
This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: http://openaccess.city.ac.uk/1895/

Link to published version: http://dx.doi.org/10.1093/qjmath/53.2.201

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk
A RECIROCITY FOR SYMMETRIC ALGEBRAS

MARKUS LINCKELMANN, BERNARD STALDER

March 2001

Abstract. The aim of this note is to show, that the reciprocity property of group algebras in [5, (11.5)] can be deduced from formal properties of symmetric algebras, as exposed in [1], for instance.

Let \(\mathcal{O} \) be a commutative ring. By an \(\mathcal{O} \)-algebra we always mean a unitary associative algebra over \(\mathcal{O} \). Given an \(\mathcal{O} \)-algebra \(A \), we denote by \(A^0 \) the opposite algebra of \(A \). An \(A \)-module is a unitary left module, unless stated otherwise. A right \(A \)-module can be considered as a left \(A^0 \)-module. If \(A, B \) are \(\mathcal{O} \)-algebras, we mean by an \(A \)-\(B \)-bimodule always a bimodule whose left and right \(\mathcal{O} \)-module structure coincide; in other words, any \(A \)-\(B \)-bimodule can be regarded as \(A \otimes \mathcal{O} B^0 \)-module.

For an \(A \)-\(A^0 \)-bimodule \(M \) we set \(M^A = \{ m \in M \mid am = ma \text{ for all } a \in A \} \). In particular, \(A^A = Z(A) \), the center of \(A \). If \(A, B, C \) are \(\mathcal{O} \)-algebras, \(M \) is an \(A \)-\(B \)-bimodule and \(N \) is a \(A \)-\(C \)-bimodule, we consider the space \(\text{Hom}_A(M, N) \) of left \(A \)-module homomorphisms from \(M \) to \(N \) as \(B \)-\(C \)-bimodule via \((b.\varphi.c)(m) = \varphi(mb)c \). Similarly, if furthermore \(N' \) is a \(C \)-\(B \)-bimodule, we consider the space \(\text{Hom}_{B^0}(M, N') \) of right \(B \)-module homomorphisms from \(M \) to \(N' \) as \(C \)-\(A \)-bimodule via \((c.\psi.a)(m) = c\psi(am) \).

An \(\mathcal{O} \)-algebra \(A \) is called symmetric if \(A \) is finitely generated projective as \(\mathcal{O} \)-module and if \(A \) is isomorphic to its \(\mathcal{O} \)-dual \(A^* = \text{Hom}_\mathcal{O}(A, \mathcal{O}) \) as \(A \)-\(A \)-bimodule. The image \(s \in A^* \) of \(1_A \) under any \(A \)-\(A \)-isomorphism \(\Phi : A \cong A^* \) fulfills \(\Phi(a) = a.s = s.a \) for all \(a \in A \); that is, \(s \) is symmetric and the map \(a \mapsto a.s \) is a bimodule isomorphism \(A \cong A^* \). Any such linear form is called a symmetrising form of \(A \). The choice of a symmetrising form on \(A \) is thus equivalent to the choice of a bimodule isomorphism \(A \cong A^* \).

Theorem 1. Let \(A, B \) be symmetric \(\mathcal{O} \)-algebras and let \(M, N \) be \(A \)-\(B \)-bimodules which are finitely generated projective as left and right modules. We have a bifunctorial \(\mathcal{O} \)-linear isomorphism

\[
(M^* \otimes_A N)^B \cong (N \otimes_B M^*)^A
\]

which is canonically determined by the choice of symmetrising forms of \(A \) and \(B \).

Proof. Let \(s \in A^* \) and \(t \in B^* \) be symmetrising forms on \(A \) and \(B \), respectively. It is well-known (see [1] or also the appendix in [3]) that there is an isomorphism of
\[B \text{-} A \text{-bimodules} \]
\[
\left\{
\begin{array}{l}
\text{Hom}_A(M, A) \cong M^* \\
\quad f \\
\quad s \circ f
\end{array}
\right.
\]
which is functorial in \(M \). Moreover, since \(M \) and \(N \) are finitely generated projective as left and right modules, we have an isomorphism of \(B \text{-} B \text{-bimodules} \)
\[
\left\{
\begin{array}{l}
\text{Hom}_A(M, A) \otimes A N \cong \text{Hom}_A(M, N) \\
\quad f \otimes n \\
\quad (m \mapsto f(m)n)
\end{array}
\right.
\]
which is functorial in both \(M \) and \(N \). Taking \(B \text{-} \text{fixpoints} \) yields \((M^* \otimes N)^B \cong (\text{Hom}_A(M, A) \otimes A N)^B \cong (\text{Hom}_A(M, N))^B = \text{Hom}_{A \otimes B^0}(M, N)\). Similarly, there is an isomorphism of \(B \text{-} A \text{-bimodules} \)
\[
\left\{
\begin{array}{l}
\text{Hom}_{B^0}(M, B) \cong M^* \\
\quad g \\
\quad t \circ g
\end{array}
\right.
\]
and we have an isomorphism of \(A \text{-} A \text{-bimodules} \)
\[
\left\{
\begin{array}{l}
N \otimes A \text{Hom}_{B^0}(M, B) \cong \text{Hom}_{B^0}(M, N) \\
\quad n \otimes g \\
\quad (m \mapsto ng(m))
\end{array}
\right.
\]
As before, taking \(A \text{-} \text{fixpoints} \) yields \((N \otimes M^*)^A \cong (N \otimes \text{Hom}_{B^0}(M, B))^A \cong (\text{Hom}_{B^0}(M, N))^A = \text{Hom}_{A \otimes B^0}(M, N)\). □

Remark. The proof of Theorem 1 shows, that the two expressions in the statement of Theorem 1 are isomorphic to \(\text{Hom}_{A \otimes B^0}(M, N) \). In particular, for \(M = N \), this induces algebra structures on \((M^* \otimes M)^B\) and \((M \otimes M^*)^A\).

Taking derived functors of the fixpoint functors in Theorem 1 yields the following consequence on Hochschild cohomology.

Corollary. With the notation and assumptions of Theorem 1, we have an isomorphism of graded \(\mathcal{O} \text{-modules} \) \(HH^*(B, M^* \otimes N) \cong HH^*(A, N \otimes M^*) \).

Proof. Let \(P \) be a projective resolution of \(M \) as \(A \text{-} B \text{-bimodule} \). Then \(P^* = \text{Hom}_\mathcal{O}(P, \mathcal{O}) \) is an \(\mathcal{O} \text{-injective} \) resolution of \(M^* \). Thus \(N \otimes B^* \) and \(P^* \otimes N \) are \(\mathcal{O} \text{-injective} \) resolutions of \(N \otimes M^* \) and \(M^* \otimes N \), respectively. Using Theorem 1, we have isomorphisms of cochain complexes \(\text{Hom}_{B^0}(B, P^* \otimes N) \cong (P^* \otimes N)^B \cong (N \otimes P^*)^A \cong \text{Hom}_{A \otimes B^0}(A, N \otimes P^*) \). Taking cohomology yields the statement. □

Let \(A \) be an \(\mathcal{O} \text{-algebra} \). Following the terminology in [2], [3] (which generalises [4]), an \(\text{interior} \) \(A \text{-algebra} \) is an \(\mathcal{O} \text{-algebra} B \) endowed with a unitary algebra homomorphism \(\sigma : A \to B \). If \(A, B \) are \(\mathcal{O} \text{-algebras} \), \(C \) is an interior \(B \text{-algebra} \) and \(M \) an \(A \text{-} B \text{-bimodule} \), we set \(\text{Ind}_M(C) = \text{End}_\mathcal{O}(M \otimes B) \), considered as interior \(A \text{-algebra} \) via the homomorphism \(A \to \text{Ind}_M(C) \) sending \(a \) to the \(\mathcal{O}^0 \text{-endomorphism} \) given by left multiplication with \(a \) on \(M \otimes B \).
Theorem 2. Let A, B be symmetric O-algebras and let M be an A-B-bimodule which is finitely generated projective as left and right module. There is a canonical anti-isomorphism of O-algebras

$$(\text{Ind}_M(B))^A \cong (\text{Ind}_{M^*}(A))^B.$$

Proof. We have $\text{Ind}_M(B) = \text{End}_{B^0}(M)$ and $\text{Ind}_{M^*}(A) = \text{End}_{A^0}(M^*)$. Since taking O-duality is a contravariant functor, this algebra is isomorphic to $\text{End}_A(M)^0$. Taking fixpoints completes the proof. □

The group algebra OG of a finite group G is a symmetric algebra. More precisely, OG has a canonical symmetrising form, namely the form $s : OG \to O$ mapping a group element $g \in G$ to zero if $g \neq 1$ and to 1 if $g = 1$. Following the terminology of Puig [4], an interior G-algebra is an O-algebra endowed with a group homomorphism $\sigma : G \to A^X$. Such a group homomorphism extends uniquely to an O-algebra homomorphism $OG \to A$, and thus A becomes an interior OG-algebra (and vice versa). If H is a subgroup of G and B an interior H-algebra, the induced algebra $\text{Ind}_H^G(B)$ defined in [4] is the O-module $OG \otimes_B OG$ endowed with the multiplication

$$\otimes_H \quad (x \otimes b \otimes y)(x' \otimes b' \otimes y') = (x \otimes byx'b' \otimes y')$$

provided that $yx' \in H$, and 0 otherwise, where $x, y, x', y' \in G$ and $b, b' \in B$. The algebra $\text{Ind}_H^G(B)$ is viewed as interior G-algebra with the structural homomorphism $x \in G$ to $\sum_{y \in [G/H]} xy \otimes 1_B \otimes y^{-1}$.

For $B = OH$, we have the obvious identification $\text{Ind}_H^G(OH) = OG \otimes_{OH} OG$, with multiplication given by $(x \otimes y)(x' \otimes y') = x \otimes yx'y'$ if $yx' \in H$ and 0 otherwise, where $x, y, x', y' \in G$. The previous notion of algebra induction is consistent with this concept:

Lemma. Let G be a finite group, H a subgroup of G and let B be an interior H-algebra. Set $M = OG_H$. There is an isomorphism of O-algebras

$$\left\{ \begin{array}{ll}
\text{Ind}_H^G(B) & \cong \text{Ind}_M(B) \\
(x \otimes b \otimes y) & \mapsto (z \otimes c \mapsto x \otimes byzc \text{ if } yz \in H \text{ and } 0 \text{ otherwise}) ,
\end{array} \right.$$

where $x, y, z \in G$ and $b, c \in B$.

Proof. Straightforward verification. □

Theorem 3. (Stalder [5]) Let G be a finite group, let H, K be subgroups of G. Consider OG as OH-OK-bimodule via multiplication in OG. Then there is an isomorphism of O-algebras

$$\left\{ \begin{array}{ll}
(\text{Ind}_H^G(OH))^K & \sim (\text{Ind}_K^G(OK))^H \\
\sum_{k \in [K/K_{(x \otimes y)}]} kx \otimes yk^{-1} & \mapsto \sum_{h \in [H/H_{(x^{-1} \otimes y^{-1})}]} hx^{-1} \otimes y^{-1}h^{-1} ,
\end{array} \right.$$

where $K_{(x \otimes y)}$ is the stabilizer in K of $x \otimes y \in \text{Ind}_H^G(OH)$ under the action of K and $H_{(x^{-1} \otimes y^{-1})}$ is the stabilizer in H of $x^{-1} \otimes y^{-1} \in \text{Ind}_K^G(OK)$ under the action of H.

There are (at least) three ways to go about the proof of Theorem 3: by explicit verification or by interpreting Theorem 3 as special case of either Theorem 1 or Theorem 2. We sketch the three different proofs.

Proof 1 of Theorem 3. The image of the set $G \times G$ in \(\text{Ind}_H^G(\mathcal{O}H) = \mathcal{O}G \otimes_{\mathcal{O}H} \mathcal{O}G \) is an \mathcal{O}-basis which is permuted under the action of K by conjugation. Thus the subalgebra \((\text{Ind}_H^G(\mathcal{O}H))^K \) of K-stable elements has as \mathcal{O}-basis the set of relative traces \(Tr^K_{1_K(z \otimes y)}(x \otimes y) \), where $x, y \in G$. If $x, x', y, y' \in G$ and $k \in K$ such that

\[
xk \otimes yk^{-1} = x' \otimes y'
\]

in \(\text{Ind}_H^G(\mathcal{O}H) \), there is a (necessarily unique) $h \in H$ such that $kx = x'h^{-1}$ and $yk^{-1} = hy'$, which in turn is equivalent to the equality

\[
hx^{-1} \otimes y^{-1}h^{-1} = (x')^{-1} \otimes (y')^{-1}
\]

in \(\text{Ind}_H^G(\mathcal{O}K) \). Thus the map $x \otimes y \mapsto x^{-1} \otimes y^{-1}$ induces a bijection between the sets of K-orbits and of H-orbits of the images of $G \times G$ in \(\text{Ind}_H^G(\mathcal{O}H) \) and \(\text{Ind}_K^G(\mathcal{O}K) \), respectively. In particular, with the notation above, we have $k \in K(z \otimes y)$ if and only if $h \in H(z^{-1} \otimes y^{-1})$, and the correspondence $k \mapsto h$ induces a group isomorphism \(K(z \otimes y) \cong H(z^{-1} \otimes y^{-1}) \). From this follows that the map given in Theorem 3 is an \mathcal{O}-linear isomorphism. It remains to verify that this is an algebra homomorphism. In \(\text{Ind}_H^G(\mathcal{O}H) \), multiplication is given by $(x \otimes y)(z \otimes t) = x \otimes yzt$, if $yz \in H$ and 0, otherwise, where $x, y, z, t \in G$. If $yz \in H$, then in \(\text{Ind}_K^G(\mathcal{O}K) \), the elements $(yz)z^{-1} \otimes t^{-1}(yz)^{-1}$ and $z^{-1} \otimes t^{-1}$ are in the same H-orbit, and the multiplication in \(\text{Ind}_K^G(\mathcal{O}K) \) yields $(x^{-1} \otimes y^{-1})(yz^{-1} \otimes t^{-1}(yz)^{-1}) = x^{-1} \otimes t^{-1}y^{-1}$, and this corresponds precisely to the bijection between the sets of K-orbits and H-orbits of the images of the set $G \times G$ in \(\text{Ind}_K^G(\mathcal{O}K) \) and \(\text{Ind}_H^G(\mathcal{O}H) \), respectively. \(\square \)

Proof 2 of Theorem 3. We are going to apply Theorem 1 to the particular case where $A = \mathcal{O}H$, $B = \mathcal{O}K$, $M = N = \mathcal{O}G$ viewed as A-B-bimodule (through the inclusions $H \subseteq G$, $K \subseteq G$). This yields an \mathcal{O}-linear isomorphism

\[
((\mathcal{O}G)^* \otimes_{\mathcal{O}H} \mathcal{O}G)^K \cong (\mathcal{O}G \otimes_{\mathcal{O}K} (\mathcal{O}G)^*)^H.
\]

Composing this with the canonical isomorphism \((\mathcal{O}G)^* \cong \mathcal{O}G \) mapping $f \in (\mathcal{O}G)^*$ to $\sum_{x \in G} f(x^{-1})x$ yields the isomorphism in Theorem 3. \(\square \)

Proof 3 of Theorem 3. Applying Theorem 2 and the above Lemma to $A = \mathcal{O}K$, $B = \mathcal{O}H$ and $M = \mathcal{O}G$ as A-B-bimodule yields an anti-isomorphism \((\text{Ind}_H^G(\mathcal{O}H))^K \cong (\text{Ind}_K^G(\mathcal{O}K))^H \). The map sending $x \otimes y$ to $y^{-1} \otimes x^{-1}$ is an anti-automorphism of \(\text{Ind}_H^G(\mathcal{O}H) \) which induces an anti-automorphism of \((\text{Ind}_H^G(\mathcal{O}H))^K \). Composing both maps yields again the isomorphism in Theorem 3. \(\square \)

Remark. The proof 3 of Theorem 3 is essentially the proof given in [5, §11].
A reciprocity for symmetric algebras

References

5. B. Stalder, Une extension de l’algèbre de groupe en théorie des représentations modulaires, Thèse, Université Lausanne (2000).

Markus Linckelmann
CNRS, Université Paris 7
UFR Mathématiques
2, place Jussieu
75251 Paris Cedex 05
FRANCE

Bernard Stalder
Université de Lausanne
Institut de Mathématiques
1015 Lausanne
SUISSE