

City, University of London Institutional Repository

Citation: Petroulakis, N. E., Fysarakis, K., Askoxylakis, I. G. & Spanoudakis, G. (2017).

Reactive Security for SDN/NFV-enabled Industrial Networks leveraging Service Function
Chaining. Transactions on Emerging Telecommunications Technologies, 29(7), e3269. doi:
10.1002/ett.3269

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18581/

Link to published version: https://doi.org/10.1002/ett.3269

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

TO APPEAR IN TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES

Reactive Security for SDN/NFV-enabled Industrial Networks
Leveraging Service Function Chaining

Nikolaos E. Petroulakis 1,2, Konstantinos Fysarakis1, Ioannis Askoxylakis1 and George

Spanoudakis2

1Foundation for Research and Technology-Hellas, Greece 2City, University of London, United Kingdom

ABSTRACT

The innovative application of 5G core technologies, namely Software Defined Networking (SDN) and Network Function
Virtualization (NFV), can help reduce capital and operational expenditures in industrial networks. Nevertheless, SDN
expands the attack surface of the communication infrastructure, thus necessitating the introduction of additional
security mechanisms. These major changes could not leave the industrial environment unaffected, with smart industrial
deployments gradually becoming a reality; a trend that is often referred to as the 4th industrial revolution or Industry
4.0. A wind park is a good example of an industrial application relying on a network with strict performance, security,
and reliability requirements, and was chosen as a representative example of industrial systems. This work highlights the
benefit of leveraging the flexibility of SDN/NFV-enabled networks to deploy enhanced, reactive security mechanisms
for the protection of the industrial network, via the use of Service Function Chaining. Moreover, the implementation
of a proof-of-concept reactive security framework for an industrial-grade wind park network is presented, along with a
performance evaluation of the proposed approach. The framework is equipped with SDN and Supervisory Control and
Data Acquisition (SCADA) honeypots, modelled on and deployable to the wind park, allowing continuous monitoring of
the industrial network and detailed analysis of potential attacks, thus isolating attackers and enabling the assessment of
their level of sophistication. Moreover, the applicability of the proposed solutions is assessed in the context of the specific
industrial application, based on the analysis of the network characteristics and requirements of an actual, operating wind
park.

the attack surface of the communication infrastructure,
necessitating the introduction of additional security
mechanisms. Industrial networks typically come with strict
performance, security, and reliability requirements. SDN
in the Industry 4.0 arrives as a new concept to promote the
computerization of the manufacturing part of the network
that can help in communicating essential technologies
such as the Internet of Things (IoT), communication
machine-to-machine (M2M) and Cyber-Physical Systems
(CPS) [1]. Furthermore, by appropriately leveraging the
flexibility of SDN/NFV-enabled networks in the context of
the adopted security mechanisms, industrial infrastructures
can not only match but also improve their security
posture compared to the existing, traditional networking
environments [2].

This paper showcases a representative use case of an
industrial network by considering an industrial control
network for wind park operations. The wind park control
network has been chosen as a key industrial application as
wind energy has now established itself as a mainstay of
sustainable energy generation. Nevertheless, the flexibility

1

1. INTRODUCTION

With anticipated exponential growth of connected devices,
future networks require an open-solutions architecture,
facilitated by standards and a strong ecosystem. Such
devices need a simple interface to the connected network
to request the kind of communication service characterized
by guarantees about bandwidth, delay, jitter, packet loss
or redundancy. In response, the network should grant the
requested network resources automatically and program
the intermediate networking devices based on device
profile and privileges. A similar requirement also comes
from business applications where application itself asks for
particular network resources based on its needs. Software
Defined Networking (SDN) and Network Function
Virtualization (NFV), important parts of 5G networking
provide promising combination leading to programmable
connectivity, rapid service provisioning and service
chaining and can thus help lower capital and operational
expenditure costs (CAPEX/OPEX) in the control network
infrastructure. Nevertheless, SDN and NFV expand

of SDN networks means they can also help provide better
security for industrial networks. Due to the controller’s
global view of the network and the ability to reprogram
the data plane at real-time, SDN allows not only to
revisit old security concepts (e.g. firewalls) but introduce
new techniques as well (e.g. steering suspicious traffic
to Supervisory Control and Data Acquisition (SCADA)
Honeypots, adopting moving target defense and other
reactive techniques). The deployment of these enhanced
security concepts is in line with the enhanced protection
requirements of critical infrastructures, given that the
old paradigm of perimeter defenses and trusted internal
networks is obsolete, as recent attacks have demonstrated
[3]. Thus, enhanced security services are more than
"good practice", but a requirement, as evidenced, for
example, by the recent update to North American Electric
Reliability Corporation (NERC) Critical Infrastructure
Protection standards, such as the measures detailed in
the latest versions of CIP-007 (i.e. CIP-007-6 [4]), which
dictate continuous network monitoring and deployment of
network defenses to detect/block malicious activity within
the Utilities’ perimeter.

Service Function Chaining (SFC) provides the ability
to define an ordered list of network services [5]. The
concept of SFC has shown promising results providing the
ability to define an ordered list of a network services to
create a service chain. These services are then "stitched"
together in the network to create a service chain, allowing
us to route unknown/suspicious traffic via the Intrusion
Detection and Deep Packet Inspection service functions, to
classify it (as either legitimate or malicious), allowing us to
forward it to the wind park or the honeypot, accordingly.
With this mechanism, malicious traffic can be isolated in
the honeypot, allowing us to track the attacker, identify
her purpose and keep her occupied. Motivated by the
above, we present a Reactive Security Framework for
next generation 5G (and SDN/NFV in specific) -enabled
industrial networks leveraged by SFC. More specifically,
considering the energy production critical infrastructures,
the framework features enhanced security functions, such
as SCADA honeypots, are modelled based upon an
operational wind park and ready to be deployed in one. The
presented framework allows the continuous monitoring of
the wind park industrial network, with provisions to reduce
the impact of the security functions on the network’s
performance and to alleviate the burden of deploying and
managing the security services themselves.

Moreover, the framework’s Honeynet (consisting of
both an active SCADA-specific honeypot and a passive
honeypot) facilitates the detailed analysis of potential
attacks, isolating attackers and enabling the assessment of
their level of sophistication (e.g. from script kiddies to
state actors). Building upon the concept presented in [6],
this work highlights various use cases where the proposed
mechanisms would be useful in the context of actual wind
park deployments and associated business requirements.
Moreover, a full implementation of the framework is
presented, along with a performance evaluation, on a
realistic testbed featuring various services and operational
security service functions. The results of this evaluation
are assessed in the context of an actual industrial network,
highlighting the most viable options in the context of a real
industrial application. Said assessment is based on a trace
analysis conducted in an operating wind park’s network (in

Brande, Denmark); a representative use case of industrial
networks, studied in the context of the European project
VirtuWind [2, 7].

The remainder of this paper is organized as follows. In
Section II, the background, motivation and related work
on Service Function Chaining is presented, highlighting
security-related aspects. In Section III, a study on the
various use cases and associated variations of the proposed
scheme is presented. In Section IV, the Reactive Security
Framework and its key implementation elements (e.g.
Security Services, Controller modules) are presented,
while Section V details the performance evaluation results,
along with their assessment in light of the actual network
performance recorded in an actual, operational wind park.
Section VI concludes this work with some discussion and
pointers to future work.

2. SERVICE FUNCTION CHAINING

2.1. Background and Motivation

In typical network deployments, the end-to-end traffic of
various applications typically must go through several
network services (e.g. firewalls, load-balancers, WAN
accelerators). It can also be referred to as Service
Functions (or L4-L7 Services, or Network Functions,
depending on the source/organisation) that are placed
along its path. This traditional networking concept and
the associated service deployments have a number of
constraints and inefficiencies [8], such as:
Topology constraints: network services are highly
dependent on a specific network topology, which is hard
to update.
Complex configuration and scaling-out: a consequence
of topological dependencies, especially when trying to
ensure consistent ordering of service functions and/or
when symmetric traffic flows are needed this complexity
also hinders scaling out the infrastructure.
Constrained high availability: as alternative and/or
redundant service functions must typically be placed on
the same network location as the primary one.
Inconsistent or inelastic service chains: network admin-
istrators have no consistent way to impose and verify
the ordering of individual service functions, other than
using strict topologies - on the other hand, these topology
constraints necessitate that traffic goes through a rigid set
of services functions, often imposing unnecessary capacity
and latency costs, while changes to this service chain can
introduce a significant administrative burden.
Coarse policy enforcement: classification capabilities and
the associated policy enforcements mechanisms are of
coarse nature, e.g. using topology information.
Coarse traffic selection criteria: as all traffic in a
particular network segment typically has to traverse all the
service functions along its path.

The above are exacerbated nowadays, with the
ubiquitous use of virtual platforms, which necessitates
the use of dynamic and flexible service environments.
This is even more pronounced in service provider
and/or cloud environments, with infrastructures spanning
different domains and serving numerous tenants, each with
their own requirements. Said tenants may share a subset of

2

a new service plane protocol (a dedicated service plane)
for the creation of dynamic service chains [13]; this NSH-
based SFC approach is adopted in the framework presented
herein.

StEERING [14] is an OpenFlow-based alternative that
allows for per-subscriber and per-traffic type/application
traffic routing to the various service functions, via simple
policies propagated from a centralized control point, but
does not consider the security-based classification that
forms the basis of the work presented here. Researchers
have also introduced SIMPLE [15], a policy enforcement
layer that focuses on middleware-specific traffic steering
and considers the inclusion of legacy service instances into
the chain. It is based on monitoring and correlating packet
headers before and after they traverse a specific service
function, though this leads to a rather complex process
(collecting packets for correlation, matching packets with
high accuracy etc.).

The chaining of Virtual Network Functions (VNFs) is
another aspect examined in the literature, which considers
the trend of virtualizing networks and network functions
in modern networks. More specifically, ETSI proposes a
security management and monitoring specification in NFV
that enable active and passive monitoring of the VNF and
the SFC as provisioned in the NFV environment [16].
From this perspective, Megraghdam et al. [17] present
a formal model for specifying VNF chains and propose
a context-free language for denoting VNF compositions.
Chain definitions in the work presented here are based on
the structured format required by the testbed controller
(i.e. ODL), but a formal-based definition could be used
if the corresponding module is appropriatelly extended,
provided that the added complexity is justified by the
application requirements. Blendin et al. [18], exploit Linux
namespaces to create isolated service instances per service
chain, allowing one-to-one mapping of users to service
instances; nevertheless, such an approach is not necessary
in industrial environments, where, typically, the number of
users is limited, and the management of multiple service
instances can incur a significant administrative burden.

2.4. Security Service Chaining

Security services are a prime example of traditional
network service functions that can benefit from the
adoption of SFC, especially in the context of SDN
networks. Indeed, security functions such as Access
Control List (ACL), Segment, Edge and Application
Firewalls, Intrusion Detection and/or Intrusion Prevention
systems (IDS/IPS) and Deep Packet Inspection (DPI)
are some of the principal service functions considered
by IETF when presenting SFC use cases pertaining to
Data Centers [19] and Mobile Networks [20]. Said IETF
studies consider several SFC use cases and highlight
the numerous drawbacks of using traditional service
provision methods when applying, among others, the
security functions. The security services themselves
are typically been deployed as monolithic platforms
(often hardware-based), installed at fixed locations inside
and/or at the edge of trust domains, and being rigid
and static, often lacking automatic reconfiguration and
customization capabilities. This approach, combined with
the typical networks’ architectural restrictions mentioned
above, increase operational complexity, prohibit dynamic

3

the providers’ service functions, and may require dynamic
changes to traffic and service function routing, to follow
updates to their policies (e.g. security) or Service Level
Agreements.

SFC aims to address these issues via a service-
specific overlay that creates a service-oriented topology,
on top of the existing network topology, thus providing
service function interoperability [5]. An SDN-based SFC
Architecture, such as the one defined by the Open
Networking Foundation [9], can extend this concept,
exploiting the flexibility and advanced capabilities
of software defined networks, to provide novel and
comprehensive solutions for the above-stated presented
weaknesses of the legacy networks.

2.2. Terms and definitions

In this subsection, the terms and their definitions, as
used in this work, are mentioned. The definitions of SFC
terms are described in IETF, Service Function Chaining
(SFC) Architecture [5] and SFC environment Security
requirements [10]. Key terms include:
Network Service Function: A function that is responsible
for specific treatment of received packets.
Service Function Chaining: A service function chain
defines an ordered set of abstract service functions and
ordering constraints that must be applied to packets and/or
frames and/or flows selected as a result of classification.
Service Function Forwarder: A service function for-
warder (SFF) is responsible for forwarding traffic to one or
more connected service functions according to information
carried in the SFC encapsulation, as well as handling traffic
coming back from the service function (legacy or virtual).
Service Function Path: The service function path is a
constrained specification of where packets assigned to a
certain route must go. Any overlay or underlay technology
can be used to create service paths (VLAN, ECMP, GRE,
VXLAN, etc.).
Service Function Classifier: An entity that classifies
traffic flows for service chaining according to classification
rules defined in an SFC Policy Table and to mark packets
with the corresponding SF Chain Identifier. It can be on
a data path, or run as an application on top of a network
controller.
SFC Header: A header that is embedded into the flow
packet by the SFC Classifier to facilitate the forwarding
of flow packets along the service function chain path. This
header also allows the transport of metadata to support
various service chain related functionality.

2.3. Related Work

Several SFC-related research efforts can be identified
in the literature. Nevertheless, a recent survey on the
use of SFC [11] reveals a lack of work focusing on
security-related applications, and this is a gap that the
framework presented herein can cover. In terms of
the key technological building blocks, Network Service
Headers (NSH) [12] is an approach that involves the
introduction of SFC-specific 4-byte headers that include
all the information needed (including associated metadata)
to reach a policy decision with regard to what service chain
the traffic should follow. As part of the relevant IETF
efforts, the NSH approach has been extended to define

updates and impose significant (and often unnecessary)
performance overheads, as each network packet must be
processed by a series of predefined service functions, even
when these are redundant [21].

A typical example of an important, and also ubiquitous,
security-related function is DPI, whereby packet payloads
are matched against a set of predefined patterns. DPI
imposes a significant performance overhead, because of
the pattern matching mechanisms that are at the core
its operation, and thus largely unavoidable (motivating
a wealth of research efforts focusing on improving
their performance [22, 23]). Nevertheless, DPI, in one
form or another, is part of many network (hardware or
software) appliances and middleboxes; some examples
can be seen in [24]. As Bremler-Barr et al. [24]
have demonstrated, extracting the DPI functionality and
providing it as a common service function to various
applications (combining and matching DPI patterns from
different sources) can result in significant performance
gains; their benchmarks, involving a single Snort-based
IDS service function, run in Mininet over OpenFlow to
emulate an SDN deployment, compared to two separate
traditional instances of Snort, showed that the former
(i.e. the single DPI service function) performed 67%-86%
faster than the latter.

Leveraging the benefits of SDN-based SFC deploy-
ments involves reversing this trend for monolithic, "all-
in-one", security services, which are now commonplace.
This is an approach, brought forward in part because of
the advancements in hardware performance, which meant
that a single, relatively affordable, hardware platform had
enough resources to accomplish multiple tasks simulta-
neously. Instead, in the context of SFC, the focus is on
breaking-up these complex services into dedicated service
functions, each providing a single task. This shift is not
dissimilar to the emergence of the Microservices [25]
as described in [26], software architectural style (i.e. the
Microservices Software Architecture, MSA), which moves
developers away from the once-dominant paradigm of
building entire applications as a monolith (again, leverag-
ing the benefits of more capable hardware - and mature,
sophisticated programming tools), towards applications
made up from a number smaller services (elastic, resilient,
composable, minimal and complete [27]), each of them
performing a single function (adopting the "Do one thing
and do it well" philosophy).

Some key security mechanisms to be leveraged in a
secure industrial infrastructure, and deployed as virtualized
network service functions, appear below:
IDS/IPS is a service able to monitor traffic or system
activities for suspicious activities or attack violations, also
able to prevent malicious attacks if needed (in the case of
IPS).
Honeynet is formed by a set of functions (Honeypots),
emulating a production network deployment, able to attract
and detect attacks, acting as a decoy or dummy target.
Firewall is a service or appliance running within a
virtualised environment providing packet filtering. Legacy
firewalls (e.g. actual hardware appliances) are also
supported and can easily be integrated into the architecture.
DPI is a function for advanced packet filtering (data and
header) running at the application layer of OSI reference
model. In DPI packet payloads are matched against a set
of predefined patterns.

Network Virtualisation, via the use of Virtual eXtensible
Local Area Network (VXLAN [28]), a VLAN-like
encapsulation technique to encapsulate MAC-based OSI
layer 2 Ethernet frames within layer 4 UDP packets, brings
the scalability and isolation benefits needed in virtualised
computing environments.
Access Control Lists are used at the entry of the wind park
domain to route traffic to the appropriate isolated virtual
networks and the corresponding security service functions.
Packet inspectors to detect malformed packets or
malicous activity (IPFiX, DDoS)
Secure communication protocols with packet encapsula-
tion services (e.g. IPSec)
Other than the ones employed above, other Service
Functions could be included in a real deployment, such
as HTTP header enrichment functions, TCP optimisers,
Resource Signalling, etc.

3. USE CASES OF SECURITY SERVICE
FUNCTION CHAINING

Depending on the focused aspect which is of relevance for
each deployment of the proposed service function chaining
-enabled framework, some mainly security-focused use
cases flavors (sub -use cases) are identified. Each of them
is described in the following subsections in more detail.

3.1. Per Tenant Type Classification

One of the main project objectives in industrial networks
is faster service provisioning. The time to provision the
service is foreseen to be reduced from several days to
several minutes. The concept of Service Function Chaining
(SFC) has already shown promising results in enabling the
faster time-to-market for the new services in the domain of
telecom operators. This also implies the potential to reduce
CAPEX and OPEX, especially for short lived service. In
the context of next generation industrial networks, one
of the promised services is the possibility to instantiate
virtual tenant networks (VTN) on demand. The purpose
of virtual tenant networks is to setup virtual networks
which contains a set of functionalities on the same
physical hardware platform and network architecture.
One objective is that different VTNs are not influencing
each other. From industrial networks perspective the
tenants are related to different stakeholders in a wind
park, shown in the Figure 1. The stakeholders may
include: Wind farm operator (WPO), Transmission system
grid operator (TSO), Original Equipment Manufacturer
(OEM), IoT device vendors, Wind farm owner and
SCADA application.

Each of the stakeholders shown in Figure 1 can
have different requirements and constrains for setting
up a dedicated VTN for their purposes. The different
requirements and constrains can lead to different
VTN flavors when talking about the VTN setup and
network configuration. Service function chaining could
be exploited to instantiate VTN, but beyond that aspect,
each tenant should be able to add functions on demand in
their network, and control the traffic that is allowed within
their own VTN. In the above context, two different flavors

4

Fig. 1. Tenants in Wind Park

Tenant-based classification, SFC could also be exploited
at the application level, in order to provide dynamic,
real-time access to the required data of the IIoT sensors.
Therefore, depending on tenant’s requirements/agreement
etc., each of them get presented with a different subset of
all parameters monitored by IIoT sensors, even though all
tenants will reach the same resource (e.g. web interface
on backend monitoring server). This could be achieved
by a simple HTTP header enrichment service running on
each of the Service Functions, with each of these services
adding the corresponding subset of sensed data into the
final web pages that the tenants will see on their web
browsers. An example of the above concept is depicted in
Figure 2b, whereby the following chains are defined:
Chain 1 - IIoT Tenant 1: Sensors’ Set 1 -> Output
Chain 2 - IIoT Tenant 2: Sensors’ Set 1 -> Sensors’ Set 2
-> Output
Chain 3 - IIoT Tenant 3: Sensors’ Set 1 -> Sensors’ Set 2
-> Sensors’ Set 3 -> Output

3.2. Per Application Type Classification

This variation of the SFC use cases classifies traffic based
on the originating application. Thus, after a stage of Deep
Packet Inspection, the Application is identified and the
corresponding chain is assigned. An example of chains
tailored to specific applications could include forwarding
SCADA traffic to a SCADA-specific IDS, and a generic
IDS for other traffic, thus limiting the delay imposed on the
SCADA traffic by the IDS (as it depends on the number
of rules/patterns in the IDS’s database, which could be
significantly lower in the case of an IDS which only
has SCADA-specific rules installed). Another example
could be having video surveillance traffic go through
Firewall and a Rate Limiter, to lower the transmission rate,
respecting QoS requirements. Thus, potential chains in this
case (as depicted in Figure 3) could include:
Chain 1 - Unknown application: Firewall -> DPI -> Output
Chain 2 - Video surveillance: Firewall -> Rate Limiter ->
Output
Chain 3 - Alarm monitoring: Output
Chain 4 - SCADA: Firewall -> SCADA IDS -> Output
Chain 5 - Other application: Firewall -> IDS -> Output

5

of Tenant-based chain classification can be envisioned;
presented below.

3.1.1. Security Services on-demand Tenant Use
Case

As an example, let’s assume that equipment vendor (e.g.
Siemens) requests a VTN to inspect the turbines of wind
park operator (e.g. EON). Siemens would request a slice
of the operator’s network allowing it to access (only) the
turbine configuration and log files, with certain quality
of service (e.g. high availability). Additionally, Siemens
must be able to create the list of the engineers and the
technicians who are authorized to do a troubleshooting
on turbines of a given wind park. Siemens and/or EON
would also like to make sure that members of VTN are
performing only the authorized tasks (upgrade, traces,
etc.). Hence, tenant-specific security components should
be added to a security function chain of the wind park.
Example of tenant-specific functions are: ACL and DPI.
The other security functions, like firewall and IDS might
be still shared with other VTNs in the wind park.

In another related scenario, the flexibility of function
chaining could allow tenants to change the deployed
security mechanisms dynamically. Thus, for example,
using tenant-based classification, Tenant 2 could only be
using a firewall protection, while Tenant 1 could be using
a firewall and an IDS appliance. During operation, the
preferences of Tenant 2 could be updated (Tenant 2’), to
also necessitate the presence of a Honeypot or Honeynet,
triggering the corresponding update to his/her function
chain. This is depicted in Figure 2a, which presents
an example of such a setup with the following chain
definitions:
Chain 1 - Tenant 1: Firewall -> IDS -> Output
Chain 2 - Tenant 2: Firewall -> Output
Chain 3 - Tenant 2’ (after update): Firewall -> Honeypot/
Honeynet -> Output

3.1.2. Industrial Internet of Things Tenant Use
Case

Considering the Industrial Internet of Things (IIoT) use
case of wind parks deployment, and in the context of

T1

T2'

T2

(a) Security Functions on demand

T1

T3

T2

(b) IIoT sensing data

Figure 2. SFC - Per Tenant Classification Example

Alarm Monitoring

SCADA
Other

Unknown

Video Surveillance

Fig. 3. SFC - Per Application Classification Example

3.3. Per Traffic Type Classification

This use case includes a security SFC-based enhancement,
for both intra- and inter- domain deployments, with the
ability to forward traffic based on its security classification
(e.g. unknown/malicious/legitimate), following predefined
Service Function Paths for each traffic type. This
type of classification opens up various possibilities for
the integration of advanced malicious traffic detection
techniques (e.g. exploiting machine learning). As an
example, let us assume that a data packet enters the intra-
domain wind park deployment. Based on its classification
(from the categories listed above), the traffic will be
directed to one of three different paths as depicted in Figure
4a. The aim for this process is to route unknown/suspicious
traffic via the Intrusion Detection and Deep Packet
Inspection Service Functions, in order to classify it (as
either legitimate or malicious), thus allowing us to forward
it to the windpark or the honeypot, accordingly. Thus,
malicious traffic can be isolated in the honeypot, allowing
us to track the attacker, identify its purpose and keeping
him occupied.

For the inter-domain use case, (Figure 4b), the
procedure is similar to the intra-domain scenario. However,
a more sophisticated honeypot deployment, such as a
Honeynet, can be used as an emulated wind park,
having similar services and functions as the original
wind park. Moreover, in this case, having acquired the
needed tag (as malicious or legitimate) in other parts of
the larger wind park deployment, the traffic can avoid
going through the same procedures (i.e. Service Functions)
again, better highlighting the benefits of SFC in terms
of potential performance gains. A core part of this use
case is the classifier. The classifier is responsible for
classifying and forwarding packets based on predefined
rules, exploiting pattern matching and tags found on

the packet headers. The (attached to the SFF) classifier
forwards the packets through one of the predefined
function chains. In more details, based on the classification
of each packet, the traffic can be classified as legitimate,
unknown (suspicious) or malicious. Thus, three different
chains are defined:
Chain 1 - Legitimate (known) traffic: Firewall -> Output
Chain 2 - Suspicious traffic: Firewall -> IDS -> DPI
Chain 3 - Malicious traffic: Honeypot/Honeynet

4. REACTIVE SECURITY FRAMEWORK
IMPLEMENTATION

4.1. Overview

Motivated by the above, this work focuses on providing
a security framework to protect critical industrial infras-
tructures, considering the wind park as a characteristic
example, also studying the more complex multi-tenant
use case (i.e. a service provider serving multiple tenants;
and its evolution, whereby multiple virtual tenant net-
works have to be established) and the chaining of vital
security functions. This work follows closely the stan-
dardization efforts of IETF, and the SFC Working Group
[29] in specific, building on top of the work of the Open
Networking Foundation and the associated OpenDaylight
Controller modules, adopting and extending their features.
Moreover, special care is given to the security of the SFC
mechanisms, e.g. by guaranteeing the integrity of SFC-
related data added to the packets for identifying the service
functions chains, and by ensuring that no sensitive SFC
data (and the associated metadata), crosses different SFC
domains, or legacy networks, unprotected.

6

Unknown

Legitimate

Malicious

(a) Intra Domain

Unknown

Legitimate

Malicious

UnknownLegitimateMalicious

Domain 1 Domain 2

WindPark
Dummy

WindPark

(b) Inter Domain

Fig. 4. SFC - Per Traffic Type Classification Example

4.2. Deployed Security Service Functions

The reactive security framework includes a number of
different service functions as detailed in the subsections
below.

4.2.1. IDS and SCADA IDS
The framework’s security mechanisms include con-

tinuous network monitoring and intrusion detection for
identification of attacks and run-time network adaptation
for attack response and mitigation mechanisms. More
specifically, IDS instances of Snort [30] are deployed,
with scripts to ensure that the most up-to-date rules are
constantly active. A database for event monitoring is
present, while provisions are made to allow for future
extensions to transmit relevant information to a security
backend (e.g. for more sophisticated pattern matching).
Moreover, a SCADA-specific instance of Snort [31] is
also deployed, where SCADA traffic will be routed. This
limits the delay imposed on the SCADA traffic by the
IDS functionality (a delay that significantly depends on the
number of rules/patterns in the IDS’s database, which will
be significantly lower in the case of the IDS which only
has SCADA-specific rules installed).

4.2.2. Honeynet
Network-based honeypots have been widely used to

detect attacks and malware. A honeypot is a decoy
deployment that can fool attackers into thinking they are
hitting a real network whereas in the same time it is
used to collect information about the attacker and attack
method. A Honeynet is a set of functions, emulating a
production network deployment, able to attract and detect
attacks, acting as a decoy or dummy target. In the protected
wind park network, a Honeynet is deployed, consisting of
Honeypots emulating SDN and other network elements, as
well as Honeypots emulating the operational systems of
the wind park, and more specifically elements such as the
SCADA systems and the data historian. Simple Honeypots
[32], and SCADA-specific Honeypots [33] are deployed

7

One of the goals of this effort is to provide a
secure industrial networking infrastructure, via the asso-
ciated security mechanisms, such as network monitoring
and intrusion detection for industrial SDN networks. To
achieve this objective, the security framework presented
herein includes network monitoring and intrusion detec-
tion for identification of attacks and run-time network
adaptation for attack response and mitigation mechanisms.
By leveraging security network functions such as Fire-
walls, IDS, DPI, Honeypots and Honeynets, the framework
can create a number of service function chains, to forward
traffic based on the type of traffic or running application.
The aim of this Service Chaining is to overcome con-
straints and inefficiencies, as mentioned previously. This
can be used to fulfil the target of providing security pro-
files per application classification based on the originating
application, or per tenant classification serving multiple
virtual tenant networks with the chaining of vital security
functions or, alternatively, per traffic classification, for both
intra- and inter- domain deployments, following predefined
Service Function Paths for each traffic type.

In contrast to the proactive deployment of specific
security mechanisms that are setup and deployed before
an attack takes place (typically at the network’s design
phase), the reactive mechanisms employed here are able
to react in real-time to changes in the network as well as
the traffic traversing said network, e.g. to automatically
mitigate attacks, block malicious entities, route them
to specific, dummy network components to allow for
enhanced monitoring of their actions or even trigger the
deployment of new security functions to help alleviate
the effects of an ongoing attack. By leveraging the
flexibility of SDN-based deployments and the concept of
SFC, a service-specific overlay creates a service-oriented
topology, on top of the existing network topology, thus
providing service function interoperability.

to emulate the exact network and SCADA system setup
present in the SDN-enabled wind park. Moreover, passive
Honeypots (Early Warning Intrusion Detection Systems,
EWIS, in specific [34]) are also be part of the Honeynet,
acting as a network telescope on the production part of
the industrial network, to monitor all activity in normally
unused parts of the network. Such activity is a good
indicator of malicious entities operating on the network
(such as an attacker probing/foot-printing the network),
thus providing early warning of incoming attacks.

4.2.3. Firewall
A software or hardware firewall instance is also

deployed on the wind park’s network to implement
network perimeter security. This is a software firewall
(instance of pfsense [35]), but a hardware (legacy) firewall
appliance already present in the industrial network could
also be used, or even a virtualized commercial firewall
appliance (such as the VM-Series from Palo Alto [36]).
The type of firewall, as well as its placement, is irrelevant
in the context of the reactive security framework employed
to protect the industrial network, as the service plane view
of the framework focuses on the type of service and not
the underlying technology that is used to offer this service,
allowing for the use of any type of firewall, and for its
placement in any place on an SDN network deployment.

4.2.4. DPI
In the proposed framework’s proof-of-concept imple-

mentation, nDPI [37] is employed to implement the DPI
function, monitor incoming traffic, and assign it to the
(sub-)set of security service functions intended for the
corresponding traffic type. Since the default nDPI did not
meet the framework’s requirements, some changes were
made to support the SFC applications. In order to have
an up to date view of the SFC-related information (e.g.
information about the various chains or information on
which chain IDs correspond to reverse chains, i.e. return
traffic) was fetched from the ODL controller via constantly
running scripts.

In terms of packet processing, nDPI listens for pcap
packets generated by the IP stack of the kernel. In this
implementation, since the packets were forwarded from
SFF, a listener was implemented on TCP port 6633 to
handle incoming packets from that port; those packets
were complete ethernet (ETH) packets that also had NSH
headers. Firstly, the NSH header was extracted to check
if the packet was already processed (in which case, the
packet chain ID would be that of a reverse chain). If it
was already processed, it was simply forwarded to the
SFF. If the packet has not been processed before, the
developed application encapsulates the ETH packet at an
pcap packet and then sends it to the nDPI engine for
processing. As soon as a response is received from the
nDPI engine, the appropriate chain IDs and the appropriate
next hops from rendered service chains are fetched from
the controller, and then, based on the received information,
the NSH headers are generated and the ETH packet is
encapsulated appropriately, before being forwarded to the
SFF. The ETH generation is based on the response of
the nDPI engine and the appropriate Service Function
Chains in order to support dynamic packet flow change.
The response of the nDPI engine is based on a set

of rules that the engine has compiled to classify traffic
types, and can be extended by writing additional rules
(for instance TCP and UDP ports 502 associated with
Modbus traffic can be defined as being malicious, if such
traffic is not expected in the specific part of the network).
The response from the nDPI engine classification of each
packet is either the protocol/application/framework ID that
the above mentioned rules define, or UNKNOWN if it could
not be determined.

4.3. Service Chain Classification

The per-traffic type classification, as described in
subsection 3.3, is adopted for the Reactive Security
framework, integrating all the Security Service functions
detailed in subsection 4.2, via the following implemented
Service Function Chains:

Chain 1 - Unknown Traffic: Traffic that is of unknown
type (i.e. cannot be classified based on simple ACL rules
that the Classifier has), is routed to the Firewall and then
to the DPI (nDPI), where it is analyzed, classified and its
headers are updated appropriately, then being assigned to
the appropriate Chain (Chains 2 to 4).

Chain 2 - SCADA Traffic: SCADA traffic is routed
through the Firewall and then through the SCADA
lDS, which features only SCADA rules, to minize
the performance impact, before being forwarded to its
intended destination.

Chain 3 - Legitimate Traffic: Other (non-SCADA)
legitimate traffic, is routed through the Firewall and then
through the generic IDS, before being forwarded to the
intended destination (in this case, the Data Historian).

Chain 4 - Malicious Traffic: Traffic tagged as malicious
(e.g. nmap port scanning), either by the Classifier or by
the DPI functionality, is routed through the Firewall and
then to the appropriate part of the honeynet; the latter can
either be the SCADA Honeypot (if its original target was
a SCADA system), the generic Honeypot (if its original
target was an SDN device or a production system such
as the Data Historian) or the passive EWIS honeypot (if
the original target was some unused address, indicating
malicious probing/footprinting of the network).

Important parts of the implementation of this func-
tionality are the Classifier and the DPI service function.
When there is no previous acquired knowledge about the
packet’s classification (i.e. no tag on the packet header),
the classifier will assign the packet to the Unknown chain
(Chain 1), aiming to detect any malicious activity, assess
its impact, and attach the associated tag, to help form
the system’s response and enhance the attack mitigation
effectiveness. The nDPI disassembles the traffic packets,
assesses their content and decides on their traffic type.
Then, the packet is repackaged, assigning the appropriate
headers to allow for its routing through the corresponding
service chain. However, even if this chain will protect SDN
network from malicious attacks, the procedure will add
delay to the transmission. Thus, in the case of packets
already carrying a tag classifying it as legitimate, it will
only be forwarded to the firewall (via the associated chain,
Chain 2 or Chain 3), providing faster packet transmission.
Finally, in case of a malicious type of packets, the classifier
will forward the packets to the honeypot (or honeynet,
depending on the deployment), via Chain 4, to isolate and
investigate the attack.

8

Fig. 5. Graphical User Interface for real-time monitoring of the operation of the Reactive Security Framework on the ODL Controller

transport network (which is being used for SFC) and to
declare and associate service instances to those external
ports. In the windpark case, such service instances may
include vFirewall, IDS, DPI, and Honeypot. These services
may be composed of one or multiple instances. These may
be the physical appliances or virtual machines running in
network function virtualization infrastructure (NFVI). At
the Management and Control planes, the SFC Manager
and the SFC-enabled SDN controllers are responsible for
administrating the services chains, i.e. for translating the
operator’s/tenant’s/application’s requirements into service
chains. At the Data plane, Classifiers are responsible for
assigning traffic to the appropriate service chain (based
on various criteria, such as its maliciousness or the
tenant that it belongs to, assuming tenant identities have
already been validated by authentication/authorization
components) and Service Forwarders and Proxies (where
needed) are responsible for steering traffic accordingly,
in order to realize said Service Chains. The Data plane
entities are responsible for steering traffic accordingly, to
realize the Service Chains. The Classifier assigns traffic to
its intended service chain (based on pre-defined criteria)
and the Service Function Forwarders steer traffic to the
various Service Function Nodes. If the Service Function
Nodes are not OpenFlow-speaking or SFC-aware, or are in
different domains, SFC Proxies are needed.

4.4.2. Graphical User Interface
To assess and manage the proof of concept implementa-

tion of the Reactive Security Framework, a Graphical User
Interface (GUI) was developed, as an additional module on
the ODL SDN Controller. The GUI displays instantiated
VMs/Service Chains and traffic paths, based on the chains
seen in the bottom of Figure 5. Based on this classification,
SCADA traffic goes to the SCADA IDS and then to its
intended SCADA system at the wind park. HTTP traffic
goes to normal IDS and then to its intended system at
the wind park. Malicious traffic (e.g. nmap port scan) is
detected and goes to Honeypot/Honeynet instead of its
intended target wind park system. Finally, unknown traffic
is routed to DPI for classification, where a modification

9

4.4. Implemented SDN Controller Modules

To implement the above functionality, other than the secu-
rity service functions themselves (e.g. IDS, Honeypots)
that need to be installed and setup appropriately, certain
purpose-built modules as well as enhancements to existing
SDN controller modules are needed; in this case for the
OpenDaylight (ODL) controller.

4.4.1. SFC Manager
In more detail, the SFC Manager controller module

exposes a number of interfaces that various components
can use to provide and receive information about
service chains that need to be built, which tenants want
to use them, which destinations are being accessed,
what applications the traffic pertains to and about the
service instances of the network functions. Each SFC
configuration includes a set of service nodes, a set of
service functions, a set of service function forwarders,
a set of service chains, a set of service paths and a set
of configurations for classifiers (ACL/NSH). The SFC
Manager aggregates this information, combines it, and
sends service chains in commands to the SDN Controller
(OpenDaylight [38] and SFC-ODL [39] are used).
The SDN controller, in turn, programs the underlying
forwarding elements that do the actual packet forwarding.
In essence the SDN Controller is converting commands
from the high-level SFC language to the low-level flow
filters of expressed in the OpenFlow semantics.

The SDN Controller provides an abstraction view of the
network topology. This allows the SFC Manager to focus
on the chaining itself and not on the internal topology
of the Network Controller. This means SFC Manager
manages forwarding rules and flow filters on external ports.
This significantly simplifies the configuration. However,
the SDN Controller does the necessary transformations
to put the paths (sequence of service instances where
the packet traverses) and filters (associate user based
on his profile to its respective service chain) in the
forwarding devices (OF-enabled). In particular the job of
SFC Manager is to register external ports of the SDN

in the header of the packer, can forward the traffic to the
respective active chain (legitimate, SCADA or malicious).

To preview the topology of the network, nodeJS library
[40] was used to present network topology at real-
time. Suitable REST interfaces were implemented to
import network components such as switches such as
forwarders and classifiers, security functions (FW, DPI,
IDS and SCADA-IDS) and end-hosts such as windparks,
scada, honeypots, etc. Moreover, the condition of service
functions with respect to CPU and memory utilization of
the various security service functions (i.e. the VMs running
said service functions), is also imported automatically by
the use of implemented REST interfaces presented also in
real-time on a separate table.

4.5. Architecture Sketch - Module Placement

In today’s wind parks security-related functionalities and
SCADA applications are running on dedicated locations
in the network architecture. Nowadays, these locations
have to be decided in the network planning phase and
are very difficult to change during the lifetime of a wind
park. The approach proposed in this work enables future
scenarios to add or delete functionalities or applications
in the wind park network during runtime. In order to
enhance this flexibility in a network, the principles of NFV
MANO can be combined with the framework presented
here. The expanded architecture of the framework can be
aligned to the approach described in ETSI GS NFV 002
[41], as depicted in Figure 6. This enhances the proposed
framework with flexible deployment and instantiation of
new VNFs and the automated preparation of service
functions chains and will be explored in future work.

5. PERFORMANCE EVALUATION

To evaluate the performance of the reactive framework, an
experimental testbed was developed. Furthermore, the per
traffic classification was evaluated.

5.1. Testbed Setup

The testbed featuring multiple Virtual Machines (VMs)
was developed and deployed on a Proxmox Virtualization
Environment [42] an open source server virtualization
management software, which run on a server system
(featuring 2 x Intel Xeon E5-2630 v2 6-core/12-thread
CPUs, at 2.6GHz, with 32GB RAM). The following
VMs were required in order to implement the described
scenario; three different types of virtual instances were
created (in parentheses the resources dedicated to each
VM):

1x OpenDaylight Controller instance(Boron release
(4 CPU cores, 4GB RAM)), 5x Open vSwitch [43] (v2.59)
instances: (2 x Classifiers (4 CPU cores, 1GB RAM), 3 x
Service Function Forwarders (4 CPU cores, 1GB RAM)),
4x Security Service Functions: (1x Firewall instance (4
CPU cores, 2GB RAM), 1x DPI, i.e. the custom nDPI-
based implementation (4 CPU cores, 4GB RAM), 1x
Snort-based IDS with all generic rules (4 CPU cores,
1GB RAM), 1x Snort-based SCADA IDS, with SCADA-
only rules (4 CPU cores, 1GB RAM), 4x End-hosts: (1x

Emulated Data Historian (4 CPU cores, 1GB RAM), 1x
Emulated SCADA system (4 CPU cores, 1GB RAM), 1x
Passive EWIS Honeypot (4 CPU cores, 1GB RAM), 1x
SCADA Honeypot (4 CPU cores, 1GB RAM))

5.2. Evaluation Methodology & Results

To give a proof of concept of the implemented framework
and testbed, a two steps approach is followed. The first
step contains the import of suitable templates (Service
Functions, Service Function Forwarders, Service Function
Classifiers, Service Function Chains and Access Control
Lists) in the controller in JSON formats. These templates
includes all the required information of the testbed as
presented in the previous subsection. Furthermore, the
implemented GUI module depicts realtime network traffic
monitoring interfaces and functions and Service Function
resource monitoring interfaces and functions custom of
the imported data, a screenshot of which can be seen in
Figure 5. Changes in path for different traffic types are
depicted on the GUI, with different colors to differentiate
between the active chains at each instance in time; the
various options that can be active (depicting real-time
traffic flows and their associated chains) appear in Figure
7. Moreover, in Table I, the results of the conducted
experiments are presented. Apart from the delay between
end-hosts, following the respective service function chain,
the delays between end-hosts i) when there is no function
in the middle and ii) when all the security functions
are used, are also presented. Although, the results of the
experiments are related to the location and the distance of
the VMs (in this case all are located on the same server) the
correlation between the number of functions and the delays
is obvious is useful to evaluate the results of the real traces
as are presented in the next subsection.

5.3. Analysis of Results - An Operational Wind
Park’s Network

In this section, network traces captured from an operational
wind park (in Brande, Denmark) are analyzed to highlight
the specificities of industrial traffic in the context of
this application domain [44], and assess the presented
framework’s performance in this context.

The subject wind park consists of four wind turbines
connected in a redundant star topology. These turbines
themselves consist of two switches in series, one at
the bottom, the other at the top. Connected to these
switches are numerous measurements systems, sensors and
actuators which communicate with a SCADA server also
connected to the star topology (while these connections
are currently over wired networks, they are expected
to be replaced with wireless links, tailored to industrial
environments [45, 46], in the future). A router then ensures
the connection between the central switch and the Internet.
The Park Control System mainly consists of two parts:
the Wind Farm SCADA System and the Wind Farm Grid
Control System. While the SCADA server is responsible
for the reporting, supervision, acquisition and storage
of data from the turbines, the Control System server
is responsible for controlling the power output of the
different wind turbines and to adapt it to the requirements
received from the grid operator. Traces were gathered from
three different locations, as detailed below: traffic to/from

10

Fig. 6. Expanded, NFV-O Managed and ETSI-aligned, Framework Architecture

(a) Legitimate traffic (b) Legitimate traffic classified by DPI

(c) SCADA traffic (d) SCADA traffic classified by DPI

(e) Malicious traffic (f) Malicious traffic classified by DPI

Fig. 7. Real-time traffic flows as depicted on the Controller’s GUI. Activated Service Chains are color-coded.

5.3.1. Traffic to/from the Grid Control System
Server

The data to and from the Grid Control System server
was gathered during approximately 715 seconds. Flows to
and from the Grid Control server are mostly instantaneous,

11

the Grid Control System server; traffic to/from the SCADA
server; traffic flowing through the intra-domain router. The
purpose and requirements of the flows recorded have been
analyzed thanks to the input of the network engineers
maintaining the subject wind park.

Table I. Experimental Results

Type DPI FW IDS SCADA IDS End-Hosts No of Functions Delay
No Function Anywhere 0 0,45 ms

Chain 1 - Legitimate O O Historian 2 66,57 ms
Chain 2 - SCADA O O SCADA 2 45,83 ms

Chain 3 - Malicious O Honepot 1 13,53 ms
Chain 4 - Unknown -> Legitimate O O O Historian 3 169,74 ms
Chain 4 - Unknown -> SCADA O O O SCADA 3 138,92 ms

Chain 4 - Unknown -> Malicious O O Honepot 2 116,72 ms
All Functions O O O O Anywhere 4 191,24 ms

especially for TCP, around 1300 instantaneous flows
are observed. Most of these TCP flows correspond to
exchanges for the verification of wind characteristics.
These flows send a very low amount of data (3 frames
of 62 bytes for the data, 3 frames of 60 bytes for the
ACKs). Hence, though numerous, they consume a very
little amount of data rate. These flows have an end-to-
end latency requirement of 500 ms. Of interest are the
flows of longer duration. Both for TCP and UDP, these
connections send data at a constant rate. However, it
is observed that these connections also consume a very
low amount of data rate. Indeed, the most consuming
connection has an average rate of 529kb/s, which is very
low in comparison with the available 1Gb/s links. While
the TCP flows correspond to database operations (for
logging and scheduling) and have an end-to-end latency
requirement of 100 ms, the long duration UDP flows
correspond to the regulation communications between the
Grid Control server and the turbines. These UDP flows are
the most critical and have a strict low end-to-end latency
requirement of 10 ms and averages rates of 496kb/s,
80kb/s, 40kb/s and 192b/s depending on the flows.

5.3.2. Traffic to/from the SCADA Server
The data to and from the SCADA server was gathered

during approximately 1000 seconds. Whereas the traces
contain way much connections than for the Grid Control
server (around 20.0000), most of them are best-effort
inter-domain access flows. The data rate usage is also
very low and most of the connections only send a
very small amount of data. More specifically, the most
consuming TCP connection consumes 363kb/s while the
UDP connections are really negligible with 8kb/s for
the most consuming one. The UDP connections mostly
consist of Network Time Protocol (NTP) and Dynamic
Host Configuration Protocol (DHCP) exchanges, as the
SCADA server hosts both a NTP and DHCP server.
Though small (average rate in the order of hundreds of b/s),
these numerous connections are considered critical and
have end-to-end latency requirements of 10 ms and 100 ms
respectively. A substantial amount (around 2000) of single-
packet Simple Network Management Protocol (SNMP)
exchanges with end-to-end latency requirements of 500 ms
is also recorded. For their part, the TCP connections mostly
consist of online data exchange between the SCADA
server and the wind turbines. Though critical, these flows
only have end-to-end requirements of 100 ms, 250 ms and
500 ms depending on the specific service. A big amount
of instantaneous single-packet UDP exchanges between
the SCADA server and the turbines can also be observed.

These have a more stringent end-to-end delay requirement
of 10 ms.

5.3.3. Traffic Flowing through the Intra-Domain
Router

The data flowing through the intra-domain router was
gathered during approximately 1500 seconds. While the
data rate consumption observed in the Grid Control and
SCADA traces was low, the intra-domain router trace
shows even fewer data transmissions. Most of the TCP
connections are instantaneous. These correspond to best-
effort inter-domain database accesses. The only long
duration TCP connection with real-time requirements
corresponds to an inter-domain database access with an
end-to-end real-time requirement of 100 ms. Some short
TCP connections can also be observed, which correspond
to regulatory exchanges with real-time requirements of
250 ms or 500 ms. Some observed UDP connections
with a (nearly) constant rate correspond to critical NTP
connections which have a stringent end-to-end latency
requirement of 10 ms. Around 400 seconds and 600
seconds, bursts are observed for several connections. These
correspond to SNMP exchanges between the devices
in the network and an external network management
system. These exchanges are not critical and correspond
to scheduled jobs for visual display and reporting.

5.3.4. Discussion
The analysis of the traces has shown that industrial

networks have very low data rate requirements. While a
lot of short bursty flows exist, only a few of them have
QoS requirements. Though these requirements can reach
hundreds of milliseconds, a couple of critical flows have
stringent low latency requirements of the order of tens of
milliseconds. It was also observed that the traces contain
a lot of best-effort traffic, also bursty (short duration) for
most of them. Even though the average data rate is not
a critical factor, this shows that proper QoS management
is needed to guarantee that the real-time requirements of
critical flows are met even during the short periods when
bursts of best-effort database or SNMP exchanges are also
transmitted on the network.

Considering the performance of the framework, as
evaluated above, and in light of the above findings on the
actual wind park, several conclusions can be made. An
important observation for the results is that the proposed
reactive framework is applicable to operational wind parks,
as the additional delays are affordable for most critical
services (which all have latency requirements of 100ms,
250ms or 500ms). Furthermore, although the emulated

12

framework as a whole will be evaluated in detail, to assess
the impact of the proposed mechanisms in the context of
the industrial domain and its associated intricacies. For this
purpose, a testbed is already being setup on the operating
wind park, in Brande, Denmark, where the trace analysis
was conducted; this testbed will form the basis for the real-
time evaluation of the framework’s performance, as well as
its behaviour under different attack scenarios.

ACKNOWLEDGEMENT

This work has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 671648 (VirtuWind). The
authors would like to thank their colleagues from project
VirtuWind for their valuable feedback during the design
phase of the framework, as well as the network engineers
maintaining the subject wind park for their important input
in defining the application requirements and analyzing the
network traces.

REFERENCES

1. M. Jose da Silva T. Lins and R. A. Rabelo
Oliveira. Software-defined networking for industry
4.0. In 20th Advanced International Conference on
Telecommunications, 2016.

2. N. Petroulakis, T. Mahmoodi, V. Kulkarni, A. Roos,
P. Vizarreta, K. Abbasik, X. Vilajosana, S. Spirou,
A. Matsiuk, and E. Sakic. Virtuwind: Virtual and
programmable industrial network prototype deployed
in operational wind park, 2016.

3. Cyber-Attack Against Ukrainian Critical Infrastruc-
ture. Alert (IR-ALERT-H-16-056-01), 2015.

4. NERC Standard CIP. 007-6-Cyber Security-Systems
Security Management. 2013.

5. Service Function Chaining (SFC) Architecture, RFC
7665. 2015.

6. K. Fysarakis, N. E. Petroulakis, A. Roos,
K. Abbasi, P. Vizaretta, G. Petropoulos, E. Sakic,
G. Spanoudakis, and I. Askoxylakis. A Reactive
Security Framework for Operational Wind Parks
Using Service Function Chaining. In ISCC, 2017.

7. T. Mahmoodi, V. Kulkarni, W. Kellerer, P. Mangan,
F. Zeiger, S. Spirou, I. Askoxylakis, X. Vilajosana,
H. Joachim Einsiedler, and J. Quittek. VirtuWind:
virtual and programmable industrial network pro-
totype deployed in operational wind park. Trans-
actions on Emerging Telecommunications Technolo-
gies, 27(9):1281–1288, 2016.

8. P. Quinn and T. Nadeau. Problem Statement for
Service Function Chaining, apr 2015.

9. L4-L7 Service Function Chaining Solution Architec-
ture. Open Networking Foundation, 2015.

10. Sfc environment security requirements. https://
tools.ietf.org/html/draft-mglt-sfc/
securityenvironment-req-01.

11. D.l Bhamare, R. Jain, M. Samaka, and A. Erbad.
A survey on service function chaining. Journal of

13

experiments of service SFC provisioning were conducted
between VMs on a same server, thus minimizing network
delays, the multiple gigabit interconnections present in
a wind park all feature low latencies (through over-
provisioning), and are, therefore, expected to introduce
minimal delays. Finally, the evaluation of the proposed
framework in an actual wind park, validates the feasibility
of the approach, providing the necessary sophisticated,
dynamic and continuous security monitoring required in
industrial networks nowadays.

6. CONCLUSIONS AND FUTURE WORK

This work presented an approach to achieve reactive
security for SDN/NFV-enabled industrial networks, based
on the use of SFC to dynamically chain various security
functions, classify traffic and steer traffic accordingly.
The proof-of-concept application of this approach led
to the development of a reactive security framework
modelled on (and deployable to) an actual, operating wind
park, allowing continuous monitoring of the industrial
network and detailed analysis of potential attacks, thus
isolating attackers and enabling the assessment of their
level of sophistication (e.g. from script kiddies to
state actors). The deployment of this reactive security
framework not only enhances the industrial network’s
security, but also decreases the performance impact
of the security functions. The DPI’s performance
impact is minimised as the traffic only has to go
through one DPI instance, and the same can be said
for the IDS/IPS functionality, as e.g. SCADA traffic
only has to go through a faster-performing, SCADA-
specific IDS instance. The performance evaluation of the
framework’s implementation validates the feasibility of the
approach, also considering the current performance and
requirements, as aggregated from an actual, operating wind
park.

As future work, improvements will be investigated
in both the security service functions as well as the
implementation of the DPI functionality (essential for
traffic-type classification), to minimize the impact of the
framework on the network’s performance and enable its
use in more time-critical industrial applications. Moreover,
the framework will be enhanced via the use of an open
source NFV Management and Orchestration (MANO)
software stack, which, via the definition of the service
templates at the MANO, will be responsible for the boot-
up of the necessary VMs using a Virtual Infrastructure
Management (VIM) software (e.g. OpenStack). In turn,
the MANO will be used to program the ODL Controller
accordingly, passing the necessary information to the
SFC Manager. This will also enable a more accurate
monitoring of the Service Functions’ resources (e.g.
allowing the instantiation of additional VMs when one
of the existing functions is overloaded). Moreover, the
automated reactiveness of the framework will be enhanced
with the integration of SDN security patterns [47] on
the ODL controller via the development of an associated
model and the introduction of an adaptive access control
mechanism that will enable the policy-based management
of multiple controllers, across domains [48]. Finally,
the performance of the individual components and the

T

https://tools.ietf.org/html/draft-mglt-sfc/security environment-req-01
https://tools.ietf.org/html/draft-mglt-sfc/security environment-req-01
https://tools.ietf.org/html/draft-mglt-sfc/security environment-req-01

Network and Computer Applications, pages 138 –
155, 2016.

12. P. Quinn and J. Guichard. Service function chaining:
Creating a service plane via network service headers.
Computer, 47(11):38–44, 2014.

13. P. Quinn and U. Elzur. Network Service Header.
Network Working Group, IETF Draft, 2016.

14. Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre,
R. Manghirmalani, R. Mishra, Ri. Patneyt, M. Shi-
razipour, R. Subrahmaniam, C. Truchan, and M. Tati-
pamula. StEERING: A software-defined networking
for inline service chaining. In ICNP, 2013.

15. Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. SIMPLE-fying middlebox policy
enforcement using SDN. In Proceedings of the
ACM SIGCOMM 2013 conference on SIGCOMM -
SIGCOMM ’13, page 27, New York, New York, USA,
2013. ACM Press.

16. GS NFV-SEC 013 ETSI. Network functions
virtualisation (nfv) release 3; security; security
management and monitoring specification. 2017.

17. S. Mehraghdam, M. Keller, and H. Karl. Specifying
and placing chains of virtual network functions. In
2014 IEEE 3rd International Conference on Cloud
Networking, CloudNet 2014, pages 7–13, 2014.

18. J. Blendin, J. Ruckert, N. Leymann, G. Schyguda,
and D. Hausheer. Position paper: Software-defined
network service chaining. In Proceedings - 2014 3rd
European Workshop on Software-Defined Networks,
EWSDN 2014, pages 109–114, 2014.

19. S. Kumar, M. Tufail, S. Majee, C Captari, and
S. Homma. Service Function Chaining Use Cases in
Data Centers. 2016.

20. W. Haeffner, J. Napper, M. Stiemerling, D. Lopez,
and J. Uttaro. Service Function Chaining Use Cases
in Mobile Networks. 2015.

21. W. John, K. Pentikousis, G. Agapiou, E. Jacob,
M. Kind, A. Manzalini, F. Risso, D. Staessens,
R. Steinert, and C. Meirosu. Research Directions
in Network Service Chaining. In IEEE SDN for
Future Networks and Services (SDN4FNS), pages 1–
7. IEEE, nov 2013.

22. H. Liao, C. Richard Lin, Y. Lin, and K. Tung.
Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications,
36(1):16–24, 2013.

23. L. Vokorokos, M. Ennert, M. Cajkovský, and
J. Radušovský. A Survey of parallel intrusion
detection on graphical processors. Open Computer
Science, 4(4), jan 2014.

24. A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral.
Deep Packet inspection as a service. In 10th ACM
International Conference on Emerging Networking
Experiments and Technologies, CoNEXT 2014, pages
271–282, 2014.

25. Microservices a definition of this new archi-
tectural term. http://martinfowler.com/
articles/microservices.html.

26. J. Thönes. Microservices. IEEE Software, 32, 2015.
27. Microservices five architectural constraints.

http://www.nirmata.com/2015/02/
microservices-five-architectural\
discretionary{-}{}{}constraints/.

28. M. Mahalingam, D. Dutt, K. Duda, P. Agarwal,
L. Kreeger, T Sridhar, M. Bursell, and C. Wright.
Virtual extensible local area network (vxlan):
A framework for overlaying virtualized layer 2
networks over layer 3 networks, no. rfc 7348.
Technical report, 2014.

29. Service function chaining (sfc) working group.
https://datatracker.ietf.org/wg/
sfc/charter/.

30. Snort. http://blog.snort.org/2012/01/
snort-292-scada-preprocessors.html.

31. Snort 2.9.2: Scada preprocessors. http://www.
snort.org.

32. Honeyd. https://github.com/sk4ld/
gridpot.

33. Scada honeynet project. http://
scadahoneynet.sourceforge.net.

34. P. Chatziadam, I. G. Askoxylakis, and A. Fragki-
adakis. A network telescope for early warning intru-
sion detection. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), volume
8533 LNCS, pages 11–22, 2014.

35. Open source security. https://pfsense.org/.
36. Vm-series: Next-generation security for

private and public clouds. https://www.
paloaltonetworks.com/.

37. ndpi: Open and extensible lgplv3 deep packet
inspection library. http://www.ntop.org/
products/deep-packet-inspection/
ndpi/.

38. Opendaylight: Open source sdn platform. https:
//www.opendaylight.org.

39. Odl wiki: Service function chaining. https:
//wiki.opendaylight.org/view/
Service_Function_Chaining:Main.

40. Nodejs library. http://www.nodejs.org.
41. ETSI Group Specification NFV 002. Network func-

tions virtualisation (nfv); architectural framework.
42. Proxmox virtual environment. http://www.

proxmnox.com.
43. Open virtual switch. http://www.

openvswitch.org.
44. Project VirtuWind. Deliverable D3.2: Detailed Intra-

Domain SDN & NFV Architecture, 2017.
45. B. Martinez, X. Vilajosana, Il Kim, J. Zhou, P. Tuset-

Peiró, A. Xhafa, D. Poissonnier, and X. Lu. I3Mote:
An Open Development Platform for the Intelligent
Industrial Internet. Sensors, 17(5):986, apr 2017.

46. D. Dujovne, T. Watteyne, X. Vilajosana, and
P. Thubert. 6TiSCH: deterministic IP-enabled
industrial internet (of things). IEEE Communications
Magazine, 52(12):36–41, dec 2014.

47. N. E Petroulakis, G. Spanoudakis, and I. G
Askoxylakis. Patterns for the design of secure and
dependable software defined networks. Elsevier
Computer Networks, 109:39–49, 2016.

48. K. Fysarakis, O. Soultatos, C. Manifavas, I. Papaef-
stathiou, and I. Askoxylakis. Xsacd - cross-domain
resource sharing & access control for smart environ-
ments. Future Generation Computer Systems, 2016.

14

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://www.nirmata.com/2015/02/microservices-five-architectural\discretionary {-}{}{}constraints/
http://www.nirmata.com/2015/02/microservices-five-architectural\discretionary {-}{}{}constraints/
http://www.nirmata.com/2015/02/microservices-five-architectural\discretionary {-}{}{}constraints/
https://datatracker.ietf.org/wg/sfc/charter/
https://datatracker.ietf.org/wg/sfc/charter/
http://blog.snort.org/2012/01/snort-292-scada-preprocessors.html
http://blog.snort.org/2012/01/snort-292-scada-preprocessors.html
http://www.snort.org
http://www.snort.org
https://github.com/sk4ld/gridpot
https://github.com/sk4ld/gridpot
http://scadahoneynet.sourceforge.net
http://scadahoneynet.sourceforge.net
https://pfsense.org/
https://www.paloaltonetworks.com/
https://www.paloaltonetworks.com/
http://www.ntop.org/products/deep-packet-inspection/ndpi/
http://www.ntop.org/products/deep-packet-inspection/ndpi/
http://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.opendaylight.org
https://www.opendaylight.org
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
https://wiki.opendaylight.org/view/Service_Function_Chaining:Main
http://www.nodejs.org
http://www.proxmnox.com
http://www.proxmnox.com
http://www.openvswitch.org
http://www.openvswitch.org

	1 Introduction
	2 Service Function Chaining
	2.1 Background and Motivation
	2.2 Terms and definitions
	2.3 Related Work
	2.4 Security Service Chaining

	3 Use Cases of Security Service Function Chaining
	3.1 Per Tenant Type Classification
	3.1.1 Security Services on-demand Tenant Use Case
	3.1.2 Industrial Internet of Things Tenant Use Case

	3.2 Per Application Type Classification
	3.3 Per Traffic Type Classification

	4 Reactive Security Framework Implementation
	4.1 Overview
	4.2 Deployed Security Service Functions
	4.2.1 IDS and SCADA IDS
	4.2.2 Honeynet
	4.2.3 Firewall
	4.2.4 DPI

	4.3 Service Chain Classification
	4.4 Implemented SDN Controller Modules
	4.4.1 SFC Manager
	4.4.2 Graphical User Interface

	4.5 Architecture Sketch - Module Placement

	5 Performance Evaluation
	5.1 Testbed Setup
	5.2 Evaluation Methodology & Results
	5.3 Analysis of Results - An Operational Wind Park's Network
	5.3.1 Traffic to/from the Grid Control System Server
	5.3.2 Traffic to/from the SCADA Server
	5.3.3 Traffic Flowing through the Intra-Domain Router
	5.3.4 Discussion

	6 Conclusions and Future Work

