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FEYNMAN DIAGRAMS AND MINIMAL MODELS FOR OPERADIC
ALGEBRAS

J. CHUANG AND A. LAZAREV

Abstract. We construct an explicit minimal model for an algebra over the cobar-construction
of a differential graded operad. The structure maps of this minimal model are expressed
in terms of sums over decorated trees. We introduce the appropriate notion of a homotopy
equivalence of operadic algebras and show that our minimal model is homotopy equivalent to
the original algebra. All this generalizes and gives a conceptual explanation of well-known
results for A∞-algebras. Further, we show that these results carry over to the case of algebras
over modular operads; the sums over trees get replaced by sums over general Feynman graphs.
As a by-product of our work we prove gauge-independence of Kontsevich’s ‘dual construction’
producing graph cohomology classes from contractible differential graded Frobenius algebras.

1. introduction

The existence of a minimal model for an A∞-algebra was proved by Kadeishvili [14]; the
precursor of this result is the Sullivan theory of minimal models for rational homotopy types
[30], the latter being minimal models for L∞-algebras of a special type. More recently minimal
models have found applications in theoretical physics, for example in string field theory and
quiver gauge theory, cf. e.g. [21, 31, 2, 1, 15].

In the later developments it is important to have explicit formulas for the structure maps of
minimal models. The formulas appearing in [28], [24] and [19] express the structure maps of
minimal A∞-algebras in terms of sums over trees similar to those arising in the perturbative
expansions of path integrals. In the quoted references the formulas are established by direct
calculation; one of the aims of the present paper is to give conceptual and combinatorics-free
proofs. In doing so we discovered that the result holds in considerably greater generality, namely
for algebras over cobar-constructions of dg operads (or, more generally, cofibrant operads).
Abstractly (i.e. without an explicit formula) the minimal model theorem can also be derived
from the results of [4] on the closed model category structure on operads in chain complexes.

Encountering a sum over trees, one naturally seeks an interpretation of the corresponding
sum with arbitrary graphs replacing trees. It turns out that sums over graphs do appear in
formulas for minimal models of algebras over modular operads. In some special cases, namely,
for algebras over a modular operad that is the Feynman transform of the naive closure of a
cyclic operad, the terms corresponding to graphs with nontrivial fundamental group vanish and
we are left with trees only. In particular we recover formulas for minimal models of symplectic
A∞-algebras, cf. [15].

Our main tool is the BV-resolution of an operad, introduced in the modular context in
[6]. In the present paper we have chosen to focus instead on ordinary operads, to make the
work accessible to a larger audience. However we stress that our methods carry over in a
straightforward fashion to the modular case; the corresponding results for modular operads are
stated later on in the paper.

To any operad O we associate another operad BVO and a quasi-isomorphism of operads
BVO → O which admits a right inverse O → BVO. An algebra over BVO is the same as
an O-algebra together with a Hodge decomposition. A Hodge decomposition of a complex is a
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decomposition of it into its homology and a contractible part, subject to some natural axioms.
A Hodge decomposition is an instance of a strong homotopy retraction data (cf. for example
[20]).

The operad BVO contains the canonical cofibrant resolution of O given by the double cobar-
construction which we denote by bvO; the latter is essentially the linear version of the Boardman-
Vogt tree complex [5]. While not cofibrant, the operad BVO is rather close to the cofibrant
operad bvO; this fact allows one to associate a minimal model to a Hodge decomposition. In
fact, we are using this property of BVO (implicitly or explicitly) in almost all our constructions.

We also introduce the notion of a homotopy equivalence of algebras over operads or modular
operads and show that (nonminimal) operadic algebras are homotopy equivalent to their mini-
mal models. In the case of A∞, L∞ or C∞ algebras this notion reduces to the familiar one of
an ∞-quasi-isomorphism. We believe that it is of independent interest; as an application we
show that for a modular operad O the O-graph cohomology classes arising from contractible
O-algebras via Kontsevich’s dual construction [17] do not depend on the choice of contracting
homotopy (gauge independence).

In this paper we work mostly in the category of Z/2-graded vector spaces (also known as
super-vector spaces) over a field k of characteristic zero. However all our results (with obvious
modifications) continue to hold in the Z-graded context. The adjective ‘differential graded’ will
mean ‘differential Z/2-graded’ and will be abbreviated as ‘dg’. All of our unmarked tensors are
understood to be taken over k. For a Z/2-graded vector space V = V0⊕V1 the symbol ΠV will
denote the parity reversion of V ; thus (ΠV )0 = V1 while (ΠV )1 = V0.

1.1. Minimal models for A∞-algebras. Before diving into our general constructions, we wish
to motivate our operadic approach. So we begin by recalling the explicit formulas for minimal
models of A∞-algebras given by Merkulov [28], interpreted as sums indexed over planar trees
by Kontsevich and Soibelman [19].

Let A be an A∞-algebra, i.e., a dg vector space equipped with odd structure maps

mn : (ΠA)⊗n → ΠA, n ≥ 2,

subject to the identities∑
i+j+k=n

mi+1+k(id⊗i⊗mj ⊗ id⊗k) = 0, n ≥ 1,(1.1)

where m1 is the differential of ΠA.
Let B be another A∞-algebra. An A∞-morphism f : A → B is a collection of even maps

fn : (ΠA)⊗n → ΠB, n ≥ 1 intertwining the structure maps on A and B in an appropriate way.
We say that f is an A∞-isomorphism (resp. A∞-quasi-isomorphism) if f1 is an isomorphism
(resp. quasi-isomorphism) of dg spaces.

The structure map m2 on A induces an associative product on the homology H(A) of A. The
minimal model theorem states that it is possible to extend this product to an A∞-structure on
H(A) in such a way that there exists a A∞-quasi-isomorphism f : H(A)→ A.

We now describe Merkulov’s approach, in which both the A∞-structure on H(A) and the
map f are constructed explicitly. Choose a decomposition A = W ⊕K of A as a direct sum of
sub dg spaces, such that K is acyclic, together with a contracting homotopy h : K → K such
that h2 = 0. Later we shall call this a Hodge decomposition of A. We are most interested in
canonical Hodge decompositions, where the differential vanishes on W , so that W is identified
with H(A); such decompositions always exist. The chosen decomposition is not required to be
compatible with the A∞-structure in any way.

We define new operators m̃n : (ΠA)⊗n → ΠA, n ≥ 2 as follows. Let t : ΠA → ΠA be the
projection of ΠA onto ΠW along ΠK, and let s : ΠA → ΠA be equal to Πh on ΠK and 0 on
ΠW . Let T be a planar rooted tree with n + 1 extremities; we assume that each vertex has
valence at least 3. We label the extremities by t, all other edges by s and each vertex of valence
v by mv−1. Then m̃T is constructed by working from the canopy of the tree down to the trunk,
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composing labels in an obvious manner. For the tree pictured in Figure 1 we have

m̃T = tm4(id⊗sm2 ⊗ id⊗2)(sm2 ⊗ id⊗sm3 ⊗ id⊗2)t⊗8.
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Figure 1. Definition of m̃T .

We define m̃n =
∑

T m̃T : (ΠA)⊗n → ΠA, where the sum is taken over all planar rooted
trees with n + 1 extremities. It can be shown by direct calculation [28, 24, 19] that the m̃n

satisfy the A∞-constraint (1.1). The new A∞-structure on A thus defined restricts to one on
W , and the inclusion of W into A extends to an A∞-quasi-isomorphism defined similarly as a
sum over trees. In the case of canonical Hodge decomposition, W ∼= H(A), and the minimal
model theorem is proved. (On the other hand for the trivial Hodge decomposition A = A⊕ 0,
we obtain m̃n = mn.)

What is the significance of the individual operators m̃T , before they are summed to obtain
m̃n ? And what does it mean to allow any edge of a tree to be labelled either by s or by t ? In
answering these questions, we will arrive at the structure maps m̃n in a conceptual way, so that
the A∞-constraint (1.1) is automatically satisfied. A key idea is to regard the operators s and
t coming from a Hodge decomposition of A as part of an enhanced algebraic structure on A.

The language of operads is well suited to encode and develop the additional structure. We
view an A∞-algebra as an algebra over a certain operad O = BAss, and interpret a Hodge
decomposition as an extension of the action of O to a larger operad BVO. The operations m̃T

represent the actions of particular elements of BVO; in this context sums over trees arise natu-
rally. Moreover the passage from an A∞-algebra A to its minimal model H(A) may be regarded
as a homotopy from the trivial Hodge decomposition to a canonical Hodge decomposition.

1.2. Notation and conventions. The general modern reference for differential graded operads
is the work of Ginzburg and Kapranov [10]; the corresponding reference for modular operads is
[9]. We adopt most of the notation and terminology from these two papers.

An S-module is a collection of dg vector spaces {V(n) | n ≥ 1} with an action of the symmetric
group Sn on V(n). Furthermore, if V is an S-module and I is a finite set then we set

V(I) :=
[⊕

V(n)
]

Sn

where the direct sum is extended over all bijections {1, 2, . . . , n} → I.
Recall that a dg operad is an S-module O together with composition maps ◦i : O(m)⊗O(n)→

O(m + n − 1) satisfying some natural compatibility and invariance conditions. For brevity’s
sake, when we say ‘operad’ we will usually mean ‘dg operad’.

An operad O is unital if there is an element 1 ∈ O(1) such that 1 ◦1 x = x = x ◦i 1 for all
x ∈ O(m), 1 ≤ i ≤ m. A unital operad O is called admissible if O(1) = k is the span of 1, and
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O(n) is a finite-dimensional dg vector space for any n. This notion is slightly more restrictive
than the one used in [10] but sufficient for our purposes.

For an admissible operad O we will denote by Ō the non-unital operad for which

Ō(n) =

{
0 if n = 1,
O(n) if n > 1.

For a dg vector space V we will write E(V ) for the endomorphism operad {E(V )(n)} =
{Hom(V ⊗n, V )} of V . An algebra structure over a dg operad O on V is a map of dg operads
O → E(V ). If O is unital we usually assume the map is unital, i.e., the unit of O acts as the
identity on V .

In this paper the language of trees is used throughout. A tree is a non-empty oriented
connected graph T with no loops such that any vertex of T has exactly one outgoing edge and
at least one incoming edge. The edges which abut only one vertex are called extremities; the
unique outgoing extremity is called the root of a tree and the remaining extremities are called
leaves. The set of internal edges, i.e., edges which are not extremities, is denoted Edge(T ). The
collection of vertices of T will be denoted by Vert(T ). For a vertex v ∈ T the set of incoming
edges will be called In(v). A tree is reduced if it has no bivalent vertices. Let I be a finite set.
An I-labelled tree is a tree T together with a bijection between I and the set of leaves of T . A
{1, . . . , n}-labelled tree will simply be called an n-tree.

If V = {V (n)} is an S-module and T is a tree we will denote by V(T ) the dg vector space⊗
v∈Vert(T ) V(In(v)); we will also call V(T ) the space of V-decorations on T since it is spanned

by tensors ⊗vxv corresponding to a choice of a ‘decoration’ xv ∈ V(In(v)) on each vertex v of
T .

The free operad on an S-module V will be denoted by TV; recall that TV(n) = ⊕TV(T ),
where the sum is over all (isomorphism classes) of n-trees.

For any n-tree T an operad O determines a homomorphism µT : O(T ) → O(n) which
corresponds to taking operadic compositions in O(T ) along the internal edges of T .

For an ungraded vector space V of dimension n and d ∈ Z/2 we write Detd(V ) for the Z/2-
graded vector space (ΠnΛnV )⊗d.For a finite set S we write Detd(S) for Detd(kS). Note that
Detd(S)∗ is canonically isomorphic to Detd(S).

The paper is organized as follows. In Section 2 we recall the notions of the cobar-construction
of an operad, as well as the bv– and BV–resolutions of an operad. We also discuss the analogous
constructions in the context of modular operads. Section 3 contains our main construction
– a minimal model of an algebra over an admissible operad. In Section 4 we show that our
minimal model is indeed homotopy equivalent (in the appropriate sense) to the original operadic
algebra. This general notion of homotopy equivalence agrees with the familiar notion of infinity-
equivalence in the case of A∞, C∞ or L∞-algebras. We also discuss the Maurer-Cartan moduli
spaces associated to a differential graded Lie algebras and a suitable notion of homotopy between
Maurer-Cartan elements. This material is presumably well known to experts but we are unaware
of any published reference. In section 5 we extend our results to the setting of algebras over
modular operads.

2. Resolutions of operads

We start by recalling the notion of the cobar-construction of an operad, following [10].

Definition 2.1. Let P be an admissible dg operad. The cobar-construction BP is the dg operad
whose underlying operad of graded vector spaces is the free operad on the S-module ΠP̄∗. The
differential in BP is the sum of the internal differential in P̄∗ and the cobar-differential. The
latter is induced on ΠP̄∗ by the structure map TP → P of the operad P; it then uniquely
extends to the whole of BP by the Leibniz rule.

Since P̄(1)∗ = 0, we have BP(n) =
⊕

T (ΠP̄∗)(T ) where the sum is over all reduced n-trees.
Moreover P 7→ BP defines a self-adjoint endofunctor on the category of admissible operads.
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It is known, cf. [10, Theorem (3.2.16)], that the canonical counit map BBP → P is a quasi-
isomorphism, i.e. BBP is a resolution of P.

The structure of BBP appears rather complicated. We now describe another resolution of
P, the so-called BV-resolution, which is very close to BBP but admits an extremely simple
description in terms of generators and relations.

Definition 2.2. Let P be an admissible dg operad. Its BV-resolution BVP is the unital dg
operad freely generated over P by an odd operation s and an even operation t, both in P(1),
subject to the relations:

• s2=0;
• t2 = t;
• st = ts = 0.

The differential d on BVP extends the differential on P, and d(s) = 1− t and d(t) = 0.

Remark 2.3. We can write P[s, t]/(s2, t2 − t, st) for the BV-resolution of P (without the
differential).

Algebras over BVP admit an especially simple description, as the following Proposition
demonstrates; its proof is a simple unraveling of the definitions.

Definition 2.4. Let V be a dg vector space. A Hodge decomposition of V is a choice of an odd
operator s : V → V such that

• s2 = 0,

and an even operator t : V → V such that

• t2 = t;
• dt = td.

In addition the following identities for the operators s and t hold:

• st = ts = 0;
• (ds+ sd)(a) = a− t(a) for any a ∈ V.

If dt = 0 we say that the Hodge decomposition is canonical, and if t = idV (and thus s = 0)
that it is trivial.

Proposition 2.5. Let P be an admissible dg operad and V be a dg vector space. Then the
structure of an BVP-algebra on V is equivalent to the following data:

(1) The structure of a P-algebra on V .
(2) A Hodge decomposition of V .

�

Remark 2.6. Given a Hodge decomposition of a dg vector space V , we have V = Im(t) ⊕
Im(idV −t), and s restricts to a contracting homotopy on the second summand. Conversely
any decomposition V = W ⊕K where K is equipped with a square-zero contracting homotopy
determines a Hodge decomposition. The decomposition is canonical if and only if W ∼= H(V )
and trivial if and only if K = 0.

Moreover canonical Hodge decompositions always exist. Let d denote the differential in V
and set V0 = Ker d and U = Im d. Choose a complement W to U inside V0, and a complement
U ′ to V0 inside V . We have therefore

V = W ⊕ (U ⊕ U ′).

Define the operator t : V → V to be the projection onto W , and define s : V → V to be zero
on W ⊕U ′ and inverse to d : U ′ → U when restricted to U . Then it is easy to check that s and
t satisfy the identities of Definition 2.4. Since dt = 0 by construction, we obtain a canonical
Hodge decomposition.
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We will now give another, more concrete, description of the BV-resolution of an admissible
dg operad as a kind of decorated tree complex. We start by defining the notion of a two-colored
tree or BV-tree.

Definition 2.7. A BV-tree is a tree T having the following additional structure: the set Edge(T )
of internal edges is partitioned into two subsets consisting of black edges and white edges. We
additionally require that the bivalent vertices of T are adjacent to extremities.

We will denote the set of black edges of a BV-tree T by Edgeb(T ). For typographic reasons
we will draw the black edges using straight lines and the white edges using wiggly lines. Note
that the extremities of a BV-tree have no color; to emphasize this we will draw the extremities
using dotted lines.

There is an obvious notion of isomorphism between two BV-trees. Define two types of
operations on BV-trees:

(1) contractions of black edges. For a black edge e ∈ Edgeb(T ) this operation will be written
as T 7→ Te.

(2) replacing a black edge by a white edge. For a black edge e ∈ Edgeb(T ) this operation
will be written as T 7→ T e.

We can now introduce the two-colored tree version of the BV-resolution of an admissible
operad P, which will be temporarily denoted by BV′(P).

Given a BV-tree T we put

P[T ] := Det(Edgeb(T ))⊗ P(T ),

a twisted version of the space of P-decorations on T . To make sense of P(T ) we are forgetting the
coloring, treating T as a usual tree. Let e ∈ Edgeb(T ) be a black edge. Then the contraction
T 7→ Te determines a parity-reversing linear map de : P[T ] → P[Te] given by the operadic
composition in P; similarly the operation T 7→ T e determines tautologically an odd map de :
P[T ]→ P[T e].

We define
BV′P(n) :=

⊕
T

P[T ].

Here the direct sum is extended over isomorphism classes of all n-BV-trees T , with differential
d determined by the formula

(2.1) d|P[T ] = dP +
∑

e∈Edgeb(T )

[de + de],

where dP is the internal differential induced by the differential on P. The following result is an
analogue of Proposition 8.6 of [6]; its proof (which we omit) is similar to, but simpler than, the
proof in the cited reference.

Proposition 2.8. There is an isomorphism of complexes

BVP(n) ∼= BV′P(n).

Under this isomorphism the operadic composition in BVP is given by glueing decorated BV-trees
according to the following rule: graft extremities to make a new internal edge and then contract
the newly formed edge, using the operadic composition in P. If the resulting decorated colored
tree contains a bivalent vertex connecting two internal edges, it is considered to be zero, unless
both edges are white in which case the vertex is removed and the edges are merged into a single
white edge; this process ensures that a decorated BV-tree is obtained.

�

We present in Figure 2 an example of a composition of three decorated BV-trees. The bivalent
vertices are implicitly decorated by 1 ∈ k = P(1).

We now explain how to compute BV-tree amplitudes of BVP-algebras. Let V be a dg vector
space with the structure of a BVP-algebra; this amounts to having a P -algebra structure on
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Figure 2. Composition of decorated BV-trees

V together with two operators s and t on V satisfying the conditions of Definition 2.4. Let
x ∈ P[T ] be a P-decoration on an n-BV-tree T ; Then via the action map BVP → E(V ), x
determines an operator ZPV (x) ∈ E(V )(n) = Hom(V ⊗n, V ) with the following description.

The action map P → E(V ) allows one to view x as an E(V )-decoration on T . Thus, each
vertex v of T has an element in E(V )(In v) attached to it. Take the tensor product of these
elements over all vertices of T . Then ZPV (x) is computed by contracting the resulting tensor
along all edges of T and interpreting black edges and white edges as compositions with the
operators s and t respectively.

We conclude by explaining how BVP is closely related to the standard free resolution of
P provided by the twice-iterated cobar-construction. To any BV-tree T we can associate the
BV-tree Tt obtained from T by glueing a white edge onto each leg. Then the image of the
map T 7→ Tt consists of the BV-trees all of whose extremities are connected to white edges by
bivalent vertices.

We define bvP to be the truncation of BVP by the idempotent t, i.e. the suboperad of BVP
defined by

bvP(n) :=
⊕
T

P[Tt],

where the sum is over all n-BV-trees. The element t serves as the operad unit for bvP.
The following result is the tree version of Proposition 8.8 of [6]; the proof carries over almost

verbatim. For part (a) here we are appealing to the description in [25, Section 3] of BBP
in terms of ‘metric trees’ (whereas in [6] we used the modular analogue [10, Theorem 5.4]).
The analogous combinatorial description of the double bar construction of a wheeled properad
appears in [26, Proof of Theorem 4.2.5].

Proposition 2.9. Let P be an admissible dg operad.
(1) We have an isomorphism bvP ∼= BBP of dg operads.
(2) The inclusion bvP ↪→ BVP is a quasi-isomorphism of dg operads.
(3) The embedding P ↪→ BVP and the augmentation BVP → P are quasi-isomorphisms of

dg operads.
7
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3. Main construction

Let O be an operad and V be an O-algebra; by abuse of notation we shall also denote by
V the underlying dg vector space. The following diagram of operads summarizes the results of
the previous section:

(3.1) bvO i //

p

��

BVO

h
���
�
�

q
uuO

f
//

j
77

E(V ) E(H(V ))? _oo

The map q : BVO = O[s, t]/(s2, st, t2 − t)→ O is defined by setting s 7→ 0, t 7→ 1; the map j is
the canonical splitting of q given by considering elements of O as O-decorated BV-trees with no
edges. The map i is the inclusion of bvO as a suboperad consisting of O-decorated trees whose
extremities are connected to white edges by bivalent vertices, and p = q ◦ i. The map f is the
given O-algebra structure on V . The map h corresponds to a chosen Hodge decomposition of
V . Recall that the maps i, j, q and p are quasi-isomorphism of dg operads and that the map
p : bvO → O is the canonical resolution of O by the cofibrant operad bvO. Note also that
h ◦ j = f , and hence the whole diagram (3.1) is homotopy commutative.

Finally, in the case when our Hodge decomposition is canonical the projector t : V → H(V )
determines an inclusion of dg operads E(H(V )) ↪→ E(V ).

The composition h ◦ i allows one to regard V as a bvO-algebra. The action of bvO restricts
to the image Im(t) of the operator t of the Hodge decomposition, and if the chosen Hodge
decomposition of V is canonical then Im(t) = H(V ). In this case it is natural to call the space
H(V ) together with this bvO-algebra a minimal model of the O-algebra V . We will, however,
reserve the term ‘minimal model’ for another (closely related) notion.

Definition 3.1. Suppose that the map of operads p : bvO → O admits a right inverse, i.e.,
a map k : O → bvO so that p ◦ k = idO, and that the Hodge decomposition of the dg vector
space V is canonical. The structure of an O-algebra on the space V determined by the operad
map h ◦ i ◦ k : O → E(V ) is called a minimal model of the O-algebra V . Since the image
h ◦ i ◦ k : O → E(V ) is contained in E(H(V )) ↪→ E(V ) we will use the term minimal model also
to refer to the corresponding O-algebra structure on H(V ) = Im(t) ⊂ V .

We are most interested in the case when the operad O is the cobar-construction O = BP of
an operad P. For example for P = Ass, Com,Lie the O-algebras are (up to parity reversion)
A∞, L∞, C∞-algebras respectively. Since BP is a free operad on ΠP ∗ (disregarding the differ-
ential) the operad map BP → E(H(V )) specifying a minimal model of V is determined by a
collection of maps

ΠP(n)∗ → E(H(V ))(n) = Hom(H(V )⊗n, H(V )), n ≥ 2.

These maps will be called the structure maps of the corresponding minimal model. For example
if P = Com (so that P(n) = k is the trivial representation of Sn) we simply have a collection
of Σn-equivariant odd maps H(V )⊗n → H(V ) determining the structure of a (minimal) L∞-
algebra on H(ΠV ).

To any reduced tree T we associate a BV-tree TBV by the following recipe: color the edges
of T black and then glue a new white edge onto each leg. The map T 7→ TBV is a bijection of
the set of all reduced trees onto the set of BV-trees such that

(1) each leg of G abuts a bivalent vertex;
(2) all edges of G adjacent to extremities are white;
(3) all other edges of G are black.

8



Recall that operadic composition determines a map µT : P(T ) → P(n) for each reduced n-
tree T ; denote by µ∗T the k-linear dual map. We have an isomorphism Π(P(T )∗) ∼= (ΠP∗)[TBV]
and hence a natural inclusion ιT : Π(P(T )∗) ↪→ BP[TBV].

Theorem 3.2. Any choice of a canonical Hodge decomposition on a BP-algebra V gives rise
to a BP-algebra structure on H(V ) that is a minimal model of V . The structure maps

mn : ΠP(n)∗ → Hom(H(V )⊗n, H(V ))

of this minimal model are given as follows:

mn =
∑
T

ZBP
V ◦ ιT ◦ µ∗T ,

where the summation is extended over all reduced n-trees T .

Proof. A canonical splitting k : BP → BBBP is obtained by applying the contravariant functor
B to the canonical projection (counit) p : bvP = BBP → P.

Interpreting BBBP as a subspace of the space of BP-decorated BV-trees we see that the
image of the restriction of k to ΠP∗ involves only BV-trees satisfying conditions (1), (2) and (3)
above; moreover with this identification we have k(x) = µ∗(x) for any element x ∈ ΠP∗ ⊂ BP.
From this the formula for the structure maps is immediate. �

In other words, we obtain a minimal model in which the action of x ∈ ΠP∗ is described as
follows. Write µ∗(x) as a sum of ΠP∗-decorated reduced trees µ∗T (x). Label each leg of T by
t and each internal edge by s and calculate an amplitude as in Section 1.1, interpreting the
decorations on vertices as multilinear maps on V via the originally specified action of BP on V .
Summing these amplitudes over all T with n leaves we obtain the n-th component of the action
of x on H(V ).

Remark 3.3. The statement of the theorem simplifies considerably for P = Com or P = Ass.
Indeed, in these cases a P∗-decorated tree is a tree or a planar tree respectively. For example,
to obtain the structure map m̃n : (ΠV )⊗n → ΠV ) of a minimal A∞-model one associates the
(original) structure maps mi’s to the corresponding vertices of planar trees; the operator t to
the extremities, the operator s to the internal edges and takes the sum of tree amplitudes over
all planar trees with n leaves. That recovers the formula derived in [28], [19] by a different
method (see Section 1.1).

Remark 3.4. Let f : BP → E(V ) be a map giving a dg vector space V the structure of a BP-
algebra; a minimal model is given by the map f ′ = h◦ i◦k : BP → E(V ), where k : O → bvO is
a right inverse to p : bvO → O. It follows from the homotopy commutativity of (3.1) that the
maps f and f ′ are chain homotopic, and in particular they induce the same maps on homology.
There is, however, a much stronger constraint on the maps f and f ′ – they are homotopic as
operad maps. The notion of homotopy for operads and the corresponding equivalence relation
will be considered in the next section.

Remark 3.5. One advantage of our conceptual approach to explicit minimal models is its
manifest functoriality. Let f : P → Q be a morphism of operads. Any BP-algebra V may be
viewed as a BQ-algebra by restriction along Bf : BQ → BP. Fixing a Hodge decomposition of
V we obtain both BP- and BQ-algebra structures on H(V ), and by construction the two are
again related by restriction along Bf .

As an example consider the natural inclusion Lie ↪→ Ass and the induced map of the cobar-
constructions BAss → BLie. Recall that an A∞-algebra is an algebra over the operad BAss
whereas a C∞-algebra is an algebra over BLie. We deduce that a minimal model of a C∞-
algebra may be calculated using either sums over Lie-decorated trees or sums over planar trees;
this recovers a result of [7].
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4. Homotopies for operad maps and equivalence of operadic algebras

In this section we will set up the framework for studying the notion of a homotopy equivalence
of operadic algebras. This is a natural generalization of the notion of a homotopy equivalence of
A∞, L∞ and C∞-algebras. We will start with a general discussion of the Maurer-Cartan moduli
space and the Sullivan homotopy; presumably this material is well-known to experts.

4.1. Maurer-Cartan moduli space and the Sullivan homotopy. Let g be a nilpotent dg
Lie algebra or, more generally, a pro-nilpotent Lie algebra, i.e. an inverse limit of nilpotent dg
Lie algebras.

Definition 4.1. An element x ∈ g1 is called a Maurer-Cartan element if it satisfies the following
master equation:

dx+
1
2

[x, x] = 0.

The set of Maurer-Cartan elements will be denoted by MC (g).

Let G be the Lie group obtained by exponentiating the even part g0 of the Lie algebra
g. Formally G could be defined as the set of group-like elements in the universal enveloping
algebra Û(g) of g completed with respect to its maximal ideal. Whenever we consider linear
combinations of monomials in g or G these will assumed to be taken in this completed universal
enveloping algebra.

The group G acts on MC (g) by the formula

g(x) = gxg−1 − dg · g−1.

We say that two Maurer-Cartan elements are equivalent if they lie in the same G-orbit.
It is convenient to introduce the Lie algebra g̃, the semi-direct product of g and a one-

dimensional Lie algebra spanned by an odd symbol d. By definition for a ∈ g we have [d, a] := da.
For an element x ∈ g denote by x̃ the element d+x ∈ g̃. Then an odd element x ∈ g is Maurer-
Cartan if and only if [x̃, x̃] = 0. Let g ∈ G be viewed as an element in Û(g̃); since d(g) = dg−gd
we have gdg−1 = d− dg · g−1. It follows that the corresponding action of G translates into the
formula g(x̃) = gx̃g−1; in particular it is now obvious that this action is indeed well-defined.

Let D := k[z, dz], the differential graded commutative algebra generated by an even symbol
z and an odd symbol dz with differential d(z) = dz and d(dz) = 0; this is just the polynomial
de Rham algebra on the unit interval. Note that the specializations z = 0 and z = 1 determine
two algebra maps ev0,1 : D → k.

We say that two Maurer-Cartan elements x0 and x1 are (Sullivan) homotopic if there exists
a Maurer-Cartan element X ∈ g ⊗ D such that (id ⊗ ev0)(X) = x0 and (id ⊗ ev1)(X) = x1.
The element X is called a homotopy between x0 and x1.

Let X = x(z) + y(z)dz be a homotopy as defined above. Here x(z) ∈ g1[z] and y(z) ∈ g0[z].
The following result is immediate from the definition.

Lemma 4.2. A homotopy between x0 and x1 is equivalent to the following system of equations.

[x̃(z), x̃(z)] = 0.(4.1)
∂zx̃(z) = [y(z), x̃(z)].(4.2)

(together with the boundary conditions x̃(0) = x̃0 and x̃(1) = x̃1.)

Remark 4.3. The above identities could, of course, be rewritten as

dx(z) +
1
2

[x(z), x(z)] = 0.

∂zx(z) = −dy(z) + [y(z), x(z)];

however we find it more convenient to work with x̃ than with x.
10



We see, therefore, that a homotopy is a one-parameter deformation x(z) of a Maurer-Cartan
element such that the differential equation ∂zx(z) = −dy+[y, x] holds. The following important
result seems to be well-known although we are not aware of any published proof. It appears in
an unpublished manuscript of Schlessinger and Stasheff [29].

Theorem 4.4. Two Maurer-Cartan elements x0 and x1 are equivalent if and only if they are
homotopic.

Proof. Let x0 and x1 be equivalent Maurer-Cartan elements. Then there exists an element ξ ∈ g
such that eξx̃0e

−ξ = x̃1. Set x̃ = ezξx̃0e
−zξ and y = ξ; this clearly satisfies (4.1) and (4.2) and

thus establishes a homotopy between x0 and x1.
Now suppose that x0 and x1 are homotopic, so that there exist x̃(z) ∈ g̃[z] and y(z) ∈ g[z]

for which (4.1) and (4.2) hold. It is easy to check that x̃(z) is determined by y(z) together with
the boundary condition x̃(0) = x̃0.

If we could find an element g(z) ∈ G[z] such that

∂zg(z) = y(z)g(z) and g(0) = 1

then (4.2) would be satisfied with g(z)x̃0g(z)−1 in place of x̃(z). By uniqueness we could deduce
x̃ = g(z)x̃0g(z)−1, and x̃0 and x̃1 would be equivalent as desired.

We define g(z) as a path ordered exponential:

g(z) = P exp
∫ z

0
y(t)dt := 1 +

∞∑
n=1

∫
0≤t1≤...≤tn≤z

y(tn) . . . y(t1) Πdti.

Since g is pronilpotent we have g(z) ∈ Û(g)[z], and the differential equation ∂zg(z) = y(z)g(z)
is clearly satisfied. To complete the proof it remains to show that g is group-like, i.e., that
∆g = g ⊗ g; we follow the argument of Connes and Marcolli [8, Proposition 2.9]. It suffices to
prove that the coefficient of zn in ∆g − g ⊗ g is zero for all n ≥ 0. We have

∂z(∆g − g ⊗ g) = ∆(∂zg)− ∂zg ⊗ g − g ⊗ ∂zg
= ∆(yg)− yg ⊗ g − g ⊗ yg

= (y ⊗ 1 + 1⊗ y)(∆g − g ⊗ g).

It follows that ∂nz (∆g − g ⊗ g) is divisible by ∆g − g ⊗ g for n ≥ 0. It remains to observe that
the constant term of ∆g − g ⊗ g is zero because g(0) = 1. �

Remark 4.5. Our proof suggests that Theorem 4.4 could extend to a not necessarily nilpotent
dg Lie algebra supplied with a Banach norm. We plan to return to this issue in a future work.

4.2. Weak equivalence of operadic algebras. There is a natural notion of homotopy be-
tween maps of operads; let O and O′ be dg operads and f0, f1 : O → O′ be two maps between
them.

Definition 4.6. We say that f0 and f1 are homotopic if if there exists a map f : O → O′ ⊗D
of operads such that f0 = (id⊗ ev0) ◦ f and f1 = (id⊗ ev1) ◦ f .

Markl, Shnider and Stasheff call this relation ‘elementary homotopy’, reserving the term
‘homotopy’ for its transitive closure [27, Definition 3.121]. They prove the following:

Proposition 4.7. Two homotopic maps f0, f1 : O → O′ of operads induce the same maps
between the homology operads H(O) and H(O′).
Proof. Let f = a(z) + b(z)dz be a homotopy between f0 and f1. The compatibility of f
with the differential implies (d ◦ b)(z) + ∂za(z) = −(b ◦ d)(z). Integrating and noting that
−

∫ 1
0 ∂za(z) = a(0) − a(1) = f0 − f1, we find that s =

∫ 1
0 b(z)dz is a chain homotopy between

f0 and f1. It follows that f0 and f1 induce the same homomorphism H(O1) → H(O2) as
claimed. �

Definition 4.8. Let V be a dg vector space. Two O-algebras determined by operad maps
f0 : O → E(V ) and f1 : O → E(V ) are called homotopy equivalent if f0 and f1 are homotopic.
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The following is an immediate consequence of Proposition 4.7.

Corollary 4.9. Two homotopy equivalent O-algebra structures on a dg vector space V give rise
to the same H(O)-algebra structure on H(V ).

One could expect the above definition to give the correct notion of equivalence only for
cofibrant admissible operads O, i.e. those whose underlying operads of graded vector spaces
are free. We will be interested in this notion in the special case when O = BP is the cobar-
construction of an admissible operad P. The notions of a BP-algebra and of an equivalence
between two BP-algebras admits a reformulation in terms of a certain Maurer-Cartan moduli
space as follows.

First of all, a (graded or super-) derivation of a P-algebra A is an even map f : A→ A such
that for p ∈ P(n),

f(p(a1, . . . , an)) =
∑

(−1)|f |(|p|+|a1|+...+|ai−1|)p(a1, . . . , ai−1, f(ai), ai+1, . . . , an).

It is clear that a derivation of A could be viewed as an infinitesimal automorphism of A in
agreement with the familiar notion. It is further clear that the space spanned by all graded
derivations forms a Lie superalgebra.

Now let V be a pro-finite vector space, i.e. an inverse limit of finite-dimensional vector spaces.
For example, the linear dual to any (not necessarily finite-dimensional) vector space is pro-finite.
Consider the pro-free P-algebra on a dg vector space V :

T̂P(V ) =
∞∏
i=1

P(i)⊗k[Si] (V )⊗̂i.

It is clear that T̂P(V ) has a linear topology such that the structure maps P(n)⊗ [T̂P(V )]⊗n →
T̂P(V ) are continuous. It is likewise clear that all continuous derivations of T̂P(V ) are deter-
mined by their values on V . In other words, the space of all such derivations is isomorphic
to

∏∞
i=1 Hom(V,P(i) ⊗k[Si] (V )⊗̂i). The elements of the component Hom(V,P(i) ⊗k[Σi] (V )⊗̂i)

will be called derivations of order i for obvious reasons. The commutator of two derivations of
orders i and j has order i+ j − 1.

Denote by L(T̂P(V )) the space spanned by derivations of order ≥ 2; it is a pro-nilpotent Lie
superalgebra.

Then we have the following result

Proposition 4.10. Let P be an admissible operad. Then there is a one-to-one correspondence
between the set of BP-algebra structures on a dg vector space V and the set of Maurer-Cartan
elements in L(T̂P(V ∗)). Furthermore, two Maurer-Cartan elements are equivalent if and only
if the corresponding BP-algebras are homotopy equivalent.

Proof. Since the operad BP is freely generated by the collection {ΠP(n)∗} we see that an
operad map BP → E(V ) determining a BP-algebra structure on V is specified by a collection of
Sn-equivariant maps ΠP(n)∗ → Hom(V ⊗̂n, V ), n = 2, 3, . . .. Using the canonical isomorphism
between Sn-invariants and Sn-coinvariants we deduce that the set of all operad maps BP → E(V )
(not assuming compatibility with the differential in BP) is in one-to-one correspondence with
the set of (possibly infinite) collections of odd maps V ∗ → P(n) ⊗k[Σn] (V ⊗̂n)∗, i.e., with odd
elements in L(T̂P(V ∗)). Finally, compatibility with the differential is equivalent to the Maurer-
Cartan identity [ξ, ξ] = 0.

It follows immediately from definitions that two BP-algebra structures are homotopy equiv-
alent if and only if the corresponding Maurer-Cartan elements are homotopic and thus, by
Theorem 4.4 if and only if they are equivalent. �

Remark 4.11. Proposition 4.10 shows that our notion of homotopy equivalence between two
L∞, C∞ or A∞-algebras (supported on the same dg vector space V ) coincides with the usual
notion of infinity-isomorphism, cf. for example [16], [12, 13].
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Remark 4.12. A version of the above proposition (without the statement about homotopy
equivalence) appeared in [11], Proposition 2.15. The main difference with our approach is that
in the cited reference the result is formulated in terms of the coalgebra (continuously) dual to
the topological algebra T̂P(V ∗). The approach taken here has been used in [12, 13] in the special
cases of L∞, C∞ and A∞-algebras.

Corollary 4.13. The relation ‘homotopy equivalence’ on the set of all BP-algebra structures
on a given dg vector space V is an equivalence relation.

4.3. Minimal models and homotopy equivalence. In this subsection we prove that the
minimal model of a BP-algebra is in fact homotopy equivalent to the original BP-algebra struc-
ture. In fact, we establish a slightly more general result which says, informally, that any two
choices of a Hodge decomposition on an O-algebra V are homotopic as maps out of bvO.

Theorem 4.14. Let O be an admissible dg operad, and f : O → E(V ) be a map of dg operads
determining an O-algebra structure on a dg vector space V . Let h1, h2 : BVO → E(V ) be the
maps of dg operads determined by the choice of two Hodge decompositions on V . Then the
bvO-structures on V corresponding to the operad maps h1 ◦ i and h2 ◦ i are homotopy equivalent.

Proof. The idea is that, while the operad bvO is too complicated to construct the required
homotopy directly, one could attempt to embed bvO into a simpler operad, for example BVO
and construct the required homotopy as a map from that bigger operad.

It turns out that BVO cannot do the job required. We now construct another operad B̂VO
such that bvO ↪→ B̂VO → BVO. Informally speaking, B̂VO is ‘sufficiently cofibrant’ so that
the required homotopy exists while it is simple enough for the homotopy to be written down
explicitly.

The new operad B̂VO is generated by the operad O together with free noncommuting gener-
ators s and t and with differential given by d(s) = 1− t2 and d(t) = 0. There is map of operads
B̂VO → BVO given by imposing the additional relations s2 = 0, t2 = t and st = ts.

Furthermore, the operad bvO is a suboperad of B̂VO. To see that note that the latter consists
of O-decorated reduced trees, with internal edges labelled by nonempty words in s and t, and
extremities labelled by arbitrary words in s and t. Then bvO is identified with the suboperad
of B̂VO where internal edges are labelled by s or t2, and extremities are labelled by t.

Let S and T be the two operators on V determined by a given Hodge decomposition. Denote
by f̂ : B̂VO → E(V ) the operad map which equals f when restricted to O and for which
f̂(s) = S, f̂(t) = T . Similarly denote by ĝ : B̂VO → E(V ) the operad map which again equals
f when restricted to O and for which ĝ(s) = 0, ĝ(t) = id.

Then the following formulas determine a homotopy.

u : B̂VO → E(V )⊗ k[z, dz] :

u(s) = S(1− z2);

u(t) = T + (1− T )z − Sdz.

Since B̂VO is free over O one should only check that these formulas are compatible with differ-
entials in B̂VO and E(V )⊗ k[z, dz] which is straightforward. Moreover setting z = 0 and z = 1
we recover the maps f̂ and ĝ respectively. It follows that the maps f̂ and ĝ are homotopic as
required. Thus their restrictions to bvO are homotopic, and the desired result is a consequence
of Corollary 4.13. �

Remark 4.15. Note that once we do not require t to be an idempotent in B̂VO, we must use
the equation d(s) = 1− t2 instead of d(s) = 1− t. This is because when we glue together two
trees at extremities both labelled by t, the new internal edge is now labelled by t2, not t.
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Remark 4.16. The proof of Theorem 4.14 consisted in construcing a homotopy between two
Hodge decompositions. The homotopy, however, passes through structures which are not them-
selves Hodge decompositions, since no relations are imposed on the generators s and t of B̂VO.
We do not know a good interpretation of such ‘generalized Hodge decompositions’.

Corollary 4.17. Let O be an admissible dg operad, and f : O → E(V ) be a map of dg operads
determining an O-algebra structure on a dg vector space V . Let f̃ : O → E(V ) be the minimal O-
algebra structure on V associated with a given splitting k : O → bvO of the canonical resolutions
bvO → O and a canonical Hodge decomposition of V . Then the two O-algebra structures on V
corresponding to f and f̃ are homotopy equivalent. In particular, any two minimal models are
likewise homotopy equivalent.

Proof. Let ε1 : bvO → E(V ) be the operad map associated with the given canonical Hodge
decomposition on V . Let ε2 : bvO → E(V ) be the map associated with the trivial Hodge
decomposition of V . That means that ε2 = ε ◦ i where i : bvO ↪→ BVO is the canonical
embedding and ε : BVO → E(V ) is given by ε(s) = 0 and ε(t) = id. By Theorem 4.14 the maps
ε1 and ε2 are Sullivan homotopic so the desired statement follows. �

Remark 4.18. Our result is more general than that usually called the ‘minimal model theorem’
in the literature; it specializes to the so-called ‘decomposition theorem’ in the case of A∞-
algebras, cf. [15, 22]. One can rephrase it by saying that for any operad O for which there is a
splitting of the canonical map bvO → O (e.g. O could be a cobar-construction of an admissible
operad), any O-algebra is infinity-isomorphic (=homotopy equivalent) to an O-algebra of a
special type, namely a direct sum of an O-algebra with vanishing differential and what was
called in [15] a linear contractible O-algebra. From this result it is not hard to deduce that
different minimal models of an O-algebra V understood as O-algebra structures on H(V ) are
homotopy equivalent.

Remark 4.19. Let V be an algebra over an admissible operad O. Then the minimal model,
viewed as an O-algebra structure on H(V ), is a lift of the H(O)-algebra structure on H(V )
induced by the original O-algebra V . Indeed, the O-algebra structures on V are homotopy
equivalent by the preceding corollary and hence coincide in homology, by Proposition 4.9.

5. Minimal models of algebras over modular operads

In this section we construct minimal models for algebras over modular operads and prove
that these are unique up to a non-canonical isomorphism. We restrict ourselves to giving the
relevant definitions and formulations; the proofs will be omitted as they are completely parallel
to those in the non-modular case.

We refer the reader to [9] for generalities on modular operads and [6] for the notion of
the BV-resolution of algebras over modular operads; we shall liberally use terminology and
notation from these two sources. For a dg vector space V with a symmetric inner product 〈, 〉
of even degree we will still denote by E(V ) the modular operad of endomorphisms of V , with
E(V )((g, n)) := V ⊗n ∼= Hom(V ⊗n−1, V ). The self-glueing maps in E(V ) are determined by the
inner product in V .

For a modular operad O the structure of an algebra over O on V is a map of modular operads
O → E(V ). A Hodge decomposition of an algebra V over O is a pair of operators s and t as in
Proposition 2.5 compatible with the inner product:

〈s(a), b〉 = (−1)|a|〈a, s(b)〉;

〈t(a), b〉 = 〈a, t(b)〉.
As before, a Hodge decomposition will be called canonical if dt = 0 and trivial if t = idV . It is
easy to see that a canonical Hodge decomposition always exists; indeed, following the procedure
in Example 2.6 we find that U is a maximal isotropic subspace of W⊥ and just need to choose
U ′ to be an isotropic complement. The diagram (3.1) continues to hold in the modular context.
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Remark 5.1. In order to handle inner products of odd degree (and to discuss Feynman trans-
forms) we are obliged to use the language of twisted modular operads. Let V be a dg vector
space with a symmetric inner product of even or odd degree. For d = 0, 1, we define the twisted
endomorphism operad Ed(V ) with components Ed(V )((g, n)) = Πd(ΠdV )⊗n. If the inner prod-
uct on V has degree d + d′ then Ed(V )((g, n)) ∼= Πd′ Hom((Πd′V )⊗n−1,Πd′V ), and Ed(V ) is a
modular Detd⊗Kd

′
-operad, where Detd is the determinant cocycle Detd(G) = Detd(H1(G)) and

K is the dualizing cocycle cf. [9] and [3].
So given an arbitrary modular Detd⊗Kd

′
-operad O, we define an O-algebra to be a dg space

V equipped with a symmetric inner product of degree d+ d′ together with a map O → Ed(V ).
To alleviate the notation we will suppress any explicit mentioning of twisting whenever pos-

sible if the context allows one to reconstruct it; for example for a cocycle D and a modular
D-operad O we will write FO instead of FDO to denote the Feynman transform of O.

If V has vanishing differential then the corresponding O-algebra structure is called minimal.
If the canonical operad map bvO → O admits a splitting then we can construct a minimal
model of V as in Section 3.

So let V be an algebra over a modular operad O with a fixed canonical Hodge decomposition
of V . Suppose that O is the Feynman transform FP of a modular Detd-operad P. Recall that
as a graded modular operad, i.e. forgetting the differential, FP is free over the stable S-module
P∗; therefore the operad map FP → Ed(H(V )) providing a minimal model of V is determined
by a collection of maps

ΠP((g, n))∗ → ΠEd(H(V ))((g, n)) = Hom(H(ΠV )⊗n−1, H(ΠV )).

These maps will be called the structure maps of the corresponding minimal model.

Example 5.2.
(1) Let P = Com, the trivial modular extension of the operad Com, so that

P((g, n)) = P((g, n))∗ =

{
k if g = 0
0 if g 6= 0

.

Then we obtain a collection of Sn-equivariant maps mn : Hom(H(ΠV )⊗n, H(ΠV )) which
determine the structure of a minimal symplectic (or cyclic) L∞-algebra on H(V ).

(2) Let P = Com, modular closure of the operad Com, so that P((g, n)) = P((g, n))∗ = k.
There results a collection of Sn-equivariant maps mg,n : Hom(H(ΠV )⊗n, H(ΠV )) which
determine the structure of a minimal quantum L∞-algebra on H(V ), also known as a
loop homotopy algebra, cf. [23]. This structure first arose in closed string field theory
[32].

(3) Let P = Ass, the trivial modular extension of the operad Ass, so that

P(g, n) =

{
k[Sn/Zn] if g = 0
0 if g 6= 0

.

We obtain a collection of maps mn : Hom(H(ΠV )⊗n, H(ΠV )) which determine the
structure of a minimal symplectic (or cyclic) A∞-algebra on H(V ); this structure was
introduced by Kontsevich in [17, 18].

(4) Let P = Ass, the modular closure of the operad Ass, so that P((g, n)) = k[Sn/Zn].
There results a collection of maps mn : Hom(H(ΠV )⊗n, H(ΠV )) which determine a
structure on H(V ) which is natural to call a quantum A∞-algebra. More information on
other modular extensions of Ass and their connections with various compactifications
of moduli of Riemann surfaces could be found in [6].

Let G be a stable graph (see [10]); for a vertex v ∈ Vert(G) the set of half-edges around v is
denoted by Flag(v). For a stable S-module V, we denote by V((G)) the space of V-decorations
on G; in other words, G((V)) = ⊗v∈VertGV((Flag(v))).
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Let P be a modular Detd-operad. For any stable graph G with n legs, P determines a
homomorphism µG : Detd((G)) ⊗ P((G)) → P((•, n)) which corresponds to taking operadic
compositions in P((G)) along the internal edges of G; the dual map will be denoted by µ∗G.

Let V be a FP-algebra. Note that V has an inner product of degree 1 − d. Given any
twisted P∗-decoration x ∈ Detd((G))⊗P∗((G)) on a stable graph G with n legs, we define the
BV-amplitude ζV (x) ∈ Ed(V )((n)) as follows. We replace the P∗-decorations at the vertices
by Ed(V )-decorations via the action of P∗ ⊂ FP on V . So each vertex of G of valence m has
attached to it a tensor in Πd(1+m)V ⊗m. Then we assign ‘propagators’ 〈?, s(?)〉 ∈ Πd(V ∗ ⊗ V ∗)
to each internal edge and t ∈ V ⊗ V ∗ to each leg, and contract along all edges (including legs)
to obtain a tensor ζV (x) ∈ Πd(1+n)V ⊗n.

We have the following result which is a modular analogue of Theorem 3.2. Its proof is also an
exact analogue, making use of the notions of BV -resolutions of modular operads and BV -graphs
developed in [6].

Theorem 5.3. Let P be a modular Detd-operad Then any choice of a canonical Hodge decompo-
sition on an FP-algebra V gives rise to a FP-algebra structure on H(V ) that is a minimal model
of V . The structure maps of this minimal model are

∑
G ζV ◦ µ∗G : P((g, n))∗ → Ed(V )((g, n)),

where the sum is extended over all stable n-graphs G of genus g.

Remark 5.4. Let C be a cyclic operad and P = C its trivial modular extension, so that all
‘self-composition’ maps in P are zero. Then the sum in Theorem 3.2 may be restricted to
trees, so we recover the formula of Theorem 3. This relationship between the minimal model
construction in the operad and modular operad cases stems from the fact that the Feynman
transform FP is (up to a twist) the modular closure of the cyclic operad BC.

Taking for example C = Ass, we see that the explicit minimal model for an symplectic A∞ al-
gebra is calculated in precisely the same way as for an A∞-algebra, once a Hodge decomposition
of V compatible with inner product is chosen, c.f. [15].

5.1. Weak equivalence of algebras over modular operads. Definition 4.8 of the homotopy
equivalence of O-algebra structures on V carries over to the modular context verbatim. One
would, of course, expect it to give the correct notion of equivalence only for ‘cofibrant’ modular
operads O, i.e. those whose underlying modular operads of graded vector spaces are free. We
will be interested in this notion in the special case when O = FP is the Feynman transform
of a modular operad P. The notions of an FP-algebra and of an equivalence between two FP-
algebras admits a reformulation in terms of a certain Maurer-Cartan moduli space as follows.

Consider the following pro-finite vector space:

LP(V ) :=
∞∏

g,n=0

[P((g, n))⊗ V ⊗̂n]Sn .

This space is a modular analogue of L(T̂P(V )) considered in Section 4.2. It has the structure of
a pronilpotent dg Lie algebra, cf. [3]. We have the following modular analogue of Proposition
4.10.

Proposition 5.5. Let P be a modular operad. Then there is a one-to-one correspondence
between the set of FP-algebra structures on a dg vector space V and the set of Maurer-Cartan
elements in LP(V ). Furthermore, two Maurer-Cartan elements are equivalent if and only if the
corresponding FP-algebras are homotopy equivalent.

Proof. The first statement of the proposition is essentially Theorem 1 of [3] whereas the second
one is follows immediately from definitions. �

Remark 5.6. As in the non-modular case Proposition 5.5 implies that the homotopy equiva-
lence between algebras over modular operads of the form FO is an equivalence relation.

Theorem 5.7. Let O be an modular operad, and f : O → E(V ) be a map of modular operads
determining a structure of an O-algebra on a dg vector space V with an inner product. Let
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h1, h2 : BVO → E(V ) be the maps of modular operads determined by the choice of two different
Hodge decompositions on V . Then the FFO-structures on V corresponding to the operad maps
h1 ◦ i and h2 ◦ i are homotopy equivalent.

Corollary 5.8. Let O be an modular operad, and f : O → E(V ) be a map of modular operads
determining an O-algebra structure on a vector space V with an inner product. Let f̃ : O →
E(V ) be the minimal O-algebra structure on V associated with a given splitting k : O → FFO of
the canonical resolutions FFO → O and a canonical Hodge decomposition of V . Then the two
O-algebra structures on V corresponding to f and f̃ are homotopy equivalent. In particular,
any two minimal models are likewise homotopy equivalent.

6. Gauge independence of Kontsevich’s dual construction

Recall the operadic formulation of Kontsevich’s dual construction [6]. Let O be a modular
operad, V be a contractible dg vector space with an inner product and a structure of an O-
algebra. The choice of a canonical Hodge decomposition (which amounts to the choice of a
contracting homotopy s such that s2 = 0 in this case) determines the structure of a F∨O-
algebra on V . Here F∨O is the dual Feynman transform of O; to form it we first add a unit 1
to O to obtain an extended operad O+ and then freely adjoin an odd element s ∈ F∨O((0, 2))
subject to the relation s2 = 0. We can thus write F∨O = O[s]+/s2; the differential in F∨O
extends the differential on O and d(s) = 1.

The main property of F∨O is that there is a linear duality between F∨O((•, 0)) and FO((•, 0)).
Taking the Feynman amplitude G 7→ ZF∨O

V (G) determines a cocycle on F∨O((•, 0)) (or equiva-
lently, a cycle on FO((•, 0))). We will denote the corresponding (co)homology class by [V ].

Proposition 6.1. The class [V ] corresponding to a contractible O-algebra V does not depend
on the choice of the contracting homotopy s.

Lemma 6.2. Let F̃∨O be the the extended modular operad F̃∨O = O[s]+; the differential is
specified by the same formula as in F∨O. Then the canonical map π : F̃∨O → F∨O induces a
surjective homomorphism H(F̃∨O((•, 0)))→ H(F∨O((•, 0))).

Proof. We have an isomorphism F̃∨O((•, 0)) = ⊕GO{G}, where the sum is taken over all ex-
tended stable graphs with no legs and O{G} = (K(G)⊗O((G)))Aut(G) is the space of Aut(G)-
coinvariants of the (twisted) space of O-decorations on G; the differential is given by contract-
ing edges with the operad composition. The dual Feynman transform F∨O has an analogous
decomposition where the sum is over stable graphs. The restriction of the canonical map
π to O{G} is the identity for stable G and 0 otherwise. While the obvious splitting map
F∨O((•, 0))→ F̃∨O((•, 0)) is not a map of operads, it at least commutes with differentials. �

Remark 6.3. In fact π induces an isomorphism H(F̃∨O((g, n))) ∼= H(F∨O((g, n))) for (g, n) 6=
(1, 0). We do not require this stronger statement for the proof below.

Proof of Proposition 6.1. Let S and S′ be two choices of a contracting homotopy in V . These
determine two maps of modular operads F̃∨O → E(V ) where f(s) = S and g(s) = S′. If we
could prove that f and g are Sullivan homotopic then the desired statement would follow. In
fact f and g are not homotopic due to the fact that F∨O is not ‘cofibrant’; however the maps
f ◦ π and g ◦ π are homotopic through the map h : F̃∨O → E(V )⊗D specified by the formula
h(s) = S+ (S′−S)(z−Sdz). It follows by Proposition 4.7 that f ◦π and g ◦π induce the same
cohomology class on F̃∨O((•, 0)), and an application of Lemma 6.2 finishes the proof. �

Having confirmed that the dual construction is gauge invariant, we can proceed to show that
it is also a Sullivan homotopy invariant of contractible algebras.

Proposition 6.4. Let O be a modular operad, and let V be a contractible dg vector space. Then
Sullivan homotopic O-algebra structures on V give rise via the dual construction to the same
class [V ] in FO((•, 0)).
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Proof. Let f : O → E(V ) ⊗ D be a homotopy between the given O-algebra structures on
V . Then a choice of contracting homotopy s for V allows us to extend f to a homotopy
f̃ : F∨O → E(V ) ⊗ D by taking f̃(s) = s ⊗ 1. The desired result is now a consequence of
Proposition 4.7. �

References

[1] P. Aspinwall, L. M. Fidkowski. Superpotentials for quiver gauge theories. J. High Energy Phys. 2006, no. 10,
047, arXiv:hep-th/0506041.

[2] P. Aspinwall, S. Katz. Computation of Superpotentials for D-Branes. Communications in Mathematical
Physics 264, (2006) 227-253, arXiv:hep-th/0412209.

[3] S. Barannikov. Modular operads and Batalin-Vilkovisky geometry. International Mathematics Research No-
tices, Vol. 2007, Article ID rnm075, 31 pages.

[4] C. Berger, I. Moerdijk. Axiomatic homotopy theory for operads. Comment. Math. Helv. 78 (2003), no. 4,
805-831.

[5] J. M. Boardman, R.M. Vogt. Homotopy invariant algebraic structures on topological spaces. Springer Lecture
Notes in Math. 347, Springer-Verlag, 1973.

[6] J. Chuang, A. Lazarev. Dual Feynman transform for modular operads, Communications in Number Theory
and Physics, to appear, arXiv:0704.2561.

[7] X. C. Cheng, E. Getzler Transferring homotopy commutative algebraic structures. arXiv:math.AT/0610912.
[8] A. Connes, M. Marcolli. Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory,

Frontiers in number theory, physics, and geometry. II., Springer (2007), 617–713.
[9] E. Getzler, M. M. Kapranov. Modular operads. Compositio Math. 110 (1998), no. 1, 65–126.

[10] V. Ginzburg, M. Kapranov. Koszul duality for operads. Duke Math. J. 76 (1994), no. 1, 203-272.
[11] E. Getzler, J.D.S. Jones, Operads, Homotopy Algebra, and Iterated Integrals for double Loop Spaces.

arXiv:hep-th/9403055.
[12] A. Hamilton, A. Lazarev, Cohomology theories for homotopy algebras and noncommutative geometry.

arXiv:0707.3937

[13] A. Hamilton, A. Lazarev, Symplectic C∞-algebras. Moscow Mathematical Journal, to appear.
arXiv:0707.3951

[14] T. V. Kadeishvili, The algebraic structure in the homology of an A(∞)-algebra. (Russian) Soobshch. Akad.
Nauk Gruzin. SSR 108 (1982), no. 2, 249-252, 1983.

[15] H. Kajiura, Noncommutative homotopy algebras associated with open strings. Rev.Math.Phys. 19, 2007, 1-99.
arXiv:math.QA/0306332.

[16] B. Keller, Introduction to A-infinity Algebras and Modules. Homology, Homotopy and Applications, Vol. 3,
2001, No. 1, pp. 1-35.

[17] M. Kontsevich. Feynman diagrams and low-dimensional topology. First European Congress of Mathematics,
Vol 2 (Paris, 1992), 97-121, Progr. Math., 120, Birkhäuser, Basel, 1994.
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