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Termination-Insensitive Noninterference
Leaks More Than Just a Bit
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2 City University, London

Abstract. Current tools for analysing information flow in programsltuipon
ideas going back to Denning’s work from the 70’s. These systenforce an
imperfect notion of information flow which has become knovertermination-
insensitive noninterferencé&Jnder this version of noninterference, information
leaks are permitted if they are transmitted purely by thgmm’s termination be-
haviour (i.e., whether it terminates or not). This impetif@t is the price to pay
for having a security condition which is relatively liber@.g. allowing while-
loops whose termination may depend on the value of a secré®asy to check.
But what is the price exactly? We argue that, in the presehoetput, the price
is higher than the “one bit” often claimed informally in thigetature, and ef-
fectively such programs can leak all of their secrets. Is tidper we develop a
definition of termination-insensitive noninterferencé&aie for reasoning about
programs with outputs. We show that the definition genezalibatch-job” style
definitions from the literature and that it is indeed sattsfiy a Denning-style
program analysis with output. Although more than a bit obinfation can be
leaked by programs satisfying this condition, we show thathiest an attacker
can do is a brute-force attack, which means that the attaekeTot reliably (in a
technical sense) learn the secret in polynomial time in iteecf the secret. If we
further assume that secrets are uniformly distributed,veevghat the advantage
the attacker gains when guessing the secret after obsexyotynomial amount
of output is negligible in the size of the secret.

1 Termination-insensitive noninterference

Does the following program leak its secret?

for i = 0 to secret (Program 1)
out put i on public_channel

Let us assume that the secret is a hatural number. The pragmrgpty counts from zero
up to the value of the secret, so it is clearly not secure. Vi@hatit the following minor
variation?
for i = 0 to secret (Program 1a)

out put i on public_channel
while true do skip

The only difference here is that after performing its outpetprogram goes into a non
productive infinite loop. Is it reasonable to consider pavgila to be secure if program
1 is not? Now consider the following program:



for i = 0 to maxNat ( (Program 2)
out put i on public_channel
if (i = secret) then (while true do skip)

Program 2 is semantically equivalent to program la. Butstdraimportant differ-
ence. Program 2 is deemed acceptable by state-of-thearniation flow analysis tools
such as Jif [MZZ08], FlowCaml [Sim03], and the SPARK Examiner [BB03,CHO04].
Such tools are, at their core, built on ideas going back todenand Denning’s semi-
nal paper about certifying programs for secure informaflion [DD77]. The programs
1 and 1a, for example, would be rejected as insecure bedaeysedntain a “high” loop
(a loop depending of the value of a secret) which assigns tov& ‘ariable (a public
channel) causing amplicit information flow from secret to public.

For program 2 however, a Denning-style certification (anplrticular all the con-
crete tools mentioned above) would say that the programcigreeSuch an analysis
would reason as follows: the outer loop is “low” because tieplcondition does not
refer to the secret, and so the output statement is permifteslif-expression, on the
other hand, is considered secure simply because it doesiset any exceptions or
assign to anything at all.

In order to justify Denning-style analyses, an imperfedtaroof information flow
which has become known @&srmination-insensitive noninterferericis widely used.
Under this version of noninterference, information lealesgermitted if they are trans-
mitted purely by the program’s termination behaviour. Biiawvis the price to pay for
having a relatively liberal security condition? Progrant®wee shows that, in the pres-
ence of output, the price is higher than the “one bit” oftesiroed informally in the
literature, and effectively such programs can leak all efrtkecrets.

Note that the same issue arises with other forms of abnoamalnation than diver-
gence. As we illustrate in Section 6, a stack/heap overfloatloer computation with
an uncaught runtime exception instead of the infinite looplditead to the same prob-
lems, which suggests that we cannot reduce the terminatianne| to a special case
of a timing channel. The results in this paper are not limitedny particular form of
abnormal termination, although, for simplicity, we modelydivergence explicitly.

Batch-job noninterference A “batch-job” style of termination-insensitive securitg$
been widely used to argue the correctness of Denning-stytgam analyses. This style
ignores nonterminating runs and assumes that the attaakeoltserve only the final
state of a computation. In particular, the batch-job notdriermination-insensitive
noninterference corresponds to the correctness condiyid/olpano et al. [VSI96] for
Denning-style analysis:

Definition 1 (BTINI). A deterministic program C satisfibatch-job termination-insen-
sitive noninterferenc@TINI) if, for any memories M and N that agree on public (low)

3 This terminology referring to insensitivity to the termiizan channel (for signalling informa-
tion through the termination or nontermination of a compatg, seems to have been coined
in [SS99], although the concept arises already in discasdiom e.g. [Fen74].



variables, the final memories produced by running C on M andNoalso agree on
public variables (provided that both runs terminate sustely).

The above definition permits, for example:

i f (secret = 0) then (while true do skip)
public := 0

The general intuition here is that such programs leak onitfla + at most one bit per
run.

Despite its popularity, the above definition is wholly uriable if attackers can
observe intermediate results such as outputs. For suchgmsgve cannot turn a blind
eye when programs fail to terminate, otherwise we would déenfiollowing program
secure:

out put secret on public_channel
while true do skip

In [VSI96], “a program that needs to ‘write output’ does sodmyassignment to an ex-
plicit location”. Similar issues with inappropriate usebaftch-job noninterference arise
elsewhere. For example, both Askarov et al. [AHS06] and Ler6Gig et al. [LBJS08]
consider languages with output, but their noninterferera&litions ignore divergent
runs. Askarov and Sabelfeld [AS07] model an attacker wheoles intermediate val-
ues — but only if the program terminates (a fact also rais¢BNR08]).

A related problem is the belief that as long as the attackanfiot observe termi-
nation” then a program leaks at most one bit. As our openiragrgtes show, this is
clearly not the case once output is possible. For examplewlkf features outputs
but still appeals to the “one-bit” argument: “JFlow tredissterror(heap exhaustion
as fatal, preventing it from communicating more than a grgt of information per
program execution” [Mye99].

One solution to these problems would be to abandon the wealien of security
that is inherent in a Denning-style analysis. But Dennitydgesermination-insensitive
analyses are popular not because of the semantic notiorcofityethat they enforce,
but because they allow more programs. Alternative stroegeurity conditions would
require either a difficult liveness analysis to show the absef divergent behaviour,
or a draconian restriction on the programs that can be wrfgey., no loops depending
on secret guards are allowed [VS97]).

Generalising BTINI So, what is the right definition of termination-insensitiven-
interference for languages with output, and moreover wéeatiisty guarantees does it
provide?

In this paper we define a suitable notion of termination-is#&/e noninterference
(Section 2), which we believe correctly captures the séciprioperty guaranteed by
Denning-style program analyses. Instead of considerihgtenminating runs, this no-
tion incorporates insensitivity to divergence in internagel states. The formulation is
intuitive because it is based on a more explicit attackerehadhich reasons about an
attacker’s knowledge as it evolves during a run, rather thamore standard “two run”
style presentations of noninterference properties. Wetanltiate our claim that this is a
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Fig. 1. Our results on termination-insensitive noninterfereridd&l()

suitable condition for a Denning-style analysis by showmag a formalisation [VSI96]
of Denning’s analysis for a language with output satisfiés¢bndition (Section 3).

We then show that program 2 given above is the best an attaeketlo — a brute
force search of the space of possible secrets. We presgeasthivo results. In Section 4,
we show that it is impossible to reliably leak the secret byregpam that satisfies
termination-insensitive noninterference in polynomiade in the size of the secret. In
Section 5, we show that if the secret is uniformly distrilajtden the probability of the
attacker guessing the secret after observing a polynomiaber of outputs (again, in
the size of the secret) gives only a negligible advantagegwvessing the secret without
running the program.

We discuss further examples and simple experiments witkldivCaml and SPARK
Examiner in Section 6 and conclude in Section 7.

Figure 1 schematically illustrates the main contributiohshe paper. The sound-
ness, computational and probabilistic results are promethieorems 1, 2 and 3, re-
spectively. The gray area corresponds to the attackerditaipable of observing diver-
gence/abnormal termination.

2 Semantics, attacker model and noninterference

In this section we define a suitable definition of terminatiesensitive noninterference
(TINI) which we believe suitably captures the intention®efning-style analyses, and
generalises the batch-job definitions.

Computation model We use a model of stateful computation represented as a
belled transition system consisting cdmmandgC, C’...) together with anemory
(M, M'...) performing computations which produce low observahléuts. Since
noninterference only constrains low outputs we simply domodel high outputs.

For simplicity we also assume that a memory is simply a pansisting of alow
(public) and ahigh (secret) value. We write such a memavy as a pairLH where
L denotes the low part of the memory afdtithe high part. We also refer to the re-

spective variables aé and H. We write (C, M) 4 (C', M) to denote a computa-
tion step producing a low observable outguand evolving to(C’, M’). We write

(©, M) 5
sitions (C, M) 5 (Cy, My) 2 -+ 2 (C,, M,,) wherel = ¢, .. £,, and(C, M)-5

la-

(C', M') in the usual way to denote the existence of a sequence of tran-



to meand(C’, M").(C, M> <C’ M'). We write (C, M )Tt to mean thatC, M) has

no labelled transitions. Note that we do not explicitly miattrmal termination, or dis-
tinguish stuck configurations from divergence. This is withloss of generality since
observation of termination can be modelled eaS|Iy by addpegific termlnatlon out-

puts at the end of each command. We w((ﬂaM)—> to mean(C, M> (C’, M) for

some(C’, M') such that(C’, M')11. Let « range over eithef or the symbolt, and
let @ range over sequences of the fofror /1. We write ¢ to denote the sequenée
followed by the single output

We henceforth assumed@terministidabelled transition system, i.e., (€, M) 4
(C, M) and(C, M> (C', M) then?¢ = ¢ and(C, M) = (C', M").

On modelling divergence For the purposes of this paper, we assume an attacker who
can observe divergence. We take the view that there is aaldiaundary between
observing a program’s timing behaviour and supposing thatattacker cannot even
recognise divergence (what is such an attacker assumed taddorever?).

We make a critical distinction between termination-(imsiévity in the attacker
model vs. termination-(in)sensitivity in the security dition. We observe that the two
are sometimes conflated in the literature. But unobsendiblergence does not au-
tomatically make a security definition termination-ingéws. For example, by forc-
ing all processes to diverge Huisman et al. [HWSO06] achief@ara of termination-
insensitivity in the attacker model, but their noninteefiece condition is not termination-
insensitive in the traditional sense (despite the claimth@paper): it disallows pro-
grams like(whi | e (H=0) do ski p); L:=1

Beyond batch-job noninterference As we mentioned in the introduction, BTINI is
an inappropriate notion for programs which actually pragabservable outputs even
though they do not terminate.

To define a more appropriate generalisation of batch-joimiteation-insensitive
noninterference we model thkowledgegained by an attacker who (i) knows the ini-
tial low part of the memory, and (ii) observes some (not neaely maximal) output
trace/, and (iii) knows the program and is able to make perfect deols about the
semantic behaviour of the program.

Definition 2 (Observations).Given a progranC' and a choice of low inpuk, the set
of possible observation of a run of the program is defined:

Obs(C, L) = {a | (C, LH)%}
Definition 3 (Attacker’s knowledge).The attacker’s knowledge from observiiifrom

a run of a programC' with initial low memoryL, written k(C, L, @), is defined to be
the set of all possible high memories that could have lealdbdbservation:

k(C, L, @) = {H|(C, LH)5}



This is based on the notion of knowledge defined in
[ASO7]. We include the possibility that the attacker explic ¢,
itly observes divergence, and this will be used as a worst- 000
case assumption in the following sections. 2733
Figure 2 illustrates how attacker’'s knowledge changes
with the observation of successive low outputs. The smaller
the knowledge set, the more the attacker knows. In the ex-
treme case a singleton set represents complete knowledge of
the high memory. The empty set represents inconsistendyig. 2. Change of knowl-
an impossible observation. Knowledge is also monotoni@ege with low outputs
the more you see the more you learn:

v

k(C,L,la) C k(C,L,0)

From this notion of knowledge we can build various notionsohinterference. The
strong termination-sensitive notion corresponds to theatel that at each step of out-
put the attacker learns nothing new about the initial higimmoe. This can be formu-
lated in the following way:

Definition 4 (Termination-sensitive noninterference) (' satisfies termination-sensitive
noninterference if whenevéw € Obs(C, L) thenk(C, L, o) = k(C, L, ¢).

It perhaps looks nonstandard in this definition to include éplicit observations of
divergence. In fact in this deterministic setting it turng tb make no difference to the
definition if we restrict thex to o # 1. In a nondeterministic setting there are subtle
differences as to whether one explicitly observes divecgem not (cf. [JLOO]), but this
is not the concern of the present paper.

To define termination-insensitive noninterference we makix the requirement
that nothing new is learned at each step. We allow leaks thaldarise from observing
divergence. In the case of an output step, the idea is to peonie new knowledge
when observing the next outpatbut only through the fact that thei® some output.
However nothing should be learned from the actual value wlsi©utput — observing
one value teaches us as much as observing any other value.

Definition 5 (Termination-insensitive noninterference (TINI)). ProgramC satisfies
TINI'if whenever? € Obs(C, L) thenk(C, L, ¢0) = U, k(C, L, ¢").

ThetermJ, k(C, L, 0"y deserves some extra attention. In terms of knowledge (as rep
resented by sets of possible memories), union corresporisjtinction of knowledge.

More directly, this union can be defined g8 | (C, LH>Z£;, for some?’ }.

Note that, in the definitiory, ¢’ # 1: the definition intentionally places no restric-
tions on what might be learned if an attacker were able torobs#ivergence.

The following proposition captures a number of equivalemirfulations of TINI.
For example, 1(2) says that TINI is equivalent to saying tiaat is learned from ob-
serving a specific rud is no more that what is learned by knowing that thexestsa

run of that length.

Proposition 1. The following properties of a prograd are equivalent to TINI:



1. Forall L, if 07 € Obs(C, L) and ¢’ € Obs(C, L) thenk(C, L, ¢) = k(C, L, i¢')
2. Forall L, if £ € Obs(C, L) thenk(C, L, ) = U z_ 5 k(C, L, 0')

3. Forall L, if {C, LH)£> then for all H’ either (i) (C, LH’>£>, or (ii) (C, LH’>['—>
where/’ is a prefix of/. B
4. Forall L, if ¢¢ € Obs(C, L) andtt’ € Obs(C, L) thent = ¢’

5. Forall L, the set{? | (C, LH) RN } forms a chain under the prefix ordering.

The first two variants are simple consequences of the definilihe third corresponds
to a more classic “two run” style definition; The last two cheterisations, unlike the
earlier ones, rely crucially on the assumption that contprias deterministic.

TINI subsumes BTINI It is easy to see from this proposition that TINI generalises
BTINI by considering a batch-job program to be one which peris at most one out-
put, at the point of termination. This means that for suclgpamsC' and a given’,

(| (C,LH) 4 } contains at most a single trace of one output, and hence jotman
runs which terminate they must produce the same output.

3 Enforcement

We show that a simple Denning-style static analysis (whglati the heart of both
Jif [MZZ+08] and FlowCaml [Sim03]) for a language with outputs doete&d en-
force termination-insensitive noninterference.

Consider a simple imperative language withoafiput(e) primitive that outputs the
value ofe on a low channel. The semantics of the language builds onatdrsmall-
step semantics and forms a labelled transition system, sgided in Section 2. The
most interesting semantic rule is the one for output:

e(LH) =wv
(output(e), LH) > (stop, LH)

Provided expressionevaluates te in memoryL H, the configuratiofoutput(e), LH)
makes a step with low-observable evertb a configuration with a halting command
stop and unchanged memory.

Figure 3 displays the type-based enforcement rules. Tlee draw on those of Vol-
pano et al. [VSI96]. Typing environmeiit is defined ad’(L) = low andI'(H) =
high. Typing judgement for expressions has the form : ¢. Expressiore is typed as
low F e : low only if no high variables occur ia. Typing judgement for commands
has the formpe + ¢, wherepc is the program counterthat keeps track of the con-
text. Explicit flows (as inL:=H) are prevented by the typing rule for assignment that
disallows assignments of high expressions to low varialeglicit flows (as ini f (

H=0)t hen L:=0 else L:=1 ) are prevented by thgc mechanism. It demands that
when branching on a high expression, the branches must bd typler highpe, which
prevents assignments to low variables in the branches. dlbdar output is a natural
extension of the rules by Volpano et al. It has the same caingsron the expression
and context as in the rule for assigning to a low variable.
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Fig. 3. Typing rules

We prove that the type system indeed guarantees terminiasensitive noninter-
ference (TINI).

Theorem 1. If pc F C thenC satisfies termination-insensitive noninterference.

According to the definition of TINI, whenevél € Obsy(C, L), we need to prove
k(C, L, t) = U, k(C, L, E¢"). The inclusionk(C, L, /) 2 U, k(C, L, £¢') is more
interesting, because(C, L, %) C |J,, k(C, L, #¢') is vacuous. We prove the former
inclusion by induction on the Iengtﬁ| of the sequence of low evertfgenerated by

A key property that we use in the proof is stated in the follogiemma:

Lemma 1. Suppose we have the following computation sequence gtavith a con-
figuration(Cy, Lo Hp):

<Ci, LZH’L> Zgl <Ci+17 Li+1Hi+1>, 1€ {0 Loon = ].}

If Cy is typable, andH|, € k(Co, Lo, {1 ... £,) then there exisH], ..., H/, such that
(Coy LiH!) "5 (Ciy, Lisy HY ) i € {0 ..n— 1},

The lemma guarantees that if a typable program generateguarsee of events from
some initial memory, then traces that produce the same sequieom other low-

equivalent initial memories have to agree on commands ifiguotations that follow

each low event.

4 Computational security implication

The type system of the previous section verifies that prodgtdrom the introduction

is TINI. Our aim now is to show that this program is in some sems bad as it gets —
the only way for a TINI program teeliably leak its secret — given that the attacker can
only observe a single run —is to take a non polynomial amotiie in the size of the
secret.



A refined attacker model We begin by refining our attacker model. The refinement
is to include a notion of time — which represents a bound orahgth of the output
sequences that an attacker will observe. As is usual we gxpesults in terms of the
size of the secrety, and this is threaded through our definitions accordingly.

Definition 6 (Bounded Observations).
Obsn(C,L) = {d | (C,LH)S,0 < H < 2N}

Definition 7 (Attacker knowledge (bounded version))The attacker’s knowledge from

observinga by programC' with initial low memoryL, written kx (C, L, ¢), is defined
to be the set of all high memories up to si¥ehat could have lead to that observation:

kn(C,L,d) = {H|H € k(C,L,d),0 < H < 2V}

The bounded version of attacker knowledgediffers from the knowledgé simply in
that the size of the domain @ is bounded (and known to the attacker).

Definition 8 (TINI (bounded version)). ProgramC' satisfies TINI if for allV', when-
ever/l € Obsy(C, L) thenky (C, L, 00) =, kn(C, L, 00").

The only difference from the earlier definition is that therdon of secrets is bounded
and known to the attacker — but we quantify over all such beufden we have

Lemma 2. A programC satisfies TINI (bounded version) if and only if it satisfieIT|

Proof. We prove the left to right implication — the proof for the etdirection is a sim-
pler variant. We prove the contrapositive. Supp6sgoes not satisfy TINI. Then from
proposition 1(1) there must exist two different observasit/ and /' in Obsn(C, L)
for someL which yield different knowledge sets. L&t be a witness to this difference.
Without loss of generality, assunié € k(C, L, 0¢) andH ¢ k(C, L, ¢¢'). Now take
anyN suchthatd < 2V. ClearlyH € ky(C, L, 0¢) andH & kx(C, L, ') and hence
C'is not TINI for boundN . m]

Reliable leakage We let the attacker be a pair of famili€§L,, },,>0, {tn}n>0), iN-
dexed over natural numbers € N, where for any given naturaV, Ly is a low
memory that the attacker chooses based on the size of thet §écandty — the
attacker’s running time — is the maximum time during which #itacker observes a
run for secrets of that size. We will henceforth writé,,, ¢,,} as an abbreviation for
({Ln}nZ(); {tn}nzo)-

A program leaks reliably for an attacker if he is guaranteekbarn the secret by
observing a single run of the system.

Definition 9 (Reliable leakage)Say thatC' leaks reliably for an attackefL,,, t,, } if,
for each choice oV, andH € {0,...,2" — 1} there is somé& € Obsy(C, Ly) such
that|a| < ty andky(C, Ly, d) = {H}. Say thaC leaks reliably within running time
{t,} if there exists an attacker with that running time for whicheaks reliably.



For examplefor i = 0 to H (output i) leaks reliably within running time™,
andout put Hleaks reliably within running timen.1.
We can now state the main theorem of this section:

Theorem 2. If C is TINI thenC' does not leak reliably within any polynomial running
time.

To prove the theorem we introduce the notion of knowledgestre

Knowledge tree Given a progrant' and an attackefL,,, ¢, } the set of possible ob-
servations that the attacker can make within the running tignis

Ty ={a € Obsy(C,Ly) ||d] < tn}

This set is non-empty and prefix-closed. As is standard, awszt defines a tree. This
tree is finite (finite heightja| < ty; finite branching: finite set of possible inputs
0 < H < 2% plus determinism).

Definition 10 (Knowledge tree). TheKnowledge tredor N is the tree defined b¥'y
with each noder labeled by its knowledge skt; (C, L, &@).

We look at how knowledge trees look foFf whenty = 2. (These simple examples do
not useL so it is not necessary to specifyy.)

Example 1.Consider the program

for i=1 to N (
output (H nod 2) on public_channel
H:=Hdiv 2

)

This program leaks thé/ least significant bits oH/. The knowledge tree faN when
tn = 2is presented in Figure 4(a). Here, annotations on the eddjes tvee correspond
to outputs observed by the attackgl and K, are knowledge sets of the form

K,={H|0< H <2V, the least significant bit off is a} for a € {0, 1},
K()(), K()l, Kl(), and K ; are sets of the form
K. ={H|0< H < 2", the two least significant bits df areab} for a,b € {0, 1}.

Example 2.Consider now the program
for i=0 to 2°'N-1 (
out put i on public_channel
if i =H) then
(whil e true do skip)

)

The knowledge tree for this program whef = 2 is shown in Figure 4(b). As in the
previous example, the annotations on the edges correspahe tattacker's observa-
tions. Thus, if the attacker observes divergence afteristedfiitput, then the knowledge
aboutH immediately reduces to the singleton $8}. On the other hand, observiig
as the result of the second output only shrinks the size dfrlbe/ledge set by one.

10



Koo Ko1 Kio K1 {0y {H|1<H<2V}
(a) Example 1 (b) Example 2

Fig. 4. Example knowledge trees

We are now ready to formulate some properties of knowledggstr

Lemma 3 (Disjointness)Given a progranC and attackef L,,, ¢,, }, letl e T bean
internal node in the knowledge tree with childrén, . .. f,. Let K be the knowledge
set for/ and letK; be that for childi, 1 < i < n. Then thekK; are pairwise disjoint.

Proof. Supposd? € K; andH € K, thus(C, LNH>Q"" and(C, LNH>@. SinceC'
is deterministicoy; = «;.
O

The following proposition says that for programs satisfyiriNI knowledge trees
have a specific form.

Proposition 1 If C satisfies TINI then for all choices dfy, ¢, the knowledge tree
has the form:

" More formally, for any ¢ € Obsy(C,Ly), let

% {loy, ... by} be the set{lfa | la € Obsn(C,Ly)}.

N If n > 1 thenn = 2 and exactly one of, ay is 1.

Proof. Supposey; # ft anda; # 1. Then since’ satisfies TINI we have

kn(C, L, bo) = | J{kn(C, L, 00")} = kn(C, L, (o)
Zl

By the Disjointness Lemma= j. Hence at most one; # 1. ]

This brings us to the proof of Theorem 2.

Proof. By definition, the height of the knowledge tree f§ris t . If C leaks reliably
then the knowledge tree contains (at leasY) distinct nodes, each labeldd?} for

11



some0 < H < 2V. Without loss of generality we may assume that each of these
singleton labels occurs on a leaf (otherwise we can prundréfee thus choosing a
shorter running time). By Proposition 1 there are at mi@st- 1 leaves, hencéey >

2N 1. ]

5 Probabilistic security implication

The notion of reliable leakage in the previous section igegstrong — it requires that
there is never a single case when the attacker cannot ddthuerdct value of the secret.
To obtain a result which says something about a wider clagsagframs we consider
the case when the attacker does not necessarily learn adettret all the time, and
hence must guess.

In this section we show that, for programs satisfying TINthe secrets are chosen
according to a uniform distribution, then the advantagédinaattacker gains by guess-
ing the secret based on a particular observation of the ctatipo is negligiblé (as a
function of N).

Suppose secrets < H < 2V are chosen with probability(H). Let C be a pro-
gram and le{L,,, t,) be an attacker. To guess a secret the attacker observes a-comp
tation and hence deduces a knowledge set. Fortnigt @ € T be the observation
which the attacker uses as a basis to guess the vallie 8ince knowledge is mono-
tonic — the more an attacker observes the smaller the kngelsdt — we may safely

assume the attacker chooseso be the longesti € T such that{C, Ly H)%, i.e
a is a leaf in knowledge tree (put another way, the attackes getst information by
waiting until @ with lengtht is produced orft is detected). Given a leaf € Ty
let the knowledge associated withbe Kz = kx(C, Ly, @). Given this, how can an
attacker best guess the secret? The attacker can do nothatig¢p choose from those
elements ok (C, Ly, @) which have maximal probability according o There is no
disadvantage for the attacker to choose among these detstindlly, so let us assume
that the guess is given by a functigr (@) € K.

Now, the probability tha#v is observed is just the sum of probabilities of all secrets

H such thatC, Ly, H)%, i.e.:

WK = S p(H)

H€K4

Given thata is observed, the probability that the secretdse K is “(( L. Let

Leaf C T be the set of all leaves in the knowledge tree. Then the pltﬁbabat the
attacker guesses the secret is

a R
Gy = Y plia)x == 3 plon(@)
aeLeaf @ aeLeaf

For uniformly distributed secrets, define thttacker advantage beGy — 1/2
i.e., the difference between the probability of guessirgggbcret based on the knowl-

4 A negligible function is one that approaches zero faster tha reciprocal of any polynomial.
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edge gained from observing a rudy, and a “blind” guess of the secret (which has
probability1/2V).

Theorem 3. If C satisfies TINI, and secrets are chosen according to a uniftistni-
bution, then the advantage for any polynomially-boundéacier is negligible.

Proof. Sincey is uniform then regardless ofy, u(gn (@) = 1/2V. Thus, in this case,
the probabilityG y that the attacker guesses the secret is no better than

1 |Leaf|
Z 9N T 9N

ae Leaf

We have|Leaf| < ty + 1. Thus,Gy < 258, and hence the attacker advantage
is < tx/2N. From the assumption that is polynomial in N, and the fact that the
product of a polynomial(y) and a negligible functionl(/2") is negligible, the attacker
advantage is negligible. ]

6 Practical implications

As mentioned in Section 1 existing practical security-typenguages are based on
Denning-style analysis and as a result they accept progigengrogram 2 from Sec-
tion 1. We have encoded this program in Jif, FlowCaml and SPARa to get a rough
estimate on the bandwidth that such an attack creates indhst ease.

Leaking by termination in FlowCaml Listing 1.1 presents encoding of program 2
from Section 1 in the FlowCaml security-typed language [Bin

flow llow < Istdout and Istdin < thigh
| et maxint : !llow int = 1000000000

let _ = let secret : lhigh int =
try read_int() with >0
in
for i =1 to maxint do
begin
print_int i; print_newline();
if i = secret then
while true do () done
end
done

Listing 1.1. Leaking by termination in FlowCami

Leaking by crashing in FlowCaml Similarly to divergence, one may also exploit
program crashing. In the example above we may force a staelow by replacing
thei f statement with the following snippet:

if i = secret then
let rec crash x = let _ = crash x in crash x
in crash 1

13



Leaking secrets in Jif and SPARK Ada Examples similar to the one above can be
constructed for Jif security-typed language and SPARK Ade listings of the corre-
sponding programs are given in the full version of this pdp&tSS08].

Channel capacity To get a rough estimate of how practical such an attack canebe w
have performed a small experiment. For this, we have modifiedorogram in List-
ing 1.1 in order to reduce the overhead related to printingtandard output. Instead,
the output has been replaced by a call to a function which lhasame security an-
notations agrint_int  , but instead of printing only saves the last provided vatue i
a shared memory location. Observation of divergence isémphted as a separate
polling process. This process periodically checks if tHe@#n the shared location has
changed since the last check. If the value is not changegtbisess decides that the
target program has diverged.

While the time needed to reliably leak the secret is expoakint the number of
secret bits, theate at which this leakage happens also depends on the représenta
of the secret, in particular, the time needed to check twaesfor equivalence. Not
surprisingly, the highest rate we observe is when secreisisgn integer variable that
fits into a computer word. In this case a 32-bit secret integerbe leaked in under 6
seconds on a machine with 3GHz CPU. Assuming this worstiedseve may estimate
time needed to leak a credit card number, typically contgirdi5 significant digits (50
bits), as approximately 18 1/2 days of running time. Fordargecrets like encryption
keys, that are usually at least 128 bits in their size, sugtekiorce attacks are obviously
infeasible.

7 Conclusion

We have argued that in the presence of output, justificattdienning-style analyses
based on claims that they leak “just a bit” are at best mistepdVe have presented the
first careful analysis of termination-insensitive nonifeeence — the semantic condition
at the heart of many information flow analysis tools and nuasresearch papers based
on Denning’s approach to analysing information flow projesrof programs.

We have proposed a termination-insensitive noninterfarelefinition that is suit-
able to reason about output. This definition generalizesctbgb” style notions of
termination-insensitive noninterference. The definitisrtractable, in the sense that
permissive Denning-style analyses enforce it. Althouginieation-insensitive nonin-
terference leaks more than just a bit, we have shown thaefmets that can be made
appropriately large, (i) it is not possible to leak the serzkably in polynomial running
time in the size of the secret; and (ii) the advantage thelk#tagains when guessing
the value of a uniformly distributed secret in polynomiahming time is negligible in
the size of the secret.

Not only is our formulation of TINI attractive for Dennindyse static certification,
but also for dynamic information-flow analyses. Moreoveasoning about security
based on single runs is particularly suitable for run-timenitoring approaches. On-
going work [AS08] extends TINI with powerful declassifiaatipolicies and proposes
high-precision hybrid enforcement techniques that priwvabforce these policies for
a language with dynamic code evaluation.
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Related work The only paper of which we are aware that attempts to quatetifgina-
tion leaks in Denning-style analyses is recent work of Siauitth Alpizar [SA07,Smi08].
Their work takes a less general angle of attack than ours #iirec(i) specific to a partic-
ular language (a probabilistic while language) and (ii)cfieeto a particular Denning-
style program analysis. Furthermore, it uses a batch-psireg model (no intermediate
outputs). In their setting, the probability of divergenseshown to place a quantitative
bound on the extent to which a program satisfying Dennigte stonditions can devi-
ate from probabilistic noninterference (intuitively, Wwalped programs which almost
always terminate are almost noninterfering). By contrasing based on a semantic
security property (TINI), our definitions and results ar¢ language-specific, we con-
sider deterministic systems, and the probability of dieaag plays no direct role in our
definitions or results. Moreover, the metric we consideh& guessing advantage af-
forded by termination leaks, which is not analysed in thairky(we note that guessing
advantage is considered in Section 2 of [Smi08] but not inctivetext of termination
leaks).
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