution of moments 

linear, being the conservative as well as the traditionally followed approach.  

An explanation of the influence of P-δ on the hysteretic behaviour of elements is provided in 

Figure 3-8. In effect, as far as the 1st and 3rd quadrants are concerned, the P-δ-moment 

“consumes” part of the total lateral capacity of the specimen. So, the problem is not that the 

member’s lateral resistance decreases in an absolute sense, but that this secondary action takes 
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up part of it, so only a fraction of the resistance of the lateral loading remains available. In the 

2nd and 4th quadrants, one can see that there is an ostensible increase in the resistance of the 

specimen, i.e. it seems more resistant than it should normally be. It is easy to grasp why, since 

there is an extra destabilising moment (P x δ) that has to be counteracted before the member 

can return to its original position. 

   
(a) (b) (c) 

Figure 3-7: (a) Cantilever specimen undergoing constant vertical and cyclic lateral loading; its bending 
moment distribution (b) following the deflection shape of the specimen, or (c) with linear distribution 

simplifying assumption. 

 

Figure 3-8: Bending moment - storey drift relationship for a ductile sub-frame with and without Ρ-δ. 
(Paulay, 1978) 

The target is to treat hysteretic response in a uniform way while being compatible with the 

procedures used in IDARC 2D v. 7.0 (Reinhorn et al. 2009; Valles et al. 1996), where the beam-

column model will be coded. In IDARC as well as several other programs, a matrix similar to a 

geometric stiffness matrix is computed at each step; it is calculated from the equivalent 

moments (secondary moments) produced at each story level due to P-δ. This matrix is 

subtracted from the stiffness matrix of the whole structure in the beginning of the next step 

(Reinhorn et al., 2009). It is an “exact” method, assuming that the axial loads on the members 

do not change during lateral loading (which is not generally the case, especially at the end 

columns of frames) and that the lateral displacements are small compared to the structural 

dimensions (which is a typical assumption), as explained by Wilson (2002). There are other 

https://www.researchgate.net/publication/303348045_IDARC_2D_Version_70_A_Program_for_the_Inelastic_Damage_Analysis_of_Structures
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iterative methods, which approximate the phenomenon more accurately, but are 

computationally inefficient and not well-fitting to nonlinear dynamic analysis, due to the 

lengthening of the structural periods of vibration caused by P-δ. 

At this point, the distinction should be made between: 

 Feff = Mbase / L, i.e. the effective shear force. 

 FH, the net horizontal shear force acting on the column. 

 Another force component, FP-δ, i.e. the equivalent shear force caused by vertical loads 

and the lateral drift of the member. 

 

  
 

(a) (b) (c) 

Figure 3-9: Indicative response of an R/C element, upon which three different axial loads are applied. 

Of course, the relation Feff = FH + FP-δ holds. This distinction between the actual shear caused by 

horizontal loads (FH) and by P-δ (FP-δ) becomes clearer in Figure 3-9 with the help of an indicative 

example. Τhe lateral response of an R/C element is shown, upon which three different axial loads 

(compression positive) are applied. It is obvious that (at a given displacement) the higher the 

axial load, the higher the FP-δ, hence reducing the capacity available for the actual horizontal 

force FH, which leads to the eventually recorded response. 

The most effective and reasonable method in this case is to obtain the hysteretic behaviour of 

the full shear from the experimental results (Feff), no matter the axial load. In case a P-δ-free 

curve is given (FH), FP-δ should be added to the reported shear accordingly. Having this as input, 

the P-δ effects will be introduced automatically by IDARC, depending on the magnitude of the 

axial load during the analysis, and the final FH curve can be produced. 

Depending on the loading setup, there are different P-δ configurations. The distinction followed 

in the PEER database (Berry et al., 2013) will be employed (Figure 3-10). The explanation as well 

as correction equations for each case are: 

 Case I  

Feff is directly reported by the respective researcher, no correction needed. 

P1 > 0.0 kN P2 > P1 > 0.0 kN 

https://nisee.berkeley.edu/spd/
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 Case II  

FH is reported, so FP-δ needs to be added to get the full response: 

Feff = FH + P Δ / L 

 

Figure 3-10: Different P-δ configuration cases (Berry et al., 2013). 

 Case III 

FRep is reported and the axial load acts at a higher elevation that the horizontal actuator 

or its line of action does not pass through the column base: 

α = tan-1(Δ / (L + Lbot)) 

Feff = FRep + P Lbot sinα / L  

 Case IV  

FRep is reported and the top of the vertical actuator is pinned: 

α = tan-1(Δ / Ltop) 

Feff = FRep + P (L+Ltop) sinα / L  

Notation: 

L : shear span length 

P : gravity (vertical) load 

Δ : measured displacement at cantilever elevation Lmeas 

Lmeas : elevation at which lateral column displacement was measured 

FH : net horizontal force  

FRep : reported force, lateral load applied by the horizontal actuator 

Feff : total (effective) shear force 

α : angle pertinent to direction of vertical force (calculated accordingly in Cases III and IV) 

3.2.2 Critical Shear Crack Angle  

The critical shear crack angle, or the inclination of the idealised diagonal shear failure plane, is 

herein measured with respect to the longitudinal axis of the member. Very few such angle values 

were provided by researchers. The rest of them were obtained from available photographic 

documentation of specimens exceeding the onset of shear failure (e.g. Figure 3-11). Τhis angle 

does not necessarily correspond to the first shear cracks that appear on a specimen along the 
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principal compressive stress trajectories, when the tensile strength of concrete is exceeded. 

These can be readily calculated according to structural mechanics principles and generally result 

in steeper angles than the experimentally observed ones (Elwood & Moehle, 2005b).  

However, measuring this angle is not always so straightforward, for example due to the state of 

the specimens after collapse, as reported by Elwood & Moehle (2005b) who tried to subjectively 

estimate this angle from photographic evidence of columns after axial failure, and in general 

due to the complex and sometimes chaotic patterns of cracking. Therefore, the following 

procedure and assumptions are adopted for the angle measurement: 

 The objective of the angle measurements, is to appropriately estimate the length of 

the shear-damaged region, or herein called critical shear length, which forms part of 

the conceptual basis of the proposed model, as will be explained in section 4.1 in more 

detail. 

 In shear critical specimens, the major apparent shear crack is taken into account, if 

there is a clear one; Umemura & Ichinose (2004) mention that the slippage between 

the two parts of the column is concentrated along the thickest of the cracks, which 

dominates shear failure. Even when there is a major shear crack, however, its 

inclination may vary; in that case, an average inclination was considered, with a view 

to appropriately measuring the critical shear length, as mentioned above. 

 If there is no clear major crack, the average inclination of the shear-cracked zone was 

taken into account (e.g. Figure 3-11a), with a view to appropriately measuring the 

critical shear length, as mentioned above. 

 When shear failure takes place near the ends of a specimen, as typically is the case in 

flexure-shear critical elements, the phenomenon becomes more complex. Kim & 

Mander (1999) adopt the (well-known from strut-and-tie models) distinction between 

the B-Region, which is governed by beam-action and Bernoulli’s hypothesis of plane 

sections remaining plane holds, and the D-Region, where the strain section distribution 

is disturbed and may be significantly non-linear (Figure 2-14a,b). In most cases, one 

can see a combination of these two regions, as shown in Figure 2-14c. In these cases, 

they claim that “the steepest crack angle to the longitudinal axis of the fan-shaped 

cracks at the disturbed region of the column will be equal to the constant crack angle 

at the undisturbed region” or a = θ, according to the notation of Figure 2-14; this 

assumption is also adopted by Collins & Mitchell (1997). So, in the cases that the 

cracked zone lies in the disturbed region, the steepest angle (in other words, the 

lowest-value angle with respect to the longitudinal reinforcement) is selected as the 

critical one. 
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 Moreover, shear cracks of flexure-shear critical elements tend to turn to horizontal 

flexural cracks towards the end. This part was disregarded in the estimation of the 

angle. 

  
(a) (b) 

Figure 3-11: Indicative extraction of critical shear crack angle from experimental photographic 
documentation: specimens by (a) Umehara & Jirsa (1982), and (b) Nakamura & Yoshimura (2014). 

 Matsukawa et al. (2013) provide photos both at the onset of shear and axial failure of 

their specimens and it is estimated that the average crack angle measured is practically 

identical. Therefore, the angle can be measured no matter which state of response is 

provided, so long as the critical shear crack has formed, i.e. at or after the onset of 

shear failure. 

 Nonetheless, it is observed in Matchulat's (2009) specimens (for which photos both at 

the onset of axial failure and at an advanced axial failure stage are provided) that after 

axial failure there can be considerable shortening of a member, especially due to 

buckling of reinforcement along the shear crack critical angle. This can lead to an 

ostensibly shorter critical shear length, hence higher measured angle. The angles prior 

to such shortening are gathered in the database; if no other photograph is available, 

the shortening is taken into consideration through engineering judgement, which 

however needed to be done in very few specimens. 

 Cracks parallel to the longitudinal axis, typically caused by bond-split of the longitudinal 

reinforcement, are disregarded in measurements (e.g. Figure 3-11b).  

 In most cyclic tests, shear cracks appear in both directions with the characteristic X-

pattern (e.g. Figure 3-11a); in these cases the average of both directions is used. 
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Besides the aforementioned procedure, corrections were applied to account for the rotation of 

the specimen about its longitudinal axis in the photograph and the downward or upward 

perspective, in order to get the correct shear crack angle. These corrections are presented in 

detail in Appendix B. 

3.2.3 Descending Branch  

The post-peak behaviour of specimens with at least 30% shear strength degradation (reaching 

beyond 70% of Vmax post-peak) was considered, in order to have a genuine descending response. 

Thus, experiments conducted up to 85% or 80% of Vmax, which constituted the overwhelming 

majority until recently, were excluded. For the graph digitisation, the software GetData Graph 

Digitizer 2.26 was used. The descending branch of the curve was obtained by the peaks of the 

first cycles at each displacement level of the post-peak domain (e.g. Figure 3-12), as well as any 

parts of in-cycle strength degradation of these first cycles, starting off from the point of 

maximum strength in the respective direction of the response (i.e. points B and A in Figure 3-12). 

In many experiments, the response in the two directions can be different, especially when it 

comes to the post-peak range. Therefore, the descending branches in both directions were 

recorded and were compared later on (section 4.3). 

 

Figure 3-12: Indicative extraction of descending branch curve from experimental data (Umehara & Jirsa, 
1982). 

3.2.4 Displacement at Onset of Axial Failure 

In cases where a specimen’s shear strength degrades to zero, the abscissa of the intersection of 

the descending branch with the zero-strength line is recorded as the displacement at the onset 

of axial failure. Otherwise, the maximum displacement developed by the specimen is 

conventionally defined as the one at onset of axial failure, although in some cases the actual 

onset of axial failure takes place during a load reversal. 

http://www.getdata-graph-digitizer.com/index.php
http://www.getdata-graph-digitizer.com/index.php
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3.2.5 Load Control, Experimental Set-up and Uncertainty 

As the focus of this project is on post-peak response of R/C members, all experiments included 

in the database are displacement-controlled, not force-controlled. Experiments adopting either 

method of displacement control, namely internal or external, are included in the database. 

Internal displacement-control is based on displacement measurement from inside of the 

actuator, while external is based on an independent displacement measurement outside of the 

actuator. As demonstrated later on (chapter 7), the difference in the results between these two 

methods can be very significant (considerably more than 100% in some cases) in the pre-peak 

domain. Nonetheless, this difference is much less significant in the post-peak domain, 

whereupon this project concentrates.  

As mentioned previously (section 3.1), tests with different experimental setups are included in 

the database. For some of these there is no in-depth account of all the details of the 

experimental setup used. This means that there might be differences causing inconsistent 

resulting behaviours in some cases, besides the P-δ effect, which was taken into account (section 

3.2.1). As an example, different support conditions of the actuators used might result in different 

lateral as well as axial response, due to the potential extra stiffness introduced in the system. 

Another example would be measuring the displacements in such a fashion as to include 

horizontal slippage of the base/footing against the strong floor, which would produce a response 

more flexible than it ought to be. 

The extra uncertainty that is perhaps introduced by the choice to add all of these data is herein 

appreciated. The majority of the tests have consistent conditions, but some of them might not. 

These inconsistencies might potentially add to the uncertainty of the proposed equations and 

criteria. Nonetheless, this uncertainty increase is considered to be outweighed by the advantage 

of increased sample size and the subsequent increase of the reliability of the proposed empirical 

relationships and criteria. Bigger datasets can lead to the emergence of patterns, which might 

otherwise be obscured.  

In most cases, reported experimental data are not completely error-free. For the response range 

of interest in this study, i.e. "Significant damage” to “Near-collapse", experimental data are in 

general clearly subject to high uncertainty. Nevertheless, empirical data from actual 

earthquakes, where the input motion may be poorly defined and damage is assessed in a 

qualitative and subjective way, do entail even higher uncertainty. Therefore, experimental and 

analytical results can be invaluable for assessing these advanced damage states compared to 

the empirical data, on the basis of which most of the existing vulnerability and fragility curves 

for these damage states are derived. 
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Chapter 4: EMPIRICAL RELATIONSHIPS FOR KEY SHEAR RESPONSE 

PARAMETERS 

4.1 CONCEPTUAL BASIS 

With regard to the response of an R/C member after the onset of shear failure, the assumption 

adopted in this study is that flexural and slip-induced deformations do not increase further than 

their values at peak strength, i.e. the entire post-peak lateral displacement is attributed to shear 

deformations. This assumption has also been adopted in other similar models (e.g. Elwood, 

2004; Sezen, 2008) and is supported by experimental evidence (e.g. Shirai et al., 1996).  

 

 
(a) (b) 

Figure 4-1: (a) Illustrative sketch of a shear-damaged column after the onset of shear failure. (b) Image 
of an actual experimental test of an axially failed shear-deficient R/C column (Wibowo, 2013). 

Furthermore, it has been previously established based on experimental observations (e.g. 

Elwood & Moehle, 2005a; Henkhaus et al., 2013; Ousalem & Kabeyasawa, 2006) that 

deformations after the onset of shear failure tend to concentrate in a specific member region, 

the critical shear length, defined by the diagonal failure plane(s); the clear length of a column, 

Lcl, the critical shear length, Lcr, the cross-section height, h, and the critical shear crack angle, θsh, 

are illustrated in Figure 4-1a. The localisation of post-peak shear strains in the critical length is 

herein termed shear failure localisation. In essence, it mainly represents the relative rigid body 

displacement between the discrete upper and lower parts of the column along the shear crack; 

this can be seen in the image of an actual experimental test of a shear-deficient R/C column in 

Figure 4-1b (Wibowo, 2013). This phenomenon will be further investigated experimentally in 

Part II of this thesis (chapters 6 and 7). 

Following this approach, after the onset of shear failure, shear deformations in the critical shear 

length will be expressed as: 

 

h 
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where γ is the average shear strain in the critical shear length; γsh,f  is the shear strain at the onset 

of shear failure in the critical shear length; δpp is the post-peak lateral displacement. 

Prior to lateral loading of a specimen, there is an available axial load resistance, clearly greater 

than the axial load demand (i.e. the axial force acting upon the column). With lateral 

displacement reversals, resistance degrades, due to gradual disintegration of the confined core 

concrete, until it reaches the axial load demand (Sezen & Moehle, 2006).  Axial failure initiates 

at the point where resistance and demand become equal, whereupon sudden decrease of axial 

load and increase of axial shortening take place (e.g. Nakamura & Yoshimura, 2002; Matchulat, 

2009; Leborgne, 2012). This constitutes a vital turning point in the non-linear response of the 

entire structure, since it signals the initiation of a process of loss of an individual vertical R/C 

element’s axial load support simultaneously with the redistribution (through the floor system) 

of vertical loads to its neighbouring members, potentially initiating vertical progressive collapse 

of the structure. The onset of axial failure is physically manifested as loss of friction and initiation 

of sliding of one part of the column against the other along a diagonal shear failure plane, in line 

with the shear-friction concept (e.g. Elwood & Moehle, 2005a; Tran & Li, 2013; Ousalem et al., 

2004).  

Based on the aforementioned conceptual ‘model’, the key parameters that have to be defined, 

in order to model the local post-peak hysteretic shear response of an R/C element in the shear-

damaged region, are: (1) the critical shear length, hence the angle of the critical shear crack 

angle, (2) the rate of shear strength degradation or the post-peak descending branch slope of 

the hysteretic response, and (3) the shear deformation limit corresponding to the onset of axial 

failure. 

Although a mechanics-based approach would in principle be preferable to obtain such 

parameters, it is currently not feasible given the complexity and inherent uncertainty of the 

post-peak cyclic shear response. This is influenced considerably by the effect of the history of 

demands (e.g. number of cycles per displacement level and magnitude of displacement step) 

that usually cannot be accounted for, the experimental set-up used in each case (e.g. the 

displacement control type and out-of-plane support), as well as the randomness of the 

succession of degrading phenomena taking place at a lower level. This fact is corroborated by 

the high variability of results from similar models for the post-peak response of shear-deficient 

R/C elements (e.g. Leborgne & Ghannoum, 2014), by the adoption of empirical models even for 

the pre-peak response of existing structures in Eurocode EN1998-3 (CEN, 2005; Fardis, 2014) 

and, lastly, by the fact that even when trying to develop a mechanics-based model, shear 
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deformations might need to be accounted for through an empirical correction factor (Biskinis & 

Fardis, 2013). 

As explained in section 3.2.5, experimental data for the damage states of interest are in general 

subject to high uncertainty. Nevertheless, it is reiterated that empirical data from actual 

earthquakes, where the input motion may be poorly defined and damage is assessed in a 

qualitative and subjective way, do entail even higher uncertainty. Therefore, experimental and 

analytical results can be invaluable for assessing these advanced damage states compared to 

the empirical data, on the basis of which most of the existing vulnerability and fragility curves 

for these damage states are derived. 

4.2 CRITICAL SHEAR CRACK ANGLE  

  
(a) (b) 

  
(c) (d) 

Figure 4-2: Shear crack angles measured experimentally against those calculated using the predictive 
models of (a) Chang (1993), (b) Kim & Mander (1999), (c) Ousalem et al. (2003), and (d) Elwood & 

Moehle (2005a). 
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The critical shear crack angle has often been assumed to be independent of column properties 

(e.g. 30o) in the process of developing shear strength (e.g. Priestley et al., 1994) or axial capacity 

models (e.g. Elwood & Moehle, 2005a). As this angle affects (through Lcr) the modelling of the 

post-peak part of the shear force vs shear deformation curve, a realistic estimate of its value 

would be in order, hence an appropriate expression for this angle was sought. 

It is emphasised again that this angle corresponds to an idealised inclined failure plane, which 

forms at the onset of shear failure and its definition and prediction include a lot of difficulties 

and uncertainties, or as expressed in a previous publication “it is noticed that inclination of 

failure planes is tremendously random and complex to formulate simply by means of columns 

characteristics” (Ousalem et al., 2004).  

Existing shear crack angle relationships were tested against experimentally measured values, to 

select an appropriate one to use in the context of the model to be developed (Figure 4-2). 

Chang's (1993) model seems to heavily underestimate the angle; perhaps because it is 

theoretically derived and not calibrated against experimental results. Ousalem et al.'s (2003) 

relationship produces great scatter, which can be largely attributed to the axial load ratio; both 

low as well as high values can lead it to great over- or underestimation, as it was developed 

based on specimens roughly in the range 0.05 ≤ ν < 0.35. Kim & Mander’s (1999) and Elwood & 

Moehle’s (2005a) relationships can represent the angles observed in these experiments 

comparatively better than the previous ones. The former has a mean experimental-to-predicted 

value of 1.03 and a Coefficient of Variation (CoV) of 23.74%, but a Coefficient of Determination 

(R2) of only 0.10; additionally, it is more complicated than the other models and it does not take 

into account the axial load ratio, which is thought to be a crucial parameter with regard to the 

critical shear crack angle.  The latter results in 0.99, 26.38% and 0.03, which means that although 

it gives a close estimate the variation is not explained adequately by the proposed model (it is 

reminded that an R2 of 0.0 would mean that the model explains as much variation in the data as 

a constant value equal to their average). 

As no existing relationship was found to provide reasonable estimates of the observed angles 

and simultaneously account for all the influential parameters, statistical analysis was carried out, 

using the software package R 3.1.0. It was performed on the subset of the database (chapter 3), 

for which either the angle was provided by the research team or there was enough photographic 

evidence to measure it directly. Double-curvature specimens, as well as flexure-shear critical 

cantilever ones were taken into account; the few shear critical cantilever specimens were 

observed to develop higher angle values due to corner-to-corner cracking, which might not be 

representative of an actual building column. There were 54 shear (S) and 34 flexure-shear critical 

http://www.r-project.org/
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(FS) specimens satisfying the aforementioned criteria. Based on this dataset, the following 

patterns emerged (Figure 4-3): 

 In line with structural mechanics principles, increasing axial load ratio (ν) tends to 

decrease the shear crack angle, since the trajectories of the principal compressive 

stresses - along which the first shear cracks will form – are oriented closer to the 

longitudinal axis of the member.  

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4-3: Correlation of the measured angle with (a) axial load ratio, (b) transverse reinforcement 
ratio, (c) longitudinal reinforcement ratio, (d) aspect ratio, (e) hoop spacing over effective depth, and (f) 

maximum average shear stress, divided into shear (S) and flexure-shear (FS) critical specimens. 

 Transverse reinforcement ratio (ρw) is shown to have a positive correlation with the 

angle, although transverse reinforcement has hardly any influence on the principal 

stress trajectories prior to shear cracking, hence on the initial crack inclination. 

However, the angle of interest in the present model seems to include the propagation 

of shear crack at varying angles, the angle change being significantly affected by the 

yielding transverse reinforcement (Hsu, 1998). 
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 Longitudinal reinforcement ratio (ρl) seems to play no role whatsoever in either case 

(S or FS). This is consistent with the mechanics of shear cracking, while it contradicts 

previous studies (e.g. Hsu, 1998; Kim & Mander, 1999) that have considered it an 

important parameter. 

 Aspect ratio (Ls/d) has a strong negative correlation in the case of shear critical 

elements, as expected, because of the influence on the trajectories of the principal 

compressive stresses. However, in flexure-shear critical elements it has a slightly 

positive correlation, which is not in line with the previous observation. Although the 

first shear cracks form similarly to what was described for shear critical elements, the 

shear strains subsequently concentrate in the end-regions, where flexural yielding has 

already taken place. The idealised critical shear crack that will form will have a larger 

angle, mostly confined at the plastic hinge region. What could explain the positive 

aspect ratio-shear crack angle trend is that as the shear span (M/V) increases, the 

influence of flexure over shear becomes more pronounced, which probably leads to 

even “flatter” idealised critical shear crack angles, closer to the horizontal flexural 

cracks. This is illustratively shown in Figure 4-4. 

 The maximum average shear stress (normalised to the square root of concrete 

compressive strength) (τmax/√fc = Vmax / bd√fc) has the expected correlation in the case 

of shear critical elements, i.e. the higher the shear stress, the higher the angle. 

However, in flexure-shear critical specimens, the inverse is true. This is probably due 

to the aforementioned aspect ratio effect, since these two quantities are partly 

correlated; the more slender a column is, the lower the shear that will be developed 

for a given flexural resistance (Figure 4-5).  

 Hoop spacing over effective depth (s/d) has the inverse correlation of transverse 

reinforcement ratio. This comes as no surprise, since the two parameters are highly 

correlated. Therefore, only one of them will be included in the final relationship. 

 In general, FS members seem to have higher values of critical shear crack angle, the 

crack being confined in the end-region of the member that has yielded. 

 Other important parameters that influence the shear crack angle, like cross-section 

shape and loading conditions, were beyond the scope of the current investigation, which 

was based on a database including only rectangular specimens – the majority of them 

square –, mostly with a double-curvature loading condition with forces acting at the 

ends of the members. 
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Figure 4-4: The (idealised) effect of aspect ratio on the critical shear crack angle. Fictitious column with 
increasing aspect ratio from left to right ((Ls/d)5 >(Ls/d)4 >… >(Ls/d)1) and the corresponding expected 

cracking (top). Pictures of specimens roughly corresponding to the above aspect ratios and failure types 
(Shear, Flexure-Shear and Flexural) (bottom); from left to right the specimens are: 3M (Yoshimura & 
Nakamura, 2002), S100 (Nakamura & Yoshimura, 2014), No. 6 (Yoshimura et al., 2003), Specimen 4 

(Sezen, 2000) and BG-5 (Grira & Saatcioglu, 1996). 

 

Figure 4-5: Correlation of aspect ratio with maximum average shear stress in flexure-shear critical 
elements. 

The statistical methods used are presented in the following. First of all, a step-wise predictor 

variable elimination procedure was followed; in other words, the approach taken was to start 

with the most complex model, including all the potential explanatory variables, and move to 

simpler models, thus ending up to the model with the least terms that could explain the data 

adequately.  
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Non-linear least-squares fitting was performed using the Levenberg-Marquardt nonlinear least-

squares algorithm (Levenberg, 1944; Marquardt, 1963). It is an iterative non-linear optimisation 

algorithm, interpolating between the Gauss-Newton and the steepest descent methods, in order 

to avoid shortcomings of both. It is a popular solution, not least because of its robustness. 

Using more flexible models, i.e. models of higher degree, can potentially lead to over-fitting to 

the experimental data, in effect confusing noise for data patterns; this, of course, might lead to 

higher performance in the experimental dataset, but can lead to by far larger errors, when new 

data points are predicted. To avoid bias in the models, 10-fold-cross-validation (Refaeilzadeh et 

al., 2009) was used. The available dataset is initially split into 10 sub-sets (folds); subsequently, 

models are fit on 9 of them (training dataset) and tested on 1 of them (testing dataset); this is 

repeated 10 times, so that all folds are used exactly once as testing datasets; this simulates the 

potential fit of models to a generalised sample, i.e. to “new data”. The models developed using 

the non-linear optimisation algorithm were thus compared against best-fitting models based on 

linear least-squares fitting, which is assumed to have by default the least potential for over-

fitting, in order to validate their predicting ability. 

Based on the aforementioned trends and significance tests of the predictor variables, various 

empirical relationships were explored. Using the abovementioned statistical methods, the best 

relationship developed was: 
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where h is the height of the cross-section; Lcl is the clear length of the member; β is a parameter 

that differentiates between shear and flexure-shear critical members, equal to 1.00 for S and 

1.06 for FS elements; ρw,conf is the transverse reinforcement ratio using the confined concrete 

area (stirrup spacing multiplied by the confined section width), introduced with its actual value 

(not in %); v is the axial load ratio (v = N / (Ag × fc) ). The minimum value is a geometrical limitation 

of the shear crack applying to columns with a very low aspect ratio, as also explained by Elwood 

& Moehle (2005a). Were this limit not imposed, the angle could be lower than the angle of the 

diagonal connecting the two ends of the column (corner-to-corner crack), essentially leading to 

an Lcr exceeding the length of the column itself. 

Eq. 4-2 yields a mean experimental-to-predicted value of 1.00, a median of 0.97, a CoV of 21.89% 

and an R2 of 0.344 (Figure 4-6). Of course, as mentioned previously, predicting the critical shear 

crack angle involves high uncertainty, hence the resulting variability. 
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Eq. 4-2 applies to specimens in the following range of parameters: -0.26 ≤ ν < 0.75, 0.08 < ρw,conf 

≤ 1.35 (%), 0.91 ≤ ρl < 4.28 (%), 330 < fyl ≤ 700 (MPa), 270 ≤ fyw ≤ 587 (MPa), 13.5 ≤ fc ≤ 86 (MPa), 

0.9 < Ls/d < 4.3. Figure 4-7 shows the values of the critical shear crack angle that Eq. 4-2 would 

result in, across the whole range of relevant parameters, i.e. axial load and transverse 

reinforcement ratios, for shear and flexure-shear critical specimens. For shear and flexure-shear 

critical R/C columns with characteristics in the ranges of 0.2 ≤ ν ≤ 0.3 and 0.2 ≤ ρw ≤ 0.6 (%), 

angles of approximately 25o-30o and 30o-35o would be expected, respectively. 

 

 Figure 4-6: Shear crack angles measured experimentally against the ones predicted by Eq. 4-2. 

  
(a) (b) 

     Figure 4-7: Critical shear crack angle predicted by Eq. 4-2 along the range of potential axial load and 
transverse reinforcement ratios, for (a) shear, and (b) flexure-shear critical specimens. 

4.3 POST-PEAK RESPONSE 

Shear failure initiating in one direction was hypothesised to influence the behaviour in the other 

direction, so the overall relation between the slopes of the descending branches in either 

direction was investigated more closely. According to the boxplot in Figure 4-8a, it seems that 

the difference is not really significant, with the majority of specimens ranging between 0.9 and 

1.3, i.e. having approximately equal slopes in both directions. Therefore, the average of the 



 

66 

response in the two directions was used to calculate the descending branch slope for each 

specimen. 

The shape of the post-peak descending branch has been investigated using the experimental 

data in the database (chapter 3). Initially the possibility of a non-linear branch was investigated, 

which would be able to represent both concave and convex descending curves. The relationship 

that was assumed was: 
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max
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where Vmax is the maximum shear strength that occurs at the onset of shear failure, V ≤ Vmax the 

strength at any loading level after the onset of shear failure and γ ≥ γsh,f  the corresponding 

average shear strain in the critical shear length (Eq. 4-1), a a constant affecting the average 

slope, and c the curvature of the descending branch. However, no strong correlation emerged 

between the geometric and loading parameters of specimens and the curvature. Therefore, a 

non-linear curve concept was no further pursued and simpler linear forms were explored.  

Nonetheless, a noteworthy finding from this investigation was that shear critical specimens tend 

to exhibit mostly convex post-peak descending branch shapes, while flexure-shear critical 

specimens mostly exhibit approximately linear curves with some convex and some concave ones 

(Figure 4-8b).  

The former observation is probably related to the following: It was observed in the database 

that some specimens exhibit a sudden degradation of their shear strength (anywhere between 

5% and 50%) immediately after shear failure, herein termed shear failure leap. It occurs only in 

shear critical specimens. Also, it occurs in specimens with lower transverse reinforcement and 

lower axial load levels. A possible explanation could be that during the formation of the critical 

shear crack, a considerable portion of the shear strength attributed to concrete is lost. Hence, 

part of the shear demand is instantly transferred to the other shear transfer mechanisms. Due 

to little transverse reinforcement, this force cannot be carried, thus a sudden decrease of 

strength is observed. Of course, in flexure-shear critical specimens, the strength attributed to 

concrete has degraded substantially by the time shear failure initiates owing to inelastic 

curvatures in the plastic hinge, so no such phenomenon could take place. This would also explain 

why it occurs in specimens with moderate to low levels of axial load, since a high axial load would 

increase the other shear transfer mechanisms. Overall, however, the correlations cannot be 

considered so significant and reliable as to model shear failure leap as a potential initial part of 

the post-peak descending branch at this stage.  
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Subsequently, modelling the descending branch with a linear segment was considered, taking 

into account its simplicity, its compatibility with the proposed shear model and its match with 

experimental results – the R2 of fitting a least-squares line to the experimental post-peak 

response has an average value of 0.95 and a CoV of 7.4%.  

The linear descending branch is herein defined by fitting a least-squares line starting from the 

onset of shear failure. Were it defined by a line connecting the onset of shear and axial failure 

instead (e.g. Elwood, 2004; Sezen, 2008), the energy dissipated by an element could be 

significantly under- or overestimated. For instance, in the case of the convex curve of Figure 

3-12, this would lead to an overestimation of the dissipated energy. The opposite would happen 

in concave curves; the deviation would generally be larger the farther away from a linear 

descending branch a specimen’s post-peak strength degradation curve is. 

    
(a) (b) 

Figure 4-8: (a) Ratio of descending branch slopes in two “directions” of the response of the database 
specimens. (b) Curvature of the descending branch of the response of flexure-shear critical (FS) and shear 

critical (S) specimens of the database. 

A bilinear curve with a horizontal branch representing residual strength, assumed by previous 

studies (e.g. LeBorgne & Ghannoum, 2013; Pincheira et al., 1999), was judged to be a viable 

choice for less than 10% of all specimens in the database. Many of these specimens were found 

to be influenced to a lesser or greater extend by bond-splitting, which probably hints that the 

ostensible residual branch is probably attributable to this phenomenon; such a behaviour can 

also be seen for other specimens failing in bond-splitting shear failure (e.g. Pham & Li, 2013). 

This suggests either that practically no residual strength is developed in most shear and flexure-

shear critical R/C members (at least those with the characteristics of this database), or that axial 

failure occurs in these specimens before they reach their residual capacity; hence, such an 

approach was no further pursued. 

Nevertheless, a bilinear branch with two independent slopes was pursued, with the breaking 

point located at 50% strength degradation. The slopes of the two branches were obtained by 
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fitting a least-squares line starting from the onset of shear failure and from the 50% strength 

degradation point, for the first and the second branch, respectively. For the linear least-squares 

fitting of the former, the points up to 50% strength degradation were considered, while for the 

latter the rest of them. This approach was believed to lead to a more accurate representation 

of the post-peak descending branch overall, as it is much more flexible and can represent linear, 

convex and concave responses, observed experimentally (Figure 4-8b), e.g. specimen U1 

(Saatcioglu & Ozcebe, 1989) and specimens 4 and 12 (Ousalem, Kabeyasawa, Tasai, & OHSUGI, 

2002). Additionally, the latter part of the response seems to be very set-up-dependent. 

Following such a calibration procedure, the slope of the first segment (from the onset of shear 

failure until 50% strength degradation) can be independent from the second segment’s slope. 

Thus, it could be used instead of the slope taking 100% of the response into account, the latter 

being considered more setup-dependent. 

Only specimens with at least 80% strength degradation were used to measure the value of the 

slope of the second segment of their post-peak response, hence only 37 specimens were taken 

into account in this case.  

The proposed linear and bi-linear shear strength degradation relationships are the following: 
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where Spp is a dimensionless parameter expressing the shear strength degradation normalised 

to Vmax per unit of post-peak shear strain for the linear descending branch case, Spp,1 and Spp,2 are 

the respective slopes of the two segments of the bi-linear descending branch case, γ ≥ γsh,f  the 

corresponding average shear strain in the critical shear length (Eq. 4-1) and γu2 the shear strain 

corresponding to 50% strength degradation, i.e. where the bi-linear descending branch’s 

breaking point is located.  

As explained in chapter 2, it has been pointed out (e.g. in FEMA P440A (ATC, 2009)) that in-cycle 

strength degradation should not be confounded with cyclic strength degradation; in other words 

the monotonic capacity boundary of an element’s response, which is considered unique, should 

not be confounded with its cyclic envelope, which is loading-protocol-dependent. This has also 

been shown experimentally, for instance by observing the apparent difference in the descending 

branch slope of nominally identical specimens that were cycled under different loading 

protocols (Ousalem et al., 2004). Therefore, they should be, and have been herein, treated 
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separately. Specimens with at least 30% degradation of their total shear strength being 

attributed to in-cycle degradation were termed “quasi-monotonic” (QM), i.e. it was assumed 

that their strength degradation was mainly due to in-cycle degradation mechanisms, while the 

rest were considered “cyclic specimens” (CS). The former amounted to a total of 30, the latter 

to 86, i.e. a total of 116 specimens in the database were available - hereafter called “all 

specimens” (AS).  

 Empirical equations developed for QM will be more appropriate for modelling 

specimens with high in-cycle degradation due to the displacement history used (purely 

monotonic or cyclic with large displacement steps) or members of actual structures 

which are expected to exhibit high in-cycle degradation, e.g. when subjected to near-

field, pulse-like, ground motions.  

 CS will be more appropriate for cyclic tests with loading protocols with more than one 

cycles at each displacement level and small displacement steps, i.e. the typical cyclic 

quasi-static symmetrical loading protocols. 

 AS will be more appropriate for ‘scenarios’ wherein a mix of both types of strength 

degradation is expected, i.e. structures subjected to earthquakes, exhibiting both cyclic 

and in-cycle degradation. 

Based on these datasets, several patterns emerged examining the correlation of the descending 

branch slopes (in terms of V/Vmax vs γ) with geometric, material and loading parameters (in 

Figure 4-9, the trends observed in the case of a linear descending branch in the dataset AS are 

shown, being indicative of the other cases and datasets): 

 Higher axial load ratio increases the shear strength degradation rate, as has been often 

noted in similar studies (e.g. Ousalem et al. , 2002). Notably, this effect of axial load is 

different from that on the pre-peak shear resistance of a member.  

 Increased longitudinal reinforcement leads to a decreased post-peak slope, mainly 

through the dowel action of the longitudinal bars, as well as carrying an (occasionally 

significant) part of the vertical load. 

 It is noteworthy that the longitudinal reinforcement ratio divided by the ratio of the 

confined to the total cross-section area gives a better prediction than the unnormalised 

ratio, the latter being more common a variable in pre-peak models. This can be 

attributed to the fact that after the critical shear crack has formed at the onset of shear 

degradation, the effective concrete area is the confined one; the unconfined cover 

concrete either has already spalled off within the critical shear length or it does not 

actively contribute to shear resistance, due to substantial reduction in its strength.  
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 Higher transverse reinforcement is beneficial, as expected; the transverse steel bars 

crossing the critical crack are one of the main shear resistance mechanisms.  

 The average diameter of longitudinal bars over the effective depth, Φl,ave/d, seems to 

play an important role, too, decreasing the degradation rate as it increases.  

 Aspect ratio was investigated, as it was considered important in a previous model 

(Wibowo et al., 2014), but was herein found to hold limited predictive strength. This is 

attributed to the fact that the localisation of shear strains in the critical length was 

considered, hence minimising the effect of aspect ratio, which is pronounced when 

taking into account the inter-storey drift ratio, disregarding shear failure localisation. 

  
(a) (b) 

  
(c) (d) 

Figure 4-9: Correlation of slope of the linear post-peak branch of the AS dataset with (a) axial load ratio, 
(b) longitudinal reinforcement ratio, (c) transverse reinforcement ratio normalised to the confined 

concrete area (stirrup spacing multiplied by the confined section width), and (d) average longitudinal bar 
diameter normalised to the effective depth. 

Based on these trends and significance tests of the predictor variables, various potential 

predictive relationships were explored. The final expressions were developed through a step-

wise predictor variable elimination procedure, 10-fold-cross-validation (Refaeilzadeh et al., 

2009) and optimisation using the Levenberg-Marquardt nonlinear least-squares algorithm (e.g. 

Levenberg, 1944). For a linear post-peak branch, where the entire post-peak response is taken 

into account, the following expressions are proposed (for QM, CS and AS specimens, 

respectively): 
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In the case of a bilinear post-peak descending branch, for the first segment, up to 50% loss of 

Vmax, the following expressions are proposed (for QM, CS and AS specimens, respectively): 
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For the second segment of a bilinear post-peak branch, after 50% loss of Vmax (Fig. 1), the 

following expressions are proposed (for QM, CS and AS specimens, respectively): 
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Table 4-1: Summary of the main statistics of accuracy and variation of Eq. 4-6 to 4-14. 

Eq. (4-6) (4-7) (4-8) (4-9) (4-10) (4-11) (4-12) (4-13) (4-14) 

R2 0.80 0.44 0.54 0.64 0.51 0.58 0.73 0.54 0.51 

mean 1.00 1.03 1.01 1.00 1.02 1.02 1.00 1.00 1.00 

median 0.97 0. 94 0.90 0.93 0.94 0.94 0.96 0.83 0.89 

CoV (%) 40.3 56.9 49.6 45.0 47.5 53.5 31.2 63.7 61.2 

 

Table 4-2: Datasets and minimum and maximum limits of main design parameters defining the range of 
application of the proposed relationships. 

Dataset / 

No. of 

specimens 

v 
ρw,conf 

% 

Φl,ave/d 

[×10-3] 

ρl/αconf 

% 

fyl 

[MPa] 

fyw 

[MPa] 

fc 

[MPa] 
Ls/d 

Linear branch and first segment of bilinear branch (at least 30% degradation) 

QM / 30 
[0.07, 

0.60] 

[0.00, 

0.85] 
[45, 75] 

[1.50, 

5.45] 

[330, 

700] 

[250, 

590] 
[13.5, 86] [1.1, 3.8] 

CS / 86 
[0.00, 

0.80] 

[0.00, 

1.60] 

[25, 

140] 

[0.20, 

6.50] 

[330, 

540] 

[295, 

560] 
[13.5, 86] [0.9, 4.3] 

AS / 116  
[0.00, 

0.80] 

[0.00, 

1.60] 

[25, 

140] 

[0.20, 

6.50] 

[330, 

700] 

[250, 

590] 
[13.5, 86] [0.9, 4.3] 

Second segment of bilinear branch (at least 80% strength degradation) 

QM / 16 
[0.15, 

0.30] 

[0.12, 

0.85] 
[46, 75] 

[2.20, 

5.45] 

[330, 

550] 

[355, 

475] 
[22, 31] [1.1, 3.8] 

CS / 21  
[0.05, 

0.40] 

[0.08, 

0.56] 
[45, 75] 

[1.65, 

4.85] 

[340, 

460] 

[290, 

475] 
[18, 32.5] [1.1, 3.8] 

AS / 37 
[0.05, 

0.40] 

[0.08, 0. 

85] 
[45, 75] 

[1. 65, 

5.45] 

[330, 

550] 

[290, 

475] 
[18, 32.5] [1.1, 3.8] 

 

Table 4-1 summarises the accuracy and variation statistics of the above presented relationships 

(mean and median refer to the ratio of experimental to predicted values). Table 4-2 includes the 

size of the datasets used for the derivation of each expression as well as the ranges of the main 

parameters, inside which these models are valid. Regarding the parameters used, ρl is the 

longitudinal reinforcement ratio, introduced with its actual value (not in %); αconf is the ratio of 

the confined to the total cross-section area; τmax / √fc is the maximum average shear stress 

normalised to the square root of concrete compressive strength; vl is the longitudinal 

reinforcement axial load ratio, i.e. axial load divided by the axial strength of the longitudinal 

reinforcement bars; Ls/d is the member aspect ratio; Φl,ave/d is the average diameter of 

longitudinal bars normalised to the effective depth (to avoid scaling issues); s/d is the spacing of 
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stirrups over the effective depth of the cross-section. The lower threshold used in all equations 

is the value 2.00, corresponding to the lowest slope value encountered in the database. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4-10: Values of the post-peak descending branch slopes (dimensionless) measured experimentally 
against the ones predicted using Eq. 4-6 (a) to 4-14 (i) (from left to right and top to bottom).  

Scatter plots of experimental against predicted values of the descending branch are presented 

for all equations in Figure 4-10. The scatter is influenced by the very high uncertainty inherent 

in post-peak phenomena, arising among other factors from the difference in the history of 

demands (e.g. number of cycles per displacement level and magnitude of displacement step) 

and experimental set-up used in each case (e.g. the way that the displacement was controlled 

and whether and how the specimen was supported against out-of-plane displacements), as well 

as the randomness of the succession of degradation phenomena taking place at a lower level, 

e.g. aggregates and concrete surfaces being smoothened with cyclic loading, softening of 
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concrete strength, bending, buckling and fracturing of longitudinal bars. The randomness in each 

of them affects the accuracy of the total prediction. Even if the exact same experiment is 

repeated, the probability that differences will exist in the post-peak behaviour is quite high, as 

opposed to an expected more or less similar pre-peak response. This is obvious also in similar 

existing models that exhibit high variation (e.g. R2 of 0.6 Leborgne & Ghannoum, 2014). Thus, 

the equations are not expected to yield an accurate value every time, but a roughly accurate 

estimation, subject to the aforementioned variability. Of course, the proposed relationships 

would fit more in a probabilistic rather than a deterministic context. 

Naturally, the relationships for QM specimens have lower variation compared to CS and AS in 

all cases. This is due to the fact that only in-cycle degradation is captured via these relationships, 

while the slopes of CS specimens are substantially affected by the displacement pattern used 

for each test leading to potentially lower or higher cyclic strength degradation, thus producing 

extra uncertainty. 

In Figure 4-11, the values of the descending branch slope predicted by Eq. 4-6 are plotted against 

the longitudinal reinforcement ratio, for different transverse reinforcement ratios, for a low and 

a high axial load ratio. Figure 4-11 demonstrates that the higher the axial load and the lower the 

transverse and longitudinal reinforcement of the member, the steeper the slope of the 

descending branch is going to be, i.e. the higher the strength degradation after the onset of 

shear failure.  

Additionally, it can be seen from Eq. 4-6 to 4-14 that the maximum shear stress applied on the 

specimen and its aspect ratio generally have a positive and negative correlation, respectively, 

with the slope of the descending curve; this means that shorter specimens with higher applied 

shear stresses tend to have steeper slopes. The parameter s/d was not important in the linear 

as well as the 1st segment of the bilinear curve, however it was defining in the 2nd segment, 

featuring in all of Eq. 4-12 to 4-14 and holding substantial predictive strength; this underlines 

the predominant role of an element’s confinement in maintaining its vertical as well as part of 

its lateral resistance for higher displacement levels. Another noteworthy point is that both 

longitudinal and transverse reinforcement ratios seem to have better correlation with the slope 

when normalised to the confined core, instead of the gross section;  as mentioned above, this 

can be attributed to the fact that after the onset of shear failure, the effective concrete area is 

the confined one, as the unconfined cover concrete either has already spalled off within the 

critical shear length or it does not actively contribute to shear resistance, due to substantial 

reduction in its strength. 
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(a) (b) 

Figure 4-11: Descending branch slope (Spp) predicted by Eq. 4-6 along the range of potential longitudinal 
reinforcement ratios over relative confined concrete area (ρl /aconf), for different transverse 

reinforcement ratios over confined concrete area (ρw,conf), for axial load ratios (ν) of (a) 0.2 and (b) 0.5. 

4.4 ONSET OF AXIAL FAILURE 

It has long been claimed, based on a limited amount of experimental data (e.g. Yoshimura & 

Nakamura, 2002), that the onset of axial failure occurs when shear strength degrades to zero 

(or becomes negligible). Several post-peak models have been based on this assumption (e.g. 

Elwood, 2004; Sezen, 2008). Nonetheless, experimental evidence shows that this cannot be 

assumed for all specimens. In fact, for many of them it is considerably misleading as shown in 

Figure 4-12, where the shear strength at the onset of axial failure is shown for the specimens 

that have sustained axial failure in this database; it is normalised by the respective strength at 

the onset of shear failure. The ostensibly unrealistic values equal to or near 1.00 are in fact due 

to specimens having undergone simultaneous shear and axial failure.  

 

Figure 4-12: Shear strength at the onset of axial failure normalised to the maximum shear strength for 
the specimens of the database. 

Apparently, the shear strength of only a fraction of specimens has degraded to negligible values 

(10% or even 20%) of the maximum strength. Consequently, the assumption of zero shear 

strength at the onset of axial failure is certainly not experimentally justified; adopting it could 

potentially lead to high discrepancies i.e. much steeper descending branches and consequent 
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great underestimation of the energy dissipation capacity, especially in cases where axial failure 

initiates before significant shear strength degradation. 

Therefore, a deformation-based criterion is sought, instead. Existing relationships predicting the 

lateral displacement at the onset of axial failure were applied in this extensive dataset of 89 

specimens having sustained axial failure. The predictive ability of these models is shown in Figure 

4-13. The models by Ousalem et al. (2004) and Yoshimura (2008) seem to exhibit very high 

scatter, in some cases overestimating and in other cases underestimating the lateral 

displacement by large. Elwood & Moehle’s (2005a) and Zhu et al.’s (2007) models seem to 

capture the displacements well on average, but they also exhibit high scatter. Most of these 

models (Elwood & Moehle, 2005a; Ousalem et al., 2004; Zhu et al., 2007) have been calibrated 

only to flexure-shear critical specimens and they are all based on rather limited datasets. 

  
(a) (b) 

  
(c) (d) 

Figure 4-13: Existing predictive relationships for the lateral displacement at the onset of axial failure 
applied in this database, against measured displacements: (a) Elwood & Moehle (2005a), (b)  Zhu et al. 

(2007), (c) Yoshimura (2008), and (d) Ousalem et al. (2004). 
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To improve the prediction accuracy, a new deformation-based empirical model is herein 

developed to capture the onset of axial failure of an R/C element. In line with the local shear 

hysteretic model to be described in section 8.1, the deformation parameter used is the average 

post-peak shear strain γt,pp in the critical shear length Lcr at the onset of axial failure determined 

by the following equation: 
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where δax,f is the lateral displacement at the onset of axial failure, and δsh,f is the lateral 

displacement at the onset of shear failure.  

  
(a) (b) 

  
(c) (d) 

Figure 4-14: Correlation of total post-peak shear strain at the onset of axial failure (γt,pp) with (a) axial 
load ratio based on the capacity of the longitudinal reinforcement, vl, (b) longitudinal reinforcement ratio 

divided by the percentage of confined area, ρl /αconf, (c) transverse reinforcement ratio multiplied by its 
yield strength, ρw × fyw, and (d) maximum average shear stress, τmax/√fc. 

Based on this dataset, the following patterns emerged, examining the correlation of the local 

post-peak average shear strain with design and loading parameters (Figure 4-14): 

 Axial load ratio is a pivotal parameter, associated with decrease in member 

deformability, as has been noted in many similar studies (e.g. Elwood & Moehle, 

2005a; Ousalem et al., 2002).  

 Higher longitudinal reinforcement is beneficial, increasing the post-peak deformability, 

as also observed in previous studies (e.g. Yoshimura & Nakamura, 2002). Longitudinal 
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bars take up part of the axial load, partially relieving the confined concrete core from 

damage inflicted during the displacement reversals. Also, it allows for redistribution of 

a higher percentage of the axial load from concrete to steel at later stages.  

 As expected, transverse reinforcement is beneficial, a fact underlined repeatedly in the 

past (e.g. Elwood & Moehle, 2005a; Ousalem et al., 2002). It confines the concrete 

core, allowing for higher bearing capacity and takes up a significant part of the shear 

force, decreasing the shear strength degradation of the member and the damage 

inflicted to the core along the shear failure plane. 

 The higher the maximum average shear stress, the lower seems to be the achieved 

deformation at the onset of axial failure. 

 There are other influential factors, too, e.g. load history and failure type among others. 

As noted time and time again (e.g. Sezen & Moehle, 2006), monotonic response leads 

to higher deformability than cyclic. Flexure-shear critical specimens (FS) also seem to 

exhibit higher deformability on average, when contrasted with shear critical ones (S).  

Based on these trends and significance tests of the predictor variables, various potential 

predictive relationships were explored. The final expression was developed through a step-wise 

predictor variable elimination procedure, 10-fold-cross-validation (Refaeilzadeh et al., 2009) and 

optimisation using the Levenberg-Marquardt nonlinear least-squares algorithm (e.g. Levenberg, 

1944): 
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          (4-16) 

where ρl, ρw,conf are introduced with their actual value (not in %). Eq. 4-16 yields a mean 

experimental-to-predicted value of 1.02, a median of 0.78, a CoV of 84.8% and an R2 of 0.69, 

including all specimens. However, the inclusion of specimens having a very low value of 

deformation (close to zero) results in extreme values; excluding the ones equal to or lower than 

0.01, the following values e obtained instead: 1.01, 0.85, 69.1% and 0.64. Despite the fact that 

the experimental-to-predicted ratios statistics are worse for γt,pp lower than 0.01, this is not 

considered a serious problem, because in terms of absolute values the errors are negligible. This 

is also verified by the very high R2 value achieved in both cases. The predictive ability of the 

expression, for all specimens, can also be seen in Figure 4-15. As explained previously (e.g. 

section 4.3), the high variability of the post-peak response influences the scatter produced by 
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this empirical relationship, hence it is not expected to yield a completely accurate value for each 

case it is used, but a roughly accurate estimate of this deformation quantity. 

Eq. 4-16 is valid in the following range of parameters: 0.07 < ν < 0.66, 0.08 < ρw ≤ 1.35 (%), 0.15 

< ρl ≤ 3.8 (%), 331 ≤ fyl ≤ 700 (MPa), 303 ≤ fyw ≤ 587 (MPa), 13.5 ≤ fc ≤ 33.6 (MPa), 1 < Ls/d ≤ 4.25.  

 

Figure 4-15: Measured total post-peak shear strain at the onset of axial failure against the predicted one 
using Eq. 4-16. 

  

  

Figure 4-16: Total post-peak shear strain predicted by Eq. 4-16 along the range of longitudinal 
reinforcement ratios (over confined area) and transverse reinforcement ratios (over confined concrete 

area), for longitudinal reinforcement axial load ratios of 0.2 (top) and 0.5 (bottom) and maximum shear 
stress of 0.25 (left) and 0.75 (right). 

In Figure 4-16, the values of the total post-peak shear strain (γt,pp) predicted by Eq. 4-16 are 

plotted against the transverse reinforcement ratio normalised to the confined concrete volume 

(ρw,conf), for four different longitudinal reinforcement indices (ρlfyl/αconf), for axial load ratios (v) 
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of 0.2 and 0.5 and for maximum shear stress ratios (τmax/√fc) οf 0.25 and 0.75. It is obvious that 

the higher the axial and shear loads and the lower the transverse and longitudinal reinforcement 

of a member, the lower its deformability, i.e. the lower the average post-peak shear strain at 

the onset of axial failure.  
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Chapter 5: SIMULTANEOUS SHEAR AND AXIAL FAILURE 

Generally, shear and flexure-shear critical vertical load bearing members possess some 

displacement capacity even after initiation of shear failure, as has been shown in the previous 

chapter. In other words, after the onset of shear failure, they can reach higher ductility levels 

accompanied by a corresponding deterioration of their lateral strength (Figure 5-1a). 

Nonetheless, some columns are susceptible to simultaneous shear and axial failure (Figure 5-1b, 

c). Determining which columns are prone to such failure is not a straightforward task, but it is of 

paramount significance, as the collapse mode of the structure can be adversely affected and the 

probability of collapse greatly increased, as explained in chapter 2. Therefore, a top priority in a 

pre-seismic retrofit attempt of an existing structure should be to strengthen these particularly 

vulnerable elements. 

 

Figure 5-1:  Indicative sketches of cyclic envelopes of the hysteretic lateral response of columns (a) failing 
axially after shear failure, or (b) failing in simultaneous shear and axial failure. (c) Example of specimen 

failing in simultaneous shear and axial failure (Matchulat, 2009). 

In this chapter, the validity of previous suggestions on this phenomenon is explored in detail and 

the necessary conditions of simultaneous shear and axial failure of R/C columns are empirically 

identified. Subsequently, the empirical model proposed in the previous chapter (Eq. 4-16) is 

compared against an existing established model from the literature based on the ability to 

predict this type of failure.  
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5.1 DATASET AND PARAMETER OF INTEREST 

A subset of the database (chapter 3) will be used, in order to investigate empirically the 

phenomenon of simultaneous shear and axial failure. In total, 89 specimens have sustained axial 

failure; another 44 have been included due to their post-peak behaviour, which means that at 

least 30% lateral strength degradation has been recorded, so it is clear that no simultaneous 

failure has occurred. Hence, a dataset of 133 specimens will be employed in total. 

The main parameter explored herein is the post-peak Inter-storey Drift Ratio, IDR,pp, which is 

equal to the post-peak lateral displacement up to the onset of axial failure normalised by the 

length of the specimen. This is a parameter expressing a column’s post-peak displacement 

capacity, which the earthquake engineering community would be very familiar with, making it 

an appropriate choice. 

When this quantity is zero or close to zero for a given specimen, its post-peak response is 

practically non-existent, sustaining axial failure simultaneously with shear failure. However, it 

remains to define how much could be considered “close to zero”. The post-peak Inter-storey 

Drift Ratio ranges from 0.0% to almost 12.0% in this database, with the main bulk of specimens 

lying between 0.6% and 3.2% (first and third quartile, respectively). Taking into account the 

typical heights of existing building storeys, even a 0.5% drift ratio would translate into 15 to 20 

mm; this is a large value with regard to post-peak response.  

Consequently, a value of 0.2%, i.e. up to 6-8 mm post-peak displacement for typical building 

columns, was chosen as a conventional upper limit in order to consider a specimen as having 

failed simultaneously in shear and axial failure. Out of the 133 specimens of the database, about 

9.0% have sustained simultaneous shear and axial failure following this definition. 

In order to get a better understanding of the magnitude, a limit of 0.1%, 0.4% or 0.6% would 

have resulted in 11, 15 or 25 specimens being deemed as failed in simultaneous shear-axial 

failure, respectively. 

5.2 ASSESSMENT OF EXISTING OBSERVATIONS 

The first hypothesis that is tested is the claim that flexure-shear – as opposed to shear – critical 

specimens sustain simultaneous shear and axial failure (Yoshimura et al., 2003). This can readily 

be shown not to apply in all cases, since:  

 about half the specimens sustaining such failure herein are shear critical, and 

 the majority of flexure-shear critical specimens (88.1%) have not failed simultaneously 

in shear and axial failure. 
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The next hypotheses tested are the ones pertaining to the longitudinal reinforcement axial load 

ratio. Matchulat’s (2009) finding that simultaneous shear and axial failure occurs when the 

applied axial load is (about) equal to, or greater than, the axial capacity of the longitudinal 

reinforcement cannot be generalised; however, Matamoros & Woods’s (2010) remark about the 

ratio of 0.65 seems to provide indeed a lower threshold for the occurrence of the phenomenon. 

The upper threshold, above which the occurrence is highly probable seems to be the ratio of 

2.25, as all of the specimens with greater vl exhibit IDR,pp’s less than 1.0% and nearly half of them 

fail in simultaneous axial-shear failure. These patterns can be more clearly seen in Figure 5-2, 

where the lower (vl = 0.65) and upper thresholds (vl = 2.25) for the occurrence of simultaneous 

shear and axial failure are depicted. Note that the 44 specimens that showed no sign of axial 

failure have values of 0 ≤ vl ≤ 2.25 and are not depicted on the diagram. Nonetheless, it is clear 

that this parameter alone cannot provide a comprehensive criterion, since the range of 

specimens in-between the two limits – where the behaviour is unpredictable – is quite extensive. 

  

 

Figure 5-2: Correlation of IDR,pp with the longitudinal reinforcement axial load ratio. Some points are 
shown with arrows, indicating accurately one of their coordinates and that the other one is higher than 

the maximum of the range considered on the respective axis. 

Henkhaus et al.'s (2009) study claims that the axial load ratio and the transverse reinforcement 

ratio limits of ASCE/SEI 41-06 (ASCE, 2006) are not sound, since all of the specimens sustaining 

simultaneous failure examined in their dataset would be deemed safe from it. It is established 

in the present study that a transverse reinforcement ratio of ρw ≥ 0.05% and a compressive axial 

load ratio of v ≤ 0.6, or even ρw ≥ 0.06% and v ≤ 0.3, do not ensure that simultaneous failure will 

not occur, as can be seen in Figure 5-3. The vast majority (83.3%) of the specimens that failed 
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simultaneously satisfy the former limits (v = 0.60 and ρw = 0.05%, shown with blue dashed lines). 

One third of them are even inside the latter, more stringent limits (v = 0.30 and ρw = 0.06%, 

shown with green dashed lines). 

  

Figure 5-3: Values of IDR,pp depicted against axial load ratio and transverse reinforcement ratio. Values 
greater than 1% are in grey colour.  

5.3 PROPOSED CRITERIA 

Based on the remarks made in the previous section, a simplified criterion is extracted, which can 

be used if a limited amount of data is known for a given column or if only a preliminary 

estimation is to be made. This criterion is based on the ratio of axial load over yield strength of 

longitudinal reinforcement (vl = P / (Asl · fyl)) and reads as follows (Figure 5-2): 

 If vl ≤ 0.65 (compression positive), the column can be considered safe. 

 If vl ≥ 2.25, the column will most likely fail in simultaneous shear and axial failure.  

In the intermediate zone (0.65 ≤ vl ≤ 2.25), the behaviour cannot be reliably determined, as there 

are specimens belonging to both categories. 

 

Subsequently, a more reliable and accurate criterion is sought. Besides vl and v, other 

parameters are studied, in order to discover suitable classification variable(s). The transverse 

reinforcement was used in the ASCE/SEI 41-06 (ASCE, 2006) classification and is generally 

believed to play an important role in this phenomenon. Therefore, many different relevant 
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parameters including s/d, ρw, fyw and combinations of these variables have been tried out, since 

the transverse reinforcement ratio is shown not to be adequate by itself (Figure 5-3).  

 

 

Figure 5-4: Values of IDR,pp depicted against longitudinal reinforcement axial load ratio and transverse 
reinforcement ratio over normalised hoop spacing. Values greater than 1% are in grey colour. Some 

points are shown with arrows, indicating accurately one of their coordinates and that the other one is 
higher than the maximum of the range of the respective axis. 

Eventually, the combination of the parameters vl and ρw / (s/d) was found to be the best one to 

classify the specimens. Its classification capability can be seen in the scatter plot of Figure 5-4. 

The latter parameter expresses the content of transverse reinforcement further reduced or 

enhanced by sparse or dense hoop spacing, respectively.   

The criterion defines a "safe area" for columns and reads as follows (Figure 5-4, with blue dashed 

lines showing the limits of the safe area at vl = 1.65 and ρw / (s/d) = 0.1%.): 

 If vl ≤ 1.65 and ρw / (s/d) ≥ 0.1%, the column is considered safe, i.e. it is not going to fail 

in simultaneous shear and axial failure. 

 If vl > 1.65 or ρw / (s/d) < 0.1%, the column might fail in simultaneous shear and axial 

failure, i.e. the necessary conditions are met. Nevertheless, there are specimens falling 

into this category that do not fail thus, as the conditions are not sufficient and necessary 

at the same time. 

Leaning towards the conservative side (i.e. in a code of practice context), if the goal is to avoid 

a post-peak Inter-storey Drift Ratio lower than 1.0%, one can use one of the two following 

“extra-safe zones” criteria: 
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 vl ≤ 1.65 and ρw / (s/d) ≥ 1.15%, or 

 vl ≤ 0.85 and ρw / (s/d) ≥ 0.3%. 

Summarising, having knowledge of the axial load carried by a given column, its longitudinal and 

transverse reinforcement, one can define if it is safe from this type of failure or if it meets the 

necessary conditions for it. 

Of course, as mentioned in previous sections (e.g. 3.2.5 or 4.3), there is high uncertainty 

associated with this damage state. Therefore, variability in the data might mean that specimens 

marginally falling into the safe area might actually fail in simultaneous shear and axial failure. 

Therefore, slightly stricter limits might be worth considering, in order to compensate for this 

uncertainty. 

5.4 EVALUATION OF PREDICTIVE MODELS 

Two empirical models predicting the post-peak response of R/C members are tested against the 

experimental observations of the aforementioned dataset. The first one comprises the Elwood 

& Moehle equations (Elwood & Moehle, 2005a; Elwood & Moehle, 2005b) that predict the drift 

ratio at the onset of shear and axial failure, respectively, and which have been incorporated into 

several member-type constitutive models. The onset of shear failure has been defined as 20% 

loss of shear strength, while the onset of axial failure as complete loss of strength. Therefore, a 

factor of 1.25 will be applied to get the entire predicted post-peak displacement, namely from 

the point of maximum strength that has been herein defined as onset of shear failure, so that 

the results presented below be directly comparable (see Figure 5-5):  
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where IDR,pp is calculated in %, ρw is the transverse reinforcement ratio introduced with its actual 

value (not in %), fc is the concrete compressive strength, N is the axial load applied on the 

column, Ag is the cross-section area, Asw and fyw are the area and yield strength of the transverse 

reinforcement, the angle in the tangent is in degrees (65o), s is the spacing between the 

transverse reinforcement ties and dc is the depth of the column core from centreline to 

centreline of ties. 
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The second empirical model is based on Eq. 4-16, henceforth referred to as Zimos et al. model, 

which predicts the post-peak shear deformation of an R/C member, described by the following 

equation: 
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  (5-3) 

where IDR,pp is calculated in %, ρl, αconf and ρw,conf are introduced with their actual value (not in 

%), and Lcr is the shear critical length defined by the critical shear crack angle (Eq. 4-2). For 

consistency, the predicted post-peak displacements from both models have been normalised to 

the clear length of the member, instead of the critical shear length. 

 

Figure 5-5: Schematic representation of displacement derived from Elwood & Moehle model. 

The first model seems to estimate well the occurrence of simultaneous shear and axial failure 

overall, which is shown in Figure 5-6 (limits of previously defined safe area shown with blue 

dashed lines, for comparison). However, there are specimens into the safe zone that are 

predicted to have post-peak drifts equal to or very close to zero. On the other hand, the Zimos 

et al. model seems to underestimate the occurrence of simultaneous failure, predicting close to 

zero deformation for very few specimens (Figure 5-7); these, however, mostly fall into the not-

safe zone, which is a positive sign. 

For a more objective comparison, initially the models’ predicted values are compared to the 

observed values and comparison statistics are produced (Table 5-1), including R2, Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE). Reading the statistics, one realises that the 

first model is doing clearly worse in explaining the variation of the observed values (i.e. much 

lower R2) compared to the second model. The second model has an R2 roughly equal to the one 

obtained by Eq. 4-16. The difference in the other two statistics further complements this finding, 

with the first model producing systematically a roughly 70% higher error than the other. 
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Subsequently, the models’ classification capabilities are compared based on the observed values 

and confusion matrices are constructed (Table 5-2). Therein, the number of cases that a model 

predicted correctly that a specimen is safe or that it will fail simultaneously lie on the diagonal 

(classification as “safe” and “failed” is based on an  IDR,pp ≤ 0.2%, as previously mentioned in 

section 5.1). Conversely, in the other cells one can spot the number of specimens that were 

falsely predicted as due to fail in shear-axial failure while being actually safe or the opposite. The 

classification with the aforementioned two-parameter classification criterion (section 5.3) is also 

included, for comparison purposes. From these, statistics are computed to compare the 

classification strength of each model (Table 5-3).  

 

  

Figure 5-6: IDR,pp predicted by the Elwood & Moehle model (2005a; 2005b) against longitudinal 
reinforcement axial load ratio and transverse reinforcement ratio over normalised hoop spacing. 

Table 5-1: Comparison statistics of the predictive models against the experimentally observed values. 

Model R2 MAE RMSE 

Elwood & Moehle 0.08 1.645 2.294 

Zimos et al. 0.69 0.983 1.336 

 

It is observed that – in line with the previously presented statistics – the Zimos et al. model is 

clearly the more accurate one, having the highest accuracy and producing the lowest error rate, 

i.e. it predicts the most correct cases overall even compared to the classification criterion. The 

Elwood & Moehle model follows suit with just a minor decrease in accuracy, while the 

classification criterion has an even lower accuracy.  
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However, the classification criterion results in zero Type I error, which is exactly its objective of 

providing the necessary conditions of failure, i.e. that each specimen it predicts as safe be indeed 

safe. If the conditions were necessary and sufficient, Type II error would also be zero, i.e. each 

specimen that it would predict as due to fail in axial-shear failure would indeed fail. The other 

two models result in very high Type I error, largely because they systematically overestimate the 

deformability of each member (Figure 5-6 and Figure 5-7). This is corroborated by the fact that 

the Type II error is very low, so the overwhelming majority of the specimens they predict as safe 

are indeed safe.  

 

 

Figure 5-7: IDR,pp predicted by the Zimos et al. model against longitudinal reinforcement axial load ratio 
and transverse reinforcement ratio over normalised hoop spacing.  

Table 5-2: Confusion matrices of the predicted values of the empirical models (plus the classification 
criterion) compared to the observed values  of the database.  

Elwood & Moehle 

observed \ 
predicted

 “safe” “failed” 

“safe” 116 5 

“failed” 8 4 

Zimos et al. 

observed \ 
predicted

 “safe” “failed” 

“safe” 120 1 

“failed” 10 2 

Classification Criterion 

observed \ 
predicted

 “safe” “failed” 

“safe” 96 25 

“failed” 0 12 
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Comparing Figure 5-6 and Figure 5-7 to Figure 5-4 reveals that the Zimos et al. model is closer 

to the actual deformation in each case, but it slightly overestimates the specimens’ 

deformability, hence many specimens marginally do not qualify for the “failed” category; 

visually, this is understood by the fact that several specimens in the “failed” area  that have 

indeed failed (Figure 5-4) are closer to orange than red in Figure 5-7 (i.e. slightly higher than the 

limit of 0.2%). At the same time, those being in the safe area are correctly mostly grey or 

yellow/orange, with no specimen predicted as failing simultaneously. This is why it performed 

markedly better in absolute terms (Table 5-1), but not in terms of classification capability (Table 

5-3). 

Table 5-3: Comparison statistics of the predictive models’ classification capabilities based on the 
experimentally observed values. 

Model Accuracy Error Rate Error I Error II 

Elwood & Moehle 0.90 0.10 0.67 0.04 

Zimos et al. 0.92 0.08 0.83 0.01 

Classification criterion 0.81 0.19 0 0.21 

 

On the other hand, the Elwood & Moehle model seems to predict failed specimens inside the 

safe zone, while resulting in many grey dots in the not-safe area. This is not observed as much 

in the left area as in the top one, which is governed by exceedance of the longitudinal 

reinforcement axial load ratio. This is because, as explained in chapter 2, this model does not 

account for the longitudinal reinforcement’s influence on the deformation at the onset of axial 

failure. It is believed that if this parameter were duly considered, the model’s prediction with 

regard to that part of the plot could improve. 

In conclusion, the Zimos et al. model (Eq. 5-3) seems to be much better in predicting the post-

peak displacement capacity of an R/C member in absolute terms compared to the Elwood & 

Moehle model (Eq. 5-1, 5-2). This is largely due to the lack of the effect of longitudinal 

reinforcement in the latter model and the range of parameters of the databases to which these 

empirical equations (Eq. 5-1, 5-2) were calibrated being much narrower compared to the 

extensive database used herein. Of course, it has to be noted that this database partly comprises 

of the subset used to calibrate the Zimos et al. model (Eq. 5-3), which increases the expected 

accuracy of this model. 

On the other hand, when it comes to predicting the safety of a specimen, i.e. each specimen 

predicted as safe being indeed safe, the two-parameter classification criterion is unequivocally 
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the best, producing no error as was its development objective. In this respect, the Elwood & 

Moehle model performs better than the Zimos et al. model for the reasons mentioned above.  
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PART II: EXPERIMENTAL PROGRAMME  
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Chapter 6: DESIGN OF EXPERIMENTAL PROGRAMME 

6.1 CONCEPTUAL DESIGN  

Axial failure of a column can occur after the onset of shear failure, subsequently, or even prior, 

to yielding of the longitudinal reinforcement, through disintegration of the poorly confined 

concrete core of the column with continuous lateral cycling (Sezen & Moehle, 2006). The biggest 

part of the vertical load carried by a failing member is subsequently redistributed to 

neighbouring vertical elements through the adjacent horizontal members, as shown in Figure 

6-1. This leads to a significant increase of axial load acting on the neighbouring R/C columns; the 

non-linear lateral response of the latter will be altered due to this increase of axial loading and 

this is a problem not addressed in previous studies.  

 

Figure 6-1: Mechanism of axial load increase of columns neighbouring an axially failing column. 

The ability of a structural system to resist progressive collapse in such a ‘scenario’ hinges both 

on the ability of horizontal elements to transfer the loads being redistributed to adjacent vertical 

elements and οn the latter's ability to resist them without losing a considerable part of their 

strength and deformability (Lodhi, 2012). Existing research work has looked extensively into the 

adjacent horizontal elements' capacity to redistribute vertical loads, neglecting the vertical 

elements neighbouring axially failing columns or assuming they are capable of bearing the extra 

axial load, as explained in chapter 2.  

Another common assumption in progressive collapse analysis is that of undamaged vertical 

elements, e.g. assuming uncracked cross-sections; this might be appropriate for blast-induced, 

vehicular impact or similar collapse scenarios, where damage can be largely assumed localised 
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in a single structural element or a small set of elements. Nevertheless, earthquake-induced 

collapse scenarios pose a further difficulty in that there is global damage in a large part of the, 

if not the entire, building even before the loss of a column's vertical load-bearing capacity. 

Therefore, the damage state of a column neighbouring an axially failed vertical member has to 

be appropriately taken into account in a realistic earthquake-induced progressive collapse 

assessment, e.g. as attempted to be done by Murray & Sasani (2013). 

Previous experimental studies looking into the non-linear, and especially post-peak, lateral 

response of substandard R/C columns have looked extensively at the response under constant 

vertical load (e.g. Lynn et al., 1996; Yoshimura & Nakamura, 2002) as well as variable axial load 

corresponding to an exterior column case, i.e. axial load proportional to the lateral force acting 

on the column (e.g. Ramirez & Jirsa, 1980; Sezen & Moehle, 2006). Recently, Nakamura & 

Yoshimura (2014) investigated the effect that decreasing axial load has on the lateral non-linear 

response of substandard columns, attempting to experimentally simulate the response of a 

column that starts failing axially and its axial load starts decreasing correspondingly due to 

vertical load redistribution. Nonetheless, to the writer’s best knowledge, the effect of the axial 

load increase of the neighbouring R/C columns has thus far not been investigated at all. The 

main objective of this part of the present study is to shed further light on this phenomenon, i.e. 

the effect of vertical load redistribution on the non-linear response of shear- and flexure-shear-

critical R/C columns neighbouring failing vertical members. 

Cantilever specimens of length corresponding to the length between the floor and the 

contraflexure point of a building R/C column have been selected to be tested. Two series of 

specimens were constructed, one failing in flexure-shear and another in shear, so that both 

types of members can be investigated. The focus is on older R/C construction lacking modern 

design and detailing rules, thus not focussing on flexure dominated members.  

A lateral cyclic load along with a constant vertical load acting at the specimens’ top simulate the 

conditions before redistribution of any extra loads. One specimen in each test series will be thus 

tested, to establish the reference pre- and post-peak response. In the other specimens, at some 

point the lateral cycling will pause, the vertical load will be increased to the desired level and 

subsequently lateral cycling will resume; this simulates the response to a) an earthquake loading 

up to a given point, b) redistribution of vertical loads from a neighbouring column, and c) 

continuation of the earthquake action up to vertical collapse of the given column. 

An important issue is the damage state at the point of vertical load increase over the response 

history of the column. As mentioned previously, in earthquake-induced collapse scenarios there 

is substantial damage in most of the building before the loss of a column's vertical load-bearing 
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capacity and the difference in the damage state considered might have a significant impact on 

the resulting response. For instance, an axial load increase at the early stages of pre-peak 

response might be beneficial for the overall response of the member, increasing its strength and 

stiffness, while the same increase in the post-peak stage might prove detrimental. As the main 

focus of this study is on the peak and post-peak response of flexure-shear and shear critical R/C 

columns, two different points of axial load increase were selected in order to observe the 

response difference. The first one is before the start of the displacement level where the onset 

of shear failure occurs and the second one immediately after it. 

Another important issue is the percentage of axial load increase. Usually, neighbouring columns 

carry vertical loads of comparable values and after axial failure of one of them, this is 

redistributed to three or four neighbouring columns, so normally it should increase by 20% to 

35%. However, there are cases where higher load increase can take place, as in neighbouring 

columns with different tributary areas or cross-section dimensions. Additionally, a higher 

increase will lead to a more pronounced effect on lateral response. Therefore, a 50% increase 

of the axial load is selected here as a reasonably conservative value. 

It is highly likely that this axial load increase will initiate at or close to the extreme displacement 

excursions of the displacement history of the specimens. Nonetheless, according to previous 

shake-table tests (e.g. Elwood & Moehle, 2003; Ghannoum & Moehle, 2012), the procedure of 

vertical resistance loss of a column and redistribution of the previously carried axial loads to 

neighbouring columns takes place gradually over several load reversals. In absence of a specific 

“point” and leaning towards the side of safety, the zero displacement point of a cycle was chosen 

as the point of vertical load increase during the tests. 

 

Besides the aforedescribed effect that will be investigated, the design characteristics of the 

specimens are selected with a view to supplementing the existing experimental literature on 

post-peak response (see Figures 3-1, 3-2), particularly with respect to the aspect ratio. It is 

important to obtain insight in areas of characteristics with sparse data, so as to verify the 

capabilities of existing empirical relationships and improve the reliability of proposed ones in 

the future. 

Additionally, these tests provide an excellent opportunity for independent verification of the 

analytical model under development (see chapter 8). In other words, these tests not being 

included in the database, they allow for an ‘external’ validation of the model’s predictive 

capabilities.  
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Of course, carrying out a limited experimental programme is not expected to furnish enough 

results to recalibrate a model that is based on such a large number of specimens, but can allow 

us to identify some trends as to the role of the axial load change. Most of the empirical 

relationships used in the analytical model have been based on about or more than 100 tests, 

thus carrying out 6 more could not possibly lead to a significant change. 

Furthermore, it is of very high importance to test the underlying assumptions of the model under 

development regarding the post-peak response of substandard columns (see theoretical basis 

in section 4.1). Such columns have been assumed to deform mainly in shear after the onset of 

shear failure (their flexural and bond-slip deformations not increasing any further than their 

values at the onset of shear failure) and these deformations have been assumed to be 

concentrated at a specific shear-damaged region, defined by the diagonal shear full-depth 

cracks. This is perhaps the most crucial point, as the whole post-peak response prediction hinges 

on the validity of this theoretical basis. 

6.2 DESIGN OF TEST SPECIMENS  

 

Figure 6-2: Design of (a) shear critical (SC) and (b) flexure-shear critical (FSC) specimens (lengths in m; 
bar and pipe diameters in mm). 

Two sets of three geometrically and materially identical columns (6 columns, in total) with 

different reinforcement characteristics were designed and fabricated (Figure 6-2). The 

specimens are short columns with an aspect ratio of slightly less than 3.0, with detailing 

representative of older construction. The cross-section is square, 300 × 300 (mm), and the 
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cantilever length is 715 mm. The target material characteristics are concrete grade C12/15 

representative of older R/C construction, while both the transverse and longitudinal 

reinforcement consist of B500C steel ribbed bars. Consistent with old practice, the transverse 

reinforcement is quite sparse i.e. 8/320 and 8/270 for the shear critical (SC) and flexure-

shear critical (FSC) specimens, respectively (Figure 6-2).  

The longitudinal reinforcement was designed so as to achieve the desired response and failure 

type; it is 12Ø16 and 4Ø16+4Ø14, resulting in a total reinforcement ratio of 2.68% and 1.58%, 

respectively. Yield and ultimate moments were calculated from Μ-φ analysis using RCCOLA.NET 

(Kappos & Panagopoulos, 2011). The predicted shear resistance was calculated based on five 

shear strength models (Biskinis et al., 2004; Priestley et al., 1994; Sezen & Moehle, 2004; fib, 

2010; CEN, 2005) predicting the maximum resistance, i.e. before shear strength degradation 

with increasing inelastic flexural deformations (Table 6-1). The Priestley et al. (1994) model’s 

predictions using shear crack angles of both 30o and 45o are presented. The Biskinis et al. (2004) 

equation is also the one proposed by Eurocode 8-3 (CEN, 2005), using mean material values and 

disregarding partial factors; μΔ,pl and χ (compression zone depth) corresponding to yielding have 

been used for the maximum strength, as the shear strength arising using values before yielding 

was judged not to be representative and it was not necessary for these tests. For the Model 

Code 2010 (fib, 2010) shear strength equation partial factors are disregarded and it is based on 

a level III approximation. This design can be understood to lead the SC specimens most likely to 

pure shear tension failure, i.e. before longitudinal reinforcement yielding takes place. The FSC 

specimens, on the other hand, will most likely yield in flexure and subsequently fail in tension 

shear, with the Priestley et al. (1994) model predicting it will fail in flexure and the Model Code 

2010 (fib, 2010) model predicting it will fail in shear before reaching flexural yield.  

Table 6-1: Flexure- and shear-controlled resistance (kN) predicted for each specimen set, based on M-φ 
analysis and various shear strength expressions. 

Specimen 

series 

Flexural strength 

(M-φ analysis) 

Shear strength  

Priestley et al. Biskinis et 

al. / EC8-3 

Sezen & 

Moehle 

MC2010 

 Yield Ultimate 30o 45o    

SC 166 179 173 149 151 119 119 

FSC 121 128 184 156 127 126 123 

It is clear from Table 6-1 that the prediction of the maximum shear resistance of an R/C element 

is subject to very high variability and different models can lead to great differences. In order to 

validate the findings, the classification criterion proposed by Zhu et al. (2007) was also used 

(Figure 6-3). The SC and FSC specimens have a Vp/Vn (maximum strength according to flexural 

response over the shear strength predicted by Sezen’s model) of 1.50 and 1.02, respectively, as 

well as a shear span ratio Ls/d of 2.81. Hence, FSC are near the border of the flexure critical and 
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shear critical specimens, with the experiments lying nearby being all flexure-shear critical. On 

the other hand, the SC specimens are shown to be way further above with mostly shear as well 

as some flexure-shear critical specimens, thus reinforcing the belief that these designs will lead 

to the desired failure types. 

 

 

Figure 6-3: Two-zone column classification criterion of failure type (Zhu et al., 2007). The values for SC 
and FSC specimens are shown with red on the diagram. 

The specimen detailing, also including the bases of the columns, is shown in Figure 6-2. The 

bases were quite wide (1.40 m) and designed with high reinforcement content, so as to avoid 

any unwanted base failure altogether and to make the base very stiff, thus minimising the 

deformations of the column top due to cracking and elastic deformations of the base.  

Detailed design drawings of both specimen series and the ‘sub-base’ (see section 6.3, below) are 

included in Appendix C. 

6.3 TEST SET-UP, LOADING AND INSTRUMENTATION  

The full experimental set-up is depicted in Figure 6-4 (schema based on Salonikios et al., 1999) 

and from various angles in Figure 6-5. It simulates a 2D loading condition, i.e. the specimens are 

simultaneously subjected to uniaxial bending and axial loading. The loading centre of the 

horizontal actuator is located at 2.04 m from the strong floor, hence a sub-base was cast to 

support the specimens and reduce the necessary height, so as to achieve the selected column 

slenderness. The vertical actuator operates at a higher level, 23.5 cm further up, at the upper 

edge of the specimens (Figure 6-5). Both actuators are anchored against the stiff reaction frame 

of the laboratory where the tests were carried out (Laboratory of Reinforced Concrete and 

Masonry Structures, Aristotle University of Thessaloniki), which can be seen in Figure 6-4 and 

Figure 6-5. The specimens are anchored to the strong floor via anchoring bolts passing through 
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the specimen base and the sub-base. No out-of-plane support was provided to the specimens, 

but the precise concentric application of loading during the test minimised out-of-plane 

deflection. 

The double-acting double-hinged horizontal actuator (Figure 6-5) applies a quasi-static cyclic 

load, operating in external displacement-control mode. The standard actuator-based internal 

displacement-control is deemed to introduce considerable ‘lash’ into the results, largely due to 

the mounting setup and the non-negligible elastic deformations of the reaction frame, thus 

overestimating the actual lateral displacement of the tested specimens (Pilitsis et al., 2015). 

Therefore, an external draw-wire sensor for displacement control was used, instead; this 

removes any such source of error. The loading protocol used is typical for quasi-static cyclic tests 

(e.g. see ISO Displacement Schedule in ASTM-E2126, 2011), comprising of three cycles at each 

lateral displacement level with a displacement step of 3.0 mm. 

 

Figure 6-4: Experimental set-up shown schematically. 

The double-hinged vertical actuator (Figure 6-5) operates in force-control mode, dwelling at a 

given axial load. This load is increased by 50% shortly before or soon after the onset of shear 

failure, with a view to investigating the impact on the overall deformability and energy 

dissipation capacity of the columns. A reference specimen for each set is tested with a constant 

axial load. The initial vertical load is set to 180 kN, i.e. an axial load ratio of ν = 0.10, increasing 

to 270 kN, i.e. ν = 0.15; these are typical values for low-rise R/C buildings.   

Both actuators' loading histories are shown in Figure 6-6 for all specimens, with the dark blue 

line corresponding to the horizontal actuator (left vertical axis) and the grey line to the vertical 

one (right vertical axis). The displacement histories are applied with a constant displacement 
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rate, hence having much higher duration at latter stages; this rate is 0.4 mm/s, which is 

adequately slow so that no noteworthy strain rate and inertial effects are exhibited (e.g. ASTM-

E2126, 2011). In the histories where the axial load is increased, there is a pause of 9 s, during 

which the load is ramped up from 180 kN to 270 kN, resulting in a load rate of 10 kN/s. This is 

done before the first cycle of ±12 mm in FSC_2 and SC_2 and before the first cycle of ±15 mm in 

FSC_3 and SC_3, because the onset of shear failure was found to occur at a displacement of 12 

mm based on FSC_1 and SC_1, as will be shown in the next chapter. 

 

 
(a) (b) 

 

 

(c) (d) 

Figure 6-5: (a,b) Experimental set-up, and (c,d) vertical and horizontal actuators. 

The instrumentation of the experiment comprises of load cells, LVDTs, draw-wire sensors and 

strain gauges (Figure 6-7). The load cells are embedded into the two actuators, measuring the 

resisting force from the specimens. Draw-wire sensors are used to measure the top lateral 

displacement (Figure 6-7d), the displacements needed to calculate the shear deformations 

(Figure 6-7e) for deformation decomposition, and the potential base uplift (Figure 6-7f), in order 

to ensure that no significant base deformations develop. As mentioned before, the internal LVDT 
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of the horizontal actuator is not used to get the actual top lateral displacement, as it 

incorporates considerable lash in its output. Nevertheless, this lash was measured, by calculating 

the difference between the displacements recorded by the external draw-wire sensor and the 

internal LVDT. In the vertical direction, there is no draw-wire sensor installed, thus axial 

deformation is directly measured only from the vertical actuator’s LVDT; this means that some 

minor lash is inevitably included in these particular results.  

Strain gauges were installed on longitudinal and transverse bars of one shear critical column 

only (Figure 6-7a,b,c), namely SC_3; the positions selected were near the base of the column. In 

Figure 6-8, one can see the exact arrangement of the instrumentation in detail. 

In addition to instrumental measurements, digital image correlation was used in order to 

measure all the necessary deformations of the columns (Figure 6-9). Random speckle patterns 

were drawn on the front surface of each specimen (Figure 6-9b). Using a high-resolution camera 

(Figure 6-9a) from a constant position, images were collected at every zero displacement and 

maximum positive or negative excursion point of every cycle. Using this, the distance between 

the initial and the displaced positions of each individual point on the front face of the column 

can be measured at each cycle, thus providing the displacement field along the front surface of 

the column throughout the duration of the test. 

All of the recorded data are collected by the controller at a frequency of 10 Hz, presenting all 

the pre-defined diagrams and values in real-time, giving a sense of the specimen’s status and 

response. The results are saved and exported at the end of each test for further processing. 

Simultaneously, the controlling system gathers more status data from various sensors and sends 

commands to the actuators (closed-loop control), being responsible for successfully applying the 

prescribed loading histories and controlling the overall experiment. Safety limits were imposed 

to automatically terminate the experiment, in case of any structural imbalance; 10 mm of 

vertical displacement (associated with axial failure) and 50 mm of lateral displacement were the 

limits to shut down the system; additionally, upper limits on the applied forces from the 

actuators and the temperature of the oil in the pump were set. 



 

104 

 
(a) 

 
(b) 

 
(c) 

Figure 6-6: Lateral displacement (left vertical axis) and vertical force (right vertical axis) histories of (a) 
reference specimens FSC-1 and SC-1, (b) specimens FSC-2 and SC-2, and (c) specimens FSC-3 and SC-3. 
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(a) (b) 

  
(c) (d) 

 

 

(e) (f) 

Figure 6-7: (a) Installation of strain gauges on the reinforcing bars, (b) their final arrangement, and (c) 
connecting them to the corresponding sensors. Draw-wire sensors measuring: (d) lateral displacement at 

the top of the column, (e) shear displacement, and (f) potential base uplift. 
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(a) (b) 

Figure 6-8: Instrumentation of the specimens: (a) draw-wire sensors and (b) strain gauges (drawn as 
circles on the respective rebars). 

 

 
(a) (b) 

Figure 6-9: (a) Set-up for digital image correlation measurements, and (b) speckle pattern area on the 
front face of a specimen. 

6.4 NUMERICAL BLIND PREDICTIONS 

To supplement the design of the experiments that has been laid out in the previous sections, 

comparative blind predictive analyses were performed (Zimos et al., 2016). One of them has 

been carried out using a distributed inelasticity element previously proposed by Mergos & 

Kappos (2012) and Zimos et al. (2015) – the most updated version of which is presented in Part 

III of this thesis – using the software IDARC2D (Reinhorn et al., 2009). The other is a 3D finite 

element analysis performed using the software ATENA v.5.3.4 (Cervenka et al., 2016). These 

analyses are expected to offer a quantitative as well as qualitative indication of the expected 

strength, deformability and failure mode of the specimens. It is generally considered most useful 

to perform such analyses before conducting experimental work, not only to verify the integrity 

http://civil.eng.buffalo.edu/
http://www.cervenka.cz/download/
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of the experimental set-up, but also to prevent unwanted failure modes, especially regarding 

the physical implementation of the boundary conditions and the applied loading. 

The ATENA 3D finite element simulation was realised with cubic solid elements in two distinct 

zones:  

a) a dense zone with 30 mm long elements (approximately double the size of the maximum 

aggregate size) that models the column itself as well as the area near the base of the 

column, wherein cracking is expected. In this zone, a fracture-plasticity constitutive law 

for concrete with the default values corresponding to the mean strength of concrete 

grade C12/15 according to EN 1992-1-1 (CEN, 2004) was used. 

b) a sparse zone with 60 mm long elements that models the rest of the base, wherein 

cracking is not expected. For the purpose of reducing computational cost, an elastic 

constitutive model with the elastic modulus of the concrete (27.0 GPa) was assigned to 

this area. 

The reinforcement was introduced in the models using linear rebar elements with the 

characteristics of B500C steel according to EN 1992-1-1 (CEN, 2004), which are integrated within 

the concrete elements without the need for common nodes (embedded reinforcement). The 

sparse and dense zones, due to different meshing, were joined by constraining the 

corresponding degrees of freedom (surface fixed contact). Figure 6-10 shows the common 

concrete meshing characteristics of SC and FSC columns (due to having the same geometry), as 

well as their reinforcement, separately for each one of them. 

 
Concrete SC reinforcement 

 
FSC reinforcement 

Figure 6-10: Numerical 3D finite element model (concrete / reinforcement). 

The boundary conditions were modelled by fully restraining the column base nodes (fixed 

support) and the loading was initially applied as an axial compressive load on the top surface of 

the column (ν = 0.1 hence an axial load of 180 kN) and subsequently as a horizontal displacement 

at the level of +0.715 m from the base of the column with a displacement step of 0.1 mm. The 

analysis was performed for an adequate number of loading steps up to the appearance of a 
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descending branch in the response (of brittle nature due to the effect of shear), whereupon it 

was terminated due to the expected non-convergence of the numerical solution. 

 

 
 

(a) 

 

 

(b) 

Figure 6-11: Response and failure modes (from ATENA analysis) of the (a) SC, and (b) FSC reference 
specimens. 

The results of the two ATENA analyses in terms of horizontal reaction against displacement are 

presented in Figure 6-11. Furthermore, the cracking patterns predicted by the analysis can be 

seen (crack width ≥ 0.1 mm) as well as the principal compressive stress contours of the columns 

after the termination of the analysis. The strength of the SC column reaches 134.6 kN at a 

displacement of 5.3 mm, while the failure that occurs at a horizontal displacement of 6.5 mm is 

brittle and clearly of shear type – the few horizontal cracks do not seem to penetrate beyond 

the concrete cover. Moreover, the formation of the compressive strut starts at the point of 
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action of the horizontal loading and ends at the opposite side of the base of the column. On the 

contrary, the FSC column’s strength is slightly lower (116.8 kN), but develops at a significantly 

larger displacement (7.4 mm), which practically coincides with the failure displacement (7.6 

mm). With regard to failure mode, the specimen eventually fails in shear similarly to SC, but the 

extended horizontal flexural cracks which penetrate beyond the concrete cover – especially near 

the base of the column – attest to its flexure-shear nature. 

In Figure 6-12, the history of the maximum tensile stress of the longitudinal rebar located on the 

loading column side can be seen, as well as that of the second hoop from the bottom of the 

column. It is observed that the hoop of both specimens yields relatively early (yield stress of fy = 

500 MPa at a horizontal displacement of 3.5 mm), which results in the initial sudden loss of 

strength observed in both response curves, marking the onset of shear cracking along the web 

of the column. On the contrary, the longitudinal reinforcement bars do not reach the yield point, 

albeit approaching it much more in the FSC specimen (443 ΜPa as compared to 206 MPa of the 

SC), due to the lower longitudinal reinforcement ratio (4Ø16+4Ø14 instead of 12Ø16) and the 

higher contribution of flexure, as noted earlier. 

 

 
(a) 

 
(b) 

Figure 6-12: History of maximum tensile stress of longitudinal (red line) and transverse (blue line) 
reinforcement of the (a) SC, and (b) FSC reference specimens. 

The beam-column element comprises three sub-elements accounting for flexural, shear and 

bond-slip deformations connected in series. The envelope used for each one is shown in Figure 

6-13, both for shear (SC) and flexure-shear critical (FSC) specimens. They were generated 

following the models described in the respective publications (Mergos & Kappos, 2012; Zimos 

et al., 2015) for the design, material and loading characteristics of these specimens. Based on 

these envelopes, both specimen sets are expected to yield in flexure and then fail in shear, the 
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SC ones reaching however lower curvature ductility compared to the FSC ones that almost reach 

their ultimate flexural deformation. 

The shear critical lengths are calculated as 630 mm (SC) and 500 mm (FSC). This means that the 

critical shear crack angle and the subsequent shear damage are expected to concentrate in a 

region of such length in each respective element. 

 
(a) 

 
(b) 

Figure 6-13: Envelopes of flexural, bond-slip and shear sub-elements for the (a) SC, and (b) FSC 
specimens. 

  
 (a)  (b) 

Figure 6-14: Comparison of obtained response for (a) SC, and (b) FSC reference specimens, according to 
the beam-column element (blue) and the 3D finite element analysis (red). 
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The results of the IDARC2D analysis for constant axial load can be seen in Figure 6-14. The 

envelope predicted from the ATENA 3D finite element analysis is included for comparison. The 

response of the FSC specimen as predicted by IDARC seems to match the monotonic envelope 

predicted by ATENA up to about 7.5 mm. However, its strength slightly increases further 

thereafter to 127 kN instead of immediately descending. Its deformability is considerably higher, 

reaching 10.8 mm at the onset of shear failure (as opposed to 7.6 mm from the finite element 

analysis) and eventually reaching the onset of axial failure at 14 mm. The SC, on the other hand, 

is predicted to be considerably less stiff than expected from the monotonic envelope. Its 

strength is also slightly larger, at 144 kN, and it is predicted to reach 10.3 mm at the onset of 

shear failure and 15 mm at the onset of axial failure. 

Inelastic cyclic analysis was not attempted with the 3D finite element model as this is a very 

complicated and time-consuming procedure, generally with great difficulties in the convergence 

of the solution. On the contrary, the 2D analysis with the aforementioned beam-column model 

is extremely efficient and is shown to produce results relatively close to the ones produced by 

the 3D finite element analysis, while also capturing the post-peak response of the columns. 

The axial load increase and its effect on the response is a more complex matter that cannot be 

modelled using existing procedures. This will be attempted in Part III, after the experimental 

results are obtained and the axial load increase effect on the response can be further 

understood and modelled. Moreover, analyses will be performed again in Part III, with the actual 

material values of the specimens, in order to validate the analytical beam-column model’s 

performance. 

6.5 FABRICATION OF SPECIMENS 

The formwork used for the specimens can be seen in Figure 6-15b,c. Three units were 

constructed, casting first the FSC specimens and then re-using them for the SC. The inner 

surfaces were lubricated with oil, so that the wood plates would not stick on the hardening 

concrete and that the specimen could easily be extracted. Steel cages were fabricated for each 

specimen (Figure 6-15a) and then placed inside the formwork (Figure 6-15c). 

Three specimens were cast per day, firstly the FSC and one week later the SC; the detailed 

schedule of casting, as well as testing, of the specimens can be seen in Table 6-2. Slightly more 

than two concrete batches were required per specimen. The quantities of materials used per 

concrete batch as well as the quantities per cubic metre can be seen in Table 6-3. Variations 

were used to get greater or lower volumes of concrete, maintaining however the same 

proportions between the materials. The concrete was compacted using vibration as soon as it 
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was poured into the formwork (Figure 6-15d), so as to achieve a uniform distribution and avoid 

air voids. Pipes were placed in the formwork, in order to leave open holes during the casting of 

concrete (Figure 6-16a), wherefrom to be able to lift and move the specimens inside the lab with 

the aid of cranes (Figure 6-16c,d), as well as to anchor them to the strong floor for testing. 

 

 

(a) (b) 

  
(c) (d) 

Figure 6-15: (a) Steel cage of FSC specimen, (b) completed, lubricated formwork, (c) steel cage placed 
inside the formwork prior to casting, and (d) casting and compaction of concrete. 

Table 6-2: Schedule of specimen casting and testing. 

Specimen Time of casting Time of testing 

FSC_1 17/06/2016 10:00 26/09/2016 09:30 

FSC_2 17/06/2016 11:00 29/09/2016 09:00 

FSC_3 17/06/2016 12:00 29/09/2016 12:30 

SC_1 24/06/2016 09:30 27/09/2016 09:30 

SC_2 24/06/2016 10:30 28/09/2016 10:30 

SC_3 24/06/2016 15:30 30/09/2016 14:00 

 

Curing of the specimens included keeping them under constant temperature (with occasionally 

higher temperatures) and humidity inside the laboratory and using wet cloth (kept wet 

throughout a big part of the curing time, but not the entire duration) while in the formwork 

(Figure 6-16b), in order to ensure no shrinkage cracks would appear during the first days after 
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casting. In Figure 6-17, one can see the six specimens resting on the laboratory floor after 

construction and initial curing. 

  
(a) (b) 

  
(c) (d) 

Figure 6-16: (a) Cast specimens just after concrete pouring, (b) curing of specimens inside formwork 
covered with wet cloth, (c,d) lifting and moving specimens inside the laboratory. 

Table 6-3: Concrete mix materials per batch (kg) and per cubic metre (kg/m3). 

Material Quantity (kg) Quantity (kg/m3) 

Cement IV35.5 38 300 

Water 26.5 210 

Fine Sand (≤ 4 mm) 102 803.3 

Coarse Sand ( ≤ 8 mm) 56.5 446.3 

Gravel ( ≤ 16 mm) 68 535.6 

Total: 291 2295.2 
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Figure 6-17: Shear critical (SC) and flexure-shear critical (FSC) specimens after construction. 

6.6 MATERIAL PROPERTIES 

A concrete sample was retained from each specimen, which can be seen both in Figure 6-17 and 

Figure 6-18a. It included concrete from all batches (about two per specimen), in order to get a 

representative average strength. Compression tests (Figure 6-18b) were performed 

simultaneously with the column tests, so as to get a reliable value of the concrete compressive 

strength. The recorded strengths are included in Table 6-4; their mean and median are 

calculated as well as their 16.7% truncated mean, i.e. the mean excluding the top and bottom 

16.7% values of the sample, in other words the average of the central four values in this 

particular sample. Their strength is on average 27.5 MPa, much closer to C20/25, rather than 

C12/15, as initially designed for. This might be attributed to the long period (slightly above three 

months, Table 6-2) between casting and testing with the consequent increase in strength, good 

curing conditions resulting in avoidance of early shrinkage cracks (Figure 6-16) or the retainment 

of a small volume of water by the mixer in each mix, especially the first ones of each day. 

Samples of the ribbed B500C steel bars used for reinforcement were tested to verify their 

behaviour. The tests showed a yielding stress of 565 MPa, ultimate stress of about 675 MPa and 

ultimate strain around 16-17%, on average. Stress-strain curves are included for the ribbed 

SC FSC 
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B500C 16 and 10 bars (Figure 6-19); strength properties are similar for both diameters, but 

the smaller bars (10) have a somewhat longer yield plateau and higher ultimate strain. 

 

 

(a) (b) 

Figure 6-18: (a) Concrete samples of all six specimens, and (b) a concrete sample under compression test. 

Table 6-4: Compressive strength of concrete samples for each specimen. 

Specimen Strength (MPa) 

FSC_1 26.0 

FSC_2 28.3 

FSC_3 27.7 

SC_1 32.8 

SC_2 27.2 

SC_3 24.3 

Mean: 27.7 

Median: 27.4 

16.7% Truncated Mean: 27.3 

 

Table 6-5: Flexure- and shear-controlled resistance (kN) predicted for each specimen set, based on M-φ 
analysis and various shear strength expressions. 

Specimen 

series 

Flexural strength 

(M-φ analysis) 

Shear strength  

Priestley et al. Biskinis et 

al. / EC8-3 

Sezen & 

Moehle 

MC2010 

 Yield Ultimate 30o 45o    

SC 157 182 196 169 198 134 144 

FSC 136 156 210 178 141 142 140 

 

Accounting for the actual values of the material strengths, the shear resistance is calculated 

again using the same procedures as in Table 6-1. The results based on measured material 

strengths are shown in Table 6-5; the FSC specimens are still expected to fail in shear after 

yielding in flexure, although there is again very high variability. The SC ones are shown to have 

a high difference between flexural ultimate and shear strength (with most models), thus being 

almost certain to fail in shear, while potentially failing before even yielding. As for the 

classification criterion, the ratios Vp/Vn have changed to 1.36 and 1.09, thus leading to 
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conclusions in line with those drawn from Table 6-5, with SC specimens also likely to undergo 

flexure-shear failure. 

  

(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 6-19: Tensile response of ribbed B500C (a-c) 16 bars, and (d-f) 10 bars. 
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Chapter 7: EXPERIMENTAL RESULTS 

7.1 DAMAGE PROPAGATION 

The initiation and propagation of cracks along the specimens are described in detail in Table 7-1 

to Table 7-6. Crack widths were measured using digital image correlation, i.e. comparing the 

original image of the specimen with the axial load applied and zero lateral displacement, with 

every subsequent given picture. As shown in Figure 7-1, two ‘points’ across the crack are defined 

and the distance between them is measured in every image; the length obtained from each 

image minus the length from the reference image gives the opening of the crack, assuming the 

points are on or very close to the side of the crack. As is shown in Figure 7-1, these ‘points’ are 

actually areas in micro-scale, enclosing a sufficient number of pixels, so as to be able to identify 

said areas during image processing, in order to track the varying coordinates of their centres (i.e. 

the ‘points’). Of course, the points cannot lie exactly on the side of the crack, due to the 

aforementioned limitation of the area of pixels that has to surround them. Furthermore, in order 

for the areas to be tracked even in higher damage states, where the cracks open further and the 

areas around them start exhibiting some concrete spalling, points slightly farther away from the 

actual crack sides have to be taken into account. As a result, the widths recorded might be 

slightly greater than the actual crack widths, however this difference is believed to be negligible. 

An issue particular to shear cracks in higher damage states (after the onset of shear failure) is 

that there is also slip along the crack, not just opening (more details in section 7.5 below), which 

does lead to a somewhat higher ostensible recorded crack width. 

Only the "pull" direction was taken into account in compiling these tables being considered 

generally representative of both loading directions, albeit not identical at every loading step. 

Some entries are "N/A", because those displacement levels were not reached during the 

experiment, or because no photographic evidence was captured at those displacement levels, 

or because there was extensive spalling around a given crack at a given displacement level 

preventing the proper measurement of its width, due to inability to correlate the image with the 

reference one. A blank cell implies that although the photograph was taken at a given 

displacement level and correlation was possible, the particular crack had not yet appeared.  

The "interface crack" is a horizontal crack exactly at the column-base interface in most cases, 

while in a couple of specimens it formed about 10-20 mm above the interface. The positions of 

the other flexural cracks along the vertical axis are provided in parentheses for each specimen. 

If more than one cracks are included in an entry, the widths are given as a range, corresponding 

to the lowest and highest of the crack widths. The average inclination of each shear crack is 

provided in parentheses, measured with respect to the longitudinal axis of the specimen. 
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     Figure 7-1: Example of crack width measurement (snapshot of SC3 at displacement level of +12 mm). 

Table 7-1: Evolution of crack widths in specimen FSC_1. 

displacement  

level [mm] 
+3 +6 +9 +12 +15 +18 +21 

interface crack N/A 0.7 mm 0.85 mm 1.2 mm 1.55 mm N/A N/A 

3 flexural cracks 

(90 mm, 220 mm, 

440 mm) 

N/A 
0.3 - 0.4 

mm 

0.4 - 0.6 

mm 

0.45 - 

0.75 mm 

0.5 - 0.8  

mm 

0.3 - 1.15  

mm 
N/A 

shear crack (28o) N/A hairline 
0.4 - 0.5 

mm 

0.65 - 0.9 

mm 

0.9 - 1.15 

mm 

3.3 - 3.6  

mm 
N/A 

 

Table 7-2: Evolution of crack widths in specimen FSC_2. 

displacement  

level [mm] 
+3 +6 +9 +12 +15 +18 +21 

interface crack hairline N/A N/A 1.35 mm 2.45 mm N/A N/A 

2 flexural cracks 

(110 mm, 240 

mm) 

hairline N/A N/A 
0.55 - 0.6 

mm 

0.55 - 

0.65 mm 
1.0 mm N/A 

1 flexural crack 

(430 mm) 
 N/A N/A 0.5 mm 0.3 mm hairline N/A 

shear crack (28o)  N/A N/A 
0.55 - 0.7 

mm 

1.55 - 2.3 

mm 

3.0 - 3.2 

mm 
N/A 

 

The state of the specimens at a displacement level of +12 mm is also visually presented in Figure 

7-2, at which level shear cracks have formed on all specimens and the initiation of minor damage 

can be observed. Subsequently, the state of the specimens at the displacement level of +18 mm 

is shown in Figure 7-3, except for FSC_3, for which the second peak of +15 mm is included, right 

before its axial collapse. The cracks presented in Tables 7-1 to 7-6 can be seen in these figures; 

all the cracks have been highlighted in red, the thickness of the lines corresponding to the crack 

widths.  
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Table 7-3: Evolution of crack widths in specimen FSC_3. 

displacement  

level [mm] 
+3 +6 +9 +12 +15 +18 +21 

interface crack  hairline 0.3 mm 0.55 mm 0.8 mm N/A N/A 

3 flexural cracks 

(30 mm, 105 mm, 

275 mm) 

0.35 - 

0.45  

mm 

0.4 - 0.45 

mm 

0.45 - 

0.6 mm 

0.55 - 

0.7 mm 

0.35 - 

0.7 mm 
N/A N/A 

1 flexural crack 

(420 mm) 
 hairline 0.3 mm 0.45 mm 0.3 mm N/A N/A 

shear crack (28o)  hairline  0.3 mm 
0.6 - 0.7 

mm 
3.75 mm N/A N/A 

 

Table 7-4: Evolution of crack widths in specimen SC_1. 

displacement  

level [mm] 
+3 +6 +9 +12 +15 +18 +21 

interface crack hairline 0.7 mm 1.15 mm 1.45 mm 0.85 mm N/A N/A 

2 flexural cracks 

(160 mm, 340 

mm) 

hairline 
0.3 - 0.4 

mm 
0.45 mm 

0.45 - 

0.65 mm 

0.5 - 0.9 

mm 

0.3 - 

0.65 

mm 

N/A 

shear crack (28o)   hairline 
0.6 - 0.8 

mm 

1.3 - 1.85 

mm 

3.0 -4.0 

mm 
6.0 mm 

 

Table 7-5: Evolution of crack widths in specimen SC_2. 

displacement  

level [mm] 
+3 +6 +9 +12 +15 +18 +21 

interface crack hairline 1.0 mm 1.4 mm 1.7 mm 0.2 mm N/A N/A 

1 flexural crack 

(225 mm) 
hairline 0.5 mm 0.5 mm 0.7 mm 0.1 mm N/A N/A 

shear crack (35-

37o) 
hairline hairline 

0.55 - 

1.4 mm 

0.8 - 1.6 

mm 

8.0 - 9.0 

mm 
N/A N/A 

 

Table 7-6: Evolution of crack widths in specimen SC_3. 

displacement  

level [mm] 
+3 +6 +9 +12 +15 +18 +21 

interface crack hairline 
0.65 

mm 
0.9 mm 1.0 mm N/A N/A N/A 

2 flexural cracks 

(90 mm, 220 mm) 
hairline 

0.35 - 

0.55 

mm 

0.4 - 0.65 

mm 

0.55 - 0.7 

mm 

0.7 - 1.15 

mm 
N/A N/A 

shear crack (33o)  hairline 0.6 mm 
0.7 - 0.9 

mm 

1.25 - 1.6 

mm 
N/A N/A 
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     Figure 7-2: Damage state of specimens at displacement level of +12 mm. 

It is noted that the general pattern of damage propagation involves a horizontal crack forming 

at or very close to the column-base interface, where the highest bending moment and curvature 

is expected. Further horizontal cracks form higher up along the specimen at some distance from 

the interface crack and from each other, since a certain distance is required between cracks for 

the tensile strength to build up again through bond, as is well-known (Figure 7-2). These cracks 

cross the concrete cover and the position of the longitudinal bars, not extending much deeper 

towards the middle of the specimen, and initiate quite early on, mostly at the displacement level 

of +3 mm. The former crack is usually wider than the latter cracks, as would be expected; all of 

them tend to increase in width with increasing lateral displacement, while generally remaining 

constant or decreasing towards the last displacement steps of the test (the reason for which will 

be explained in section 7.5). FSC specimens exhibit more flexural cracks in total along the height 

of the specimen - four to five - being affected more by flexure, while the SC ones exhibit 2 to 3. 
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However, SC_3’s corner longitudinal bars are also shown to reach yield strains (around 0.002) in 

Figure 7-4 around the displacement levels of +/- 9 to +/- 12 mm and exceed them at +/- 15 mm. 

   

   

     Figure 7-3: Damage state of specimens at displacement level of +18 mm (besides FSC_3, for which the 
second peak of +15 mm is included, right before its axial collapse). 

In almost every specimen, the crack at the interface initiated horizontally at the corner of the 

specimen and branched downwards into the base, due to base deformations, and was partially 

or completely closed at later stages of the response. Moreover, other thin diagonal and 

horizontal cracks appeared at the column-base joint at displacement levels of +6 mm and +9 

mm, their width peaking at +12 mm (Figure 7-2) and thenceafter retracting (Figure 7-3), for 

reasons explained in section 7.5. As a matter of fact, the widest of these cracks reached a peak 

width of about 0.35 - 0.45 mm. 
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Cross-inclined (X-patterned) shear cracks appear at a displacement level of approximately +6 

mm or +9 mm and start opening considerably from about +12 mm (Figure 7-2), reaching very 

large widths of approximately 4.0 to 10.0 mm near the last steps of testing (Figure 7-3). Their 

bottom end is always at the column-base interface and their inclinations are usually around 28o-

33o on average, with local linear segments of lower and higher angles. It was observed that no 

shear crack could achieve an inclination lower than 28o, which corresponds to the length of the 

region between the column-base interface and the lower end of the horizontal actuator's steel 

plates (Figure 7-3). This is because of the much higher stiffness of the base and the fact that the 

actuator’s plates connected with tightened bolts offer extra confinement to the top region of 

the column. Unexpectedly, the SC specimens seem to have higher average shear crack angles 

than the FSC ones, which all exhibit 28o angles on average, contrary to the general trend 

presented in section 4.2. Spalling of concrete cover is observed close to the bottom ends of the 

inclined cracks; this is due to the local decrease of the compression zone depths at those 

sections, because of the existence of the shear cracks. Despite substantial opening of these 

diagonal cracks, no fracture of transverse bar seems to have occurred. This is evidenced by the 

fact that there was no sound of fracture in any of the experiments, as well as by removing loose 

concrete at the end of the tests, which revealed that there was no fracture. Instead, the 

insufficient 90o-anchorage of the ties led to their slippage at latter displacement levels. The 

strain gauges mounted on transverse bars in SC_3 (Figure 7-4) show that tie #1 (at about 350 

mm from the interface) reached its strain-hardening branch - which was shown to be reached 

at a strain of about 0.002 – at the displacement level of +/- 15 mm, reaching very high strains 

after that. This is due to the opening of the full-depth crack at that point of the test, with the 

consequent widening of the gap, which will be commented further in section 7.5. Tie #2 did not 

yield, because it was placed about 30 mm above the interface and, consequently, was not 

crossed by any shear crack. 

Minor vertical cracks appeared in some of the specimens at the positions of the main 

reinforcement, caused by bond-split of the longitudinal bars. In all cases, these were very narrow 

and deemed to be of minor importance. 

The specimens FSC_2, FSC_3 and SC_2 exhibited limited out-of-plane displacements at the onset 

of axial failure (Figure 7-5), unlike the other specimens. It is recalled (see chapter 6) that no 

lateral support was provided at the top of the specimen. 

Photographic documentation of the specimens after the end of testing shows a residual 

curvature of the longitudinal bars of almost all specimens (Figure 7-6), due to buckling, initiated 

towards the end of the experiment. Their buckling length is hardly confined between two 

consecutive ties, owing to their 90o-anchorage and low anchorage length that do not provide 
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adequate restraint. Moreover, the disintegration of the concrete core is obvious, with parts of 

it having shattered during cycling, particularly near the final cycles. 

  

(a) (b) 

  

(c) (d) 

Figure 7-4: Hysteretic response of bar elongation of (a, b) transverse and (c,d) longitudinal reinforcement 
against (a, c) lateral displacement and (b, d) force of specimen SC_3. 

 

   

a) (b) (c) 

     Figure 7-5: Side view at the onset of axial collapse of (a) FSC_2, (b) FSC_3 and (c) SC_2. 
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(a) (b) (c) 

     Figure 7-6: State after the end of testing of specimens (a) FSC_2, (b) SC_2 and (c) SC_3. 

7.2 LATERAL RESPONSE 

All the diagrams in this section are produced for the externally recorded horizontal 

displacement. The internal one, recorded by the actuator’s LVDT, is used solely for the purpose 

of calculating the lash in section 7.8.  

Smoothing has been applied to all the hysteretic responses reported herein. The original 

responses without smoothing are presented in Appendix D. The method used to smooth them 

out is also explained therein. The full hysteretic responses of all specimens in terms of horizontal 

force (kN) and lateral displacement (mm) or lateral drift (%) are included in Figure 7-7.  

Testing of specimen SC_3 was interrupted near the final cycles. The corrected data are included 

herein, where this disruption was eliminated (original data included in Appendix D, Figure D-6). 

The responses of the FSC specimens are quite similar. Overall, they seem to have a ‘stiff’ 

response up to a load of about 120 kN, which is reached at the first displacement level, 

subsequently following a branch of lower tangent stiffness and reaching a strength of about 150-

160 kN at the peak of +/- 12  mm. They exhibit very limited cyclic strength degradation in the 

pre-peak domain, which increases significantly from the peak onwards. Furthermore, their 

reloading stiffness deterioration is also much higher than in the pre-peak domain.  

The SC specimens are quite different from FSC, albeit rather similar to each other. They have a 

‘stiff’ response up to a strength of around 130 kN at the peak of the first displacement level, 

after which they follow a rather stiff strain-hardening branch, reaching almost 200 kN of strength 

at the peak of +/- 12 mm; there is one exception, namely SC_3, which did not reach its peak 

strength at a displacement of +/- 12 mm, but at +/- 15 mm. This led to the increase of axial load 
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happening before the onset of shear failure, instead of just after it, as initially planned. The SC 

specimens also exhibit much higher cyclic strength degradation in the post-peak domain, in 

contrast to pre-peak.  

 

 

(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

     Figure 7-7: Hysteretic response of specimens (a) FSC_1, (b) FSC_2, (c) FSC_3, (d) SC_1,(e) SC_2 and (f) 
SC_3 . 

It is observed that the highest cyclic strength degradation in each specimen (both FSC and SC) 

takes place at the displacement level where the peak is reached, i.e. at the onset of shear failure. 

This coincides with the formation of a full-depth diagonal shear crack on each specimen (e.g. 

Figure 7-2) in each loading direction and happened in most specimens at +/- 12 mm. In-cycle 

strength degradation (which in general did not occur often due to the 3-cycles-per-

-4.2 -2.8 -1.4 0.0 1.4 2.8 4.2

-200

-100

0

100

200

-30 -20 -10 0 10 20 30

Horizontal drift (%)

H
o

ri
zo

n
ta

l F
o

rc
e 

(k
N

)

-4.2 -2.8 -1.4 0.0 1.4 2.8 4.2

-200

-100

0

100

200

-30 -20 -10 0 10 20 30

Horizontal drift (%)

-4.2 -2.8 -1.4 0 1.4 2.8 4.2

-200

-100

0

100

200

-30 -20 -10 0 10 20 30

H
o

ri
zo

n
ta

l F
o

rc
e 

(k
N

)

-4.2 -2.8 -1.4 0 1.4 2.8 4.2

-200

-100

0

100

200

-30 -20 -10 0 10 20 30

-4.2 -2.8 -1.4 0 1.4 2.8 4.2

-200

-100

0

100

200

-30 -20 -10 0 10 20 30

H
o

ri
zo

n
ta

l F
o

rc
e 

(k
N

)

Horizontal Displacement (mm)

-4.2 -2.8 -1.4 0 1.4 2.8 4.2

-200

-100

0

100

200

-30 -20 -10 0 10 20 30
Horizontal Displacement (mm)



 

126 

displacement-level protocol used and the small displacement step) is also observed around the 

onset of shear failure in all specimens.  

While the cycles of both FSC and SC specimens are quite full in the first displacement levels, i.e. 

the specimens dissipate a large amount of energy, they become much narrower in the post-peak 

range of their response.  

Pinching is observed in most responses, albeit lower than expected given that the specimens are 

not well-designed and they failed in shear. Of course, closing of shear cracks of one side and 

reopening of the other side’s cracks upon reversal and the corresponding ‘low-stiffness’ 

response is observed. However, perhaps owing to the 90o-anchorage ties and the consequent 

slippage of the transverse reinforcement, the reloading stiffness deterioration rate is rather 

high, thus visually reducing the effect of pinching. 

Table 7-7: Displacement ductilities of specimens at various levels. 

Specimen μpeak μmax μax,f 

FSC_1 6.00 10.51 N/A 

FSC_2 4.26 6.42 6.42 

FSC_3 5.53 7.00 7.00 

SC_1 4.62 10.43 N/A 

SC_2 4.27 7.54 7.54 

SC_3 5.73 10.34 N/A 

 

The displacement capacities of the specimens in absolute terms are quite variable. FSC_1 

reaches 21 mm, while the rest of the FSC fail earlier owing to the increased axial load. SC 

specimens reach higher displacements, reaching even the displacement level of +/- 27 mm (both 

SC_1 and SC_3). This is due to the high longitudinal reinforcement percentage that can lead 

shear-deficient columns under cyclic loading to higher displacement capacities, as shown 

through the proposed empirical relationships of chapter 4. 

The displacement ductility of the specimens is compared in Table 7-7 at peak (i.e. at the onset 

of shear failure where the peak strength is reached), at the maximum attained displacement 

and (wherever applicable) at the onset of axial failure (see further below, section 7.3). The yield 

displacement is defined as the displacement on the cyclic envelope curve corresponding to a 

strength equal to 70% of the peak strength. The displacement ductility achieved by most 

specimens is remarkable given their poor design and their shear-dominated - usually called ‘non-

ductile’ or even ‘brittle’ - response. All of them reach their peak resistance at a ductility between 

4 and 6. The specimens that do fail axially reach a ductility of 6.5 to 7.5, while the specimens 

that do not fail axially are shown to exceed a ductility of 10.  
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Most specimens exhibit a slight strength asymmetry between the ‘positive’ and ‘negative’ 

directions of the response, the positive (‘pulling’) side force being consistently 10-20 kN higher. 

Of course, it is well-known that the cyclic response of nonlinearly responding members is never 

fully symmetric, even when their geometry is. It is herein deemed that this is caused (at least to 

some extent) by the following: 

 The negative side is the push-side. In order to displace the specimen to this side, the 

force acts as a compressive force on the steel plate, being transferred through that to 

the top of the specimen (Figure 7-8b). From this, the other steel plate is displaced via 

compression and the draw-wire sensor records the displacement. 

 The positive side is the pull-side. In order to displace the specimen in this direction, the 

force acts as a force through the steel plates, nuts and bolts (Figure 7-8b),  to the nuts 

on the other side and through the steel plate to the top of the specimen (Figure 7-8a); 

simultaneously, the draw-wire sensor measures the displacement of the steel plate. 

Therefore, there are eccentricities in the force path from the actuator to the column, 

unlike in the push-side. 

 Bending of the steel plates on either side due to these eccentricities can result in a given 

force being applied without causing the corresponding displacement to the draw-wire 

sensor. This would eventually cause no asymmetry in the displacements, but indeed an 

asymmetry in the forces acting upon the column, since the force is measured internally 

in the actuator; more particularly, it would cause a higher force in the pull direction for 

the same displacement, as is the case herein.  

 The previous statement is corroborated by the fact that the steel plates were visibly 

bent after the first few tests, which means that a different horizontal displacement 

would be measured at their centre (where the external draw-wire sensor is connected) 

and near the edges, where the bolts and nuts are connected and where contact with 

the top of the column would be made. 

 Furthermore, through image correlations, it is observed that the top of the specimen is 

displaced slightly more in the pull-direction, in order to achieve the same recorded 

displacement. For instance, SC_3 is displaced to about +4.7 mm to achieve a +3 mm 

displacement, but only to about -3.8 mm for the corresponding displacement on the 

other direction. A further example is SC_2, which is displaced to about +8.4 mm to 

achieve a +6 mm displacement, but only to about -6.3 mm for the corresponding 

displacement on the other direction. 

The maximum horizontal strength of each specimen is compared in Figure 7-9. As expected on 

the basis of blind predictions, shear critical specimens have attained higher strengths than 
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flexure-shear critical ones. It is obvious in both experimental series that specimens with an axial 

load increase before attaining the peak strength (namely FSC_2, SC_2 and SC_3) reach a higher 

strength than the one with constant axial load. This was expected, as higher axial loads act 

favourably on the shear strength (so long as failure is due to diagonal tension) as well as on the 

flexural strength when being below the ‘balanced’ failure point.  This increase is about 4%, in 

line with the predictions of the herein used shear models (Priestley et al., 1994; Biskinis et al., 

2004; Sezen & Moehle, 2004) for an axial load increase of 50%. 

  

(a) (b) 

     Figure 7-8: Side views of system of steel plates and bolts transferring the forces from the double-
action horizontal actuator to the top of the specimen. 

 

Figure 7-9 : Comparison of the maximum horizontal strength, for FSC and SC specimens. 

However, this was not the case for specimen FSC_3, i.e. the one with axial load increase after 

the peak. In this case, the ultimate strength was already reached before the increase took place, 

so it had no effect on this parameter. In theory, the strength should be exactly the same as 

FSC_1, however there is some deviation, which will be addressed in section 7.9. 
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(a) 

 
(b) 

Figure 7-10 : Comparison of experimental cyclic envelope with the ones predicted by codes as well as the 
proposed beam-column model (section 8), for (a) FSC_1 and (b) SC_1. 

The cyclic envelopes of reference specimens (FSC_1 and SC_1) are plotted in Figure 7-10. Both 

original envelopes and P-δ-free curves have been added (of course, the effect is not very 

substantial, due to the low axial load and the low drifts reached). The analytical cyclic envelope 

predicted by the model proposed in the next section is shown in blue. The envelope predicted 

by the model proposed by Elwood & Moehle (2006) is shown in orange. The capacities predicted 

by EC 8-3 (CEN, 2005) and MC 2010 (fib, 2010) are included with continuous red and green lines, 

respectively; the actual mechanical properties of the materials were used, also accounting for 
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strain-hardening of the reinforcement. The limiting shear capacity of each code is included in 

dashed line of the same colour. 

FSC_1 is shown to be very well predicted by the proposed analytical model, although with some 

underestimation of its strength and its post-peak strength degradation. The codes, on the other 

hand, predict it to be considerably more flexible in the pre-yield branch. Also, they underpredict 

its ultimate deformation capacity, both of them estimating it to be around 10 mm, while the 

specimen loses 20% of its strength at about 16 mm, which is most accurately predicted by the 

proposed model. Its strength is underestimated even more than by the analytical model, both 

codes predicting a shear strength limit of 140 kN. The backbone proposed by Elwood & Moehle 

(2006) produces the same stiffness as the codes, overestimating the specimen’s flexibility. It 

predicts very well the 20% strength degradation point (at 16.5 mm), but it overpredicts by large 

the strength post-peak. 

As for SC_1, the analytical model’s prediction is very good. Again, there is minor underestimation 

of its strength as well as its strength degradation post-peak. The codes are found to predict 

adequately the secant stiffness at yield, roughly agreeing with the analytical model, which 

however accounts for shear stiffness pre- and post-concrete-shear-cracking. The discrepancy 

between the two codes is immense in this case. MC2010 (fib, 2010) predicts a shear failure 

before flexural yielding at 144 kN and 7 mm. On the other hand, EC8-3 predicts flexural yielding 

and subsequent tension shear failure at a very high deformation, namely 25 mm, at a strength 

of 180 kN. Nonetheless, the specimen reaches 20% strength degradation at about 16 mm. The 

analytical model is much better in this respect, predicting a 20% strength degradation at about 

17 mm. The backbone proposed by Elwood & Moehle (2006) produces slightly greater stiffness 

than the codes, agreeing with the analytical model. It predicts very well the 20% strength 

degradation point (at 16 mm), but it overpredicts by large the strength post-peak, although the 

descending branch’s slope is roughly equal to the herein proposed analytical model’s. 

7.3 AXIAL RESPONSE 

The hysteretic response in terms of average vertical displacements at the top of the specimen 

(mm) vs. lateral displacements (mm) and horizontal force (kN) are presented in Figure 7-11 (FSC 

specimens) and Figure 7-12 (SC specimens). The vertical displacements are recorded by the 

vertical actuator’s LVDT, so they are bound to include a small percentage of lash, which cannot 

be eliminated. Since the recording system was zeroed after the axial load was applied, the 

vertical displacement at the initial position is 0.0 mm; in reality, it is lower and it can readily be 

estimated as it is elastic: with E= 30 GPa for C20/25, A= 0.09 m2 and L = 0.715 m, EA/L equals 
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3,776 kN/mm, hence 180 kN axial load (compression) result in 0.048 mm vertical displacement 

(shortening). 

Vertical displacements of all specimens follow the typical U-shaped pattern up to the onset of 

shear failure, i.e. having a specific negative displacement at the ‘resting’ position (zero lateral 

displacement) with increasing displacements towards the peaks of each cycle. The increased 

vertical displacements at the extremes of each cycle come from the well-known phenomenon 

of member elongation; the curvatures applied on the specimen lead to high positive strains of 

the longitudinal reinforcement bars (accompanied by opening of cracks), which lead to an 

elongation of the member. With consecutive cycles at increasing lateral displacements, plastic 

strains accumulate leading to further elongation. 

 

 

     (a) (b) 

  
 

     (c) (d) 

 

 

     (e)  (f) 

     Figure 7-11: Axial hysteretic response of specimens (a, b) FSC_1, (c, d) FSC_2, (e, f) FSC_3 . 
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This is better illustrated in Figure 7-13, where the vertical displacements of the top column cross-

section (at the loading level) are shown for various displacement level peaks for specimen SC_2, 

considered representative of the rest of the specimens. These were obtained from digital image 

correlation; the horizontal and vertical displacement of any point can be calculated by 

comparing its initial position on the reference image and the position in any given image. To get 

this, every point is tracked using a given area of pixels around it, as described in section 7.1. 

Doing this for a dense grid of points, the horizontal and vertical displacement profiles can be 

obtained for each specimen at each displacement level. 

  

    (a) (b) 

 

 

        (c) (d) 

  

        (e) (f) 

     Figure 7-12: Axial hysteretic response of specimens (a, b) SC_1, (c, d) SC_2, (e, f) SC_3 . 

Figure 7-13 illustrates the behaviour (vertical displacements) of the entire section, in contrast to 

an average vertical displacement, which is measured by the vertical actuator's LVDT. Vertical 
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elongation and the associated higher curvatures; displacements as high as +5 mm are reached 

at the peaks of the displacement levels of +9 mm and +12 mm. 

Nonetheless, the aforementioned patterns change from the onset of shear failure onwards, as 

a result of shear failure influencing the axial deformations of the specimen. In Figure 7-13, the 

vertical displacements of the top section are shown to retract after this point, ever so slightly at 

the peak of +12 mm, but much more significantly in the subsequent displacement levels. At the 

displacement of 12 mm shear cracks are just forming, not having achieved a full depth diagonal 

crack at the first cycle (for which this diagram is plotted). However, when +15 mm is reached, a 

full depth diagonal crack has formed and has widened considerably. In general, as soon as this 

happens in each test, increased ostensible axial shortening is recorded; in reality, there is no 

actual shortening of the entire column, but the axial load pushes the upper discrete part of the 

column relatively to the lower one, causing these negative vertical displacements. 

 

     Figure 7-13: Vertical displacement of top of SC_2 at various displacement level peaks. 

In Figure 7-11 and Figure 7-12, the previously described phenomenon is manifested in two ways. 

Firstly, vertical displacements decrease after the onset of shear failure and keep decreasing 

further with each cycle. Secondly, the shape of the observed pattern (in terms of vertical 

displacement vs. lateral displacement) changes at this defining point of the response; from a U-

shape, it turns flat and eventually into an inverted-U-shape. This corresponds to a change in the 

physical behaviour of the member. Initially, the lateral displacements cause high curvatures near 

the peaks of cycles that cause elongations of the bars, which also accumulate over the cycles. Of 

course, this elongation has not disappeared in latter stages and it is certainly not turned into 

shortening of the main bars; what happens is that as the peak of each cycle is reached after this 

full depth diagonal crack has formed, the lateral displacement increases are translated into 
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widening of the shear crack instead of further curvature increases - this process will be better 

explained in section 7.5. As the cracks open, it is easier for the upper discrete parts of the column 

to move downwards under the influence of the constant axial load. Of course, as the 

displacement reverses, the cracks partly close and a part of this downward displacement is 

recovered (hence the inverted-U-shape); after a given point, the accumulation of downward 

displacements becomes very significant with vertical displacements decreasing to even less than 

-5 mm (which corresponds to an average normal strain of -0.7%). 

The safety limit for the system to shut down was set at a vertical displacement of -10 mm. Indeed 

the sudden increase of axial deformations accompanying the onset of axial failure is shown to 

start at a higher value in the cases of axial failure, as shown in Figure 7-11 and Figure 7-12, 

namely around -7 mm. Of course, in columns with different design or axial loads, it might well 

be below -10 mm. Specimen FSC_2, FSC_3 and SC_2 can be seen to exhibit this sudden increase 

of downward displacements, while FSC_1, SC_1 and SC_3 were stopped before the onset of axial 

failure was reached either for the safety of the equipment or because the specimen was visually 

judged to have been damaged extensively and its resistance had fallen to a really small fraction 

of the maximum strength. 

7.4 DEFORMATION ANALYSIS 

The deformations of the specimens were calculated based on images taken during the tests and 

post-processing using the technique of digital image correlation (see section 7.3 above). 

Comparing vertical and horizontal displacements at the top of the specimens obtained from the 

external draw-wire sensor (DWS) and the vertical actuator’s internal LVDT, with displacements 

estimated from digital image correlation (DIC), there seems to be adequately good agreement 

so as to use DIC for the deformation decomposition of the elements. 

A second comparison is conducted between shear displacements recorded for each specimen 

with DWS (Figure 7-15) and estimated from DIC. The former was based on two cross-inclined 

DWSs with 24 cm horizontal and 48 cm vertical dimensions (see Figure 6-8a). One set of cross-

inclined diagonals with the same geometry (24 cm horizontal and 48 cm vertical lengths) as well 

as an extra set (24 cm horizontal and 24 cm vertical lengths) are used in DIC, starting off slightly 

below the column-base interface and ending up roughly at the loading level; thus, the latter are 

expected to capture a slightly larger shear displacement. The same formula is used to extract 

the shear displacement in both cases, (e.g. Beyer et al., 2011): 

     2 2

2 1

1

4
sh d d

b
                                            (7-1) 
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where b is the width of the instrumented area (i.e. 24 cm), d is the initial length of the diagonals, 

and δi, i=1,2 is the change in length of each diagonal. 

The results from the two techniques are very close in some cases (e.g. Figure 7-14a) and close 

to some extend for others (e.g. Figure 7-14b), giving matching results overall with respect to the 

increase of shear displacements with increasing lateral top displacement as well as their higher-

rate increase after the onset of shear failure. It has to be noted that some variation is to be 

expected, due to the slight differences of deformation between the front and back face of the 

column, since both techniques are based on surface measurements; it was repeatedly observed 

during the tests that the cracking pattern of the two sides was not always on a par. Therefore, 

an average of the two measurement techniques will be used herein, except if there is reason to 

use only one, as explained further below. 

 

 

      (a)  (b) 

     Figure 7-14: Comparison between shear displacement recorded by the Draw-Wire Sensors (DWS) and 
calculated via Digital Image Correlation (DIC) for specimens (a) SC_1, and (b) FSC_3. 

Regarding the calculation of flexural displacements, the strains along the vertical direction, εzz, 

were calculated based on the images along the positions of the longitudinal corner 

reinforcement. To extract strains, nine different vertical segments were defined along the 

column and their initial (based on reference image with zero lateral displacement) and changed 

lengths were obtained. The segments’ starting points were below the base-column interface and 

their ending points were just above the interface crack, at h/4 (75 mm), h/2, 3h/4, h, 5h/4, 3h/2, 

2h, and at the loading level (715 mm), all distances measured from the interface. Displacements 

caused by slippage of the anchorage of the reinforcement bars are lumped together with the 

flexural ones, since attributing the deflection caused by the interface crack to bond-slip would 

overestimate its contribution, as some flexural deformation would be inevitably included. 

Dividing the strain difference by their horizontal distance, the distribution of curvature along the 

element was obtained. Integrating the product of this distribution with its vertical distance from 

the top of the specimen (loading level), the flexural displacement at the top was obtained: 
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 ( )fl y ydy                                                  (7-2) 
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                                      (7-3) 

where y is the distance from the loading level, φ(y) is the curvature of the element at any given 

position along the element, εzz,1(y) and εzz,2(y) are the strains obtained along the positions of the 

longitudinal corner bars and Δχ1-2 the horizontal distance between these bars. 

 

 

      (a)  (b) 

  

      (c)  (d) 

 

 

      (e)  (f) 

     Figure 7-15: Hysteretic response in terms of shear displacement of specimens (a) FSC_1, (b) FSC_2, (c) 
FSC_3, (d) SC_1,(e) SC_2 and (f) SC_3. 

The metal post, wherefrom the top lateral displacements were measured via a draw-wire 

sensor, was mounted on the base of the specimen. As a consequence, horizontal displacements 

induced by sliding of the base that are found to reach up to 4.0 mm are already implicitly taken 
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into account. Had this not been done, the measured response would be completely different 

from the actual one recorded herein. That is why such a component of lateral displacement is 

not included in this deformation analysis. 

Because of limitations of both techniques (DIC or DWS), the following approach was followed: 

 In the final steps of each test, due to extensive concrete spalling, there was not enough 

speckled surface to obtain DIC measurements. In that case, the DWS measurements of 

shear displacement were used as basis and the rest were calculated by subtracting them 

from the total lateral displacement. 

 For two tests (FSC_1 and FSC_2), some images are missing (e.g. Table 7-1 and Table 7-2). 

For these, again, the DWS were used as basis.  

  

        (a)         (b) 

  

        (c)         (d) 

  

        (e)         (f) 

     Figure 7-16: Lateral displacement decomposition for (a, b) FSC_1, (c, d) FSC_2, and (e, f) FSC_3 in (left) 
absolute and (right) relative terms. 

 In general, the initiation of shear failure with the consequent widening of and slipping 

along the full depth shear cracks affects the measurements of flexural displacement 
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with DIC. Therefore, DIC measurements were not taken into account beyond the onset 

of shear failure. For those displacement levels, again, the DWS were used as basis. 

 The DWS results were not accurate in specific displacement levels of some tests after 

the onset of shear failure, as debris from the back of the column would get entangled in 

the measuring wires, causing significant distortion in the measured displacements. This 

can be seen as an extreme value, much higher/lower than would be expected (e.g. last 

step in Figure 7-15d as well as Figure 7-15f). SC_3 exhibited an extremely asymmetrical 

response, which implies that debris got stuck in one of the two wires, hence increasing 

the displacement calculated for one direction and decreasing the other. For this specific 

case, the average of the two directions was used for the last displacement levels, with 

the error assumed to cancel out. Besides this, each such displacement level was 

discarded altogether, i.e. the last steps of SC_1 and SC_2. This does not imply that DWS 

measurements’ accuracy is only influenced by falling debris, of course.  

Based on the above assumptions and calculations, the displacement decomposition for the push 

direction can be seen in Figure 7-16 and Figure 7-17 for FSC and SC specimens, respectively.  Of 

course, there was some ‘unaccounted for’ part of the displacements, which was mostly ranging 

between 0% and 20%, with some higher or lower values. This was redistributed in the two 

displacement components (‘flexural and bond-slip’, ‘shear’) proportionally. As examples, two 

specimens without redistribution of the ‘unaccounted for’ part are shown in Figure 7-18. FSC_3 

is actually the only one exhibiting also negative ‘unaccounted for’ part, meaning that the 

calculated components are higher than the total displacement. SC_3 is a specimen exhibiting 

some of the highest unaccounted for components of all the tests. 

It was observed that there was a higher unaccounted for part in the other direction (pull). This 

might be attributed to slight rotations of the base during reversals, which cause the metal post 

– upon which the DWS that measures top lateral displacements was mounted – to move closer 

to or away from the specimen, thus adding or subtracting some displacement. This is just a 

speculation based on visual inspection of videos of the tests and could not be verified or 

quantified. 

A decomposition with the flexural and bond-slip parts separated is shown in Figure 7-19, as an 

indicative example only. As mentioned above, this component certainly contains some flexural 

deformation, which results in it being so high – in fact, even higher than the flexural 

deformations in the first couple of displacement levels. The reader is also cautioned of the 

difference in scale between Figure 7-19 and Figure 7-17(c, d), with respect to comparison of the 

decomposition in each case; naturally, in both figures the shear component is exactly the same. 
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It is observed in Figure 7-16 and Figure 7-17 that shear displacements always start off low, as 

expected, usually around 10% to 15% of the total displacement at a displacement level of +3 

mm. They increase steadily as damage propagates and much more sharply from the onset of 

shear failure onwards. They reach percentages of 40% to 70% at the final displacement levels, a 

clear indication of the dominance of shear response after the peak strength is reached.  

On the other hand, the flexural (including bond-slip) displacements start as a high proportion of 

the total lateral displacement, around 85% to 90%. Although they increase considerably in 

subsequent cycles, they decrease as a percentage of the total displacements up to the onset of 

shear failure, falling with a much higher rate after that, in line with the previous comments about 

shear displacements. These findings verify the intended initial design of the specimens. 

  

        (a)         (b) 

  

        (c)         (d) 

  

        (e)         (f) 

     Figure 7-17: Lateral displacement decomposition for (a, b) SC_1, (c, d) SC_2, and (e, f) SC_3 in (left) 
absolute and (right) relative terms. 

More importantly, these observations are completely in line with the theoretical model basis 
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slip parts of the response do not increase any further, staying constant or in some cases even 

decreasing. 

  

        (a)         (b) 

     Figure 7-18: Lateral displacement decomposition for (a) FSC_3, and (b) SC_3, including the 
‘unaccounted for’ component. 

 

  

        (a)         (b) 

     Figure 7-19: Lateral displacement decomposition for SC_2, including the bond-slip component, in (a) 
absolute and (b) relative terms. 

It is observed that FSC specimens have in general higher percentages of flexural displacements 

than the SC specimens. This observation, in combination with the fact that in FSC specimens 

many more flexural cracks form, as noted in section 7.1, are clear indications of the higher 

influence of flexure on the response of FSC specimens and a response of SC specimens closer to 

pure shear at the later stages of response. Of course, flexural deformations still play an 

important role in the overall response of SC specimens and, as mentioned in section 7.1, yielding 

of their longitudinal reinforcement was recorded. 

7.5 SHEAR FAILURE LOCALISATION 

The phenomenon of shear failure localisation is central to this research work and one of the 

cardinal bases as well as innovation points of the proposed model in the next chapters. It is 

demonstrated herein using experimental evidence first of all that it does indeed exist in shear 

and flexure-shear critical specimens and, secondly, how it physically manifests.    
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All the images and diagrams in this section refer to the positive direction (pull-side). 

   

(a) (b) (c) 

   

(d) (e) (f) 

     Figure 7-20: Lateral displacement (in mm) profiles along the surface of specimen  SC_1 from a 
displacement level of (a) 9 mm until (f) 24 mm. 

In Figure 7-20, the lateral displacement profiles (estimated as explained in section 7.3) along the 

surface of SC_1 at various displacement levels are shown. Note that at the final displacement 

steps, part of the surface has spalled off, thus appearing as having zero displacement (i.e. dark 

blue in Figure 7-20). Before the onset of shear failure, they appear continuous along the surface, 

while they start showing "jumps" at a displacement of 12 mm. This is due to shear cracks, where 

horizontal displacement is localised, so the two crack sides have a non-negligible difference in 

horizontal position, which is shown to be around 1-3 mm at the displacement levels of 12 mm 

and 15 mm. Especially from 21 mm, this difference becomes very pronounced, reaching values 

of 10 mm, and the difference between the top and bottom discrete parts of the column is very 

obvious. A similar response can also be seen in Figure 7-21 for specimen SC_3.  It also separates 
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into two discrete parts after the displacement level of 18 mm and behaves in much the same 

way as SC_1. 

   

(a) (b) (c) 

   

(d) (e) (f) 

     Figure 7-21: Lateral displacement (in mm) profiles along the surface of specimen  SC_3 from a 
displacement level of (a) 9 mm until (f) 24 mm. 

This is further investigated in Figure 7-22, where the lateral displacement profiles (subtracting 

the non-zero base displacement, as the metal post is mounted on the base, so it is disregarded 

in the measurement) of the centroidal axis of the front surface of two specimens are provided 

for displacement levels from 3 mm up to 15 mm and 18 mm, respectively. One can clearly see 

the smooth continuous displacement lines produced in the initial stages of the response. This 

changes to a continuous line with smooth parts and some jumps after shear cracks start 

appearing on the specimen. Well into the post-peak domain with a formed clear full-depth 

diagonal crack, the displacements become discontinuous, being broken up by the existence of 

one or more wide shear cracks; the displacement reached is quite low below the cracks (similar 
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to levels of 3 mm or 6 mm), jumping to a much higher value above them and increasing gradually 

until the top from that point onward. 

What happens is that the column is effectively turned into two discrete parts from the onset of 

shear failure onwards, divided along the side-to-side shear crack; in reality it comprises of four 

discrete parts, however they can be lumped into two parts in each loading direction. When 

applying a load to the top part, it is deformed to some extend and simultaneously the gap opens 

further, while the bottom part stays almost still, which can be clearly seen in Figure 7-20. In 

effect, it is ‘easier’ to further open the crack than to deform each discrete part of the column, 

like a weak link in a chain. In other words, imagining the column as a set of deformation 

components connected in series, the crack component (part of the shear deformations in the 

post-peak regime) requires less energy than the other components to achieve a given 

displacement – in other words, it is ‘less stiff’ – hence it is the preferred mode of deformation 

over the others. That is why it was observed in most specimens that the flexural as well as bond-

slip (located at the column-base interface) cracks tended to partly close from the onset of shear 

failure onwards (section 7.1). 

 

 

 

(a) (b) (c) 

     Figure 7-22: Lateral displacement profiles along the centroidal axis of specimen (b) SC_2 
(displacement levels +3 mm until +18 mm from left to right), and (c) FSC_3 (+3 mm until +15 mm from 

left to right). 

The area wherein these "jumps" take place is defined by the geometry of the shear cracks and 

has been herein termed critical shear length; this is where the majority of post-peak 

displacement concentrates, as seen in Figure 7-20, Figure 7-21 and mainly in Figure 7-22.     

Simultaneously, this phenomenon also influences the longitudinal direction. The upper discrete 

part of the column moves downwards relatively to the bottom one when displaced laterally 

under the influence of the constant axial load, resulting in decreased vertical displacements as 

shown in Figure 7-13. 
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Figure 7-23 : Horizontal displacement of the base of the specimens at each displacement level. 

These observations are corroborated by the fact that the base generally has a significant 

horizontal displacement before the onset of shear failure, while this decreases down to almost 

zero at the final displacement levels. This can be seen in Figure 7-20 and Figure 7-21 for SC_1 

and SC_3, respectively. It is much more clearly displayed in Figure 7-23, wherein the horizontal 

displacement of the base of each specimen is plotted for successive displacement levels. The 

displacement of a point along the centroidal axis at a vertical position of -50 mm is used for this 

plot. A trend is evident in the plots: a base displacement of 1.5-2.5 mm is reached at 3 mm, 

which keeps increasing until about 12 mm and then decreases sharply in the next displacement 

levels. Thus, the claim is reinforced that after the column is discretised into ‘two’ bodies, the 

horizontal loading causes displacement mainly through opening of the full-depth diagonal crack, 

while the lower body remains almost unaffected, having little to no displacement. 

In conclusion, it has been shown that the lateral displacement is largely localised at the critical 

shear length defined by the shear cracks, after the initiation of shear failure. These 

displacements mainly represent the relative rigid body displacement between the discrete 

upper and lower parts of the column, separated along the diagonal shear crack(s). 

7.6 STIFFNESS 

The secant stiffness at the peaks of the lateral hysteretic response is calculated with a view to 

examining how it degrades with increasing cycles and ductility. It is presented in absolute and 

relative terms in Figure 7-24 and Figure 7-25, taking into account the average of both the positive 

and negative direction, in order to have a more representative quantity. The elastic stiffness (Kel) 

used to compare the stiffness is derived assuming a cantilever of 715 mm length, C20/25 

concrete and 300 × 300 (mm) cross-section, hence Kel = 166.2 kN/mm. 
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Overall, the stiffness deterioration is rather similar in all specimens with few discrepancies. 

There is a very significant decrease in stiffness with increasing ductility, falling to about half the 

stiffness of the +3 mm displacement level by the displacement level of +6 mm or +9 mm. 

Subsequently, it keeps decreasing, reaching zero stiffness asymptotically after +18 mm. 

The second and third cycles have only slightly lower stiffness than the first cycles at the initial 

displacement levels. From +9 mm or +12 mm, the gap becomes greater, due to the higher cyclic 

strength degradation and reloading stiffness deterioration that was observed in section 7.2. 

  

      (a)        (b) 

  

      (c)       (d) 

  

       (e)      (f) 

     Figure 7-24: Lateral displacement secant stiffness for (a, b) FSC_1, (c, d) FSC_2, and (e, f) FSC_3 in 
(left) absolute and (right) relative terms. 

Comparing the relative stiffness diagrams, the stiffness at the first peak of the first displacement 

level is found to be much lower than the predicted elastic stiffness, with a value roughly 20-25% 

of Kel. An important source of this discrepancy with the estimated elastic stiffness is that at the 

peak of +/- 3 mm, there is already flexural cracking in all the specimens (see section 7.1), which 

adds a lot to the flexibility of the members; as seen in section 7.2, the first cycle by no means 
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corresponds to a linear elastic response. At the same time, shear deformations, which are not 

taken into account in the calculation of the elastic stiffness, are a considerable part of the total 

displacement at this stage of the response – about 10% to 15% as shown in section 7.4 –, 

commensurately decreasing the resulting stiffness. Other minor sources might be shrinkage 

cracks, the aforementioned bending of the plates connecting the actuator to the column as well 

as some added flexibility from the deforming base of the specimen. It cannot be known exactly 

to what extend each factor actually influences the recorded value, but flexural cracking and 

shear deformations can be considered the main sources. 

  

      (a)        (b) 

  

      (c)       (d) 

  

       (e)      (f) 

     Figure 7-25: Lateral displacement secant stiffness for (a, b) SC_1, (c, d) SC_2, and (e, f) SC_3 in (left) 
absolute and (right) relative terms. 

Therefore, it becomes clear that if an element is to be deformed into its post-peak range (or 

even at moderate displacements in the pre-peak range), a conventional elastic stiffness – even 

50% – could not represent its actual response adequately; it would greatly overestimate its 

resistance for any given displacement. 
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7.7 ENERGY DISSIPATION 

Energy dissipation is an attribute of paramount importance for the seismic response of 

structures. Herein the energy dissipated throughout each test is calculated and compared to 

each other. It is calculated as the area of the hysteretic loops and it is presented in Figure 7-26 

for every specimen. 

  

      (a)        (b) 

     Figure 7-26: Cummulative dissipated energy against displacement level for (a) FSC, and (b) SC 
specimens. 

SC specimens are found to dissipate more energy than the FSC ones, cumulatively. This is not a 

surprise, as they were found to have higher displacement capacity as well as higher resistance. 

The difference is caused by the significant increase of longitudinal reinforcement, counteracting 

the slight decrease of transverse reinforcement. 

Nonetheless, all the specimens seem to be on a par with each other throughout the loading 

history, so they are found to dissipate roughly the same amount of energy up to any given point. 

For example, they all attain the same dissipated energy at the onset of shear failure (i.e. about 

7kNm), except for SC_3 that fails at 15 mm, reaching just above 11 kNm. The energy at the onset 

of axial failure, however, is quite different for each specimen, largely depending on the 

displacement at which failure took place. 

Last but not least, the rate of energy dissipation is found to increase after +6 mm, when more 

plastic deformations start concentrating, dissipating more hysteretic energy. They tend to 

slightly decrease again after +21 mm, due to the extreme strength degradation, leading to very 

narrow loops. 

7.8 LASH 

Lash comprises the sum of all horizontal displacements that are not due to the column 

deformation itself. These have often been recorded as part of the column deformations, leading 

to an ostensibly more flexible element. Typical examples of such displacements are the sliding 
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of the base on the strong floor (or sub-base in this particular case), elastic bending of the 

reaction frame or displacement of the bolts due to inadequate tightening onto the plates. 

Attempts were made to preclude lash as much as possible from measurements, thus it is defined 

as the difference between what the internal LVDT of the actuator and the external draw-wire 

sensor record. Of course, it is possible that there are more sources that have not been 

eliminated, e.g. the differential application of force resulting in a slight force asymmetry (see 

section 7.2) or base rotations (see section 7.4). 

  

      (a)        (b) 

     Figure 7-27: Recorded lash throughout experiments of (a) FSC, and (b) SC specimens. 

Based on Figure 7-27, it is observed that the lash is very significant in all specimens, reaching 

values of more than +/-8 mm in the first 9-12 cycles, i.e. up to horizontal displacement levels of 

+/-9 mm to +/-12 mm. This means that during many cycles lash is even higher than the actual 

recorded horizontal displacement. For instance, at a peak of +3 mm, the lash can be +6 mm, 

meaning that if the internal LVDT was taken into account, the force actually recorded for the 

first peak would be recorded for the first peak of the displacement level of +9 mm, i.e. the 

elements would reach 120-130 kN resistance and yield at the latter displacement level, giving 

an unrealistic picture of the element's response. 

A really interesting trend observed in all experiments is that the lash decreases considerably 

after about 1000 sec, i.e. at a horizontal displacement level of about +/-15 mm. This can be 

explained taking into account the nature of lash. A big part of it comes from elastic deformation 

of other parts of the system besides the column, e.g. the reaction frame whereupon the 

actuators are supported. Around +/- 15 mm of horizontal displacement, the specimens have 

already entered the post-peak domain and their stiffness has degraded so much that the acting 

force is much lower than in the cycles of the first displacement level. Therefore, the elastic 

deformations produced by other parts of the system do decrease proportionally.  

Another interesting pattern is the asymmetrical distribution of lash after a specific point. In the 

overwhelming majority of specimens (i.e. all of them, except FSC_3 that has a negative-skewed 

lash from the beginning of the test), the lash tends to concentrate invariably on the positive side 
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towards the end of the experiment. The positive side corresponds to pulling of the actuator. This 

might be due to slight untightening of the bolts during the test due to very high forces acting 

upon them, which leads to some lash produced when pulling the column. Of course, no bolt is 

involved when pushing, and since the acting force is so low, the lash on the negative side is 

negligible. 

It is observed that in the end of the lash time-series of FSC_3 and SC_2 (two out of the three 

specimens that failed axially), a sudden drop to the negative side occurs. This corresponds to 

the onset of axial failure and the sudden increase of vertical deformations. 

7.9 REPEATABILITY 

The issue of repeatability is well-established and widely discussed in many science and 

engineering disciplines, including structural engineering. However, performing multiple tests is 

not the norm, particularly in large-scale experiments like the ones herein presented, where 

restrictions pertinent to time and other resources can be prohibitive. 

  

      (a)        (b) 

     Figure 7-28: Comparison of the first 9 cycles of the (a) FSC, and (b) SC specimens. 

In this series, although not having replicated the experiments per se, the first 9 cycles of each 

set of specimens are in effect “identical” in all respects. They are shown in Figure 7-28. As 

expected, the overall responses are quite similar. However, there are many slight differences in 

the curves produced. For example, the strength reached at each cycle is almost always different 

in the three specimens. A pronounced discrepancy is observed at the unloading stiffness on the 

positive side (pull) as well as the reloading stiffness on the negative side (push) of the FSC 

specimens, wherein FSC_3 has a much stiffer response than the other two. These can be 

attributed to different concrete strength, as discussed previously (section 6.6), slight geometric 

deviations in the way the concrete cage was constructed or how it was positioned in the 

formwork and perhaps differences in the lash included in the results, due to different tightening 

of the bolts of each specimen.  
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Furthermore, the actual member-level response is the result of a plethora of events taking place 

at micro-level, the random nature of which would lead even the most “identical” specimens to 

have differences when inspected at a macro-level. Therefore, the common reference to 

specimens as “identical” when they belong to the same experimental series and have been 

identically designed is actually a fallacy. An appropriate way to refer to them could be “nominally 

identical” (e.g. Henkhaus et al., 2013), as in reality they can only be similar in their behaviour, 

but not identical. 

7.10 EFFECT OF VERTICAL LOAD VARIATION 

Figure 7-29a shows the experimentally obtained descending branch slope values of each 

specimen, for both experimental series. Figure 7-29b shows the former compared to the ones 

calculated using Eq. 4-7 and the design and material characteristics of each specimen; in the 

case of variable axial load, the slope values have been calculated both with the initial axial load 

(‘predicted – low’) and with the latter one (‘predicted – high’). 

  

      (a)        (b) 

Figure 7-29: (a) Experimentally obtained descending branch slopes of FSC and SC specimens. (b) 
Comparison of experimentally obtained against analytically predicted descending branch slopes of each 

specimen. 

  

      (a)        (b) 

Figure 7-30: (a) Ultimate horizontal displacement reached by each specimen. (b) Comprarion of 
experimentally obtained and predicted values of ultimate horizontal displacement. 
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It is clear that increasing the axial load leads to higher degradation rate in the post-peak range. 

All specimens' descending slopes are steeper than the reference ones (Figure 7-29a). In Figure 

7-29b, evidently all of the slopes are slightly underestimated by Eq. 4-10, with the reference 

specimens, FSC_2 and SC_3 (taking into account the prediction with higher axial load) not being 

very far off the prediction. However, the other two are way higher than expected. It is interesting 

that the difference between the low- and high-axial-load-predictions seems to be quite low, 

while the actual difference between the reference specimens and the ones with increased axial 

load is much higher. It would suggest that either (1) the effect of the axial load has been 

underestimated in the proposed relationships, or (2) the application of higher axial load in or 

just before the post-peak range has a more detrimental effect on the strength degradation rate 

than the application of constant axial load from the beginning of the test. 

The only exception is FSC_2 that is almost equal to FSC_1, partly due to having a higher strength 

concrete than FSC_1, compensating for the increase of the slope owing to the increased applied 

axial load. 

The ultimate horizontal displacement achieved by each specimen is presented in Figure 7-30a. 

The specimens that failed axially are outlined in red. This means that the ones that didn’t were 

stopped because their lateral force had declined significantly, but did not lose their axial load-

bearing capacity. So, this is a lower limit on their deformability with regard to axial load-bearing 

capacity; in other words they might actually be able to support their axial load for even larger 

lateral displacements. 

FSC_1 with low constant axial load is cycled up to +/- 21 mm without losing its vertical load-

bearing capacity. FSC_2 and FSC_3 with the increased axial load lose it way before that, reaching 

an ultimate displacement at the onset of axial failure of +/- 18 mm and +/- 15 mm, respectively. 

In this series, increasing the load after the peak is reached led to the axial capacity being lost 

sooner than increasing it before the peak. 

In the SC series, the axial load in both specimens (SC_2 and SC_3) was increased before the peak; 

as commented in section 7.2, this was not the initial intention and it was caused by SC_3’s 

increased displacement at the onset of shear failure (compared with all the other specimens), 

which was not expected, as explained in section 7.2. SC_2 was led to much lower deformability 

than SC_1, i.e. +/- 21 mm instead of +/- 27 mm, while SC_3 achieved the same displacement as 

SC_1 whose axial load was kept constant; however, it was much closer to axial failure than the 

reference specimen, reaching a vertical displacement of - 5.6 mm as contrasted to the - 2.8 mm 

of SC_1. Judging from the trend of the vertical responses, SC_3 would fail axially before 

completing the three cycles at +/- 27 mm, while SC_1 managed to complete all of them with 
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very low axial displacement, thus not nearing the onset of axial failure. The comparison of SC_2's 

and SC_3's deformability leads to unexpected results, since the latter has a lower concrete 

strength and would in theory be expected to fail axially sooner than the former. 

In Figure 7-30b, Eq. 4-16 was used to predict the displacement at the onset of axial failure, using 

both the initial and the increased axial load. All specimens' displacement capacity is 

overpredicted, in line with the aforementioned underprediction of the descending branch slope. 

This is because these are specimens with rather high longitudinal reinforcement index and low 

axial load ratio (see Eq. 4-16 and Figure 4-16), thus expected to reach much higher deformations 

based on the database. This highlights the importance of supplementing the existing 

experimental literature on post-peak response with tests on specimens with design 

characteristics not existing in the current literature, so as to obtain even more reliable empirical 

relationships. 

In conclusion, the clear conclusion is that the increase of axial load before or just after the onset 

of shear failure is reached leads to higher strength degradation rate and lower ultimate 

displacement. No difference between the application of the load before or after the onset has 

be detected, however there were only three and one such specimens, respectively. More similar 

experiments would be required to get a bigger sample and a clearer idea as to how exactly these 

quantities are affected.  
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PART III: BEAM-COLUMN ANALYTICAL MODEL 
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Chapter 8: DESCRIPTION AND IMPLEMENTATION OF ANALYTICAL 

MODEL 

8.1 HYSTERETIC SHEAR MODEL 
The hysteretic shear model is based on the one proposed by Mergos & Kappos (2012), which is 

an extension of the originally proposed model by Ozcebe & Saatcioglu (1989) and has been 

shown to fare satisfactorily as to the shear response of sub-standard R/C members. It is 

formulated in terms of shear force, V, against shear distortion, γ, at section level and comprises 

of the V-γ backbone curve and the hysteresis rules determining the response under cyclic 

loading. Its primary V-γ backbone curve is defined disregarding interaction with flexure and can 

be used for elements that have not yielded in flexure, as well as for the elastic regions of 

members that have developed flexural yielding (Figure 8-1). The ascending part of this curve is 

defined by the shear cracking point where the nominal tensile principal stress exceeds the 

tensile concrete strength (γcr, Vcr), the onset of yielding of the transverse reinforcement, where 

the maximum shear strength is attained (γst, Vmax), and a plateau, where shear strains increase 

up to the onset of initiation of lateral strength degradation, i.e. the onset of shear failure (γsh,f, 

Vmax). Expressions for each of the above quantities have been proposed by Mergos & Kappos 

(2012); the shear strength is based on the Priestley et al. (1994) model with conservative 

assumptions, as it was found to be unconservative in the specimens examined herein, which 

have insufficient transverse reinforcement. 

 

Figure 8-1: V-γ primary curve of the proposed shear model (without shear-flexure interaction). 

The ascending primary V-γ curve is modified in plastic hinge regions of flexure-shear critical 

elements to account for shear-flexure interaction, resulting in a decrease of the shear capacity 

simultaneously with significant increase of the shear flexibility (Figure 8-2c). This is based on the 

curvature ductility demand and the ensuing degradation of the “concrete contribution” to shear 

strength, based on the Priestley et al. (1994) model (Figure 8-2a), resulting in an increase of the 

shear reinforcement contribution (Figure 8-2b) (Mergos & Kappos, 2008; 2012). The parts of the 
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backbone curve between the shear force corresponding to flexural yielding (γy, Vy in Figure 8-1) 

and the onset of shear failure (γsh,f, Vmax) are affected as Figure 8-2c shows, when shear-flexure 

interaction is considered. 

 
(a) 

 
(b) 

 
(c) 

Figure 8-2: (a) Relationship between curvature ductility demand and strength of concrete shear resisting 
mechanisms (Mergos & Kappos, 2012). (b) Variation of shear resisting mechanisms (strut mechanism 

lumped with concrete mechanism); shear strain after shear cracking with curvature ductility demand in 
plastic hinge regions of R/C members (Mergos & Kappos, 2012). (c) Flexural primary curve and shear 
capacity in terms of member shear force and curvature ductility demand of the critical cross-section 
(left); shear (V -γ) primary curve before and after modelling shear-flexure (right) (Mergos & Kappos, 

2013b). 

After the onset of shear failure is reached, a bi-linear descending branch is followed. It includes 

a breaking point at half the maximum strength and is defined by the slopes of the two linear 

segments Spp,1×Vmax  (Eq. 4-9 to 4-11) and Spp,2×Vmax (Eq. 4-12 to 4-14), respectively (Figure 8-1). 

This shape is chosen herein due to its simplicity and satisfactory correlation with the recorded 

experimental post-peak responses, as already demonstrated in section 4. Using two 

independent branches in the descending part, the resulting response can approximate linear, 
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concave or convex responses, encompassing different potential descending branch shapes, 

hence making the model more versatile and powerful. Furthermore, it can readily accommodate 

a linear descending branch (Eq. 4-6 to 4-8) by setting the slope of the second branch equal to 

the slope of the first.  

The descending branch is terminated at the point of onset of axial failure, where physical 

collapse of the member initiates. The definition of the onset of axial failure in this study is both 

deformation-based and force-based. Specifically, a column is considered to have failed axially 

(i.e. lost its bearing capacity), if the shear deformation limit corresponding to the onset of axial 

failure has been reached (Figure 8-1). This deformation limit is equal to γsh,f  plus the post-peak 

shear distortion up to the onset of axial failure, γt,pp (Eq. 4-16). However, if the shear resistance 

degrades to zero before this critical deformation is reached, the onset of axial failure is the point 

where the descending branch meets the axis of shear deformations (point on the descending 

branch with zero shear strength), i.e. the shear resistance is not allowed to assume negative 

values. 

As described in chapter 6, when a column reaches the onset of axial failure, a fraction of the 

vertical load previously carried by it is subsequently redistributed to neighbouring vertical 

elements through adjacent horizontal members. During this vertical load redistribution, the axial 

load of the failing member is greatly reduced, while that in the neighbouring members is 

substantially increased. Axial load increase just before or after the onset of shear failure was 

found to lead to higher post-peak strength degradation rate and lower displacement at the 

onset of axial failure (see section 7.11). Axial load decrease in the post-peak domain, on the 

other hand, seems to lead to a lower strength degradation rate and a higher displacement at 

the onset of axial failure. Moreover, the greater the decrease and the sooner it takes place, the 

higher the ultimate displacement, while no significant effect on the descending branch slope 

was detected (Nakamura & Yoshimura, 2014). 

Based on the limited existing experimental evidence, the proposed model is developed so as to 

take into account the effect of axial load variation on the lateral post-peak hysteretic response. 

The post-peak part of the response can take into account variable axial load during the analysis, 

using Eq. 4-6 to 4-16 as a basis to estimate the variation on the post-peak shear strength 

degradation rate and the shear deformation at the onset of axial failure. Hence, when an axial 

load variation is detected during the analysis, the aforementioned post-peak parameters 

change, reflecting the effect of axial load variation on the response. 

As for the point of axial load change, it is herein appreciated that it does lead to different 

response, depending on how soon or late into the post-peak response the change happens, 
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according to Nakamura & Yoshimura’s (2014) work. Nonetheless, it is not possible to reliably 

take this effect into account at this stage. Further investigations would be required to define 

exactly how this point influences the post-peak response. 

 

Figure 8-3: Hysteresis rules after the onset of shear failure. 

The hysteresis rules adopted in the pre-peak domain of the shear model are based on those 

proposed by Ozcebe & Saatcioglu (1989), with several improvements introduced by Mergos & 

Kappos (2008; 2012) for numerical stability in dynamic analysis, as these rules were not originally 

developed explicitly for use in dynamic analysis for seismic loading. Pinching, unloading and 

reloading stiffness deterioration, as well as cyclic strength degradation, are accounted for. 

In the post-peak domain, the same hysteretic model is adopted as a starting point. However, it 

was not developed explicitly for the post-peak response, but rather for the pre-peak. Therefore, 

some modifications are herein proposed, to make the hysteretic rules compatible with the 

response of specimens after the onset of shear failure. A calibration of the post-peak hysteretic 

rules based on experimental post-peak response data would be a worthwhile future endeavour, 

in order to further improve the prediction accuracy of the proposed model. 

The hysteretic rules are shown in Figure 8-3, showing only the linear descending branch case, 

for the sake of simplicity; ΔV1,pos and ΔV1,neg denote in-cycle strength degradation in the positive 

or negative direction, respectively; ΔVcyc,deg,i (i=1,2) denotes cyclic strength degradation. In-cycle 

strength degradation follows the aforementioned backbone descending branch(es), for instance 

Spp × Vmax in Figure 8-3. Post-peak cyclic degradation is accounted for as in Ozcebe & Saatcioglu 

(1989), in line with the calibration of the post-peak descending branch (section 4), i.e. the end 
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reloading point lies on at the intersection with the descending branch (Figure 8-3) and, 

subsequently, the response follows the descending branch.  

Pinching and reloading stiffness deterioration are accounted for using a bilinear reloading curve 

as in the pre-peak domain (Ozcebe & Saatcioglu, 1989; Mergos & Kappos, 2008). Nonetheless, 

the shear cracking strength, Vcr, which is the ordinate of the end point of the first reloading 

branch, degrades, unlike in the pre-peak domain. Its degradation is proportional to the 

degradation of the end point of the second reloading branch (e.g. Vcr and V’cr in proportion to 

Vmax and Vmax - ΔV1,pos - ΔVcyc,deg,1 in Figure 8-3). Were it not degrading, an end point of the second 

reloading branch with strength lower than the shear cracking strength would inevitably appear, 

leading to a negative stiffness of the second reloading branch, hence numerical instability. 

Unloading follows a linear branch with the same stiffness deterioration rules as in the pre-peak 

domain (Mergos & Kappos, 2008).  

Shear strength degradation mirroring is also taken into account; this effectively means that once 

a certain amount of strength is lost in one loading direction, a higher strength cannot be reached 

in the other. For example, in Figure 8-3, the descent starts from the onset of shear failure with 

Vmax on the positive side, followed by ΔV1,pos in-cycle degradation. The strength of the vertex 

point on the negative direction becomes -(Vmax - ΔV1,pos - ΔVcyc,deg,1). Similarly, the in-cycle 

degradation on the negative side (ΔV1,neg) is subtracted from the positive vertex point strength 

upon reloading on the positive side for the first time, and so forth. This assumption has been 

adopted in other similar models (e.g. LeBorgne & Ghannoum, 2013) and is supported by 

experimental evidence, for instance,  specimens B1 and B4 (Henkhaus et al., 2013) as well as 

Specimen-1 (Sezen & Moehle, 2006). One has to bear in mind the difference between the actual 

loss of strength, be it from cyclic or in-cycle degradation, and the ostensible loss of strength that 

arises from reloading stiffness deterioration and is sometimes confused with actual strength 

degradation; the latter is not included in shear strength degradation mirroring. 

8.2 BEAM-COLUMN MODEL FORMULATION 
A beam-column that can explicitly capture flexure, shear, and bond-slip deformations, while 

accounting for the interaction between flexural and shear deformations in the potential plastic 

hinges of substandard R/C members is herein needed. The spread of inelasticity of flexural 

deformations has to be taken into account, of course, but more importantly the shear inelasticity 

spread has to be accounted for, so as to align with the underlying assumptions of the afore-

developed local shear hysteresis model. The phenomenological, force-based, spread inelasticity 

beam-column model by Mergos & Kappos (2012) is herein selected as the basis to model the 

response of shear deficient R/C members; it combines the aforementioned features with 
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computational efficiency – much needed in cases of dynamic non-linear analysis of entire R/C 

structures including the post-peak domain. 

It is composed of three sub-elements accounting for flexural, shear and anchorage-slip 

deformations (Figure 8-4). The sub-elements are connected in series, hence the element 

flexibility matrix (F) is produced by the summation of the flexibility matrices of the flexural (Ffl), 

shear (Fsh) and anchorage-slip (Fsl) sub-elements and its inversion results in the element stiffness 

matrix K, which in turn relates the bending moment increments at the ends of the flexible part 

of the element to its incremental rotations (Figure 8-4): 
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The flexural sub-element (Figure 8-4c) is divided into an ‘elastic’ intermediate region with 

stiffness equal to the stiffness of the first branch (secant stiffness at yield) of the flexural bilinear 

primary curve (Figure 8-5a) and two end regions, where flexural yielding takes place. A spread 

inelasticity model is employed to follow the gradual inward penetration of flexural yielding from 

the ends of each sub-element, based on the distribution of bending moments and the loading 

history; regarding the latter, the length of each plastic hinge cannot become shorter than its 

previously reached maximum value, in other words this length can never decrease from one 

analysis step to the next. This model distinguishes between loading and unloading or reloading 

states, leading to a uniform stiffness distribution in the plastic hinge in the former and a linearly 

varying stiffness distribution in the latter, with the minimum value at the end section and the 

maximum being equal to the elastic stiffness at the end neighbouring the elastic region. Both 

linearly varying bending moment distribution as well as parabolic, e.g. due to the presence of 

gravity loads on beams, can be taken into account when calculating the plastic hinge lengths 

(Mergos & Kappos, 2013a).  

The flexural sub-element’s primary curve in terms of bending moment against curvature (M-φ) 

is based on standard flexural analysis with appropriate bilinearisation of the resulting curve, so 

that the stiffness of the first branch of the bilinear curve is equal to the secant stiffness at first 

yield of the longitudinal reinforcement, the area enclosed by the bilinear curve is equal to the 

area enclosed by the initial M-φ curve, and the stiffness of the second branch is positive. The 

rules followed for unloading are based on the model proposed by Sivaselvan & Reinhorn (1999) 

adjusted for mild stiffness degradation, setting the unloading parameter equal to 15 (Mergos & 

Kappos, 2012), as shown in Figure 8-5a. Reloading is vertex-point oriented, i.e. the end-point of 
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the reloading branch is the point of maximum excursion in the opposite side of the response. 

Stiffness degradation during unloading and reloading as well as non-symmetric response are 

accounted for in this flexural hysteretic model, hence making it also suitable for R/C T-beams.   

 

Figure 8-4: Finite element model: (a) geometry of R/C member; (b) beam–column finite element with 
rigid offsets; (c) flexural sub-element; (d) shear sub-element; (e) anchorage slip sub-element. (Mergos & 

Kappos 2012) 

  
(a) (b) 

Figure 8-5: (a) Flexural (M-ϕ) hysteretic model and (b) anchorage slip (M-θslip) hysteretic model. (Mergos 
& Kappos 2013b) 

The anchorage slip sub-element represents the rotations arising at the interfaces of adjacent 

R/C members, due to slippage of the reinforcement anchorage in the joints, resulting from bond 

deterioration. The anchorage slip sub-element (Figure 8-4e) consists of two concentrated 

springs at the ends of the element, connected by a rigid bar, hence adding flexibility in the 

respective end, with its off-diagonal terms being zero (Mergos & Kappos, 2012). Its primary 
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curve in terms of bending moment vs. end rotations (M-θslip) is derived for each level of bending 

moment acting at the element end assuming uniform bond stress along the various segments of 

the anchored bar –  elastic, strain-hardening and pull-out cone regions –, calculating the steel 

stress and strain distributions along the anchorage length (Figure 8-6), hence computing the 

slippage via integration of the strains and the subsequent fixed-end rotation (Mergos & Kappos 

2012); the resulting curve is subsequently appropriately bilinearised, so that the stiffness of the 

first branch of the bilinear curve is equal to the secant stiffness at first yield of the longitudinal 

reinforcement, the area enclosed by the bilinear curve is equal to the area enclosed by the initial 

M-θslip curve, the ultimate point (Mu, θu,slip) is placed so that the correct failure mode dominates 

(depending on whether flexural or bond-slip failure is expected from the preceding analyses) 

and the stiffness of the second branch is positive. The various symbols used in Figure 8-6 can be 

found in Mergos and Kappos, 2012. The hysteretic rules used are based on the model proposed 

by Saatcioglu et al. (1992), as shown in Figure 8-5b. 

 

Figure 8-6: (a) Reinforcing bar with 90o hook embedded in concrete; (b) steel stress distribution; (c) strain 
distribution; (d) bond stress distribution. (Mergos & Kappos 2012) 

Prior to the onset of shear failure, the shear sub-element has a flexibility distribution similar to 

the flexural sub-element (Figure 8-4d). Shear-flexure interaction is considered in its inelastic end 

regions, the lengths of which are set equal to the lengths of the respective regions of the flexural 

sub-element, so long as the shear demand is constant along the element length; otherwise, they 

may be different, dependent upon the shear force distribution. The shear flexibility matrix 

coefficients in the case of uniform stiffness distributions at the inelastic regions are as follows, 

applying the principle of virtual work (Mergos & Kappos, 2012): 
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where i,j = A, B, i.e. the two ends of the element; αAs and αBs are defined as the yield penetration 

coefficients (Figure 8-7), which monitor the penetration of flexural yielding from the end A or B, 

respectively, towards the middle of the element; GAA, GAB and GAM are the corresponding shear 

rigidities of end A, end B, and the middle segment sections of the element; L is the element clear 

length. 

Upon initiation of shear failure, localisation of shear strains is captured by setting the length of 

the region, wherein shear failure is detected, equal to the shear critical length Lcr. In line with 

experimental evidence that the shear failure plane in a given R/C member is practically always 

unique, the model invariably results in only one segment failing. For members where flexural 

yielding has developed prior to the onset of shear failure, the latter is expected to develop at 

either member end owing to the degradation of shear strength with inelastic flexural 

deformations, provided that the shear demand is constant along the length of the member. For 

members failing in shear without yielding in flexure, it is assumed that shear failure occurs in 

the middle region of the element, based on experimental evidence (e.g. Yoshimura et al., 2003, 

see chapter 2). In Figure 8-7, the transition from pre-peak to post-peak regime for the generic 

cases of a flexure-shear and a shear critical specimen can be seen. The post-peak shear flexibility 

matrix coefficients – again, for the case of uniform stiffness distribution at both ends – with 

failure at the end A, in the middle of the element and at the end B, respectively, are as follows: 
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Outside the critical shear length, only the pre-peak part of the previously described shear 

hysteretic model is applied. The pre-peak backbone curve modified for shear-flexure interaction 

is used in the regions that have yielded in flexure, and the primary backbone curve for the rest 

of the element. Inside the critical shear length, the local, post-peak shear hysteretic model 

(section 8.1) is applied. It is noted that this hysteretic model has been calibrated in terms of 
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average post-peak shear strains within Lcr. Therefore, following this approach, the distribution 

of shear deformations along the member before and after the onset of shear failure, as well as 

the location and extent of post-peak shear damage are predicted in an accurate and objective 

manner. Furthermore, by considering the interaction of inelastic flexural and shear 

deformations at a local level, the proposed approach does not rely on assumptions regarding 

the bending moment distribution, hence the actual phenomenon is more objectively captured. 

 

 

 

 

(a) (b) 

Figure 8-7: Spread inelasticity transition upon initiation of shear failure for: (a) a flexure-shear critical 
specimen, and (b) a shear critical specimen. 

The beam-column element can model flexural failure, if the ultimate curvature limit is reached, 

anchorage failure, if the ultimate longitudinal bar slippage is reached, and shear failure followed 

by axial failure, which is both deformation-based and force-based as explained in section 8.1. 

8.3 SOFTWARE IMPLEMENTATION 
The beam-column model has been implemented in the general finite element program for 

inelastic dynamic analysis of structures IDARC 2D v. 7.0 (Reinhorn et al. 2009; Valles et al. 1996). 

All the procedures described in the following paragraphs aim at numerically implementing the 

above proposed hysteretic beam-column model – more importantly, the shear sub-component 

– in IDARC 2D v. 7.0.  

The prescribed post-peak V-γ descending branches (Eq. 4-6 to Eq. 4-14) are followed subsequent 

to the onset of shear failure in the failed segment of the shear sub-element. This is realised by a 

commensurate drop in the current force, the yield strength, as well as the entire post-yield 

branch of the shear backbone, as shown schematically in Figure 8-8 with a linear descending 

branch, for the sake of clarity (the program can also handle bilinear descending branches, in line 

with the hysteretic model presented in section 8.1). This way, the stiffness is always positive, 

hence no negative term can end up in the stiffness matrix, hence no instability occurs in the 

solution (note that IDARC cannot handle negative values of stiffness). The amount of strength 

https://www.researchgate.net/publication/303348045_IDARC_2D_Version_70_A_Program_for_the_Inelastic_Damage_Analysis_of_Structures
https://www.researchgate.net/publication/303348045_IDARC_2D_Version_70_A_Program_for_the_Inelastic_Damage_Analysis_of_Structures
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degradation (ΔVi with i=1,2…) at each solution step equals the ‘over-shooting’ of strength at the 

same step with respect to the strength of the target post-peak backbone branch with the same 

shear strain (see Figure 8-8).  The strength degradation of each step is then applied in the next 

loading step as part of the “unbalanced forces”. Figure 8-9 details the algorithmic procedure 

followed to apply said shear force degradation at each analysis step.   

 

Figure 8-8: Schematic representation of the implementation of in-cycle degradation. 

The model is ‘flexure-controlled’ before shear failure initiates. In other words, in each step, the 

flexural sub-element produces a specific force increment/decrement, which is subsequently 

used in the shear and bond-slip sub-elements. This results in the deformations coming from each 

separate sub-component, whose combination leads to the desired displacement step, as well as 

the stiffness of each sub-component, which is necessary to calculate their flexibility matrices 

and eventually the stiffness matrix of the element (Eq. 8-1). After the onset of shear failure, 

however, the element changes to ‘shear-controlled’. In other words, it switches from having the 

flexural sub-element lead the analysis to the shear one. The shear response is calculated first 

and the other sub-elements follow, using the force increment/decrement that has been 

calculated by the shear sub-element. This is essential for the strength degradation to function 

properly in the current formulation.  

Cyclic strength degradation in the post-peak domain should not create a shift of the resulting 

response towards the origin, i.e. a permanent loss of strength, which would distort the produced 

descending branch and lead to a slightly premature onset of axial failure in the case of shear 

strength reaching zero (Figure 8-10a). A compensation algorithm has been introduced to avoid 

this shift; instead of the second reloading branch merely aiming at the previous maximum point 

with a reduced strength, it extends to the intersection of the second reloading branch and the 

target backbone descending branch, similarly to what was originally proposed for the pre-peak 

response (Ozcebe & Saatcioglu, 1989); hence, the resulting behaviour is as intended (Figure 

8-10b) and in line with the calibration of the post-peak degrading response. 
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Figure 8-9: Algorithmic procedure for the implementation of in-cycle degradation inside the shear 
response sub-model. 

The rest of the sub-elements (flexural, anchorage-slip) as well as the two non-failed segments 

of the shear sub-element (Figure 8-4) unload in parallel with the failed shear section’s softening 

response, during in-cycle strength degradation. Were they to unload normally, they would alter 

the target lateral displacement δlateral response by producing opposite displacements. This is not 

consistent with the assumption made in calibrating the local shear hysteretic model (section 

4.1), where it is assumed that all other displacements apart from the shear displacements in Lcr 

remain practically constant after the onset of shear failure. Therefore, this will lead to an 

ostensibly steeper slope in the shear force - lateral displacement relationship as shown in Figure 

8-11 with S’pp representing the slope of the target descending backbone branch and S’error a 

steeper, erroneous slope of the V- δlateral curve. 

In previous models (Elwood, 2004; LeBorgne & Ghannoum, 2013), the slope of the shear sub-

element’s descending branch was modified based on the unloading stiffness of the other sub-

elements, in order to tackle this problem. Herein, however, for the formulation to be consistent 

with the theoretical basis of this model, i.e. all the post-peak lateral displacements being 

YES 

NO 

Deg_Strength 

START 

Strength_limit = Vmax - 

Spp,1 × Vmax × (γcur - γu) 

ΔVpp = Vcur - 

Strength_limit 

 

YES 

Deg_Strength 

END 

γu < γcur 

< γu2 
γcur ≥ γu2 

YES 

Strength_limit = Vmax/2 - 

Spp,2 × Vmax × (γcur - γu2) 

Vcur ≥ 

Strength_limit 

NO 

NO 

Vcur = Vcur - ΔVpp 

Vy = Vy - ΔVpp 

Vvertex = Vvertex - ΔVpp 

γcur, Vcur: current values 

of shear distortion and 

shear force at any given 

step 

γu: value of shear 

distortion at the peak, i.e. at 

the onset of shear failure 

γu2: value of shear 

distortion at 50% shear 

strength degradation on the 

post-peak domain 

Spp,1,Spp,2 : slopes 

(unitless) of the first and 

second segments of the 

post-peak descending 

branch 

Vmax: maximum shear 

strength reached, i.e. at the 

onset of shear failure 

Vy: shear strength at 

yielding of transverse or 

longitudinal reinforcement, 

whichever occurs first  

Vvertex: shear strength at 

the vertex point where 

reloading is targeted 

 



 

167 

ascribed to the shear response, a very high unloading stiffness is assigned to the other sub-

elements and the other segments of the shear sub-element, while the failed shear section is in 

contact with the descending branch (Figure 8-11). This ensures that the intended lateral 

displacement response is achieved. 

  

(a) (b) 

Figure 8-10: Schematic representation of (a) the shear response with descending branch offset due to 
cyclic degradation and (b) the response with compensation for this offset. 

 

No amendment of unloading stiffness of other sub-models 

 
Amendment of unloading stiffness of other sub-models to almost rigid unloading 

 

Figure 8-11: Schematic representation of the influence of unloading stiffness of the other sub-models 
(left) simultaneously with in-cycle strength degradation of failed section (middle) on the shear force vs 

lateral displacement response (right).  

Another issue of similar nature is the shift of the response which occurs in reloading, due to the 

other sub-elements connected in series aiming at their previous vertex points, while the failed 

section aims at a degraded strength (Figure 8-12). This has been reported elsewhere in the past 

and was dealt with using a compensation algorithm that adjusts the shear reloading stiffness 

and backbone, so that the desired response is produced (LeBorgne & Ghannoum, 2013). A 
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simpler and more intuitive solution was preferred herein, which also represents more reliably 

the local deformation quantities in addition to global displacements. The strength degrades 

uniformly in the whole system; in other words, the strength degradation of the failed shear 

section (both in-cycle and cyclic) is also inflicted on the rest of the sub-elements and sections of 

the shear sub-element. Thus, they target their degraded vertex point in reloading, hence not 

producing this shift in response in the first place (Figure 8-12).   

 

No amendment of reloading vertex point of other sub-models 

 
Amendment of reloading vertex point of other sub-models to match leading sub-model 

 

Figure 8-12: Schematic representation of influence of reloading of the other sub-models (left) 
simultaneously with reloading of the failed section (middle) on the shear force - lateral displacement 

response (right). 

When there is an axial load change, as mentioned in section 8.1, the post-peak values change so 

as to reflect the level of the new axial load. In order for this to happen, the quantities are inserted 

into the program as a function of the axial load ratio, v. When the axial load changes by a 

substantial amount, the values are re-calculated. A lower limit of axial load change has to be 

placed for the case of dynamic analysis, where slight differences of axial load might come up 

during cycling even without any actual axial failure. This threshold was herein arbitrarily chosen 

to be 5%, as a very small change would cause negligible difference to the post-peak values and 

if it is very high, some important axial load changes might be missed.  

The way this change of post-peak values occurs is that in effect the point of onset of shear failure 

changes to the point where the axial load change occurred. Thus, the calculation of the post-

peak descending branch(es) uses the strength at that point and the new slope(s) as the basis. 

 

 



 

169 

For the deformation at the onset of axial failure, however, this could lead to overestimation. 

Therefore, the original deformation at the onset of shear failure, γsh,f, is summed up with the 

newly calculated post-peak deformation, γt,pp.  

The beam-column model was originally developed with flexure-shear critical elements in mind. 

Therefore, in an earlier publication (Mergos & Kappos 2008), it was suggested that the second 

branch of the backbone curve of shear critical ones be removed, hence ensuring maximum 

pinching, stiffness and strength degradation. However, this methodology causes computational 

problems in the post-peak domain, i.e. the onset of axial failure is detected much earlier than it 

should. It is herein proposed that in these cases the third branch of the backbone curve be 

‘removed’, instead, by setting the start of this branch slightly greater than the point of stirrup 

yielding. This results in the post-peak as well as pre-peak response working properly, albeit 

slightly decreasing the potential pinching, strength and stiffness degradation, which might 

somewhat overestimate the energy dissipation capacity. 
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Chapter 9: VERIFICATION OF THE MODEL 

In this chapter, the beam-column finite element model presented in chapter 8 will be applied to 

predict the response of a number of individual components as well as entire frames, in order to 

verify its prediction capabilities. Most cases are quasi-static analyses of R/C columns, with the 

exception of the frame specimens, which are subjected to dynamic shake-table excitations. The 

specimens with increasing axial load (presented in Part II) are also evaluated in the last section. 

9.1 ANALYTICAL PREDICTION ACCURACY  

The accuracy of analytical predictions is often presented and judged on a visual basis, i.e. 

through comparison of resulting diagrams. While this is reasonable, it provides by no means an 

objective metric so as to compare the performance among different models. 

Therefore, herein inspired by a recent study (Huang & Kwon 2015), objective accuracy measures, 

i.e. ratios of numerical over experimental values, are used. The following are deemed important, 

hence are computed and presented: 

 Energy Dissipation Ratio (RE). 

 Shear Failure Displacement Ratio (RSFD), i.e. the displacement at the onset of shear 

failure. 

 Axial Failure Displacement Ratio (RAFD), wherever applicable, i.e. wherever axial failure 

initiation was recorded in the experiment. 

The ratio of initial stiffness is not considered important in the context of this thesis, since the full 

non-linear behaviour including the post-peak domain is taken into account. The authors (Huang 

& Kwon, 2015) have also commented that this is not an influential parameter for non-linear 

analysis with high intensity seismic loads.  

9.2 FLEXURE-SHEAR CRITICAL SPECIMENS 

9.2.1 Specimen-1 

Sezen & Moehle (2006) tested four double-curvature column specimens with different axial 

loads under quasi-static cyclic loading (Figure 2-3). They were lightly reinforced, representative 

of old-type construction, designed to yield in flexure and subsequently fail in shear. Column 

Specimen-1, tested under an axial load of 667 kN (ν = 0.15), is selected for verification of the 

proposed analytical model. Its clear height was 2946 mm, with a 457 mm square cross-section 

and a longitudinal reinforcement ratio of 2.5%. The transverse reinforcement comprised 
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rectangular and diamond-shaped ties at 305 mm spacing, with 90o anchorage hooks (Figure 2-

3a). The concrete compressive strength was 21 MPa and the longitudinal and transverse 

reinforcement yield strengths were 434 MPa and 476 MPa, respectively.  

The proposed model seems to be capturing the pre- and post-peak hysteretic response fairly 

well (Figure 9-1a). It matches very well the overall behaviour, with unloading and reloading 

stiffnesses of the analysis representing well the average stiffnesses observed experimentally, 

capturing very well the high strength degradation at the displacement level of ±82 mm. Of 

course, there is some discrepancy at a few points.  

Comparing the predicted values with the experimental ones (Table 9-1), the displacement at the 

onset of shear failure is predicted quite well, with some overestimation. The onset of axial failure 

is predicted at the last displacement level; the RAFD (Table 9-1) shows about 20% 

underestimation of the expected deformation at zero shear strength, however. This is due to 

the fact that the strength in the last cycles seems to be unreasonably reaching negative values 

in the experimental response; of course, as explained in chapter 8, this is a failure criterion for 

the analytical model, thus not being able to capture the final displacement level. On the other 

hand, the energy dissipation is found to be overestimated by about 10% compared to the actual 

energy dissipated by the member during the cyclic test, largely due to the underestimation of 

pinching in the analytical model. 

The lateral displacement components are captured very well both in the pre- and post-peak 

domains (Figure 9-1b-d), given the challenge of predicting individual displacement components 

in lieu of total displacements in displacement-controlled experiments. There is a negligible 

underestimation of shear deformations before the peak; subsequent to the onset of shear 

failure the shear displacement increases considerably in the positive direction, a tendency which 

the model captures adequately. There is slight underestimation of shear displacements on the 

subsequent negative side. Not all shear response history is provided by the researchers (Sezen 

& Moehle, 2006), possibly due to failure of the recording instruments, therefore only one full 

experimental post-peak cycle is presented in Figure 9-1b, while the entire analytical response is 

included. The anchorage slip displacement (Figure 9-1d) is predicted with very high accuracy, 

with the sole exception of the first negative post-peak half-cycle, where there is slight 

overestimation in the analytical prediction. The model shows good agreement with the 

experiment in the pre-peak flexural response (Figure 9-1c), with deviation in the post-peak 

range. The experimental post-peak flexural displacement seems to be biased towards the 

negative side, increasing substantially in the latter post-peak cycles; this asymmetry might be 

due to measurement errors in this advanced damage stage or due to the effect of widening 

shear cracks on flexural deformations.  
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  (a)   (b) 

  
  (c)   (d) 

 

 

 

 
  (e)   (f) 

Figure 9-1: Comparison between the predicted response of Specimen-1 by the proposed model and the 
experimental one in terms of (a) shear force against lateral displacement, (b) shear displacement, (c) 
flexural displacement, and (d) anchorage slip displacement. (e) Displacement decomposition of the 

element’s lateral displacement components, and (f) flexural and shear inelastic zone lengths normalised 
to the clear member length, throughout the analysis.  

As has been reported (Sezen & Chowdhury, 2009), a hysteretic macro-model’s objective should 

be to capture each individual component as accurately as possible, rather than merely predicting 

the total response. However, this has rarely been reported in previous studies, possibly due to 

scarcity of experimental programmes reporting separate deformation components, the 
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reliability of measured recordings that can be highly dependent on setup, methodology and 

instrumentation, or due to inability of some models to predict them accurately, relying on 

aggregation of overestimated and underestimated components to provide a reasonable total 

response. Achieving such level of agreement with individual components of experimental 

displacement can be considered a very positive indication for an analytical model. 

For reasons of comparison with predictions from other analytical models, the response 

prediction both in terms of total and shear displacement is shown in Figure 9-2 by the model 

proposed by Baradaran-Shoraka & Elwood, 2013. Comparing these with Figure 9-1, the superior 

performance of the present model can be seen, especially in terms of energy dissipation that is 

judged to be much higher in the model of Figure 9-2. Furthermore, the shear displacement are 

predicted well pre-peak, but deviate substantially post-peak. This is a mostly theoretical (semi-

empirical) model and this shows the difficulty of capturing the post-peak response with theory-

based approaches, as opposed to empirical ones. As reiterated, uncertainties in this part of the 

response are very high, not least because of the very advanced state of damage of the 

specimens. 

 
 

  (a)   (b) 

Figure 9-2: Comparison between the predicted response of Specimen-1 by the model proposed by 
Baradaran-Shoraka and Elwood (2013) and the experimental one in terms of (a) shear force against 

lateral drift ratio, (b) shear displacement over column height. 

Figure 9-1e shows the analysis of the lateral displacement components of the specimen (only 

the second half of the response is shown, for the sake of clarity). Shear displacements are 

naturally very low at the first stages of the response, increasing after the element yields, due to 

shear-flexure interaction at the ends of the member. Furthermore, they increase drastically after 

the onset of shear failure, as all post-peak displacements are attributed to the shear sub-

element; the flexural and bond-slip displacements, on the other hand, do not exceed their 

maximum pre-peak values at any point in the post-peak domain.   
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Figure 9-1f demonstrates the spread of inelasticity during the analysis for the flexural and shear 

sub-elements. After flexural yielding, the inelastic zones increase following the bending moment 

increase at the member ends, always being equal. As soon as the onset of shear failure is 

reached just after the maximum displacement of 60 mm, the inelastic zone of the shear sub-

element instantly assumes a value corresponding to the shear critical length, where the diagonal 

shear failure plane forms, and maintains it for the remainder of the analysis. Simultaneously, the 

inelastic zone of the flexural sub-element remains equal to the maximum value it has reached 

up to the onset of shear failure. 

Table 9-1: Accuracy measures of the analyses of Specimen-1, FSC_1 and C-2. 

 RE RSFD RAFD 

Specimen-1 1.362 1.086 0.797 

FSC_1 1.106 0.970 N/A 

C-2 0.858 0.571 N/A 

9.2.2 FSC_1 

The reference specimen FSC_1 of the flexure-shear-critical-specimens experimental series 

tested herein, is analysed to further validate the beam-column model’s predictive ability with 

regard to flexure-shear critical R/C elements. It is emphasised that the verification against this 

test provides an opportunity for an independent examination of the model’s predictive 

capabilities, as it was not included in the initial database, upon which the model was based. The 

characteristics of this specimen have been presented in detail in Chapter 6. 

The proposed model seems to be capturing the pre- and post-peak hysteretic response fairly 

well (Figure 9-3a). It matches the overall behaviour, with unloading and reloading stiffnesses of 

the analysis representing reasonably well the average stiffnesses observed experimentally, 

capturing very well the significant strength degradation in the post-peak domain. Τhe onset of 

shear failure is predicted very well (RSFD = 0.97 in Table 9-1). No axial failure is predicted 

analytically, in line with the specimen’s experimentally obtained response.  

The energy dissipation, which is a key characteristic with regard to the seismic response of R/C 

members, is shown to be overestimated only by about 10% compared to the actual energy 

dissipated by the member during the cyclic test (Table 9-1). Figure 9-3d demonstrates the 

cumulative dissipated energy throughout the experimental test and the analysis. The energies 

are on a par until the displacement level of ± 12 mm, while they deviate after that. This is by 

large attributed to the higher experimentally observed pinching that is not captured adequately 

in the analysis.  

Figure 9-3b shows the shear hysteretic response. The shear displacements are relatively low in 

the first stages of the response, increasing drastically after the onset of shear failure; this is 
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something that the analysis captures very well, predicting correctly the pre-peak displacement, 

and the considerable increase upon initiation of shear failure. There are few deviations in the 

positive direction of the last post-peak cycles. Some jumps observed in the experimental 

response are due to debris falling on the draw-wire sensors, as explained in chapter 7. 

  
   (a)    (b) 

  
   (c)    (d) 

Figure 9-3: Comparison between the predicted response of FSC_1 by the proposed model and the 
experimental one in terms of (a) shear force against lateral displacement, and (b) shear displacement. (c) 

Decomposition of the element’s lateral displacement components throughout the analysis. (d) 
Comparison between predicted and experimentally obtained cumulative dissipated energy.  

Figure 9-3c shows the break-down of the lateral displacement components, which compares 

very well with Figure 7-16a. Flexural and bond-slip displacements seem to steadily increase up 

to the onset of shear failure, while they decrease to some extend in the post-peak domain, on a 

par with the experimentally obtained decomposition. Achieving such agreement with individual 

components of an independent test (not included in the database) highlights the analytical 

model’s performance. 

Figure 9-4 shows comparisons of selected individual hysteretic cycles of the analytical response 

against the experimental one, in the post-peak domain of the response. The total displacement 

analytical cycles are found to agree very well with the experimental ones, with the unloading 

and reloading stiffness matching the experimentally recorded ones on average. Pinching is also 
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shown to be well-captured, being little in the first post-peak cycles (e.g. Figure 9-4a), but 

increasing significantly towards the end (e.g. Figure 9-4e), in line with the experimental 

response. Overall, the energy dissipated along each analytical cycle can be seen to be roughly 

equal to the corresponding experimental ones.  

  
   (a)    (b) 

  
   (c)    (d) 

  
(e) (f) 

Figure 9-4: Comparison between individual cycles of the predicted response of FSC_1 by the proposed 
model and the experimental one: (a, b) 3rd cycle at +/- 15 mm, (c, d) 2nd cycle at +/- 18 mm, and (e, f) 1st 

cycle at +/- 21 mm. (left) Total displacements and (right) shear displacements. 

The shear displacement ones do not show such good agreement. The analytical response is 

similar on average, but there are discrepancies in several points. Nonetheless, taking into 
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account the difficulty for a model to capture individual displacement components correctly, the 

match can be considered adequate. 

9.2.3 C-2 

Lejano et al. (1995) conducted an experimental programme to study the deformation 

characteristics of short double-curvature R/C columns with high-strength concrete under quasi-

static cyclic loading as well as high or fluctuating axial load. The specimen C-2 is herein selected 

for analysis, having a 278 mm square cross-section and a length of 646 mm, which results in a 

very low aspect ratio close to 1, with high longitudinal and transverse reinforcement ratios of 

almost 4% and 1%, respectively (Figure 2-1). The steels used had a yield strength of 496.2 and 

414.0 MPa, respectively, while the strength concrete compressive strength was 39.6 MPa. It is 

subjected to unusually high compressive axial load, i.e. an axial load ratio (ν = N / Ag × fc) of 

approximately 0.80.  

The proposed model captures the pre- and post-peak hysteretic response very accurately (Figure 

9-5a). The overall behaviour is matched very well, with unloading and reloading stiffnesses of 

the analysis closely capturing the average stiffnesses observed experimentally. The onset of 

shear failure is predicted slightly earlier, mainly due to the ductility of the specimen after 

yielding, which is more limited in the analytical prediction; this can also be seen in Figure 9-5c, 

where the overall flexural and bond-slip analytical response exhibits very limited inelasticity, 

while the experimental one exhibits a relatively larger – yet still low – inelastic deformation 

component. The strength degradation follows very closely the apparent descending branch of 

the response, deviating slightly only in the last positive half-cycle; in addition, the cyclic strength 

degradation of the analytical prediction is accurately captured, particularly in the post-peak 

domain. 

Comparing the predicted values with the experimental ones (Table 9-1), the displacement at the 

onset of shear failure seems to be underestimated considerably based on RSFD, although in 

absolute terms it has no such a great difference, hence not influencing adversely the descending 

branch and the subsequent response. The maximum displacement reached is predicted to be 

lower than the actual one, i.e. about 13 mm, while the experimental test reaches 20 mm without 

axial failure. This is, of course, attributed to the extremely high axial load ratio value, which leads 

to a prediction of very low deformability. Probably the high longitudinal and transverse 

reinforcement contributed to reaching such displacement capacity during the experiment and 

this was not reflected by the empirical relationship’s prediction. 

The energy dissipation is underestimated compared to the actual energy dissipated by the 

member during the cycling (Table 9-1). Nevertheless, Figure 9-5d shows that the analytically 
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predicted energy dissipation is on a par with the experimental one at all stages of the analysis, 

generally being underestimated more in the pre-peak domain, due to the aforementioned 

underestimation of ductility in the first cycles and some dissipation of the experiment during the 

initial cycles which is considered completely elastic behaviour by the analytical model. Once the 

post-peak domain is entered, the energy is slightly overestimated, mainly due to the 

underprediction of pinching, making up for the pre-peak deficit and reaching practically the 

same total dissipated energy by the displacement of 13 mm. The experimental energy keeps 

rising after that, leading to the aforementioned discrepancy owing to the higher displacement 

capacity of the member. 

  
  (a)   (b) 

  
  (c)   (d) 

Figure 9-5: Comparison between the predicted response of C-2 by the proposed model and the 
experimental one in terms of (a) shear force against lateral displacement, (b) shear displacement and (c) 

flexural and bond-slip displacement; (d) cumulative dissipated energy throughout the experiment.     

Figure 9-5b-c show separately the shear as well as flexural and bond-slip responses. It can be 

seen that both of them are very well predicted. The drastic increase of shear displacements with 

simultaneous limiting of the other components is very clear, confirming once again the fact that 

shear displacements increase drastically after the onset of shear failure, while the other 

components are essentially capped. The flexural and bond-slip response seems to have a 
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ratcheting asymmetric behaviour beyond shear failure skewed towards the positive side, which 

is not captured by the analytical model; in turn, this leads to an asymmetry in the shear response 

towards the negative side, leading to the symmetric analytical prediction overestimating the 

positive side shear deformations while underestimating the negative.  

  
    (a)    (b) 

  
   (c)    (d) 

  
(e) (f) 

Figure 9-6: Comparison between individual cycles of the predicted response of C-2 by the proposed model 
and the experimental one: (a, b) 2nd cycle at +/- 5 mm, (c, d) 1st cycle at +/- 6.5 mm, and (e, f) 1st cycle at 

+/- 10 mm. (left) Total displacements and (right) shear displacements. 
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The inelastic lengths’ behaviour is similar to Specimen-1, hence not included herein. The flexural 

inelastic zone, however, is very limited (less than 1% of the column length), owing to the very 

limited curvature ductility of the specimen.  

Figure 9-6 shows comparisons of selected individual hysteretic cycles of the analytical response 

against the experimental one, in the post-peak domain of the response. The total displacement 

analytical cycles are found to agree very well with the experimental ones. The unloading and 

reloading stiffness in each cycle match the experimentally recorded ones on average. The 

strength degradation inflicted upon the specimen with increasing displacement and cycles 

seems to be followed very well. Pinching is observed in the advanced displacement levels of the 

experimental response (e.g. Figure 9-6c, e), which however is underestimated in the analytical 

prediction and is only slightly captured in the very last analytical cycles not show here. The 

energy dissipated along each analytical cycle can be seen to be greater than the corresponding 

experimental ones, largely due to the aforementioned underprediction of pinching, leading to 

thicker loops. The shear displacement cycles of the analysis also show good agreement, once 

more being thicker than the experimental ones, though. 

It is noteworthy that disregarding the post-peak response of this specimen, e.g. using an 

analytical model considering 15% or 20% strength degradation as failure, the deformability of 

the specimen would be gravely underestimated, predicting a maximum displacement of about 

5 mm, whilst the column is shown to be able to reach 20 mm, a fourfold displacement, barely 

losing half its lateral strength. This highlights once more the importance of modelling the full-

range response of substandard R/C elements in cases where the collapse limit state has to be 

considered. 

9.3 SHEAR CRITICAL SPECIMENS 

9.3.1 SC3 

Aboutaha et al. (1999) tested 11 large-scale short columns, investigating the effect of various 

rectangular steel jacket types on strength and ductility of columns with inadequate shear 

strength. Three of them were tested before retrofit as reference response. Herein the 

unretrofitted cantilever specimen SC3 is examined, which failed in shear before yielding in 

flexure. Its clear height was 1219 mm, with a section 914×457 (mm) and a longitudinal 

reinforcement ratio of 1.9%. It was subjected to uniaxial cyclic loading in its weak direction. Its 

transverse reinforcement comprised rectangular perimeter ties combined with cross ties, 

spaced at 406 mm. The concrete compressive strength was 21.9 MPa and the yield strengths of 

longitudinal and transverse reinforcement were 434 and 400 MPa, respectively. 
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The proposed model captures the pre- and post-peak hysteretic response well (Figure 9-7a). The 

plateau from ±10 mm to approximately ±23 mm is very well captured and unloading and 

reloading stiffnesses are on a par with the experimental ones. The onset of shear failure is 

predicted slightly later than the experimental one and the predicted post-peak descending 

branch underestimates the experimental strength degradation to some extent, especially on the 

positive side.  

 

 

 
   (a)    (b) 

Figure 9-7: (a) Comparison between the predicted response of SC3 by the proposed model and the 
experimental one in terms of shear force against lateral displacement. (b)Decomposition of the 

element’s lateral displacement components throughout the analysis. 

Comparing the predicted values with the experimental ones (Table 9-2), the displacement at the 

onset of shear failure is overestimated by about 10%. The maximum displacement reached is 

correctly predicted, as the model did not underestimate the onset of axial failure neither 

overestimated the in-cycle strength degradation of the test, hence reaching the final step of the 

displacement history and correctly predicting that the specimen does not fail axially during the 

test. The energy dissipation is also predicted with about 24% overestimation compared to the 

actual energy dissipated by the member during the test. This discrepancy is mainly attributed to 

the aforementioned delayed onset of shear failure and low predicted strength degradation, as 

well as the extreme pinching behaviour observed in the post-peak experimental response. 

Although the model also predicts substantial pinching, it does not capture its actual extend. 

Figure 9-7b shows the decomposition of lateral displacement components throughout the 

analysis. The member being shear critical, shear-induced displacements are a non-negligible part 

of the total displacement from the early stages of the response. Nonetheless, they increase 

drastically as a percentage of the total after the onset of shear failure, as all post-peak 

displacements are localised at the shear sub-component; the flexural and bond-slip 

displacements, on the other hand, do not exceed their maximum pre-peak values at any point 

hoops’ 

yielding onset of 

shear failure 
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in the post-peak domain, thus decreasing significantly as a percentage of the total lateral 

displacement. 

 

Table 9-2: Accuracy measures of the analyses of SC3 and SC_1. 

 RE RSFD RAFD 

SC3 1.241 1.103 N/A 

SC_1 1.174 1.225 N/A 

9.3.2 SC_1 

The reference specimen of the shear-critical-specimens experimental series, SC_1, is analysed 

to further validate the beam-column model’s predictive ability in the case of shear critical R/C 

elements. Although it is mostly dominated by shear, especially post-peak, flexure was found to 

play a significant role in its response, so it is not a purely shear critical element.  

  
   (a)    (b) 

  
   (c)    (d) 

Figure 9-8: Comparison between the predicted response of SC_1 by the proposed model and the 
experimental one in terms of (a) shear force against lateral displacement, and (b) shear displacement. (c) 

Decomposition of the element’s lateral displacement components throughout the analysis. (d) 
Comparison between predicted and experimental cumulative dissipated energy.  
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It is emphasised again that the verification against this test provides an opportunity for a better 

examination of the model’s predictive capabilities, as it was not included in the initial database, 

upon which the model was based. The characteristics of this as well as all the other specimens 

of the experimental programme are shown in detail in section 6. 

The proposed model captures the pre- and post-peak hysteretic response well (Figure 9-8a). It 

matches the overall behaviour, with unloading and reloading stiffnesses derived from the 

analysis representing reasonably well the average stiffnesses observed experimentally. The 

strength and stiffness are slightly underestimated in the pre-peak domain, while being slightly 

overestimated in the post-peak domain. The post-peak strength degradation in the negative 

direction is predicted very well, unlike in the positive one. Significant pinching is observed in the 

experimental response after the initiation of strength loss; this is captured very well in the last 

post-peak cycles, although not so well in the first ones, producing visibly thicker loops.  

Contrasting the predicted values with the experimental ones (Table 9-2), the displacement at 

the onset of shear failure is found to be overestimated; this can also be seen in Figure 9-8a.  The 

specimen did not fail axially during the experiment, although reaching a very low lateral – almost 

negligible – strength by the end of cycling. This is captured by the model, which is thus shown 

not to overestimate the strength degradation, nor underestimate the deformation at the onset 

of axial failure. 

The energy dissipation is shown to be overestimated by about 17% compared to the actual 

energy dissipated by the member during the cyclic test. In Figure 9-8d, it can be seen that this is 

mainly attributed to the aforementioned underestimation of pinching, which results in the 

dissipation of more energy in the cycles immediately subsequent to the onset of shear failure, 

i.e. at the displacement levels of ± 15 mm and ± 18 mm. Furthermore, underestimation of the 

shear strength degradation leads to higher energy dissipation post-peak. 

Figure 9-8b shows the shear response and Figure 9-8c shows the decomposition of lateral 

displacement components throughout the analysis. The shear displacements are relatively low 

in the first stages of the analytical response, gradually increasing after shear cracking and 

flexural yielding; they increase drastically after the onset of shear failure, as all the additional 

post-peak displacements are attributed to shear deformations. Overall, the analytical response 

seems to be in agreement with the experimental response of Figure 9-8b, besides some 

underestimation of the shear displacements in the last couple of post-peak cycles. Flexural and 

bond-slip displacements, on the other hand, increase up to the onset of shear failure, but 

decrease considerably as a percentage of the total lateral displacement in the post-peak domain, 

as shown in Figure 9-8c. The decomposition matches well the experimental one shown in Figure 
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7-17a; the shear component increases drastically post-peak as in the analysis and the other 

components peak at the onset of shear failure and thenceafter retract to some extent. 

  
   (a)    (b) 

  
   (c)    (d) 

  
(e) (f) 

Figure 9-9: Comparison between individual cycles of the predicted response of SC_1 by the proposed 
model and the experimental one: (a, b) 1st cycle at +/- 15 mm, (c, d) 1st cycle at +/- 21 mm, and (e, f) 2nd 

cycle at +/- 24 mm. (left) Total displacements and (right) shear displacements. 

Figure 9-9 shows comparisons of selected individual hysteretic cycles of the analytical response 

against the experimental one, in the post-peak domain of the response. Due to debris, the last 

shear displacement cycle (Figure 9-9f) was translated to the positive direction (spanning from    
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-8.4 mm to +27.2 mm). In order to have a fair comparison, it was recentred at zero (adding the 

average of the two extremes). 

The total displacement analytical cycles are found to moderately agree with the experimental 

ones, their discrepancies chiefly arising from the aforementioned underestimation of the 

descending branch slope. In the loop where the onset of shear failure is detected (Figure 9-9a), 

the positive side of the response is predicted very well, but there is significant deviation in the 

negative one. The subsequent cycle (Figure 9-9c) is better overall, while the last one (Figure 

9-9e) is found to be most accurate. Pinching is shown to be well-captured, being little in the first 

post-peak cycles (e.g. Figure 9-9a), but increasing significantly towards the end (e.g. Figure 9-9c, 

e), in line with the experimental response. The analytical shear displacement cycles are similar 

to the experimental ones on average, but there are discrepancies in several points, largely due 

to the aforementioned underestimation of the descending branch slope. However, pinching, 

unloading and reloading stiffness degradation are predicted very well. Taking into account the 

difficulty for a model to capture individual displacement components correctly, the match can 

be considered adequate. 

9.4 FRAME SPECIMENS 

9.4.1 Frame 1 

Elwood & Moehle (2008b) carried out shake-table tests on two R/C frames to study shear 

followed by axial failure and the redistribution of vertical loads in an R/C sub-assembly. They 

were both three-column one-storey frames, with two well-designed circular columns at the 

edges and a rectangular shear-deficient column in the middle, supported on large footings at 

the bottom and connected at the top via a 1.5 m wide ‘beam’ (Figure 9-10). The specimen Frame 

1 is examined herein, which supported a total mass of 31 t, resulting in a weight of 128 kN carried 

by the central column. The latter had a 230 mm square section, being a ½-scale mock-up of the 

column analysed above (Specimen-1). It had a longitudinal reinforcement ratio of 2.5% and a 

transverse reinforcement ratio of 0.18% consisting of rectangular and diamond-shaped ties with 

90o anchorage hooks. The concrete compressive strength was 24.5 MPa and the longitudinal 

and transverse reinforcement yield strengths were 479 and 718 MPa, respectively. The outside 

columns were detailed with closely-spaced spiral hoops leading to very high confinement, 

ensuring that when the axial support of the mid-column is lost, these columns will be capable of 

supporting the redistributed gravity loads. The specimen was subjected to a horizontal 

component of a scaled ground motion of the 1985 Chile earthquake recorded at Viña del Mar. 

Before the main shaking, it was subjected to an accelerogram scaled to 13% of this one, the 

frame remaining elastic throughout, thus this has not been modelled herein. 
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Figure 9-10: Frame 1 layout (dimensions in mm) and applied finite element model (Mergos & Kappos, 
2012). 

 
   (a) 

 
   (b) 

Figure 9-11: Comparison between response history of Frame 1 predicted by the proposed model and the 
experimental test in terms of (a) lateral displacement of the frame’s first storey as well as (b) its base 

shear.   

This case puts the model’s capabilities to the test, as it is both an R/C sub-assembly instead of 

an individual member and an actual dynamic analysis instead of a quasi-static one. The finite 

element model applied herein for the inelastic response-history analysis of the R/C frame is 

shown in Figure 9-10a. It consists of three column elements and two beam elements, keeping 

the minimal number of finite elements required, ensuring low computational cost (Mergos & 

Kappos, 2012). The columns are assumed to be fixed at the bottom. Rigid offsets are employed 

to model the joint regions of the frame. Viscous damping is modelled using the Rayleigh model 

with an equivalent viscous damping equal to 2% of critical for the fundamental vibration mode, 

as suggested by free-vibration tests conducted before the test (Elwood & Moehle, 2008b). The 
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mass has been assumed lumped at the top of the frame. The values used for the descending 

branch slopes are an average of Eq. 4-10 and 4-11 (1st segment) and Eq. 4-13 and 4-14 (2nd 

segment), to reflect the expected combination of cyclic and in-cycle strength degradation. 

The response histories of the lateral displacement of the first storey as well as the base shear of 

the frame are shown in Figure 9-11. The hysteretic response of the entire R/C frame and the 

middle column, the cumulative energy dissipation of the frame, as well as hysteretic local shear 

deformations of the mid-column, are presented in Figure 9-12. A triangular marker is inserted 

in every diagram of Figure 9-11 and Figure 9-12 to signal the onset of shear failure of the middle 

column. Part of the response is omitted in Figure 9-11 for the sake of clarity, i.e. before 10 s, as 

it has also been reported in detail in Mergos & Kappos (2012), and after 55 s, as it consists of 

very low amplitude cycles, fading out to the eventual resting position of the frame. In Figure 

9-12a,b and d, the more critical part of the response is shown, i.e. between 15 s and 35 s, for 

the sake of clarity. 

  
  (a)    (b) 

 
 

  (c)   (d) 

Figure 9-12: Comparison between predicted response of Frame 1 by the proposed model and the 
experimental test in terms of (a) base shear against lateral displacement of the first storey of the frame 
and (b) shear force against lateral displacement of the middle column; (c) cumulative dissipated energy 

throughout the experiment. (d) Analytical prediction of shear force against local shear deformation, γ, of 
top and bottom plastic hinges of the mid-column.     

Shear failure took place at the top of the middle column during the analysis, in line with 

photographic evidence of the damage (Figure 9-13a), subsequent to flexural yielding of the 
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column. The predicted shear-damaged zone and bottom plastic hinge are shown in an 

illustration of the damage, based on the analytical results, in Figure 9-13b; the entire length of 

the column was predicted to have shear cracking. The other two columns yielded slightly sooner 

than the middle column as in the experimental test. The key point of shear failure initiation of 

the mid-column is predicted very accurately at 16.7 s. 

As can be seen in Figure 9-11, the experimentally obtained and analytically predicted lateral 

displacements are on a par up to about 30 s, achieving very good agreement. Thenceafter, there 

is a shift of the experimental displacements to +30 mm that remains even after the end of the 

test as a residual lateral displacement, which the analysis does not capture; this discrepancy is 

in agreement with analytical results published by the same research team that conducted the 

experiments (Elwood & Moehle, 2008a). This highlights the open challenges in correctly 

predicting the residual displacements of such R/C sub-assemblages and the complexity of non-

linear dynamic analyses. Except for this discrepancy, the analytical response matches very 

closely the experimental one. The shear failure (Table 9-3) and maximum lateral displacement 

predictions are fairly good with over- and under-estimation of about 15%, respectively. With 

regard to base shear, the predicted response seems to be even more accurate, closely observing 

the experimentally obtained one before and after the initiation of shear failure. 

   
(a) (b) 

Figure 9-13: (a) Photographic documentation of the damage sustained by Frame 1 (Elwood & Moehle, 
2008b); (b) predicted damage by the proposed model. 

The analytical and experimental hysteretic responses (Figure 9-12a) show very close agreement, 

the onset of shear failure and the ensuing shear strength degradation are predicted very well 

and the resulting analytical cyclic envelope coincides fairly well with the experimental one. This 

good match can also be seen in Figure 9-12b in the hysteretic response of the middle column. 

Its maximum strength is overestimated; however, a fairly good prediction of the expected 

overall behaviour is attained. Despite the fact that the displacements of some large-amplitude 

 



 

190 

cycles are somewhat underestimated, the post-peak strength degradation follows closely the 

experimentally measured shear resistance. 

Figure 9-12c demonstrates the cumulative energy dissipation throughout the shake-table test. 

Overall, it is predicted very well, albeit maintaining a small underestimation of about 6 kNm 

since the very first cycles, wherein limited energy is dissipated at the experimental test that is 

considered completely elastic behaviour by the analytical model. At the end of the test, there is 

a 15% difference between the two values (Table 9-3).  

Table 9-3: Accuracy measures of the analyses of Frame 1 and Frame 2. 

 RE RSFD RAFD 

Frame 1 0.852 1.152 N/A 

Frame 2 mean 0.262 0.622 0.617 

Frame 2 low 0.927 0.622 0.762 

 

  
   (a)    (b) 

 
     (c) 

Figure 9-14: Comparison between the analytically predicted response of Frame 1 without considering 
shear failure and the experimental test in terms of (a) base shear against lateral displacement of the first 
storey of the frame, (b) shear force against lateral displacement of the middle column and (c) base shear 

history.    

Figure 9-12d shows the local V - γ relationships at the top and bottom plastic hinges of the mid-

column. The local shear deformations at the top are way larger than the others, as expected due 

to shear failure, reaching values of almost 0.10. Simultaneously, the bottom segment also 

reaches significant shear deformations of up to 0.03, due to shear-flexure interaction inside the 

plastic hinge length. However, the bottom shear deformation is capped by its value at the onset 
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of shear failure, in line with the finite element model formulation, whilst the top follows the 

prescribed post-peak descending branch.  

Analytical results precluding the effect of shear failure are presented in Figure 9-14 for 

comparison. The response is identical up to the onset of shear failure, deviating substantially 

after that, though. There is no strength degradation in the hysteretic response depicted in Figure 

9-14a and b, which the experimental response exhibits, hence the strength and the energy 

dissipation are grossly overestimated at the latter stages of the response; it is reminded that this 

being a dynamic analysis, the predicted and actual displacements at each step are generally 

different, i.e. an accelerogram rather than a displacement history is applied in the experimental 

test as well as the analysis. The strength overestimation can be much more clearly seen in Figure 

9-14c, particularly after about 27 s. Simultaneously, the analytical model is rendered much 

stiffer, resulting in far lower lateral displacements of the R/C frame. This can be more clearly 

observed in Figure 9-14a, with the frame’s lateral displacements being significantly 

underestimated, barely exceeding 50 mm, while the experimental response reaches 90 mm. This 

is in line with comments made by the research team that conducted the experiments, who also 

investigated analytically identical, non-degrading frames (Elwood & Moehle, 2008b), and 

underlines the significance of appropriately modelling the post-peak response in shear deficient 

R/C sub-assemblage.  

9.4.2 Frame 2 

One more frame specimen, namely Frame 2, was tested by the aforementioned research team 

(Elwood & Moehle, 2008b). The design and loading history are exactly the same, the only 

difference being the axial load applied on the middle column, which is 303 kN instead of 128 kN, 

resulting in an axial load ratio of 0.24 instead of 0.10. This was applied with hydraulic jacks 

directly on the column, hence not changing the distributed vertical load applied upon the beams 

nor the axial load carried by the exterior columns. The finite element model of the structure 

(Figure 9-10) and the applied accelerogram are the same as in Frame 1 above. 

The response histories of the lateral displacement of the first storey as well as the base shear of 

the frame are shown in Figure 9-15. The hysteretic response of the entire R/C frame and the 

middle column, the cumulative energy dissipation of the frame, as well as hysteretic local shear 

deformations of the mid-column, are presented in Figure 9-16. A triangular and a square marker 

are inserted in every diagram of Figure 9-15 and Figure 9-16 to signal the onset of shear and 

axial failure of the middle column, respectively; these markers refer to the analytical response. 

Part of the response history is omitted in Figure 9-15 for the sake of clarity, i.e. before 10 s, as it 

consists of very low-amplitude elastic cycles. The entire hysteretic response is included in Figure 
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9-16. In Table 9-3, this analysis is annotated as “Frame 2 mean”, as it is based on mean values 

of the calculated post-peak parameters. 

Shear failure took place at the top of the middle column during the analysis, in line with 

photographic evidence of the damage (Figure 9-17a), subsequent to flexural yielding of the 

column. The predicted shear-damaged zone and bottom plastic hinge are shown in an 

illustration of the damage, based on the analytical results, in Figure 9-17b; the entire length of 

the column was predicted to have shear cracking. The other two columns yielded slightly sooner 

than the middle column, as in the experimental test. The key point of the onset of shear failure 

of the mid-column is predicted very accurately at 16.7 s, while the onset of axial failure is 

analytically predicted soon after that owing to the high values of shear strength degradation 

calculated from Eq. 4-10 and Eq. 4-13. 

 
      (a) 

 
      (b) 

Figure 9-15: Comparison between response history of Frame 2 predicted by the proposed model and the 
experimental test in terms of (a) lateral displacement of the frame’s first storey as well as (b) its base 

shear.   

As can be seen in Figure 9-15, the experimentally obtained and analytically predicted lateral 

displacements are on a par for the better part of the first 17 s, when the analytical model 

prematurely predicts the onset of axial failure. There are only a couple of cycles where 

discrepancies can be seen at around 14-15 s, but besides this a good overall agreement is 

achieved. With regard to base shear, the predicted response seems to be even more accurate, 
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closely observing the experimentally obtained before the initiation of shear failure. Again, only 

a couple of discrepancies can be observed, mainly at 15 s. 

The analytical and experimental hysteretic responses (Figure 9-16a) agree in the pre-peak 

response. Nevertheless, the onset of shear and axial failure displacement predictions are both 

significantly lower than the test values (Table 9-3), almost by 40%. The post-peak degradation is 

predicted to be far more severe than experimentally recorded. Similarly, in Figure 9-16b, the 

hysteretic response of the middle column is shown where the same trends can be seen.  

  
   (a)    (b) 

  
   (c)    (d) 

Figure 9-16: Comparison between predicted response of Frame 2 by the proposed model and the 
experimental test in terms of (a) base shear against lateral displacement of the first storey of the frame, 
(b) shear force against lateral displacement of the middle column, and (c) cumulative dissipated energy 

throughout the experiment. (d) Analytical prediction of shear force against local shear deformation, γ, of 
top and bottom plastic hinges of the mid-column.    

Figure 9-16c demonstrates the cumulative energy dissipation throughout the shake-table test. 

It is found to be predicted most accurately up to a maximum lateral displacement of about 33 

mm. Nonetheless, the experimental one keeps rising significantly after that, leading to an RE of 

only 0.262 at the end of the test (Table 9-3). Figure 9-16d shows the local V - γ relations at the 

top and bottom plastic hinges of the mid-column. The local shear deformation at the top is way 

larger than the bottom, increasing sharply after the onset of shear failure in a pulse-type 
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manner, leading to zero shear resistance of the middle column and the consequent onset of 

axial failure. The bottom shear deformation, although reaching significant deformations due to 

shear-flexure interaction inside the plastic hinge length, is capped by its value at the onset of 

shear failure, in line with the finite element model formulation.   

  
(a) (b) 

Figure 9-17: (a) Photographic documentation of the damage sustained by Frame 2 (Elwood & Moehle, 
2008b); (b) predicted damage by the proposed model. 

 
      (a) 

 
      (b)  

Figure 9-18: Comparison between response history predicted by the proposed model (Frame 2 low) and 
the experimental test in terms of (a) lateral displacement of the frame’s first storey as well as (b) its base 

shear.   

Comparing the experimental response of Frame 1 and Frame 2 (Figure 9-12 and Figure 9-16), it 

is noteworthy that the sole change of axial load carried by one of the three frame columns leads 
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to very high decrease of the energy dissipated during cycling, namely a decrease of more than 

two thirds, as well as to much more significant shear strength degradation once shear failure 

initiates. At the same time, however, there is no significant difference in the maximum base 

shear or lateral displacement reached. 

Given the already discussed high uncertainty in post-peak response (see chapter 4), the frame 

was analysed once more, this time using lower values for the descending branch slope, equal to 

the mean predicted value minus one standard deviation (μ – 1σ) for each equation (see chapter 

4). The new diagrams are plotted in Figure 9-18and Figure 9-19. Triangular and square markers 

are used similarly in every diagram of Figure 9-18and Figure 9-19. In Table 9-3, this analysis is 

annotated as “Frame 2 low”. 

  
   (a)    (b) 

  
   (c)    (d) 

Figure 9-19: Comparison between predicted response by the proposed model (Frame 2 low) and the 
experimental test in terms of (a) base shear against lateral displacement of the first storey of the frame 
and (b) shear force against lateral displacement of the middle column; (c) cumulative dissipated energy 

throughout the experiment. (d) Analytical prediction of shear force against local shear deformation, γ, of 
top and bottom plastic hinges of the mid-column.    

As can be seen in Figure 9-18 and Figure 9-19, the analytically predicted response is way closer 

to the experimental one than in the previous analysis, a. Both displacements and base shear 

closely match the experimental results, exhibiting only a small shift of base-line to the positive 
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direction just after the onset of shear failure, which is not recorded experimentally. The key 

stages of initiation of shear and axial failure are most accurately predicted at 16.7 and 24.9 s, 

respectively, the difference in the corresponding lateral displacements being slightly less than 

40% and 30%, respectively (Table 9-3). 

Both hysteretic responses (Figure 9-19a,b) show very close agreement both in the pre-peak as 

well as post-peak range of the response. Despite the reported difference in lateral displacement 

at the onset of shear and axial failure, the overall behaviour seems to be well-predicted and the 

rate of shear strength degradation is modelled very well. Furthermore, Figure 9-19c 

demonstrates the cumulative energy dissipation, which is deemed to be very accurate; as a 

matter of fact, the only discrepancy arises at the very last millimetres of the shake-table test, 

which multiplied by the base shear add another 5 kNm to the energy dissipated thus far. This 

difference eventually produces an RE of 0.914 at the end of the test (Table 9-3). There is also 

some ostensible deviation between 33 mm and 53 mm, which arises due to the pulse-type 

response of the cycle where shear failure initiation is detected; in other words, the displacement 

of about 53 mm is directly attained in this cycle, hence skipping the scale-like increase of 

maximum displacement that the experimental response exhibits (Figure 9-19c). 

9.5 SPECIMENS WITH INCREASING AXIAL LOAD 

The only experiments, wherein the applied axial load was increased just after or before the onset 

of shear failure are the ones presented herein (chapters 6 and 7). These will be analysed in this 

section and their characteristics can be found in chapter 6. It is reiterated that the verification 

against these tests provides an excellent opportunity for an independent evaluation of the 

model’s predictive capabilities, as they were not included in the initial database, upon which the 

model was based. 

Specimen FSC_2 was tested under cyclic lateral loading and an axial load increase just before 

the onset of shear failure. The analytically predicted response is compared with the 

experimental one in Figure 9-20. The steep strength degradation rate after the onset of shear 

failure seems to be captured in the analytical response with some underestimation, while the 

onset of shear failure is very accurately predicted (Table 9-4). The energy dissipation closely 

matches the experimental one, except for a jump at the displacement level of ±12 mm, mostly 

owing to thinner loops produced experimentally than in the predicted response; this eventually 

led to an approximately 13% overestimation at the end of the test (Table 9-4). The analysis was 

stopped at the second cycle of +/- 18 mm, however the displacement at the onset of axial failure 

would be detected at 21.12 mm, leading to a 17% overestimation compared to the experimental 

one (Table 9-4). 
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Shear response seems to be also captured quite well, with some overestimation of the 

displacements in the positive direction pre-peak and slight overestimation in the negative 

direction post-peak (Figure 9-20b). The analytical deformation decomposition (Figure 9-20c) 

seems similar to the experimental one (Figure 7-16c) overall, albeit systematically 

overestimating the shear component.  

Specimen FSC_3 was tested under cyclic lateral loading and an axial load increase just after the 

onset of shear failure. The analytically predicted response is compared with the experimental 

one in Figure 9-21. The very high strength degradation rate after the onset of shear failure and 

subsequent sudden loss of the biggest part of the lateral load resistance from ±12 mm to ±15 

mm is well-captured in the negative direction of the predicted hysteretic response, but not as 

well in the positive direction. The displacement at the onset of axial failure would be 

overestimated by about 47% (Table 9-4). Nevertheless, the predicted energy dissipation is on a 

par with the experimental one all along the test, eventually having a very small underestimation 

of about 5%. 

  
   (a)    (b) 

  
   (c)    (d) 

Figure 9-20: Comparison between the predicted response of FSC_2 by the proposed model and the 
experimental one in terms of (a) shear force against lateral displacement, and (b) shear displacement. (c) 

Decomposition of the element’s lateral displacement components throughout the analysis. (d) 
Comparison between predicted and experimental cumulative dissipated energy.  
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Table 9-4: Accuracy measures of the analyses of specimens SC_2, SC_3, FSC_2 and FSC_3.  

 RE RSFD RAFD 

FSC_2 1.130 0.993 1.173 

FSC_3 0.952 0.992 1.472 

SC_2 1.311 1.075 1.209 

SC_3 1.430 0.998 N/A 

 

The shear displacement seems to be captured quite well, with considerable overestimation pre-

peak, but only some overestimation in the negative direction post-peak (Figure 9-21b). The 

analytical deformation decomposition (Figure 9-21c) is very similar to the experimental one 

(Figure 7-16e), with some overestimation of the shear component in the two displacement steps 

preceding the onset of shear failure. 

  
   (a)    (b) 

  
   (c)    (d)  

Figure 9-21: Comparison between the predicted response of FSC_3 by the proposed model and the 
experimental one in terms of (a) shear force against lateral displacement, and (b) shear displacement. (c) 

Decomposition of the element’s lateral displacement components throughout the analysis. (d) 
Comparison between predicted and experimental cumulative dissipated energy. 

Specimen SC_2 was tested under cyclic lateral loading and an axial load increase just before the 

onset of shear failure. The analytically predicted response is compared with the experimental 

one in Figure 9-22. The pre-peak and post-peak response seem to be captured well; the 

descending branch slope after the onset of shear failure seems to be captured with some 
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underestimation in the hysteretic response, partly due to having a parallel shift owing to the 

overestimation of 7.5% of the displacement at the onset of shear failure (Table 9-4). The onset 

of axial failure would be predicted with approximately 21% overestimation of the corresponding 

experimentally observed displacement (Table 9-4). The energy dissipation matches well the 

experimental one pre-peak, however deviating post-peak, owing to narrower loops produced 

experimentally than in the predicted response; this eventually led to a considerable 

overestimation of the cumulatively dissipated energy at the end of the test (Table 9-4). 

The shear hysteretic response (Figure 9-22b) includes some overestimation both before and 

after the peak, being overall similar to the experimental one. Comparing the deformation 

decomposition (Figure 9-22b) with the experimental one (Figure 7-17c), there seems to be slight 

overestimation of the shear component pre-peak, however the agreement is good in the post-

peak domain, with the flexural and bond-slip components retracting on a par with the 

experimentally estimated ones. 

  
   (a)    (b) 

  
   (c)    (d)  

Figure 9-22: Comparison between the predicted response of SC_2 by the proposed model and the 
experimental one in terms of (a) shear force against lateral displacement, and (b) shear displacement. (c) 

Decomposition of the element’s lateral displacement components throughout the analysis. (d) 
Comparison between predicted and experimental cumulative dissipated energy. 
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Specimen SC_3 was tested under cyclic lateral loading and an axial load increase just before the 

onset of shear failure (initially planned to increase after the onset of shear failure, as explained 

in section 7.2). The analytically predicted response is compared with the experimental one in 

Figure 9-23. The hysteretic response match is very good overall. The strength degradation rate 

after the onset of shear failure is underestimated to some extent. The displacement at the onset 

of shear failure is predicted accurately (Table 9-4). On the other hand, the onset of axial failure 

is predicted at the last displacement level, while no axial failure was experimentally observed 

even when the specimen reached a displacement of 27 mm. The predicted cumulative energy 

dissipation is overestimated systematically in the post-peak response, owing to narrower loops 

produced experimentally than in the predicted response. The dissipated energy at the end of 

the test was overestimated by about 43% (Table 9-4). 

  
(a)    (b)  

  
   (c)    (d)  

Figure 9-23: Comparison between the predicted response of SC_3 by the proposed model and the 
experimental one in terms of (a) shear force against lateral displacement, and (b) shear displacement. (c) 

Decomposition of the element’s lateral displacement components throughout the analysis. (d) 
Comparison between predicted and experimental cumulative dissipated energy. 

The experimental shear response exhibits an asymmetry (Figure 9-23b), as explained in section 

7.4. The analytical prediction, of course, does not capture this, producing a symmetrical 

‘average’ response in both directions, which is believed to be close to the actual response of the 
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column. The deformation decomposition (Figure 9-23c) is in very good agreement with the 

experimental one (Figure 7-17e), having some discrepancies at some points. 

Of course, as explained in chapter 8, the increase in lateral load resistance observed at the 

displacement levels of ±12 mm in FSC_2, SC_2 and of ±15 mm in SC_3 is not captured by the 

analytical beam-column model, since the pre-peak parameters are not axial-load-dependent. 

In conclusion, the beam-column model is found to fare more than satisfactorily in these four 

cases of specimens with an axial load increase just before or after the onset of shear failure. The 

predictions of post-peak strength degradation rate and displacement at the onset of axial failure 

are adequately close to the experimentally observed ones. Moreover, the shear component – 

as well as the rest of the deformation components – of the response, which are the major focus 

of this study, are predicted very well overall in cases of independent tests, which is very positive 

for the predictive abilities of the finite element model. 

Verifications against specimens with decreasing axial load (Nakamura & Yoshimura, 2014) are 

not included, as it is not clear how such displacement capacities (drifts of the order of 20%) were 

obtained. It is reminded that the slope of the descending branch is not a physical property of a 

member, but always depends on the way the test is carried out (among other factors). 
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Chapter 10: CONCLUSIONS AND FUTURE WORK 

10.1 SUMMARY AND CONCLUSIONS  

The contributions of this research project will be herein summarised and the conclusions 

highlighted, following the structure of the thesis, i.e. in three parts addressing the respective 

aspects of this project. 

 

Part I: Investigation of the Post-Peak Response of Shear-deficient R/C Members 

The largest database of shear and flexure-shear critical R/C columns cycled well beyond the 

onset of shear failure and/or up to the onset of axial failure was compiled. This formed the basis 

for the development of empirical relationships and criteria pertinent to shear failure, post-peak 

response, and axial failure and can form a solid foundation for future endeavours to shed further 

light on other aspects of the post-peak response of shear-deficient R/C columns. 

Empirical relationships were developed for key parameters defining the response after initiation 

of shear failure. These parameters are:  

 The critical shear crack angle, hence the critical shear length, wherein damage 

concentrates after the onset of shear failure. The proposed relationship differentiates 

between shear and flexure-shear critical specimens and is found to be more accurate 

than existing models.  

 The descending branch slope(s) of the shear response curve after the onset of shear 

failure. Separate expressions were proposed for a bilinear curve with breaking point at 

50% shear strength degradation with independent slopes and a linear one. Moreover, 

there are different relationships for monotonic loading, cyclic loading, or a mix of both, 

hence attempting to separate in-cycle and cyclic strength degradation as much as 

feasible based on the available data.  

 The average local post-peak shear deformation at the onset of axial failure.  

It is reiterated that the scatter associated with these parameters is significant (CoV of 20% - 

70%), as it is influenced by the very high uncertainty inherent in post-peak phenomena, arising 

among other factors from the difference in the history of demands and experimental set-up 

used in each case, as well as the randomness of the succession of degradation phenomena 

taking place at a lower level.  

These relationships are used in the beam-column model proposed herein, but could also be 

useful in other finite element models. Additionally to the expressions per se, noteworthy 
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findings, which can be useful for analytically modelling shear-deficient R/C components or future 

experimental investigations on such elements, are the following:  

 Lower axial load, higher transverse reinforcement content and the occurrence of prior 

flexural yielding – as opposed to pure shear failure – were shown to result in the 

formation of a higher critical shear crack angle, with respect to the longitudinal axis of 

the specimen. On the other hand, the angle was shown to be independent of the 

longitudinal reinforcement content. 

 Initiation of shear failure in one direction was shown to only have a minor effect on the 

degradation rate in the other direction, i.e. their descending branch slopes tend to be 

equal no matter which side – positive or negative – shear failure first appeared in.  

 The data suggests either that practically no residual strength is developed in shear-

deficient R/C columns – at least those with the characteristics of this database – or that 

axial failure occurs in most specimens before they reach their residual resistance.  

 Shear critical specimens tend to exhibit mostly convex post-peak descending branch 

shapes, possibly influenced by shear failure leap (a loss of a potentially substantial part 

of the shear strength as soon as shear failure initiates), which was observed in some 

cases; however, this phenomenon could not be modelled at this stage. Flexure-shear 

critical specimens mostly exhibit approximately linear curves with some convex and 

some concave ones.  

 Defining a descending branch by a line connecting the onsets of shear and axial failure, 

as done in some previous works, instead of fitting a least-squares line starting from the 

onset of shear failure could significantly under- or overestimate the resulting dissipated 

energy. In the case of a convex curve, there would be overestimation of the energy 

dissipation; the opposite would happen in a concave curve. The deviation would 

generally be larger the farther away from a linear descending branch a specimen’s post-

peak strength degradation curve shape is. 

 The post-peak response is generally subject to very high uncertainty. However, 

relationships for monotonic tests have considerably lower variation compared to the 

cyclic ones. This is due to the fact that only in-cycle degradation is captured in the 

former, while cyclically loaded specimens are substantially affected by the displacement 

history leading to potentially low or high cyclic strength degradation, thus producing 

extra uncertainty. 

 Higher transverse and longitudinal reinforcement content, as well as lower axial load 

are shown to reduce the post-peak shear strength degradation rate, i.e. resulting in a 
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milder descending branch slope, and lead to higher deformability, i.e. greater local shear 

deformation at the onset of axial failure.  

 Shear strength has been typically considered zero at the onset of axial failure. It was 

shown herein that this is not a valid assumption; its adoption could lead to high 

discrepancies by producing much steeper descending branches and great 

underestimation of the energy dissipation capacity, especially in cases where axial 

failure initiates before significant shear strength degradation.  

Regarding the inclination of the critical shear crack angle, a specific procedure including 

geometrical corrections has been presented, in order to acquire it from a photograph of a shear-

damaged specimen taken at or after the onset of shear failure. This procedure can be used for 

the addition of future specimens to the database or in future research endeavours to further 

study this parameter. 

 

Criteria aiming to identify members susceptible to simultaneous shear and axial failure without 

the need for rigorous analysis of the entire structure or even individual components, are herein 

proposed for the first time: 

 The main one represents the necessary conditions for the simultaneous failure of a 

column in the form of a two-parameter classification criterion. It requires knowledge of 

the axial load carried by the column, its longitudinal and transverse reinforcement 

characteristics.  

 In case transverse reinforcement details are unknown or if a preliminary estimation is 

to be made, a simplified one-parameter criterion is proposed, which is inevitably 

associated with higher uncertainty.  

Furthermore, more conservative criteria (“extra-safe zones”) have been proposed for use in case 

of higher safety requirements, e.g. in a code practice context. 

In general, R/C columns having low longitudinal or transverse reinforcement content or carrying 

high axial loads are shown to be vulnerable to this mode of failure. 

These are believed to be very useful tools for engineers working on the assessment and retrofit 

of existing R/C structures. Failure to identify such elements can lead to redistribution of vertical 

loads at a low lateral deformation level in the case of a ground motion, hence adversely affecting 

the collapse mode of the whole structure and severely increasing the structure’s collapse 

probability. 
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Part II: Experimental Programme 

Vertical loads carried by an axially failing member are subsequently redistributed (though the 

beam-slab system) to neighbouring vertical elements, which leads to a significant increase of 

axial load acting on the neighbouring R/C columns. The non-linear lateral response of the latter 

will be altered as a result of this increase and this needs to be taken into account, in order for 

reliable progressive collapse analyses of existing R/C buildings to be performed. Nonetheless, 

this is a problem not addressed in previous studies; this study is the first to experimentally 

investigate how this axial load increase affects the post-peak response of shear and flexure-

shear critical R/C columns, opening for the first time the discussion on this topic.  

Six cantilever specimens have been herein designed, fabricated and tested. Three of them are 

flexure-shear and three shear critical (the latter are also affected significantly by flexure, but 

markedly less than the former), all of them being representative of older construction. They 

were tested under a quasi-static cyclic lateral loading based on external displacement control, 

having their axial load increase just before or after the onset of shear failure. 

Axial load increase just before or after the onset of shear failure was found to unequivocally lead 

to a higher rate of post-peak shear strength degradation and a lower displacement at the onset 

of axial failure of shear-damaged R/C columns – accompanied by the respective reduction in the 

total dissipated energy.  Nonetheless, a quantifiable pattern cannot be established with regard 

to the percentage of increase, as in all these tests the axial load was increased by 50%; nor with 

regards to the effect of the point of increase of the axial load, since in three of them it happened 

just before and in one just after the onset of shear failure.  

 

Besides the afore-described phenomenon that was investigated, the design characteristics of 

the specimens are selected with a view to supplementing the existing experimental literature 

on post-peak response, particularly with respect to the aspect ratio.  

Both sets of test specimens exhibit similar hysteretic response, with limited cyclic strength 

degradation in the pre-peak domain that increases significantly post-peak, limited pinching, 

remarkable ultimate displacement ductility and quite full loops before the onset of shear failure 

that afterwards turn into narrower ones with increasing lateral displacement. Shear critical 

specimens attain higher strength and displacement capacity. All of the specimens are found to 

have similar energy dissipation capacity, their cumulatively dissipated energy being on a par 

throughout all cycling stages. Nonetheless, the shear critical ones dissipate considerably more 

energy in total, due to the aforementioned higher ultimate displacement.  
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Two codes’ capacity models (Eurocode 8-3 & Model Code 2010) were herein compared with the 

obtained responses. They both resulted in underestimation of the stiffness and strength of the 

elements. In most cases, the deformation capacity was also underestimated. 

All specimens initially developed horizontal flexural cracks– flexure-shear critical specimens 

more than the shear critical ones –, followed by cross-inclined shear cracks. The former cracks 

kept increasing in width up to about the onset of shear failure, remaining constant or retracting 

thereafter, in line with the recorded flexural and bond-slip deformations, as shown through 

deformation decomposition. The cross-inclined cracks appeared before the onset of shear 

failure, they turned into full-depth cracks at the peak and kept increasing substantially with 

increasing lateral displacement post-peak, accompanied by slippage and opening of the 

insufficiently anchored ties; shear deformations followed a similar increasing trend with 

increasing ductility in all specimens. 

Flexure-shear critical specimens exhibited higher percentages of flexural and bond-slip 

displacements than the shear critical specimens, as well as more moderate increase of shear 

deformations post-peak. 

The secant stiffness decreases significantly with increasing ductility, falling to about a quarter of 

the predicted elastic stiffness at the peak of the first displacement level, chiefly affected by 

flexural cracking and shear deformations. It decreases further to hardly 10% of the elastic one 

by the onset of shear failure. Therefore, it is clear that if an element such as those herein tested 

is to be deformed up to the onset of shear failure or beyond, a conventional percentage of elastic 

stiffness – even 50% – would greatly overestimate its resistance at high displacements. 

Vertical displacements follow the typical U-shaped pattern up to the onset of shear failure due 

to member elongation at high lateral displacements, while exhibiting the inverted pattern after 

that, owing to the effect of shear failure localisation in the post-peak domain. A sudden decrease 

in axial deformation – or increase in downward displacement – signals the onset of axial failure, 

accompanied by a corresponding drop of axial load resistance, as has been observed in other 

similar experimental studies. 

 

The phenomenon of shear failure localisation is central to this research work and one of the 

cardinal bases, as well as innovation points, of the proposed hysteretic and beam-column 

models. These tests provided an opportunity to verify this underlying assumption, a task of 

paramount importance for the reliability of and the confidence in the predictions of the model. 

It has been shown here through solid experimental proof that deformations after the onset of 

shear failure tend to be largely attributed to shear. They mostly concentrate in the critical shear 
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length, a region defined by the diagonal failure planes, in cyclic tests of shear and flexure-shear 

critical specimens.  

From the onset of shear failure onwards the column is effectively turned into two discrete parts, 

divided along the previously formed full-depth shear crack; in reality it comprises of four discrete 

parts defined by cross-inclined full-depth shear cracks, however they can be lumped into two 

parts in each loading direction. When applying load to the top part, it is deformed up to an 

extent and simultaneously the crack opens further, while the bottom part stays practically still; 

in effect, it seems to be ‘easier’ to further open the crack than to deform each discrete part of 

the column, like a weak link in a chain. This phenomenon manifests as a discontinuity or a ‘jump’ 

of horizontal displacements along the element, owing to the localisation of displacement along 

the shear cracks; simultaneously, the upper discrete part of the column moves downwards 

relatively to the bottom one when displaced laterally under the constant influence of the axial 

load, resulting in decreased vertical displacements. This is the first time that clear experimental 

evidence has been gathered about this phenomenon, which governs the post-peak response of 

shear-damaged R/C columns, and it can form the basis for analytically modelling post-peak 

response in the future.      

Deformation decomposition was performed for each specimen. Flexural and bond-slip 

deformations were found to constitute a very high proportion of the total lateral displacement 

from the initiation of the test up to the onset of shear failure (about 80% on average), thereafter 

decreasing – in most cases, substantially. Shear deformations follow the inverse pattern, of 

course, exhibiting a remarkable increase post-peak, dominating the response of the columns.  

 

Additionally, these tests provided an excellent opportunity for verification of the proposed 

analytical model. Not being included in the compiled database, they allow for an ‘external’ 

independent validation of the model’s predictive capabilities (see Part III conclusions below). Of 

course, carrying out a limited experimental programme like this was not expected to furnish 

enough results to recalibrate a model that is based on such a large number of specimens.  

 

Other pertinent issues explored are: 

 A consistent force asymmetry was observed in the hysteretic responses; it was 

attributed to the experimental setup, more specifically it was caused by the different 

way of load transfer from the horizontal actuator to the top of the column in the push 

and pull directions – directly from the actuator or via bolts, nuts and plates, respectively. 



 

209 

 Lash is defined as the sum of all displacements that are not due to the column 

deformation itself. There have been previous studies where these have been recorded 

as part of the column deformations, leading to ostensibly more flexible elements. 

Typical examples of such displacements in the horizontal direction are the sliding of the 

base on the strong floor, elastic bending of the reaction frame or displacement of the 

bolts due to inadequate tightening onto the plates. Attempts were made to preclude 

them as much as feasible from the measurements, primarily using external 

displacement control instead of the actuator’s internal LVDT as well as mounting the 

metal post, wherefrom the top lateral displacements were measured, on the base of the 

specimen; hence horizontal displacements induced by sliding of the base that are found 

to reach up to 4.0 mm were precluded. The lash was found to be very significant, 

occasionally reaching even 200% of the actual recorded horizontal displacement, 

particularly in the first displacement levels. Hence, having included it would have led to 

a completely unrealistic picture of the element's response – assessing it as much more 

flexible than it actually is. Therefore, one has to be very cautious of such components 

being included intentionally or not inside reported experimental results. 

 The lash decreased considerably after the onset of shear failure, which is attributable to 

its nature. The specimens have entered the post-peak domain and their resistance is 

lower than in the first displacement levels. Therefore, the elastic deformations 

produced by other parts of the system do decrease proportionally. This means that the 

post-peak response can be much less affected by the inclusion of lash in the results than 

the pre-peak, therefore both internally and externally controlled experiments were 

included in the aforementioned compiled database and it is believed not to have a major 

impact on the uncertainty of the results. 

 Simultaneously, this low lash tended to concentrate invariably on the pull side post-

peak. This might be due to slight untightening of the bolts during the previous cycles, 

due to very high forces acting upon them; of course, no bolt is involved in the push 

direction, and since the specimens’ resistance has decreased considerably, the lash on 

the negative side is negligible. 

 In this series, although not having replicated the experiments per se, the first 9 cycles of 

each set of specimens are “nominally identical”. As expected, the overall responses are 

quite similar, but there are many slight and few pronounced discrepancies in the curves 

produced. Besides slight material, geometrical and set-up related differences, the actual 

member-level response is the result of a plethora of events taking place at micro-level, 

the random nature of which would lead even the most “identical” specimens to have 

differences when inspected at a macro-level. 
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Part III: Beam-Column Analytical Model 

A novel shear hysteretic model was put forward herein, determining the pre- as well as post-

peak range of the response of a shear-damaged R/C member up to the onset of axial failure. It 

is a local hysteretic shear model based on the above proven concept of shear failure localisation, 

i.e. accounting for the localisation of shear strains, after the onset of shear failure, in a critical 

length defined by the diagonal failure planes.  

It comprises a penta-linear primary curve, accounting for shear cracking, yielding of transverse 

reinforcement, onset of shear failure, the subsequent post-peak strength degradation and the 

onset of axial failure. This curve is altered inside an element’s plastic hinge to take into account 

the shear resistance decrease simultaneously with significant shear flexibility increase, owing to 

the increasing curvature ductility demand. Its pre-peak hysteretic rules – based on a previous 

model – are herein extended into the post-peak domain, with several improvements proposed 

for compatibility with the response of specimens after the onset of shear failure. 

 

A beam-column finite element model for shear-deficient R/C elements has been put forward 

herein. It is a computationally efficient, flexibility-based, distributed inelasticity, 

phenomenological model predicting the hysteretic non-linear response of shear and flexure-

shear critical R/C members up to the onset of axial failure. Being based on local deformation 

quantities – curvatures, shear deformations and anchorage slip rotations – in lieu of inter-storey 

displacements, it can account in an unbiased way for the interaction of inelastic flexural and 

shear deformations, including the gradual decrease of an element’s shear resistance and 

increase of its shear flexibility, and more reliably predict the location and extent of shear 

deformations and shear damage subsequent to the onset of shear failure. Thus, the response of 

sub-standard R/C elements can be reliably predicted up to the onset of axial failure following 

shear failure with or without prior flexural yielding, while simultaneously accounting for 

potential flexural and anchorage failure modes.  

Owing to its formulation, it can avoid shortcomings of previous models, for instance not relying 

on assumptions about the bending moment distribution, which generally changes during seismic 

loading, capturing the actual distribution of inelasticity, deformations and damage along the 

element throughout the analysis, as well as not suffering from numerical localisation issues 

pertinent to the softening response after the onset of shear failure. 

The proposed model was implemented in a finite element structural analysis software. Issues 

pertinent to the numerical implementation have been described, among which the most salient 

have to do with the interaction between the model’s sub-components. After a segment of the 



 

211 

shear sub-component enters the post-peak domain, the other sub-components’ resistance 

degrades along with it. Simultaneously, the other sub-components unload with a very high 

stiffness while the shear segment sustains in-cycle strength degradation, the produced lateral 

displacements effectively being capped at their shear-failure values. 

 

Subsequently, the predictive capabilities of the proposed beam-column model are verified 

against a multitude of experimental tests, including quasi-static cyclic tests of double-curvature 

shear and flexure-shear critical R/C columns and dynamic R/C frame shake-table tests. Especially 

the tests carried out as part of this study, provided an excellent opportunity for independent 

verification of the proposed analytical model, not being included in the compiled database upon 

which the model was based. The model is shown to be sufficiently accurate not only in terms of 

total lateral displacement, but more importantly in terms of individual displacement 

components, which is no simple feat for a finite element model.  

The importance of modelling the post-peak response in shear-deficient R/C columns and sub-

assemblages was highlighted time and time again, showing that not taking it into account could 

lead to gross underestimation of the capacity of individual members and sub-assemblages, 

particularly in terms of lateral displacement. 

For the purpose of comparison, objective accuracy measures quantifying the performance of 

the analytical model with regard to the experimental response were proposed and used in the 

verifications, so that the results can be meaningfully compared with other analytical predictions.  

 

Axial load change just before the peak or post-peak was found to unequivocally lead to a change 

in the rate of post-peak shear strength degradation and the axial failure displacement capacity 

of shear-damaged R/C columns. This effect was taken into account in the proposed beam-

column model; no other beam-column model taking this effect into account has been proposed 

so far and the sample of relevant experiments is not considered sufficient for precisely 

quantifying these effects as of yet. Nevertheless, specimens with increasing axial load (tested in 

this study) were herein analysed. The analytical model was found to perform well in predicting 

the change in the aforementioned post-peak parameters as well as their overall response.  

 

Overall, it can be said that the accuracy, versatility and simplicity of this beam-column finite 

element model make it a valuable tool in seismic analysis of complex R/C buildings with 

substandard structural elements. 
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10.2  RECOMMENDATIONS FOR FUTURE WORK 

Although the aforementioned contributions are valuable for the field of earthquake engineering, 

future work is always necessary in the open-ended search for knowledge. Below are some 

recommendations, in order to build up on the present research and shed further light on the 

issues at hand. 

First of all, the database that was compiled could be used in other investigations of various 

aspects of the post-peak response of shear-deficient R/C columns. Moreover, it would be 

worthwhile extending the database even further, including data from new experimental tests, 

in order to get more reliable correlations and hopefully reduce the associated dispersion. The 

post-peak domain is characterised by high variability in the response, hence a probabilistic 

approach would be strongly recommended as a future extension of the developed empirical 

relationships. Along the same lines, further experimental work pertaining to the onset of axial 

failure of sub-standard R/C columns would be desirable in order to improve the proposed 

empirical relationships as well as to validate or further refine the proposed criteria for 

simultaneous shear and axial failure. Shear failure leap was observed and discussed, but could 

not be modelled as this stage as a potential initial part of the post-peak descending branch at 

this stage. Further investigation into this phenomenon would be worthwhile.  

The proposed empirical relationships, the shear hysteretic model as well as the more general 

conclusions regarding post-peak response of substandard R/C elements can be of use or even 

also be implemented in other analytical models, so long as the adopted basis and assumptions 

are similar. 

The proposed analytical member-type model has been verified against individual components 

as well as two-bay one-storey R/C frames. Therefore, it could be used for analytical assessments 

of existing R/C sub-assemblages or entire structures in the context of vulnerability assessment 

for high damage states, namely significant damage or near-collapse; this would also further 

verify its capabilities. So long as the redistribution of vertical loads as well as the response of 

members beyond the onset of axial failure (e.g. degrading axial resistance with increased axial 

shortening and perhaps residual axial strength) can be correctly accounted for, the model can 

also be used for progressive collapse analyses of such structures. 

A calibration of the post-peak shear hysteretic rules based on experimental shear response data 

would be another worthwhile future endeavour, in order to further improve the prediction 

accuracy of the proposed shear and member-type models.  

With respect to axial load increase or decrease, a recent experimental investigation on columns 

with decreasing axial load and the herein presented experimental project with increasing axial 
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load pave the way for more analytical investigations with the aim to properly model this kind of 

response. However, definitive conclusions cannot be drawn yet; in other words, exact patterns 

cannot be extracted from such a small data sample. Advantage should be taken of the data 

produced by the aforementioned experimental studies and more similar experiments should be 

performed. Such experimental studies should comprise a greater variety of design 

characteristics, initial axial loads, increased axial loads and points of axial load increase, in order 

to advance into the direction of more precisely predicting the impact of axial load change on the 

non-linear hysteretic response of shear and flexure-shear critical specimens. 
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APPENDIX A: DATABASE OF R/C COLUMN TESTS 

The specimens of the compiled database are presented in detail in the following table (Table A-1), along with original publications, wherefrom the data were 

extracted (of course, some of them were obtained from the SERIES database (Perus et al., 2014) as mentioned in section 3), and their main characteristics. 

Table A-1: Specimens contained in the database, original publication and some of their most important characteristics.  

Specimen 

Name 
Publication b (mm) X h (mm) L (mm) 

Test 

Type 

fc 

(MPa) 

fyl 

(MPa) 

fyw 

(MPa) 
Ls/d ρl (%) 

ρw,conf 

(%) 
τmax / √fc ν s/d 

LamX8 
Lam et al. (2003) 

267.0 X 267.0 400.0 DC 47.0 433.0 270.0 1.53 3.03 0.10 0.51 0.40 0.38 

LamX9 267.0 X 267.0 400.0 DC 47.0 433.0 270.0 1.53 3.03 0.10 0.63 0.40 0.38 

WibowoS2 Wibowo (2013) 270.0 X 300.0 1200.0 C 21.0 536.0 362.0 4.29 0.99 0.08 0.25 0.20 1.07 

Matchulat1 
Matchulat (2009) 

457.2 X 457.2 1473.2 DC 33.1 441.3 372.3 3.53 2.47 0.08 0.35 0.32 1.09 

Matchulat2 457.2 X 457.2 1473.2 DC 33.6 441.3 372.3 3.53 2.47 0.08 0.34 0.22 1.09 

CotofanaC6 Cotofana & Popa 

(2009) 

300.0 X 300.0 475.0 DC 20.0 700.0 400.0 1.68 1.18 0.28 0.68 0.20 0.46 

CotofanaC7 300.0 X 300.0 475.0 DC 20.0 700.0 400.0 1.68 1.18 0.09 0.68 0.20 0.88 

MatsukawaF0101 
Matsukawa et al. 

(2012) 
400.0 X 400.0 400.0 DC 34.7 396.0 370.0 1.07 4.28 0.11 0.53 0.05 0.40 

MatsukawaF0102 
Matsukawa et al. 

(2013) 

300.0 X 300.0 300.0 DC 29.2 382.0 365.0 1.05 3.78 0.09 0.59 0.10 0.35 

MatsukawaF0103 300.0 X 300.0 300.0 DC 29.2 366.0 365.0 1.05 2.68 0.09 0.48 0.11 0.35 

MatsukawaF0203 300.0 X 300.0 300.0 DC 29.2 366.0 365.0 1.05 2.68 0.23 0.65 0.11 0.14 

UmeharaOUS 

Umehara & Jirsa 

(1982) 

230.0 X 410.0 455.0 DC 40.1 441.0 414.0 1.18 3.01 0.35 0.52 0.00 0.23 

UmeharaOUW 410.0 X 230.0 455.0 DC 40.1 441.0 414.0 2.22 3.01 0.35 0.48 0.00 0.43 

UmeharaCMS 230.0 X 410.0 455.0 DC 42.0 441.0 414.0 1.18 3.01 0.35 0.68 0.13 0.23 

UmeharaCUS 230.0 X 410.0 455.0 DC 34.9 441.0 414.0 1.18 3.01 0.35 0.63 0.16 0.23 

UmeharaCUW 410.0 X 230.0 455.0 DC 34.9 441.0 414.0 2.22 3.01 0.35 0.54 0.16 0.43 

Umehara2CUS 230.0 X 410.0 455.0 DC 42.0 441.0 414.0 1.18 3.01 0.35 0.74 0.27 0.23 

http://www.dap.series.upatras.gr/


 

 

UmemuraAN2 

Umemura & 

Ichinose (2004) 

250.0 X 250.0 600.0 C 31.6 360.0 456.0 2.50 2.57 0.27 0.30 0.00 0.17 

UmemuraAN4 250.0 X 250.0 600.0 C 31.6 360.0 456.0 2.50 2.57 0.27 0.37 0.06 0.17 

UmemuraBN3 250.0 X 250.0 600.0 C 31.2 360.0 531.0 2.50 2.57 0.27 0.41 0.12 0.17 

UmemuraBN5 250.0 X 250.0 600.0 C 31.2 360.0 531.0 2.50 2.57 0.27 0.42 0.12 0.17 

UmemuraBS2 250.0 X 250.0 600.0 C 31.2 360.0 530.0 2.50 2.57 0.27 0.42 0.12 0.14 

UmemuraBS3 250.0 X 250.0 600.0 C 31.2 360.0 530.0 2.50 2.57 0.27 0.39 0.12 0.14 

SaatciogluU2 
Saatcioglu & 

Ozcebe (1989) 
350.0 X 350.0 1000.0 C 30.2 453.0 470.0 3.05 3.21 0.34 0.45 0.16 0.46 

TagamiS3 Tagami et al. 

(2005) 

250.0 X 250.0 300.0 DC 31.3 391.0 400.0 1.28 1.70 0.51 0.74 0.26 0.21 

TagamiD3 250.0 X 250.0 300.0 DC 30.7 391.0 400.0 1.28 1.70 0.51 0.84 0.27 0.21 

OusalemC1 

Ousalem et al. 

(2002) 

300.0 X 300.0 450.0 DC 13.5 340.0 587.0 1.66 1.77 0.10 0.54 0.30 0.59 

OusalemC4 300.0 X 300.0 450.0 DC 13.5 340.0 384.0 1.65 1.77 0.31 0.57 0.30 0.28 

OusalemC8 300.0 X 300.0 450.0 DC 18.0 340.0 384.0 1.65 1.77 0.31 0.68 0.30 0.28 

OusalemC12 300.0 X 300.0 450.0 DC 18.0 340.0 384.0 1.65 1.77 0.31 0.63 0.20 0.28 

OusalemD1 

Ousalem et al. 

(2003) 

300.0 X 300.0 300.0 DC 27.7 447.0 398.0 1.10 1.77 0.46 0.80 0.22 0.18 

OusalemD11 300.0 X 300.0 450.0 DC 28.2 447.0 398.0 1.65 2.36 0.15 0.57 0.21 0.55 

OusalemD12 300.0 X 300.0 450.0 DC 28.2 447.0 398.0 1.65 2.36 0.15 0.58 0.21 0.55 

OusalemD13 300.0 X 300.0 450.0 DC 26.1 447.0 398.0 1.65 2.36 0.46 0.65 0.23 0.18 

OusalemD14 300.0 X 300.0 450.0 DC 26.1 447.0 398.0 1.65 2.36 0.46 0.72 0.23 0.18 

OusalemD16 300.0 X 300.0 300.0 DC 26.1 447.0 398.0 1.10 1.77 0.46 0.83 0.23 0.18 

YoshimuraFS0 
Yoshimura & 

Yamanaka (2000) 

300.0 X 300.0 900.0 C 27.0 387.0 355.0 3.28 3.78 0.84 0.47 0.26 0.27 

YoshimuraFS1 300.0 X 300.0 900.0 C 27.0 387.0 355.0 3.28 3.78 0.84 0.45 0.26 0.27 

YoshimuraS1 400.0 X 400.0 900.0 C 25.1 547.0 355.0 2.43 3.80 0.26 0.53 0.20 0.49 

Yoshimura2C 

Yoshimura & 

Nakamura (2002) 

300.0 X 300.0 300.0 DC 25.2 396.0 392.0 1.12 2.68 0.24 0.55 0.19 0.37 

Yoshimura2M 300.0 X 300.0 300.0 DC 25.2 396.0 392.0 1.12 2.68 0.24 0.58 0.19 0.37 

Yoshimura2C13 300.0 X 300.0 300.0 DC 25.2 350.0 392.0 1.12 1.77 0.24 0.65 0.19 0.37 

Yoshimura2M13 300.0 X 300.0 300.0 DC 25.2 350.0 392.0 1.12 1.77 0.24 0.63 0.19 0.37 

Yoshimura3C 300.0 X 300.0 300.0 DC 25.2 396.0 392.0 1.12 2.68 0.24 0.66 0.29 0.37 

Yoshimura3M 300.0 X 300.0 300.0 DC 25.2 396.0 392.0 1.12 2.68 0.24 0.62 0.29 0.37 

YoshimuraNo.1 Yoshimura et al. 

(2003) 

300.0 X 300.0 600.0 DC 30.7 402.0 392.0 2.23 2.68 0.24 0.52 0.20 0.37 

YoshimuraNo.3 300.0 X 300.0 600.0 DC 30.7 402.0 392.0 2.23 2.68 0.12 0.42 0.20 0.74 



 

 

YoshimuraNo.4 300.0 X 300.0 600.0 DC 30.7 402.0 392.0 2.23 2.68 0.24 0.53 0.30 0.37 

YoshimuraNo.5 300.0 X 300.0 600.0 DC 30.7 402.0 392.0 2.23 2.68 0.24 0.60 0.35 0.37 

YoshimuraNo.6 300.0 X 300.0 600.0 DC 30.7 409.0 392.0 2.24 1.77 0.24 0.48 0.20 0.37 

YoshimuraNo.7 300.0 X 300.0 600.0 DC 30.7 409.0 392.0 2.24 1.77 0.16 0.48 0.20 0.56 

NakamuraN18M 

Nakamura & 

Yoshimura (2002) 

300.0 X 300.0 450.0 DC 26.5 380.0 375.0 1.67 2.68 0.24 0.62 0.18 0.37 

NakamuraN18C 300.0 X 300.0 450.0 DC 26.5 380.0 375.0 1.67 2.68 0.24 0.64 0.18 0.37 

NakamuraN27M 300.0 X 300.0 450.0 DC 26.5 380.0 375.0 1.67 2.68 0.24 0.69 0.27 0.37 

NakamuraN27C 300.0 X 300.0 450.0 DC 26.5 380.0 375.0 1.67 2.68 0.24 0.62 0.27 0.37 

NakamuraA1 

Nakamura & 

Yoshimura (2014) 

450.0 X 450.0 450.0 DC 28.0 383.0 399.0 1.10 1.12 0.14 0.59 0.16 0.73 

NakamuraB1 450.0 X 450.0 450.0 DC 28.0 383.0 399.0 1.10 1.68 0.28 0.61 0.16 0.37 

NakamuraB4 450.0 X 450.0 450.0 DC 28.0 383.0 399.0 1.10 1.68 0.28 0.60 0.16 0.37 

NakamuraC1 450.0 X 450.0 450.0 DC 28.0 376.0 399.0 1.09 2.25 0.56 0.71 0.16 0.18 

NakamuraS100 450.0 X 450.0 450.0 DC 25.0 383.0 399.0 1.10 1.68 0.28 0.57 0.18 0.37 

NakamuraL100 450.0 X 450.0 700.0 DC 25.0 383.0 399.0 1.71 1.68 0.21 0.56 0.18 0.49 

TranRC-1.7-0.05 

Tran (2010) 

250.0 X 490.0 850.0 DC 32.5 460.0 392.6 1.83 2.05 0.23 0.43 0.05 0.27 

TranRC-1.7-0.20 250.0 X 490.0 850.0 DC 24.5 460.0 392.6 1.83 2.05 0.23 0.53 0.20 0.27 

TranRC-1.7-0.35 250.0 X 490.0 850.0 DC 27.1 460.0 392.6 1.83 2.05 0.23 0.57 0.35 0.27 

TranRC-1.7-0.50 250.0 X 490.0 850.0 DC 26.8 460.0 392.6 1.83 2.05 0.23 0.59 0.50 0.27 

TranSC-1.7-0.05 350.0 X 350.0 600.0 DC 29.8 460.0 392.6 1.85 2.05 0.15 0.45 0.05 0.38 

TranSC-1.7-0.20 350.0 X 350.0 600.0 DC 27.5 460.0 392.6 1.85 2.05 0.15 0.48 0.20 0.38 

TranSC-1.7-0.35 350.0 X 350.0 600.0 DC 25.5 460.0 392.6 1.85 2.05 0.15 0.56 0.35 0.38 

TranSC-1.7-0.50 350.0 X 350.0 600.0 DC 26.4 460.0 392.6 1.85 2.05 0.15 0.64 0.50 0.38 

TranSC-2.4-0.20 350.0 X 350.0 850.0 DC 22.6 460.0 392.6 2.62 2.05 0.15 0.40 0.20 0.38 

TranSC-2.4-0.50 350.0 X 350.0 850.0 DC 24.2 460.0 392.6 2.62 2.05 0.15 0.42 0.50 0.38 

KabeyasawaA-1 Kabeyasawa et 

al. (2001) 

150.0 X 420.0 630.0 DC 18.3 349.0 289.0 1.59 1.00 0.20 0.56 0.29 0.51 

KabeyasawaB-1 300.0 X 300.0 450.0 DC 18.3 338.0 289.0 1.66 1.77 0.10 0.51 0.29 0.59 

KogomaCT1 
Kogoma et al. 

(1992) 
130.0 X 130.0 425.0 DC 22.8 355.2 355.2 3.76 4.76 0.21 0.36 0.18 2.52 

HenkhausB1 
Henkhaus et al. 

(2013) 

457.0 X 457.0 736.5 DC 20.0 455.0 490.0 1.75 1.49 0.08 0.67 0.37 1.08 

HenkhausB2 457.0 X 457.0 736.5 DC 19.3 455.0 455.0 1.75 1.49 0.08 0.63 0.38 0.48 

HenkhausB4 457.0 X 457.0 736.5 DC 24.1 441.0 490.0 1.75 2.47 0.08 0.77 0.43 1.08 



 

 

KatoD10SH-1 

Kato et al. (2006) 

180.0 X 180.0 180.0 DC 32.2 371.0 316.0 1.06 0.97 0.50 0.72 0.29 0.41 

KatoD10SH-2 180.0 X 180.0 180.0 DC 32.2 371.0 316.0 1.06 0.97 0.50 0.81 0.48 0.41 

KatoD10SL-1 180.0 X 180.0 180.0 DC 19.1 371.0 316.0 1.06 0.97 0.50 0.66 0.24 0.41 

KatoD10SL-2 180.0 X 180.0 180.0 DC 19.1 371.0 316.0 1.06 0.97 0.50 0.73 0.48 0.41 

KatoD10WH-1 180.0 X 180.0 180.0 DC 32.2 371.0 316.0 1.06 0.97 0.50 0.68 0.29 0.41 

KatoD10WH-2 180.0 X 180.0 180.0 DC 32.2 371.0 316.0 1.06 0.97 0.50 0.79 0.48 0.41 

KatoD10WL-1 180.0 X 180.0 180.0 DC 19.1 371.0 316.0 1.06 0.97 0.50 0.63 0.24 0.41 

KatoD10WL-2 180.0 X 180.0 180.0 DC 19.1 371.0 316.0 1.06 0.97 0.50 0.66 0.48 0.41 

KatoD13S-2 180.0 X 180.0 180.0 DC 26.7 335.0 335.0 1.06 1.64 0.50 0.81 0.58 0.41 

KatoD13W-1 180.0 X 180.0 180.0 DC 26.7 335.0 335.0 1.06 1.64 0.50 0.76 0.35 0.41 

KatoD13W-2 180.0 X 180.0 180.0 DC 26.7 335.0 335.0 1.06 1.64 0.50 0.82 0.58 0.41 

KatoS-3 180.0 X 180.0 180.0 DC 23.4 377.0 303.0 1.06 0.97 0.50 0.81 0.40 0.41 

KatoW-3 180.0 X 180.0 180.0 DC 23.4 377.0 303.0 1.06 0.97 0.50 0.77 0.40 0.41 

KatoW-4 180.0 X 180.0 180.0 DC 23.4 377.0 303.0 1.06 0.97 0.50 0.78 0.66 0.41 

KatoW52-1 180.0 X 180.0 180.0 DC 28.2 382.0 341.0 1.06 0.97 0.68 0.96 0.55 0.31 

KatoD13S-1 180.0 X 180.0 180.0 DC 26.7 335.0 335.0 1.06 1.64 0.50 0.73 0.35 0.41 

KatoW52-2 180.0 X 180.0 180.0 DC 28.2 382.0 341.0 1.06 0.97 0.68 0.88 0.38 0.31 

KatoW90-1 180.0 X 180.0 180.0 DC 28.2 382.0 341.0 1.06 0.97 0.39 0.72 0.38 0.53 

KatoW90-2 180.0 X 180.0 180.0 DC 28.2 382.0 341.0 1.06 0.97 0.39 0.71 0.22 0.53 

Katoφ4W-1 180.0 X 180.0 180.0 DC 26.7 502.0 335.0 1.06 0.16 0.50 0.77 0.35 0.41 

Katoφ4W-2 180.0 X 180.0 180.0 DC 26.7 502.0 335.0 1.06 0.16 0.50 0.69 0.58 0.41 

Zhou204-08 Zhou et al. (1985) 160.0 X 160.0 320.0 DC 21.1 341.0 559.0 2.17 2.22 0.73 0.61 0.80 0.27 

Zhou104-08 
Zhou et al. (1987) 

160.0 X 160.0 160.0 DC 19.8 341.0 559.0 1.08 2.22 0.73 0.79 0.80 0.27 

Zhou114-08 160.0 X 160.0 160.0 DC 19.8 341.0 559.0 1.08 2.22 0.73 0.87 0.80 0.27 

ArakawaOA2 Arakawa et al. 

(1989) 

180.0 X 180.0 225.0 DC 31.8 340.0 249.0 1.32 3.13 0.24 0.76 0.18 0.38 

ArakawaOA5 180.0 X 180.0 225.0 DC 33.0 340.0 249.0 1.32 3.13 0.24 0.76 0.45 0.38 

Lynn3CLH18 

Lynn (2001) 

457.2 X 457.2 1473.2 DC 26.9 331.0 399.9 3.52 3.04 0.08 0.28 0.09 1.09 

Lynn3CMH18 457.2 X 457.2 1473.2 DC 27.6 331.0 399.9 3.52 3.04 0.08 0.34 0.26 1.09 

Lynn3CMD12 457.2 X 457.2 1473.2 DC 27.6 331.0 399.9 3.52 3.04 0.21 0.37 0.26 0.73 

Lynn3SLH18 457.2 X 457.2 1473.2 DC 26.9 331.0 399.9 3.52 3.04 0.08 0.28 0.09 1.09 

Lynn2SLH18 Lynn et al. (1996) 457.2 X 457.2 1473.2 DC 33.1 331.0 399.9 3.52 1.94 0.08 0.22 0.07 1.09 



 

 

Lynn3SMD12 457.2 X 457.2 1473.2 DC 25.5 331.0 399.9 3.52 3.04 0.21 0.40 0.28 0.73 

Lynn2CLH18 457.2 X 457.2 1473.2 DC 33.1 331.0 399.9 3.52 1.94 0.08 0.23 0.07 1.09 

Lynn2CMH18 457.2 X 457.2 1473.2 DC 25.5 331.0 399.9 3.52 1.94 0.08 0.33 0.28 1.09 

AboutahaSC3 Aboutaha et al. 

(1999) 

914.4 X 457.2 1219.2 C 21.9 434.0 400.0 2.91 1.88 0.10 0.25 0.00 0.97 

AboutahaSC9 457.2 X 914.4 1219.2 C 16.0 434.0 400.0 1.39 1.88 0.09 0.40 0.00 0.46 

NagasakaHPRC1

0-63 
Nagasaka (1982) 

200.0 X 200.0 300.0 DC 21.6 371.0 344.0 1.60 1.27 0.77 0.51 0.17 0.19 

NagasakaHPRC1

9-32 
200.0 X 200.0 300.0 DC 22.1 371.0 344.0 1.60 1.27 1.35 0.66 0.35 0.11 

NagasakaHPRC1

9-62 
Nagasaka (1984) 

200.0 X 200.0 300.0 DC 22.1 371.0 344.0 1.60 1.27 1.35 0.51 0.17 0.11 

NagasakaHPRC1

0-32 
200.0 X 200.0 300.0 DC 22.1 371.0 344.0 1.60 1.27 0.77 0.51 0.33 0.19 

Ohue2D16RS 
Ohue et al. (1985) 

200.0 X 200.0 400.0 DC 32.0 369.0 316.0 2.12 2.01 0.53 0.46 0.14 0.26 

Ohue4D13RS 200.0 X 200.0 400.0 DC 29.9 370.0 316.0 2.13 2.65 0.54 0.53 0.15 0.27 

OnoCA025C Ono et al. (1989) 200.0 X 200.0 300.0 DC 25.8 361.0 426.0 1.66 2.13 1.00 0.73 0.26 0.39 

LejanoCB060C Lejano et al. 

(1992) 

278.0 X 278.0 323.0 DC 46.3 441.0 414.0 1.29 4.12 0.98 1.13 0.74 0.21 

LejanoCB070T 278.0 X 278.0 323.0 DC 46.3 441.0 414.0 1.29 4.12 0.98 0.26 -0.26 0.21 

XiaoFHC2-0.34 

Xiao & Yun  

(2002) 

510.0 X 510.0 1778.0 HH 62.1 473.0 445.0 3.53 3.10 0.80 0.41 0.34 0.20 

XiaoFHC4-0.34 510.0 X 510.0 1778.0 HH 62.1 473.0 525.0 3.53 3.10 0.64 0.40 0.33 0.25 

XiaoFHC5-0.2 510.0 X 510.0 1778.0 HH 64.1 473.0 445.0 3.53 3.10 0.53 0.35 0.20 0.30 

XiaoFHC6-0.2 510.0 X 510.0 1778.0 HH 64.1 473.0 524.0 3.53 3.10 0.53 0.35 0.20 0.30 

XiaoHC4-8L16-

T6-0.1P 
Xiao and 

Martirossyan 

(1998) 

254.0 X 254.0 508.0 DC 86.0 510.0 449.0 2.11 2.46 0.83 0.38 0.10 0.21 

XiaoHC4-8L16-

T6-0.2P 
254.0 X 254.0 508.0 DC 86.0 510.0 449.0 2.11 2.46 0.83 0.56 0.19 0.21 

SezenNo. 1 
Sezen & Moehle 

(2006) 

457.2 X 457.2 1473.2 DC 21.1 434.4 476.0 3.76 2.48 0.24 0.40 0.15 0.78 

SezenNo. 2 457.2 X 457.2 1473.2 DC 21.1 434.4 476.0 3.76 2.48 0.24 0.46 0.61 0.78 

SezenNo. 4 457.2 X 457.2 1473.2 DC 21.8 434.4 476.0 3.76 2.48 0.24 0.37 0.15 0.78 

LeBorgne2L06 
Leborgne (2012) 

406.4 X 406.4 1473.2 DC 21.6 451.6 459.2 4.00 2.45 0.57 0.38 0.19 0.41 

LeBorgne2H06 406.4 X 406.4 1473.2 DC 23.0 451.6 459.2 4.00 2.45 0.57 0.39 0.41 0.41 

Bett1-1 Bett et al. (1985) 304.8 X 304.8 457.2 DC 29.9 462.0 413.7 1.64 2.45 0.19 0.45 0.10 0.73 



 

 

Ramirez00-U 

Ramirez & Jirsa 

(1980) 

304.8 X 304.8 457.2 DC 34.5 372.3 455.1 1.64 2.45 0.34 0.52 0.00 0.23 

Ramirez50T-U 304.8 X 304.8 457.2 DC 35.2 372.3 455.1 1.64 2.45 0.34 0.41 -0.07 0.23 

Ramirez100T-U 304.8 X 304.8 457.2 DC 38.6 372.3 455.1 1.64 2.45 0.34 0.32 -0.12 0.23 

Ramirez120C-U 304.8 X 304.8 457.2 DC 30.7 448.2 455.1 1.64 2.45 0.34 0.62 0.19 0.23 

OgawaLC-12 
Ogawa et al. 

(1990) 
500.0 X 500.0 1100.0 C 24.1 347.7 384.7 2.30 0.91 0.52 0.00 0.25 0.21 

Woods3 
Woods (2009) 

457.2 X 457.2 1473.2 DC 17.3 448.2 372.3 3.52 3.13 0.08 0.42 0.61 1.09 

Woods4 457.2 X 457.2 1473.2 DC 18.6 441.3 372.3 3.52 2.47 0.21 0.41 0.39 0.73 

PandeyA-1 Pandey et al. 

(2008) 

300.0 X 300.0 800.0 C 32.5 380.2 396.6 2.94 2.68 0.09 0.25 0.03 0.92 

PandeyB-1 300.0 X 300.0 650.0 C 28.8 380.2 396.6 2.39 2.68 0.15 0.43 0.03 0.55 

ShiraiC-2 
Shirai et al. 

(1996) 
278.0 X 278.0 323.0 DC 39.6 496.2 414.0 1.29 4.12 0.98 1.23 0.78 0.21 

NguyenU0 
Nguyen (2005) 

200.0 X 400.0 350.0 DC 59.5 540.0 300.0 0.90 3.93 0.58 0.97 0.42 0.26 

NguyenU90 400.0 X 200.0 350.0 DC 59.5 540.0 300.0 1.87 3.93 0.27 0.69 0.42 0.53 

EsakiH-2-1/5 

Esaki (1996) 

200.0 X 200.0 400.0 DC 23.0 361.7 364.4 2.12 2.65 0.64 0.62 0.20 0.26 

EsakiH-2-1/3 200.0 X 200.0 400.0 DC 23.0 361.7 364.4 2.12 2.65 0.79 0.70 0.33 0.21 

EsakiHT-2-1/5 200.0 X 200.0 400.0 DC 20.2 361.7 364.4 2.12 2.65 0.64 0.65 0.20 0.40 

EsakiHT-2-1/3 200.0 X 200.0 400.0 DC 20.2 361.7 364.4 2.12 2.65 0.79 0.68 0.33 0.32 

EsakiH-1-1/3 200.0 X 200.0 200.0 DC 22.8 361.7 364.4 1.06 2.65 1.59 1.05 0.33 0.11 
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APPENDIX B: ESTIMATION OF CRITICAL SHEAR CRACK ANGLE FROM 

PHOTOGRAPHIC EVIDENCE 

In some cases, orthophotographs of specimens with shear cracking were provided (e.g. Cotofana 

& Popa, 2009), which made the measurement rather simple and straightforward. In other cases, 

however, normal photos were provided, thus corrections had to be applied, in order to get an 

accurate angle value.  

The derivation is purely geometry-based, i.e. the required angle is the inverse tangent of the 

height, hact, of the column cross-section over an effective length, Leff,act (Figure B-2). So, if one 

acquires the observed angle, cross-section height and effective length from the photo, then with 

the right corrections the actual Leff can be inferred, the actual h is known, so the actual θ can be 

calculated. The corrections applied are summarised below and in Eq. B-1 – B-5 (whatever is 

known in advance is given in green, the measured values are given in red and the calculated 

ones in blue font): 

1) Due to the rotation of some photographs about the longitudinal axis of the column, the 

observed section height that has to be divided by the observed effective length in order 

to get the observed θ is lower than the height of the element’s section (hobs ≤ hact). This 

can easily be calculated based on trigonometry, so long as the rotation φ is known. 

From Figure B-1, it can be seen that the sine and cosine of φ can be calculated as a 

function of hobs , bobs, , hact and bact. Simultaneously, the scale of the photos’ dimensions 

is unknown. So, hmeas and bmeas are measured horizontally on the photo and relate to the 

hobs and bobs, being effectively the multiplication of the latter by the scale.  

Therefore, dividing the sine by the cosine cancels out the scale and directly yields the 

tangent of the rotation of the section, φ. The equations follow: 

sin( ) ;cos( )o

act act act a

meas meas o

t

s

c

sb b
b hscale scaleh

b

b

b h h
 

 
                                  (B-1) 

1
tan ( )

me

act

ac

s

t

a

meas

b
h

h

b




                                  (B-2) 

cos( )
aob cts

h h                                       (B-3) 

 



 

222 

 

Figure B-1: Cross-section of the rotated column and observed dimensions, instead of the actual ones. 

2) When the direction of the photo is upwards or downwards, perspective can distort the 

image, therefore the observed effective length does not equal the actual effective 

length. 

If it’s downwards (Figure B-2, top), then the actual Leff is lower than the observed one, 

as explained in the figure (Leff,act ≤ Leff,obs). If it’s upwards (Figure B-2, middle), then the 

inverse is real (Leff,act ≥ Leff,obs). In each case, if this correction is not made, an angle 

different to the required one will be calculated, i.e. θ’act, instead of θact (Figure B-2).  

However, it’s fairly easy to correct it in such ideal cases, where the inclination θ2 is 

known, since the ratio 
𝐿𝑒𝑓𝑓,𝑎𝑐𝑡

𝐿𝑒𝑓𝑓,𝑜𝑏𝑠
⁄  can be directly computed from the measured 

values, no matter the scale. Nevertheless, the situation is more complicated in real 

photos, being closer to the bottom part of Figure B-2. In such cases, an approximation 

of the angle and, consequently, the ratio has to be made. This depends both on the two 

angles θ2 and θ3 and on the part of the column where the diagonal crack is located. It 

was mainly based on engineering judgement, during the measurements. Applying the 

aforementioned corrections, the angle is calculated as follows: 
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Other sources of errors include low resolution images that might lead to slight inaccuracies, 

capturing an inclined photo, so that vertical lines are not exactly vertical or extreme lateral drift, 
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causing again the vertical lines to be slightly inclined, e.g. in photos of axial collapse state. These, 

however, were not so frequently encountered and they were considered less influential than 

the abovementioned sources of errors - at least for this database’s specimens. 

 

Figure B-2: Distortion of the column dimensions, due to the perspective; downwards (top), upwards 
(middle) and the common realistic case (bottom). 
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APPENDIX C: SPECIMEN DESIGN DRAWINGS 

In this appendix, the detailed as-built design drawings of the sub-base (Figure C-1), SC (Figure 

C-2) and FSC specimens (Figure C-3) are presented. 

 

Figure C-1: As-built design drawings of sub-base. 
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Figure C-2: As-built design drawings of SC specimens. 
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Figure C-3: As-built design drawings of FSC specimens. 
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APPENDIX D: ACTUAL HYSTERETIC RESPONSE AND SMOOTHING 

In this appendix, the hysteretic responses of the tested specimens are presented as recorded. 

The recording and control loop frequency (10 Hz) resulted in recording various “anomalies” in 

the applied force from the actuators or the displacement recorded by the draw-wire sensor.  

These anomalies are generally either not captured at all in experimental tests, having a far lower 

recording frequency, or they are smoothed out for the sake of clarity, as also done in chapter 7 

of the current work. 

The method used in this thesis to smooth out the graphs results in the envelope of the hysteretic 

response being obtained. It is herein presented: 

1) The time ranges were defined, wherein the horizontal displacement and the horizontal 

force should be increasing. Similarly the ranges, wherein they should be decreasing. 

This was possible, because the displacement history is an input in the procedure, so the 

respective ranges (increasing or decreasing) are known a priori. However, the command 

and the response of the system has a lag. Therefore, a variable accounting for this was 

also included in the timings. 

2) A “2-point moving max” function is used in the increasing ranges and a “2-point moving 

min” in the decreasing ones. This applies both to the displacements and the forces. 

3) In the case of in-cycle degradation, which was observed (for brief periods) in most of the 

specimens, a manual correction has to be made, because although the displacement is 

increasing, the force is decreasing or vice-versa. So, in order to avoid having the 

corrected force assuming a constant value instead of decreasing, it was manually 

changed to obtain the real response. This was done with the displacements, as well, 

wherever there seemed to be unrealistic results, however these cases were very limited. 

Using “moving average” functions, instead, would result in a smoothed version which would not 

represent the actual envelope of each cycle of the response of the specimen, but envelopes of 

smaller area.  

Also, were this categorisation (increasing/decreasing) not included, it would result in wrong 

results either in the descending or in the ascending branches. 
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Figure D-1: Response of specimen FSC_1 without smoothing. 

 

Figure D-2: Response of specimen FSC_2 without smoothing. 
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Figure D-3: Response of specimen FSC_3 without smoothing. 

 

Figure D-4: Response of specimen SC_1 without smoothing. 
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Figure D-5: Response of specimen SC_2 without smoothing. 

 

Figure D-6: Response of specimen SC_3 without smoothing. 
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