
              

City, University of London Institutional Repository

Citation: Hunt, S., Askarov, A., Sabelfeld, A. & Sands, D. (2008). Termination-insensitive 

noninterference leaks more than just a bit. Paper presented at the 13th European 
Symposium on Research in Computer Security, Oct 2008, Malaga, Spain. 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/197/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Termination-Insensitive Noninterference
Leaks More Than Just a Bit

Aslan Askarov1, Sebastian Hunt2, Andrei Sabelfeld1, and David Sands1

1 Chalmers University of Technology, Sweden
2 City University, London

Abstract. Current tools for analysing information flow in programs build upon
ideas going back to Denning’s work from the 70’s. These systems enforce an
imperfect notion of information flow which has become known as termination-
insensitive noninterference. Under this version of noninterference, information
leaks are permitted if they are transmitted purely by the program’s termination be-
haviour (i.e., whether it terminates or not). This imperfection is the price to pay
for having a security condition which is relatively liberal(e.g. allowing while-
loops whose termination may depend on the value of a secret) and easy to check.
But what is the price exactly? We argue that, in the presence of output, the price
is higher than the “one bit” often claimed informally in the literature, and ef-
fectively such programs can leak all of their secrets. In this paper we develop a
definition of termination-insensitive noninterference suitable for reasoning about
programs with outputs. We show that the definition generalises “batch-job” style
definitions from the literature and that it is indeed satisfied by a Denning-style
program analysis with output. Although more than a bit of information can be
leaked by programs satisfying this condition, we show that the best an attacker
can do is a brute-force attack, which means that the attackercannot reliably (in a
technical sense) learn the secret in polynomial time in the size of the secret. If we
further assume that secrets are uniformly distributed, we show that the advantage
the attacker gains when guessing the secret after observinga polynomial amount
of output is negligible in the size of the secret.

1 Termination-insensitive noninterference

Does the following program leak its secret?

for i = 0 to secret (Program 1)
output i on public_channel

Let us assume that the secret is a natural number. The programsimply counts from zero
up to the value of the secret, so it is clearly not secure. Whatabout the following minor
variation?

for i = 0 to secret (Program 1a)
output i on public_channel

while true do skip

The only difference here is that after performing its outputthe program goes into a non
productive infinite loop. Is it reasonable to consider program 1a to be secure if program
1 is not? Now consider the following program:



for i = 0 to maxNat ( (Program 2)
output i on public_channel
if (i = secret) then ( while true do skip)

)

Program 2 is semantically equivalent to program 1a. But it has an important differ-
ence. Program 2 is deemed acceptable by state-of-the-art information flow analysis tools
such as Jif [MZZ+08], FlowCaml [Sim03], and the SPARK Examiner [BB03,CH04].
Such tools are, at their core, built on ideas going back to Denning and Denning’s semi-
nal paper about certifying programs for secure informationflow [DD77]. The programs
1 and 1a, for example, would be rejected as insecure because they contain a “high” loop
(a loop depending of the value of a secret) which assigns to a “low” variable (a public
channel) causing animplicit information flow from secret to public.

For program 2 however, a Denning-style certification (and inparticular all the con-
crete tools mentioned above) would say that the program is secure. Such an analysis
would reason as follows: the outer loop is “low” because the loop condition does not
refer to the secret, and so the output statement is permitted. The if-expression, on the
other hand, is considered secure simply because it does not raise any exceptions or
assign to anything at all.

In order to justify Denning-style analyses, an imperfect notion of information flow
which has become known astermination-insensitive noninterference3 is widely used.
Under this version of noninterference, information leaks are permitted if they are trans-
mitted purely by the program’s termination behaviour. But what is the price to pay for
having a relatively liberal security condition? Program 2 above shows that, in the pres-
ence of output, the price is higher than the “one bit” often claimed informally in the
literature, and effectively such programs can leak all of their secrets.

Note that the same issue arises with other forms of abnormal termination than diver-
gence. As we illustrate in Section 6, a stack/heap overflow orother computation with
an uncaught runtime exception instead of the infinite loop would lead to the same prob-
lems, which suggests that we cannot reduce the termination channel to a special case
of a timing channel. The results in this paper are not limitedto any particular form of
abnormal termination, although, for simplicity, we model only divergence explicitly.

Batch-job noninterference A “batch-job” style of termination-insensitive security has
been widely used to argue the correctness of Denning-style program analyses. This style
ignores nonterminating runs and assumes that the attacker can observe only the final
state of a computation. In particular, the batch-job notionof termination-insensitive
noninterference corresponds to the correctness conditionby Volpano et al. [VSI96] for
Denning-style analysis:

Definition 1 (BTINI). A deterministic program C satisfiesbatch-job termination-insen-
sitive noninterference(BTINI) if, for any memories M and N that agree on public (low)

3 This terminology referring to insensitivity to the termination channel (for signalling informa-
tion through the termination or nontermination of a computation), seems to have been coined
in [SS99], although the concept arises already in discussions from e.g. [Fen74].

2



variables, the final memories produced by running C on M and onN also agree on
public variables (provided that both runs terminate successfully).

The above definition permits, for example:

if (secret = 0) then ( while true do skip)
public := 0

The general intuition here is that such programs leak only a little – at most one bit per
run.

Despite its popularity, the above definition is wholly unsuitable if attackers can
observe intermediate results such as outputs. For such programs we cannot turn a blind
eye when programs fail to terminate, otherwise we would deemthe following program
secure:

output secret on public_channel
while true do skip

In [VSI96], “a program that needs to ‘write output’ does so byan assignment to an ex-
plicit location”. Similar issues with inappropriate use ofbatch-job noninterference arise
elsewhere. For example, both Askarov et al. [AHS06] and Le Guernic et al. [LBJS08]
consider languages with output, but their noninterferenceconditions ignore divergent
runs. Askarov and Sabelfeld [AS07] model an attacker who observes intermediate val-
ues – but only if the program terminates (a fact also raised in[BNR08]).

A related problem is the belief that as long as the attacker “cannot observe termi-
nation” then a program leaks at most one bit. As our opening examples show, this is
clearly not the case once output is possible. For example, JFlow/Jif features outputs
but still appeals to the “one-bit” argument: “JFlow treats this error〈heap exhaustion〉
as fatal, preventing it from communicating more than a single bit of information per
program execution” [Mye99].

One solution to these problems would be to abandon the weakernotion of security
that is inherent in a Denning-style analysis. But Denning-style termination-insensitive
analyses are popular not because of the semantic notion of security that they enforce,
but because they allow more programs. Alternative strongersecurity conditions would
require either a difficult liveness analysis to show the absence of divergent behaviour,
or a draconian restriction on the programs that can be written (e.g., no loops depending
on secret guards are allowed [VS97]).

Generalising BTINI So, what is the right definition of termination-insensitivenon-
interference for languages with output, and moreover what security guarantees does it
provide?

In this paper we define a suitable notion of termination-insensitive noninterference
(Section 2), which we believe correctly captures the security property guaranteed by
Denning-style program analyses. Instead of considering only terminating runs, this no-
tion incorporates insensitivity to divergence in intermediate states. The formulation is
intuitive because it is based on a more explicit attacker model which reasons about an
attacker’s knowledge as it evolves during a run, rather thanthe more standard “two run”
style presentations of noninterference properties. We substantiate our claim that this is a

3



Fig. 1. Our results on termination-insensitive noninterference (TINI)

suitable condition for a Denning-style analysis by showingthat a formalisation [VSI96]
of Denning’s analysis for a language with output satisfies this condition (Section 3).

We then show that program 2 given above is the best an attackercan do – a brute
force search of the space of possible secrets. We present this as two results. In Section 4,
we show that it is impossible to reliably leak the secret by a program that satisfies
termination-insensitive noninterference in polynomial time in the size of the secret. In
Section 5, we show that if the secret is uniformly distributed, then the probability of the
attacker guessing the secret after observing a polynomial number of outputs (again, in
the size of the secret) gives only a negligible advantage over guessing the secret without
running the program.

We discuss further examples and simple experiments with Jif, FlowCaml and SPARK
Examiner in Section 6 and conclude in Section 7.

Figure 1 schematically illustrates the main contributionsof the paper. The sound-
ness, computational and probabilistic results are proved in Theorems 1, 2 and 3, re-
spectively. The gray area corresponds to the attacker that is capable of observing diver-
gence/abnormal termination.

2 Semantics, attacker model and noninterference

In this section we define a suitable definition of termination-insensitive noninterference
(TINI) which we believe suitably captures the intentions ofDenning-style analyses, and
generalises the batch-job definitions.

Computation model We use a model of stateful computation represented as a la-
belled transition system consisting ofcommands(C, C′. . . ) together with amemory
(M, M ′. . . ) performing computations which produce low observableoutputs. Since
noninterference only constrains low outputs we simply do not model high outputs.

For simplicity we also assume that a memory is simply a pair consisting of alow
(public) and ahigh (secret) value. We write such a memoryM as a pairLH where
L denotes the low part of the memory andH the high part. We also refer to the re-

spective variables asL andH . We write 〈C, M〉
ℓ
→ 〈C′, M ′〉 to denote a computa-

tion step producing a low observable outputℓ and evolving to〈C′, M ′〉. We write

〈C, M〉
~ℓ
→ 〈C′, M ′〉 in the usual way to denote the existence of a sequence of tran-

sitions〈C, M〉
ℓ1→ 〈C1, M1〉

ℓ2→ · · ·
ℓn→ 〈Cn, Mn〉 where~ℓ = ℓ1, . . . , ℓn, and〈C, M〉

~ℓ
→

4



to mean∃〈C′, M ′〉.〈C, M〉
~ℓ
→ 〈C′, M ′〉. We write〈C, M〉⇑ to mean that〈C, M〉 has

no labelled transitions. Note that we do not explicitly model normal termination, or dis-
tinguish stuck configurations from divergence. This is without loss of generality since
observation of termination can be modelled easily by addingspecific termination out-

puts at the end of each command. We write〈C, M〉
~ℓ⇑
→ to mean〈C, M〉

~ℓ
→〈C′, M ′〉 for

some〈C′, M ′〉 such that〈C′, M ′〉⇑. Let α range over eitherℓ or the symbol⇑, and
let ~α range over sequences of the form~ℓ or ~ℓ⇑. We write~ℓℓ to denote the sequence~ℓ
followed by the single outputℓ.

We henceforth assume adeterministiclabelled transition system, i.e., if〈C, M〉
ℓ
→

〈C, M〉 and〈C, M〉
ℓ′

→ 〈C′, M ′〉 thenℓ = ℓ′ and〈C, M〉 = 〈C′, M ′〉.

On modelling divergence For the purposes of this paper, we assume an attacker who
can observe divergence. We take the view that there is a natural boundary between
observing a program’s timing behaviour and supposing that the attacker cannot even
recognise divergence (what is such an attacker assumed to do: wait forever?).

We make a critical distinction between termination-(in)sensitivity in the attacker
model vs. termination-(in)sensitivity in the security condition. We observe that the two
are sometimes conflated in the literature. But unobservabledivergence does not au-
tomatically make a security definition termination-insensitive. For example, by forc-
ing all processes to diverge Huisman et al. [HWS06] achieve aform of termination-
insensitivity in the attacker model, but their noninterference condition is not termination-
insensitive in the traditional sense (despite the claims inthe paper): it disallows pro-
grams like( while (H=0) do skip); L:=1 .

Beyond batch-job noninterference As we mentioned in the introduction, BTINI is
an inappropriate notion for programs which actually produce observable outputs even
though they do not terminate.

To define a more appropriate generalisation of batch-job termination-insensitive
noninterference we model theknowledgegained by an attacker who (i) knows the ini-
tial low part of the memory, and (ii) observes some (not necessarily maximal) output
trace~ℓ, and (iii) knows the program and is able to make perfect deductions about the
semantic behaviour of the program.

Definition 2 (Observations).Given a programC and a choice of low inputL, the set
of possible observation of a run of the program is defined:

Obs(C, L) = {~α | 〈C, LH〉
~α
→}

Definition 3 (Attacker’s knowledge).The attacker’s knowledge from observing~α from
a run of a programC with initial low memoryL, written k(C, L, ~α), is defined to be
the set of all possible high memories that could have lead to that observation:

k(C, L, ~α) = {H |〈C, LH〉
~α
→}

5



r

rr

6

-

k

~ℓ

ℓ1

ℓ2 ℓ3

Fig. 2.Change of knowl-
edge with low outputs

This is based on the notion of knowledge defined in
[AS07]. We include the possibility that the attacker explic-
itly observes divergence, and this will be used as a worst-
case assumption in the following sections.

Figure 2 illustrates how attacker’s knowledge changes
with the observation of successive low outputs. The smaller
the knowledge set, the more the attacker knows. In the ex-
treme case a singleton set represents complete knowledge of
the high memory. The empty set represents inconsistency –
an impossible observation. Knowledge is also monotonic –
the more you see the more you learn:

k(C, L, ~ℓα) ⊆ k(C, L, ~ℓ)

From this notion of knowledge we can build various notions ofnoninterference. The
strong termination-sensitive notion corresponds to the demand that at each step of out-
put the attacker learns nothing new about the initial high memory. This can be formu-
lated in the following way:

Definition 4 (Termination-sensitive noninterference).C satisfies termination-sensitive
noninterference if whenever~ℓα ∈ Obs(C, L) thenk(C, L, ~ℓα) = k(C, L, ~ℓ).

It perhaps looks nonstandard in this definition to include the explicit observations of
divergence. In fact in this deterministic setting it turns out to make no difference to the
definition if we restrict theα to α 6= ⇑. In a nondeterministic setting there are subtle
differences as to whether one explicitly observes divergence or not (cf. [JL00]), but this
is not the concern of the present paper.

To define termination-insensitive noninterference we mustrelax the requirement
that nothing new is learned at each step. We allow leaks that would arise from observing
divergence. In the case of an output step, the idea is to permit some new knowledge
when observing the next outputℓ, but only through the fact that thereis some output.
However nothing should be learned from the actual value which is output – observing
one value teaches us as much as observing any other value.

Definition 5 (Termination-insensitive noninterference (TINI)). ProgramC satisfies
TINI if whenever~ℓℓ ∈ Obs(C, L) thenk(C, L, ~ℓℓ) =

⋃
ℓ′ k(C, L, ~ℓℓ′).

The term
⋃

ℓ′ k(C, L, ~ℓℓ′) deserves some extra attention. In terms of knowledge (as rep-
resented by sets of possible memories), union corresponds to disjunction of knowledge.

More directly, this union can be defined as{H | 〈C, LH〉
~ℓℓ′

→, for someℓ′ }.
Note that, in the definition,ℓ, ℓ′ 6= ⇑: the definition intentionally places no restric-

tions on what might be learned if an attacker were able to observe divergence.
The following proposition captures a number of equivalent formulations of TINI.

For example, 1(2) says that TINI is equivalent to saying thatwhat is learned from ob-
serving a specific run~ℓ is no more that what is learned by knowing that thereexistsa
run of that length.

Proposition 1. The following properties of a programC are equivalent to TINI:

6



1. For all L, if ~ℓℓ ∈ Obs(C, L) and~ℓℓ′ ∈ Obs(C, L) thenk(C, L, ~ℓℓ) = k(C, L, ~ℓℓ′)

2. For all L, if ~ℓ ∈ Obs(C, L) thenk(C, L, ~ℓ) =
⋃

|~ℓ|=|~ℓ′| k(C, L, ~ℓ′)

3. For all L, if 〈C, LH〉
~ℓ
→ then for allH ′ either (i) 〈C, LH ′〉

~ℓ
→, or (ii) 〈C, LH ′〉

~ℓ′⇑
→

where~ℓ′ is a prefix of~ℓ.
4. For all L, if ~ℓℓ ∈ Obs(C, L) and~ℓℓ′ ∈ Obs(C, L) thenℓ = ℓ′

5. For all L, the set{~ℓ | 〈C, LH〉
~ℓ
→} forms a chain under the prefix ordering.

The first two variants are simple consequences of the definition. The third corresponds
to a more classic “two run” style definition; The last two characterisations, unlike the
earlier ones, rely crucially on the assumption that computation is deterministic.

TINI subsumes BTINI It is easy to see from this proposition that TINI generalises
BTINI by considering a batch-job program to be one which performs at most one out-
put, at the point of termination. This means that for such programsC and a givenL,

{~ℓ | 〈C, LH〉
~ℓ
→ } contains at most a single trace of one output, and hence for any two

runs which terminate they must produce the same output.

3 Enforcement

We show that a simple Denning-style static analysis (which is at the heart of both
Jif [MZZ+08] and FlowCaml [Sim03]) for a language with outputs does indeed en-
force termination-insensitive noninterference.

Consider a simple imperative language with anoutput(e) primitive that outputs the
value ofe on a low channel. The semantics of the language builds on standard small-
step semantics and forms a labelled transition system, as described in Section 2. The
most interesting semantic rule is the one for output:

e(LH) = v

〈output(e), LH〉
v
→ 〈stop, LH〉

Provided expressione evaluates tov in memoryLH , the configuration〈output(e), LH〉
makes a step with low-observable eventv to a configuration with a halting command
stop and unchanged memory.

Figure 3 displays the type-based enforcement rules. The rules draw on those of Vol-
pano et al. [VSI96]. Typing environmentΓ is defined asΓ (L) = low andΓ (H) =
high . Typing judgement for expressions has the form⊢ e : ℓ. Expressione is typed as
low ⊢ e : low only if no high variables occur ine. Typing judgement for commands
has the formpc ⊢ c, wherepc is the program counterthat keeps track of the con-
text. Explicit flows (as inL:=H ) are prevented by the typing rule for assignment that
disallows assignments of high expressions to low variables. Implicit flows (as inif (

H=0) then L:=0 else L:=1 ) are prevented by thepc mechanism. It demands that
when branching on a high expression, the branches must be typed under highpc, which
prevents assignments to low variables in the branches. The rule for output is a natural
extension of the rules by Volpano et al. It has the same constraints on the expression
and context as in the rule for assigning to a low variable.

7



⊢ n : ℓ
Γ (x) = ℓ ℓ ⊑ ℓ

′

⊢ x : ℓ
′

⊢ e : ℓ ⊢ e
′ : ℓ

⊢ e op e
′ : ℓ

pc ⊢ skip
⊢ e : ℓ ℓ ⊔ pc ⊑ Γ (x)

pc ⊢ x := e

pc ⊢ C1 pc ⊢ C2

pc ⊢ C1; C2

⊢ e : ℓ ℓ ⊔ pc ⊢ C1 ℓ ⊔ pc ⊢ C2

pc ⊢ if e then C1 else C2

⊢ e : ℓ ℓ ⊔ pc ⊢ C

pc ⊢ while e do C

⊢ e : low

low ⊢ output(e)

Fig. 3.Typing rules

We prove that the type system indeed guarantees termination-insensitive noninter-
ference (TINI).

Theorem 1. If pc ⊢ C thenC satisfies termination-insensitive noninterference.

According to the definition of TINI, whenever~ℓℓ ∈ ObsN (C, L), we need to prove
k(C, L, ~ℓℓ) =

⋃
ℓ′ k(C, L, ~ℓℓ′). The inclusionk(C, L, ~ℓℓ) ⊇

⋃
ℓ′ k(C, L, ~ℓℓ′) is more

interesting, becausek(C, L, ~ℓℓ) ⊆
⋃

ℓ′ k(C, L, ~ℓℓ′) is vacuous. We prove the former
inclusion by induction on the length|~ℓ| of the sequence of low events~ℓ generated byC.
A key property that we use in the proof is stated in the following lemma:

Lemma 1. Suppose we have the following computation sequence starting with a con-
figuration〈C0, L0H0〉:

〈Ci, LiHi〉
ℓi+1

→ 〈Ci+1, Li+1Hi+1〉, i ∈ {0 . . . n − 1}.

If C0 is typable, andH ′
0 ∈ k(C0, L0, ℓ1 . . . ℓn) then there existH ′

1, . . . , H
′
n such that

〈Ci, LiH
′
i〉

ℓi+1

→ 〈Ci+1, Li+1H
′
i+1〉, i ∈ {0 . . . n − 1}.

The lemma guarantees that if a typable program generates a sequence of events from
some initial memory, then traces that produce the same sequence from other low-
equivalent initial memories have to agree on commands in configurations that follow
each low event.

4 Computational security implication

The type system of the previous section verifies that program2 from the introduction
is TINI. Our aim now is to show that this program is in some sense as bad as it gets –
the only way for a TINI program toreliably leak its secret – given that the attacker can
only observe a single run – is to take a non polynomial amount of time in the size of the
secret.

8



A refined attacker model We begin by refining our attacker model. The refinement
is to include a notion of time – which represents a bound on thelength of the output
sequences that an attacker will observe. As is usual we express results in terms of the
size of the secret,N , and this is threaded through our definitions accordingly.

Definition 6 (Bounded Observations).

ObsN (C, L) = {~α | 〈C, LH〉
~α
→, 0 ≤ H < 2N}

Definition 7 (Attacker knowledge (bounded version)).The attacker’s knowledge from
observing~α by programC with initial low memoryL, written kN (C, L, ~ℓ), is defined
to be the set of all high memories up to sizeN that could have lead to that observation:

kN (C, L, ~α) = {H |H ∈ k(C, L, ~α), 0 ≤ H < 2N}

The bounded version of attacker knowledgekN differs from the knowledgek simply in
that the size of the domain ofH is bounded (and known to the attacker).

Definition 8 (TINI (bounded version)). ProgramC satisfies TINI if for allN , when-
ever~ℓℓ ∈ ObsN (C, L) thenkN (C, L, ~ℓℓ) =

⋃
ℓ′ kN (C, L, ~ℓℓ′).

The only difference from the earlier definition is that the domain of secrets is bounded
and known to the attacker – but we quantify over all such bounds. Then we have

Lemma 2. A programC satisfies TINI (bounded version) if and only if it satisfies TINI.

Proof. We prove the left to right implication – the proof for the other direction is a sim-
pler variant. We prove the contrapositive. SupposeC does not satisfy TINI. Then from
proposition 1(1) there must exist two different observations~ℓℓ and~ℓℓ′ in ObsN (C, L)
for someL which yield different knowledge sets. LetH be a witness to this difference.
Without loss of generality, assumeH ∈ k(C, L, ~ℓℓ) andH 6∈ k(C, L, ~ℓℓ′). Now take
anyN such thatH < 2N . ClearlyH ∈ kN (C, L, ~ℓℓ) andH 6∈ kN (C, L, ~ℓℓ′) and hence
C is not TINI for boundN . 2

Reliable leakage We let the attacker be a pair of families({Ln}n≥0, {tn}n≥0), in-
dexed over natural numbersn ∈ N, where for any given naturalN , LN is a low
memory that the attacker chooses based on the size of the secret N , and tN – the
attacker’s running time – is the maximum time during which the attacker observes a
run for secrets of that size. We will henceforth write{Ln, tn} as an abbreviation for
({Ln}n≥0, {tn}n≥0).

A program leaks reliably for an attacker if he is guaranteed to learn the secret by
observing a single run of the system.

Definition 9 (Reliable leakage).Say thatC leaks reliably for an attacker{Ln, tn} if,
for each choice ofN , andH ∈ {0, . . . , 2N − 1} there is some~α ∈ ObsN (C, LN ) such
that |~α| ≤ tN andkN (C, LN , ~α) = {H}. Say thatC leaks reliably within running time
{tn} if there exists an attacker with that running time for whichC leaks reliably.

9



For example,for i = 0 to H (output i) leaks reliably within running time2n,
andoutput H leaks reliably within running timeλn.1.

We can now state the main theorem of this section:

Theorem 2. If C is TINI thenC does not leak reliably within any polynomial running
time.

To prove the theorem we introduce the notion of knowledge trees.

Knowledge tree Given a programC and an attacker{Ln, tn} the set of possible ob-
servations that the attacker can make within the running time tN is

TN = {~α ∈ ObsN (C, LN ) | |~α| ≤ tN}

This set is non-empty and prefix-closed. As is standard, sucha set defines a tree. This
tree is finite (finite height:|~α| ≤ tN ; finite branching: finite set of possible inputs
0 ≤ H < 2N plus determinism).

Definition 10 (Knowledge tree).TheKnowledge treefor N is the tree defined byTN

with each node~α labeled by its knowledge setkN (C, L, ~α).

We look at how knowledge trees look forN whentN = 2. (These simple examples do
not useL so it is not necessary to specifyLN .)

Example 1.Consider the program

for i = 1 to N (
output (H mod 2) on public_channel
H := H div 2

)

This program leaks theN least significant bits ofH . The knowledge tree forN when
tN = 2 is presented in Figure 4(a). Here, annotations on the edges of the tree correspond
to outputs observed by the attacker.K0 andK1 are knowledge sets of the form

Ka = {H | 0 ≤ H < 2N , the least significant bit ofH is a} for a ∈ {0, 1},

K00, K01, K10, andK11 are sets of the form

Kab = {H | 0 ≤ H < 2N , the two least significant bits ofH areab} for a, b ∈ {0, 1}.

Example 2.Consider now the program

for i=0 to 2ˆN-1 (
output i on public_channel
if (i = H) then

( while true do skip)
)

The knowledge tree for this program whentN = 2 is shown in Figure 4(b). As in the
previous example, the annotations on the edges correspond to the attacker’s observa-
tions. Thus, if the attacker observes divergence after the first output, then the knowledge
aboutH immediately reduces to the singleton set{0}. On the other hand, observing1
as the result of the second output only shrinks the size of theknowledge set by one.

10



0 1

K0

0 1

K1

0 1

K00 K01 K10 K11

(a) Example 1

0

⇑ 1

{0} {H | 1 ≤ H < 2N}

(b) Example 2

Fig. 4. Example knowledge trees

We are now ready to formulate some properties of knowledge trees.

Lemma 3 (Disjointness).Given a programC and attacker{Ln, tn}, let~ℓ ∈ TN be an
internal node in the knowledge tree with children~ℓα1, . . . ~ℓαn. LetK be the knowledge
set for~ℓ and letKi be that for childi, 1 ≤ i ≤ n. Then theKi are pairwise disjoint.

Proof. SupposeH ∈ Ki andH ∈ Kj, thus〈C, LNH〉
~ℓαi→ and〈C, LNH〉

~ℓαj
→ . SinceC

is deterministic,αi = αj .
2

The following proposition says that for programs satisfying TINI knowledge trees
have a specific form.

Proposition 1 If C satisfies TINI then for all choices ofLN , tN , the knowledge tree
has the form:

More formally, for any ~ℓ ∈ ObsN (C, LN ), let
{~ℓα1, . . . , ~ℓαn} be the set{~ℓα | ~ℓα ∈ ObsN (C, LN )}.
If n > 1 thenn = 2 and exactly one ofα1, α2 is ⇑.

Proof. Supposeαi 6= ⇑ andαj 6= ⇑. Then sinceC satisfies TINI we have

kN (C, L, ~ℓαi) =
⋃

ℓ′

{kN (C, L, ~ℓℓ′)} = kN (C, L, ~ℓαj)

By the Disjointness Lemmai = j. Hence at most oneαi 6= ⇑. 2

This brings us to the proof of Theorem 2.

Proof. By definition, the height of the knowledge tree forN is tN . If C leaks reliably
then the knowledge tree contains (at least)2N distinct nodes, each labeled{H} for

11



some0 ≤ H < 2N . Without loss of generality we may assume that each of these
singleton labels occurs on a leaf (otherwise we can prune thetree, thus choosing a
shorter running time). By Proposition 1 there are at mosttN + 1 leaves, hencetN ≥
2N − 1. 2

5 Probabilistic security implication

The notion of reliable leakage in the previous section is quite strong – it requires that
there is never a single case when the attacker cannot deduce the exact value of the secret.
To obtain a result which says something about a wider class ofprograms we consider
the case when the attacker does not necessarily learn all thesecret all the time, and
hence must guess.

In this section we show that, for programs satisfying TINI, if the secrets are chosen
according to a uniform distribution, then the advantage that an attacker gains by guess-
ing the secret based on a particular observation of the computation is negligible4 (as a
function ofN ).

Suppose secrets0 ≤ H < 2N are chosen with probabilityµ(H). Let C be a pro-
gram and let(Ln, tn) be an attacker. To guess a secret the attacker observes a compu-
tation and hence deduces a knowledge set. For anyH , let ~α ∈ TN be the observation
which the attacker uses as a basis to guess the value ofH . Since knowledge is mono-
tonic – the more an attacker observes the smaller the knowledge set – we may safely

assume the attacker chooses~α to be the longest~α ∈ TN such that〈C, LNH〉
~α
→, i.e.

~α is a leaf in knowledge tree (put another way, the attacker gets most information by
waiting until ~α with length tN is produced or⇑ is detected). Given a leaf~α ∈ TN

let the knowledge associated with~α beK~α = kN (C, LN , ~α). Given this, how can an
attacker best guess the secret? The attacker can do no betterthan to choose from those
elements ofkN (C, LN , ~α) which have maximal probability according toµ. There is no
disadvantage for the attacker to choose among these deterministically, so let us assume
that the guess is given by a functiongN(~α) ∈ K~α.

Now, the probability that~α is observed is just the sum of probabilities of all secrets

H such that〈C, LN , H〉
~α
→, i.e.:

µ(K~α) =
∑

H′∈K~α

µ(H ′)

Given that~α is observed, the probability that the secret isH ∈ K~α is µ(H)
µ(K~α) . Let

Leaf ⊆ TN be the set of all leaves in the knowledge tree. Then the probability that the
attacker guesses the secret is

GN =
∑

~α∈Leaf

µ(K~α) ×
µ(gN (~α))

µ(K~α)
=

∑

~α∈Leaf

µ(gN (~α))

For uniformly distributed secrets, define theattacker advantageto beGN − 1/2N

i.e., the difference between the probability of guessing the secret based on the knowl-

4 A negligible function is one that approaches zero faster than the reciprocal of any polynomial.

12



edge gained from observing a run,GN , and a “blind” guess of the secret (which has
probability1/2N ).

Theorem 3. If C satisfies TINI, and secrets are chosen according to a uniformdistri-
bution, then the advantage for any polynomially-bounded attacker is negligible.

Proof. Sinceµ is uniform then regardless ofgN , µ(gN (~α)) = 1/2N . Thus, in this case,
the probabilityGN that the attacker guesses the secret is no better than

∑

~α∈Leaf

1

2N
=

|Leaf |

2N

We have|Leaf | ≤ tN + 1. Thus,GN ≤ tN +1
2N , and hence the attacker advantage

is ≤ tN/2N . From the assumption thattN is polynomial inN , and the fact that the
product of a polynomial (tN ) and a negligible function (1/2N ) is negligible, the attacker
advantage is negligible. 2

6 Practical implications

As mentioned in Section 1 existing practical security-typed languages are based on
Denning-style analysis and as a result they accept programslike program 2 from Sec-
tion 1. We have encoded this program in Jif, FlowCaml and SPARK Ada to get a rough
estimate on the bandwidth that such an attack creates in the worst case.

Leaking by termination in FlowCaml Listing 1.1 presents encoding of program 2
from Section 1 in the FlowCaml security-typed language [Sim03].

flow !low < !stdout and !stdin < !high
let maxInt : !low int = 1000000000

let _ = let secret : !high int =
try read_int() with _ -> 0

in
for i = 1 to maxInt do

begin
print_int i; print_newline();
if i = secret then

while true do () done
end

done

Listing 1.1. Leaking by termination in FlowCaml

Leaking by crashing in FlowCaml Similarly to divergence, one may also exploit
program crashing. In the example above we may force a stack overflow by replacing
theif statement with the following snippet:

if i = secret then
let rec crash x = let _ = crash x in crash x
in crash 1

13



Leaking secrets in Jif and SPARK Ada Examples similar to the one above can be
constructed for Jif security-typed language and SPARK Ada.The listings of the corre-
sponding programs are given in the full version of this paper[AHSS08].

Channel capacity To get a rough estimate of how practical such an attack can be we
have performed a small experiment. For this, we have modifiedthe program in List-
ing 1.1 in order to reduce the overhead related to printing onstandard output. Instead,
the output has been replaced by a call to a function which has the same security an-
notations asprint_int , but instead of printing only saves the last provided value in
a shared memory location. Observation of divergence is implemented as a separate
polling process. This process periodically checks if the value in the shared location has
changed since the last check. If the value is not changed thisprocess decides that the
target program has diverged.

While the time needed to reliably leak the secret is exponential in the number of
secret bits, therate at which this leakage happens also depends on the representation
of the secret, in particular, the time needed to check two values for equivalence. Not
surprisingly, the highest rate we observe is when secret is just an integer variable that
fits into a computer word. In this case a 32-bit secret integercan be leaked in under 6
seconds on a machine with 3GHz CPU. Assuming this worst-caserate we may estimate
time needed to leak a credit card number, typically containing 15 significant digits (50
bits), as approximately 18 1/2 days of running time. For larger secrets like encryption
keys, that are usually at least 128 bits in their size, such brute-force attacks are obviously
infeasible.

7 Conclusion

We have argued that in the presence of output, justificationsof Denning-style analyses
based on claims that they leak “just a bit” are at best misleading. We have presented the
first careful analysis of termination-insensitive noninterference – the semantic condition
at the heart of many information flow analysis tools and numerous research papers based
on Denning’s approach to analysing information flow properties of programs.

We have proposed a termination-insensitive noninterference definition that is suit-
able to reason about output. This definition generalizes “batch-job” style notions of
termination-insensitive noninterference. The definitionis tractable, in the sense that
permissive Denning-style analyses enforce it. Although termination-insensitive nonin-
terference leaks more than just a bit, we have shown that for secrets that can be made
appropriately large, (i) it is not possible to leak the secret reliably in polynomial running
time in the size of the secret; and (ii) the advantage the attacker gains when guessing
the value of a uniformly distributed secret in polynomial running time is negligible in
the size of the secret.

Not only is our formulation of TINI attractive for Denning-style static certification,
but also for dynamic information-flow analyses. Moreover, reasoning about security
based on single runs is particularly suitable for run-time monitoring approaches. On-
going work [AS08] extends TINI with powerful declassification policies and proposes
high-precision hybrid enforcement techniques that provably enforce these policies for
a language with dynamic code evaluation.

14



Related work The only paper of which we are aware that attempts to quantifytermina-
tion leaks in Denning-style analyses is recent work of Smithand Alpı́zar [SA07,Smi08].
Their work takes a less general angle of attack than ours since it is (i) specific to a partic-
ular language (a probabilistic while language) and (ii) specific to a particular Denning-
style program analysis. Furthermore, it uses a batch-processing model (no intermediate
outputs). In their setting, the probability of divergence is shown to place a quantitative
bound on the extent to which a program satisfying Denning-style conditions can devi-
ate from probabilistic noninterference (intuitively, well-typed programs which almost
always terminate are almost noninterfering). By contrast,being based on a semantic
security property (TINI), our definitions and results are not language-specific, we con-
sider deterministic systems, and the probability of divergence plays no direct role in our
definitions or results. Moreover, the metric we consider is the guessing advantage af-
forded by termination leaks, which is not analysed in their work (we note that guessing
advantage is considered in Section 2 of [Smi08] but not in thecontext of termination
leaks).

AcknowledgementsThis work was supported by EPSRC research grant EP/C009746/1
Quantitative Information Flow, the Swedish research agencies SSF, Vinnova, VR and by
the Information Society Technologies programme of the European Commission under
the IST-2005-015905 MOBIUS project.

References

[AHS06] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows. InProc.
Symp. on Static Analysis, LNCS, pages 353–369. Springer-Verlag, August 2006.

[AHSS08] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninter-
ference leaks more than just a bit. Technical report, Chalmers University of Tech-
nology, July 2008. Located athttp://www.cs.chalmers.se/ ˜ aaskarov/
esorics08full.pdf .

[AS07] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption
and key release policies. InProc. IEEE Symp. on Security and Privacy, pages 207–
221, May 2007.

[AS08] A. Askarov and A. Sabelfeld. Tight enforcement of flexible information-release poli-
cies for dynamic languages. Draft, July 2008.

[BB03] J. Barnes and JG Barnes.High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2003.

[BNR08] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification policies
and modular static enforcement. InProc. IEEE Symp. on Security and Privacy, pages
339–353, May 2008.

[CH04] R. Chapman and A. Hilton. Enforcing security and safety models with an information
flow analysis tool.ACM SIGAda Ada Letters, 24(4):39–46, 2004.

[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Comm. of the ACM, 20(7):504–513, July 1977.

[Fen74] J. S. Fenton. Memoryless subsystems.Computing J., 17(2):143–147, May 1974.
[HWS06] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation of obser-

vational determinism. InProc. IEEE Computer Security Foundations Workshop, July
2006.

15



[JL00] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.Science
of Computer Programming, 37(1–3):113–138, 2000.

[LBJS08] G. Le Guernic, A. Banerjee, T. Jensen, and D. Schmidt. Automata-based confidential-
ity monitoring. InProc. Asian Computing Science Conference (ASIAN’06). Revised
Selected Papers., volume 4435 ofLNCS, pages 75–89. Springer-Verlag, January 2008.

[Mye99] A. C. Myers. JFlow: Practical mostly-static information flow control. InProc. ACM
Symp. on Principles of Programming Languages, pages 228–241, January 1999.

[MZZ+08] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java informa-
tion flow. Software release. Located athttp://www.cs.cornell.edu/jif ,
July 2001–2008.

[SA07] Geoffrey Smith and Rafael Alpı́zar. Fast probabilistic simulation, nontermination,
and secure information flow. InPLAS ’07: Proceedings of the 2007 workshop on Pro-
gramming languages and analysis for security, pages 67–72, New York, NY, USA,
2007. ACM.

[Sim03] V. Simonet. The Flow Caml system. Software release.Located athttp://
cristal.inria.fr/ ˜ simonet/soft/flowcaml/ , July 2003.

[Smi08] Geoffrey Smith. Adversaries and information leaks. In TGC 2007: Revised Selected
Papers, Trustworthy Global Computing, Third Symposium, Sophia-Antipolis, France,
November 5-6, 2007, volume 4912 ofLNCS, pages 383–400. Springer-Verlag, 2008.

[SS99] A. Sabelfeld and D. Sands. A per model of secure information flow in sequential
programs. InProc. European Symp. on Programming, volume 1576 ofLNCS, pages
40–58. Springer-Verlag, March 1999.

[VS97] D. Volpano and G. Smith. Eliminating covert flows withminimum typings. Proc.
IEEE Computer Security Foundations Workshop, pages 156–168, June 1997.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
J. Computer Security, 4(3):167–187, 1996.

16


