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Abstract

This thesis is concerned with the study of special types of photonic crystal fibers (spiral)
and their optical properties. The work is carried out using simulation techniques to
obtain the modal field profile and properties for the designs. The method used in
solving the Maxwell’s equations is the full vectorial finite element method with the
implementation of penalty function and perfectly matched layer. The penalty function
is used to eliminate nonphysical solutions. The perfectly matched layer is integrated to
absorb rays of light traveling away from the core. These rays are absorbed by the layer
and do not reflect back to negatively influence the results.
The spiral shapes are implemented in the distribution of the holes in the cladding
region of the photonic crystal fiber to determine the photonic crystal fiber properties.
Three different spirals have been introduced which are equiangular, Archimedean and
Fermat’s spiral. The study of the effective refractive index, effective area and dispersion
with varying spiral parameters have been carried out and the results are analyzed to
understand the effect of each parameter. The variation of similar parameters in the
spirals leads to similar variation in the optical properties under consideration.
Furthermore, the equiangular spiral photonic crystal fibers (ES-PCF) have been in-
vestigated in two different dimensional scales. The scales are in comparison with the
wavelength of operation in the first case when core size is larger than the operating
wavelength. In this case the total dispersion of the fiber has slightly higher values
than the material dispersion but similar curve and slope. On the other hand, when the
core size is comparable with the wavelength of operation, the dispersion is varying
significantly with varying the spiral parameters. The effective area can be made very
small and therefore the nonlinearity of the fiber very large to facilitate non-linear
applications such as super continuum generation.
The equiangular spiral photonic crystal fiber has been modified slightly where the
position of holes in the third ring are shifted further from the center and their size is
much bigger. This manipulation is proposed in an algorithm in this thesis to facilitate
the fabrication of ES-PCF using an adaptive stack and draw technique. The design
shows similar optical behavior to an ideal spiral and its dispersion has been tailored for
supercontinuum generation.
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Chapter 1

Introduction to Optical Fibers

An optical fiber is a tiny cylindrical medium in which light is launched to interact with
the medium to measure different parameters, amplify signals, carry information or be
used as laser. Optical fibers have improved the standard of life of human beings where
they are used in a variety of fields. They are widely used in telecommunications as a
media for transferring information from point to point such as transoceanic cables [1, 2]
and more recently, fiber to the home [3], which enables high Internet data rates. They
are used in sensing to measure physical perturbations of temperature, rotation, acoustic
and/or other quantities [4], optical sensors can be used in extreme environments with
high temperature, high voltage or other stress factors [5]. Moreover, optical fibers can
be used for signal amplification [6], power delivery, imaging and much more.
Therefore, optical fiber technology is one of the active scientific research areas for
physicists and engineers. Huge amounts of resources and funds have been implemented
to improve optical fiber properties and explore new types for various purposes such as
medicine, spectroscopy, sensors and telecommunications which are the primary uses of
optical fibers.
In this chapter, an overview of the basics of optical fibers is presented to understand the
fundamental concepts of how optical fibers operate and their properties. An explanation
of the conventional optical fibers and the different types of optical fibers are introduced,
also the essential laws and parameters related to optical fibers are represented starting
with Snell’s law. The major optical properties of optical fibers which influence system
performance such as attenuation, dispersion and non-linearity are discussed. The
Photonic Crystal Fibers (PCF), which are the focus of this work, are introduced. Then
the guiding mechanism of different types of PCF, fabrication process and special
properties of PCF are discussed.
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The analysis and understanding of the optical fibers and devices requires experimental
or numerical studies to be carried out. The former is time consuming and requires
huge amounts of physical resources. The study in this thesis is based on numerical
simulations to study a special type of PCF. The numerical method adapted is the Finite
Element Method (FEM) because of its feasibility and versatility in presenting any
arbitrary boundaries. The mathematical derivation of the formula used in the FEM
and the procedure of implementing the method in solving electromagnetic problems is
shown in Chapter 2.
This thesis presents the result of the studies of a special type of PCF coined in regards
to the holes distribution as Spiral PCF. The main factors in PCF that control the
propagation and properties of light are the holes position and size. A spiral is a
mimic of natural shapes of various creatures and planets. These shapes have different
mathematical presentations which are presented by different spirals. In this work three
spirals (Equiangular, Archimedean and Fermat’s spirals) are explored in the design
of PCF. The objective of this work is to understand the effect of varying the different
parameters of the spiral on the optical properties so that a design with the desirable
properties can be made with analysis of the systematic studies presented. Furthermore,
each spiral has a unique hole distribution which indicates that the spirals effect the
properties differently. This would widen the implementation of spirals in different
applications.
The results are divided into two parts; the first part is the general study of the effect of
varying the parameters of spirals. Each spiral results are shown in a separate section in
Chapter 3. The second part of the results is more in depth analysis of the Equiangular
Spiral PCF (ES-PCF) design for non-linear effect, namely Supercontinuum Generation
(SCG), and a propose fabrication procedure for ES-PCF that proved the adaption of
Stack and Draw (SaD) technique for exotic structure is possible. The second part of
the results is presented in Chapter 4.

1.1 Optical Fiber Technology

Conventional glass-core optical fiber technologies have improved significantly since
the first successful glass fiber was made in 1957 [7]. However the era of optical
fiber communications started in 1970s, when a fiber with loss less than 20dB/km was
launched [7]. The development of erbium-doped fiber amplifier in 1980s, reduced the
cost of long distance communication because the optical signal could be amplified
directly without converting it to electrical signal thus reducing the number of repeaters
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[6]. Nowadays, optical fibers are one of the best communications media for long
haul communications. They exhibit very low losses, immunity to electromagnetic
interference and have wide bandwidth hence providing highest date rates. Optical
fibers are used in undersea Internet cables which provide a robust and high speed
Internet. Moreover, optical fibers and integrated optical waveguides are finding a wide
range of usage in other different areas.
In optical telecommunications, the wavelength spectrum is divided into three win-
dows; first, second and third which positioned at wavelengths 850nm, 1300nm and
1550nm, respectively. In the following section an explanation of basic concepts and
terminologies of optical fibers is presented.

1.1.1 Optical fibers

An optical fiber is a cylindrical dielectric waveguide. It is constructed of a high index
core in which the light propagates. The core is surrounded by a cladding which
has a slightly lower refractive index than the core [8], and a coating which provides
mechanical protection to the fiber from physical damage and protects the glass surface
from moisture and dust particles [7, 9]. A schematic of an optical fiber is shown in
Figure (1.1). The core size and the index difference between core and cladding play a
major role in determining the fiber properties.

Fig. 1.1 Typical optical fiber structure

An important optical parameter of any transparent medium is the refractive index (n)

which defines the optical density of the material i.e the relative speed of light in the
material (v) compared to that in vacuum (c) [10].

n =
c
v

(1.1)

The refractive index change with wavelength is related to an important property of
optical fibers, which is the broadening in pulse duration (temporal) and length (spatial)



1.1 Optical Fiber Technology 4

[11]. This is known as dispersion in optical technology. Figure (1.2) shows the
refractive index of the fused silica material as a function of wavelength. The change
in refractive index at lower wavelengths is very sharp, leading to a high value of
dispersion.

Fig. 1.2 Refractive index profile of fused silica material [12]

Figure (1.3) shows the material dispersion of fused silica. The Zero Dispersion Wave-
length (ZDW) is near the second window at 1.28µm [13]. Dispersion is discussed in
more depth in Section 1.2.2.

Fig. 1.3 Dispersion of fused silica material [12]
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In the following subsection interaction of light as it travels between media with different
index is presented.

1.1.2 Guiding mechanism

Snell’s law gives the mathematical relation that can be used to predict the angle of
refraction when a light ray travels from one medium to another [7].

n1 sin(α) = n2 sin(β ) (1.2)

where n1, n2 are the refractive indices of the high and low density mediums respectively,
α is the angle of incidence and β is the angle of refraction or reflection.
The rays of light traveling from a medium of higher refractive index (Figure (1.4),
medium 1) to a lower density medium (medium with a lower refractive index, Figure
(1.4), medium 2) are either partly reflected and the rest refracted or completely reflected
depending on the angle of incidence. If the angle of incidence is greater than the critical
angle the rays get reflected back into medium 1 (Figure (1.4), ray 3), otherwise the rays
are refracted into medium 2, the medium with the lower refractive index (Figure (1.4),
ray 1). The critical angle (αc) is the value of α when β = 90o (Figure (1.4), ray 2).

Fig. 1.4 Snell’s law of refraction [14]

From Snell’s law
n1 sin(α) = n2 sin(β ).

When α = αc
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β = 90o.

Therefore,

αc = sin−1
(

n2

n1

)
(1.3)

The propagation of light in an optical fiber can be understood through the application
of Snell’s law. Rays of light traveling from the core to cladding hit the core/cladding
interface at an angle greater than the critical angle suffer Total Internal Refraction (TIR)
and travel through the core of the fiber. This happens repeatedly each time the rays
hit the core-cladding interface causing light to be guided in the fiber core as shown in
Figure (1.5). In contrast, all other rays are refracted and escape from the core and do
not propagate in the core.

Fig. 1.5 Sketch of TIR in an optical fiber

The light launched in an optical fiber and the amount that couples and propagates in the
fiber is measured by two parameters, namely Numerical Aperture (NA) and acceptance
angle, which are presented below.
The light gathering capability of an optical fiber is determined by the NA which depends
on the index difference between the core and cladding.

NA = (n2
1 −n2

2)
1
2 = sin(θa) (1.4)

The optical fiber has a maximal angle, the acceptance angle (θa), at which light entering
the core can propagate through the fiber. The acceptance angle and NA are important
in determining the amount of light entering the fiber. These parameters are preferred to
be large to gather more light.
However, the difference in refractive indices is very small and can not be varied much.
The difference in refractive indices of optical fiber is measured as a ratio, known as
the relative refractive index difference (∆) [7]. Telecommunication optical fibers have
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a typical value ≈ 0.01 of ∆ [15]. Furthermore, the difference in core and cladding
indices is vital in determining the fiber properties.

∆ =
n2

1 −n2
2

2n2
1

≈ n1 −n2

n1
(1.5)

The distribution of the field in the transverse direction is called a mode and waves can
have identical modes with different frequencies in the optical fibers. The mode defines
how the wave travels in the medium and the number of modes that can propagate in the
core of a fiber is related to the dimensionless parameter V , which is given in Equation
(1.6) [16]. The V parameter and modes are discussed in greater details in Section 1.1.4.

V =
2πa
λ

√
n2

1 −n2
2 (1.6)

To sum up, it is a requirement for optical fibers that the core has a higher refractive
index than the cladding to guide light as stated by Snell’s law. Moreover, the type
of optical fiber depends on core size, refractive index difference, and wavelength of
operation. The fabrication process and various types of optical fibers are discussed in
the following section.

1.1.3 Types of optical fibers and fabrication

The interaction of light with matter at high light intensity leads to a non-linear response
of the material to the amplitude of the field. In this regime the light waves can interact
with each other and generate optical fields at new frequencies [17]. The non-linear
effects are discussed in more depth in Section 1.2.3.
In optical systems, the two major properties of concern, that limit the transmission
capabilities, are the attenuation (power loss) and dispersion (pulse spreading). Both of
them can have a detrimental effect in telecommunications and their values are required
to be small or zero so their effect is tolerable. On the other hand, some applications
require a non-zero or a larger value of dispersion for the effect to be useful. Such
is the case in non-linear effects where a non-zero dispersion is required to have a
significant impact on the signal. On the other hand, large values of dispersion are
required in dispersion engineered fibers to compensate the dispersion of conventional
telecommunication optical fibers. Therefore, the dispersion should be controlled to
suite the required application. The dispersion of silica material is given in Figure (1.3)
and the intrinsic losses in Figure (1.6).
Conventional telecommunication optical fibers are mostly made of fused Silica, which
has a loss of less than 0.2dB/km at 1.55µm by doping either the core or the cladding
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Fig. 1.6 Intrinsic silica material losses [18]

with germania (GeO2) or fluorine (F) respectively to create a core with higher refractive
index. The core rod is fabricated by deposition of the material by one of the various
methods popular in the industry: Modified Chemical Vapor Deposition (MCVD)
[19, 20], Vapor Axial Deposition (VAD) [21], Outside Vapor Deposition (OVD), and
Plasma Chemical Vapor Deposition (PCVD) [22]. The core rod consists of the core and
part of the cladding. The overlaying cladding is typically made of lower purity silica by
OVD, sol-gel casting, or plasma deposition. The core rod and cladding glass form the
preform. Typical length of the preform is 1m and diameter is 10−50mm. The preform
is drawn down on a drawing tower to form the final optical fiber with dimensions of
125µm by softening the silica glass in the temperature range 1950−2250 oC. Finally,
the optical fiber is coated with two polymer layers [7].
There are more sophisticated designs but all of which follow the same rule to satisfy
the total internal reflection phenomenon. However, there are two main types of optical
fibers: Single Mode Fibers (SMF) and Multimode Fibers (MMF). Figure (1.7) illustrates
the standard dimensions of these optical fibers. The core radius of SMF is much smaller
than MMF.
In SMF, only the fundamental mode can propagate through the core whereas the
number of modes in MMF is roughly (V 2/2) [23], so MMF suffer from intermodal
dispersion. Single mode fibers have lower loss and lower dispersion than the MMF. On
the other hand, MMF have higher coupling efficiency than SMF. Although SMF are
more expensive than MMF in terms of fabrication, they are preferable in long distance
communications because the SMF supports only the fundamental mode hence loss and
dispersion is lower which leads to less amplification stages and a lower overall cost.
In the first place, an understanding of a mode is required to see the difference between
optical fibers and number of modes which would propagate in the core. The mode
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Fig. 1.7 Typical dimensions of SMF and MMF [14]

propagation condition, different types and number of modes are discussed in the
following section.

1.1.4 Modes in optical fiber and their properties

A mode is the distribution of the electromagnetic waves in the transverse direction.
Mathematically, a mode is a solution of the Helmholtz equation which is derived from
Maxwell’s equations and boundary conditions [16]. The electromagnetic field variation
in the material can be discussed in terms of the quantity −(n2

i k2
0 −β 2) as shown below,

where subscript i stands for media 1 (core with refractive index n1) or 2 (cladding with
refractive index n2), β is the mode propagation constant and k0 is the wave number:

k0 =
2π

λ
(1.7)

The field variation exhibits sinusoidal behavior when n2
i k2

0 is greater than β 2. When
n2

i k2
0 is smaller than β 2 the field is evanescent and the variation exhibits an exponential

decay [24].
In optical fibers, when β is greater than n1k0 the field is evanescent everywhere and no
mode is present. On the other hand, when β is smaller than n0k0 the field oscillates
everywhere and does not vanish. The latter are radiation modes and are not guided by
the optical fiber. The propagation constant for guided modes falls in the range between
n1k0 and n0k0 [24], where n0 is the refractive index of the air surrounding the cladding.
There are two types of guided modes that are present in optical fibers. The first is
cladding guided modes which are present when n2k0 > β > n0k0. The second are



1.1 Optical Fiber Technology 10

core guided modes which have an effective refractive index (ne f f ) with a value range
between the core and cladding refractive indices n2 < ne f f < n1.

ne f f =
β

k0
(1.8)

where λ is free space wavelength.
The fiber modes are labeled LP (Linearly Polarized) with subscript integers l and m.
The m subscript corresponds to the rays which make different angles with the fiber axis
and l for helicity of the ray. Rays passing through the fiber axis have l = 0 [15]. Figure
(1.8) shows the field profile of the modes for l = 0,1,2 and m = 1,2,3 combination.

Fig. 1.8 Mode field profiles for low LPlm [14]

Optical fibers which have a slight difference in refractive index between the core and
cladding are considered to be weakly guiding [25]. The modes of optical fibers are
not LP modes but in weakly guiding fibers the field can be approximated to LP modes.
However, the modes in optical fibers are labeled T E0m (Transverse Electric, i.e electric
field in z direction Ez = 0), T M0m (Transverse Magnetic, i.e magnetic field in z direction
Hz = 0), and the Hybrid modes HElm (Hz and Ez have similar polarity) and EHlm (Hz

and Ez have opposite polarity) [26].
Each mode has a propagation constant and a field profile. The mode with highest
propagation constant is known as the fundamental mode and the other modes are higher
order modes, with decreasing value of propagation constant.
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In a single mode fiber only the fundamental mode propagates within the core. The
optical fiber has two degenerated modes (X- and Y-polarized modes) with identical
propagation constant and slightly different field configurations [7], any one of which
is referred to as the fundamental mode. The notation of the field can be Ex

lm or Hx
lm

depending on dominant filed electrical or magnetic, respectively. The x can be either x

or y depending on the direction of dominant field. An Hx
11 is fundamental mode with

a dominant magnetic field in the x direction (the magnetic field amplitude in the x

direction is larger than amplitude in the y direction) referred to as X-polarized.
The degeneracy between the two fundamental modes is lifted if the optical fiber sym-
metry is destroyed either accidentally by external stresses and bends, or intentionally
like in special designs which are asymmetric for special application such as in elliptical
core [27], tie-bow [28], panda [29], and photonic crystal fibers which are discussed
later in this chapter. As a result the two modes will have different propagation constant
and hence different effective refractive indices. The difference in the effective refractive
indices between the two modes is known as Birefringence (B).

B =
∣∣∣nx

e f f −ny
e f f

∣∣∣ (1.9)

where nx
e f f and ny

e f f are the refractive indices of the two degenerated modes.
The fundamental mode field profile has a Gaussian-like at best shape which is con-
centrated in the core. The mode field profile spreads into the cladding and decays
exponentially. The percentage of the total mode that travels in the core is defined by
confinement factor parameter. Higher order modes spread more in the cladding than
the fundamental mode.
The number of modes a fiber can support is determined by Equation (1.10) where a is
the core radius. From the formula we notice that the higher the wavelength the fewer
the number of modes that can propagate in the fiber. To achieve single mode operation
at a given wavelength a and NA should be sufficiently small.

Nm = 0.5
(

2πaNA
λ

)2

(1.10)

where Nm is the number of mode in the fiber
The number of modes that propagates in the fiber can be determined form Figure (1.9)
by calculating normalized frequency parameter (V ) from Equation (1.6). In an SMF, the
V value is less than 2.405 [15]. Furthermore, the single mode operation is wavelength
dependent. A fiber only supports the fundamental mode if the wavelength of operation
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Fig. 1.9 Normalized frequency V vs normalized propagation constant b curves for LP
modes in step index fiber [30]

is longer than a specific wavelength, the cut-off wavelength (λc). Otherwise, the fiber
supports higher order modes at shorter wavelengths.

λc =
2πa

2.405

√
n2

1 −n2
2 (1.11)

To conclude this section, the essential laws of optical fibers have been briefly dis-
cussed. The physical properties of optical fibers have been introduced and their optical
properties are explored in the next section.

1.2 Optical Properties of Fibers

The key optical properties which impact the performance of optical fibers are attenua-
tion, dispersion and non-linearity. The attenuation or loss is determinant in any media
or/and system as the signal vanishes as it travel through the media [31]. The loss is
preferred to be as small as possible for the modes of interest. In contrast, the loss of
undesirable modes is preferred to be high so those modes vanish after short distance
and do not interfere with the modes of interest such is the case with higher order modes
when single mode guidance is required.
Dispersion should be zero or low for some applications like in telecommunications.
On the other hand, high values of dispersion is desirable in other application as in
the residual dispersion compensating fiber [31]. Other use of dispersion is a non-zero
anomalous dispersion for non-linear effects when a non-linear behavior is required.
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These properties are more controllable in PCF than in conventional optical fibers due
to the different parameters that can be manipulated to get the desired performance [32].
Therefore, it is an important aspect to understand these properties and their effects, and
how they can be controlled to have optimal performance. The discussion of attenuation
and dispersion is given in following subsections. Then at the end of this section a review
of non-linearity which has detrimental affect at high power as a pulse is broadened
leading to distortion of the signal. However, recently non-linear effects led to various
applications in optical fibers such as Raman amplifiers, optical coherence tomography,
high-precision frequency metrology and the most attractive application which was first
observed in 2000 [13], and SCG [32].

1.2.1 Attenuation

Attenuation is the degradation or loss of optical power as light travels through a
medium. In 1965, Kao and Hockham predicated that the fiber losses can be improved
significantly because the majority of the loss is due to the impurities in the material
and not an intrinsic loss of the glass, silica [15]. Kao was awarded for the Nobel Prize
for his work on optical fibers in 2009 [14]. The optical loss is measured in (dB/km).
The optical losses are either intrinsic or extrinsic. The former depends on the material
properties of the waveguide and the fabrication accuracy. This loss is due to the
absorption and scattering of light within the medium. The latter arises due to external
strains and stresses applied to the waveguide such as bends or thermal effects. Therefore,
intrinsic losses can only be reduced at the time of fabrication. On the other hand,
extrinsic losses can be reduced or removed after installation of the optical fibers by
fixing the problem that leads to loss. The different factors that cause loss are discussed
next.
Absorption:
Absorption is due to impurities trapped in the waveguide material such as metals and
moisture. The total attenuation as a function of wavelength for a conventional optical
fiber is shown in Figure (1.10). This graph shows the intrinsic losses: impurities result
in two peaks in the total loss. The first peak is due to metals and the second large
peak is as a result of the vibration of molecules which form in the fabrication process
trapping H2O molecules in the glass.
Furthermore, at short wavelengths the contribution from the Ultra Violet (UV) absorp-
tion is the leading factor. This absorption is caused by electronic transitions stimulated
by higher energy excitation. Also, at higher wavelengths Infra-Red (IR) absorption
dominates which is resulting from molecular vibrations within the glass [33].
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Fig. 1.10 Optical fiber attenuation [14]

The degree of absorption depends on the amount of impurities in the optical fiber and
the wavelength of operation. The absorption is an intrinsic loss of the material. There
is another intrinsic loss, namely scattering, which is discussed below.
Scattering:
Scattering is the reflection of light in all direction as it travels through a waveguide
which dominates in much of the visible spectrum range and also the first and second
telecommunication windows [14]. The variation of the dopants in the core effects the
density and concentration of the glass leading to scattering of the light . There are
two main types of scattering which are listed below. Rayleigh scattering is caused
by atomic and molecular structure of the glass and inhomogeneities in glass which
leads to fluctuations in refractive index that act as tiny scattering centers [34]. The
inhomogeneities are regions of different composition or density which are formed
naturally, in the glass during the fabrication process. They are much smaller than the
wavelength [33]. The amplitude of scattering is proportional to ω4 or to the inverse
of fourth power of wavelength (λ−4). Therefore, shorter wavelengths (blue light)
are scattered much more than longer wavelengths (red light), this effect is the reason
the sky appears blue where sun light scatter due to gas molecules in air [31]. The
Rayleigh scattering is negligible at wavelengths greater than 1.6µm in comparison with
IR absorption [34].
The other type is Mie scattering. It arises from imperfections in optical fiber geometry
due to strain, presence of bubbles, core-cladding interface irregularities and refractive
index difference through the fiber length [35]. This scattering is usually in the forward
direction [35]. Mie scattering can be reduced by controlling fabrication processes
[33]. A distinction between both scattering is the size of imperfection in the optical
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fiber at which the light is scattered compared to the wavelength of operation. In
Rayleigh scattering imperfections are smaller than wavelength of values to one tenth
of the wavelength, and in Mie scattering the size is comparable or of similar size to
the wavelength [35]. There are other losses which results from bends in the fiber as
explained below.
Bending:
Bending losses arise from bends in the optical fiber which are formed during fabrication
or poor handling in the installation process. There are two types: macrobends (Figure
(1.11)) and microbends (Figure (1.12)). The former is caused intentionally when fibers
are bent around corners. There is no light reflected back from cladding to the core in
this case. The latter are caused by tensile stress, temperature, or damage and they may
conveniently be visible, also light may reflect back [33].

Fig. 1.11 Fiber macrobending [14]

Fig. 1.12 Fiber microbending [14]

The mode in the bent fiber is calculated by transforming the bent fiber to an equivalent
straight fiber by the conformal mapping process where the refractive index is modified
as shown [36]

n′ = n
(

1+
X
R

)
(1.12)
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where X is the half thickness of the fiber (radius), n is the material refractive index and
R is the bend radius.
When bending a fiber the outer side is expanded and the inner side is compressed
leading to different speeds of the modal components to maintain its shape. The speed
at the outer side increases with decreasing the bend radius to a point where the wave in
the cladding would travel with a velocity greater than the speed of light in that material,
which is not possible, so the mode escapes from the fiber and hence attenuation
increases [37]. Multimode fibers experience higher bending loss than SMF because
higher order modes spread more into the cladding region and experience more increase
in their velocity and modes couple to the cladding [38].
The attenuation in optical fibers is measured in decibel per unit length. The measure-
ment technique is to launch light with a predetermined power at one end of a sample
of the fiber and measuring the output power. The attenuation coefficient (α), usually
measured for optical fibers in dB/km, is calculated from Equation (1.13). Then the
total loss of the fiber is the product of α and the length of the fiber (L) [15].

Loss(dB) = αL = 10log10
Pin

Pout
(1.13)

The loss plays an important role in determining the signal strength at the receiver and
thus the efficiency of the system. Another factor which limits the system performance
is dispersion. It is considered in the next section.

1.2.2 Dispersion

A pulse is broadened as it propagates along the optical fiber because no light pulse
is truly monochromic. In other words, a light pulse has a non-zero spectral width
which means the pulse contains different frequency components. In addition to that
pulses travel partially in the core and spreads into cladding which has lower refractive
index hence velocities of light is higher leading to broadening. If more than one mode
is present then their velocities are different and all adds up to the broaden the pulse,
this leads to inter-modal dispersion. Therefore, each component in the pulse either
in core or cladding propagates with a different velocity in the medium resulting in
pulse distortion. This phenomenon is termed dispersion. If a stream of pulses is
launched in a fiber and the dispersion is large enough then the pulses will overlap, see
Figure (1.13). The effect of dispersion is not desirable in some applications such as
telecommunication. However, currently dispersion plays an important role in many
applications where dispersion is essential to achieve unique results.
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Fig. 1.13 Schematic of effect of dispersion on the signal

In non-linear effects, which are discussed in Section 1.2.3, an anomalous flattened
dispersion with zero dispersion near the pump wavelength is desirable to achieve higher
non-linear effects. Furthermore, the effective area needs to be small in non-linear
applications. The control of both variables in conventional fibers is limited. Luckily,
the PCF overcome these limitation and both parameters can be manipulated simulta-
neously. The dispersion arises from different factors and to control the dispersion an
understanding of these factors required. These factors are listed below.
Material Dispersion:
Material dispersion is an intrinsic property of the material because the refractive index
of the material is wavelength dependent [30]. Each spectral component of a light
pulse, which is a superposition of different frequencies centered on the frequency of the
modulated source, propagates at different speeds. It is a measure for the bulk material
and not the waveguide. The material dispersion is the second derivative of refractive
index with respect to wavelength. Equation (1.14) shows this relation [14, 26].

Dm =−λ

c
d2n
dλ 2 (1.14)

Waveguide Dispersion:
Waveguide dispersion is dependent on the structure of the waveguide. The light prop-
agation in the core is different from that in the cladding leading to pulse spreading
with the effect of the material dispersion. Waveguide dispersion can be utilized to com-
pensate the material dispersion in dispersion compensating fibers and zero dispersion
shifted fibers. The waveguide dispersion is calculated by formula [14, 26]:

Dw =−∆
n
λc

V
d2(V b)

dV 2 (1.15)

The material and waveguide dispersion combined together yield the chromatic disper-
sion for the fiber (total dispersion) Figure (1.14) [30]. This dispersion is positive when
shorter wavelengths propagate faster than longer wavelengths, or negative which is
opposite to the above [39].
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Fig. 1.14 Dispersion of typical single mode optical fibers [40]

The total dispersion is denoted D and for SMF is the chromatic dispersion which is the
sum of the material and waveguide dispersions.

D = Dm +Dw (1.16)

The dispersion is anomalous if D is positive, where the change in effective refractive
index increases with increasing wavelength. On the other hand, if the change in
effective refractive index decreases with increasing wavelength (D is negative) the
dispersion is termed as normal.
Inter-modal Dispersion:
Different modes in the waveguide are associated with different propagation constant
values leading to different propagation velocities. This type of dispersion exists in
MMF because various modes propagate within the core and arrive at the output at
different times. In MMF, Inter-modal dispersion is the dominant effect and chromatic
dispersion is relatively small, therefore it can be neglected [26].
In MMF there are several modes and even if the fiber is long the separation between
generated pulses is small and the result is a broadened output pulse [26].
Polarization Mode Dispersion (PMD):
Optical fibers have an anisotropic perturbation due to variation in refractive index,
which results at fabrication or/and due to stress and bends in the fiber. Therefore,
optical fibers do not have a perfectly rotational symmetry which results in the degen-
eracy between the two fundamental modes being lifted and this leads to dispersion
between these two modes [41, 42]. This type of dispersion effect was neglected in
calculations. However, today requirements of higher data rates and compensation of
other dispersions, lead to consideration of this dispersion [35]. One way tested on
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conventional fibers for reducing unwanted polarization effect is to rotate the preform
during the drawing process, this is known as fiber spinning. This process reduces the
PMD [37].
There are different factors that would impact the dispersion such as choosing the right
operating wavelength. The transmitter choice is an important factor in controlling the
input pulse width and hence the dispersion. Laser has a narrow width while LEDs have
a wide frequency spectrum [33]. The optical fiber plays an important role in producing
the desirable dispersion. The dispersion is controlled for the application of interest with
high or low values and its variation with wavelength. In the next chapter the dispersion
is discussed further in relation to the result obtained for this thesis.
The two properties that affect the system performance at low power intensity have
been considered in the preceding sections. However, at high power intensity loss and
dispersion still have vital impact but there are other effects which influence optical
fiber. They are the non-linear effects which are summarized in the next section.

1.2.3 Non-linearity

The non-linearity has a positive impact on the implementation of optical fiber in
different fields. The non-linear effects are more observed in optical fibers and with the
advance in optical fiber fabrication techniques and material side point of view, has made
them an interesting media for generation of non-linear effects, in industry and research
fields. Non-linearity can however also have a negative impact on the performance
of optical fibers in telecommunication [43]. The basic concepts of non-linearity are
discussed first, followed by the major types of non-linear effects in optical fibers.
In the linear regime, when the intensity of light is low, the refractive index of the
material is independent of the intensity of light and the optical response of the material
is linear to light intensity. On the contrary, at high intensity the optical properties of the
media vary as the light intensity changes. The material responds in a non-linear manner
to the intensity where the refractive index becomes a function of light intensity as
shown in Equation (1.17) and the optical properties of the material are altered. [16, 17].

n = n0 + I0n2 (1.17)

where n0 is the linear refractive index, n2 is the non-linear refractive index coefficient
of the medium and I0 is the light intensity.
Therefore, the non-linearity is the dependence of the change in optical properties of
the material on the intensity of light launched. Non-linearity is mainly due to the
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conversion of power from one wavelength to another. Before digging deeper into
non-linear effects the intensity of light should be defined to understand the general
concept why optical fibers are more powerful in studying non-linear effects.
The optical intensity is the power divided by the area in which the field is distributed,
or the power per unit area. The efficiency of non-linear effect is the product of intensity
of light and effective length of the media that the light travels through (Le f f ). In
bulk materials the intensity of light is focused to a spot of radius (σ) is given by
Equation (1.18) [32]. The intensity increases with decreasing the focal radius, though
the effective length decreases as radius decreases as can be seen from Equation (1.19)
[32].

I0 =
P0

πσ2 (1.18)

where P0 is the incident optical power.

Le f f =
πσ2

λ
(1.19)

Therefore, the non-linearity efficiency in bulk material is given by Equation (1.20). It
is observed that non-linearity is proportional to the incident power at given wavelength
and as a result, to increase the non-linear effect in bulk material, the incident power has
to be increased.

(
I0Le f f

)
bulk =

(
P0

πσ2

)
πσ2

λ
=

P0

λ
(1.20)

On the other hand, the effective length in optical fiber is limited by loss coefficient (α)

because the spot-size (σ ) can be maintained through the entire length of the optical
fiber. The intensity across the length is defined as in the Equation (1.21) [32], and I0 is
defined as in Equation (1.18), where P0 is the power coupled into the optical fiber.

I(z) = I0 exp(−αz) (1.21)

The efficiency of non-linearity in optical fiber is

(
I0Le f f

)
f iber =

∫ L

0
I(z) exp(−αz)dz =

P0

πσ2α
[1− exp(−αL)] (1.22)
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For long fiber non-linear effects can be enhanced by a factor of(
I0Le f f

)
f iber(

I0Le f f
)

bulk

=
λ

πσ2α
(1.23)

From the above discussion it is clear that the effects of non-linearity are much higher
in optical fibers than in their bulk material counter part, as the field is confined in the
core for long distances. Therefore, non-linearity is of high importance in optical fibers
where non-linear effects have enhanced significantly, as a consequence optical fibers
are finding new applications such as Raman amplifiers, frequency generation [44],
optical parametric oscillator [45] and SCG [13]. However, conventional optical fibers
still lag behind compared to PCF because the two factors that impact non-linearity are
dispersion and the mode area, which can be controlled more efficiently in PCF.
In silica fibers the enhancement factor is 107 in the visible region and up to 109 in the
second telecommunication window where loss is minimum. However, the non-linear
effects are weak in a short span of silica based fibers. The non-linear coefficient of
silica glass is in the range of 2.2−3.4×10−20 m2/W [32] depending on composition.
Most non-linear materials have a value of n2 higher than silica by 2 orders of magnitude.
Therefore, highly non-linear materials are used for applications that require short length
fibers [32].
The non-linear effects in optical fibers are observed by launching short pulses with
high powers. The pulse propagation in a non-linear material, i.e. optical fiber, requires
to solve Maxwell’s equations given in Chapter 2 with a modification in the constitutive
relation to include the non-linearity term. The equation is rewritten as

D = εE+P (1.24)

where E is electric field intensity, D is electric flux density, (ε) is permittivity and P is
the induced electric polarization which is defined as [39, 46]

P = ε0

(
χ
(1) ·E+χ

(2) : EE+χ
(3)...EEE+ · · ·

)
(1.25)

where χ(1) is the linear susceptibility and has the dominant effect on P. Its effects
are included through refractive index and attenuation coefficient. χ(2) is the second-
order susceptibility and is responsible for non-linear effects such as second-harmonic
generation and sum-frequency generation. The value of χ(2) is zero for materials that
have symmetry for example, molecules such as silica [30, 39]. And χ(3) third-order
susceptibility is responsible for Third-Harmonic Generation (THG), Four-Wave Mixing
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(FWM) and non-linear refraction. Non-linear phenomena which result in the generation
of new frequencies require phase matching, otherwise their effect is not efficient in
optical fibers [39]. The phase matching is the process of choosing the polarizations
and directions in order to eliminate the wave vector mismatch [47]. The non-linear
processes in optical fibers should be represented in a mathematical formula to study
their effects. The procedure to derive the formula for pulse propagation in non-linear
dispersive media in slow varying envelope is to start with Maxwell’s equations and
apply the slowly varying envelope approximation to obtain the General Non-linear
Schrödinger Equation (GNLSE) [39].

∂A
∂ z

+
α

2
A+

iβ2

2
∂ 2A
∂T 2 −

β3

6
∂ 3A
∂T 3

=iγ

(
|A|2 A+

i
ω0

∂

∂T

(
|A|2 A

)
−TRA

∂ |A|2

∂T

) (1.26)

where A is the envelope, TR is Raman response function, β2 and β3 are dispersion
coefficients, and T = t−β1z. The left-hand side of the equation models the propagation
of the linear effect and the right-hand side models the non-linear part [48].
There are five major types of non-linear effects that can be stimulated in optical fibers;
Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM), FWM, Stimulated
Brillouin Scattering (SBS) and Stimulated Raman Scattering (SRS). The first three
arise from the Kerr effect and the last two from stimulated inelastic scattering [31].
The non-linear effects are discussed below.
Self-Phase Modulation:
The phase modulation of a pulse is due to the inhomogeneous phase velocity of the
pulse components [49]. The light beam changes the refractive index of the medium and
the phase of the light beam changes with refractive index thus the signal changes its
own phase, which is termed Self-Phase Modulation. In 1967, SPM was first observed
in CS2 liquid by Shimizu [39, 50]. The study of SPM in optical fibers was first carried
in a fiber filled with CS2 in 1974 [51] and the study of SPM in silica optical fibers
started in 1978 [39, 50, 52].
When a pulse propagates in an optical fiber, the intensity at the center of the pulse is
higher than at the edges, leading to an increase in refractive index at the center and the
center of the pulse would slow down. This will lead to an increase in the separation
of waves in the leading edge and compression in trailing edge see Figure (1.15). The
resulting pulse is called a chirped pulse. The chirped pulse has a larger frequency
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bandwidth thus the pulse spectrum is broadened because different frequencies travel
with different speeds [16].
The pulse phase and amplitude change with distance due to the SPM effect. The phase
change in optical field due to SPM is given by

φ = (n0 +n2I)k0L (1.27)

where L is the length of the fiber, and non-linear phase change given as

φNL = n2k0LI (1.28)

Fig. 1.15 Chirped pulse [16]

The dispersion can be compensated with the implementation of the non-linear effects.
Then a pulse can propagate without broadening. If pulses propagate in the anomalous
dispersion region, the SPM counteracts the broadening due to induced dispersion, this
generates pulses which do not change their shape as they travel in the fiber; these types
of pulses are solitons [16, 53]. Solitons are formed under certain conditions of pulse
shape and peak power. The relation between pulse shape and peak power P0 is given
by Equation (1.29).

P0 ≈ 1.55
λ 2

0 |D|
π c γ τ2

f
(1.29)

where λ0 is the wavelength of the soliton, D is the dispersion of the fiber, and τ f is the
full width at half maximum of the soliton pulse.
If only the linear effect of dispersion is considered for a pulse propagating in the
anomalous dispersion regime, where the higher frequencies travel faster than lower
ones, then the output pulse at the end of the optical fiber is chirped as shown in Figure
(1.16) (b). On the other hand, if considering a pulse propagating under non-linear Kerr
effect, the pulse will have higher frequency at trailing edge and lower frequency at
leading edge as shown in Figure (1.16) (c). The two effects change the frequency of
the pulse at opposite position; this results in both effects balancing each other. This
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is how solitons are formed. Solitons are used in optical telecommunication systems
because they propagate for long distance without broadening. However, the pulse
power decreases as it propagates through the fiber and therefore the non-linear effects
will decrease. To overcome this problem amplifiers are used to amplify the signal [16].

Fig. 1.16 Solitons - Linear and non-linear effects on pulses (a) is input pulse, (b) a
pulse propagate in dispersive media where leading edge of the pulse is compressed and
trailing edge is expanded, and (c) a pulse propagates under Kerr non-linear effect and
pulse is compressed in the trailing edge and expanded in the leading edge of the pulse
[54].

Cross-Phase Modulation:
In an optical fiber, if more than one pulse propagates at the same time at different
wavelengths, each pulse will result in a change in the refractive index of the material,
which leads to impact other pulses. This effect is Cross-Phase Modulation. If temporal
overlap of the signals occurs, the impact of the XPM on the signals is strong. Therefore,
it is better to operate at non-zero dispersion wavelength because at low dispersion
regime the signals do no overlap [16]. The implementation of XPM is in pulse
compression and optical switching [32]. One of the advantages of XPM is on SCG in
optical fibers. In the formation process of SCG different phenomena lead to broadening
of the spectrum such as Raman effect and generation of dispersive waves. These have
widely separated spectra but when an overlap occurs in the time domain the XPM effect
takes place and the dispersive wave spectrum would increase which in turn broaden
the SCG in the short wavelengths side of input pulse [46]. The drawback of XPM is in
the implementation of Wavelength Division Multiplexing (WDM) as multiple signals
travel in the fiber each will affect the spectrum of the other signal [16].
In both SPM and XPM, the frequency chirp induced on pulses can be used for pulse
compression. Anyhow, for SPM the pulse intensity and energy should be high, whereas
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XPM can compress weak input pulses because the chirping is induced by the pump
pulse which can have intense power [32].
Four-Wave Mixing:
When three pulses travel at adjacent equally spaced frequencies ( f1, f2 and f3) for a
long distance then these waves mix and generate a new wave at a different frequency
( f4) as shown in Figure (1.17). This effect is FWM [31].

Fig. 1.17 Four-wave mixing [31]

f4 = f1 + f2 − f3 (1.30)

There are two types of FWM; one that generates a photon from three photons as
explained above. The phase matching condition for this type is hard to be achieved
in optical fibers. The second type is when two photon are annihilated and two new
photons are produced at different frequencies [39]. The phase matching condition is
∆k = 0 which is ∆k = β1 +β2 −β3 −β4.

f4 + f3 = f1 + f2 (1.31)

In the special case of f1 = f2 this will generate two sidebands located symmetrically at
frequencies f3 and f4 from one pump wave. Physically, this case appears in a similar
way to SRS [39].
The efficiency of FWM depends on phase matching [30]. Therefore, the operating
wavelength should be near the zero dispersion wavelength, because different wave-
lengths only travel with same velocity when the optical fiber dispersion is close to
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zero. Four-wave mixing can be employed to generate new frequencies [55] for differ-
ent applications; wavelength conversion, high-speed time-division multiplexing, and
pulse compression [16]. However, FWM leads to cross-talk in WDM which results in
system degradation [56]. To eliminate the effect of FWM, the operating wavelength
should have a nonzero dispersion similar to the case of XPM. The dispersion should be
increased as the channel frequency spacing is decreased [16].
Stimulated Raman Scattering:
Stimulated Raman scattering is an example of photon-phonon interaction, where a
photon (with an energy h f1) is absorbed by a molecule leading to the transfer of the
molecule from initial energy state (EI) to higher energy state (ER). Thereafter the
molecule decays to a lower energy state (EF ) and emits a photon with an energy (h f2)
lower than the incident photon energy, i.e the light will be red-shifted. The difference
in energy of the two photons is the energy of the produced phonon [31].

Fig. 1.18 Stimulated Raman scattering [31]

Stimulated Raman Scattering leads to transfer of energy from shorter wavelengths to
longer wavelengths, which has negative impact on signals in WDM system [31]. On
the other hand, SRS process can be useful in producing Raman lasers [57–59] and
Raman amplifiers [60–62] from optical fibers. Raman lasers can be tuned over a wide
frequency range of ∼ 10T Hz. Raman amplifiers offer the advantage of using the same
optical fiber as an amplifier by pumping a strong wave to amplify the weak signal [32].
Stimulated Brillouin Scattering:
The increase in the power of the pumped wave beyond the Brillouin threshold leads to
generation of acoustic waves which in turn modulate the refractive index of the medium.
A new wave is generated in the direction of propagation opposite to the direction of the
incident wave and carries most of the input power see Figure (1.19). Therefore, their
effect has detrimental impact on communication systems where it limits channel power.
Moreover the peak power of the generated pulse can exceed the input power of input
pulse which may result in fiber damage [39]. This is a limiting factor in delivery of
high power and fiber laser applications. The power level at which SBS occurs is much
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lower than level for SRS. However, when the pulse width is narrow (width< 1ns) SBS
hardly occurs [39]. Stimulated Brillouin Scattering is the interaction of a light wave
with acoustic waves and it results in high attenuation which increases with an increase
in the input power [31, 32]. Similar to SRS, the SBS can be useful in making Brillouin
amplifiers, lasers and sensors. The pump and injected signal in Brillouin amplifiers
must propagate in opposite directions [32].

Fig. 1.19 Stimulated Brillouin scattering [31]

The main difference between SRS and SBS is that optical phonons participate in SRS
while acoustic phonons participate in SBS. Another fundamental difference between
stimulated inelastic scattering in optical fiber is that SBS only occurs in the backward
direction when it occurs in SMF, whereas SRS occurs in both directions [32].
SuperContinuum Generation:
Supercontinuum generation is a phenomenon in which an ultrashort pulses undergoes
extreme spectral broadening resulting in a broadband spectrally continuous output due
to non-linearity. The spectrum is broadened by a factor of more than 200 times in less
than 1m fiber length [32]. The broadened spectrum very often is white light. It was
first reported in 1970 by Alfano and Shapiro in bulk BK7 glass with a spectrum from
400 to 700nm [63, 64]. Similar results were published independently in the same year
[65]. Although, there were reports of non-linear spectral broadening before Alfano
[49, 66–68], his experiment was distinguished due to the spectral width which was 10
times wider than all previously published results [48]. The generation of SC in bulk
material is a complex process as the spatial and temporal effects require a complicated
coupling. However, SCG in optical fiber requires only temporal dynamical processes.
One of the advantage of studying SCG in optical fibers is understanding the temporal
non-linear effect which will help in understanding the picture of SCG in bulk material
[48].
The first observation of SCG in optical fiber was in an experiment in 1976. A high
power pulse in visible region was injected in standard silica fiber which has zero Group
Velocity Dispersion (GVD) at 1.3µm. The broadened spectrum was from the mutual
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interaction of SRS and SPM [60]. Similar results were obtained in other experiments
which used visible pulses in the range 10ps−10ns. These experiments clarified the
importance of the mutual interaction between SRS and SPM [69], role of XPM [70]
and FWM [71].
Numerical studies have proven that SCG occurs in three stages; initial spectral broaden-
ing and temporal compression, then fission into a serious of distinct fundamental soliton
components, and the propagation of solitons. The last stage leads to continuous shift
to longer wavelengths due to Raman effect and for short wavelengths the dispersive
waves are generated [48]. The emergence of PCF has had a significant impact on SCG.
The possibility to shift the ZDW to shorter wavelengths [72] and reducing effective
effective area of the mode would improve the Kerr effect [73].
It is reported that SCG is generated in SMF due to SRS where the spectrum broadens
to longer wavelengths. The FWM broadens the spectrum in both directions leading
to wider SCG [74]. The combination of these two properties were demonstrated in
2000, by Ranka et al., in SCG spanning over one octave by launching 100 f s nano-joule
energy pulse at 770nm in a 75cm PCF with ZDW in the region 765− 775nm [13].
These broad spectra were generated in bulk material but with higher energy pulse and
complex sources. An additional advantage of PCF in SCG is the single-mode guidance
which results in a uniform spatial SCG profile. In 2000, an experiment on 9cm tapered
standard optical fiber of radius 2µm generated octaves spanning spectra comparable to
PCF [75]. This experiment is one of the crucial steps in understanding SCG in PCF.
The combination of SRS and FWM effects on SCG were observed in 10m of PCF
injected with 40nJ pulse of 60ps width, the SC spectrum 400−1000nm [76]. The first
reported use of the GNLSE was in this work. The dominant linear effects participate in
SCG spectral broadening in PCF are similar to conventional fibers, where the Raman
effect and solition fission are responsible for long wavelengths and dispersive waves
generate short wavelengths component [48]. This is an overview of the milestones
in the progress of SCG in the field. Further discussion of SCG is given (in relevant
section) with the results of this work in Chapter 4.
To conclude, the optical properties are interconnected where a change in one property
may lead to manipulation of other properties. For example, even though dispersion
increases the bit error rate in channels, a small dispersion value at high intensity powers
is still desirable to either reduce or increase the different non-linear effects depending
on the applications. Therefore, a complete study of the problem requires to take into
account the different factors and properties that may get altered. In conventional
optical fibers the index difference that can be produced is limited due to the nature
of their design as not much more can be done and the properties of optical fibers



1.3 Photonic Crystal Fibers 29

cannot improve significantly to suit the different applications and demand of the
evolving technologies. Therefore, other means of obtaining desired properties are
sought. Photonic crystal fibers offer more flexibility in their design parameters to
produce the required characteristic for the application of interest such as controllable
dispersion, desirable spatial field profile distribution, high degree of field confinement
[77] and much more. The next section presents a discussion on PCF.

1.3 Photonic Crystal Fibers

Photonic Crystal fibers have periodic microstructured index profile in the transverse
direction [78]. They share similarities with conventional optical fibers with respect to
guidance (the basic mechanism is TIR) however unlike the latter PCF have properties
that depend on the wavelength more strongly. Their properties can be manipulated to
suit the desired application where they have more design parameter flexibility that can
be controlled. They can exhibit single mode guidance over a broad wavelength range
[79, 80], low or high non-linearity [31] and controllable dispersion [72, 81]. Photonic
crystal fiber designs include Large Mode Area (LMA) [82], hollow core [83], multicore
fibers [84] and can show high birefringence [85]. All this is possible with the advance
in the fabrication process that PCF can be manufactured with accuracies of 10nm on
scale of 1µm so the key properties can be controlled remarkably well [78].
These fibers are also known as Microstructured Fibers (MF) [77, 86] or PCF [15, 77, 86],
in this thesis the latter convention is used to refer to the general classification of these
fibers. Photonic crystal fibers were first invented in the seventies but only in the
nineties they have found more interest as fabrication technologies have improved [87].
Recently, PCFs attract more and more attention of scientists and technologists as they
have several applications. A good starting point is to briefly mention the milestones
and developments in the field of PCF. An overview of this is given in the following
section.

1.3.1 Brief history of photonic crystal fibers

Before the development of modern silica fiber technology, capillaries were investigated
as a candidate for optical telecommunications in the 1960s [74, 88]. In the 1970’s at
Bell Laboratories, Kaiser reported the fabrication of microstructured air-silica optical
fibers [87]. Philip Russell reported the first working example of a solid core PCF in
1996 [79, 87], even though the concept of PCF goes back to 1991 [89]. The light
guiding mechanism of solid core PCF, high-index guiding, is similar to conventional
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fibers where light is guided by Modified-TIR (M-TIR). One of the most remarkable
application of PCF was the SCG reported in 2000 [13].
The concept of hollow-core Bragg fibers was proposed in the mid 1970s [78, 90].
A solid core Bragg fiber was made in 2000 [78]. Worldwide research followed the
discovery of Photonic Band-Gap (PBG) concept in 1987 by Sajeev John [91] and
Eli Yablonovitch [92]. The creation of a band-gap was announced in 1989 by Eli
Yablonovitch [93] and in the same paper the name photonic crystal was introduced
[94]. The first photonic crystal material was fabricated by drilling holes in a material
in 1991 [95]. In the same year, Russell proposed a fiber that can guide light in a
Hollow-Core (HC) by forming a 2D photonic crystal in the cladding [95]. The first
air-guiding Hollow-Core Photonic Band-gap Fiber (HC-PBF) was fabricated in 1999
[83]. An interesting fiber design was developed in 2002 with a similar concept to a
HC-PBF but with a different guiding mechanism. The light was confined to the core
with anti-resonant effect [96]. Antiresonance has been known to enable the confinement
of light in a media with a refractive index lower than the surroundings [97]. The design
has holes arranged in a Kagome lattice in the cladding region [98]. A novel type of
fiber with negative curvatures in the core boundaries was proposed in 2010 where the
light is confined to a core of lower refractive index than cladding in similar concept
to Kagome [99]. The name coined for this type of fiber is Hollow-Core Negative
Curvature Fibers (HC-NCF). There are numerous designs of PCF, and it would not be
possible to introduce them all here. However, the guiding mechanism of other PCF
would fall in one of these categories. In the next section the optical fibers classification
is given.

1.3.2 Types of photonic crystal fibers

The design of PCF is different from conventional silica fibers, where they can be made
of a single material with two dimensional photonic crystals or periodic lattices of air
holes parallel to the fiber axis to produce a form of cladding and core [78]. A few
types of PCFs are shown in Figure (1.20); a. fiber with a pure silica core surrounded
by air-holes in the cladding. b. air-guiding fiber in which light is confined to a hollow
core by band-gap effect. c. core is made of pure silica while the holes in the cladding
are filled with a high index liquid. d. hollow cylindrical multilayer fiber with an all
solid cladding, Bragg fiber.
Photonic crystal fibers can be classified into two main categories according to the light
propagation mechanism; high-index guiding fibers in which light propagation satisfies
M-TIR [100] in a similar manner to conventional fibers. These are referred to as PCF.
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Fig. 1.20 Different designs of PCF (a) fiber with a pure silica core surrounded by
air-holes in the cladding, (b) air-guiding fiber in which light is confined to a hollow
core by band-gap effect, (c) core is made of pure silica while the holes in the cladding
are filled with a high index liquid, and (d) hollow cylindrical multilayer fiber with an
all solid cladding (Bragg fiber) [88].

The second is low-index guiding fibers known as Hollow-Core fibers. The core of
HC fibers is made of a lower index material than the cladding and the light is guided
either by PBG [74] or anti-resonant effect [96]. HC fibers are further sub-classified
into HC-PBF [83], Bragg Fibers [101], Kagome fibers [98], and HC-NCF [99]. A brief
description of each of these types are given below.
Hollow-Core Photonic Band-gap Fibers:
These fibers, HC-PBF, are two-dimensional photonic band-gap fibers which are made
of a single material with array of holes in the transverse direction forming a photonic
crystal cladding such that refractive index changes periodically. The core is formed
by omitting one or several unit cells of the material in the center. They are pioneered
by Russell [7], and first fiber was fabricated in 1999 at The University of Bath [83].
In HC-PBF the light is confined to the low index core through the photonic band-gap
effect [83, 102]. The PBG results in light propagation for certain frequencies in the
core/defect while propagation in the photonic crystal surrounding/cladding region is not
possible. The light is confined in the core regardless of the refractive index difference
between core and cladding. Even though dielectric materials exhibit good transparency
at optical wavelengths, the loss in PBFs is higher compared to index guiding fibers. The
lowest loss of HC-PBF is 1.2dB/km [103, 104]. Therefore, the drawbacks of HC-PBF
are high loss due to air glass interface roughness and the main drawback is the nature of
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PBG limits transmission window to tens of nanometers [105]. A schematic of HC-PBF
is shown in Figure (1.21).

Fig. 1.21 Hollow-core photonic band-gap fiber [106]

Bragg Fibers:
Bragg fibers are a sub type of HC-PBF with a 1D photonic band-gap which has a
photonic crystal periodicity in one direction. Theoretical proposals for a new fiber with
a periodic structure in the cross section were made in the 1960s [107]. The structure
consists of array of rings of high and low refractive index concentric with the central
core which is air. In 2000, a solid core version was made using MCVD [78, 101]. A
non silica Bragg fiber of similar structure was reported with loss of 1dB/m at 10µm

wavelength [108]. A schematic of the transverse cross direction is shown in Figure
(1.20) (d).
Kagome Fibers:
Kagome fibers was reported in 2002 by Benabid [98]. The structure has a periodic
lattice in the cladding with no PBG [104]. The light is guided in Kagome fiber by
means of an anti-resonant effect [96]. The transmission spectrum in these fibers is
broader than the one achieved in HC-PBF. This type has wide range spectrum from
visible to near-IR. The loss in Kagome fibers is higher than the loss of index guiding
fibers due to lack of PBG. The loss is related to core size where large core sizes have
low loss [109]. The complex cladding structure does not have noticeable impact on the
confinement losses [110]. Kagome fibers have a wide range of application; gas-light
interaction [111] and terahertz applications [112], due to their low loss and extended
transmission window in comparison with HC-PBF [96]. The transverse cross section
of Kagome fiber is shown in Figure (1.22).
Hollow-Core Negative Curvature Fibers:
Hollow-Core Negative Curvature Fibers are a new type of HCF, they were first observed
in 2010 by Wang [99] when he noticed unexpected low attenuation on a Kagome fiber
that has a negative curvature on the core boundary. The name is coined from the
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Fig. 1.22 Cross section of Kagome fiber [74]

structure of the core boundary which has a convex shape if seen from the center [96].
In the year following the discovery of HC-NCF, a silica HC-NCF with no lattice in the
cladding was fabricated which has a transmission window from UV to far-IR [113].
A study predicted a loss of less than 1dB/km is possible [114]. These fibers have
been proposed for applications in surgical laser [115] and high power laser delivery
[116, 117]. Figure (1.23) shows different designs of HC-NCF.

Fig. 1.23 Cross sections of different HC-NCF designs with; (a) touching capillaries in
the cladding, (b) non-touching capillaries in the cladding, (c) double nested capillaries
in the cladding, and (d) ice-cream cone shape capillary in the cladding [118]
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To have a robust guidance in all types of HC fibers, inner claddings must contain small
portion of the solid material, a filling fraction of solid material of less than 10% by area
[104].
Photonic Crystal Fibers:
In the case of index guiding fibers, shown in Figure (1.24), the core is a higher index
solid material and the photonic crystal cladding consists of an array of air holes which
leads to a reduction in the average refractive index in the cladding region. Therefore
light will be confined to the core by M-TIR. The guiding mechanism is defined as
‘modified’ because the photonic crystal cladding refractive index is not a constant
value, as in standard optical fibers; it changes with wavelength. When the wavelength
increases the field expands more into air holes so the interaction with the material and
air changes according to the structure and leads to change in the average refractive index
of the photonic crystal cladding. At shorter wavelengths the field is concentrated in the
material and as the wavelength increases the field expands more inside the air-holes
leading to change in the refractive index. Therefore, PCF are very dispersive and this
leads to improvement in controlling the waveguide dispersion.

Fig. 1.24 High-index guiding photonic crystal fiber [106]

To sum up, the PCF types differ in terms of guiding mechanism where each type has
superiority in some applications. Furthermore, the arrangement, size, number and
shape of air-holes can be controlled to manipulate the properties of the optical fiber
to achieve better results. Controlling these parameters can yield low attenuation and
adjustable dispersion.
The fiber cross-section can be designed to achieve different guiding mechanisms and to
exploit various physical phenomena such as single mode operation over an extended
wavelength range (endlessly single-moded) [80], hollow-core guidance [83], non-linear
effects [39, 74, 88] and much more. The hexagonal or triangle lattice structure is the
first and most investigated design. It offer endless single mode operation [79, 80] and
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controllable dispersion. In the next section, the cross section of the triangle lattice
structure is explored.

1.3.3 Hexagonal photonic crystal fiber

Hexagonal Photonic Crystal Fiber (H-PCF) is the first PCF proposed and fabricated
[79] and the most investigated PCF for different applications. This section introduces
the H-PCF and its structure. Figure (1.25) shows a schematic of the H-PCF which has
a triangular lattice of holes in the transverse section, d is the hole diameter and Λ is the
pitch (hole to hole spacing) [80].

Fig. 1.25 A schematic of hexagonal photonic crystal fiber transverse section

The number of modes a PCF supports is determined in a similar way to conventional
optical fibers with the V parameter. The formula is manipulated slightly to suit PCF as
there is not a well defined core or a constant refractive index value for the cladding. The
cladding refractive index is a function of the wavelength which changes according to
the interaction of light with the two materials (core and air) of the cladding region. At
longer wavelengths, the light spreads inside the holes and leads to change in refractive
index depending on the design. The VPCF formula is shown below [15].

VPCF =
2πΛ

λ

√
n2

1 −n2
cl(λ ) (1.32)

where ncl(λ ) is the average refractive index of the photonic crystal cladding.
The single mode guidance depends on the refractive index of the core and the average
index of the photonic crystal cladding which is a function of wavelength. In conven-
tional optical fibers, the fiber has a cut-off frequency where the fiber is not single
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moded below that wavelength. In contrast, the region for single mode guidance in
PCFs expands over a wider band because the average refractive index of the photonic
crystal is wavelength dependent. At shorter wavelength, the modal field is more con-
centrated in the glass material as wavelength increases the field expands more into the
air-holes. Therefore, at shorter wavelengths the average index of the cladding region
is close to the material index. This results in a small index difference between core
and cladding so that VPCF value is small even at shorter wavelengths. Due to refractive
index dependence on wavelength the PCF can be designed to have endlessly single
mode guidance [80]. The single mode guidance for PCF is satisfied under the condition
VPCF < π [15, 119].
The endlessly single mode property is discussed in more depth in the next section.
Other unique properties of PCF are discussed as well.

1.3.4 Properties of photonic crystal fibers

The properties of an optical fiber depend on two factors, the intrinsic materials proper-
ties and the structure of the optical fiber. The former is fixed and cannot be changed
for a specified material. Even though it is possible to use different materials for differ-
ent applications such as chalcogenide glasses are used for non-linear applications to
enhance the output of the non-linear effects due to their high non-linear coefficients,
but it is still limited to the nature of the material. In this case, the only possible way to
intensify this further is to explore an alternative material with enhanced properties for
the desired application. On the other hand, the optical fiber structure can be altered to
control or optimize the optical properties.
The conventional optical fibers offer limited enhancement to their properties compared
with PCFs. Moreover, PCF lead to unique properties which cannot be achieved by
conventional fibers. This great flexibility in managing guiding properties is due to
dispersion shown by the effective index of the cladding [80]. The three fundamental
properties discussed in Section 1.2 can be controlled more efficiently with PCF designs.
The dispersion is manipulated more smoothly and many designs have proven a high
degree of control. This reason combined with modal field size leads to enhancement
in non-linear applications. Even though the loss of PCF is higher than conventional
optical fibers, they are still acceptable for applications which do not require a long span
of the fiber. Conventional optical fibers perform better in telecommunication but in
other field such as sensors, medicine and fiber laser, PCF have many advantages. In
sensing, the holes can be filled with gases or liquids for special applications. The PCF
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can have a LMA for fiber lasers and power delivery. There are different applicationsS
for PCFs, some of which are given below.
Various PCFs designs are proposed and fabricated with unique optical properties for
different applications. To name some of these designs and their applications: the most
well knows PCF (H-PCF) structure is endlessly single moded [79, 80] and offers low
and flat dispersion [80, 120]; Air-Suspended Core (ASC) for small effective area [121];
LMA PCFs for high power lasers and power delivery [15]; honeycomb design for
band-gap guidance [15]; designs having different hole size [122] or elliptical holes
[123] to break the symmetry and have high birefringence [124]. These properties are
discussed in more detail below.
In this thesis a new class of PCF proposed. It is based on a spiral photonic crystal in the
cladding region. There are a range of spirals in the world. In this work, Equiangular,
Archimedean and Fermat’s spirals were adapted in the simulated structures. The results
are discussed in following chapters, The unique optical properties of PCF are discussed
below.
Endlessly single mode:
There are many parameters that can be controlled in H-PCF such as; hole size, sep-
aration between holes (Λ) and core size. The most striking property of PCF is the
endlessly single mode which is possible when the lower index region (air) within the
cladding are small enough [80] such that the d/Λ ratio decreases below certain value,
d/Λ < 0.4 [125], the fiber supports only single-mode propagation regardless of the
core size and/or wavelength. This is unlike the SMF which is single-moded only in
a small wavelength range and requires a small core size [80]. This is valid when the
PCF core is made of one missing hole. Whereas, the endlessly single mode condition
is d/Λ < 0.25 or d/Λ < 0.15 when the PCF core is made of three or seven missing
holes, respectively [15]. The single mode behavior with large core is beneficial for
telecommunication where light can be injected with high power without suffering from
non-linear effects and damaging the fiber because the power intensity is low. Therefore,
distance between repeaters is increased [86]. The endlessly single mode operation is at
all the wavelengths within the transparency window of the fibers and for any core size
as long as the d/Λ condition is satisfied, however for large core size the bending losses
increase. The requirement for large core fiber with single mode operation is for high
power delivery and its applications.
Large mode area:
Large mode area fibers can carry high power without being damaged or giving rise to
non-linear effects. They are used in delivery of high powers, fiber amplifiers and fiber
lasers [8, 74]. The single mode operation of H-PCFs is controlled only by the ratio d/Λ
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therefore the structure is scalable which permits the fabrication of single mode PCF
with LMA. Since the first years of discovering PCF, a fiber with core size of 22µm

has been reported in the literature with single mode operation at 458nm wavelength
in 1998 [82]. In 2005, single mode silica PCFs with effective areas of 1417µm2 have
been reported at wavelength 1550nm and γ < 0.1W−1km−1 [126]. In PBF values of
Ae f f ≈ 20µm2 at wavelength 1060nm have been reached by year 2006 [37]. Moreover,
a huge portion of the guided mode is located in the air and a tiny fraction of less than
1% in silica of the cladding and γ values of as low as 0.01W−1km−1 is achievable
in HC-PBF [37]. Recently, a theoretical study proposed triangular PCF with a mode
effective area of 1500µm2 with low bending loss of 10−5dB/km at bend radius 40cm

at wavelength 1064nm [127].
The development of LMA fibers is important in many practical applications, most
notably those which require high powers. The quality of the spatial mode is important
in most of these applications [37]. The low power intensity minimizes the occurrence
of non-linear optical effects [15]. However, there is a limit to the scalable dimension
as the fiber becomes sensitive to inhomogeneities and small bends when (Λ > 10λ ).
Therefore, the bending loss limits the use of LMA fibers and an understanding of bend
losses is important in designing LMA fibers. Generally speaking, hole size controls
the window of operation, larger holes result in a broader window [37]. The center of
the window is related to the hole to hole distance and the minimum bending loss is
approximately located at Λ/2 [128].
Tuneable dispersion:
The dispersion of PCF can be controlled more efficiently than conventional optical
fibers due to the fact that the photonic crystal cladding holes have a large impact on
the dispersion. The configuration of PCF cladding has strong influence when the
features of the cladding are on the scale of the wavelength of operation with small core
[37]. The refractive index difference between core material and air-holes is large and
by varying holes size, separation between air-holes and the core the dispersion can
be managed. The flexibility in variation of the photonic crystal structure has made
it possible to fabricate PCF with desirable dispersion for both linear [129, 130] and
non-linear [13, 131] applications. The linear applications of dispersion are, and not
limited to only these, PCF for dispersion compensation [132–136], flattened dispersion
[120, 137, 138], telecommunication in WDM [135] and very low dispersion for high
power delivery have also been successful. Photonic crystal fibers have been fabricated
with anomalous dispersion over the visible spectrum [13, 81] down to 550nm [37]. Such
specifications have many applications for SCG [48] and soliton-based devices [139].
Even though a huge range of dispersion profiles can be made, it is not always possible
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to obtain all required properties for a particular application within one fiber. Photonic
crystal fiber with large values of normal dispersion may appear to be attractive to
compensate the dispersion of communication fibers. Unfortunately, for large dispersion
a fiber with small core is required, which would introduce large losses when integrated
with a conventional communication system and degradation of the linear polarization
of the mode [37].
Non-linearity:
The efficiency of non-linear effects increase with increasing power intensity which
requires a small core and a well confined field. This is not possible in SMF because
as the core radius is reduced the field will be less confined. In contrast, PCF with
small core size and large air-holes have small effective area (Ae f f ) and it is possible
to manipulate dispersion allowing for large interaction with air and thus improve
efficiency of non-linear effects. The effective non-linearity (γ), is calculated according
to Equation (1.33).

γ =
2π

λ

n2

Ae f f
(1.33)

The effective non-linearity for a given wavelength can be enhanced by either using
a material with higher n2 or minimizing the mode field area. The non-linearity can
be estimated theoretically for a given material by calculating the minimum core size
where the Ae f f should be compatible at the operating wavelength for the field to be
well confined [37]. If the core size is smaller than wavelength, the core would be too
small to guide a well confined field as the mode starts to broaden. In ASC fibers a value
of γ ≈ 70(W · km)−1 has been reported [37] and a design with similar value has been
manufactured [140]. In PCF, light can be more confined in the core made of glasses
with higher refractive index, leading to smaller Ae f f . Silicate glass has high n2 values
and values of γ ≈ 1860(W · km)−1 have been reported [141]. Photonic crystal fibers
have enhanced the conventional non-linear processes and allowed the establishment
of new phenomena [77]. One of most successful applications of non-linearity is SCG
from pico- and femto-second laser pulses [74].
In contrast, non-linearity has drawbacks in telecommunications and high power delivery.
High-power laser pulses are important in many technological and scientific applications
such laser amplifiers, multiphoton spectroscopy, fiber lasers and photodynamic therapy.
In conventional fibers the non-linearity limits the use of ultrashort pulses to energies no
higher than a nano-Joule [142]. To over come non-linearity effects a low n2 material
could be used with LMA.
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Loss:
The process of extension of preform to a fiber has a detrimental effect on fiber loss
where the fiber cross section should be kept invariant along its length to minimize the
loss. The other factors that affect loss in PCF are the percentage of light in the glass
material, and the roughness at the glass-air interface. Other loss factors similar to those
in conventional fibers are confinement and bending losses. Confinement loss can be
reduced by increasing the number of holes [74]. All these factors are managed in the
fabrication process apart from bending which is managed at installation. In solid core
PCF the lowest loss reported is 0.28dB/km [74] which is slightly higher than SMF
loss. Whereas, the best reported loss in HC-PCF is 1.2dB/km [? ], the best loss figure
reported is 0.025dB/m at wavelength 1064nm in a 7 capillary cladding HC-NCF. These
losses are due to the roughness of glass-air interface. However, HC-PCFs are expected
to exhibit loss lower than that of conventional fibers with an advance in the fabrication
technologies because light travels inside the Hollow-core (usually air). Furthermore,
the bending losses can be very small even for LMA [82]. In theory, scattering losses of
HC fibers could be 1000 times less than the loss in conventional fibers, which would
have an impact on telecommunication and quantum information applications [142].
Birefringence:
The fiber has two fundamental modes which will be degenerate if the structure has
symmetry. If the symmetry is broken to two fold symmetry or less then the fiber will
have birefringence [123]. The possibility of realizing high birefringence values in
PCF due to a higher intrinsic index contrast compared to conventional fibers [125]
makes PCF an excellent choice for applications such as sensing [143, 144] and high
bit-rate transmission systems [145]. The value of birefringence achieved in PCF is
orders of magnitude higher than that of conventional fibers [124]. The symmetry of
H-PCF is six-fold and the idea is to break this symmetry into two-fold, to increase
the birefringence, either by changing the size of two holes [122] or use elliptical
holes [123]. Furthermore, asymmetry can either be introduced in the cladding by
distribution of air-holes, or in the shape of the core. However, no fiber in practice is
perfectly symmetric due to structural imperfections which combined with small core
size and large index contrast lead to birefringence. The effect is more noticeable when
the fiber is highly non-linear [37]. Birefringence values of 3.7×10−3 in 2000 [124]
and 4.56×10−2 in 2014 [146] have been reported. The latter was in a square lattice
PCF where some of the holes were elliptical and rotated 45o [146]. Moreover, the
birefringence of PCF is 100 time less sensitive to temperature than conventional fibers.
This is important in many applications [147]. The temperature dependence is due to the
fact that conventional fibers are made of two materials with different thermal expansion
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coefficients [74] whereas in PCF only the thermal expansion of the core material (and
air which has a negligible thermal coefficient) has to be take into account. Therefore
the fiber performance is almost insensitive to temperature variation.
When the fiber is birefringent then it is polarization maintaining. It is possible to
design single-mode single-polarization PCF which can eliminate the polarization mode
dispersion [86]. Even in PCF the fiber spinning during drawing process has reduced
the PMD by an order of magnitude [148].
There are various advantages of PCF over conventional fibers such as, in air cladding
PCF, the large index contrast can provide very large numerical apertures from arbitrary
small values to NA = 0.9 [149].
To sum up, PCFs have significantly improved optical properties and offer unique
properties which are not available in conventional optical fibers. The fabrication
processes of PCFs is discussed in the following section.

1.3.5 Fabrication of photonic crystal fibers

There are a number of techniques for fabrication of optical fibers which were developed
to suit the varieties in the material properties. Therefore, a knowledge of the material
properties is necessary in choosing the most appropriate fabrication technique. The
fabrication of optical fibers involves two stages; preparing a preform which contains
the structure of interest on a macroscopic scale, and drawing the preform to elongate
to fiber dimensions. The preform preparation may require more than one step to
get it ready to be drawn down on a fiber-drawing tower. The main difference in the
fabrication processes lies in the preform preparation stage. The second stage, drawing,
does not differ much because the same procedure, with some changes in parameters
which control the process such heat temperature, speeds and pressure inside fiber holes
to make them preserve their shape and not collapse, is followed. The most common
techniques are discussed below.
The fabrication process is one of the most important aspects in designing and developing
new types of optical fibers. Optical fibers fabricated using silica have been accurately
analyzed, partly because most conventional optical fibers are produced from fused silica
[88]. In the fabrication process of PCF, a preform needs to be prepared first. Usually,
the most challenging step in the process of fabrication is the preform fabrication [37].
One possible way of fabrication is the drilling of several holes in a periodic arrangement
into the preform. Another way is extrusion by using dies which contains the structure of
interest [150–155]. The Stack and Draw technique [79] was developed and introduced
to PCF by Birks et al. in 1996 [95] from the tube stacking technique investigated at
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Bell Laboratories [156]. This technique has become the preferred fabrication technique
in the last few years, since it allows relatively fast, clean, low cost, and flexible preform
manufacture. The first PCF was fabricated by drilling silica rods to form tubes which
then stacked to form the preform [87]. Due to the expanding research in PCF there
are new designs with complex air-hole distributions which require different techniques
such cigar-rolling [157], sol-gel casting [158] and most recently the 3D printing [159]
which is a promising method for complex designs.
Stack and draw technique:
The stack and draw fabrication process for PCF is shown in Figure (1.26), where
the process involves the stacking of silica capillary tubes and rods in a mm-scale
radius preform in a hexagonal pattern forming the desired air-silica structure. Typical
dimensions of preform are 1m long with a diameter of 20mm [88]. Creating the preform
in this way allows high level of design flexibility to control the core size and shape
as well as the arrangement of air-hole in the cladding region, which gives the ability
to fabricate fibers with different properties. After the stacking process, the capillaries
and rods are held together by thin wires and fused together during in an intermediate
drawing process, where the preform is drawn into preform canes. This bundle is then
drawn down by heating and pulling in a conventional fiber-drawing tower [80, 125] to
extend its length and reduce its cross-section to produce the fiber. The stack and draw
is a common method in PCF fabrication. It is widely used to fabricate silica PCF [79]
and chalcogenide fibers [153, 160, 161].
Conventional optical fibers are usually drawn at temperatures around 2100oC whereas
for PCF the draw temperature is kept at 1900oC, since the surface tension can otherwise
lead to the collapse of the air-holes [95]. When producing LMA fibers the preform
draw process is done in one step, whereas in micro-scale Λ it is done in two steps;
draw preform to cane of 1− 2mm diameter, second phase to draw the cane into the
final dimension.
At drawing cane or fiber the hole shape and size are not easy to control and it is one of
the challenging tasks in the fabrication process. The size of holes can change during
drawing due to effects of temperature gradient, surface tension and pressure inside
holes [37]. During the drawing process, a slight overpressure is applied to the inside
of the preform relative to the surroundings, and to properly adjust the drawing speed.
This is in order to carefully control the size of the air-holes. During the drawing
process holes can survive the spinning of the preform, which is used to control the fiber
geometry [148, 163]. Finally, the fibers are coated to provide a protective standard
jacket.
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Fig. 1.26 Fabrication process of PCF [162]

The stack and draw fabrication processes of PCFs and HC-PBFs are almost the same
with the only difference that in the center of HC-PBFs some (7 or 19) rods are omitted
form the center, which produce a large air core [37]. The drawing process is similar
and adaptable to other methods. The drawback of stacking that it is labor intensive and
quality depends on the craft of the fabricator of the preform [37]. If the distribution
of the air-holes is complex, then it will not be possible to use SaD. Therefore other
methods should be investigated to design such structures.
Extrusion technique:
Extrusion is forcing molten glass through a die containing the design pattern of holes in
millimeter-scale features [37]. In extrusion a fiber is drawn from bulk glass directly and
allows the production of complex geometries in one step and so can be used to produce
almost any design if a die is present. However, selective doping of rare-earth ions is
difficult [74]. It is not possible to use extrusion for silica as there is no die material that
can withstand the processing temperature without contaminating the glass. Extrusion
works well for other materials with relatively low softening temperature like compound
silica glasses [8], soft glasses (including sulfur hexafluoride (SF6) [150], lead silicate
(SF57) [151, 152], chalcogenides [153] and tellurites [155]) and polymers [154]. All
these materials have been fabricated using extrusion. The thermal processing in some



1.3 Photonic Crystal Fibers 44

glasses may lead to increase in the fiber losses due to formation of crystals during the
extrusion process [37].
Drilling technique:
This method is defining the structure of the preform by direct drilling of bulk material. A
broad range of geometries can be fabricated with drilling and it is suitable in producing
PCF in many diverse materials such as chalcogenides glasses, soft-glass [164] and
polymer [154] as their hardness is not as high as silica glass [165]. Extra care should
be taken of rotation and forward speeds of the drilling device [165]. The drawbacks of
drilling are the time length required to make a structure with many features, introduced
roughness at surface, and as complexity of structure increase the preform yield is
reduced [37].
Sol-gel method:
The method has been around for decades and recently it is being used for processing
different glasses and ceramics [166]. It was developed to fabricate optical fibers at
Bell Labs, the solution comprises of colloidal silica particles [167, 168]. The name of
this method is coined from the two steps involved. The method starts with preparing
a solution (sol) containing small portion of metal ions so the mixture is uniform
to a nanoscale. Then the solution is solidified by gelling (gel). The design would
have the shape of the mold or the surface on which the solution is poured on. One
of the advantages of a solution is that even if it consists of multi-components, it is
homogeneous. The method facilitates the control of the homogeneity, the composition
and high concentration of dopants [158]. The gelling process is through chemical
reactions which take place at room temperature leading to more homogeneous materials
not like other methods that require high temperatures [158].
Cigar-rolling technique:
There are other techniques used to fabricate photonic crystal fibers such as the cigar-
rolling technique which is used in fabrication of HC-PBF [157]. In this technique, a
multilayer mirror is rolled up to form a preform with a hollow core. This design is
different from the others discussed above where it uses two solid materials in a way that
results in radial variation in the refractive index. This provides intrinsic advantages for
forming hollow-core fibers. Guiding light in a hollow core is much easier because there
is only a single periodicity involved. On the contrary, the use of two solid materials
limits the choice to those with compatible thermal and thermo-mechanical properties.
This method is not limited to HC-PBF where a PCF with solid core and array of
air-holes in the cladding is fabricated with this method [169]. The process is simple
where a pattern is created on sheet of planar glass and then the sheet is rolled into a
cylinder [169].
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Casting:
The glass is molded in a silica cast made of capillaries and capillary guides, the cast
is removed in a hydrofluoric acid bath [170]. The inhomogeneities at the interface
between capillaries is greatly reduced with this method, which is the cause of high
losses [170]. This method is implemented to fabricate polymer [171], SF6 [172] and
chalcogenide [170] fibers. The former two used metallic moulds which can be removed
by heating or cooling either the preform or the metallic cast. In the latter a metal cast is
not a choice due to the large difference in thermal expansion, so a silica mould can be
used [170].
3D printing:
The process starts by making a digital file that contains the design of interest to be
printed on a 3D printer. The printing is done layer by layer to produce a 3D structure,
preform, using powdered metal or plastic material [173]. It is expected that silica based
glasses fiber can be printed in the near future using 3D printers [159]. This technology
was introduced to fabricate PCF because usually one material is used to make the fiber,
the fabrication of two material all solid fiber has been demonstrated by using a dual
head 3D printer [159]. Any arbitrary design can be printed in 3D with high precision;
this is the most important advantage of this method [173]. Three factors impact the
optical transparency; printing speed should be slow, temperature should be high and
the layer should be thin [173].
In this discussion, it is noted that the choice of the fabrication method is more related
to the material which is used to make the fiber. Therefore, some knowledge of the
different materials and their properties is a requirement. In the next section a brief
description is given on the important materials used in optical fiber fabrication.

1.4 Materials for Fiber Fabrication

Fused silica glasses have been the core material of optical fibers since their invention
and silica is still in use with new classes of optical fibers such HC-NCF, and Kagome.
Optical fibers made of silica offer a range of unique characteristics, low loss, feasi-
bility in fabrication process as silica based fibers are being made for more than 40
years. However, the transmission spectrum of silica material is limited to the visible
and near-IR range due to strongly increasing absorption at mid-IR and color-center-
related damage in deep-UV [174]. The loss of silica is very high, above 60dB/m, at
wavelengths > 3µm [175]. The necessity to use different wavelengths for different
application requires the use of new materials. The popular materials used in optical
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fibers fabrication with a brief introduction on their optical properties (wavelength band,
loss ...etc) are listed below. The most important optical parameter is the refractive
index. It is calculated by the Sellmeier equation [12] (Equation (1.34)) where each
material has different coefficients. The simulations in this work have been carried out
with silica, tellurite and SF57 materials.

n2 −1 = ∑
B jλ

2

λ 2 − (A j)2 (1.34)

1.4.1 Soft-Glasses

Silica based fibers have superiority over other materials in telecommunication but in
almost all other applications silica is not the material of choice. Non-silica glasses have
been adapted in many optical fibers applications such as non-linear effects, i.e. SCG
[176], mid-IR and UV applications [177] and even in telecommunications there are
promising glasses with lower loss than silica [178]. These glasses are known as soft or
compound glasses with reference to the lower melting temperature compared to silica
and are composed of more than one chemical component [37].
Chalcogenide:
Chalcogenide glasses are based on one of the chalcogen elements S, Se, and Te, with
addition of other element such Ge, As, Ga, Sb, etc... [179]. They have very high
Kerr non-linearity coefficient, some chalcogenide glasses such as (As2Se3) has a non-
linear coefficient value of 500 times higher than silica [180] and even higher up to
1000 times higher for selenium and tellurium based glasses [170]. The composition
As24S38Se38 has highest n2 = 1.75×10−14cm2/W [179]. They are used in non-linear
applications [179]. However, chalcogenides are more complicated to control than silica
because their chemical stability is low [181]. They have a wide transparency window
from visible (300−700nm) to mid-IR (10−20µm) [181], and higher refractive index
(n = 2.0−3.5) [181]. Transition temperature ranges from 116 to 550 oC depending
on composition [180]. The fabrication of the first non-silica (chalcogenide) PCF was
reported in 2000 using stack and draw [153].
Tellurite:
Tellurite glasses have useful characteristics which are not present in silica such as high
refractive index in the range 2-2.2 [182] at 1.55µm, good transparency in a wide range
(0.4−7µm) [182] including the mid-IR region, and high Kerr non-linear coefficient
(n2 = 20− 50× 10−20m2/W [182] ) [155]. The tellurite glasses are good candidate
for high non-linear application namely SCG. In the simulation of this work, tellurite
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PCF has been investigated to generate a flat dispersion for wide-band SCG. The results
are discussed in Chapter (4).
Lead Silicate:
The first single mode non-silica glass PCF was fabricated from extruded preform of a
SF57 glass [152, 183]. The softening temperature for SF57 is low (519oC) [152, 183],
therefore the preform can be extruded from bulk glass. SF57 has a refractive index of
1.8 at 1.53µm [183] and a Kerr non-linear coefficient of 4.1×10−19m2/W at 1.06µm

[184]. The material loss at wavelength 1.55µm is 0.3dB/m [183].
ZBLAN:
ZBLAN was discovered in 1975 and is a promising material to replace fused silica
in telecommunications. The transparency window of ZBLAN extends from UV to
mid-IR (0.2 to 7.8µm), so it has advantage of transparency in UV where silica suffers
from solarization below wavelength 380nm. Solarization is the damage of the fiber
due to operating at the UV region [178]. The loss at wavelength 2.5µm is 0.01dB/km

where silica loss 0.185dB/km at wavelength 1.55µm. However, drawing ZBLAN is
extremely hard because its viscosity is stable only in a narrow temperature range [178].

1.4.2 Polymers

Polymer PCF offer key advantages over glass PCF such as low cost at manufacture,
mechanical robustness and chemical flexibility [37, 154]. However, the loss of polymer
fibers is much higher than glass fibers [185]. Even though the loss of polymers is
high, they are finding applications in various fields including, and not limited to, THz
applications [44, 186], sensing [187, 188] and imaging [188]. The first polymer PCF
was fabricated in 2001 [95].
PMMA:
The preform of the first microstructured polymer fiber was fabricated using extrusion
of Poly(methyl methacrylate) PMMA in 2001. The draw process was at a temperature
of 175oC and speed rate of 10m/min on a polymer drawing tower [154]. The drawing
temperature could be varied in wide range without significant change to the fiber
unlike glass PCF. The temperature range for PMMA when drawn to a fiber is from
150oC to 200oC [154]. PMMA has a loss of 55dB/km at the wavelength 567nm and a
corresponding refractive index of 1.49 [189].
Teflon:
Teflon is used for THz applications. Teflon has many advantages in THz regime such as
low refractive index (∼ 1.4) [190] which means low index difference between Teflon
and air in the PCF thus scattering loss would be reduced and it would be possible
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to obtain flat dispersion for non-linear effects to generate THz waves [44]. The first
demonstration of Teflon based PCF was in 2004 for THz guidance in the range 0.1−1.3
THz [191]. Other advantages of Teflon include its flexibility and that it is a low cost
material. A long fiber can be drawn from Teflon compared to other polymers [44].
Topas:
Topas is used in THz regime applications similar to Teflon. Two PCF fibers were
fabricated in 2009 with large and small mode area with loss less than 0.09cm−1 in the
range 0.35−0.65 THz [192]. In Topas, the THz region falls between microwave and
IR and has applications in identification of hidden objects, sensing, medical diagnostics,
defence, etc... [44, 186].
The wide range of materials used to study and fabricate PCF, alongside the diversity in
design of PCF and their unique properties have made PCF feasible to many applications
like sensors [193, 194], frequency metrology [195], optical coherence tomography
[196], high power fiber lasers [197], laser machining , welding [88], and many more
applications.

1.5 Summary

To conclude, this chapter presents an introduction to optical waveguides with a focus
on optical fibers and photonic crystal fibers. The relevant information from literature
is included to clarify the properties and advantages of PCF. These properties can
be enhanced more through investigating the designs in depth and propose new ones.
However, it is not possible to predict the characteristics of a design before fabrication
and characterization and the fabrication process is relatively costly and time consuming.
Therefore, the design is first analyzed, investigated and optimized with the use of
simulation methods to reduce the cost and time required to produce the optimal design.
The analysis of optical fibers requires the implementation of Maxwell’s equations to
study the interaction of light with the medium and find the modes. The next chapter
discusses Maxwell’s equations, and the simulation method, FEM, employed in this
work to obtain modal solutions.



Chapter 2

Methodology

The optical properties of a device are an important matter in choosing the right design
to meet a specific application. In optical system design, the amount of time and money
to produce a device is a significant factor in the final cost of the device. If a device
is made without appropriate design, it may fail to meet specifications. Experimental
techniques are time consuming and expensive. Furthermore, the flexibility in variation
of parameters is usually limited by the resource availability [198]. For these reasons,
there is a requirement for a way to study and predict the characteristics of a device
before it is made. In photonics and optical science, computational methods have been
developed and employed to simulate optical devices. Moreover, computational methods
facilitate the study of designs and phenomena which cannot be achieved with available
technologies.
The computational simulations lead to vast improvement in performance and reduction
in cost and time required to make a device. The process requires initial simulation
to test a design. The simulation results are processed and analyzed to compare with
the target application. If specifications are not met then a redesign of the device
and retesting is carried out. There may be several stages of redesign and retest until
the specifications are met. At that stage the design is fabricated. The simulation
process demands less time and money than fabrication. Therefore, the design can be
manipulated and improved more efficiently to meet specifications.
The work presented in this thesis is simulations of spiral Photonic Crystal Fibers (PCFs)
to study some of their optical properties. The method adapted in this work is the Finite
Element Method (FEM) and most of this chapter is dedicated to explain how the
method is implemented to study optical waveguides. The reason behind choosing FEM
in this work is that any arbitrary index profile can be presented more efficiently and
also the approximation is more accurate than other methods in the frequency domain.
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Simulation of optical waveguides and devices require the implementation of the electro-
magnetic field theory. The starting point is Maxwell’s equations which are introduced
in the next section followed by the derivation of the wave equation. Thereafter, compu-
tational methods are discussed in brief. The rest of the chapter is concerned with the
FEM and how it is implemented. An in depth discussion of the method is given with
reference to optical waveguides.

2.1 Introduction to Electromagnetism

The study of physical phenomena requires the problem of interest to be presented
in a mathematical formula to be solved either in very limited situations analytically
such that it has exact solution. Otherwise, if the problem has a solution which can
not be found analytically then the mathematical problem can be approximated where
assumptions are made [199].
This section begins with Maxwell’s equations and lists the assumption made to derive
the wave equation. The wave equation is then solved by the computational methods to
find the modal solution of the optical waveguide. Maxwell’s equations can be written
in integral or differential formulae. In this thesis, only the latter are discussed.

2.1.1 Maxwell’s equations

Maxwell’s equations are partial differential equations which relate electrical and mag-
netic fields and their fluxes with the sources (currents and charges). There are four
Equations (2.1) - (2.4) which are stated as Faraday’s law (2.1), the Maxwell-Ampere
law (2.2), Gauss’s law electric (2.3), and Gauss’s law magnetic (2.4) [200, 201].

▽×E =−∂B
∂ t

(2.1)

▽×H =
∂D
∂ t

+J (2.2)

▽ ·D = ρ (2.3)

▽ ·B = 0 (2.4)

where E is electric field intensity in volt/meter (V/m), B is magnetic flux density in
weber/meter2 (Wb/m2), H is magnetic field intensity ampere/meter (A/m), D is elec-
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tric flux density coulomb/meter2 (C/m2), J is electric current density ampere/meter2 (A/m2),
and ρ is electric charge density coulomb/meter3 (C/m3) [200, 201].
The electric/magnetic field strength and the corresponding flux are dependent on each
other through the medium properties. The relation for a lossless, homogeneous and
isotropic medium is defined through the following two equations. These equations
relate the electric quantities to the permittivity of the medium (ε) and the magnetic
quantities to the permeability of the medium (µ), respectively. These relations are
known as the constitutive relations [201]:

B = µH = µ0µrH (2.5)

D = εE = ε0εrE (2.6)

where µ0 = 4π × 10−7(H/m) and ε0 = 8.854 × 10−12(F/m) are the permeability
and permittivity of vacuum, µr and εr are the relative permeability and permittivity,
respectively [200, 201].
A relation for the continuity of current or conservation of charge is obtained by applying
the divergence to Equation (2.2) and substituting Equation (2.3) in:

▽ · J =−∂ρ

∂ t
(2.7)

The Maxwell’s equations and constitutive relations can be solved to obtain a general
solution in free space or one infinite medium [201]. However, optical waveguides and/or
devices consist of different media with finite dimensions and Maxwell’s equations are
not enough to solve for a unique solution for such boundary value problems. Therefore,
boundary conditions are required to solve for solutions. The boundary conditions are
discussed in the next section.

2.1.2 Boundary conditions

In the previous section, Maxwell’s equations and the constitutive relation were given.
Both can be used to get a general solution for electromagnetic problems. In this section,
the boundary condition will be discussed. Thus a unique solution can be obtained by
enforcing boundary conditions. There are boundaries at the physical dimension of the
waveguide and the boundary continuity condition at the interface between two media
should be satisfied to ensure continuity of the field through the interface [201].
The boundary condition at the interface between two media is shown in Figure (2.1),
when there is no surface charge (ρ = 0) nor surface current (J = 0), this is the case if
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Fig. 2.1 Interface between two media [201]

both materials are perfect dielectrics [201]. This gives rise to the following continuity
between field components across the interface:

1. The tangential components of the electric field must be continuous.

n̂× (E1 −E2) = 0

∴ Et1 = Et2
(2.8)

2. The tangential components of the magnetic field must be continuous.

n̂× (H1 −H2) = 0

∴ Ht1 = Ht2
(2.9)

3. The normal components of electric flux density must be continuous.

n̂ · (D1 −D2) = 0

∴ Dn1 = Dn2
(2.10)

From Equation (2.6), and since permittivity of the two media are different
(ε1 ̸= ε2), then

ε1En1 = ε2En2

∴ En1 ̸= En2
(2.11)

4. The normal components of magnetic flux density must be continuous.

n̂ · (B1 −B2) = 0

∴ Bn1 = Bn2
(2.12)
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From Equation (2.5), and since permeability for most non-magnetic media are 1
(µ1 = µ2 = 1), then

µ1Hn1 = µ2Hn2

∴ Hn1 = Hn2
(2.13)

where subscripts 1 and 2 indicate the two media, subscripts n and t indicate
normal and tangential components, respectively, and n̂ is the unit vector normal
to the interface between the two media.

The tangential and normal components conditions are dependent on each other. If
the tangential component conditions (Equations (2.8) and ( 2.9)) at the interface are
satisfied then the normal component conditions (Equations (2.10) and (2.12)) will also
be satisfied. These conditions are called natural condition [201]. Therefore, natural
boundary condition can be left free because they are satisfied automatically [202].
There are two other conditions when one medium is a perfect electric conductor,
in absence of electrical charge (ρ) and current (J), the tangential magnetic field
components (H) vanishes, see Equation (2.14). Likewise, when the medium is a
perfect magnetic conductor the tangential electric field components (E) vanish and
magnetic field continuity is ensured, Equation (2.15) [200].

n×E = 0 or n ·H = 0 (2.14)

n×H = 0 or n ·E = 0 (2.15)

On the other hand, when the conditions are not natural then the field must be defined
at the boundaries. These condition are termed forced conditions and implemented
at different cases so some implementations are discussed in the following text. A
waveguide has finite dimensions but the surroundings are infinite and in numerical
analysis the domain has to be finite so an artificial boundary condition is imposed to
make the dimension finite. This boundary is made to absorb the optical field so it does
not reflect back to the structure. In this work the boundary implemented to limit the
structure to finite dimensions is the Perfectly Matched Layers (PML) [201], which is
discussed in Section (2.3.6). The forced conditions are classified as follow:
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Homogeneous Dirichlet φ = 0 (2.16)

Inhomogeneous Dirichlet φ = k (2.17)

Homogeneous Neumann ∂φ/∂n = 0 (2.18)

The forced conditions (PEC and/or PMC) can also be implemented when there is a
symmetry in the waveguide structure so that the computational domain is reduced and
hence economize the computational resources. The structure could be symmetric on
one axis where one-half of the structure is enough to be simulated to find a solution,
half symmetry, or symmetric on two axes and a quarter of the structure can be simulated.
In rare cases there are further symmetries [203, 204].
However, the symmetry conditions are not discussed further in this thesis because the
structures studied in this work are asymmetric. In the next section, the derivation of the
wave equation is given.

2.1.3 Wave equation

The analysis of optical waveguide problems involve the solution of Maxwell’s equa-
tions. In modal solutions the time dependence can be included as frequency operator.
Therefore, the four Maxwell’s equations are combined to produce a second-order
differential equation, know as the wave equation, which can be solved numerically to
obtain solutions [200].
Furthermore, it is not an easy task to apply the coupled Maxwell’s differential equations
when solving boundary-value problems [198]. Moreover, the computational require-
ment for storing all field components is memory consuming [200]. The derivation
of the wave equation from Maxwell’s equations is explained below by substituting
Equation (2.5) into (2.1).

▽×E =−µ
∂

∂ t
H (2.19)

Apply curl to both sides of equation

▽× (▽×E) =−µ
∂

∂ t
(▽×H) (2.20)

and substitute (2.2) and then (2.6)

▽× (▽×E) =−εµ
∂ 2

∂ t2 E (2.21)
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In the frequency domain, the time harmonic assumption of the electromagnetic field
is used to eliminate the time dependence from the field vector. This is related to the
steady-state of the field, which is a function only of space and not time [198]. The field
vectors can be expressed in the phasor form as:

E(x,y,z, t) = E(x,y,z) e jωt (2.22)

where ω is the angular frequency
The phasor form enables the replacement of time derivative with jω as illustrated in
the following equations.

∵
∂e jωt

∂ t
= jωe jωt (2.23)

∴
∂

∂ t
= jω (2.24)

Substitute equation (2.24) into (2.21)

▽× (▽×E) = ω
2
εµ E (2.25)

The previous equation is for the electric field (E). In a similar manner an equation for
the magnetic field (H) can be derived:

▽× 1
ε
(▽×H) = ω

2
εµ H (2.26)

From the vector calculus relation ▽× (▽×E) = ▽(▽ ·E)−▽2E, rewrite ▽(▽ ·E) =
−▽(lnε) ·E, substitute in Equation (2.25) and rearrange to obtain the E-field vector
wave equation:

▽2E+ω
2
εµ E =−▽(lnε) ·E (2.27)

Similarly the H-field vector wave equation can be obtained:

▽2H+ω
2
εµ H =−▽(lnε)×▽×H (2.28)

The formulae in Equations (2.27) and (2.28) are the vector form of the electric and
magnetic wave equation, respectively. These formulae contain both longitudinal and
transverse components of the field and are coupled. In homogeneous media (material
property independent of position), the right hand side of Equation (2.27) vanishes
because ▽ ·ε = 0, thus the longitudinal and transverse components are decoupled [200].
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These assumptions hold even when the medium has weak inhomogeneity because the
change in the refractive index is small (▽ε/ε is small compared over length scale that E
and H progress in space) [205]. The result is the scalar E-field wave equation (Equation
(2.29)). The scalar formulation is used whenever possible due to its simplicity in
comparison with vector formulation. It can be used in homogeneous isotropic material,
anisotropic waveguide and open boundary problem. However, if the longitudinal field
component is not small enough to be neglected, and may couple with the transverse
component, then the latter formulation has to be used [200].

▽2E = ω
2
εµ E (2.29)

Similarly the H-field scalar equation is obtained.

▽2H = ω
2
εµ H (2.30)

In this thesis, the vector formula is implemented to solve for the modes of the waveg-
uides studied. The computational methods are discussed in the next section along with
a discussion on the advantages and disadvantages of the different methods.

2.2 Numerical Methods

The analysis of optical devices requires a sophisticated process and requires a huge
amount of mathematical operations to find a solution. The time taken to solve such
problems would be impossible without the aid of computational resources. Therefore,
analytical and numerical methods are employed intensively. The performance of com-
putational methods is improving rapidly due to two reasons; the advance in computer
technology and the improvement in algorithms [199]. In this section the analytical and
numerical approaches are discussed.

2.2.1 Analytical methods

Analytical methods have been implemented to solve for solutions of electromagnetic
problems. They are used in simple structures like in slab, buried and rib waveguides.
Although analytical methods give accurate solutions, they are limited and are not
applicable to many real-world cases [199] which involve complex geometries and inho-
mogeneous domains [206]. Analytical methods were more applicable before computers
and there are various methods implemented to solve boundary-value problems. Some
of these methods are Effective Index Method [207], Marcatili’s Method [208] and
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Variational Method [200]. However, they have an important role in the development of
numerical methods [201].
There are a variety of analytical methods used to obtain solutions for simple optical
waveguides, however, obtaining a solution for complex optical waveguide structures
with inhomogeneity in the spatial domain is not possible with the aid of analytical
methods. Therefore, approximations and assumptions are made to problems to be
solved with numerical methods. In the next section, some of the common numerical
methods used in modeling of electromagnetic problems are introduced.

2.2.2 Numerical methods

The lack of analytical solutions to complex real-world problems has led to the develop-
ment of numerical solutions. The approximation or numerical methods, as the name
indicates, are based on approximating the solution by applying assumptions to the
problem of interest which leads to some error that can be tolerated. The approxima-
tions made are either numerical or to the physics. Hence, the numerical methods are
classified according to these approximations into two main classes.
The first class is the asymptotic methods. These methods require fundamental approx-
imation in the Maxwell’s equations. The approximation in physics limits the use of
these methods for general cases [209, 210]. They are usually used for electrical large
metallic objects, which is a drawback of these methods. Their advantages are low
computational resources and high efficiency [210].
The other class of numerical methods is the full-wave methods. In these methods,
approximation are made numerically and there is no initial physical approximation.
These methods are further classified according to the formula used, integral or differen-
tial, and according to the domain they operate in, time or frequency [209]. However,
this classification is general because some of the methods can be implemented with
either formula and/or in both domains.
The frequency domain methods are suitable for studying steady-state narrow-band
applications, whereas time domain methods are suitable for wide-band transient ap-
plications. The discretization in integral formula involves the important surface of
the problem thus the computational resources are reduced. This comes with the price
of poor presentation of complex structures and inhomogeneous materials [211]. The
integral formula can be used to study scattering and open domain problems. In differ-
ential formulae, the discretization involves the full volume which is computationally
consuming but can present inhomogeneous media and complex structures efficiently.
The differential formulae can be implemented in a boundary problem. Therefore, from
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the discussion above it is clear that there is no universal choice of best method in all
cases. In each case there are advantages and disadvantages of the methods and the
appropriate method is chosen.
There are general steps required for all full-wave methods. A common aspect of full-
wave numerical methods is to discretize the system domain into smaller sub-domains
and thus the solution is almost independent of the system [201]. Full-wave methods
generally speaking involve three major steps to solve the problem. First, the problem of
interest should be defined by a governing equation which is obtained from Maxwell’s
equations. However, every method differs in preprocessing of Maxwell’s equation
to obtain the final formula. The second step is discretization of the domain into
non-overlapping sub-domains in order to present arbitrary inhomogeneous dielectric
waveguides such that every sub-domain or element is homogeneous. Discretization
results in a set of equations which are described in a matrix form. The final step requires
the solution of the matrix of unknowns using efficient algorithms [201]. The most
popular full-wave methods in the field are listed with an introduction to each in the
following paragraphs.
Method of moments:
The Method of Moments (MoM), also known as boundary element method, has advan-
tage in problems involving open regions. It is mostly applied in frequency domain. It
has been the most widely used method in antenna engineering [209]. The mathematical
formulation representing electromagnetic fields is implemented in MoM by discretizing
the integral equation [210]. It is computationally efficient but it requires sophisticated
mathematics than other methods [203]. It is the preferred method for frequency domain
scattering and radiation problems [209].
Finite difference method:
The Finite Difference Method (FDM) is the most widely used method in electromag-
netic problems due to being straightforward and ease of implementation. The domain
is divided into a mesh and the solution is found for each grid point. It implements the
differential Maxwell’s equations to derive the wave equation to find the modal solution.
The differential operator is replaced by difference operators by using central difference
formula. There is another method which shares the same concept of meshing, which
is known as the Finite-Difference Time-Domain (FDTD) method. It is used in the
analysis of time domain problems by directly discretizing the Maxwell’s equations.
Both methods are very efficient as they require few operations on each point on the
grid [199].
The back draw of FDM is that the grid should be uniform for the method to work well.
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It also uses staircase approximation of boundaries which are not in alignment with the
grid [199]. Moreover, the solution is only available at the nodes [200].
Finite element method:
The Finite Element Method is capable of representing complex domains accurately as
it discretizes the domain into a grid of unstructured elements and thus approximates
boundaries better. The typical element is a triangle in 2D and tetrahedron in 3D. FEM
can be implemented in frequency domain problems [199]. Also, it can be implemented
in time domain but it was developed for frequency domain. FEM is efficient for
microwave device and eigenvalue problem simulations [209].
This method and the previous two are the fundamental methods in electromagnetic
analysis [203]. Therefore, the first point of choice to analysis optical fibers and
waveguides is one of these methods. In this work, due to the arbitrary boundaries of
PCF structures the FEM is chosen because it can approximate boundaries better. The
steps of implementing FEM in optical waveguide problems are described in the next
section.
Transmission line matrix method:
The Transmission Line Matrix (TLM) method solves field problem by the use of circuit
equivalents [198] . It is used generally for wave propagation in the time domain where
the waveguide is discretized into a 3D lattice. The method uses differential formula
[211]. It is similar to FDTD method apart from using an array of short transmission
lines instead of direct discretization of Maxwell’s equations [209]. It can also be
implemented in the frequency domain [211].
Method of lines:
The Method of Lines (MoL) has similarity with FDM. For a system of partial differential
equations the independent variables are all discretized except one which is obtained
analytically therefore the computational time of MoL is efficient [212].

2.3 Finite Element Method

The finite element method was first proposed in 1940s. It was deployed in various fields
in structural mechanics, thermodynamics and aero engineering in 1950s. In 1960s, it
was implemented for solving electromagnetic problems. It has the widest implementa-
tion range among computational method in most of physical and engineering fields due
to its versatility in dealing with complex designs [209, 213, 214].
The basic ideology of FEM is to divide a domain into sub-domains/elements and
approximating the solution in each element with a basis function, usually polynomial,
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which has a non-zero value over the element and zero else where [201]. The solution
at any point in the element can be computed because the interpolation function is
continuous inside the element. Each element has its interpolation function for the
unknown field (Ψ) and the field in the element, e, is expressed as

Ψ
e =

m

∑
i=1

NiΨi (2.31)

where m is the number of nodes in the element, Ni is the interpolation function and Ψi

is field value at node i .
Higher-order interpolation function leads to more accurate solution but the formulation
is complex and more difficult to derive because the mathematics is challenging [215].
Moreover, the bandwidth of the system of equations increase when using higher-order
interpolation functions [213]. The field across the boundary of adjacent elements is
continuous since the elements share nodes and field interpolation is defined at the nodes.
Therefore, the boundary condition can be integrated in the implementation of FEM
smoothly [200, 206].
The solution of boundary value problem involves the use of either variational approach
(Rayleigh-Ritz method) or weighted residuals (Galerkin method) to set up FEM and
both lead to an expression which can be reduced by FEM to eigenvalue matrix equations
[216]. The concept of the variational method is concerned with the stationary point of
the functional value and this can be found by minimizing or maximizing an expression
of variables. The result obtained by minimizing or maximizing the functional yields
the associated Euler-Lagrange equation. The variational principle exists if and only if
the Euler-Lagrange equations correspond to the physical problem under consideration.
If a variational principle exists then a solution can be obtained by trying a set of basis
functions with unknown coefficients in the formula. The derivative of the functional
with respect to coefficients vanishes [200, 201]. The steps to produce the H field
formula using the variational principle are shown below.
The wave equation (Equation (2.26)) can be presented as an eigenvalue equation

LH−λMH = 0 (2.32)

where operators are M = µ and L = ▽× ε−1▽×, and the eigenvalue is λ = ω2

When the L operator is self-adjoint which means (⟨Lφ ,ψ⟩= ⟨φ ,Lψ⟩) then minimizing
or maximizing the functional gives:

F(H̃) =
1
2
⟨LH̃, H̃⟩− λ

2
⟨MH̃, H̃⟩ (2.33)
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where the symbol ⟨⟩ is the inner product which is defined as follows

⟨ f ,g⟩=
∫

g∗ · f dV (2.34)

where ∗ stands for conjugate
The stationary value of the functional is when F(H̃) = 0 then

λ = S.V.
⟨LH,H⟩
⟨MH,H⟩

(2.35)

where S.V. stands for the stationary value
Therefore, the full vectorial H field functional obtained from the Rayleigh-Ritz method
is

ω
2 = S.V.

∫∫
(▽×H)∗ · ε−1(▽×H)dV∫∫

H∗ ·µHdV
(2.36)

The minimization formula obtained as an eigenvalue problem is

[A]x = λ [B]x (2.37)

where A is the mass matrix, B is the stiffness matrix, x is the eigenvector and λ is the
eigenvalue.
In simple words, the procedure for the variational method requires finding a functional
whose minimum corresponds to the differential equation of the problem under the given
boundary conditions. The variable of the functional is defined, generally speaking, as
a polynomial with unknown coefficients. The boundary conditions are applied to the
polynomial which may reduce the coefficient. Then substituting the polynomial in the
functional and performing integration. A partial derivatives of the result with respect to
each coefficients is set to zero to obtain the approximate solution.
The matrices generated by this method are symmetric and this simplifies the computa-
tion. Moreover, the natural boundary condition in the formula is the perfect electric
conductor and can be left free in most electromagnetic problems. Therefore, it is easy
to set up numerical methods with the variational principle. The draw-back is that the
method cannot be implemented in all problems and only applied when the variational
principles exists [200]. Therefore, the problem should be tested if the variational
principle exist.
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The alternative to Rayleigh-Ritz method is the Galerkin method which does not require
a knowledge of the functional [200, 217]. It can be presented in terms of an operator
equation:

Lu = v (2.38)

where L is a differential operator, v is the source of excitation and u the unknown
function.
The unknown function is determined by expanding it with some known basis functions
with unknown coefficients. The coefficients are chosen to minimize the residual error,
which is defined as in Equation (2.39), and forced to zero [200, 217].

R(s) = Lu− v (2.39)

If the basis functions and unknown coefficients represent the exact solution of the
problem, only then the residual error can be zero. Otherwise, the error is minimized by
choosing weight functions which are orthogonal to the residual error. Therefore, the
weighted integral of the residual is set to zero [200, 217]. These steps leads to a matrix
form:

[L][u] = [v] (2.40)

where, in the case of electromagnetics, the unknown function u is the magnetic field,
the operator L = ▽× ε−1▽×−ω2µ , and the source [v] = 0.
The advantage of this method is that it can be used even when the variational approach
cannot be applied. However, the natural boundary conditions need extra care as they
are not easily satisfied as in the Rayleigh-Ritz method [200]. Although any one of
these methods can be applied to set up the FEM, in this thesis the variational method is
utilized. The vector and scalar formulations of FEM are discussed in the next section.

2.3.1 Formulation

The FEM can be implemented to solve both the vector and scalar wave equations. If
the change in the refractive index is small then the weakly guiding approximation
(when ▽ε/ε , ▽µ/µ are small compared with the length that the fields evolve over)
holds and the right hand side of the vector wave equations (Equation (2.27) and (2.28))
can be neglected. This leads to decoupling of the longitudinal and transverse field
components. Therefore, the scalar wave formulation can be used because the equation
is less complex. However, the vector formulation is used in this work due to the
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complexity of the refractive index profile and the use of the scalar formulation would
not be possible to find a solution. In this section, the scalar formulation is presented and
then the derivation of the vector formulation is given in the following section [200].
The scalar formulation can be presented in two ways depending on the dominant field
in the transverse direction where the magnitude of the longitudinal components is very
small and it is sufficient to solve one of the scalar Equations (2.29) or (2.30) for electric
and magnetic fields, respectively. The modes in waveguides are not purely transverse
electric or transverse magnetic. Thus the fields are expressed either as quasi-transverse
electric (TE) or quasi-transverse magnetic (TM) modes. In the case of TE where the
electric field (Ex) is dominant, the functional formulation is described by Equation
(2.41), and for TM mode (Hx) dominant the functional is shown in Equation (2.42)
[200].

L =
∫∫

Ω

[(
∂Ex

∂x

)2

+

(
∂Ex

∂y

)2

− k0 n2E2
x +β

2E2
x

]
dΩ (2.41)

where Ω is the cross section of the waveguide.
In (2.41) β 2 would be the eigenvalue for given k0 and in (2.42) k2

0 is the eigenvalue for
a given β .

L =
∫∫

Ω

[
1
n2

(
∂Hx

∂x

)2

+
1
n2

(
∂Hx

∂y

)2

− k0 H2
x +

1
n2 β

2E2
x

]
dΩ (2.42)

The Equations (2.41) and (2.42) have the continuity of ∂Ex
∂ n̂ and

(
1
n2

)(
∂Hx
∂ n̂

)
as the

natural boundary condition, respectively, where n̂ is the outward normal unit vector.
The vector formulation is discussed in the following section.

2.3.2 Vector formulation

The vector formulation is used when the modes are hybrid and both longitudinal and
transverse components may couple. The vector formulation can be derived in different
ways depending on the field components used in the derivation. The formulation can
be derived by the use of:

• transverse electric field components.

• transverse magnetic field components.

• both transverse field components.

• both longitudinal field components.
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• all six field components.

• all electric (E-field formulation) field components.

• all magnetic (H-field formulation) field components.

The latter two are more efficient in terms of computational resources. However, the
E-field formulation requires further integration to impose the boundary conditions
when the material changes at the boundary between the two elements. In contrast, in
the H-field formulation, the change in the material at the boundaries does not require
imposing the boundary condition because both material are non-magnetic. The use
of six components does not have much advantage over the H-field formulation and
requires more computational resources for storing and processing. Therefore, H-field
formulation is used in this work and its derivation is given in the following discussion.
The Rayleigh-Ritz procedure is used to obtain the matrix equation. First, the functional
of the vector H-field formulation is defined as:

F =
∫∫

Ω

(▽×H)∗
(
[εr]

−1▽×H
)

dΩ−ω
2
0

∫∫
Ω

H∗ ·HdΩ (2.43)

The domain is divided into small elements and the field in each element is defined as:

H =
m

∑
i=1

Ni Hi (2.44)

where m is the number of nodes in the element, Hi is the magnetic field at the node i,
and Ni is the basis functions (shape functions).
The matrix form of Equation (2.44) is:

H = [N]T{H}e (2.45)

where T stands for transpose, [N]T matrix of basis function and {H}e column vector
of nodal field values.
Substituting (2.45) into (2.43) and applying the variational principle, then:

∫∫
Ω

(
▽× [N]T{H}∗e [εr]

−1 ▽× [N]T{H}e −ω
2
0 [N]T{H}∗e [N]T{H}e

)
dΩ = 0

(2.46)
Writing it in matrix form:

[A]{H}−ω
2
0 [B]{H}= 0 (2.47)
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where ω2
0 is the eigenvalue and {H} is the eigenvector. [A] is a complex Hermitian

matrix and can be reduced to real symmetric, in the case of lossless dielectrics, and [B]

is a real symmetric matrix. Both matrices are defined as:

[A] =
∫∫

(▽×H)∗ · ε−1 · (▽×H)dΩ (2.48)

[B] =
∫∫

H∗ ·µ ·HdΩ (2.49)

The solution to Equation (2.47) may contain spurious solutions which are nonphysical.
These solutions occur because some mathematical eigenvalue solutions of the equation
do not satisfy the divergence condition (▽ ·H = 0) automatically, which must be
satisfied by physical solutions. Therefore, the penalty function method is implemented
to eliminate or suppress the spurious solutions. The goal of the penalty function is
to impose the divergence free constraint on the solution variables [216]. The result
of employing the penalty function is an additional term called penalty term (α). The
value of the penalty term controls the number of the spurious solutions. The higher the
term value the fewer the spurious solutions are. However, a reasonable value for α is
1/ε , where ε is the permittivity of the core material. The use of penalty function results
in manipulation of the [A] matrix [200]. However, the matrix size does not change with
the use of penalty function and it has a negligible extra processing time [218]. The
formulation would be as shown:

ω
2 =

∫∫
(▽×H)∗ · ε−1 · (▽×H)dΩ+

(
α

ε

)∫
(▽ ·H)∗(▽ ·H)dΩ∫∫

H∗ ·µ−1 ·HdΩ
(2.50)

The formulation has been derived and penalty term is included in the vector formulation,
which is used to find the modal solutions of waveguides of this work. Implementation of
the penalty function is discussed in Section (2.3.5). The next issue is the discretization
of the domain into smaller sub-domains to implement the FEM and is discussed in the
next section.

2.3.3 Domain discretization

The domain discretization or meshing is a critical step in FEM as the mesh determines
the computational requirements such as storage and processing time. Furthermore,
the mesh plays an important role in accuracy of the results. Meshing is the process
of dividing the domain into small subdivisions (elements) which do not overlap. The
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elements should be adjacent with no space in between to cover the whole domain.
There are different types of elements depending on the domain to be discretized. The
elements range from simple lines to more complex elements. The basic finite elements
for 1, 2 and 3D are shown in Figure (2.2).

Fig. 2.2 Basic finite element in 1, 2 and 3D [213]

For a 1D problem a line element is used with two nodal points, one at each end for
first-order elements. In 2D, which is the case considered in this work, the element
is either triangular or rectangular. A first-order triangular element has three nodal
points and a square element has four. Higher order elements have more nodal points
depending on the degree of the element hence they are more accurate. However,
higher order elements result in complicated formulation because the degree of the
interpolation function is related to the degree of the element. Triangles can represent
complex domains more accurately than rectangles because arbitrary boundaries can
be approximated more accurately with triangles as illustrated in Figure (2.3) [219].
Therefore, they are implemented in this work.
In Figure (2.4) triangular elements of first- second- and third-order are shown. In 3D
a tetrahedron is the common element also there are triangular prisms and rectangular
brick elements [200, 213].
The element is represented by a an interpolation function which should approximate
the field in the element with respect to the real physical problem. The accuracy of the
solution is related to the computational resources. Therefore, a trend to compensate
between the accuracy and the available/affordable resources is required. The error
should be tolerable and the computer storage and processing time need to be acceptable.
The most popular interpolation functions to represent elements are polynomials. The
polynomial should contain all possible terms to be complete. This implies that the
polynomial is unique and the orientation of the coordinates has no affect on the shape
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Fig. 2.3 Mesh comparison of triangular (left) and rectangular (right) elements [219]

Fig. 2.4 First- second- and third-order triangular elements (left to right) [200]

function. The polynomial must have number of terms equivalent to the nodal points
to be unique. In first-order triangular element, there ought to be three terms to form
a complete polynomial. The number of terms required for a polynomial defined by
Pascal triangle as shown in Figure (2.5), where the polynomial of an element of any
order contains all terms in the same order line and the lines above of the Pascal triangle.

Fig. 2.5 Pascal triangle and number of terms for a complete polynomial [200]

The field value at the nodal points of each element is defined by a shape function.
The shape function is set as a polynomial which is fit to the field at the nodes and
the coefficients are determined for every element. The shape function for a first order
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triangular element can be a polynomial (a+bx+ cy) to represent the field in the nodes.
The field in each element (φe) is defined by:

φe(x,y) = a+bx+ cy (2.51)

where a,b,c are constants. The field at nodes is:

φe(xi,yi) = φi i = 1,2,3 (2.52)

Therefore, the field at the three nodal points is expressed as

φ1 ≡ φe(x1,y1) = a+bx1 + cy1

φ2 ≡ φe(x2,y2) = a+bx2 + cy2

φ3 ≡ φe(x3,y3) = a+bx3 + cy3

(2.53)

In the matrix form 
φ1

φ2

φ3

=

1 x1 y1

1 x2 y2

1 x3 y3




a

b

c

 (2.54)

The constants a,b,c are determined as

a =
1

2Ae
[φ1(x2y3 − x3y2)+φ2(x3y1 − x1y3)+φ3(x1y2 − x2y1)]

b =
1

2Ae
[φ1(y2 − y3)+φ2(y3 − y1)+φ3(y1 − y2)]

c =
1

2Ae
[φ1(x3 − x2)+φ2(x1 − x3)+φ3(x2 − x1)]

(2.55)

where Ae is the area of the triangle element and expressed as

Ae =
1
2

∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣=
1
2
[(x2y3 − x3y2)+(x3y1 − x1y3)+(x1y2 − x2y1)] (2.56)

Substituting Equation (2.55) into Equation (2.51) and rearranging

φe(x,y) = N1(x,y) ·φ1 +N2(x,y) ·φ2 +N3(x,y) ·φ3

φe(x,y) = [N]{φe}
(2.57)
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where Ni are the shape functions and are defined as

{N}T =

N1

N2

N3

=
1

2Ae

x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1


1

x

y

 (2.58)

The shape function matrix can also be

{N}T =

N1

N2

N3

=
1

2Ae

a1 +b1x+ c1y

a2 +b2x+ c2y

a3 +b3x+ c3y

 (2.59)

ai,bi,ci and i = 1,2,3 are calculated as

a1 = x2y3 − x3y2

b1 = y2 − y3

c1 = x3 − x2

(2.60)

Similarly a2,b2,c2,a3,b3 and c3 can be calculated by cyclic exchange of 1 → 2 → 3 in
Equation (2.60). The shape function Ni has a value of 1 at node i and 0 where else.
The domain discretization and shape functions have been discussed. The derivation of
matrix of unknown coefficients at nodal points is listed. Every node in the element has
a local number, corresponding local coordinates and also a global number. A first-order
triangular element has three nodes with local numbers 1, 2 and 3. The total number of
nodes in the domain are numbered using a global node number scheme. In the global
matrices, the entry value has contribution from all elements which belong to that node.
The local and global numbers mapping represents the contribution of nodes in the
global matrices [200]. The mapping and adding of element coefficient matrices to the
global coefficient matrix entries is called the assembly process. The element coefficient
matrix dimension is equal to the number of the nodes in the element. The dimension of
a first-order triangular element matrix is 9×9. However the matrix is symmetric only
lower triangular matrix is stored and zeros are not stored which minimize the size of
the required memory [219]. The next step is the generation of the global and element
matrices. The formation of these matrices is given in the next section.

2.3.4 Element and global matrices

The formation of matrices, that represent the matrix eigenvalue equation derived from
the wave equation by FEM, is discussed in this section. They are the global and element
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matrices. In Equation (2.45), the field is expressed in matrix form, and as the interest is
in all field components (Hx, Hy and Hz) then the equation can be expanded

{H}e = [{Hx}e{Hy}e{Hz}e]
T (2.61)

and

[N]T =

{N} {0} {0}
{0} {N} {0}
{0} {0} j{N}

 (2.62)

where {N}= [N1N2N3]
T and {0} is null vector.

The j term in matrix is for lossless cases when the component of Hz is 90o out of phase
with transverse component. By substituting Equation (2.62) into (2.45) then

{H}e =

N1 N2 N3 0 0 0 0 0 0
0 0 0 N1 N2 N3 0 0 0
0 0 0 0 0 0 jN1 jN2 jN3





Hx1

Hx2

Hx3

Hy1

Hy2

Hy3

Hz1

Hz2

Hz3



(2.63)

The global matrices [A] (mass matrix) and [B] (stiffness matrix) in Equation (2.47) are
determined as follows:

(▽×H)e = [▽×] [N]T {H}e =

 0 −∂/∂ z ∂/∂y

∂/∂ z 0 −∂/∂x

−∂/∂y ∂/∂x 0

 [N]T {H}e (2.64)

Equation (2.64) can also be written as

(▽×H)e = [Q]T {H}e (2.65)
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where [Q] is

[Q] =

 {0} jβ{N} ∂{N}/∂y

− jβ{N} {0} −∂{N}/∂x

−∂{N}/∂y ∂{N}/∂x {0}

 (2.66)

Then A is given as

A = ∑
e
[A]e = ∑

e

∫∫
e

1
εe

[Q]∗ [Q]T dxdy (2.67)

A =

[Axx] [Axy] [Axz]

[Ayx] [Ayy] [Ayz]

[Azx] [Azy] [Azz]

 (2.68)

where

[Axx] =
∫∫

e

[
β

2{N}{N}T +
∂{N}

∂y
∂{N}T

∂y

]
dxdy (2.69)

[Axy] =
∫∫

e
−∂{N}

∂y
∂{N}T

∂x
dxdy (2.70)

[Axz] =
∫∫

e
β{N}∂{N}T

∂x
dxdy (2.71)

[Ayy] =
∫∫

e

[
β

2{N}{N}T +
∂{N}

∂x
∂{N}T

∂x

]
dxdy (2.72)

[Ayz] =
∫∫

e
β{N}∂{N}T

∂y
dxdy (2.73)

[Azz] =
∫∫

e

[
∂{N}

∂y
∂{N}T

∂y
+

∂{N}
∂x

∂{N}T

∂x

]
dxdy (2.74)

and the B matrix is

B = ∑
e

∫∫
e
[N]∗ [N]T dxdy (2.75)

B =

[Bxx] [0] [0]
[0] [Byy] [0]
[0] [0] [Bzz]

 (2.76)
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[Bxx] = [Byy] = [Bzz] = ∑
e

∫∫
e
[N]∗ [N]T dxdy (2.77)

Matrices A and B are the general form of global matrices for any 2D shape functions.
In the discussion to follow, the element matrices are given for a first-order triangle
element. The size of the matrices is 9x9.

∫
e
N2

1 dxdy =
∫

e
N2

2 dxdy =
∫

e
N2

3 dxdy =
Ae

6
(2.78)

∫
e
N1N2 dΩ =

∫
e
N2N3 dΩ =

∫
e
N1N3 dΩ =

Ae

12
(2.79)

∫∫
e
{N}{N}T dxdy =

Ae

12

2 1 1
1 2 1
1 1 2

 (2.80)

∂{N}
∂x

=
1

2Ae

b1

b2

b3

 (2.81)

∂{N}
∂y

=
1

2Ae

c1

c2

c3

 (2.82)

[∫∫
e

∂{N}
∂ p

∂{N}T

∂q
dxdy

]
i j
= Ae Cpi Cq j p,q = x,y (2.83)

[∫∫
e

∂{N}
∂ p

{N}T dxdy
]

i j
=

Ae

3
Cpi (2.84)

[A]e(1,1) =
1
ε

∫
e
−β

2N2
1 +

(
∂N1

∂y

)2

dxdy =
1
ε

[
−β 2Ae

6
+ c2

1Ae

]
(2.85)

[A]e(1,4) =
1
ε

∫
e

−∂N1

∂y
∂N1

∂x
dΩ =−1

ε
c1b1Ae (2.86)

Then calculating B the matrix element

[B]e(1,1) = µ

∫
△

N2
1 dΩ = µ

Ae

6
(2.87)
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[B]e(1,4) = 0 (2.88)

The stiffness element matrix contain several 0 entries. It is shown below

Be =



A
6 0 0 A

12 0 0 A
12 0 0

0 A
6 0 0 A

12 0 0 A
12 0

0 0 A
6 0 0 A

12 0 0 A
12

A
12 0 0 A

6 0 0 A
12 0 0

0 A
12 0 0 A

6 0 0 A
12 0

0 0 A
12 0 0 A

6 0 0 A
12

A
12 0 0 A

12 0 0 A
6 0 0

0 A
12 0 0 A

12 0 0 A
6 0

0 0 A
12 0 0 A

12 0 0 A
6


(2.89)

These matrices are implemented in computer codes of FEM to solve for a mode.
However, there are spurious solutions which can be eliminated by using a penalty
function method, as mentioned in the previous section. The penalty function matrix
formation is discussed next.

2.3.5 Penalty function

There are spurious solution in all vector formulations and a penalty function is intro-
duced to eliminate and suppress these solutions [200, 220]. The implementation of the
penalty function leads to manipulation in the global matrix system. The elements of
the matrix generated due to the penalty function are clarified below. Equation (2.47) is
written in a matrix form with explicit penalty term as:

(
[A]+

α

ε
[C]
)
{H}−ω

2
0 [B]{H}= 0 (2.90)

where

C = ∑
e
[C]e =

[Cxx] [Cxy] [Cxz]

[Cyx] [Cyy] [Cyz]

[Czx] [Czy] [zz]

 (2.91)

[Cxy] =
∫∫

e

∂{N}
∂x

∂{N}T

∂x
dxdy (2.92)

[Cxy] = [Cyx]
T =

∫∫
e

∂{N}
∂x

∂{N}T

∂y
dxdy (2.93)
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[Cxz] = [Czx]
T =

∫∫
e
β

∂{N}
∂x

{N}T dxdy (2.94)

[Cyy] =
∫∫

e

∂{N}
∂y

∂{N}T

∂y
dxdy (2.95)

[Cyz] = [Czy]
T =

∫∫
e
β

∂{N}
∂y

{N}T dxdy (2.96)

[Czz] =
∫∫

e
β

2{N}{N}T dxdy (2.97)

The formulation including the penalty function has been derived for FEM. The last
topic to be discussed in this chapter is the PML which eliminates the problem of
reflections due to domain truncation. It is introduced in the next section.

2.3.6 Perfectly matched layers

The physical dimension of the problem are infinite in space but the computational
resources are limited. Therefore, to present the physical problem to be modeled on
a computer, the domain should be truncated to finite by introducing boundaries. The
wave at the boundaries can reflect back and result in non-physical radiation to the
structure of interest so two techniques were proposed and used in defining the boundary
that is used to truncate the domain to finite. The first technique is purely mathematical
in which an operator can be defined: either global or local. The global mathematical
technique [221] results in a fully populated matrix which is a drawback and cannot
be used in large meshes. The local mathematical technique [222] defines the local
operator which cancels the field at the boundaries. Its disadvantage is that it requires
trial and error to find the boundary position which cannot be placed near the source
[200].
The other technique is to place a physical layer of artificial medium. Berenger has
proposed the concept of PML in 1994 [223] and since then it has been implemented in
numerical methods in particular in FDTD and FEM. The concept of PML is to place
an artificial medium with permittivity similar to the material in the main domain. The
impedance of both is identical thus no reflection occurs at interface. The PML boundary
absorbs waves traveling outwards from the main domain at any angle and frequency.
The magnitude of the wave decays exponentially inside PML and no radiation is
reflected back to the domain [200, 224].
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The first proposed PML was proposed for FDTD and it cannot be easily implemented
in unstructured meshes which are used in FEM. The PML is implemented as stretching
of the complex coordinate in FEM.

x → x̃ =
∫ x

0
sx(x′)dx′ (2.98)

where sx(x) is complex stretching variable.
This results in a change in the nabla operator, ▽, which is written as:

▽→ ▽̃= x̂
∂

∂ x̃
+ ŷ

∂

∂ ỹ
+ ẑ

∂

∂ z̃
= x̂

1
sx

∂

∂x
+ ŷ

1
sy

∂

∂y
+ ẑ

1
sz

∂

∂ z
(2.99)

Then the Maxwell’s equations can be written with ▽̃ instead of ▽, and the time
derivative ∂

∂ t is replaced with jω

▽̃×E =− jωB (2.100)

▽̃×H = jωD (2.101)

▽̃ ·D = ρ (2.102)

▽̃ ·B = 0 (2.103)

This leads to a modification of Equation (2.26). The obtained equation is as shown
below where ω2µε = ω2

c2 = k2
0.

▽× ([p]▽×H)− k2
0[q]H = 0 (2.104)

where

[p] =


sysz
sx

εxx szεxy syεxz

szεyx
szsx
sy

εyy sxεyz

syεzx sxεzy
sxsy
sz

εzz


−1

(2.105)

and

[q] =


sysz
sx

0 0

0 szsx
sy

0

0 0 sxsy
sz

 (2.106)
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By following steps of FEM the Equation (2.104) can be written in matrix form as
shown in Equation (2.107) which is similar to Equation (2.47).

[A]{H}− k2
0 [q]{H}= 0 (2.107)

where

[A] = [Q]T [p] [Q] (2.108)

and

[Q] =

 0 0 0 jβN1 jβN2 jβN3 c1 c2 c3

− jβN1 − jβN2 − jβN3 0 0 0 −b1 −b2 −b3

−c1 −c2 −c3 b1 b2 b3 0 0 0


(2.109)

The PML absorbs waves traveling in a particular direction. A simulation window
terminated by PML boundary is shown in Figure (2.6) where PML regions are numbered
1 to 8. The sx and sy values for each of the PML regions are shown in Table (2.1). The
values are 1 in non-PML region and sk in PML region, where sk is complex and are
defined as

Fig. 2.6 A schematic diagram of simulation window of a conventional fiber structure
with PML boundaries [200]
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PML region
PML parameter 1 2 3 4 5 6 7 8
sx s1 s2 1 1 s1 s2 s1 s2
sy 1 1 s3 s4 s3 s3 s4 s4

Table 2.1 sk values in PML regions [200]

sk = 1− jαk (2.110)

where k = 1,2,3 and 4.

αk = αk,max

(
ρ

dk

)2

(2.111)

αk,max =
3λ

4πnd
ln
(

1
Rmax

)
(2.112)

where ρ is the distance from the PML, dk is thickness of the kth layer and Rmax is
tolerance or maximum reflection.
The PML not only absorb unwanted non-physical reflected radiations at boundaries but
it provides a mechanism to measure confinement and bending losses of the waveguide.
The loss results which are shown in the next chapter are calculated using PML. This is
the last and not the least part to explain in the methodology and at the end a summary
of the discussion is given in the following section.

2.4 Summary

The chapter began with the four coupled Maxwell’s differential equations side along
the constitutive relations. The vector wave equation has been derived and the assump-
tion made to get the scalar form. Boundary condition have been explained. Then a
general view of the analytical and numerical methods given with description of the
well known full-wave methods in field of electromagnetics. Thereafter, the steps of
implementing FEM have been discussed starting with deriving the formula using the
variational principle and weighted residual method. The meshing and formation of
global and element matrices were explained. Finally, the penalty function and PML
were described.
The results of this work have been obtained by the use of a full vectorial FEM formula-
tion to obtain a modal solution of optical waveguides. The penalty function method was
used to suppress the spurious solutions. The PML boundary was imposed to truncate
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the domain to finite dimensions. The results obtained are discussed in the following
chapters.



Chapter 3

Spiral Photonic Crystal Fibers

In the previous chapters the basics of fibers and the propagation of light are discussed;
the simulation tools to study the light propagation in fibers are reviewed and the Finite
Element Method (FEM) is explained. The results obtained by the FEM simulations are
explained in this and the following chapter. This thesis is concerned with the study of
Equiangular Spiral Photonic Crystal Fibers (ES-PCF) and other spiral PCF designs so
the start of this chapter is an introduction to ES and followed by ES-PCF properties.
The Archimedean and Fermat’s spiral PCFs are introduced and investigated and the
study of their parameters is explained with brief simulation results.
The results discussed in this chapter were obtained to test the effect of various parame-
ters of the spiral PCF on the optical properties. Conventional fibers and a huge range
of PCF are fabricated and investigated in silica material so the general simulations of
the studies of the parameters are all based on silica material. However, the concept
is the same for other materials and this is shown in the next chapter when discussing
simulation results in SF57 and Tellurite materials which is used in the published paper
for SuperContinuum Generation (SCG) [225].
The refractive index difference between the core and cladding plays an important role in
the optical properties. The position and sizes of the holes, and the size of the core are the
parameters that effect the effective refractive index of the cladding. The core size can be
varied for most PCF designs freely but the hole position is fixed for most structures such
as Hexagonal Photonic Crystal Fiber (H-PCF). On the other hand, the spiral PCFs have
more parameters to control the design which make spiral PCFs unique. The position
of holes is controlled more efficiently with varying the different parameters. These
parameters requires knowledge for their effect on the optical properties so that for a
specific objective the parameters can be chosen appropriately. In the results presented
in this chapter all the parameters are varied independently to understand their effects.
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The spiral that has most parameters to vary is the ES-PCF which is the focus of this
thesis. The general definition of a spiral is given below then each spiral is discussed
individually with comparison of results to preceding spirals whenever possible.

3.1 Definition of Spiral

This world is full of different shapes and curves that represent the universe in a beautiful
way. These shapes are being investigated, analyzed and represented in mathematical
formulae to understand natural phenomenon and employ them in various fields of life.
One of these shapes is a spiral which can be noticed in small creatures as snails, flowers,
or in huge big galaxies, spreading all over. A spiral is a shape rotated around itself in a
systematic way.

Fig. 3.1 Spirals in Nature [226–231]

In a mathematical form, a spiral is a plane curve following a mathematical expression
that is described more easily in polar coordinates with a distance r from the center
dependent on an angle θ , where it is represented by a point revolving round the center
with an increasing r. The above definition is a description of two dimensional spirals,
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but there are more sophisticated three dimensional spirals which have another variable,
height, which is a function of θ as well. In this thesis, only a discussion of two
dimensional spirals is given.
Spiral shapes have been observed thousands of years ago where some spirals have been
defined by ancient Greeks [232]. Spirals are important in understanding many natural
phenomena. Furthermore, spirals are found in many architectural designs, art works
and different objects. Different images of natural spirals are shown in Figure (3.1).
There are different types of spirals in this universe such as Fermat’s, Archimedean,
lituus, hyperbolic and logarithmic spirals. The latter is also known as Equiangular Spiral
(ES) and it is implemented in this work to design PCF with spiral hole distributions.
The equiangular spiral is discussed in the next section.

3.2 Equiangular Spiral

The history of the Logarithmic spiral goes back to 1638 when Rene Descartes first
developed and described its equation. Evangelista Torricelli worked on it independently
and found the rectification of the curve’s length. Later on it was extensively investigated
by Jacob Bernoulli where he found its properties of self-reproduction and in 1692
called it spira mirabilis [232].

3.2.1 Equiangular spiral curve

The equiangular spiral is represented mathematically in polar coordinates as defined by
Descartes in 1638 [232]

r = aeθ cot(α) (3.1)

where the term cot(α) is refered to as b in this thesis and the equation is written as
[233]

r = aebθ (3.2)

The b coefficient controls the tightness of the spiral and in which direction it grows. If
b = 0 then the spiral becomes a circle of radius a. On the contrary, when b approaches
infinity the shape tends to be a straight line. The spiral grows in an anti-clockwise
for positive values of b and in a clockwise for negative values. The value of a is only
a scalar to scale the whole curve and does not have an impact on its shape. Both
coefficients a and b are arbitrary real constants and θ is the angle measured from the



3.2 Equiangular Spiral 82

Fig. 3.2 Equiangular spiral [233]

X-axis. The value of θ controls the number of turns the curve has. One turn of the
curve requires a value of θ = 2π .

3.2.2 Characteristics of equiangular spiral

The distances between the turnings increase in geometric progression, which distin-
guishes the equiangular spiral from the Archimedean Spiral (AS). Another property of
the equiangular spiral is that all radii produce constant angles with the curve, which is
the reason to call it "Equiangular spiral" [232]. In natural sea-shells spirals, the growth
of an organism is proportional to the size of the organism.

3.2.3 ES-PCF

The uniqueness of PCF in performance and adaptability to diverse applications led
researchers to investigate and analyzes vast number of designs. In Chapter 1 the main
classification of PCF has been given with reference to guiding mechanisms. The
designs studied in this work are index-guiding PCF, in which light is guided by M-TIR
[100]. The hexagonal structure, also introduced in the same chapter, is compared
with the proposed designs in this work. The discussion of H-PCF structure and the
parameters of interest are introduced to help in the explanations throughout the thesis.
Figure (3.3) shows a schematic of the H-PCF cross section.
The three structural parameters that can be varied in a H-PCF are the pitch (Λ), hole
size (d) and number of rings. The latter does not have much effect when number of
rings > 4 as the mode is well confined in the core and holes in higher rings do not
influence the modal field. However, higher rings have impact on bending loss at small
bending radius. The other two parameters are related to each other as a ratio d/Λ which
is the most important factor which impacts the guidance properties. The maximum
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Fig. 3.3 A schematic of H-PCF cross section in transverse direction

theoretical value this ratio can have is 1 when each hole touches neighboring holes.
In practice that is not possible because there would be no barrier between holes and
it would be one big gap with a core suspended in air without being held by any strut.
However, if holes are replaced by solid material then the ratio can be 1. The distance
from center of the structure to the center of the hole of the second ring which lies at 30o

angle from holes in the first ring is marked as point (a) in Figure (3.3). This distance
(oa) equals, by applying Pythagorean theorem, to

√
(ac)2 − (oc)2 which is

oa =
√

3 Λ (3.3)

This distance oa in H-PCF is fixed by this relation and it is not possible to adjust the
position of the holes. In contrast, the position of holes in ES-PCF can be managed
more freely as clarified in the following discussion. The formula in Equation (3.2) is
used to calculate the center of holes with respect to the center of the structure which is
set as the origin point, and a in the formula is referred to in ES-PCF as Λ in this thesis.
The parameters of ES-PCF used to manipulate the structure in this work are six; number
of arms (Narms), number of rings in each arm (Nrings), the angle between two successive
holes of the same arm (θ), the spiral growth rate (b) which is defined in this thesis as
in Equation (3.4), therefore it is fixed for a given number of arms in the ES-PCF, and
the last two parameters which are related to each other as a ratio of hole size (d) and
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pitch (Λ) are similar to the case in H-PCF. There is however one difference in this ratio:
the maximum value is not always 1 but varies with b, Narms and θ as explained below.

b = cot
(
(Narms −2)π

2Narms

)
(3.4)

The distance from center of the structure to the first hole is calculated using formula
3.2, where the angle with the X-axis equals zero, similarly the distance of the second
hole (r2) is calculated with the angle with the X-axis being equal to θ , the third hole is
at an angle 2×θ , and so on with every hole added in the arm, the angle is incremented
by one times its initial value, and for the nth hole the angle is (n− 1)θ . The same
procedure is followed for each arm but the axis is rotated by an angle of π/Narms radian.
Therefore, the distance of the second hole from the center is r2 = Λebθ . Figure (3.4)
show a schematic cross section of a six arms 3 rings ES-PCF structure. The holes in
the figure are numbered as (i, j) where i is the arm number and j is the ring number. To
make a comparison between H-PCF and ES-PCF parameters are Narms = 6, Nrings = 3,
b = 0.577 and θ = π

Narms
, no value is set to the rest of the parameters because they are

considered to be similar in both structures. In this case, by the use of Equations (3.4)
and (3.2), the second hole is located at distance from center

r2 = 1.353Λ (3.5)

Fig. 3.4 A schematic of ES-PCF cross section in transverse direction
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This distance is smaller than the distance of the second hole from the center in the
H-PCF (Equation (3.3)) and this point will be refered to when the results are discussed.
Moreover, this distance varies with b where the value of b for which the ratio d/Λ

can take the maximum value of 1 is calculated by setting r2 =
√

3 Λ and substituting
in Equation (3.2). In this assumption the distance of the holes in the second ring of
ES-PCF from the center is identical to the distance of holes in second ring of H-PCF.

b =
ln
√

3
θ

≈ 1.05 (3.6)

where θ is in radian, and this condition is only true for the parameters given above.
The discussion above is valid when Narms = 6 where there are six holes in the first
ring. As the number of holes increase in the first ring the maximum value of d/Λ is
decreased and vise versa, the general formula for any value of Narms is(

d
Λ

)
max

=
2× (x−1)

x+1
(3.7)

where

x =
1+ sin

(
π

Narms

)
1− sin

(
π

Narms

) (3.8)

Both Equations (3.7) and (3.8) are derived from Steiner Chains rule which is discussed
in Section (4.3.1). The maximum values of d/Λ for Narms from 4 to 9 are shown in
Table (3.1). These values are calculated in regard to the first ring and are valid if the
holes of the second ring are at a distance far enough not to overlap with the holes in the
first ring. This can be realised by calculating appropriate values of b and θ .

Table 3.1 Maximum value of d/Λ for given number of arms

Narms 4 5 6 7 8 9

d/Λ 1.414 1.176 1 0.868 0.765 0.684

The value of θ is the most important parameter that influences the maximum value
of d/Λ. There are two scenarios to consider; first when Narms is equal or smaller than
6. In this case, with increasing hole size, the first merge occurs between second hole
with either the first hole of the same arm or the first hole of the neighboring arm . The
former merge occurs when θ < π/Narms, the latter when θ > π/Narms and at values of
θ = π/Narms the merge occurs at both holes at the same time.
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The second scenario is when Narms > 6 the merge occurs between the third hole and the
first hole of neighboring arms at values of θ even less than π/Narms. Therefore, there
is not a universal rule for all cases but the best practice is to use a computer program
to calculate the maximum value of d/Λ for a given structure. The procedure is to
calculate r of first and second/third holes of one arm and the first hole of the adjacent
arm and find the distance between the center of holes of the two arms. This can be
done by converting from polar to Cartesian coordinates and obtaining the square root
of the difference in coordinates of both axes. Then the smallest value among the holes
combination is considered as d to calculate the maximum ratio.
The microstructured cladding width of H-PCF and ES-PCF, with approximate equally
number of holes, are compared in the Table (3.2). Although the size of ES-PCF is
smaller, as shown in the table, the H-PCF can have higher air filling fraction. Actually,
with H-PCF the maximum air filling fraction is achieved as holes are packed in a
uniform way so that no space is left between adjacent holes in all directions. However,
for a given hole size the ES-PCF would have the advantage of the second ring of holes
being closer to the center leading to better confinement of the modal field and lower
losses are achieved. Some structures can be presented by a different combination of
arms and rings such as 60 rings can be presented by Narms = 6 and Nrings = 10 which
has a distance of 15Λ from center of structure to the center of the farthest hole thus
the confinement of light is not as good as when using more arms and fewer holes per
arm as shown in Table (3.1), the number can be approximately represented by 8 arms
and 9 rings with distance of 3.67Λ or even by 10 arms and 6 rings with distance of
1.67Λ. The field is better confined with smaller distance because the air filling fraction
is higher.
One more advantage of the ES-PCF is that any number (apart from prime numbers) of
holes can be presented with the combination of Narms and Nrings. On the other hand,
the number of holes in H-PCF is defined by the formula

N

∑
i=1

6i (3.9)

where N is the number of rings.
In this thesis the value of b is fixed for a given number of arms as in Equation (3.4)
thus all results were obtained with this condition. To conclude this discussion, ES-PCF
has more parameters than H-PCF to control the number and distribution of holes in
the structure. However, the ES-PCF requires more knowledge of the effect on optical
properties by varying the various parameters. For this reason, a study of each parameter
is included in this chapter, in the following sections.



3.3 Study of the ES-PCF Parameters 87

Table 3.2 A comparison of structure size for different number of holes

Holes Structure Nrings Narms Total holes Size (Λ)

6
ES-PCF 1 6 6 1

H-PCF 1 - 6 1

18
ES-PCF 3 6 18 1.83

H-PCF 2 - 18 2

36
ES-PCF 5 7 35 2.37

H-PCF 3 - 36 3

60
ES-PCF 9 8 62 3.67

H-PCF 4 - 60 4

90
ES-PCF 10 9 90 3.14

H-PCF 5 - 90 5

3.3 Study of the ES-PCF Parameters

The layout of the holes, for a given material, is the factor that controls the properties and
performance of a PCF. In H-PCF, the holes have fixed positions and the two parameters
that can be varied are Λ and d. There are other factors that have an impact on the
properties, such as number of rings and core size which is related to the number of
missing holes at the center (1, 7 or 19). In this discussion, the typical H-PCF (one
central hole missing and with uniform circular holes of same size) is considered and
the typical ES-PCF (with circular uniform hole size).
The ES-PCF has more parameters than H-PCF to control the hole distribution for this
reason the two parameters, namely Narms and θ , which influence the holes position are
varied and the corresponding transverse cross sections are shown in Figure (3.5). It can
be noticed that some structures have densely packed holes and some very loose as there
are large gaps in between holes. It is very much related to θ where some structures
have similar arms with different θ . The first from top left corner has four arms and
θ = 35o, the one on its right has 5 arms and θ = 45o, and the last two at the bottom
right corner both have 9 arms with θ = 60o and 70o, respectively. The holes in the last
two figures show that the one on the left has more densely packed holes than the other
one. The most dense distribution is when θ = π/Narms in which the second hole is
located exactly above the middle of two holes of the first ring. In this section, studies
on the effect on the optical properties of changing these two parameters and others
is carried out with the relevant discussion of the outcomes. The base material in this
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Fig. 3.5 Schematics of different ES-PCF holes distribution with Nrings = 4 where Narms
and θ are different. Starting from top left corner and moving to the right, the values
are defined as set of pairs (Narms,θ) as (4, 35o), (5, 45o), (6, 40o), (6, 50o), (7, 40o),
(8, 25o), (8, 30o), (9, 60o), (9, 70o).

section is silica and the refractive index is calculated according to Sellmeier equation
[12] (Equation (1.34)) and the Sellmeier coefficients [12] for silica are shown in Table
(3.3).

Table 3.3 Sellmeier coefficients of silica material [12]

Sellmeier Coefficient 1 2 3

A j 0.0684043 0.1162414 9.896161

B j 0.6961663 0.4079426 0.8974794

The wavelength of operation is 1.55µm for all results shown in this chapter apart from
the case where the wavelength is the parameter investigated to see its effects.

3.3.1 Study of number of arms (Narms)

The number of arms can be varied in practice from 3 to slightly above 10 as the holes
get packed close together for higher values of Narms, the optimum range is 5 to 8 to
gain the unique characteristic of the ES design. For smaller values of Narms the holes
size should be large to confine the light in the core and a 3-arm structure is somewhat
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similar to Air Suspended Core (ASC) [152, 181]. However, it is still possible to have a
large number of arms for large pitches and small d/Λ ratio structure for LMA.
The modal field plots and change in ne f f , Ae f f and loss with varying number of arms
are shown in Figure (3.6) for an ES-PCF, where Nrings = 3, θ = 30o, d/Λ = 0.35 and
b is set according to Equation (3.4). The range of Narms is chosen to be from 5 to 8 for
the reasons discussed above.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.6 Change in (a) ne f f , Ae f f and (b) loss with varying Narms, and (c-f) the corre-
sponding field plots of 5, 6, 7 and 8 arms structures, respectively. Structure parameters
are Nrings = 3, Λ = 3µm, d/Λ = 0.35 and θ = 30o.

The field profile is more confined as the number of arms increased as can be seen from
the Ae f f plots, which is due to several factors. There are more holes in first ring in
higher values of Narms and the other reason is holes in 2nd , 3rd and if any further rings
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present, are packed closer to the center and therefore this leads to a larger refractive
index difference between the core and the effective cladding region. This can be
justified from the effective index graph (Figure (3.6a)) as the number of arms increase
ne f f decreases because the field encounters more air-holes.
Furthermore, there are two sets of different Λ, Λ = 3 and 5µm shown in Figure (3.6a)
where the change in ne f f is sharper at smaller Λ because the field is influenced by the
cladding air region more. In contrast, the Ae f f change is sharper at large value of Λ as
the field spreads more widely at lower refractive index difference when Narms is small.
The field plots of Narms = 5 to 8 are shown in Figures (3.6c) and (3.6f), respectively,
with a schematic of the position of the air-holes.
The loss for both structures is shown in Figure (3.6b), where loss decreases as number
of arms increased due to more confinement of the field. Furthermore, the loss at larger
pitch is lower because the core size is larger and the field is more concentrated in the
core and not in cladding.

3.3.2 Study of number of rings (Nrings)

The parameter Narms discussed in the previous Section, (3.3.1), is related to Nrings as
both of them together determine how many holes would be in the structure. The total
number of holes is Narms ×Nrings therefore almost any number of holes can be present
unless the total number of holes is a prime number. However, only the primes 5, 7
and 11 can be presented as larger primes would result in large number of holes packed
together. In general, a prime numbers of holes is not practical as only one ring can be
present and then the field won’t be well confined and losses would be high. The loss
can be reduced by having more holes either by adding more arms or rings. The number
of arms is limited as it would not be practical to have a design with Narms > 10 so the
best choice to increase holes is by increasing Nrings. Therefore, the number of rings
factor is studied in this section.
The number of rings in ES-PCF has been varied to study the change in Ae f f and ne f f .
The structure has 6 arms, Λ = 2µm, θ = 30o and d/Λ = 0.35, the results are shown in
Figure (3.7a). The two curves of ne f f and Ae f f have similar change where the curves
have high values at Nrings = 2 which is as a result of the few holes in the structure (12
holes) so the field is not well confined. The change in ne f f is as expected where it
decreases slightly as Nrings increases from 3 to 7. The change is small because the field
is confined and does not expand to holes in further rings. The curve of Ae f f increases
with number of arms slightly from Narms = 4 to 7 where at Narms = 7 the increase is
more noticeable. This is believed to be due to the fact that the field expands slightly
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.7 Change in (a) ne f f , Ae f f and (b) loss with varying Nrings, and (c-e) the corre-
sponding field plots of 2, 3, 5 and 7 rings structures. Structure Parameters are Narms = 6,
Λ = 2µm, d/Λ = 0.35 and θ = 30o.

when the air filling fraction of the cladding is reduced. In the ES-PCF the distance
between two holes from the same arm is increasing (the distance between second and
third holes is larger than distance between first and second hole and so on) as explained
in Section (3.2.2). The distance of the holes is increased and the effective cladding area
grows more even if the increase in distance is similar the area increases more because
area = πr2. Therefore in ES-PCF as the Nrings increases and the hole size in fixed in
all arms the total air filling fraction of the effective cladding region is reduced.
From Figure (3.7b), the loss curve has similar behavior to Ae f f and this is for the same
reason explained above due to decrease in the air filling fraction. Therefore, in most
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cases 3 rings are sufficient enough to confine the field if the ratio d/Λ is larger than
0.3 and Narms is 6 or larger. The other method which can be used is to have different
sizes for the holes. The holes in first ring are small and as ring number increases the
hole size increase [234], in this way the air filling fraction can be kept constant if the
growth ratio of the hole size is large enough. The field plots of the 2, 3, 5 and 7 rings
are shown in Figures (3.7c) - (3.7f), respectively.

3.3.3 Study of pitch size (Λ)

The number of arms and rings have been discussed in the previous sections with regards
to their effect on ne f f and Ae f f of the modal field at wavelength λ = 1.55µm , all
results shown in this section are at this wavelength. The core size is mainly related to
the Λ, with the core size being equal to Λ− (d/2). The core size in PCF, as discussed
in Chapter 2, can be of small or large sizes unlike in conventional fibers. Furthermore,
in H-PCF core size depends on d/Λ ratio where as in ES-PCF the core size can be large
with proportionally small holes which cannot be achieved with a similar characteristic
of strong confinement of the field in H-PCF.
The range of Λ chosen in this study varies from 1 to 8µm. Smaller and larger values
can be used but for the smaller values extra care should be taken as the field won’t be
well confined and the design may be in the cut-off region. On the other hand large
values lead to more sensitivity to bending losses. The change in ne f f and Ae f f as a
function of Λ are shown in Figure (3.8). The parameters are Narms = 6, Nrings = 3,
θ = 30o, and there are two sets with different ratio d/Λ of 0.6 and 0.35.
The effective area increases with increase in pitch size due to increases in the core
size and the field spreads inside the core. For smaller d/Λ ratio the Ae f f is larger
for two reasons; core size is bigger and confinement of light is less because index
difference between core and cladding region is smaller due to lower air filling fraction
as holes are smaller. The difference in Ae f f is higher at larger pitch size because as the
pitch sizes increases the difference in core sizes between the two structures increases
proportionally with Λ.
On the other hand, ne f f increases with increase in Λ due to more interaction of the
mode with the material. This results from increase in Λ and keeping d fixed so the
ratio d/Λ is reduced. The increase in ne f f at lower value of Λ is sharper in structures
with larger holes as the field is more confined and holes are closer to each other. The
step drop in ne f f at Λ = 1µm is due to the cut off as can be observed from Figure
(3.8b) where normalized Ae f f is plotted versus Λ. The normalized Ae f f increases with
decrease in Λ to a point where the mode gets cut off as shown in the graph. There are
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.8 Change in (a) ne f f , Ae f f and (b) normalized Ae f f with varying Λ, and (c-f)
the corresponding field plots of pitch size 1, 3, 5 and 8µm for d/Λ = 0.6. Structure
Parameters are Narms = 6, Λ = 3µm, d/Λ = 0.35 and 0.6, and θ = 30o.

four field plots for the set with larger hole for Λ = 1, 3, 5, and 8µm shown in Figure
(3.8c), (3.8d), (3.8e), and (3.8f), respectively. The field is well confined at higher value
of Λ. The change of three parameters has been discussed so far, in this section the
Λ has been varied for two different ratios d/Λ, in the next section the effect of the
variation of this ratio on the modal field is discussed.

3.3.4 Study of the ratio (d/Λ)

From the previous section it is noticed that the higher the ratio d/Λ the more well
confined the field which is due to larger holes hence higher air filling fraction which
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results in larger index difference between core and effective cladding region. The ratio
d/Λ can be varied by changing either d, Λ or both together with different values. It
is more efficient to study the effect on the ratio by variation in one parameter. In this
section d is changed hence this discussion is valid for both hole size and ratio d/Λ.
Even though d is varied, the discussion in this section refers to d/Λ throughout, and
more focus on the effect of varying d/Λ is discussed as all other parameters are kept
the same through the study, where Narms = 6, Nrings = 3, Λ = 5µm and θ = 30o.

(a)

(b)

(c)

(d)

(e)

Fig. 3.9 Change in (a) ne f f , Ae f f and (b) loss with varying d/Λ, and (c-e) the corre-
spondence field plots for d/Λ = 0.15, 0.3 and 0.6. Structure parameters are Narms = 6,
Nrings = 3, Λ = 5µm and θ = 30o.

The variation of ne f f and Ae f f with d/Λ is shown in Figure (3.9a). The effective
index decreases as d/Λ increases because the modal field interacts with more air in the
cladding region as a result of the bigger holes. The field is more confined at higher
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values of d/Λ and thus the effective area decreases with increase in d/Λ and at small
values of d/Λ = 0.15 the field is poorly guided in the core where it expands in the
cladding region as can be seen from the plot in Figure (3.9c).
The loss is related to many factors but in general as the index difference is increased
the loss decreases. The index difference can be increased by increasing the air filling
fraction. The loss for different d/Λ is shown in Figure (3.9b). The loss increases as
d/Λ decreases but at large values the change is small at values of Λ > 0.4 where loss
is less than 10dB/m as it can be seen in the inset figure (log-scale). However, the loss
increases rapidly at small d/Λ values due to field expansion in the cladding region. The
value of d/Λ should be kept at values larger than 0.35 for a loss of less than 20dB/m

where the field is not well confined below d/Λ = 0.2. In the case of small Λ, the air
filling fraction can be increased by increasing Narms and/or Nrings to confine the field
and lower the loss.

3.3.5 Study of angle (θ)

The most unique parameter in the spiral structure is the angle between two successive
holes. The change in this parameter can have huge impact on the propagation properties
of the field. As discussed earlier, the distribution of holes is mainly determined by
θ and Narms. The holes can be rotated in a way to confine the field strongly in the
core (θ = π/Narms) or can be loose (at values close to 2π/Narms) and at some angles
it has been noticed that higher order modes do not propagate in the core and the fiber
supports only the fundamental mode.
The effect of change of θ is investigated in a structure with Narms = 6, Nrings = 3,
Λ = 3µm and d/Λ = 0.35, where the results are shown in Figure (3.10). The effective
index increases with increase in θ , this is due to the fact that at lower values of θ the
holes are closer to the core thus the field interacts with the holes more. As the value of θ

increases holes spread further from core and the interaction with air is less. On the other
hand, the field spreads more into cladding region at higher values of θ and this might be
expected to lead to lower ne f f but the opposite is true as mentioned. The reason is that
when θ is increased the holes divert away from each other and the field can spread in
between holes in the material of the fiber as is observed from the fields plot where angle
increases from top field plot (Figure (3.10c)) where θ = 28o to the bottom (Figure
(3.10f)) where θ = 42o and the field expands in cladding region. The increase in ne f f

is not perfectly monotonic and seems to have steps where the value of ne f f is similar,
before jumping to the next step. This is in part because of the distribution of the holes is
similar for a small range of values of θ and therefore the confinement of the modal field
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is similar within this range. When θ is increased sufficiently so that the distribution
of holes changes enough to make a noticeable change in the confinement of the field
a corresponding change in ne f f is observed. Figure (3.11) shows the distribution of
the holes for the range of θ chosen (28o, 30o, 32o, 34o, 35o, 37o, 40o and 42o) starting
from top left moving to the right then second row from left to the right. The designs in
the first row have their holes closely packed and no large gaps between hole for the
field to expand. In the second row the holes divert from their optimum position as θ

increases causing gaps between holes in which the field can expand out of the core.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.10 Change in (a) ne f f , Ae f f and (b) loss with varying θ , and (c-f) the corre-
sponding field plots for θ = 28, 30, 32 and 42o. Structure parameters are Narms = 6,
Nrings = 3, Λ = 3µm and d/Λ = 0.35.
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The loss follows the same trend as the Ae f f where at lower θ loss is small and increases
with increase in θ and at higher values the increase is sharper due to a wider gap and
more field spreading thus more light escapes out of the core.

Fig. 3.11 Schematics of different ES-PCF holes distribution with Narms = 6, Nrings = 3,
Λ = 3µm, d/Λ = 0.35 and θ varied. Starting from top left corner and moving to the
right, the values of θ are 28o, 30o, 32o, 34o, 35o, 37o, 40o and 42o.

The study of the ES-PCF parameters have been discussed by varying each parameter
individually to get an overview of the possibilities to design PCF with the required
specifications. However, there are other factors that can manipulate the optical proper-
ties of the structure such as introducing a small hole in the center, or use of elliptical or
semi-circular holes, or other manipulation in the design. The final step in this parameter
study is to study the change of wavelength of operation which is discussed next.

3.3.6 Study of wavelength (λ )

Variation of parameters is important to understand how each parameter effects the
properties. One of the values to study, which is not a ES parameter, is the wavelength of
operation. In any media the change in wavelength leads to change in optical properties
of the field. In this part the ES-PCF has Narms = 6, Nrings = 3, θ = 30o, Λ = 5µm,
and d/Λ = 0.3 and 0.5 for two structures. The wavelength range in this study is from
0.6 to 1.9µm in which silica is transparent. The refractive index of the fused silica is
shown in Figure (3.12a) along side with ne f f of both structures. The change in ne f f

of the structure with larger holes is more due to higher air filling fraction thus lower
ne f f values. At shorter wavelengths the difference between both structures is small due
to the fact that the field is small enough to be well confined in the core. However, at
longer wavelength the field expands more leading to additional interaction of the field
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with the air in the holes. The loss is shown as well in the same graph and as expected
larger holes lead to lower losses.
The normalized Ae f f is shown as a function of normalized wavelength in Figure
(3.12b). The change in both structures with wavelength is stable as the normalized Ae f f

increases with increase in wavelength. The effective area is larger for smaller holes
due to less confinement of the field thus leading to a larger modal field profile.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.12 Change in (a) ne f f , loss and (b) normalized Ae f f with varying λ , and (c-f)
the corresponding field plots at λ = 0.6 and 1.5µm for d/Λ = 0.3and0.5, respectively.
Structure parameters are Narms = 6, Nrings = 3, θ = 30o, Λ = 5µm, and d/Λ = 0.3.

The dispersions of the two structures are calculated for the wavelength range shown
and plotted along side with the silica material dispersion as shown in Figure (3.13). The
dispersion is blue shifted and the Zero Dispersion Wavelength (ZDW) is shifted from
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1.3µm wavelength to around 1.15µm. The structure with larger holes has diverted
further from the material dispersion than the other one because the interaction with
air is more and thus the change in effective index is higher. However, it is not always
the case that the dispersion of the structure has a uniform change from the material
dispersion. In some structures the change is varying where some wavelengths are
blue shifted and others are red shifted which leads to dispersion profiles with low flat
dispersion for a wide range of wavelengths. The dispersion profile is a major factor in
the efficiency of non-linear effects along side with the Ae f f . Therefore, more detailed
studies on the effect of varying the ES-PCF parameters on the dispersion and Ae f f are
carried out in the latter part of this chapter. The next few sections are an introduction to
different spiral (ES, AS and FS) PCFs with some general results of the effect of varying
their parameters on the optical properties of the fiber. Archimedean spiral is discussed
first then followed by discussion of Fermat’s spiral, the three spirals are compared and
in the end of the chapter the ES-PCF is revisited for more in depth studies.

Fig. 3.13 Dispersion of ES-PCF Narms = 6, Nrings = 3, θ = 30o Λ= 3µm and d/Λ= 0.3
and 0.5

3.4 Archimedean Spiral (AS)

Archimedean spiral was named after the Greek mathematician Archimedes who dis-
cussed the spiral in 3rd century BC [235]. It is represented graphically by a point
moving away from the origin point with constant speed along the radius, r, which
rotates with a constant angular velocity.
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3.4.1 AS curve

The first step in the discussion to begin with is the equation of the AS. Similar to the
ES, the equation of AS can be represented mathematically in a polar coordinates. The
formula of the evolving AS in space is

r = a+bθ (3.10)

The spiral starting point depends on the value of the constant a, and the separation
distance between two successive turnings is controlled by the coefficients θ and b. That
distance is of constant value, equal to 2πb where θ is measured in radians, and that
is what distinguishes it from the equiangular spiral. The Archimedean spiral consists
of two arms, one for positive value of θ and the other for negative value of θ . Only
one arm is shown in Figure (3.14). The second arm is the reflection image of this arm
across the Y-axis. These two arms are connected at the center.

Fig. 3.14 Archimedean Spiral [233]

3.4.2 AS-PCF

The formula of the AS represented above is implemented in designing the AS-PCF. The
design has characteristics which are explained in a similar manner to the ES section.
There are five parameters that can be varied in the AS-PCF structure. Three of them are
in the equation, which are a, b and θ , and the other two are number of holes (Nholes)

and diameter of the holes (d). The a parameter is similar to the Λ in both ES-PCF and
H-PCF designs, where it is the distance from center of the core to the center of the first
hole and it controls the core size. The second parameter b is the tightness of the spiral
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or the separation between turns, i.e. controls the ratio of distance between holes from
center to the outward direction. The angle θ is similar to ES-PCF as it is the angle
between two successive holes, however the way the value of the angle is chosen in
AS-PCF is totally different from that in ES-PCF. In AS-PCF all holes are in one arm
and θ should be chosen carefully as large value of θ values would result in large gaps
between holes which leads to poor/no light confinement in the core. This happens with
the values of θ which are the divisor of 2π as shown in Figure (3.15) (3 figures at 1st

row with θ = 36, 45 and 60o from left to right).

Fig. 3.15 Schematics of different AS-PCF hole distribution with Nrings = 18 (middle
row) and 40 (upper and lower rows) for different θ values. Starting from top left corner
and moving to the right, the values of θ are 36, 45, 60, 31, 67, 105, 31, 67, and 110o.

Table (3.4) shows the value of θ in degrees that should be avoided as the holes are
located in straight lines from the center to the circumference of the fiber. The value of
θ should be chosen to be in the middle between any two adjacent values shown in the
table. The values at the start and the end of the table would not lead to practical designs.
For the large values of θ (above 90o) the holes are scattered with no distinct core being
defined Figure (3.15) (2nd row 3rd column). On the small value side the holes are
packed close to each other so only one complete circle of holes surrounding the core
is formed Figure (3.15) (2nd row 1st column). The best values for θ from physical
layout viewpoint are in the mid range around 65o Figure (3.15) (2nd row 2nd column).
However, this discussion is valid when the number of holes is small (Nholes < 30).
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In contrast, when there are a large number of holes, θ can be small as holes would
form a few circles surrounding the core Figure (3.15) (3rd row 1st column). For large
values of θ the value of Λ needs to be large to form a reasonable core size in relation to
space between holes in the cladding region Figure (3.15) (3rd row 3rd column). The
middle range is similar in both scenarios.

Table 3.4 The values of angle θ which are divisor of 2π and should be avoided.

Divisor 10 9 8 7 6 5 4 3 2
θ 36 40 45 51.4 60 72 90 120 180

In the following studies the parameters are chosen as follow Nholes = 18, Λ = 3µm,
d = 1µm, b = 0.3 and θ = 65o. In each case the parameter of interest is varied while
the rest of the parameters are kept fixed to these values.

3.5 Study of the AS-PCF Parameters

The performance of PCF mainly relies on the core size and effective index of the
cladding region. The core size is strongly dependent on Λ and the size of the holes in
the first turn of the spiral, where core radius equals (Λ−d/2) in the case of circular
holes. The cladding effective index depends both on the distribution of holes and their
sizes. In AS-PCF, the hole distribution is managed by three parameters; Nholes, b and θ .
The hole size is calculated through the diameter, d parameter. These parameters are
varied in simulations and the results of each individual parameter are presented below.

3.5.1 Study of number of holes (Nholes)

The holes in AS-PCF are all distributed over one arm and their number should be large
enough to form at least one complete ring of holes around the center of the structure to
produce a form of core and cladding for light to propagate. The number of holes Nholes

in this study is varied from 14 up to 32 to study the effect on the basic optical properties.
The effect of the variation of the Nholes is shown in Figure (3.16a). The effective area
curve is almost constant with no change in the middle. However, it has a slight increase
when number of holes increases beyond 28 and higher values at Nholes = 16 and 14.
The former one is believed to be a numerical error and the latter behavior at Narms = 16
and 14 is supposed to be a physical effect as reducing number of holes leads to less
confinement of the field and hence higher Ae f f and loss. The loss curve is shown in
Figure (3.16b), which shows a similar trend to the Ae f f curve.
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The change of Nholes does not effect the ne f f as can be seen from Figure (3.16a) where
the line is straight. This is due to the field being well confined in the core because the
pitch size is large. Therefore, the number of holes does not have a noticeable impact
on ne f f and Ae f f unless a few holes are chosen then the confinement of the field would
be poor and the optical properties such as loss and Ae f f are increased as the number of
holes is decreased.

(a)

(b)

(c)

(d)

(e)

Fig. 3.16 Change in (a) ne f f , Ae f f and (b) loss with varying Nholes, and (c-e) the
corresponding field plots for Nholes = 18, 24 and 30. Structure parameters are Λ = 3µm,
d = 1µm, θ = 65o and b = 0.3.
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3.5.2 Study of pitch size (Λ)

The pitch (Λ) is the main factor that controls the core size as mentioned before. The
core size can be large with a small d/Λ of 0.05 or smaller as the holes can be packed
close to each other which is not possible in H-PCF.

(a)

(b)

(c)

(d)

(e)

Fig. 3.17 Change in (a) ne f f , Ae f f and (b) loss with varying Λ, and (c-e) the correspond-
ing field plots for Λ = 4, 5 and 6µm. Structure parameters are Nholes = 18, d = 1µm,
θ = 65o and b = 0.3.

The pitch size has been varied from 3 to 6µm in this structure. The change in Ae f f

and ne f f due to varying (Λ) are shown in Figure (3.17a). The effective area increases
steadily with increase in Λ which agrees with the discussion on ES-PCF as in both
cases the field spreads more in the larger core leading to higher values of Ae f f . Another
reason for increasing Ae f f is due to the air filling fraction is being reduced when Λ is
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increased and holes kept at a fixed diameter d. The loss of the fiber is discussed to
check the variation which is show in Figure (3.17b). The loss increases with increasing
Λ as the air filling fraction is getting reduced so the loss increases. However, increasing
Λ from 5 to 6µm leads to decrease in the loss and this is believed to be the reason that
the core size is large enough for the light to be confined within the core smoothly.

3.5.3 Study of hole size (d)

In previous sections both Nholes and Λ have been discussed. In this section, the impact
of the related parameter (d) which plays a major role in the air filling fraction value is
discussed.

(a)

(b)

(c)

(d)

(e)

Fig. 3.18 Change in (a) ne f f , Ae f f and (b) loss with varying d, and (c-e) the corre-
sponding field plots for d = 0.8, 1.1 and 1.4µm. Structure parameters are Nholes = 18,
Λ = 3µm, θ = 65o and b = 0.3.
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The other parameter which has an impact on air filling fraction is Nholes. However, the
hole radius has more impact as the effective cladding region radius is changed slightly
with a value similar to increase in d/2. The change in effective cladding region when
Nholes increased is depending on the number of holes added. Higher air filling fraction
leads to a strong field confinement in the core. The effect of the size of the holes on
optical properties are explained in a structure in which d varied from 0.8 to 1.4µm. The
effective area decreases as the hole size is increased as shown in Figure (3.18a), this
is due to stronger confinement factor with larger holes. The effective refractive index
decreases in a similar manner to Ae f f and that is for the same reason: the field interacts
with more air when the holes are bigger. In Figure (3.18b), the loss curve shows a
stable value for d > 1.1µm and at lower values the loss increases exponentially. The
field plots with holes distributions are shown in Figures (3.18c), (3.18d) and (3.18e) for
d values of 0.8, 1.1 and 1.4µm, respectively.

3.5.4 Study of turns spacing factor (b)

The factor b is the factor that controls the tightness of the spiral, at lower value the
spiral is more packed together and turns are closer to each other and at higher values
holes are distributed apart from each other. A typical value of b would be in the range
of 0.3 to 0.5 as lower values results in squeezed turns and higher value lead to gaps
between turns of the structure. The results for a structure with b varied from 0.2 to 0.6
are shown in Figure (3.19). The change in the values of Ae f f and ne f f with b is shown
in Figure (3.19a), where both values increase with increase in b. The reason is that
for closely packed holes, the light is well confined in the core and as b value increases
Ae f f and ne f f increase because holes are spread further away from each other and the
air filing fraction is decreased. This leads to the struts/silica regions between holes in
the structure getting larger and larger and light spreading, leading to larger Ae f f . The
loss of AS-PCF increases with increase in b as shown in Figure (3.19b). The increase
in loss is due to the separation of holes increasing, therefore the air filling fraction
decreases and the gap between holes increases. These reasons lead to expansion of the
field which leads to increase of the loss. The loss increases in an exponential way with
increase in b. The scale of the loss axis is log and for an increase of 0.05 in the b factor
shows a quadruple increase in the value of the loss.
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(a)

(b)

(c)

(d)

(e)

Fig. 3.19 Change in (a) ne f f , Ae f f and (b) loss with varying b, and (c-e) the corre-
sponding field plots for b = 0.2, 0.35 and 0.5. Structure parameters are Nholes = 18,
Λ = 3µm, d = 1µm and θ = 65o.

3.5.5 Study of angle (θ)

The angle (θ) controls the position of holes in respect to the longitudinal axis or it
controls the positions of holes along the spiral curve which is the angular distance
through the curve. The explanation of the effect of θ is somewhat complex as change
in θ does not follow a uniform trend for the entire range but in the ranges between
the values shown in the Table (3.4). The reason is that as the value of θ is increased
or decreased, it shifts the holes close to the values at which θ is a divisor of 2π . This
leads to holes lying in a straight lines from the center moving outwards. Therefore,
the deviation of holes from these position to the right or left side leads to better field
confinement when holes get distributed more randomly to fill gaps in between.
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The results are shown in Figure (3.20a) for Ae f f and ne f f curves. The range for
varying θ lies between 64 and 68o. The Ae f f increases slightly with increase in θ and
at larger θ the change is steep due to the holes deviating and creating larger struts
causing the field to spread out of the core region. The change in ne f f is similar to Ae f f

with slight difference at lower θ . The ne f f decreases at the beginning then starts to
increase. The loss graph is on a log-scale and shown in Figure (3.20b) for the fiber
under consideration. The loss increases slightly and at higher values of θ loss has a
step increase. This is because holes deviate from the position in which light along a
AS-PCF curve is blocked from escaping.

(a)

(b)

(c)

(d)

(e)

Fig. 3.20 Change in (a) ne f f , Ae f f and (b) loss with varying θ , and (c-e) the correspond-
ing field plots for θ = 64, 66 and 68o. Structure parameters are Nholes = 18, Λ = 3µm,
d = 1µm and b = 0.3.
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In this section the AS has been reviewed and the equation of the progression of the
curve is implemented to arrange holes in the AS-PCF design. Even though AS has less
parameters to control than the ES, the holes still can be controlled smoothly. Actually,
for a large number of holes the AS is better in the arrangement of holes as the holes can
be packed close together where the distance between turns in AS is constant whereas
in ES the distance is increasing in geometric progression. Therefore the outer holes
of ES-PCF with large Nrings are distributed far from each other. The way to over
come this is to use different size for the holes where the size of the holes increase in a
progression with the ring number (Figure 3.21), as in the work published in OWTNM
2015 Conference [234]. The diameter of the hole (di) is related to its position, holes
closest to the core (first ring) have smallest diameter size (dmin) and increases as the
holes shifted away from the core according to the formula in Equation(3.11) and the
holes with largest diameters (dmax) are the outermost. However, making PCF with
holes of different size is more challenging task.

Fig. 3.21 A schematic of a cross section of the transverses direction of an ES-PCF
with varying hole size. Structure parameters are Narms = 16, Nrings = 8, θ = 33.75o,
Λ = 5µm, dmin = 1µm, dmax = 2.2µm and p = 1.5.

di = dmin +

(
i−1

Nrings −1

)p

(dmax −dmin) (3.11)

where i is the hole position and p is the ratio at which the hole size increase with
position.
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On the other hand the AS-PCF can be fabricated with extrusion, drilling or casting
similar to ES-PCF, but the AS-PCF can be even fabricated using glass rolling. A sheet
of glass is etched from one side or both (depending on the structure of interest) to
form the holes and then the sheet of the glass is rolled to produce the preform which
contains the AS-PCF structure [169]. One of the differences between AS-PCF and
ES-PCF is the core symmetry; in an ES-PCF all the holes of each ring are equidistant
from the center. In contrast, there are no two holes at same distance from the center in
AS-PCF because holes are distributed over one arm which is rotating while the distance
from center r increases. This leads to asymmetry in the core shape which leads to
birefringence. However, the asymmetric core of the AS-PCF is not leading to high
values of birefringence as the core has a sort of circular shape. Luckily, there are various
spirals and different spirals can be implemented in PCF for different applications. In
the next section a discussion of a spiral (Fermat’s spiral) which has a non circular core
(asymmetric), which can have higher values of birefringence than AS-PCF, is given.

3.6 Fermat’s Spiral (FS)

The Fermat’s spiral was explained in 1636 by the French lawyer, Pierre de Fermat, who
studied mathematics in his spare time [233]. This spiral is also known as the parabolic
spiral. In this section, the mathematical formula of FS is presented. In a similar manner
to the ES and AS, a study of the spiral parameters is carried out to understand the effect
of each parameter to control the design.

3.6.1 FS curve

The mathematical formula for the spiral is given by the polar equation [233]:

r = θ
1/2 (3.12)

where r is the radial distance, and θ is the angle in polar coordinates.
For any given positive value of θ , there are two corresponding values of r which
have opposite signs. Hence the resulting spiral is symmetrical about the origin and
line y = −x [233]. The general graphical representation of the spiral is given in
Figure (3.22). Dixon [236] and also Naylor [237] determined that a divergence in
Fermat’s spiral of 222.5o, which is 360/τ and τ = 1.618 (the Golden Ratio), results
in a true daisy. Dixon also concluded that many plants demonstrate this pattern such
as sunflowers, daisies, pineapples and pine cones [236], where Naylor included the
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Fig. 3.22 Fermat’s Spiral [233]

golden flower [237]. The Golden Ratio provides that the seeds are distributed in an
equally spaced manner. The Golden Ratio is used in all the simulation of this section
as this ratio yields the most packed distribution and mimics closely natural structures.

3.6.2 FS-PCF

The hole distribution in a Fermat’s spiral is shown in Figure (3.23), which has an
angle of 222.5o to mimic the arrangement of seeds in natural plants. The holes are at a
distance of ri from the center of the spiral (center of structure).

ri = Λ
√

(i) (3.13)

where i is the hole number
The position of the holes in the Cartesian coordinates are calculated by

xi = ri cos(θ)

yi = ri sin(θ)
(3.14)

The position of the holes are calculated from the formulae shown with θ = 222.5o.
From the formula it is clear that there are fewer parameters to vary in the ES-PCF
than in the other two spirals discussed. The parameters that are varied in ES-PCF are
number of holes (Nholes), hole size and pitch size (Λ). The core size is dependent on
Λ, similar to other spiral designs. The difference in this spiral is that the value of Λ is
chosen small in comparison with hole size where the d/Λ ratio can exceed 1. The core
is formed by omitting the first hole so a core is formed. Therefore, the core is more
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controlled in this spiral PCF by the number of omitted holes rather than the Λ value
alone. The advantage of omitting holes in FS-PCF leads to totally different core shape
than be the H-PCF where the core shape does not change by omitting holes from the
center. The change in the core shape can offer different properties for every FS-PCF
structure.

Fig. 3.23 Hole distribution of Fermat’s spiral

3.7 Study of the FS-PCF Parameters

In this chapter, the ES and AS have been presented and their parameters have been
studied in the previous sections (Sections (3.3) and (3.5)). It is noticed that similar
effects have been observed when varying identical parameters in the designs of both
spirals. In this section, the FS parameters are studied to obtain their effects and compare
the change in optical properties with previous structures studied in this chapter. The
parameters varied in this design are number of holes, hole diameter and pitch size, all
have the same abbreviation or symbol as used in other sections, as Nholes, Λ and d,
respectively.

3.7.1 Study of number of holes (Nholes)

This spiral is similar to an Archimedean in that the holes are distributed on one arm.
The angle between holes is fixed one to 222.5o in all simulation for the two reasons
mentioned above. The Fermat’s spiral PCF should have a slightly large number
of holes compared to ES and AS if holes are of small size in comparison to the
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structure dimensions. In this comparison Nholes is varied from 10 to 70 and the optical
properties are examined. The two fundamental modes are no longer degenerate because
this structure is asymmetric, and in this case both modes are studied. The effective
refractive index of both modes are presented graphically in Figure (3.24a), where both
have similar trend. When Nholes is less than 20 the ne f f changes slightly because field
is not well confined as Nholes is small and theres few holes for the field to interact
with, as the Nholes increases to 20 and beyond the change in ne f f is stable. Therefore,
the effective refractive index decreases with increase in Nholes because the air filling
fraction is increased and more air in the cladding region is present for the field to
interact with.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.24 Change in (a) ne f f , Ae f f and (b) birefringence with varying Nholes, Λ= 1.5µm
and d = 0.75µm with one missing hole in the center, and (c-e) the corresponding field
plots for Nholes = 10 and 40 for x polarized Hy

11 and Hx
11 fields.
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The effective area curve shows that the fields have constant value for structure with
Nholes equal to/larger than 30. The value of Ae f f increases as the number of holes is
reduced to 20 and increased slightly when reaching 15 holes. The curves of Ae f f show
steep increase as number of holes reduced to 10 due to few holes being present in
the cladding region so the field is poorly confined in the core. The birefringence has
constant value (8.31×10−4) for the number of holes from 30 to 70. But at 20 and 15
holes the birefringence increases then drops when number of holes is reduced to 10.
This fluctuation is due to the field being in the cut-off region.
The field plot shown in Figures (3.24c) and (3.24d) are for the Hy

11 and Hx
11 field for

the x polarization, respectively. The field shows single polarization which is due to the
asymmetry of the structure.
In the previous results only one value of ne f f is mentioned and studied in all ES-PCF
and AS-PCF designs. In this design as mentioned there are two ne f f and the absolute
difference between them is the birefringence which is introduced in Chapter 1. The
birefringence is shown in Figure (3.24b) with a value of 1.7×10−4. The number of
holes does not effect the birefringence because ne f f for both modes are not showing
any change.

3.7.2 Study of pitch size (Λ)

The study of number of holes show that when the value of Nholes should be large enough
to confine the field. In this section the pitch is varied and results are presented in Figure
(3.25). The effective area and ne f f of both fundamental modes increases smoothly
with increasing Λ. This is similar to the case of ES-PCF and AS-PCF where the field
expands as the core size is made larger hence higher ne f f and larger Ae f f . The changes
in the ne f f and Ae f f of both modes are of similar trend.
The birefringence decreases with increase in Λ due to the fact that field at higher Λ

is more inside the large core and less affected by the asymmetry of the holes of the
structure. If the change in birefringence is compared to the case of varying Nholes, it is
noticed that the curve follow a smooth change and the value is doubled as Λ decreases
from 4.3 to 3.8µm where in the case of varying Narms (Figure (3.24b)) the curve
is constant and there is no change in the value of birefringence at values larger than
30 holes and when number of hole is small the field is in the cut-off region and the
birefringence fluctuates. The field plots for both modes are shown in Figures (3.25c),
(3.25d), (3.25e) and (3.25f) for Λ = 4.3 and 3.8µm, respectively.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.25 Change in (a) ne f f , Ae f f and (b) birefringence with varying Λ, Nholes = 50
and d = 6µm with one missing hole in the center, and (c-e) the corresponding field
plots for Λ = 3.8 and 4.3µm for Hx

11 and Hy
11 fields.

3.7.3 Study of hole size (d)

Another parameter that can be varied in the FS-PCF is the hole radius as shown in
Figure (3.26). The effective area and ne f f for both modes decrease with increase in
hole radius. Similar to the case of varying Λ where ne f f and Ae f f follow similar trends.
The hole radius has an opposite effect to Λ because if hole size is increased the core
becomes slightly smaller and the space between holes decreases. This is the same
scenario as when Λ is decreased where core decreases and space between holes is
reduced. Therefore, the effect of both parameters is opposite to each other if only one
parameter is varied and the other is kept constant.
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Similarly, the birefringence increases with an increase in hole radius which in contrast
to the case when Λ increased the birefringence decreased as shown in Figure (3.25b).

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.26 Change in (a) ne f f , Ae f f and (b) birefringence with varying d, Nholes = 50
and Λ = 4µm with one missing hole in the center, and (c-e) the corresponding field
plots for d = 2.6 and 3.2µm for Hx and Hy fields.

From the discussion of the three spirals presented in Sections (3.3), (3.5) and (3.7) it is
obvious that every structure has advantages and disadvantages compared to others. For
example, the most suitable spiral for birefringence is FS-PCF and simulation results of
high birefringence values have been published [238]. The high birefringence is due to
the asymmetry of the structure which results from core shape and holes distribution.
The core shape is the main reason for high birefringence values and as stated before
the core shape can be changed by omitting more holes and/or holes omitted at different
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positions. The distribution of the holes leads to the core shape and also the holes near
the core have impact on the field. The other spirals can have slightly high birefringence
if the distribution of the holes is chosen to break the symmetry. However, the FS-PCF
has been proven to perform better in terms of high birefringence.
The best hole distribution when the number of holes is large can be obtained by AS-PCF.
In ES-PCF the distance of the holes from the center increase in progression with the
number of rings. Other application of spiral PCF is non-linear effects and the most
appropriate is ES-PCF and results were published for SCG [184, 225]. This section
provides an introduction to the results of the different spirals as both AS-PCF and
FS-PCF are presented to emphases the unique properties of spirals in PCF designs. In
the next section, two ES-PCF structures of different hole size are compared alongside
AS-PCF and ES-PCF structures. The comparison of the results is obtained to highlight
the main differences between the three spiral (ES, AS and FS) PCF designs.

3.8 Comparison of Spiral PCFs

The results of each spiral from the three spiral (ES, AS and FS) PCFs presented in
this work have been given in a separate section. A full comparison between the three
spirals in terms of their optical properties is given in this section. The designs have
similar structural parameter values to observe the different effects of their structure.
The structures compared are ES-PCF, AS-PCF and two FS-PCF which have different
d/Λ value of 0.6 and 1.2, and the former two designs have d/Λ = 0.6. The total
number of holes in every structure is 18 where ES-PCF has 6 arms and 3 rings, the
pitch size Λ = 2µm, the angle θ has a value of 30o, 65o and 222.5o for ES, AS and
FS-PCFs, respectively. The last parameter is the b value of AS-PCF, which equals 0.3.
The parameters of the designs are given and the best point to start at is the distribution
of the holes in the cladding. The layouts of the holes in the transverse direction are
shown in Figure (3.27). The structures are sorted left to right as ES-PCF, AS-PCF,
FS-PCF with d/Λ = 0.6 and FS-PCF with d/Λ = 1.2; the graphs have the same aspect
ratio. The first three have similar d/Λ hence the holes are identical in size. The most
dense packed distribution is formed by ES-PCF where holes are surounding the core
tightly. The two in the middle have scattered holes distribution where holes in FS-PCF
are spread more. The fact is that holes distributed over one arm are not as flexible as
when having two distinct variables to control the holes such as in ES-PCF. The number
of arms can be increased to have very dense holes in the first ring.



3.8 Comparison of Spiral PCFs 118

Another difference between the structure with various arms (ES-PCF) and one arm
structures (AS-PCF and FS-PCF) is the core symmetry. In one arm structure the core is
not symmetric because the distance of the holes from the center is changing with the
hole number (increases as the hole number increase) from the formulae of the AS-PCF
(Equation (3.10)) and FS-PCF (Equation (3.13)). On the other hand, the ES-PCF
structure can have a symmetric core if number of arms chosen is even. Furthermore, if
Narms is even and θ is chosen to be π/Narms then the entire structure has a symmetry
(First graph in Figure (3.27) has six-fold symmetry). However, the core of ES-PCF
structure has a kind of circular shape because all holes of each ring are at fixed distance.
The last comment on the figure is that the last two graphs are identical in all parameters
but one, which is the d/Λ. The hole size d is doubled in the last graph and its effect is
discussed in the results.

Fig. 3.27 Schematics of cross sections of four structures: ES-PCF has Narms = 6,
Nrings = 3, d/Λ = 0.6 and θ = 30o; AS-PCF has Nholes = 18, d/Λ = 0.6, b = 0.3
and θ = 65o; and two FS-PCF has Nholes = 18, θ = 30o and d/Λ = 0.6 and 1.2. All
structures has Λ = 2µm.

In all sections ne f f is the first property discussed due to its importance. The change
in ne f f with wavelength of the four structures is shown in Figure (3.28). The highest
change (dark-green line) is in the ES-PCF structure due to dense packing of holes
near the core. The field interacts with the air in the holes and ne f f is decreased as
the air filling fraction increases within the field interaction space. The change in ne f f

of AS-PCF (black line) is higher than in the FS-PCF with the same d/Λ (blue line)
because the holes are distributed in a way which blocks the field better than the case in
FS-PCF hence the field expands in the holes more. This can be justified by comparing
FS-PCF structure with larger hole (blue dashed line) which has lower ne f f than same
structure with small holes and even lower than AS-PCF. The large holes led to an
increase in the air filling fraction and struts between holes are reduced in size so the
field cannot expand freely in the material. The field expands in holes and interaction
with air increases. A general remark on Figure (3.28) is the change in ne f f is small
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at lower wavelength and increases at higher wavelengths as the field expands with
increase in wavelength.

Fig. 3.28 Comparison of the change in ne f f with wavelength. The structures parameters
are: ES-PCF has Narms = 6, Nrings = 3, d/Λ = 0.6 and θ = 30o; AS-PCF has Nholes =
18, d/Λ = 0.6, b = 0.3 and θ = 65o; FS-PCF has Nholes = 18, θ = 30o and d/Λ = 0.6
and 1.2. All structures have Λ = 2µm.

The asymmetry of the core leads to different propagation constants for the two fun-
damental modes. The result is two modes with different ne f f values. The difference
between those values is the birefringence and it is shown in Figure (3.29) for three
structures. The fourth structure (ES-PCF) has symmetric core and the two modes are
alike. The birefringence of AS-PCF is higher than FS-PCF with holes of similar size
but the birefringence increases when hole size increased for FS-PCF. The reason is that
at larger hole size the field is affected more by the holes where core size is reduced and
the struts between holes are shrunk (see Figure (3.27)). The smaller core leads to more
interaction of the field with the asymmetric core hence higher birefringence. If the core
size is very large compared to the wavelength of operation then the asymmetry of the
core does not have huge impact on the birefringence. The field is expanded in the core
freely and the interaction between field and the core edges is small. The shrinking in
size of the struts forces the field to interact with holes instead of expanding through
large struts. The increase in the holes in AS-PCF would not increase the birefringence
sufficiently due to two reasons. The first one is the holes cannot be made as large as
in the FS-PCF because the distance between holes is smaller (see Figure (3.27)), and
second reason is the increase of the holes in AS-PCF has small effect on the shape of
the core due to the distribution of the holes. To sum up, the best birefringence obtained
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in spiral PCFs is 1.6×10−2 at 1.55µm in FS-PCF [238] to the best knowledge of the
author.

Fig. 3.29 Comparison of the change in Birefringence with wavelength. The structures
parameters are: AS-PCF has Nholes = 18, d/Λ = 0.6, b = 0.3 and θ = 65o; FS-PCF
has Nholes = 18, θ = 30o and d/Λ = 0.6 and 1.2. All structures have Λ = 2µm.

The field in the ES-PCF is well confined because holes are packed together and there
is not enough spaces between holes for the field to expand. Therefore, ES-PCF has
lowest Ae f f among the four designs as shown in Figure (3.30).

Fig. 3.30 Comparison of the change in Ae f f with wavelength. The structures parameters
are: ES-PCF has Narms = 6, Nrings = 3, d/Λ = 0.6 and θ = 30o; AS-PCF has Nholes =
18, d/Λ = 0.6, b = 0.3 and θ = 65o; FS-PCF has Nholes = 18, θ = 30o and d/Λ = 0.6
and 1.2. All structures have Λ = 2µm.

The value of Ae f f in the entire range is lower than 5µm2. The values of Ae f f are
ranging from 12−20µm2 for AS-PCF and for FS-PCF values are higher than 23µm2
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at lower wavelength and increase to reach up to 28µm2. The increase of the holes size
in FS-PCF leads to a reduction in Ae f f values to less than half. These value of Ae f f

will reflect on the non-linearity; ES-PCF design is thus more favorable for non-linear
effects than AS-PCF and FS-PCF.
The non-linearity plots of the four structures are shown in Figure (3.31). The color and
style of the lines are kept similar to ne f f figure for each structure. The curves sequence
is reversed where the highest in Ae f f graph is the lowest in γ graph and this is because
the relation is inverse between Ae f f and γ as mentioned in Section (1.3.4). The value
of γ of ES-PCF is more than twice the value of γ for the other spiral PCFs.
The conclusion from the graphs of Ae f f and γ is that ES-PCF is the best design suited
for non-linear effects. Other spiral structures have lower γ even with holes double the
size. The AS-PCF outperforms FS-PCF with similar holes size.

Fig. 3.31 Comparison of the change in γ with wavelength. The structures parameters are:
ES-PCF has Narms = 6, Nrings = 3, d/Λ = 0.6 and θ = 30o; AS-PCF has Nholes = 18,
d/Λ = 0.6, b = 0.3 and θ = 65o; FS-PCF has Nholes = 18, θ = 30o and d/Λ = 0.6 and
1.2. All structures have Λ = 2µm.

The last property compared in this section is the loss of the structures. This is shown as
a function of wavelength in Figure (3.32). Although the ES-PCF curve shows a steep
change, it still has the lowest loss in the wavelengths below 1.6µm with a value of less
than 20dB/m. The loss at lower wavelength for both AS-PCF and FS-PCF have values
larger than ES-PCF of 5 order of magnitude. The large holes FS-PCF structure has loss
lower than AS-PCF and FS-PCF with small holes.
The general results of the spirals are concluded in this section. From these results
we can conclude that three spirals have different behavior and offer advantages for
different applications. For example, for large birefringence for sensing, gyroscope etc
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Fig. 3.32 Comparison of the change in loss with wavelength. The structures parameters
are: ES-PCF has Narms = 6, Nrings = 3, d/Λ = 0.6 and θ = 30o; AS-PCF has Nholes =
18, d/Λ = 0.6, b = 0.3 and θ = 65o; FS-PCF has Nholes = 18, θ = 30o and d/Λ = 0.6
and 1.2. All structures have Λ = 2µm.

the FS-PCF is more suitable, while for non-linear applications the ES-PCF is the best
design as it confines the field the most. In the next section the ES-PCF is revisited to
study the effect of changing the parameters for two different pitch sizes. The pitch size
plays an important role in the properties of the fiber and two values of Λ are chosen to
compare the difference.

3.9 Results of Ideal ES-PCF

The optical performance of PCF with different spiral have been discussed and results
presented for various parameters variation in the previous sections. In this section the
ES-PCF is revisited to provide an in depth evaluation of the variation of the parameters
over the transparency wavelength window of the silica material, to study the effect of
dispersion and how can it be controlled. The term ideal refers to the unmodified spiral
as the topic of next chapter is the Steiner ES-PCF which is a modification of ES-PCF.
The structures studied in this section are 6, 7 and 8 arms structures with varying Nrings

and d/Λ. The angle is fixed at θ = π/Narms for all structures such that even numbered
holes are in the middle of two preceding odd holes. The odd numbered holes lie on
the same angle position as the preceding odd hole of the adjacent arm. The optical
properties are obtained for the wavelength range 0.6 to 1.9µm. There are two case
studies in this section with the first being for Λ greater than the wavelength of operation.
The second case is for Λ being comparable with the wavelength of operation.
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Figure (3.33) shows the distribution of air-holes in the ES, which has 7 arms. Each arm
has 4 holes, which form a single ES with a radius of Λ and an angular increment of θ

degrees. The holes have a diameter of d. The use of dotted lines is only to clarify the
direction of growth of the arms and the distribution of holes among the arms.

Fig. 3.33 Air-hole arrangements in ES-PCF (7 arms & θ = 30o)

3.9.1 Large pitch scenario (Λ = 4µm)

The study in this scenario is concerned with a large pitch value (hence large core) so
the light is well confined in the core and has less interaction with outer holes. This is
proven by the study by changing number of rings and comparing the optical properties.
Three 7 arm structures with identical parameters and varying number of rings of values
3, 4 and 5 rings have been considered for the comparison. It has been observed that
there is no change in ne f f and Ae f f with varying Nrings through the entire wavelength
range, as shown in Figures (3.34) and (3.35), respectively. A similar study was carried
out for two 8 arm structures with 3 and 4 rings (graphs not included here). This study
also showed no change in ne f f and Ae f f . The latter study serves to confirm the outcome
observed in the former case. The observation obtained from the two studies of varying
Nrings is that when Nrings > 3 the increase in number of rings can be neglected if the
size of the core is larger than the wavelength of operation.



3.9 Results of Ideal ES-PCF 124

Fig. 3.34 Study the effect of varying Nrings on ne f f for ES-PCF with 7 arms, d/Λ= 0.42,
Λ = 4µm and θ = 30o

Fig. 3.35 Study the effect of varying Nrings on Ae f f for ES-PCF with 7 arms, d/Λ =
0.42, Λ = 4µm and θ = 30o

The study of varying the ratio d/Λ has shown that this ratio has impacted on optical
properties. The difference in the Ae f f values, for structures with different d/Λ ratios,
is almost constant through out the entire wavelength range of study, see Figure (3.36).
The smaller the ratio the larger the Ae f f , and this is what is expected as hole size is
smaller hence the field is less confined and spreads more. Also the core size depends
on Λ and d as noted in the previous sections. The smaller value of d leads to smaller
d/Λ and larger core size. The field would spread in the core and Ae f f will increase.
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Fig. 3.36 Study the effect of varying the ratio d/Λ on Ae f f for ES-PCF with 7 arms, 4
rings, Λ = 4µm and θ = 30o.

On the other hand, the change in ne f f is small at lower wavelengths and the difference
increases with increasing wavelength as shown in Figure (3.37). This change is due to
field interaction with air in the holes at higher wavelengths. The field spreads more
as wavelength is increased and interacts with holes more leading to different ne f f for
different value of d/Λ. The larger the ratio the smaller ne f f is.

Fig. 3.37 Study the effect of varying the ratio d/Λ on ne f f for ES-PCF with 7 arms, 4
rings, Λ = 4µm and θ = 30o.
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The variation of arms leads to similar behavior to varying d/Λ as both lead to a change
in the air filling fraction of the cladding region, and hence to a change in the cladding
effective refractive index. However, the change in arms has small effect on ne f f even at
higher wavelengths as can be seen from Figure (3.38). The reason behind this is the
change in air filling ratio is somehow limited for Narms to small variation which leads
to small change in ne f f . For example if number of arms is varied from 6 to 7 the air
filling ratio is increased by a factor of 1/6. The limiting factor is that the number of
arms in practical designs should be in the range of 5 to 8 arms as mentioned in Section
(3.3.1). On the other hand, the ratio d/Λ can be varied more freely from small to closer
to the maximum value possible. Moreover, the change of Narms leads to change in
the hole distribution; hence the properties will be altered by the change in air filling
fraction and the position of the holes at the same time. In the case of varying d/Λ only
the air filling fraction is changed which makes it practical to control field profile.

Fig. 3.38 Study the effect of varying the number of arms on ne f f for ES-PCF with 4
rings, ratio of 0.4 and 0.38, Λ = 4µm and θ = 30o.

From Figure (3.38), varying of arms from 7 (blue dashed lines) to 8 (red dashed lines)
with identical d/Λ = 0.38 leads to an increase of one seventh (0.1430) in the air filling
fraction, where varying d/Λ from 0.38 to 0.4 for 7 arms structure leads to an increase
of (0.053) in the air filling fraction. The change when varying the number of arms
is higher due to increase in the air filling fraction, which is three times more, but the
structures of 7 arms with d/Λ = 0.4 and 8 arms with d/Λ = 0.38 have very close
values which agree with the discussion that the number of arms has less effect.
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There is another observation to point out. When varying the number of arms from 6 to
7, with d/Λ = 0.4 (solid lines), the change in ne f f is slightly higher than when varying
arms from 7 to 8 with d/Λ = 0.38 (dashed lines) as can be seen from Figure (3.38).
The reason is the air filling fraction increases more in the former case due to change
of arms in the former case led to an increase in the air filling fraction by 1/6 of its
initial value and in the latter case the increase is 1/7 of the initial value, where larger
change leads to effect the properties of the field more. Moreover, the added holes in the
former case are bigger as the ratio d/Λ is larger so more air is introduced. Therefore
the change in the percentage of the air filling fraction is larger when varying Narms

from 6 to 7.

Fig. 3.39 Study the effect of varying the number of arms on Ae f f for ES-PCF with 4
rings, ratio of 0.4 and 0.38, Λ = 4µm and θ = 30o.

The result of Ae f f for a similar study of d/Λ = 0.38 and 0.4 ratio is shown in Figure
(3.39). The change in Ae f f is of more than 1µm for an addition of one arm to the
structure with similar hole size. The effective area decreases as Narms increases for the
entire wavelength range. This behavior holds for different ratios, and the reason is that
the holes close to the center will increase by one in each ring which leads to better
confinement of the field. In the case of changing from 6 to 7 arms with d/Λ = 0.4 (solid
lines Figure (3.39)) the change in the value of Ae f f is larger then when changing from
7 to 8 arms with d/Λ = 0.38 (dashed lines). The reason is that the ratio d/Λ is higher
then the added holes of the arm will increase the air filling fraction more and the field
will be influenced further and the reason discussed above. The other thing is to compare
change in Ae f f between 6 to 7 arms (solid lines) and between the two 7 arms curves.
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The difference when varying the number of arms is larger, and in this case follows the
ratio of change in the air filling fraction. The change in d/Λ value leads to an increment
in air filling fraction of 0.053 and the change in Narms leads to an increment of 0.143
which is roughly three times the increment by changing d/Λ. From Figure (3.39) it is
obvious that the change between 6 and 7 arms with d/Λ = 0.4 is roughly three times
the change between the two 7 arms structures. Therefore, the change in Ae f f follows
the ratio of change in the air filling fraction but the ne f f responds differently.
The most important point of this study is to focus on one property at a time when
optimizing a structure for a specific application as changing more than one parameter at
once would have an unexpected behavior and properties cannot be controlled smoothly.
To conclude this section, the control of the dispersion in a large Λ design is limited as
the effect of varying other parameters has small effect on ne f f which is not adequate
to manage the dispersion as required. The second issue is that the core size is large;
as Ae f f is related to the square root of the field radius, a small increase in the core
diameter leads to significant increase in Ae f f . The pitch size used in SCG, to the best
knowledge of the author, is in the range of less than 2µm down to a sub micron [13, 48].
In general values of Λ should be comparable with the operating wavelength for light to
interact with the microstructure of the cladding. In the next section a study of small Λ is
carried out to investigate the effect of dimensional parameters on the optical properties.

3.9.2 Small pitch scenario (Λ = 1µm)

The study of large pitch has been discussed and the effect on the optical properties are
explained in Section (3.9.1). In this part the study of designs with small pitch sizes,
comparable to the wavelength of operation, is carried out and the effect of variation
of other parameters on the optical properties is explained. A comparison between
the behavior of the large and small pitch designs is also presented. The study is for
structures with 6, 7 and 8 arms, with varying parameters as in the previous case of large
pitch.
The change of number of rings has shown similar behavior to the case when the
pitch size is large. The different structures at lower wavelengths show no change in
ne f f for structures with different Nrings below a wavelength of 1.4µm and Ae f f for
wavelengths below 1.2µm (see Figures (3.40) and (3.41), respectively). However, at
higher wavelengths Nrings has an effect on optical properties which is due to the fact
that the field expands out of the core and interacts with holes in outer rings. This
happens due to the wavelength of operation being larger than the pitch and the field is
not well confined in the core.
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Fig. 3.40 Study the effect of varying the number of rings on ne f f for ES-PCF with 7
arms, ratio of 0.42, Λ = 1µm and θ = 30o.

Fig. 3.41 Study the effect of varying the number of rings on Ae f f for ES-PCF with 7
arms, ratio of 0.42, Λ = 1µm and θ = 30o

The behavior at higher wavelengths is completely different to what is expected; the
higher number of rings structure has a higher Ae f f . From a physical point of view, the
field should be more confined with more rings in the cladding for otherwise identical
(same value of Narms, Λ and d/Λ) structures. The reason for this unexpected behavior is
that the size of simulation window is taken to be dependent on the size of the structure.
Therefore, the 3 rings window is smaller than the 5 rings window structure which
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limits the expansion of the field more which is a non-physical effect and hence the
results obtained for Λ above 1.2µm are not accurate. The structure with 5 rings can
guide light as the field is expanding rapidly which indicates the field is far enough from
the edges of the simulation window. This can be overcome by increasing the size of
the simulation window at values of Λ that are comparably similar or smaller than the
wavelength of operation.
The study on the comparison of changing the number of rings has shown unexpected
behavior in the change of Ae f f as discussed above. This is important in the explanation
of other results which do not show a clear sign of this unexpected behavior. The
example of this is when studying the variation of d/Λ where the change in ne f f shows a
normal change (see Figure (3.42)). The higher the value of d/Λ the lower the effective
index of the mode and this is due to more interaction with air as the holes are larger.

Fig. 3.42 Study the effect of varying the ratio d/Λ on ne f f for ES-PCF with 6 arms, 3
rings, Λ = 1µm and θ = 30o.

However, from Ae f f curves shown in Figure (3.43) indicate that there is an error in the
results. The three curves where d/Λ > 0.3 are increasing slowly at lower wavelengths
and then the change increases and this is what is expected as the field expands out of
the core and approaches the cut-off. The change in the curve for d/Λ = 0.3 is linear
with trend similar to former curves at higher wavelengths. This is because the field
expands outside the core even at lower wavelength region. The upper two curves with
smallest d/Λ show sharp changes then the change decreases and both curves get closer
at higher wavelengths. The reason behind this behavior is similar to what is explained
above where the field is limited by the simulation window and the field is supposed
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to be poorly guided/confined. The simulation window should be large enough that
the field when expands in the cladding region it does not reach the boarders of the
window as this limits the expansion of the field. The window size should be chosen
large enough for the field to expand freely in the cladding.

Fig. 3.43 Study the effect of varying the ratio d/Λ on Ae f f for ES-PCF with 6 arms, 3
rings, Λ = 1µm and θ = 30o.

Fig. 3.44 Study the effect of varying the number of arms on ne f f for ES-PCF with
d/Λ = 0.34, 3 rings, Λ = 1µm and θ = 30o.
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The change of number of arms shows a similar behavior to the case of large Λ scenario.
The change in ne f f between structures with different arms is small at lower wavelengths
and increases with increasing wavelength as shown in Figure (3.44). The field expands
more at higher wavelengths and the field interaction with air in the holes increases
more for higher number of arms as more holes are close to the core (first ring), also the
holes in following rings are closer to the core as the angle is arm dependent. The angle
θ increases as the parameter Narms is reduced leading to holes being located farther
from the core.
Similarly for Ae f f curves the difference between different arms structures is larger at
higher wavelengths as shown in Figure (3.45). At 1550nm the Ae f f decreases from
≈ 4µm2 for the 6 arm design to ≈ 2.7µm2 for the 7 arm and to ≈ 2.3µm2 for the 8
arm structure. The smaller Narms has higher Ae f f as the field expands more because the
air filling fraction is less and the field is less well confined.

Fig. 3.45 Study the effect of varying the number of arms on Ae f f for ES-PCF with
d/Λ = 0.34, 3 rings, Λ = 1µm and θ = 30o.

The final study for the ideal ES-PCF is the comparison of Λ for both scenarios as
shown in Figures (3.46) and (3.47)). The difference in ne f f is very small for large Λ

and also the change in ne f f with varying wavelength is small compared for small Λ.
The difference increases with increase in wavelength for Λ = 1 which is a result of the
field expanding outside the core when the wavelength is comparable to the core size.
Figure (3.47) shows that Ae f f is almost constant at high Λ with a slight increase at
higher wavelengths. The field is well confined in the core and change in Ae f f is
linear with varying wavelength. On the other hand, at small Λ the difference between



3.9 Results of Ideal ES-PCF 133

Fig. 3.46 Study the effect of varying Λ on ne f f for ES-PCF with d/Λ = 0.4, 4 rings,
Λ = 1 and 4µm and θ = 30o.

Fig. 3.47 Study the effect of varying Λ on Ae f f for ES-PCF with d/Λ = 0.4, 4 rings,
Λ = 1 and 4µm and θ = 30o.

structures with different Narms is small at lower wavelengths and then increases rapidly
as shown in Figures (3.47). The curve of the 6 arm structure (dashed black line)
indicates that the field is expanding far beyond the core, where Ae f f reaches values
greater than the area of the core which is πR2

c = 2µm2, where Rc = Λ− (d/2). The
field of the 6 arm structure is reaching cut-off at wavelength close to 1.2µm and
expands rapidly from ≈ 3µm2 up to ≈ 9µm2 at wavelength 1.9µm. The field of the 7
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arm structure is not expanding out of the core and remains well confined. The 7 arm
structure has higher air filling fraction due to two facts; in every ring there is an extra
hole thus the total number of holes in the structure is higher by a value equals to Nrings.
The second factor is that the holes of the second and consecutive rings are closer to the
core and to each other than their counterpart in the 6 arm structure where the angle θ is
Narms dependent. The angle θ decreases as the Narms is incremented as the value of θ

is set to be equal π/Narms as discussed before.
To conclude this section the dispersion (due to control of ne f f ) is more controllable at
small pitch size, i.e. one which is comparable to the operating wavelength or smaller.
The higher pitch size the field is mainly in the core where varying other parameters
would have unremarkable change on the optical properties. The small pitch is chosen
in this thesis and the results in the next chapter are concentrated on small pitch values.

3.10 Summary

In conclusion, the spiral is a unique shape which is present in nature and applied in man-
made projects and has been adapted to design, simulate and study PCF. The equiangular
spiral is implemented in this work where the formula and the how it is adapted to PCF
is explained with pointing out the limiting factors of maximum air filling fraction. The
advantage over H-PCF is mentioned as the holes in ES-PCF can be packed together
more effectively or laid far apart from each other, unlike the H-PCF where the position
of the holes are fixed. The design parameters of ES-PCF are investigated to study their
effects on the properties of the modal field. The number of arms which leads to more
confinement as Narms is increased and lower losses, similar behavior is observed if the
number of holes is increased. The hole size and the ratio d/Λ are related as for a given
pitch size if hole size is increased the ratio increases and the field gets more confined,
and the effective index decreases as the effective cladding region index decreases due
to increase in air filling fraction. The angle between successive holes is more critical
as the hole distribution mainly depends on combination of Narms and θ . The optimum
value of the angle θ for high confinement is to be equal or very close to π/Narms. Last
and not the least is the b parameter which is fixed to the Narms in this study according
to formula shown in the discussion.
The same study carried out was on AS-PCF and FS-PCF, and for both the mathematical
formulae governing the growth of the curve have been discussed along with the limiting
factors. The parameters have been studied individually to understand the effect of each
one. There are common parameters that lead to similar effects in all three spirals, which
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are pitch and hole size. The number of holes does not have huge impact if the number
is sufficiently large. The hole radius has opposite effect to pitch size as both control the
core size and space between holes.
Furthermore, the most important fact to mention is that the field interaction with the
holes is weak at large values of Λ and this is good for some applications such as
high power lasers and power delivery. In contrast, the focus of this thesis is about
the small pitch size (Λ size is compatible with the operating wavelength) scenario
where the field interacts strongly with the holes. In this case the dispersion property is
significantly manipulated which is required for our goal of generating broadband SCG.
For non-linear effects like SCG a small core size (to enhance the non-linear effects)
is needed and with a smaller pitch size this is easier to achieve. However, in the ideal
spiral design the field expands outside the core at small Λ values and results in poorly
guided mode and high losses. This effect is overcome by the Steiner design as the
holes in the third ring are large enough to stop the field from expanding too far from
the core. This advantage and the feasibility of the fabrication of Steiner design using
stack and draw (SaD) is what makes the Steiner design superior to ideal equiangular
spiral designs. The Steiner design was invented to allow adapting the SaD to make the
spiral PCF. In the next Chapter the Steiner ES-PCF published results [225, 239] and
fabrication procedure [240] are presented. There is a discussion on the comparison
between the Steiner and the ideal spiral designs which have similar dimensions to
compare the difference in optical properties.



Chapter 4

Steiner ES-PCF Design

The spirals (equiangular, Archimedean and Fermat’s spirals) have been introduced
in the previous chapter and their implementation in Photonic Crystal Fiber (PCF)
is discussed with the limitation of the physical dimensional factors. The result of
varying different parameters have been explained for the three PCF spirals: equiangular,
Archimedean and Fermat’s spirals with comparison on their shared parameters. The
former spiral is the focus of this thesis and in depth results of Equiangular Spiral
Photonic Crystal Fiber (ES-PCF) were presented at the end of previous chapter.
The fabrication of the ideal ES-PCF using Stack and Draw (SaD) may not be possible
with current available techniques. Therefore, a manipulation in the structure, which
does have a small affect on the optical properties of the fiber, is proposed to make the
design more practical and can be fabricated and tested experimentally.
This chapter is about the modified structure of ES-PCF (Steiner ES-PCF) design which
is an approximation of the ideal spiral. The chapter starts with introduction of the
Steiner design with an indication to the differences from the ideal spiral design. The
Steiner ES-PCF is simulated to test and observe the effects of the variation of the
structural parameters in similar manner to the studies of the ideal spiral which were
presented in the previous chapter.
The non-linear applications such as all optical switches, light pulse compression,
frequency conversion [241], Raman amplifiers, ultrafast signal processing [39] and
SuperContinuum Generation (SCG) require small effective area (Ae f f ) and low flat
anomalous dispersion. The dispersion can be controlled smoothly in H-PCF in a similar
way to ES-PCF but the latter has smaller Ae f f which is an advantage for non-linear
applications. Even though there are other structures which have smaller Ae f f such Air
Suspended Core (ASC) but a well engineered (flat with low dispersion at the desired
pump wavelength) dispersion profile is not easy to achieve with ASC. Therefore, the
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ES-PCF which combines both advantages is more suitable for non-linear applications.
The focus of this thesis is on implementing ES-PCF for non-linear applications.
Furthermore, the Steiner structure has bigger holes in the third ring thus the field is
confined much more than ideal ES-PCF and Ae f f is smaller. The Steiner ES-PCF is
optimized in this chapter to have low flattened dispersion and small effective area to be
used for generating a wide band SCG. The results of SCG are presented and compared
with published data. Thereafter, a procedure for fabricating the structure is proposed
based on the SaD technique. The fabrication section contains the Steiner Chain concept,
the derivation of the structural parameters and the process of stacking the tubes and
rods. The Steiner structure is derived to make the fabrication of ES-PCF feasible using
SaD technique. Therefore, their optical properties are compared to study the deviation
in the results. The study is carried out using identical dimensional parameters apart
from third hole which differentiate both designs.

4.1 Properties of Steiner ES-PCF

The results of the three different spirals (equiangular, Archimedean and Fermat’s) have
been presented in the previous chapter. All the previous results are for structures made
of silica material with holes filled with air. The material used in the simulation of this
section is soft glass SF57 for which the refractive index is obtained using the formula
shown in Equation (1.34) and Sellmeier coefficients of SF57 material are shown in
Table (4.1). The refractive index as a function of wavelength is shown on Figure (4.1).

Fig. 4.1 Refractive index profile of soft glass SF57 material [242]
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The soft glass SF57 has a large non-linear coefficient which makes this material more
suitable choice for non-linear applications than silica [184]. Furthermore, it is feasible
to fabricate SF57 fibers using different techniques such as extrusion [152, 183] to make
complex structures which are not possible by the SaD technique.

Table 4.1 Sellmeier coefficients of SF57 material [242]

Sellmeier Coefficient 1 2 3
A j 0.0143704198 0.0592801172 121.419942

B j (µm2) 1.81651371 0.428893641 1.07186278

The structure studied in this section is a modified ES-PCF which has larger holes in the
third ring as shown in Figure (4.2). This structure is a modification of the ideal spiral
presented in the previous chapter. There are two assumptions in this structure which
are Nrings is fixed to 3 and the value of θ is fixed to π/Narms. The only difference from
ES-PCF is that the distance of 3rd hole from the center is much larger and these holes
are bigger in size. One of the characteristics of this structure is the maximum size of
the holes in the third ring is reduced as the value of Narms is increased. Actually, for
a given Λ the overall structure size is reduced as Narms increases. The other thing to
notice is the gap between the edges of the holes in the second and third rings. This gap
can be significant if the radius of the holes in the third ring is reduced.

Fig. 4.2 Cross section of Steiner ES-PCF of 7 arm structure

This structure is studied because the fabrication of ideal ES-PCF using a conventional
SaD technique is not possible, therefore a procedure was proposed to fabricate the
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ES-PCF using SaD with some assumptions and modifications to the design as noted
above. The algorithm proposed to fabricate this structure is given in Section (4.3).
Moreover, this design offers better field confinement as mentioned.
The cross section of the ideal and Steiner ES-PCF structures with identical parameter
values apart from holes in third ring which have different position and size are shown
in Figure (4.3). The two structures shown in the figure have 7 arms, 3 rings, d/Λ = 0.4
and Λ = 3µm.

Fig. 4.3 Cross sections of Steiner (left) and ideal (right) ES-PCF of a structures with 7
arms, 3 rings, d/Λ = 0.4 and Λ = 3µm

In this section the results of the Steiner design are presented and at the end of the
chapter a comparison between ideal and Steiner designs is given. The studies in this
section are sorted in accordance to the optical properties rather than the dimensional
parameters. The effective index is studied first then dispersion which is mainly related
to ne f f . Then both properties Ae f f and γ are studied together as they are related. In the
studies the parameters are varied to observe their effect and estimate the value range
for the final studies. At the end of the section a comparison of the results with other
PCF is given.

4.1.1 Study of the effective refractive index

The first optical property studied is ne f f and curves for different designs are represented
with explanation on the change and relate it to the structure design. The first parameter
that is varied is Narms to observe its effect on ne f f . The results are for two structures
with different Λ similar to the comparison of Section (3.9) where small and large pitch
size structures were simulated. The structures with the large pitch are discussed first
and the results are shown in Figure (4.4). There is not a significant change in ne f f

as Narms is varied. Actually, at lower wavelengths they are almost identical while
the change occurs at higher wavelengths. The change is small which would not have
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an impact on other properties such as dispersion. The reason is that the field is well
confined in the core and interaction with holes even in first ring is small.

Fig. 4.4 Study the effect of varying Narms on ne f f for Steiner ES-PCF with d/Λ = 0.4
and Λ = 3µm in soft glass SF57.

The pitch size of 1µm has more affect as the field interacts with holes and the refractive
index decreases with increase in air filling fraction which results from having more
arms present in the structure, see Figure (4.5). At lower wavelengths the difference in
ne f f is small as the field is not expanding into the cladding due to the wavelength being
smaller than the core size. At higher wavelengths the field profile spreads more into
the holes leading to a bigger difference in ne f f values for the different Narms structures.
The effect of the variation of Narms on dispersion is discussed in the next section.
The above discussion has proven that the pitch size can have detrimental effect on the
optical properties. Therefore, a study of the effect of Λ is performed and results of
ne f f are presented in Figure (4.6). It is clear that the ne f f decreases with increase in λ .
However, the change is small when the core size is larger than wavelength of operation
(black and dark-green lines). When the size of the core decreased to be compatible
with the operating wavelength or smaller then the change can be significant (blue line).
The core size or Λ has to be small when interaction of the field with holes is required
to change the dispersion and also for small Ae f f values, which are the most important
factors in this thesis as the main objective of this work are to optimize a structure with
flat low dispersion in the anomalous region and small Ae f f for SCG. The optimized
design for SCG has been obtained and results for this design are discussed in Section
(4.2.2).
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Fig. 4.5 Study the effect of varying Narms on ne f f for Steiner ES-PCF with d/Λ = 0.4
and Λ = 1µm in soft glass SF57.

Fig. 4.6 Study the effect of varying Λ on ne f f for Steiner ES-PCF with d/Λ = 0.4 and
Narms = 6 in soft glass SF57.

The pitch size is varied in two structures with a different number of arms and the results
are shown in Figure (4.7). The solid lines show results for 6 arms structures with
Λ = 3µm and dashed lines show result for structures of 7 arms with Λ = 1µm. The
former shows small change even at higher wavelengths, where as the latter case the
change is large and increases with increasing wavelength. However, both sets share a
similarity in terms of that the ne f f decreases with increase in d/Λ because air filling
fraction increases and field interacts with more air.
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Fig. 4.7 Study the effect of varying d/Λ on Ae f f for two ES-PCF designs with Λ = 1
and 3µm, and Narms = 6 (solid lines) and 7 arms (dotted lines), in soft glass SF57.

The slope of the change in the refractive index with respect to wavelength is an
important property of optical fibers which is dispersion. It is discussed in the next
section with reference to ne f f in the explanation.

4.1.2 Study of the dispersion

Dispersion has been studied extensively since the emergence of optical fibers due to
its impact on signals traveling in fibers. However, the dispersion can be implemented
in positive ways in non-linear applications to enhance the effect of these phenomena.
This section is dedicated to study dispersion due to its importance. The dispersion
calculated in this work is carried by using Equation (1.14) where n = ne f f .
The dispersion results presented are for small Λ structures because in the case of large
Λ the variation of parameters does not have a noticeable impact on the dispersion. The
dispersion results at small Λ = 1µm are presented in this section, varying different
parameters. The change in dispersion with respect to Narms is shown in Figure (4.8). The
dispersion at lower wavelengths does not change much with an increase in Narms, but at
wavelengths above 1µm the dispersion increases as the number of arms is incremented.
The 6 arms curve has a negative dispersion value at all wavelengths which is the normal
dispersion region. In contrast, the other two have positive dispersion value which is the
anomalous dispersion region and this is the region of interest for non-linear applications.
Therefore, the change of Narms leads to shifting the curve up if Narms is incremented
and down if decremented. The other important point is the zero crossing of the curve
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or ZDW which is the point where the curve changes sign. The effect of moving the
curve up or down affects the ZDW; if the curve is shifted up (Narms incremented) then
the ZDW is blue shifted towards shorter wavelengths and vice versa.

Fig. 4.8 Study the effect of varying Narms on dispersion for ES-PCF design with
Λ = 1µm and d/Λ = 0.4 in soft glass SF57.

A wavelength close to the ZDW is typically chosen for the pump wavelength with
which to excite non-linear effects. The pump sources are available only at specific
wavelengths hence a shift of ZDW is important where a suitable pump is not available
at the ZDW. The dispersion of the ES-PCF can be designed to have suitable slope and
ZDWs by varying the structural parameters such as Narms, Nrings, Λ, d/Λ and θ , whilst
maintaining Ae f f to be small enough to enhance non-linear interactions for SCG. The
last thing to mention is the slope of the curve in the anomalous region. The curve is
preferred to be flat so the value of the slope should be very small or zero.
The next parameter that is investigated is the pitch size which is very important due to
the fact that at large values of Λ the dispersion does not change much with the variation
of the other parameters. The dispersion of designs with core size larger than wavelength
of operation (Figure (4.9) black and dark green lines ) have a similar curve shape to the
material dispersion where curves are slight blue shifted when Λ is decreased. This trend
in the dispersion curve changes at values when the core is comparable to operating
wavelength or smaller, hence the light spreads into cladding region. Then the curve
of dispersion differs from the material dispersion curve and the difference starts to
increase as Λ is decreased. The behavior of such designs is shown in Figure (4.9) where
Λ = 1µm (blue line). The behavior can be understood from the curves of the ne f f of
the same structure, which is shown in Figure (4.6). The change in ne f f with smaller
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Λ is steep leading to significant change in dispersion. The best way to optimize the
dispersion of a structure for any application is to find the right pitch size then play with
the other parameters to smoothen the curve.

Fig. 4.9 Study the effect of varying Λ on dispersion for ES-PCF design with Narms = 6
and d/Λ = 0.4 in soft glass SF57.

Another parameter which is important is the ratio d/Λ which is crucial in terms of
defining the air filling fraction. The change in dispersion of a 7 arms structures with
reference to d/Λ is shown in Figure (4.10).

Fig. 4.10 Study the effect of varying d/Λ on dispersion for ES-PCF design with
Narms = 7 and Λ = 1µm in soft glass SF57.
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The change of dispersion increases as d/Λ is increased because the field is influenced
by the air in the surrounding. The curves of d/Λ > 3 have a convex shape which is of
interest in terms of the flatness of the dispersion and in obtaining two ZDWs. The two
ZDWs can possibly be shifted near the available pump wavelengths and two sources
can be used to excite the non-linear effects. This improves the effect of SCG and also
each pump can be used individually which gives the fiber three different SCG spectra.
However, the shift of the ZDW to two specific wavelengths requires the adjustment of
other parameters.
The change in ne f f is important because even a small change can manipulate dispersion
significantly. Therefore, other parameters are varied in this section which are diameters
of first (d1) and second (d2) rings. In this case only the hole sizes in one ring are varied
at a time, either in the first or second ring. The hole size in the first ring is varied and
results are shown in Figure (4.11a) and explained. Then the same steps are followed to
study the effect of varying the diameter of second ring holes.

(a)

(b)

Fig. 4.11 (a) Study the effect of varying d1 on dispersion for ES-PCF design with
Narms = 7, d/Λ = 0.5 and Λ = 1µm in soft glass SF57, and (b) schematic of d1 and d2
the diameters of holes in first and second rings, respectively.

The dispersion does not change much by varying the size of holes in the first ring. The
dispersion increases as the hole size increases and at larger wavelengths the curves
are very similar with little difference between them. This may be as a result of the
field expanding beyond the first ring and reaching other rings. The field in structures
with smaller first ring holes expands more and hence interacts more with outer holes.
The dispersion curve of structure with biggest holes (dark green solid line) tends to go
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down towards zero at the higher wavelength end. On the other hand, the dispersion of
the other curves (blue and black solid lines) are increasing thus would have a higher
values beyond the higher wavelength end in the graph. The effective refractive index is
shown in the same graph. Its behavior is similar to what is expected: as the hole size
increases ne f f decreases and that is very clear from the graph (Figure (4.11a)).
The holes in the first ring have been investigated and the change in dispersion was
small. In the study of varying hole size in the second ring the change in dispersion is
small as well but the effect is more pronounced at the higher end of the wavelength
range (Figure (4.12)).

Fig. 4.12 Study the effect of varying d2 on dispersion for ES-PCF design with Narms = 7,
d/Λ = 0.5 and Λ = 1µm in soft glass SF57.

The various parameters have sufficient control of dispersion but some applications may
require more flat dispersion. There is a parameter which has not been discussed in
previous sections. This is dc (diameter of central hole) so in this further study a hole
is introduced in the center of the structure and its effect is examined. The hole in the
center of the structure has been implemented in simulation of ES-PCF in soft glass
SF57 to flatten the dispersion for SCG [184]. The hole size is related to the Λ in a
similar way to the holes in the first and second rings. The first step is to chose a fixed
ratio for the central hole and vary Λ. The ratio of dc/Λ = 0.2 is taken and the results
of varying Λ are shown in Figure (4.13). The effect of varying Λ is similar to before
where at large values of Λ the dispersion curve is very close to material dispersion.
Furthermore, the ne f f is not changing much but at small pitch size the field interacts
with hole and expands out of the core. The dispersion of the structure with small pitch
is decreasing and diverting from the material dispersion at higher wavelengths.
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Fig. 4.13 Study the effect of varying Λ on dispersion for ES-PCF design with Narms = 6,
d/Λ = 0.4 and dc/Λ = 0.2 in soft glass SF57.

The second scenario is when Λ is a small value (1µm) comparable with wavelength of
operation. The study is concerned with varying size of the hole in the center to obtain
the effect of this hole. The results of dispersion and ne f f are shown in Figure (4.14) for
three different structures with dc/Λ = 0.1, 0.2 and 0.3. The structure with the smallest
hole in the center has the highest dispersion values at wavelengths longer than 0.9µm.
At the lower wavelength region the dispersion curves have similar values because the
slopes in the curves are large and the other reason is that the values of dispersion are
very large at lower wavelengths, therefore a small change can not be noticed. The
dispersion decreases as the hole in the center increased with larger increase in the
middle of the wavelength range shown and at higher wavelength the difference in the
change is reduced due to the field expanding and the effect of the holes in the rings start
to dominate on the dispersion and the hole in the center has less effect. The change in
ne f f is smooth and agrees with the discussion given on dispersion and ne f f decreases
with increase in the central hole. The central hole can be utilized to flatten dispersion
further only if the curve is smooth and close to the desirable values because the central
hole cannot be used to change dispersion significantly.
To sum up the dispersion is controlled flexibly at small Λ value. This parameter is
the first to vary to find and fix a suitable value. The number of arms shifts the curve
up which means increases the dispersion so for a dispersion curve below the zero can
be shifted by increase number of arms to have anomalous dispersion (Figure (4.8)).
The ratio d/Λ has similar effect to Narms for d/Λ > 3. A good design procedure is
to choose Narms then use the ratio d/Λ to alter the dispersion. The holes in the first
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Fig. 4.14 Study the effect of varying dc on dispersion for ES-PCF design with Narms = 6,
d/Λ = 0.4 and Λ = 1µm in soft glass SF57.

ring should be varied individually to flatten and shift the dispersion. The shift and
flattening of the dispersion can be done by the varying of holes in first and/or second
rings. Moreover, a hole in the center can be introduced to flatten the dispersion further
if required. However, the change in dispersion by the variation of any parameter is
mostly dependent on the field interaction with the parameter. The best way to optimize
dispersion is to run simulations with various parameters and adjusting these to obtain
the desired profile.
This study has clarified that each parameter has an impact on the dispersion if that
parameter falls in the spatial range of the modal field to have interaction with it. All
parameters have to be selected to control the dispersion to be flat and anomalous over a
wide wavelength range with a ZDW near the pump. The first parameter to be fixed is Λ

as it is the most important one and if it is chosen to be large the other parameters would
not have a noticeable impact on the dispersion. After suitable values of Λ have been
determined, the size of holes can be used to adjust the dispersion curves. Similar steps
have been followed to obtain low and flat dispersion for a wide wavelength range with
three ZDW in a tellurite based Steiner ES-PCF. The results of this design are discussed
in Section (4.2).

4.1.3 Study of the non-linearity and effective area

In the previous sections the effect of varying the Steiner ES-PCF parameters on optical
properties have been discussed. The dispersion and ne f f changes were explained
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and linked to the interaction of the field profile with the micro structure of the fiber.
A general view of the effect of the variation of the different parameters is given to
understand the design process and reduce the simulation for optimizing structure for a
required dispersion profile.
The other parameter to study is the effective area which is important to study the modal
field and also used to calculate other properties such as the effective non-linearity
(γ). Non-linearity relies on Ae f f for a given material at a specific wavelength as
mentioned in Chapter 1. The formula to calculate γ is given in Equation (1.33). In
this section the non-linearity is studied by varying the dimensional parameters of the
structure to observe the effect of the different parameters and how to optimize these
parameters to design the required structure with high γ and low flattened dispersion.
The material used in this study is soft glass SF57 which has a non-linear coefficient of
n2 = 4.1×10−19m2/W [184].
In general the effective non-linearity will always decreases in regard to wavelength
increase. The reason is obvious from the formula used in calculating γ . However,
the main concern is Ae f f which is the only factor that can be enhanced for a given
wavelength. The material parameter n2 is important but it cannot be varied or changed
unless a different material is used.

Fig. 4.15 Study the effect of varying Narms on γ for ES-PCF design with d/Λ = 0.4
and Λ = 1µm in soft glass SF57.

The number of arms leads to increase in γ as Narms increases and this can be explained
in terms of Ae f f . The effective area decreases with increase in Narms due to better
field confinement and the relation between γ and Ae f f is inverse. The curves of γ vs
wavelength for structures with different arms are shown in Figure (4.15). The variation
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between the three structures is not large but still the effect of Narms is noticeable
especially at higher wavelengths where the difference is around one sixth of the value
of γ at that wavelength when Narms is incremented by 1.
The parameter Λ influences γ significantly similar to what is observed in other optical
properties. The designs with small Λ have shown more variation in most properties
discussed. These designs can be useful in exploring uniqueness of PCF where the
interaction of the field with holes can be pronounced and the properties can be tailored
to the desired level. In terms of non-linearity the situation is the same as the decrease in
Λ leads to significant increase in γ as shown in Figure (4.16), where γ value is tripled
when Λ reduces from 3 (dark-green line) to 2µm (black line) and 2 (black line) to 1µm

(blue line), in the lower wavelength region. Even at higher wavelengths the γ value
incremented by a factor of 2.5 for a reduction in Λ value by 1µm. In the design process
it is recommended to vary Λ and find the most appropriate value before changing other
parameters. However, during the study of variation of Λ, other parameters should have
reasonable values that are in the middle of the available ranges. An example is the
hole size should not be set as maximum or minimum size possible as this would limit
the possibilities of using the hole size to control the optical properties. This ideology
should be followed with all parameters that can be varied.

Fig. 4.16 Study the effect of varying Λ on γ for ES-PCF design with Narms = 6 and
d/Λ = 0.4 in soft glass SF57.

The variation of the ratio d/Λ is important as it controls the size of all holes and a
small change would have more impact than changing just the size of holes in one
ring. The change in γ is smooth and follows similar trend when varying d/Λ for a
fixed Λ as shown in Figure (4.17). The relation is directly proportional between γ
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and d/Λ. However, higher values of Λ show very small change in γ with variation of
d/Λ as shown in Figure (4.17) dotted lines. The change is more significant when Λ is
sufficiently small. Even though the field is more confined in the core in the structures
with large Λ than the one with small Λ, the value of γ is higher in the smaller design.
The reason is that γ depends on Ae f f which is smaller for designs with small Λ even
with the field spreading in the cladding region because for large values of Λ the field
expands freely in the core therefore the value of Ae f f is large in comparison to designs
with small Λ.

Fig. 4.17 Study the effect of varying d/Λ on γ for ES-PCF designs with Λ = 1µm
(solid line) and 3µm (dotted line), for Narms = 6 and 7, respectively, in soft glass SF57.

The effect of varying size of the holes in the first two rings was discussed for two sets
with different values of Λ. The case when Λ is small has shown better optical properties
for non-linear applications. The next step is to vary the holes of each ring individually
to tweak the properties of the design. The variation of the holes of the first ring is
investigated and the results are shown in Figure (4.18). The curves of γ (solid lines)
have similar shape which is an indication that the change is following a trend hence the
parameter can be used to control the properties of the fiber sufficiently. However, when
varying size of the holes in the first ring, the change in the non-linearity is not huge. The
change in γ at lower wavelengths is more than at higher wavelengths and the maximum
change is around 25% of its value when the radii of holes in the first ring are doubled
in size. This fact is important in the optimization process where in optimization of the
structure the dispersion property has superiority over γ . The reason is that dispersion
being more sensitive to variation of the parameters and small change may shift the ZDW
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and/or change the sign of the dispersion. Therefore, the non-linearity is considered
when Λ is chosen and then the dispersion has to be optimized.
In Figure (4.18) the corresponding Ae f f of each γ curve are plotted with similar color
(dotted lines). The figure clearly shows that the smaller the effective area the higher is
the non-linearity because as mentioned previously the relationship between effective
area and non-linearity is inverse. In other words, the non-linearity depends on the field
profile and how much it is spreading in the surroundings.

Fig. 4.18 Study the effect of varying d1 on γ for ES-PCF design with 7, d/Λ = 0.5
arms and Λ = 1µm in soft glass SF57.

The other parameter to be investigated is the size of the holes in the second ring. The
diameter of the holes in first ring are kept fixed to 0.5µm and Λ = 1µm. The change
in the size of the holes in the second ring does not lead to any noticeable difference
in γ value and all the curves are almost superimposed on each other. The field does
not expand by varying the size of the holes of the second ring and this can be satisfied
by the variation in Ae f f curves (dashed lines) which is very small as can be noticed
from Figure (4.19). The field is stopped from expanding by the holes of the first ring.
Therefore, the holes in the first ring have the major impact on the optical properties of
the field where change in Ae f f curves is large (see Figure(4.18) dotted lines).
However, the holes in the second ring play an important role in confining the light
because they can be positioned in a way to block the gap between holes of the first ring.
This is the distinguishing characteristic of ES-PCF from the H-PCF. The holes of the
second ring in ES-PCF are positioned closer to the core and at an angle in the middle
between two holes of the first ring. This distance is controlled by the spiral parameter
(b) which is fixed to the number of arms through the relation given by Equation (3.4).
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Fig. 4.19 Study the effect of varying d2 on γ for ES-PCF designs with 7, d/Λ = 0.5
arms and Λ = 1µm in soft glass SF57.

In this discussion, the parameter b is varied to emphasize the effect of the position of
the holes of the second ring. Figure (4.20) show the variation of b for a structure with
Narms = 6, Λ = 1µm and d/Λ = 0.4, at the pump wavelength (1.064µm). The field
expands rapidly in the cladding as b is increased hence Ae f f increases sharply. The
distance of holes of second rings are shifted away from the core when b is increased,
leading to more space between holes and the field can expand easily in the base material
between the holes.

Fig. 4.20 Study the effect of varying spiral parameter b on γ and Ae f f for ES-PCF
designs with 6 arms, d/Λ = 0.4 and Λ = 1µm, at wavelength 1.064µm in soft glass
SF57.



4.1 Properties of Steiner ES-PCF 154

The non-linearity drops down at values of b above 1. The field expanding can be
reduced by increasing the size of the holes in the first two rings but this explanation is
given to point out the effect of the distance between the holes and position from the
center.
Although it is preferable to have large holes in the first ring to increase the non-linearity,
in the design proposed for SCG in Section (4.2.2) the holes in the first ring are made
small to alter the dispersion.
The impact of a new parameter introduced in the last section on the optical properties
is discussed here. The hole in the center can flatten the dispersion as noted but what
effect does it have on Ae f f and γ ? This is explored in this section. Figure (4.21) shows
the result of varying Λ for structures with the hole in the center of a diameter to pitch
ratio dc/Λ = 0.2. The value of Ae f f increased as the pitch increased which indicates
the effect of the hole does not overcome or change the behavior obtained for other
parameters. Similarly from the non-linearity the large Λ has small effect but when
decreasing Λ to dimensions comparable with wavelength of operation the change inγ is
large as can be seen from Figure (4.21) the value of γ is ≈ 3800W−1km−1 for structure
with Λ = 1µm at wavelength 0.6µm where at same wavelength with values of Λ = 3
and 4µm the value of γ < 600W−1km−1.

Fig. 4.21 Study the effect of varying dc on γ for ES-PCF design with 6 arms, d/Λ = 0.4,
and dc/Λ = 0.2 in soft glass SF57.

The effect of the defect hole at the center at small values of Λ is shown in Figure (4.22)
where the defect hole is varied in size and all other parameters are kept fixed. The
curves of Ae f f at wavelengths lower than 1.3µm show opposite behavior to the values
above this wavelength. At higher wavelengths Ae f f increases with increase in dc and
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the increase increases with wavelength (the difference between curves in the graph
is higher at higher wavelengths). At lower wavelengths the opposite is true, where
the structure with smallest dc, (dc/Λ = 0.1), has highest Ae f f values. The behavior
is changing due to at lower wavelengths the field is concentrated in the core and the
properties are mainly effected by the defect hole, if the hole size increases the Ae f f

decreases. However the difference is not large at values of Ae f f when dc/Λ is getting
larger as in case of dc/Λ = 0.2 and 0.3 (blue and dark-green dashed lines). The field is
not well confined at larger values of dc/Λ as the effective refractive index of the core
is reduced hence the refractive index difference between the core and the cladding is
reduced.

Fig. 4.22 Study the effect of varying dc on γ for ES-PCF design with 6 arms, d/Λ = 0.4,
and Λ = 1µm in soft glass SF57.

On the other hand, as the wavelength increases the field expands in the the cladding
and the field gets more effected by the holes in the rings so the effect of the hole in the
center has less effect on the over all properties.
The non-linearity is similar to the Ae f f as it has different behavior at values above
and under 1.3µm. The non-linearity is lower for structure with smaller dc/Λ at lower
wavelength side, and at higher wavelengths the non-linearity is lower for structures
with larger dc/Λ for the same reason discussed in the Ae f f discussion.
The study of the effect of varying the parameters of the Steiner structure on the optical
properties of the interest in this thesis are discussed in the previous sections. The study
is carried out with a base material of SF57 soft glass due to it is high non-linearity. The
study included the effect of introducing a hole in the center of the core to flatten the
dispersion further. The Steiner design in particular and ES-PCF in general are unique
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structures for non-linear applications as they combine both characteristics that lead to
increase in non-linear effects efficiency which are flat low dispersion and small Ae f f .
Therefore, the Steiner design is compared with H-PCF and ASC in the next section.

4.1.4 Comparison of Steiner ES-PCF with other PCF

The properties of the Steiner design have been discussed and an explanation on how to
control them was given. This section is to compare the ES-PCF with other PCF such as
H-PCF and ASC which are widely studied and investigated. The advantages offered by
the ES-PCF over the H-PCF arise due to the differences in the arrangement of holes
and therefore, a comparison of the different structures of the two represents the starting
point for the analysis. The position of the holes in the second ring of ES-PCF are
positioned at a distance closer to the center and at angles that block the space between
the holes of the first ring. This would lead to better field confinement in the core and a
smaller Ae f f (larger non-linearity or γ) in the ES-PCF as discussed before. Table (4.2)
shows the values of key parameters – non-linearity, dispersion and dispersion slope and
Figures (4.23) and (4.24) present a synthesis of results for the two important factors (γ
and dispersion) and allow a comparison of the ES-PCF, the conventional H-PCF and
the ASC designs made from SF57 soft glass for pumping SCG at 1064nm.

Table 4.2 Comparison of the γ , dispersion and dispersion slope for H-PCF, ASC and
ES-PCF structures at pump wavelength of 1064nm.

Design ASC ES-PCF
H-PCF

d
Λ
= 0.524 d

Λ
= 0.8

Λ(µm) 0.5 0.6 0.5 0.6 0.5 0.5 0.6

γ(W−1km−1) 5983 5455 5676 4555 2940 7238 2997

D(ps/nm/km) 409 248 6.7 2.1 -914 -701 -528

Slope (ps/nm2/km) 1.11 1.12 1.16 0.026 0.21 3.79 0.83

Figure (4.23) shows the variation in the Ae f f as a function of the core diameter as well
the corresponding γ values for the three designs. To facilitate a comparison between
the H-PCF and the ES-PCF, parameters such that the value of d/Λ are chosen to be
the same. The smallest possible value of the effective area at the operating wavelength
of 1064nm is the lowest for the ES-PCF (≈ 0.383µm2), while for the ASC fiber
Ae f f ≈ 0.405µm2 and the H-PCF design, Ae f f ≈ 0.807µm2. Usually increasing the
value of d/Λ in a H-PCF leads to a smaller Ae f f where an increase in d/Λ from 0.524
to 0.8 results in decrease in the value of Ae f f , leading to an increase in γ from 2940
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Fig. 4.23 A comparison of non-linearity and Ae f f as a function of core diameter of
ASC, H-PCF and ES-PCF designs in soft glass SF57.

to 7238W−1km−1. However, this has an impact on the H-PCF dispersion (see Figure
(4.24)), the change in the curve of H-PCF with d/Λ = 0.8 (gray line with triangles) is
steeper than H-PCF with d/Λ = 0.524 (gray line). Therefore it is extremely important
to choose a value of such that not only is the non-linearity enhanced but the dispersion
is both small and flat at the same time.

Fig. 4.24 A comparison of Dispersion of ASC, H-PCF and ES-PCF designs in soft
glass SF57.

The non-linearity is reduced by reducing Λ but at a point the field gets cut-off beyond
that dimension. Figure (4.25) shows the normalized Ae f f of ES-PCF as Λ is decreased
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where at values below Λ = 0.5µm the field is in the cut-off region as can be observed
from the figure as the curve has a steep step when varying wavelength from 0.5 to
0.4µm and then curve drops down below those values.
The dispersion associated with the fibers (for a core diameter of 0.5µm) is shown
in Figure (4.24) A large value of d/Λ can lead to a large magnitude of dispersion:
the absolute value of dispersion as well as the slope increase substantially when d/Λ

changes from 0.524 to 0.8 for the H-PCF. Thus, it may be possible to find values
of for the H-PCF to obtain either the dispersion or a value of γ that is comparable
to the ES-PCF, but not to obtain superior performance with both characteristics at
once. The ASC design has a larger dispersion at the pump wavelength of interest
with a value of 409ps/km/nm for a core of diameter of 0.5µm, than does the ES-
PCF with dispersion of 6.7ps/km/nm. The associated γ values for the two PCF are
5983 and 5676W−1km−1, respectively, as compared to 2940W−1km−1 for the H-PCF
(d/Λ = 0.524). Therefore, the ASC scores highly on the aspect of non-linearity but
is not ideal with respect to dispersion. However, the ES-PCF has lower dispersion, a
flat slope and a higher γ at 1064nm. Hence, the ES-PCF offers advantages of both the
ASC and H-PCF and can simultaneously be used to optimize the dispersion as well as
the non-linearity.

Fig. 4.25 Normalized Ae f f for ES-PCF structure as a function of Λ in soft glass SF57.

The ES-PCF design offers excellent performance with respect to several key character-
istics, especially control over the effective modal area and the dispersion, both essential
for good SCG. It offers an alternative to the ASC/H-PCF designs and a means of
obtaining optimal performance by offering superior properties over both characteristics
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simultaneously [46]. In addition, the confinement and bending loss of ES-PCF are
very low [243]. The drawback with the spiral design has been the lack of an effective
fabrication method, which is addressed in Section (4.3).
The Steiner design has been investigated in more depth where systematic studies
of the various parameters and their effect has been presented. The variation of the
optical properties (effective refractive index, dispersion, effective area and non-linearity
properties) has been presented. The relation between effective area and non-linearity is
emphasized. The knowledge of the effect of each parameter would make it easier to
optimize the optical properties of the design for the application of interest. The focus
of this thesis is to optimize the properties of the design for the non-linear application,
namely the SGC. The optimized design in tellurite glass is discussed in the next section
and the results of the optical properties are given.

4.2 Supercontinuum Generation

The optical properties of modified Steiner ES-PCF have been studied in the previous
section. The parameters of the structure have been varied and examined to understand
their effect on the properties. The structure material in the previous section is SF57.
In this section systematic studies similar to the one in the previous section are carried
out to design Steiner ES-PCF for SCG. The structures studied in this section are based
on tellurite material (76.5TeO2 −6Bi2O3 −11.5Li2O−6ZnO(mol%)) [161, 244] as
it has a transparency window approaching the mid-IR and it has a high Kerr non-
linearity (n2 = 5.9×10−19m2/W 12) [245, 246]. The refractive index is calculated by
the Sellmeier equation (Equation (1.34)) with the use of Sellmeier coefficients from
Table (4.3).

Table 4.3 Sellmeier coefficients of tellurite material [244]

Sellmeier Coefficient 1 2 3

A j 1.67189 1.34862 0.62186

B j 0.0004665 0.0574608 46.72542736

4.2.1 Parameters optimization

A study is carried out to optimize the dispersion to be low and flat in the anomalous
region with ZDW near the pump wavelength of 1.93µm for SCG applications. The
most important parameter is Λ in terms of variation of properties as discussed earlier.
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Different designs have been simulated and their results are compared in this section. The
best curve of each set is chosen to study the effect of the other parameters. The values of
Λ ranged from 0.75 to 4.5µm to see the influence on dispersion. The parameters were
chosen as d/Λ= 0.6 and Narms = 6 and results of some simulations are shown in Figure
(4.26). The higher values of Λ are not of interest as the dispersion is not very different
from the material dispersion and the variation of the other parameters would not have
an adequate impact on the dispersion. The dispersion is large and has steep slope for
structures with large Λ. The material dispersion (dashed line) has ZDW at 1.84µm

which is good for pump at 1930nm but the higher Λ structures blue shift the ZDW, the
structure with Λ = 4.5µm (red line) the ZDW is shifted to 1.67µm and for smaller
values the ZDW is shifted to lower wavelengths faraway from the pump wavelength of
interest (1.93µm). The change in dispersion at higher wavelengths occur at Λ = 2µm

(gray line). By decreasing Λ further to 1.5µm (dark-green line) the dispersion changes
at wavelengths higher than 3.5µm. The best curve obtained in terms of dispersion
change is for Λ = 0.75µm (blue line) where dispersion is manipulated through all
wavelengths and ZDW is 1.78µm which can be shifted closer to the pump wavelength
by controlling other parameters. This value of Λ is chosen for the simulations of
altering the dispersion by the other parameters. The size can be decreased more but
the field is near cut-off and further reduction in Λ has no advantages over the value of
0.75µm.

Fig. 4.26 Varying Λ to see effect on dispersion for Steiner ES-PCF design with 6 arms
and d/Λ = 0.67 in tellurite.
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The pitch size and number of arms have been set according to the previous experiment
of comparing Λ, for the design of interest. The parameter d/Λ is varied where three
different sets of d/Λ with values of 0.55, 0.6 and 0.67 are simulated and the results
are shown in Figure (4.27). The curve of the design with smallest ratio (dark-green
line) is flatter and the curve is blue shifted with respect to the other dispersion as the
lower ZDW has been shifted to below 1.5µm . Therefore, the larger ratio of d/Λ is
better in terms of ZDW position, but dispersion is higher which can be compensated.
The variation of the ratio d/Λ would change the size of the hole in the first and second
rings simultaneously. The final stage of the study is to vary the number of holes of each
ring separately.

Fig. 4.27 Varying d/Λ to see effect on dispersion for Steiner ES-PCF design with 6
arms and Λ = 0.75µm in tellurite.

The parameters are kept fixed and the only parameter to be varied is the radius of holes
in the first or second ring. Therefore, each set is tested and simulation results represent
the best choice for the design. The effect of variation in the size of the holes in the
first ring is shown in Figure (4.28). When hole size is reduced the dispersion is more
flat and tends to zero at the lower half of the wavelength range shown. In the upper
wavelength half, the curve is shifted up. The conclusion of this is that the variation of
the holes in the first ring can be used to flatten the dispersion but not to shift its ZDW
as shown in the graph.
The variation of the holes in the second ring impacts the dispersion where decreasing
the radius of the holes leads to blue shift the dispersion at the lower wavelength region.
The shift is significant as the ZDW is shifted from 1.77 to 1.52µm for a reduction in
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Fig. 4.28 Varying the holes diameter of the first ring to see effect on dispersion for
Steiner ES-PCF design with 6 arms, d/Λ = 0.67 and Λ = 0.75µm in tellurite.

size of 25% (see Figure (4.29)). However, the change in the dispersion curve at higher
wavelengths follows the same trend of change when varying the other parameters. The
reason is thought to be that the field expands to reach the holes in the third ring which
are very large in comparison to the other holes. The change in air filling fraction of the
area covered by the field profile is the same when changing either set of the holes in
one of the two rings close to the core. The change in d1 and d2 at higher wavelength
region has similar effect due to the field expanding through both rings. The field is not
changing much at higher wavelengths as the field expands over both holes of the first
and second rings and a change in one of them has similar effect. The holes influence
the field independently at the lower side of the spectrum. The pitch size has an impact
on dispersion at any wavelength window as can be noticed from Figure (4.26).
The study of the different parameters and their influence on the dispersion is concluded
with choosing the parameters of the optimum structure for the study of SCG. The
parameters are Narms = 6, Λ = 0.75µm, the radii of the first, second and third ring
holes are 0.1, 0.22 and 1.2134µm, respectively and d/Λ ≈ 0.29, the ratio is taken in
regards to holes in the second ring. The optical results and SCG are presented in the
next section.
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Fig. 4.29 Varying the holes diameter of the second ring to see effect on dispersion for
Steiner ES-PCF design with 6 arms, d/Λ = 0.69 and Λ = 0.75µm in tellurite.

4.2.2 Results of optimum design

The design process requires several simulations and analysis of the results to understand
the various factors that influence the outcome. The second task is to adjust some of the
parameters and re-run the simulation to check the result whether they are of interest
or not. The adjustment may require several stages similar to what has been done in
this thesis. The final step is presenting the outcome of the work. A schematic of the
optimum structure cross section is shown in Figure (4.30).

Fig. 4.30 Schematic of the cross section of the optimized Steiner ES-PCF structure.

The structure is perfect in dispersion management with excellent confinement of light.
The larger holes impact the confinement of the light and the holes in the first and second
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rings alter the dispersion as discussed in the last section. The variation of ne f f and
Ae f f with respect to wavelength are shown in Figure (4.31). The field at the lower end
of the wavelength range is well confined in the core as can be extracted from Ae f f data.
At higher wavelengths the field expands all over the first and second rings of holes.

Fig. 4.31 Variation of ne f f and Ae f f with regards to wavelength for the optimum design
in tellurite with Narms = 6, Λ = 0.75µm, radius of the holes in 1st , 2nd and 3rd rings
are 0.1, 0.22 and 1.2134µm, respectively.

The dispersion of the structure is shown in Figure (4.32) along side with the bulk
material dispersion. The curve is very flat and close to zero in the lower wavelength
range. The dispersion value is ±4ps/nm/km in the range from 1.5 to 2.3µm and
±2ps/nm/km at 1.8 to 2µm. The design has three ZDWs at 1.5, 1.88 and 2.22µm.
The first two are suitable for using commercial lasers for pumping at 1557 and 1930nm

as the non-linear effects are more efficient when the pump wavelength is close to the
ZDW. These result has been published in the CLEO2011 conference.
The dispersion flatness is the range of variation of dispersion with regards to wavelength,
which is in simple words is the slope of the curve. The dispersion slope is calculated
by using central difference technique as shown in Equation (4.1).

f ′ =
f
(
x+ 1

2h
)
− f

(
x− 1

2h
)

h
(4.1)

The calculated slope is plotted in Figure (4.33). The slope is less than 0.003ps/nm2/km

in the range 1.5 to 2.3µm, which is ten order of magnitude lower than published results
[247, 248].
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Fig. 4.32 Dispersion of Steiner ES-PCF in tellurite with Narms = 6, Λ = 0.75µm, radius
of the holes in 1st , 2nd and 3rd rings are 0.1, 0.22 and 1.2134µm, respectively.

Fig. 4.33 Slope of dispersion of Steiner ES-PCF in tellurite with Narms = 6, Λ =
0.75µm, radius of the holes in 1st , 2nd and 3rd rings are 0.1, 0.22 and 1.2134µm,
respectively.

The other important property for SCG is the non-linearity which is calculated us-
ing Equation (1.33). The results are shown in Figure (4.34), the value of γ ranges
from 1800W−1km−1 at wavelength 1.5µm to 800W−1km−1 at 2.3µm. The value of γ is
equal to 1155W−1km−1 [239] at the pump wavelength of 1.93µm which is much higher
than published results of 140W−1km−1 at the same wavelength [249]. In other pub-
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lished results the non-linearity reported is 394W−1km−1 [250] at wavelength 1557nm

which is a fraction of the value obtained by the Steiner design of 1740W−1km−1 [225].
In the latter experiment, the dispersion at the same wavelength is 75ps/nm/km [250]
compared to ≈ 1ps/nm/km achieved with this design. Therefore, the Steiner ES-PCF
design is well suited for non-linear application (SCG) where the non-linearity is high
and dispersion is low.

Fig. 4.34 Non-linearity of Steiner ES-PCF in tellurite with Narms = 6, Λ = 0.75µm,
radius of the holes in 1st , 2nd and 3rd rings are 0.1, 0.22 and 1.2134µm, respectively.

There is an important property which was discussed in Chapter 1, which is the loss.
The loss of Steiner ES-PCF structure with Narms = 6, Λ = 0.75µm, radius of the
holes in 1st , 2nd and 3rd rings are 0.1, 0.22 and 1.2134µm, respectively, has been
calculated and is shown in Figure (4.35). The total loss is almost identical to the
material loss at wavelengths below 3.8µm and at higher wavelengths the total loss
increases sharply. The reason is that the field is well confined at lower wavelengths but
at higher wavelengths the cut-off wavelength is reached and the field expands from the
structure and the loss increases dramatically. It can be concluded from the loss results
that when the field is confined the dominant loss is the material loss. The total loss is
calculated by the two formulae shown:

Im(β ) =
2π

λ
Im(ne f f ) (4.2)

L =
20

ln(10)
Im(β ) (4.3)
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where Im stands for imaginary part.

Fig. 4.35 Attenuation of tellurite material Steiner ES-PCF with Narms = 6, Λ = 0.75µm,
radius of the holes in 1st , 2nd and 3rd rings are 0.1, 0.22 and 1.2134µm, respectively.
Inset is a scalable of the lower wavelength region from 1.5−2.3µm.

The results of modeling the structure have been discussed and compared to other
published results. The proposed structure has shown better values for promising high
SCG. The simulation results of SCG discussed in next section.

4.2.3 Result of supercontinuum generation

The simulation results of the basic optical properties of the structure have been presented
and discussed. The simulation of the modal field provided all information in previous
section which is either accessed directly from output such ne f f , Ae f f and loss, or that
requires more processing of data to generate the output such as dispersion which is
calculated from ne f f as function of wavelength, and γ which is calculated from Ae f f

and wavelength.
The non-linear effect, SCG, requires further simulation and input parameters to calcu-
late the spectral broadening. The work to calculate SCG was done by a collaborator Dr.
Manish Tiwari from Rajhani Engineering College, India. This work has been published
in Journal of Modern Optics as a joint work, see list of publications.
In the simulation of SGC two pumping wavelengths were used at 1557nm and 1930nm.
The former has an average power of 11.2mW and the SC bandwidth simulated for a
10m fiber expands more than two octaves from 970nm−4100nm. The second pumping
wavelength has an average power 12mW and SC bandwidth is 1300nm−3700nm.
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The combination of high non-linearity and wide range low flat dispersion in the
anomalous region with ZDWs at pump has lead to generation of broad and flat SC
spectrum obtained. The bandwidth of SC achieved in this work is > 3000nm which
is compared to results of 1600nm [251] achieved with similar pump characteristics.
However, very large bandwidth SC [252, 253] have been demonstrated but the pump
power used is large compared to the power used in this work. The Steiner ES-PCF
structure has superiority for non-linear application and the limitation is the fabrication
process where in the conventional SaD only hexagonal packing is possible. This
limitation is overcome by an algorithm proposed in the next section which adapts the
SaD with some modifications. However, the fabrication of soft glass and polymer PCF
can be done by several other methods like extrusion, drilling, casting and 3D printing.

4.3 Towards Steiner ES-PCF Fabrication

The simulation results of the ES-PCF have been presented in the previous chapters
with discussion on the parameters that can be varied to manipulate the design to suit
the desired application of interest. The simulations of ES-PCF have shown that the
design has unique and superior characteristics such as control of both dispersion and
non-linearity simultaneously for applications such as SCG. The obstacle in PCF designs
with hole distribution in spiral or other complex patterns is the fabrication of these
structures. Recently, the fabrication techniques have been improved significantly with
new techniques that have emerged in the field as discussed in Chapter 1, this has
made the fabrication of complex designs feasible with new techniques. However, the
fabrication of complex structures using SaD procedure is still a challenging task, which
limits the fabrication of these designs to certain materials. The fibers made of the most
widely used material (silica) are fabricated by the SaD. Therefore, a procedure based on
the SaD is proposed to fabricate ES-PCF. This procedure is implemented by stacking
tubes and rods in a similar manner to the well know SaD technique. The procedure is
explained in this chapter and it is coined as Adapted Stack and Draw (ASaD). The next
section is an introduction to the Steiner chain rule which is implemented to calculate
the position and the size of holes in the procedure proposed.

4.3.1 Steiner chain

The procedure proposed to fabricate ES-PCF using the concept of SaD requires some
modifications. The Steiner chain rule is implemented to adapt the SaD technique and
make it feasible for the fabrication of ES-PCF designs. The Steiner chain concept
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indicates that given two circles with one interior to the other the space between them
can be filled with tangent circles such that the final one is tangent to the first leaving
no space. In other words, the space between two tubes, when one is inside the other,
can be filled with a number of rods and/or tubes such that tubes touch both outer and
inner tubes, and there is no overlap between adjacent tubes. Therefore, all the tubes are
supported and none are left free. The Steiner chain rule is explained in reference to
Figure (4.36). The rule is general where any number of circles can be used.

Fig. 4.36 Steiner Chains

The graphic representation of the Steiner chain rule is only useful to understand the
derivation of the formula as it cannot be implemented in the simulations. However,
the mathematical formula derived from the graph is used to code the structures in the
simulations. The first relation derived is by implementing the trigonometric sine rule
on θ in the blue triangle (Figure (4.36)). The sine of the angle equals the opposite side
over the hypotenuse and in this case the opposite is the radius of the circles filled in the
annular region (ρ) and hypotenuse is (rinner +ρ). Then the equation is written as

sin(θ) =
ρ

rinner +ρ
(4.4)
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The ratio between outer and inner circles is used to define the relation between radii of
inner circle and the circles in the middle space between the concentric circles. It is the
factor that controls the number of circles. The ratio is defined as

x =
R

rinner
(4.5)

Substituting R = rinner +2ρ in the equation and rearranging then the radius of circles
in the middle is defined as

ρ = rinner ×
x−1

2
(4.6)

It is noticed that the circles in third ring, T3, would have radius equal to the innermost
circle for x = 3. If x > 3 then the center circle is smaller and verse versa. There is
another formula to calculate x which is more convenient for this thesis [233].

x =
1+ sin(180/N)

1− sin(180/N)
(4.7)

where N is the number of circles which fill the space between outer circle/tube and inner
circle/tube which contains the inner structure of the fiber. In this work, the number
of holes that are used in the Steiner rule is equal to number of arms, therefore N is
referred to as Narms. Also the value (180/N) is actually the same angle θ shown in
Figure (4.36) and the one used in the previous sections to accomplish results of ES-PCF
designs. The utilization of Steiner chain rule is explained in the next section.

4.3.2 Algorithm of fabrication

The stack and draw technique is implemented by stacking equally sized tubes and rods
in a hexagonal form inside a larger tube. The tubes are arranged in a hexagonal close
packing which is the underlying mathematics of the SaD process. This arrangement
results in the densest tube packing in two dimensions [240]. The tubes are stacked
adjacent to each other in the same row and the following row of tubes are placed in
the depressions formed between tubes in the previous row. These conditions limit the
use of conventional SaD for quasi-crystal PCF structures. Therefore, an algorithm
is proposed to modify the SaD technique to adapt to non-hexagonal structures. The
concept is closely similar to SaD but the tubes and rods can be of different sizes and
the stacking of tubes does not follow the same positioning as in SaD.
The first step is to calculate the centers of the 1st and 2nd holes of the same arm, where
from the ES formula (Equation (3.2)) the ri can be calculated, where ri is the distance
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Fig. 4.37 Schematic of 7 arms Steiner ES-PCF preform

from center of structure to the center of the hole which has the ith position. The holes
of the first ring touch the rod in the center (see Figure (4.37) and holes of the second
ring, where holes in the second ring touch the holes of first ring and the enclosing tube
which has an inner radius Rin (orange line). The values are in polar coordinates so
they are converted to their equivalent Cartesian coordinates using the two formulae
x = r cos(θ) and y = r sin(θ). The distance between the two centers (d), is equal to the
outer diameter of the tubes because the distance from the center of 1st hole to center of
2nd hole equals 2 times the radius of the tubes T1 and T2. It is calculated by the formula

d =
√
(x1 − x2)2 +(y1 − y2)2 (4.8)

The outer diameter of the tubes of the first two rings are known. The outer diameter
along side with the pitch, which is an input parameter in the simulations, are used to
calculate the radius of the rod in the center. The rod radius (radiusc) and the thickness
of the first ring tubes form the core of the ES-PCF. The rod radius is

radiusc = Λ− d
2

(4.9)

where Λ is the distance from the center of the structure to the center of the tubes in the
first ring and is equal to r1.
The tubes of the first two rings and the rod are stacked in a larger tube which has inner
(Rin) and outer (Rout) radii. The former is calculated by knowing distance of tubes of
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2nd ring from the center and the outer radius of the same tube. It is the summation of
both values as given by the equation below

Rin = r2 +
d
2

(4.10)

The concept of Steiner chain rule is used to calculate the outer radius of the tubes of
3rd ring. The Equation (4.6) is used to find the radius3 as

radius3 = Rout
x−1

2
(4.11)

where x is defined in Equation (4.7).
The distance from the center of the structure to the center of 3rd ring tubes is calculated
as the distance to the outer surface (Rout) of the enclosing tube of the inner structure
plus the radius of the tube of the 3rd ring. The formula is

r3 = radius3 +Rout (4.12)

The final step is to find the radius of the tube enclosing the entire structure that acts
as the preform and which consists of the tube that contains the first two rings of tubes
and central rod that acts as the core, and the tubes of the 3rd ring. Its thickness can be
chosen independently of the structure as there are no other tubes involved. Therefore
only the inner radius of the most outer tube is concerned in this procedure because the
outer radius can be chosen large to form the outer PCF cladding. The radius of the
outermost tube is equal to the distance from the center of the structure to the center of
the tube in the third ring (r3) plus outer radius of tubes in the 3rd ring (radius3). This
relation is written in a mathematical form as shown

Rexternal = radius3 + r3 (4.13)

The tubes and rod of the structure are all known, the only missing ones are the inner
radii of the holes which are the tubes in the three rings. These radii depend on the holes
of the structure and their sizes. For identical spirals the values of Narms and Λ, radii are
calculated as above and are kept constant. By varying the inner radii of the tubes it is
possible to change the radius of the holes in the different rings. The tubes are made
when the inner radius is given and all tubes and rods are ready for the stacking.
By using the Steiner rule, it is possible to place holes at different angles and break
away from the hexagonal structure. Furthermore, the tubes (rods) can be replaced by
rods (tubes) to create designs with low index core and/or high index inclusions in the
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cladding. This latter can be used to exploit band-gap guidance. The stacking process
of tubes and the rod is shown in the next section.

4.3.3 Adapted stack and draw

The procedure used above is simple and straight forward but the various parameters
may look complex. For this reason in the stacking process it is better to define each
tube group with a unique name to make explanation easier to follow and understand.
The tubes in each ring are referred to as T1, T2 and T3 for first, second and third ring
tubes, respectively. The other two tubes are; one which encloses the first two rings and
is referred to as Tinner, and the other which encloses the whole structure is referred to
as Touter. The convention is used for clarification and it does not have any impact on
the procedure.

Fig. 4.38 Schematic of stacking inner tubes of 7 arm Steiner ES-PCF structure

The stacking process takes place after the tubes and rods are made and ready with the
dimension specified for the required design. The first tube concerned is Tinner which is
used to stack the central rod, and the tubes T1 and T2 inside it. The process is shown in
Figure (4.38) where first the rod is inserted and the second step is insert tube T1 which
touches the rod. The third step is to stack the tube T2 of the same arm in a way that it
touches tube T1 of the same arm and the tube Tinner. Then the second and third steps are
repeated with tube T1 touching preceding tube T2 of the neighboring arm. The last tube
to be stacked in this stage is T2 which would touch tube T1 of same arm, tube T1 of the
first arm which is stacked in second step, and tube Tinner. In this way all tubes are held
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tight where each tube is fixed from three places so no tube is left free to move. By these
arrangement the holes position (angle and distance from center) are exactly the same
as predicated by the ES equation. There is not any manipulation in the position of the
holes in the first and second rings which means the optical properties of the structure
are not changing dramatically. There is a small change in the values of some optical
properties which has unnoticeable effect. A comparison between the results of Steiner
and the ideal spiral are given in the next section.
The final step is to stack the tube Tinner, which has the inner tubes and rod, into the
middle of tube Touter surrounded by tubes T3. The tubes fill the space with each tube
T3 touching tubes Tinner, Touter and two adjacent T3. The final preform is stable and no
tube is left free moving as shown in Figure (4.39).

Fig. 4.39 Schematic of stacking outer tubes of 7 arm Steiner ES-PCF structure

4.4 Comparison between Ideal and Steiner ES-PCF

The proposed structure (Steiner ES-PCF) is simulated and results are compared to ideal
ES-PCF results. The material used in the simulation is the soft glass SF57 and all result
in this section are in the same material. The study comprises of different scenarios with
different arms and Λ. The parameters are chosen to be same for every set of results
for comparison reasons. The value of the ratio d/Λ is set equal to 0.4 for structures
studied in the comparison. The comparison is in terms of the optical properties which
are ne f f , Ae f f and dispersion.
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4.4.1 Comparison of ideal and Steiner ES-PCF (Λ = 3µm)

The speed and interaction of the light within a material is dependent on the most
important optical property which is the effective refractive index. The results of ne f f

for ideal and Steiner ES-PCF structures with Narms = 6 and Λ = 3µm are shown
in Figure (4.40). It is noticeable that there is hardly any change between the two
curves so the fields have identical value of ne f f through the entire wavelength window
(0.6−1.9µm). This is due to the fact that the holes in the first two rings are identical
for both structures as they have exactly the same positions and size, and the field is not
expanding away from the core as the size of the core is larger than the wavelength of
operation.

Fig. 4.40 Comparison of ne f f and Ae f f for the ideal and Steiner ES-PCF in soft glass
SF57 with Narms = 6, Nrings = 3, d/Λ = 0.4 and Λ = 3µm

However, there is some difference in Ae f f between the two structures as shown in the
same figure. The ideal ES-PCF structure has a lower Ae f f than Steiner ES-PCF which
is as a result of the position of the holes in the third ring. The holes in ideal ES-PCF
are closer to the center of the structure and hence have more effect on the Ae f f and the
field is more confined in this case. The difference in Ae f f increases with increasing
wavelength due to expansion of the field. The increase is believed to be as a result of
the air filling fraction of ideal ES-PCF, in the area that the field interact with, is more
than in the Steiner ES-PCF. The reason beyond this is the distance between second and
third hole edges are larger in Steiner ES-PCF as shown in Figure (4.3).
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A similar study was carried out on a design with Narms = 7 and Λ = 3µm. It is
found that the results have similar trend in the change of Ae f f and dispersion (see
Figure(4.41)).

Fig. 4.41 Comparison of ne f f and Ae f f for the ideal and Steiner ES-PCF in soft glass
SF57 with Narms = 7, Nrings = 3, d/Λ = 0.4 and Λ = 3µm.

The change in ne f f with wavelength is an important property as this controls the
dispersion. The dispersion of the 6 arms structure is shown in Figure (4.42). The
dispersion of both structures is identical which is expected because ne f f is identical.

Fig. 4.42 Comparison of dispersion for the ideal and Steiner ES-PCF in soft glass SF57
with Narms = 6, Nrings = 3, d/Λ = 0.4 and Λ = 3µm.
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To sum up, the Steiner ES-PCF concept does not change the optical properties of the
ideal ES-PCF when Λ is larger than the operating wavelength, therefore the unique
spiral characteristic is still observed. Although this section is mainly on the comparison
between ideal and Steiner ES-PCF, it can still be emphasized the fact that for large pitch
size the dispersion cannot be controlled with extreme freedom to generate a flat low
dispersion with ZDW near pump wavelength. In the next section the study is concerned
with small pitch size to influence the optical properties of the fiber.

4.4.2 Comparison of ideal and Steiner ES-PCF (Λ = 1µm)

In the previous section the comparison of of ideal and Steiner ES-PCF structures with a
pitch size larger than the operating wavelength has been discussed. The effective areas
have small difference and the ne f f of both structures are identical. In this section the
pitch is chosen to be comparable with the operating wavelength. The structure studied
has 6 arms, 3 rings, d/Λ = 0.4 and Λ = 1µm. The properties studied are the same ones
investigated in the previous section to have a good understanding of both cases and
what distinguishes them.
The first property to start with is the ne f f which is shown in Figure (4.43). The
Steiner ES-PCF structure has lower ne f f values than ideal ES-PCF through the entire
wavelength window. The field is expanding due to small core size and the field is
influenced by the holes in the third ring. In the Steiner structure the holes are extremely
large compared to holes in the ideal ES-PCF. Therefor, the field interacts with the holes
in the Steiner design. The difference at higher wavelengths is slightly larger as the field
interacts more with the holes of the third ring. The dispersion is not calculated but its
clear from the ne f f data that both dispersion will be similar as the ne f f curves have
similar change trend.
Similarly, Ae f f is smaller for the Steiner structure as the field is well confined near the
center of the structure. The air filling fraction is smaller in the ideal ES-PCF which
leads to the expanding of the field out of the core and hence large effective area. The
light is confined more tightly in the Steiner structure, which is an advantage in many
applications especially in non-linear applications. The non-linearity depends on Ae f f

and this is explained in Section (4.1.3).
The differences of the optical properties for two different scenarios with Λ = 1 and
3µm have been presented in this section. The optical properties do not change at large
value of pitch as the field is well confined in the core and the interaction with air of the
holes is small so changing the outer holes does not effect the optical properties of the
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Fig. 4.43 Comparison of ne f f and Ae f f for the ideal and Steiner ES-PCF in soft glass
SF57 with Narms = 6, Nrings = 3, d/Λ = 0.4 and Λ = 1µm.

design. Therefore, at higher values of Λ the number of holes does not need to be large
as shown in the case studied here.
In conclusion, the Steiner ES-PCF structure has been presented and compared to ideal
ES-PCF. The comparison at values of Λ larger than the operating wavelength show
almost identical results for both designs with similar structural parameter. In contrast,
when Λ is comparable with the operating wavelength or smaller the optical properties
differ slightly for both designs. The Steiner pattern shows better confinement of the
field. Therefore, the holes in the third ring of the Steiner structure has a positive effect
on the properties of the fiber.
A final remark on the outcome of this work is that the Steiner and ideal ES-PCF have
proven very good control of dispersion and Ae f f by varying the different parameters.
The dispersion can be flattened, the ZDW can be either blue or red shifted and/or
produce two or more ZDWs. This smooth control of the dispersion is only possible
when the index difference is high between the refractive index of the base material
and the refractive index of the material of the holes. In all simulations in this thesis
the holes were considered to be filled with air which has refractive index of 1 and the
base material used in these studies are silica, SF57 soft glass and tellurite, which have
refractive index of 1.44, 1.7997 and 1.9354, respectively. In the case of using a material
with small refractive index then the dispersion can not be controlled as before.
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4.5 Summary

In conclusion, the modified ES-PCF which is the focus of this thesis has been explained
and simulated to show the benefits of the work done in this project. The relation
between dimensional parameters with optical properties has been mentioned in the first
section and through out the chapter is emphasized. The variation of most parameters
lead to change in the air filling fraction hence modification in the effective refractive
index. The field profile depends on the refractive indices of the core and the cladding
which is the refractive index profile of the PCF. Therefore any change induced by
varying one of the parameters leads to change in the optical properties of the structure.
The main optical properties studied in this work are ne f f , Ae f f , dispersion and non-
linearity. The small structure size has two advantages; the dispersion is smoothly
controlled because interaction of the field with holes is high. The second is that Ae f f

decreases as the core dimension is reduced but not reaching cut-off. Both of these
advantages are in favor to the non-linear effects which requires small Ae f f to have high
non-linearity and low flat dispersion in the anomalous region with ZDW near the pump.
These specification are desirable in SCG.
The results presented in this chapter on Steiner ES-PCF show how to control the various
parameters and what is their effect on the optical properties. The most fundamental
property is the pitch size which as mention has to be small enough for the field to
interact with holes efficiently. Then the rest for parameters are adjusted to have the
required optical properties. In this work a design has been optimized with small Ae f f

and a low flat dispersion in wide wavelength range, published in CLEO2011. This
structure is used in a study of SCG and the results have been published in a joint paper
in Journal of Modern Optics.
The point discussed after that is the ASaD algorithm. This algorithm is a modification
of the conventional SaD which is limited to hexagonal stacking of tubes with similar
diameter. These limitations have been overcome and now it is possible to fabricate
the Steiner ES-PCF by stacking tubes and rods. The algorithm of fabrication has been
published in conference IONs Southampton and IEEE Photonics Technology Letters.
The optical properties of the Steiner design have been compared with the ideal spiral.
The comparison proved that Steiner and ideal structures have similar results with
small variation in some cases when using identical dimensional parameters. The only
difference is the holes in the third ring of the Steiner design are shifted further from
the center and made larger in size. This have a positive effect as the field is well
confined even at small core size. The interest in this work is with small core size of
dimensions comparable to the operating wavelength or smaller. The field spreads at
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these dimensions and the interaction of the field with holes increases leading to efficient
control of the optical properties.
The work done in this project has been introduced in this thesis and the future work to
be carried is discussed in the next chapter.



Chapter 5

Conclusion and Suggestions for
Future Work

In the previous two chapters the results are discussed and followed up by a summary on
the results of the chapter. In this chapter, a general summary on the key findings of the
entire thesis is presented, at the first part of the chapter, to high light the advantages and
limitation of the structures proposed in this work. The second section of this chapter
constrained on how the research can be extended for future work to further analyze,
simulate and utilize the spiral PCF in other applications.

5.1 Conclusion

The work carried in this thesis is aimed to study the optical properties of spirals Photonic
Crystal Fibers (PCF) and how they can be implemented in some applications. The
study is based on modeling of the structures using numerical method to find the modal
field and obtain the optical properties. The method used is the Finite Element Method
(FEM) which was chosen because of its versatility in presenting an arbitrary boundaries.
The spiral PCF has a complex boundary and requires an efficient mesh to present the
structure accurately. Furthermore, the penalty function and the perfectly matched layers
used in FEM to limit spurious solutions and absorb non-physical reflected radiations,
respectively.
Spirals are natural occurring shapes in variety of creatures ranging from planets, insects,
animal, galaxies, etc... These shapes are investigated and presented in mathematical
formulae by mathematicians. In this work, the formulae are implemented in codes
to simulate the spirals PCFs and study their optical properties. The study comprises
of three spirals: Equiangular, Archimedean and Fermat’s. In Chapter 3, a systematic
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study of varying the parameters of each spiral is carried out to understand to effects of
parameters and by analyzing the results the author proposed the best suitable application
for each spiral. The three spirals have in common parameters which are pitch and
hole size. The Fermat’s spiral has the least parameters to vary because the angle
between holes is fixed to the Golden Ratio (θ = 222.5o). Therefore, only the previous
two parameters and number of holes were varied. The Fermat’s spiral have shown
large values of birefringence due to a asymmetry of the core. The Archimedean spiral
has two other parameters which are varied; the angle between holes and the b factor
which controls the tightness of the spiral (distance between successive turns). The
Archimedean spiral is very efficient in hole distribution when the number of holes is
large.The Equiangular Spiral (ES) has two parameters which control the number of
holes; the number of arms and rings. These can be controlled separately which have
advantages and disadvantages. The bad side of this is that not any hole number can
be presented efficiently such as prime number of holes is not efficient for ES. The
good side of this combination is that the holes are positioned in a symmetric way and
can be controlled more freely. The equiangular spiral is manipulated to facilitate the
possibilities of fabrication of exotic designs with the traditional Stack and Draw (SaD)
technique.
The modified equiangular spiral is studied further to optimize a design for SuperCon-
tinuum Generation (SCG). The structures are simulated and results are analyzed and
simulation repeated with modification in the parameters to get to the desirable specifica-
tions. The requirements for SCG is high non-linearity and small anomalous dispersion.
The former is obtained by small effective area. Both properties are controlled efficiently
when the pitch size is comparable to the wavelength of operation. The Steiner chain
rule is implemented in distribution of holes in the third ring in the proposed structure.
The position of the holes in the first two rings has not changed from that in the ideal
spiral. The only difference is the holes in the third ring are shifted farther from the
center and made more larger in size to better confine the light in the core. A procedure
to fabricate the Steiner ES-PCF using SaD is proposed. The procedure is similar to
traditional SaD with small changes where tubes size in the proposed procedure are of
different sizes and the stacking of tubes is not in a hexagonal packing form. The spirals
PCF have shown various superiorities to other PCF in many applications and still much
to be investigated and discovered in these unique designs. Some of these applications
are the proposed in the next section.
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5.2 Future Work

This thesis is dedicated to the study of the spiral photonic crystal fibers and to highlight
their unique properties over fibers including other microstructured fibers. Photonic
crystal fibers in general have many advantages over conventional optical fibers some
of which are discussed in the thesis. The basics of fiber optics have been explained in
Chapter 1 and the properties of photonic crystal fibers with reference to literature have
been given. The methodology is included in Chapter 2 which contains the explanation
of the numerical method employed in the simulation, FEM.
The knowledge of the theory and simulation tools has been implemented to study
different structures. Some data from this work and predictions show promising results.
These results requires more investigation and simulations but due to the huge amount
of data and structures simulated the author has included only the relevant information
and the complete sets of results which led to publications. The promising information
obtained through the period of study of this work are proposed for future work to be
carried to investigate the unique undiscovered properties of spiral PCF.
The spiral structures studied in this thesis have proved the diversity of spiral PCF in
terms of their properties. Therefore, the spiral structure can be utilized in most of the
applications due to different spirals curves that can be adapted and the large number of
structural parameters which can be exploited to suit the required specifications.
The focus of this work is on ES-PCF structure which has been employed in non-linear
applications. The simulation of ES-PCF to study some of the unique properties have
been carried to study different properties. The property that is interesting to study is
the single mode condition similar to the H-PCF. A set of results showed that the higher
order modes either do not exist or have poor field profile shape. This property can be
investigated further to find the parameter range at which the fiber supports single mode
operation. It is found that the ratio d/Λ is not the parameter responsible for single
mode operation. The angle θ is believed to be the parameter that controls the single
mode region. This is interesting as the cladding can have large holes and be single
mode which is not possible in the H-PCF structure.
High index core guiding spiral PCFs have been investigated and simulation result are
published by different groups, but the spiral HC-PCFs have not been studied so far to
the best knowledge of the author. Therefore, the spiral can be studied to investigate
band-gap guidance.
In normal pressure fiber sensors the orientation of the fiber affects the sensing. There-
fore orientation independent fiber sensors would offer advantages in sensing. However,
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one of the structured studied in the thesis (AS-PCF) has shown promising results for
sensing applications. The results are in the initial stage and require more investigation.
The advantage of PCF is the core can be ranged in size from sub micron to large of
tens of microns. The large mode area is used for high power delivery and three spirals
studied in this thesis are predicted to have LMA with lower losses than H-PCF. The
ES-PCF have losses lower than H-PCF and as mentioned the single mode operation
depends on angle and not d/Λ. Therefore, the design can have large core with large
holes to reduce the losses. Another proposal is to design a structure with large core
with high Narms which is better than having large core with few large holes in the first
ring. A large number of small rings would have a better circular shape than using large
holes.
The simulations of spiral PCFs have demonstrated their advantages over other PCFs.
The theoretical results are presented in the thesis and in published papers of this work
but the requirement to validate the results and implement the spiral PCF in the real
world requires the fabrication of these fibers. The fabrication of ES-PCF using adaptive
stack and draw is presented in this thesis. The fabrication of these fibers will open the
horizon for researchers to study the unique properties of spiral PCF and implement
them in applications.
Furthermore, there are other spirals which can be studied and implemented in PCF.
Each spiral has its unique characteristics and the new spirals may lead to enhancement
in the outcome or new applications to be discovered.
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