

City, University of London Institutional Repository

Citation: Howe, J. M., King, A. & Lawrence-Jones, C. (2010). Quadtrees as an Abstract

Domain. Electronic Notes Theoretical Computer Science, 267(1), pp. 89-100. doi:
10.1016/j.entcs.2010.09.008

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1969/

Link to published version: https://doi.org/10.1016/j.entcs.2010.09.008

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Quadtrees as an Abstract Domain

Jacob M. Howe∗

Dept of Computing, City University London, UK

Andy King∗†

School of Computing, University of Kent, Canterbury, UK

Charles Lawrence-Jones‡

School of Computing, University of Kent, Canterbury, UK

Abstract

Quadtrees have proved popular in computer graphics and spatial
databases as a way of representing regions in two dimensional space. This
hierarchical data-structure is flexible enough to support non-convex and
even disconnected regions, therefore it is natural to ask whether this data-
structure can form the basis of an abstract domain. This paper explores
this question and suggests that quadtrees offer a new approach to weakly
relational domains whilst their hierarchical structure naturally lends itself
to representation with boolean functions.

Keywords: Weakly relational domains, abstract interpretation, quadtrees,
boolean formulae

1 Introduction

Program analyses based on abstract interpretation require an abstract domain.
One of the first domains described was that of polyhedra [9] and recent work has
investigated subclasses of polyhedra, referred to as weakly relational domains
(examples include [6, 15, 16, 17, 21]). The motivation for weakly relational
domains is the cost of polyhedral domain operations: weakly relational domains
restrict the dependencies between variables that can be expressed in order to
achieve tractable domain operations whilst retaining sufficient expressivity to
be useful.

This paper proposes a new abstract domain based on the well-known data-
structure of quadtrees [11]. The domain belongs to the weakly relational domain
family, but its representation is not given in terms of linear inequalities. The

∗This work is supported by EPSRC projects EP/E033105/1 and EP/E034519/1.
†Partly supported by a Royal Society Industrial Fellowship
‡Supported by a Nuffield Science Bursary

1

representation means that disjoint, non-linear and non-convex regions can be
represented naturally, but this flexibility comes at a cost.

The paper is neutral as to the suitability of quadtrees for use in practical
analysers. It is a paper that aspires to promote discussion on the relationship
between spatial abstractions and boolean formulae. Nevertheless, the paper
makes the following contributions:

• introduces a weakly relational domain for analysis of machine integers that
is based on quadtrees

• discusses how this domain might be represented and details how this might
be achieved using boolean formulae, either as binary decision diagrams [3]
or as formulae in (non-canonical) conjunctive normal form [14]

The paper is structured as follows: section 2 recalls the definition of
quadtrees and introduces the underlying idea of using them as an abstract
domain; sections 3 and 4 formally introduce the domain and its operations;
section 5 discusses the encoding of quadtrees using boolean data-structures and
sections 6 and 7 conclude with a survey of related work and a discussion of the
strengths and weaknesses of the new domain.

2 Quadtrees

A quadtree is a tree where each node has four children; it is interpreted as decom-
position of a square in smaller squares, the root being the largest, containing
square. A node corresponds to a square and its children to the four squares
obtained by dividing the containing square evenly into four. Following [10] the
child nodes are ordered anti-clockwise from the top right, as below:

NW NE

SW SE
NE NW SW SE

In this work the interest is not only in the decomposition of a square into
further squares, but in whether or not these squares are part of some region of
interest. Therefore the leaves of quadtrees will be labelled with 0 or 1 to indicate
whether or not the corresponding square is part of the region of interest.

Quadtrees are potentially infinite data-structures, as squares can be continu-
ally subdivided. However, this work, like others [19], is concerned with analysis
over machine integers. This gives a smallest meaningful square, one that is
1× 1. Later in this work quadtrees whose smallest square has a larger size will
be considered. Henceforth, the minimum square size will be described by the

2

log of its width and this will be referred to as the granularity of the quadtree.
For example, a quadtree with granularity 2 has minimum square size 4 × 4. A
quadtree with a given granularity is then finite. Assuming that the granularity
is a non-negative integer g, a quadtree with 2n × 2n root square has leaves at
maximum depth n− g, where the root is considered to be depth zero.

Consider the following decomposition of an 8× 8 grid into 1× 1 cells, where
the dark cells are the region of interest:

It can be represented by the following quadtree (with granularity 0):

0 1 1 1 1 0 1 1 1 1 0 1

0

0

0 0

0 0 1 0

0

0

The nature of this decomposition echoes BDDs that have been used to ex-
press disjunctive properties [8, 13]. This link is further explored in section 5.

3 The Lattice of Quadtrees

This section formally introduces the lattice of quadtrees. The definition intro-
duces quadtrees as purely spatial objects (in fact, divorcing them from their

3

representation as trees) as this provides the most natural description of the
lattice.

Quadtrees give a description of two dimensional collections of squares within
a regular square grid. Each axis of the grid is intended to capture an analysis
variable. There are, of course, likely to be many analysis variables, therefore
the domain needs to be able to capture some higher dimensional relationships
as well. Although the quadtree domain elements are purely spatial, intuitively,
these elements derive from collections of quadtrees, each quadtree in a collection
being over a pair of variables. The pairs of variables are not necessarily disjoint,
therefore the various quadtrees in a domain element interact via their inter-
section in higher dimensional space. The domain is weakly relation since the
higher dimensional relationships are induced by two dimensional relationships
over quadtrees.

3.1 Quadtrees

First, a spatial definition of quadtrees in two dimensions is given. This is then
used as the basis of a definition for arbitrary dimensions.

Let X = {x1, ...xd} be a finite set of variables. Let I = [min,max) ⊂ Q
denote an interval such that min,max ∈ Z and max = min + 2n for some
n ∈ N. The starting point is the definition of Cn,i

xy , where x, y ∈ X, the set of
all squares resulting from the decomposition of the I × I grid (whose axes are
x and y) where the granularity is i. Cn,i

xy is defined when i ≤ n by:
Ci,i

xy = {{〈x, y〉 | min ≤ x < min + 2i,min ≤ y < min + 2i}}
Cn,i

xy = {{〈x, y〉 | min ≤ x < min + 2n,min ≤ y < min + 2n}} ∪
Cn−1,i

xy ∪
{C + {〈0, 2n−1〉} | C ∈ Cn−1,i

xy } ∪
{C + {〈2n−1, 0〉} | C ∈ Cn−1,i

xy } ∪
{C + {〈2n−1, 2n−1〉} | C ∈ Cn−1,i

xy }
where in the second case i < n and + denotes the Minkowski sum.

Now define Qn,i
xy = {∪S | S ⊆ Cn,i

xy }. That is, qxy ∈ Qn,i
xy is a subset of

I × I and can be represented by a quadtree. The second superscript, i, will be
omitted when it takes the value 0. Note that Qn,i

xy could be defined directly,
though a recursive formulation might be seen as more natural.

The next definition gives a spatial notion of quadtrees in higher dimensions.
Define the projection of a d-dimensional object S onto variables xj , xk as follows,
πjk(S) = {〈aj , ak〉 | 〈a1, ..., ad〉 ∈ S}. Now define the expansion of a two
dimensional quadtree as q+

xjxk
= ∪{S | πjk(S) = qxjxk

∈ Qn,i
xjxk

}. That is,
qxy ∈ Qn,i

xy is interpreted as an n-dimensional, rather than 2 dimensional, object
by extending it through the other dimensions, analogous to a prism in three
dimensions. Then Qn,i

X = {∩m
j=1q

+
j | m ≥ 1, qj ∈ Qn,i

xkxl
for xk, xl ∈ X, k 6= l}.

Hence, each qX ∈ Qn,i
X is a subset of Id. Again, the granularity superscript i

will be omitted when it is not necessary.

4

3.2 Meet, Join and Entailment

With the spatial definition of quadtrees, the remaining lattice operations are
defined straightforwardly with set operations.

Let the ordering operation on Qn,i
X be defined by q1 |= q2 iff q1 ⊆ q2, that is,

ordering is by inclusion. Let u,t denote the meet and join lattice operations.
For q1, q2 ∈ Qn,i

X , q1 u q2 = q1 ∩ q2, q1 t q2 = q1 ∪ q2. Notice that Qn,i+1
X ⊂ Qn,i

X .
To conclude, 〈Qn,i

X , |=,u,t〉 forms a finite lattice.

4 Representation and Operations

This section spells out how quadtrees can be represented in terms of their two
dimensional projections. It then gives spatial definitions of the domain opera-
tions that reduce to operations on each two dimensional projection. However,
there are several possibilities as to how a two dimensional quadtree might be
realised, and this choice is delayed until the following section.

4.1 Representation

The definition of Qn
X in section 3 defines elements of the domain as sets of

points in Id without reference to how these sets can be represented. As a
weakly relational domain, the expectation is that the representation is in terms
of the two variable projections of the space. The definition suggests that each
domain element should be represented by a set of quadtrees, qxjxk

∈ Qn
xjxk

.
A domain element qX ∈ Qn

X is represented by a set consisting of exactly one
qxy ∈ Qn

xy for each x, y ∈ X. Such a set, of size d(d − 1)/2, will be denoted S.
Define JSK = ∩{q+

xy | qxy ∈ S} so as to interpret a set S as a domain element.
Note that the same domain element can be represented by different sets.

4.2 Meet

With a set representation for domain elements, meet can be determined pairwise
on the individual quadtree components. Over a variable pair, meet is simply
intersection: define qxy u pxy = qxy ∩ pxy. This lifts to domain elements: where
qX , pX ∈ Qn

X , and qX = JSqK, pX = JSpK, meet can be determined by qX upX =
J{qxy u pxy|x, y ∈ X, qxy ∈ Sq, pxy ∈ Sp}K.

4.3 Variable Elimination

A resolution step tightens a two dimensional quadtree by taking account of the
interaction of two others. Where, qxy ∈ Qn

xy, qyz ∈ Qn
yz, res(qxy, qyz) = ∩{pxz ∈

Qn
xz | q+

xy ∩ q+
yz ⊆ p+

xz}, it follows that res(qxy, qyz) ∈ Qn
xz.

Variable elimination is then defined by updating each two variable projection
with resolvants and removing all two variable projections over the variable to
be eliminated. That is, where JSK = qX , ∃y.qX = J{quv ∈ S | y 6∈ {u, v}} ∪
{qxz ∩ res(qxy, qyz) | qxy, qyz, qxz ∈ S}K.

5

4.4 Completion

Completion is the operation in weakly relational domains through which the
various two dimensional projections in the representation communicate with
each other. An element of the quadtree domain is complete if no two variable
component can be tightened whilst leaving the higher dimensional quadtree
unchanged. Formally, let qX = JSK. S is complete if whenever qX = JS′K and
qxy ∈ S, q′xy ∈ S′ then qxy ⊆ q′xy.

Completion can be computed by recursively updating a representation S by
S′. If qxy, qyz ∈ S, then S′ = (S \ {qxz}) ∪ {qxz ∩ res(qxy, qyz)}. This rule is
applied until any selection of qxy, qyz results in S′ = S. Termination is ensured
as the Qn

X lattice is finite.
Completion is a crucial component of a number of domain operations as

specified in this section. The application of meet does not require completion
and variable elimination can be thought of as partial completion, whereas join
and entailment require the representation to be complete. However, it will be
argued in section 5 that with boolean representations of quadtrees completion
is an unnecessary operation.

4.5 Join

Suppose that JSqK = qX ∈ Qn
X , JSpK = pX ∈ Qn

X and that Sp, Sq are complete.
Then join can be determined pairwise on the individual quadtree components.
Over a variable pair, join is simply union: define qxy t pxy = qxy ∪ pxy. This
lifts to domain elements: qX t pX = J{qxy t pxy|x, y ∈ X, qxy ∈ Sq, pxy ∈ Sp}K.

4.6 Entailment

Entailment can be determined in terms of pairwise entailment on the individual
quadtree components, but again completion is required. Suppose that JSqK =
qX ∈ Qn

X , JSpK = pX ∈ Qn
X and that Sq is complete. Over a variable pair,

entailment is containment: qxy |= pxy if and only qxy ⊆ pxy. This lifts to
domain elements: qX |= pX if and only if qxy |= pxy for each {x, y} ∈ X,
qxy ∈ Sq, pxy ∈ Sp.

4.7 Abstraction

The abstraction of a set R ⊆ Id is given by α(R) = u{qX ∈ Qn
X |R ⊆ qX}.

Concretisation is simply the identity. The weakly relational nature of quadtrees
induces a loss of information for three (and higher) dimensional regions, as the
following example illustrates. Suppose that R = (I× I×{min})∪ (I×{min}×
I) ∪ ({min} × I × I). Then α(R) = I × I × I.

Abstraction is potentially expensive. Consider for example, a chessboard of
2n × 2n squares where the dark square are the region of interest. The quadtree
describing this has maximum size, that is (4n+1−1)/3 nodes. This is potentially
problematic. However, this problem might be addressed in at least two ways.

6

One approach is to restrict the granularity to throttle the size of the represen-
tation. The other, complementary, approach is to table commonly occurring
programming constructs, allowing abstraction via lookup.

Assignment can be handled as in the TVPI domain [21] by introducing a
fresh variable. Consider, for example, the assignment x := x + 1. This becomes
x′ = x + 1, which is abstracted and the meet of the result with the current
domain element is calculated. x is then projected out and x′ is renamed to x.
Note the importance of variable elimination to this approach.

4.8 Widening

Note that QI
X forms a finite lattice, hence widening is not strictly necessary

to enforce termination, even if fixpoint acceleration is desirable.
As noted by [13] the choice of widening is key to getting a domain to per-

form well in an analysis. One widening for quadtrees naturally suggests itself:
increase the granularity as the number of iterations increases. Formally this
is as follows (and is parameterised by a function associating an iterate with a
granularity).

Suppose that JSqK = qX ∈ Qn
X , JSpK = pX ∈ Qn

X , where qX represents the
jth iterate of analysis and pX the (j + 1)th iterate. The expectation is that
Sp, Sq are complete, although this is not strictly necessary. Over a variable pair,
widening is as follows: qxy∇pxy = qxy ∪ (∩{rxy | rxy ∈ Qn,k

xy , pxy \ qxy ⊆ rxy}),
where the granularity k is a history dependent value. This then lifts to domain
elements: qX∇pX = J{qxy∇pxy | x, y ∈ X, qxy ∈ Sq, pxy ∈ Sp}K.

Further discussion of widening quadtrees represented as booleans, or rather
not doing so, is given in section 5.

5 Boolean Formulae for Quadtrees

Elements of the quadtrees domain can be represented easily by structures for
boolean formulae. This section details the encoding of quadtrees into Binary
Decision Diagrams (BDDs) and formulae in conjunctive normal form (cnf), as
well as discussing the implications of these encodings.

A quadtree over x and y, Qn
xy, has associated with it 2n variables. That is,

one variable for each dimension and each permitted square size. These variables
will be referred to by xi and yi, where i is the power describing the width of the
corresponding squares. It is important to note that when the same axis occurs in
different quadtrees, the same boolean variables are used. Satisfying assignments
over these variables then correspond to the region of interest described by a
quadtree.

7

5.1 Quadtrees as BDDs

The encoding of a quadtree as a BDD is straightforward. The four children of
a node in the quadtree become four leaves of a BDD over two variables. That
is, the nodes correspond to (xi, yi) pairs as follows: NE to (1, 1), NW to (0, 1),
SW to (0, 0), SE to (1, 0).

The quadtree in section 2 is represented by the following OBDD (reduction
omitted for presentational purposes). The ordering is [x2, y2, x1, y1, x0, y0] and
left branches correspond to true.

0 1

1

0

1

0 1

1

1 0

0 0

0

0

0

0 1

A multi-rooted ROBDD will then describe a quadtree over many dimensions,
exploiting structural similarity to obtain a compact representation.

5.2 Quadtrees as cnfs

The counterpart of the reduced disjunctive normal form of BDDs is conjunctive
normal form, here not reduced. The clauses can be thought of as each describing
a region of the grid not captured by the quadtree. That is, a counter-model to
each clause describes a region not in the quadtree.

The following is the cnf describing the quadtree from section 2:
¬x2 ∨ ¬y2 ∨ ¬x1 ∨ ¬y1 ∨ ¬x0 ∨ ¬y0 ∧
¬x2 ∨ ¬y2 ∨ x1 ∨ ¬y1 ∨ x0 ∨ ¬y0 ∧
¬x2 ∨ ¬y2 ∨ x1 ∨ y1 ∨ x0 ∨ y0 ∧
¬x2 ∨ ¬y2 ∨ ¬x1 ∨ y1 ∧
x2 ∨ ¬y2 ∧
x2 ∨ y2 ∨ ¬x1 ∨ ¬y1 ∧
x2 ∨ y2 ∨ x1 ∨ ¬y1 ∧
x2 ∨ y2 ∨ x1 ∨ y1 ∨ ¬x0 ∨ ¬y0 ∧
x2 ∨ y2 ∨ x1 ∨ y1 ∨ x0 ∨ ¬y0 ∧
x2 ∨ y2 ∨ x1 ∨ y1 ∨ ¬x0 ∨ y0 ∧
x2 ∨ y2 ∨ ¬x1 ∨ y1 ∧
¬x2 ∨ y2

The various two dimensional projections give rise to cnf formulae and con-
joining these gives a single cnf describing the higher dimensional quadtree.

8

5.3 Avoiding completion

Completion is an apparently crucial operations in weakly relational domains,
and the treatment of quadtrees in section 4 is no different. However, notice that
when a quadtree is represented by a boolean formula in cnf completion becomes
less compelling. Completion can easily be calculated by resolution steps, but
these steps simply add redundent clauses to the representation. All of the
domain operations can be performed by their logical equivalents at the level of
cnf formulae without applying completion and it is not clear that completion
leads to any computational advantage.

The same tactic can be applied with the BDD representation – simply take
the conjunction of the two variable projections. However, note that since ROB-
DDs give a canonical representation this tactic corresponds to calculating the
completion since completion aspires to a canonical representation.

In order to reflect on the two representations, consider their complexities.
Both ROBDDs and cnf are have potentially exponentially large representations.
The following tabulates complexity of the core domain operations (where N is
the size of the input):

∧ ∨ ∃x |= ≡ ∀x
ROBDD O(N2) O(N2) O(N) O(N) O(1) O(N)

cnf O(1) O(N2) O(N2) O(2N) O(2N) O(1)

The gain by using cnf comes from the low complexity of conjunction, the
result of the non-canonical representation. This is offset by the cost of the
entailment/equivalence and projection. Entailment for cnf is implemented by
SAT solving and although of high theoretical complexity, SAT solving has been
demonstrated to be surprisingly tractable on very large structured problems.
Projection is important to this approach since it is required in the treatment
of assignment and the relatively high cost of this operation might prove to be
prohibitive. The answers to these performance questions are left open, but it
is noted that implementation work for dependency analysis has demonstrated
that cnf is an attractive representation [14].

5.4 Avoiding widening

As noted above, defining suitable widening operations is one of the most diffi-
cult tasks in numeric domains. Recent work [18] on the automatic derivation
of transfer functions offers a promising way forward – it shows how least solu-
tions to fixpoint equations can be derived symbolically by applying universal
quantifier elimination over systems of linear inequalities. This finesses the need
for widening. The tactic amounts to stating that the least solution both con-
stitutes a solution and is smaller than every other solution (hence the need for
universal qualification). The domain of quadtrees is ordered by entailment in
its boolean encoding which suggests that forall elimination can be applied to di-
rectly compute least fixpoints without employing widening. This would provide

9

a spatial analogue of immediate fixpoint calculation [22], which has been applied
to directly compute fixpoints over the domain of positive boolean functions.

6 Related Work

The work contained in this paper can be viewed as a weakly relational domain
that is to finite powersets of intervals, as TVPI is to polyhedra. The use of finite
powersets of intervals has received some attention recently. In [2] the authors
are concerned with widenings for powerset domains in general, whilst in [20] the
focus is on how to analyse across paths (something that powerset domains are
well suited to) whilst retaining the more attractive computational properties
belonging to the base domains owing to their path summarisation.

However, the closest work to that presented here is that of Gurfinkel and
Chaki. In [4] LDDs are introduced. These are BDD like structures where nodes
are interpreted as linear inequalities, giving a decompostion of n-dimensional
space into (a finite number of) regions of interest. In [13] a domain that cor-
responds to finite powersets of intervals is given. The domain is represented as
LDDs (in fact, a restriction of LDDs, since only single variable inequalities are
required) leading to an attractive analysis that appears to scale.

A completely different approach to representing non-convex spaces is to use
congruences as discussed in [1].

In the context of bounded model checking quadtrees have been used to model
electrical fields [12] as part of a system to diagnose spirals of electrical activity
indicating cardiac abnormalities. Note that spirals are particularly suited to the
widening presented in section 4.8. Finally, the paper uses quadtrees with back
arcs in order to define fractals, which suggests that quadtrees can have dense
representation akin to BDDs with back arcs.

7 Discussion and future work

Quadtrees have a vast literature. They have been generalised to higher dimen-
sion (octrees) and applied in diverse applications. They do not necessarily have
to represent a square grid structure which offers another degree of expressive
freedom. Exploiting the quadtree literature is one avenue of future work. In
tandem with this existing implementations of quadtrees will be investigated for
their suitability in program analysis. Theoretical questions such as optimality
of the operators presented remain open, and such questions will be subject to
further enquiry.

In [7] it is noted that successful analyses result, in part, from careful selection
of component domains. This motivates research into new domains that might
earn their place in the toolkit. It is not yet clear how effective quadtrees will be
for program analysis, therefore the advantages and disadvantages of quadtrees
are given by way of summary. Advantages include:

• they are a weakly relational domain not based on inequalities

10

• they can describe spaces that are not necessarily convex or linear

• they can be encoded in propositional logic, allowing use of BDDs and SAT

• they come with a natural form of widening, though their propositional
link suggests that widening may not be required at all

• the granularity can be throttled to control the size of the representation

• the technique does not inherit the problem of storing and manipulating
large coefficients that often arise with linear inequalities [5].

Disadvantages include:

• the data-structure is potentially large

• it is not clear how to effectively deal with abstraction

• the proposed widening is natural, but it is also crude and it is not clear
how much information will be preserved.

Acknowledgements The authors would like to thank Sagar Chaki and Arie
Gurfinkel for making [13] available ahead of publication. They would also like
to thank Karl Newman-Smart for discussion and his help with the diagrams.
Finally they would like to thank the anonymous referees for helpful comments.

References

[1] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids: A
Domain for Analyzing the Distribution of Numerical Values. In Logic-Based
Program Synthesis and Transformation, volume 4407 of Lecture Notes in
Computer Science, pages 219–235. Springer, 2006.

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening Operators for Powerset
Domains. International Journal on Software Tools for Technology Transfer,
8(4-5):449–466, 2006.

[3] R. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[4] S. Chaki, A. Gurfinkel, and O. Strichman. Decision Diagrams for Linear
Arithmetic. In International Conference on Formal Methods in Computer-
Aided Design, pages 53–60. IEEE Press, 2009.

[5] P. J. Charles, J. M. Howe, and A. King. Integer Polyhedra for Program
Analysis. In Algorithmic Aspects in Information and Management, volume
5564 of Lecture Notes in Computer Science, pages 85–99. Springer, 2009.

[6] R. Clarisó and J. Cortadella. The Octahedron Abstract Domain. Science
of Computer Programming, 64:115–139, 2007.

11

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why
does Astrée Scale Up? Formal Methods in System Design, 35(3):229–264,
2009.

[8] P. Cousot, R. Cousot, and L. Mauborgne. A Scalable Segmented Deci-
sion Tree Abstract Domain. In Z. Manna and D. Peled, editors, Pnueli
Festschrift, volume 6200 of Lecture Notes in Computer Science, pages 72–
95. Springer, 2010.

[9] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints
among Variables of a Program. In Principles of Programming Languages,
pages 84–97. ACM Press, 1978.

[10] M. de Berg, O. Cheong, M. Kreveld, and M. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

[11] R. A. Finkel and J. L. Bentley. Quad Trees: a Data Structure for Retrieval
on Composite Keys. Acta Informaticae, 4:1–9, 1974.

[12] R. Grosu, S. A. Smolka, F. Corradini, A. Wasilewska, E. Entcheva, and
E. Bartocci. Learning and Detecting Emergent Behavior in Networks of
Cardiac Myocytes. Communications of the ACM, 52(3):97–105, 2009.

[13] A. Gurfinkel and S. Chaki. BOXES: A Symbolic Abstract Domain of
Boxes. In Static Analysis Symposium, Lecture Notes in Computer Science.
Springer, 2010. Forthcoming.

[14] J. M. Howe and A. King. Positive Boolean Functions as Mulitheaded
Clauses. In International Conference on Logic Programming, volume 2237
of Lecture Notes in Computer Science, pages 120–134. Springer, 2001.

[15] J. M. Howe and A. King. Logahedra: a New Weakly Relational Domain.
In Automated Technology for Verification and Analysis, volume 5799 of
Lecture Notes in Computer Science, pages 306–320. Springer, 2009.

[16] F. Logozzo and M. Fähndrich. Pentagons: a Weakly Relational Abstract
Domain for the Efficient Validation of Array Accesses. In ACM Symposium
on Applied Computing, pages 184–188. ACM Press, 2008.

[17] A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[18] D. Monniaux. Automatic Modular Abstractions for Linear Constraints. In
Principles of Programming Languages, pages 140–151. ACM Press, 2009.

[19] M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. Transactions
on Programming Languages and Systems, 29(5), 2007.

12

[20] S. Sankaranarayanan, F. Ivančić, I. Shlyakhter, and A. Gupta. Static Anal-
ysis in Disjunctive Numerical Domains. In Static Analysis Symposium,
volume 4134 of Lecture Notes in Computer Science, pages 3–17. Springer,
2006.

[21] A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality
as an Abstract Domain. In M. Leuschel, editor, Logic Based Program De-
velopment and Transformation, volume 2664 of Lecture Notes in Computer
Science, pages 71–89. Springer, 2002.

[22] H. Søndergaard. Immediate Fixpoints and Their Use in Groundness Anal-
ysis. In Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 1180 of Lecture Notes in Computer Science, pages 359–370.
Springer, 1996.

13

