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Abstract

We make a further step in the analytically exact quantization of spinning string states

in semiclassical approximation, by evaluating the exact one-loop partition function for

a class of two-spin string solutions for which quadratic fluctuations form a non-trivial

system of coupled modes. This is the case of a folded string in the SU(2) sector, in the

limit described by a quantum Landau-Lifshitz model. The same applies to the full bosonic

sector of fluctuations over the folded spinning string in AdS5 with an angular momentum

J in S5. Fluctuations are governed by a special class of fourth-order differential operators,

with coefficients being meromorphic functions on the torus, which we are able to solve

exactly.
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1 Introduction

The perturbative approach to string quantization based on semiclassical analysis has proven

to be an extremely useful tool for investigating the structure of the AdS/CFT correspon-

dence [1]. Beyond the leading, classical order, direct 2d quantum field theory computations of

string energies are - in general - difficult. An exception is the case of rational rigid string solu-

tions, so-called “homogeneous” [2–4] in that derivatives of the background fields are constant,
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i.e. independent on (τ, σ) 3. In this case the semiclassical analysis is highly simplified since

the quadratic fluctuation Lagrangian turns out to have also constant coefficients. Then, the

operator determinants entering the one-loop partition function are expressed in terms of char-

acteristic frequencies which are relatively simple to calculate, and the computation of quantum

corrections can be extended to two-loop order 4 by standard diagrammatic methods [8, 9] 5.

Next to simplest cases are “non-homogenous” configurations such as rigid spinning string

elliptic solutions, the one-spin folded string solution rotating in AdS5 [15, 16] - being a well-

known example. This is a stationary soliton problem for which the classical equations of

motion consists in a one-dimensional sinh-Gordon equation. In a static gauge where fluctu-

ations along the worldsheet directions are set to zero, fluctuations turn out to be governed

by differential operators of a single-gap Lamé type [17]. Their determinants can be derived

explicitly, leading to an analytically closed integral expression for the full one-loop string par-

tition function. Even if the latter is a complicated integral that is not known how to solve

explicitly, a merit of this analysis is to facilitate the investigation of various regimes of interest

(BPS or far-from-BPS) furnishing a “spectroscopy” much more precise than the one obtained

via a perturbative treatment of the fluctuation interactions 6. This kind of analysis has been

then successfully applied also to the single-spin/parameter case of pulsating string solutions in

AdS5 and S5 [19], to open string duals of space-like Wilson loops describing quark-antiquark

systems [20] or the so-called [21] Bremsstrahlung function [22] and to the case of backgrounds

relevant for the AdS4/CFT3 and AdS3/CFT2 correspondence [23].

In the very general case of non-homogenous solutions with more than one spin, or of single-

spin solutions [15, 16] in conformal gauge where bosonic fluctuations couple via the Virasoro

constraints 7, the evaluation of the classical energy requires the diagonalization of highly non-

trivial second-order matrix 2d differential operators whose coefficients have a complicated

coordinate-dependence. The same is true for fluctuations over open string solutions for which

the corresponding cusped Wilson loops have an expectation value which depends on the cusp

angle and on another internal angle [22,23]. In all these cases the evaluation of the spectrum

has been performed setting to zero one of the spins/parameters involved in the problem -

thus falling back in the category discussed above - or resorting to perturbation theory in

them [24]. In the case of the single-spin string, it has been possible to evaluate the exact

one-loop partition function only in static gauge, where mixing is absent, the equivalence with

the partition function in conformal gauge being only shown numerically [17].

3Non homogenous solutions can become homogeneous in certain limits, as for the folded string with spin S

in AdS5 and momentum J in S5 in the limit S = S√
λ
→∞ with J√

λ log S
fixed [5,6]. Similarly, in certain cases

one can arrange to make the coefficients in the fluctuation Lagrangian constant [7].
4Comments on higher-loop calculations in such homogenous case are in [8].
5Another way in which sigma-model perturbation theory has been importantly used in the study of the

integrable structure underlying the AdS/CFT system is the calculation of the worldsheet S-matrix, where

results exists at tree-level [10], one-loop [11–13] and two-loop order [12] (for further references see [14]).
6See for example, in the large spin limit, the detection of turning-point contributions for the energy of a

single-spin string rotating in AdS5 [17] which are missed by naive perturbation theory, or the possibility to

check at high orders the peculiar reciprocity-respecting structure of subleading corrections [18].
7In the single-spin case, fermions are naturally decoupled at quadratic level. In the two-spin case, they

couple in a way which mirrors the bosonic sector [23].
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Together with the pedagogical motivation of enriching the class of problems that can be

solved analytically, the diagonalization of the mixed-modes fluctuation problem for the largest

possible set of string configurations is interesting for a number of reasons. First, it provides

the natural setup for a detailed comparison between the algebraic curve approach and the

direct worldsheet computation of energies for string states, as in some relevant cases passing

from one approach to the other implies taking a certain limit which happens to be non-

analytic (see discussion in [25, 26]). Also, it should help in the solution of existing caveats

for the semiclassical analysis in short string regime [25] as well as in the BPS limit of the

ABJM Bremsstrahlung function (see discussion in [23, 27]). In general, the classical and the

expected quantum integrability of the AdS5 × S5 model should be manifest at the level of

small fluctuations near a given solution, regardless how complicated is the latter.

In this paper we make a first step into the exact, detailed solution to the mixed-modes

fluctuation spectrum in the case of a non-trivial solitonic configuration, the folded string

spinning in S5 with two large angular momenta (J1, J2) - as solution of the Landau-Lifshitz

(LL) effective action of [28] 8. In that this effective model only involves a part of the bosonic

fluctuations modes (those corresponding to the SU(2) sector), therefore missing bosonic and

fermionic contributions crucial for the UV finiteness of the quantum result for the energy,

it must be equipped with an appropriate regularization. Calculations for the spectrum of

the LL model linearized around the folded SU(2) string solution have been made in [24]

using operator methods via perturbative evaluation (in the parameter J2/J, J = J1 + J2)

of characteristic frequencies, with a sum over them cured via ζ-function regularization. We

will evaluate here the exact one-loop effective action over the same solution, regularized by

referring the determinants to the limit J2 = 0, which ensures the expected vanishing of

the partition function, and proceeding with a ζ-function-inspired regularization of the path

integral. The “semiclassically exact analysis” explained below provides an efficient and elegant

tool to find in one step the needed spectral information. The result obtained in [24] using

perturbation theory up to the n-th order means here an n-th order Taylor expansion.

The procedure exploits the integrability of a type of fourth-order linear differential equa-

tions with doubly periodic coefficients 9 in terms of which the bosonic fluctuation problem can

be usefully re-written, and that emerges as the natural generalization of the Lamé differential

equation. Not surprisingly, the same operator appears to govern the mixed-modes bosonic

sector of fluctuations for the full AdS5 × S5 action when expanded around the folded string

solution with non-vanishing AdS3 spin and S1 orbital momentum [16]. As noticed in [23] 10,

the mixing of bosonic fluctuations here has its supersymmetric counterpart in a non-trivial

fermionic mass matrix. Annoyingly, the differential equations governing the fermionic spec-

trum do not satisfy the conditions which allowed us to diagonalize the bosonic system, and it

is apparently non-trivial to find the necessary generalization of the tools we have developed.

We leave the solution of the full string mixed-mode problem for the future 11, but we notice,

8See Section 2.1 below, for a detailed review see [29].
9A first attempt to study such kind of equations was done by Mittag-Leffler in [30].

10See Appendix D there.
11Let us underline that the quantum Landau-Lifshitz model should, provided an appropriate regularization
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as nice byproduct of our analysis, that the tools developed here allow an analytic proof of

equivalence between the full (including fermions 12) exact one-loop partition function for the

one-spin folded string in conformal and static gauge – a non-trivial statement which in [17]

has been verified only numerically.

The paper proceeds as follows. In Section 2 we present the mixed fluctuation problems

for the folded string both in the LL and in the full bosonic sectors. In Section 3 we discuss

and construct the solutions of the fourth order differential operator governing those spectral

problems, which we then solve analytically in Section 4. Three Appendices follow, collecting

details on Sections 2, 3 and 4 respectively.

2 Bosonic fluctuation spectrum for the folded string

In this section we consider fluctuations over the classical string configuration representing a

string solution folded on itself and rotating with two angular momenta. We present the two

examples of coupled system of fluctuations which we will able to diagonalize in Section 4,

using the tools presented in Section 3.

2.1 Landau-Lifshitz fluctuation spectrum for the SU(2) folded string

The LL effective action, obtained in string theory as a “fast-string” limit of the Polyakov

action [28,31], coincides on the gauge theory side with an effective action for the ferromagnetic

(bosonic) spin chain in the thermodynamic limit 13. As such, its role as a bridge between

quantum string theory and the spin chain description underlying the AdS/CFT Bethe ansatz

has been explored in a number of papers (for a review see [29]). We briefly review now the

quantum LL approach for the study of a folded 2-spin (J1, J2) string rotating in S5 [24].

The starting point is the LL action for the SU(2) sector [28, 31], which is obtained consid-

ering a string state whose motion with two large spins is restricted to the S3 part of S5. The

collective “fast” coordinate (β) associated to the total angular momentum is gauged away,

while only transverse “slow” coordinates remain to describe the low-energy string motion.

This is practically implemented by parameterising the 3-sphere coordinates as X1 + iX2 =

U1e
iβ, X3 + iX4 = U2e

iβ , UaU
?
a = 1, fixing the gauge t = τ , pβ = const = J , and rescaling

the t coordinate via λ̃ = λ/J2, which plays the role of an effective parameter. To first order

in the λ̃ expansion, one gets [24]

SLL = J

∫
dτ

∫ 2π

0

dσ

2π
L , L = −iU?a∂τUa −

λ̃

2
|DσUa|2 +O(λ̃2) , λ̃ ≡ λ

J2
, (2.1)

DUa = dUa − iCUa , DU?a = dU?a + iCU?a , C = −iU?adUa .

prescription is given, still correctly reproduce the full string result [4] while neglecting fermionic fluctuations

(as well as a part of the bosonic ones).
12This is because fermions are decoupled in conformal gauge.
13The SU(2) sector contains operators of the form Tr(ΦJ1

1 ΦJ2
2 ), and the thermodynamic limit reads J =

J1 + J2 � 1.

5



For the two-spin folded string, describing a closed folded string at the center of AdS, at fixed

angle in S5, rotating within a S3 ⊂ S5 with arbitrary frequencies w1 , w2, the non-vanishing

part of the metric is

ds2 = −dt2 + dψ2 + cos2 ψ dϕ2
1 + sin2 ψ dϕ2

2 , (2.2)

and one can write [28]

ds2 = −dt2 + dXadX
?
a , XaX

?
a = 1 , Xa = eiβUa , (2.3)

U1 = cosψ eiϕ , U2 = sinψ e−iϕ , ϕ =
ϕ1 − ϕ2

2
, β =

ϕ1 + ϕ2

2
. (2.4)

Hence, the initial Lagrangian (2.1) becomes [24]

L = cos 2ψ ϕ̇− λ̃

2

(
ψ′

2
+ sin2 2ψϕ′

2
)
. (2.5)

The equations of motion following from (2.5) are in terms of a 1d sine-Gordon equation

ψ′′ + 2w sin 2ψ = 0 , ϕ = −w t , w =
w2 − w1

2
> 0 , w =

w

λ̃
, (2.6)

ψ′
2

= 2w (cos 2ψ − cos 2ψ0) ,

whose solution can be written as [24]

sinψ(σ) = k sn(Cσ, k2), cosψ(σ) = dn(Cσ, k2), k2 = sin2 ψ0 , (2.7)

√
w =

1

π
K(k2), C =

2

π
K(k2) = 2

√
w ,

E(k2)

K(k2)
= 1− J2

J
.

The two non-zero spins (J1, J2) are

J1 = w1

√
λ

∫ 2π

0

dσ

2π
cos2 ψ , J2 = w2

√
λ

∫ 2π

0

dσ

2π
sin2 ψ ,

J1

w1
+
J2

w2
=
√
λ . (2.8)

From the Lagrangian (2.5), one can expand around the classical solution

ϕ = ϕcl +
1√
J
δϕ(τ, σ) , ψ = ψcl +

1√
J
δψ(τ, σ) , (2.9)

obtaining, with the field redefinition

f1 = − sin(2ψcl)δϕ , f2 = δψ , (2.10)

and after symmetrization, a fluctuation Lagrangian [2, 31, 32] which can be usefully written

as follows [24]

LLL = 2 f2 ḟ1 −
1

2
λ̃
[
f ′21 + f ′22 − V1(σ) f2

1 − V2(σ) f2
2

]
. (2.11)

Above, in terms of Jacobi functions, one has

V1(σ) = 4w
[
1 + 4k2 − 6k2 sn2(Cσ, k2)

]
, V2(σ) = 4w

[
1− 2k2 sn2(Cσ, k2)

]
. (2.12)
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The time-independence of the potentials allows the Fourier-transform ∂τ = i ω, after which the

fluctuation equations following from (2.11) form the following non-trivial matrix eigenvalue

problem for the characteristic frequencies ω 14

− f ′′2 (σ)− V2(σ)f2 = iωf1 , (2.13)

f ′′1 (σ) + V1(σ)f1 = iωf2. (2.14)

This system can be solved perturbatively in the elliptic modulus k2 (or equivalently, in J2/J),

and so has been done in [24]. The main result of this paper is the analytically exact diagonal-

ization of this non trivial spectral problem.

To proceed in an analytically exact fashion, we start by decoupling (2.13)-(2.14) into two

fourth-order equations

f ′′′′2 + [V1(σ) + V2(σ)] f ′′2 + 2V ′2(σ)f ′2 +
[
V ′′2 (σ) + V1(σ)V2(σ)

]
f2 = 4ω2f2, (2.15)

f ′′′′1 + [V1(σ) + V2(σ)] f ′′1 + 2V ′1(σ)f ′1 +
[
V ′′1 (σ) + V1(σ)V2(σ)

]
f1 = 4ω2f1, (2.16)

which, using operator notation

Oi = − d2

dσ2
− Vi(σ), (2.17)

can be compactly written as

O1O2f2 = ω2f2, O2O1f1 = ω2f1 . (2.18)

The diagonalization of the matrix eigenvalue problem defined by (2.13)-(2.14) is then equiv-

alent to the diagonalization of

OLL =

(
O1 − 2∂τ

2∂τ O2

)
, (2.19)

where we used the definitions (2.17).

Defining a new coordinate x = Cσ = 2
√

wσ, the first equation of the system (2.13)-(2.14)

can be rewritten as (we define f2 ≡ f , and omit in the Jacobi functions the dependence on

the modulus k2)

O(4) f(x) = 0 , O(4) = ∂4
x+ 2

(
1 + 2k2−4k2 sn2(x)

)
∂2
x−8k2 sn(x) cn(x) dn(x) ∂x+ 1−Ω2 ,

(2.20)

with

Ω =
ω

2w
≡ ω π2

2K2
. (2.21)

Equation (2.20) is a fourth-order differential equation with doubly-periodic elliptic coefficient

functions 15 with period 2L = 4K (following from the 2π-periodicity of the closed string)

and only one regular singular pole, in Fuchsian classification. A first (incomplete) attempt

14As in [24], the time has been rescaled by λ̃, which we will restore in the final expressions.
15For a concise review of the relevant properties and identities for Jacobi elliptic functions see for example

Appendix A of [17].
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to study this kind of equations was done by Mittag-Leffler 16 in [30], and to our knowledge

not much else is known in literature. In Section 3 we will present a systematic study of the

eigenvalue problem associated to this equation, showing that the corresponding determinant

can be computed analytically. Before doing that we show that this specific class of operators is

of more general interest, as it appears governing (at least in the bosonic case) the spectrum of

fluctuations above the folded string with two angular momenta [16], and thus it can likely be

of help for the study of a large variety of problems involving a coupled system of fluctuations

above elliptic string solutions 17.

2.2 Folded string in full bosonic sigma-model

Quadratic fluctuations over a folded string solution rotating with two angular momenta (S, J)

in AdS5 and in S5 [16] are non-trivially coupled both in their bosonic sector [16] and in the

fermionic one [23], and regardless of the gauge choice. Notice the different conventions to label

frequencies and parameters characterising the classical solution between our work and [16,17].

2.2.1 Bosonic sector

Bosonic fluctuations over the classical closed string solution

t = κ τ , φ = w̄ τ ϕ = ν τ , κ, w̄, ν = const , (2.22)

ρ = ρ(σ) = ρ(σ + 2π) , βu = 0 , (u = 1, 2) , ψs = 0 , (s = 1, 2, 3, 4) , (2.23)

with (t, ρ, φ, βu) describing AdS5 and (ϕ,ψs) spanning S5, are described in conformal gauge

by the following Lagrangian [16]

Lfolded
B = −∂at̃∂at̃− µ2

t t̃
2 + ∂aφ̃∂

aφ̃+ µ2
φφ̃

2 + ∂aρ̃∂
aρ̃+ µ2

ρρ̃
2 + 4 ρ̃(κ sinh ρ ∂0t̃− w̄ cosh ρ ∂0φ̃)

+ ∂aβ̃u∂
aβ̃u + µ2

ββ̃
2
u + ∂aϕ̃∂

aϕ̃+ ∂aψ̃s∂
aψ̃s + ν2 ψ̃2

s . (2.24)

Here the fields with tildes are fluctuations over the background (2.22)-(2.23), and have masses

µ2
t = 2ρ′2 − κ2 + ν2, µ2

φ = 2ρ′2 − w̄2 + ν2, (2.25)

µ2
ρ = 2ρ′2 − w̄2 − κ2 + 2ν2, µ2

β = 2ρ′2 + ν2

given in terms of the non-trivial classical field ρ satisfying the equation of motion (K ≡ K(k2))

ρ′2 = κ2 cosh2 ρ− w̄2 sinh2 ρ− ν2 , k2 =
κ2 − ν2

w̄2 − ν2
(2.26)

ρ′2(σ) = (κ2 − ν2) sn2(
√
w̄2 − ν2 σ + K | k2) . (2.27)

The β̃u fluctuating fields, transverse to the motion of the classical solution and decoupled from

the other but with nontrivial mass, give a contribution to the one-loop partition function that

has been evaluated exactly in [17].

16Or by the student he mentions in a footnote of [30].
17This observation is based on the already noticed similarity between the fluctuation spectra over the minimal

surfaces corresponding space-like Wilson loops of [22] and the one of [16, 17].
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The remaining three AdS3 fields (t, ρ, φ) and the ϕ field in S5 are non-trivially coupled

through Virasoro constraints. Their equations of motion read

(∂2
τ − ∂2

σ) t̃+ µ2
t t̃+ 2κ sinh ρ ∂τ ρ̃ = 0 , (2.28)

(∂2
τ − ∂2

σ) ρ̃+ µ2
ρ ρ̃+ 2 (κ sinh ρ ∂τ t̃− w̄ cosh ρ ∂τ φ̃) = 0 , (2.29)

(∂2
τ − ∂2

σ) φ̃+ µ2
φ φ̃+ 2 w̄ cosh ρ ∂τ ρ̃ = 0 , (2.30)

together with the free field equation for ϕ̃. From the conformal gauge conditions (Virasoro

constraints) it follows

−κ cosh2 ρ ∂τ t̃+ (w̄2 − κ2) sinh ρ cosh ρ ρ̃+ ν ∂τ ϕ̃+ ρ′ ∂σ ρ̃+ w̄ sinh2 ρ ∂τ φ̃ = 0 , (2.31)

−κ cosh2 ρ ∂σ t̃+ w̄ sinh2 ρ ∂σφ̃+ ν ∂σϕ̃+ ρ′ ∂τ ρ̃ = 0 . (2.32)

Since the ρ-background does not depend on τ and since the above equations are linear we

may consider to pass at the Fourier mode level, i.e. replacing t̃→ ei ω τ t̃ e φ→ ei ω τ φ̃. Then

the Virasoro constraints imply for t̃ and φ̃ (not yet switching to Euclidean)

t̃ =
ν cosh ρ

κ
ϕ̃+

i sinh ρ

2κω

[
∂2
σ − 2ρ′ coth ρ ∂σ + (ω2 + κ2 − w̄2)

]
ρ̃ , (2.33)

φ̃ =
ν sinh ρ

w̄
ϕ̃+

i cosh ρ

2 w̄ ω

[
∂2
σ − 2ρ′ tanh ρ ∂σ + (ω2 − κ2 + w̄2)

]
ρ̃ . (2.34)

Substituting in (2.28)-(2.30) the expressions (2.33) and (2.34) we get that one of them is

satisfied automatically while the other two become equivalent (they differ only up to the free

equation of motion for ϕ̃) to the following equation

O(4)ρ̃ = −4 i ν ω ρ′ ∂σϕ̃ (2.35)

where

O(4) =
1

ρ′
(∂2
σ + ω2 − V (σ)) ρ′2 (∂2

σ + ω2)
1

ρ′
− 4 ν2 ω2 (2.36)

with

V (σ) = 2 ρ′2 + 2
(κ2 − ν2)(w̄2 − ν2)

ρ′2
. (2.37)

Being ϕ̃ a free field one can write (2.35) as 18

(∂2
σ + ω2)

1

ρ′
O(4)ρ̃ = 0. (2.38)

Changing to Euclidean signature, ω2 → −ω2 and introducing the new coordinate x =√
w̄2 − ν2σ the operator gets the canonical form

O(4) = ∂4
x+2[−Ω̄2+k2+1−4k2sn2(x)]∂2

x−8k2sn(x)cn(x)dn(x)∂x+[(Ω̄2+1+k2)2−4k2]+
4ν2Ω̄2

w̄2 − ν2
,

(2.39)

18This structure has been understood in collaboration with M. Beccaria, G. Dunne and A. A. Tseytlin.
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where we used the short notation

Ω̄2 =
ω2

w̄2 − ν2
. (2.40)

The operator above is strikingly similar to the one (2.20) emerging in the LL quantum model,

displaying however a significative difference as it cannot be seen as a “traditional” eigenvalue

problem. Indeed, Ω̄ does not only appear in the constant term but also in the coefficient of

the second-order derivative 19. In Appendix C.1 we show that the same operator appears in

static gauge.

It should be noticed that even in the simpler case of single spin, with the folded string

solution only rotating in AdS, bosonic fluctuations are still coupled in conformal gauge with

a fourth order operator which can be easily obtained from (2.39) setting ν = 0.

2.2.2 Fermionic sector

As found in [23] (see Appendix D there), in the two-spins case to the coupled system of

bosonic modes corresponds a non trivial fermionic mass matrix. After two local boosts and

a standard field redefinition 20 the fermionic fluctuation Lagrangian can be put in the form

LF = 2 ψ̄ DF ψ , where

DF = i
[

Γa ∂a + a(σ) Γ234 + b(σ) Γ129

]
, (2.41)

with

a(σ) = −
√
ρ′2 + ν2, b(σ) =

ν κ w̄

2(ρ′2 + ν2)
. (2.42)

Squaring (2.41), one obtains

D2
F = −∂a∂a − Γ29

(
2 b(σ) ∂σ + b′(σ)

)
+ a2(σ) + b2(σ)− a′(σ) Γ1234 + 2a(σ) b(σ) Γ1349 .(2.43)

Noticing that the matrices appearing in (2.43) satisfy, together with their product, a 2-

dimensional Dirac algebra,

{Γ29,Γ1234} = 0 = {Γ29,Γ1349} = {Γ1234,Γ1349} , Γ2
1234 = Γ2

1349 = −Γ2
29 = 132 , (2.44)

one may therefore choose a representation in which

Γ29 = i σ2 × 18, Γ1234 = σ3 × 18, Γ1349 = σ1 × 18 , (2.45)

where σi are Pauli matrices. The fermionic fluctuations are then equivalent to 8 copies of

coupled fields ψ1, ψ2 whose equations of motion, going to Euclidean space and Fourier trans-

forming in τ , read(
− ∂2

σ + ω2 + a2 + b2 − a′
)
ψ1 −

(
2b ∂σ + b′ − 2a b

)
ψ2 = 0 (2.46)(

− ∂2
σ + ω2 + a2 + b2 + a′

)
ψ2 +

(
2b ∂σ + b′ + 2a b

)
ψ1 = 0 . (2.47)

19Such case is apparently called in literature as “polynomial operator pencil” [33].
20See Appendix D in [23].
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It is possible to decouple the above equations and write a fourth-order differential equation

for example for ψ1. However, we do not report here its lengthy expression, as its coefficient

functions are not meromorphic functions on the torus, which is the kind of differential operator

we have been able to solve with the method exposed in Section 3. In particular, it is the

presence of the function a(σ) = −
√
ρ′2 + ν2 which introduces branch-cuts ruining the simple

pole structure at the basis of the procedure described below in Section 3.3. The study of a

suitable generalization of such procedure does not appear to be trivial 21.

We conclude this section recalling that in the single-spin case (ν = 0, therefore b = 0) the

system (2.46)-(2.47) decouples giving two second-order Lamé type equations which differ only

due to the ±a′ term. The corresponding fermionic functional determinants (which in fact

coincide) have been evaluated exactly in [17].

3 Fourth order linear differential equations with doubly peri-

odic coefficients

In this Section we study the properties of fourth order differential equations with doubly

periodic coefficients. We first generalize the Floquet analysis of second order linear differential

equations with periodic coefficients as done in [34], then find the explicit solution for the

specific class of operators of interest in this paper. Because of the striking similarity of the

Bloch solutions (3.20) and quasi-momentum finite-gap structure (B.39) found here with the

corresponding ones in the second-order decoupled case studied in [17] (see also [19]), we can

define the operators here analyzed as a higher-order generalization of the second order finite-

gap Lamé equation.

3.1 Floquet theory of determinants of fourth order one-dimensional oper-

ators

Consider the fourth order differential operator

O(4) = ∂4
x + v1(x)∂2

x + v2(x)∂x + v3(x), (3.1)

where the coefficient functions vi(x) have a fundamental period L,

vi(x+ L) = vi(x) . (3.2)

The solution of the corresponding eigenvalue problem

O(4)f(x) = Λf(x), f(x+ L) = f(x) (3.3)

21Also, the use of local target space rotations of the type already used, for example, in [16] or [22, 23] does

not lead to any simplification of the coefficients.
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consists of four independent functions fi(x), which can be normalized as

f1(0) = 1, f ′1(0) = 0, f ′′1 (0) = 0, f ′′′1 (0) = 0, (3.4)

f2(0) = 0, f ′2(0) = 1, f ′′2 (0) = 0, f ′′′2 (0) = 0,

f3(0) = 0, f ′3(0) = 0, f ′′3 (0) = 1, f ′′′3 (0) = 0,

f4(0) = 0, f ′4(0) = 0, f ′′4 (0) = 0, f ′′′4 (0) = 1 .

The Wronskian determinant is therefore normalized to

W = f1(0)f ′2(0)f ′′3 (0)f ′′′4 (0) = 1 . (3.5)

Given a complete set of solutions fi(x), the periodicity of (3.3) implies that also fi(x+ L) is

a solution, which can be written as a linear combination of the fi(x):

fi(x+ L) =
4∑
j=1

aijfj(x), i = 1, 2, 3, 4 . (3.6)

Setting x = 0 one gets

aij = f
(j−1)
i (L) , (3.7)

with f
(0)
i = fi , which defines the monodromy matrix

M(Λ) =



f1(L) f ′1(L) f ′′1 (L) f ′′′1 (L)

f2(L) f ′2(L) f ′′2 (L) f ′′′2 (L)

f3(L) f ′3(L) f ′′3 (L) f ′′′3 (L)

f4(L) f ′4(L) f ′′4 (L) f ′′′4 (L)


. (3.8)

By diagonalizing this matrix one obtains a new set of four linear independent solutions f̄i(x),

the Floquet or Bloch solutions with the property fi(x+ L) = ρifi(x), or

f1(L)− ρ f ′1(L) f ′′1 (L) f ′′′1 (L)

f2(L) f ′2(L)− ρ f ′′2 (L) f ′′′2 (L)

f3(L) f ′3(L) f ′′3 (L)− ρ f ′′′3 (L)

f4(L) f ′4(L) f ′′4 (L) f ′′′4 (L)− ρ





f̄1(x)

f̄2(x)

f̄3(x)

f̄4(x)


= 0. (3.9)
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As usual, this equation has non-trivial solutions f̄i(x) provided that det(M− ρ1) = 0, with

det(M− ρ1) = ρ4 − (f1(L) + f ′2(L) + f ′′3 (L) + f ′′′4 (L))ρ3 +
[

det
( f1 f

′
1

f2 f
′
2

)
+ det

( f1 f
′′
1

f3 f
′′
3

)
+

+ det
( f1 f

′′′
1

f4 f
′′′
4

)
+ det

( f ′2 f ′′2
f ′3 f

′′
3

)
+ det

( f ′2 f ′′′2

f ′4 f
′′′
4

)
+ det

( f ′′3 f ′′′3

f ′′4 f ′′′4

)]
ρ2 + (3.10)

−

det

 f1 f
′
1 f ′′1

f2 f
′
2 f ′′2

f3 f
′
3 f
′′′
3

+ det

 f1 f
′
1 f ′′1

f2 f
′
2 f
′′′
2

f4 f
′
4 f
′′′
4

+ det

 f1 f
′′
1 f ′′′1

f3 f
′′
3 f ′′′3

f4 f
′′
4 f ′′′4

+ det

 f ′2 f
′′
2 f ′′′2

f ′3 f
′′
3 f ′′′3

f ′4 f
′′
4 f ′′′4


 ρ+ 1,

where we have used (3.5). Let ρi, i = 1, 2, 3, 4 be the roots of this fourth order polynomial

equation. Then, we can write

det(M(Λ)− ρ1) = ρ4 − (ρ1 + ρ2 + ρ3 + ρ4)ρ3 + (ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4)ρ2 −
−(ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4)ρ+ ρ1ρ2ρ3ρ4. (3.11)

Comparing the expressions (3.10) and (3.11) gives a condition on the Floquet factors

ρ1ρ2ρ3ρ4 = 1. (3.12)

A general solution to the equation above would require the introduction of three functions.

We can however proceed conveniently introducing just two quasi-momenta functions pi(Λ),

i = 1, 2 with

ρ1 = eip1(Λ)L, ρ2 = e−ip1(Λ)L,

ρ3 = eip2(Λ)L, ρ4 = e−ip2(Λ)L . (3.13)

Knowing the quasi-momenta allows us to immediately compute the determinants. In partic-

ular, we have

i) Functions with period L:

Periodic eigenfunctions fi(x + L) = fi(x) exist only for special values of Λ which are

determined by setting ρ = 1 in (3.11) and using (3.13)

detP,LO(4) = 4− 4 cos(p1L)− 4 cos(p2L) + 4 cos(p1L) cos(p2L) =

= 16 sin2

(
L

2
p1(Λ)

)
sin2

(
L

2
p2(Λ)

)
. (3.14)

ii) Anti-periodic functions by L:

We get the determinant for antiperiodic eigenfunctions fi(x + L) = −fi(x) by setting

ρ = −1 in (3.11) and using (3.13)

detAP,LO(4) = 4 + 4 cos(p1L) + 4 cos(p2L) + 4 cos(p1L) cos(p2L) =

= 16 cos2

(
L

2
p1(Λ)

)
cos2

(
L

2
p2(Λ)

)
. (3.15)

iii) Functions with period 2L:

In this case one has to take the product of the previous two determinants, which gives

detP,2LO(4) = detPO(4)detAPO(4) = 16 sin2 (Lp1(Λ)) sin2 (Lp2(Λ)) . (3.16)
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3.2 Construction of the solutions: a Hermite-Bethe ansatz

In this section we find the Bloch solutions for a certain class of fourth order periodic differential

equations, which we will argue in B.3 to be higher order generalizations of the second order

finite-gap Lamé equation. A first attempt to study this kind of equations was done by Mittag-

Leffler in [30].

In the following we will use the fact that an elliptic function without any poles in a funda-

mental period parallelogram of the complex plane is merely a constant [35]. The differential

operators of interest are of the type

O =
d4f

dx4
+ v1(x)

d2f

dx2
+ v2(x)

df

dx
+ v3(x)f(x), (3.17)

where the “potentials”

v1(x) = α0 + α1k
2sn2(x), (3.18)

v2(x) = β0 + β1k
2sn2(x) + 2β2k

2sn(x)cn(x)dn(x),

v3(x) = γ0 + 2γ3k
2 + (γ1 − 4(1 + k2)γ3)k2sn2(x) + 2γ2k

2sn(x)cn(x)dn(x) + 6γ3k
4sn4(x),

are given by elliptic functions with only one regular singular pole (in Fuchsian classification)

at x = iK′. The coefficients α0, α1, β0, β1, β2, γ0, γ1, γ2, γ3 are so far free parameters. We will

now find conditions on these parameters such that the following eigenvalue equation

Of(x) = Λf(x), f(x+ L) = f(x) (3.19)

is solved by a Hermite-Bethe-like ansatz [35] 22

f(x) =

n∏
r=1

H(x+ ᾱr)

Θ(x)
exρexλ . (3.20)

The constants ρ and ᾱr are determined by analyticity constraints on the eigenfunction as

follows. Let us introduce the function F

F (x) =
1

f(x)
Of(x) , (3.21)

which is an elliptic function with periods 2K and 2iK′ and a certain number of poles xi of

order pi in the period-parallelogram. In terms of F , the eigenvalue equation becomes

F (x) = Λ , (3.22)

22The ansatz (3.20) provides four linearly independent solutions - see for example (C.24)-(C.34), or Fig. 2

which gives a graphical representation of them. However, at the edges (a finite set of points) where the color

lines meet, there can be a problem, since two or all four functions become linearly dependent. This is expected

from the second-order case [34, 35], where the ansatz gives all two linear independent solutions, except for a

finite number of problematic points (the ’band edge solutions’ for Lamé operators [17]). The missing solutions

at those points can be found, see the procedure in [36], and this is expected to be generalizable to our fourth-

order case. For our purpose of evaluating a partition function, it is sufficient - see discussion below (4.13) - the

knowledge of the solutions (in terms of associated quasi-momenta) in the physical region Ω2 < 0 which is free

- see (B.23) - from such problematic ”edge points”.
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and if f(x) in (3.20) is a solution of the differential equation, then the elliptic function F (x)

should merely be a constant. Therefore, we have to impose that in the Laurent expansion of

F (x)

F (ε+ xi) =
Ai,pi
εpi

+
Ai,pi−1

εpi−1
+ ...+

Ai,1
ε

+ ai,0 + ai,1ε+ ... (3.23)

all coefficients Ai,j of the principal part vanish. This will constrain the free parameters in

(3.18) and deliver the corresponding Bethe-ansatz equations for the spectral parameters ᾱi.

3.3 Pole structure

In order to proceed we need to collect information about the pole structure of the functions

appearing in (3.20)-(3.21). In the study of their analytic properties, it is useful to introduce

yet another function

Φ(x) ≡ 1

f

df

dx
=

n∑
r=1

[
Z(x+ ᾱr + iK′)− Z(x)

]
+ ρ+ λ+

nπi

2K
, (3.24)

which has n + 1 poles at x = iK′ and x = −ᾱ1,−ᾱ2, . . . ,−ᾱn, up to translations by the

periods 2K and 2iK′. We separately examine these two cases.

Expansion around the pole x = iK′

The expansion of the auxiliary function Φ (3.24) around this singular point provides

Φ(ε+ iK′) =
A1

ε
+ a0 + a1ε+ a2ε

2 + a3ε
3 + . . . , Φ′(ε+ iK′) = −A1

ε2
+ a1 + 2a2ε+ 3a3ε

2 + . . . ,

Φ′′(ε+ iK′) =
2A1

ε3
+ 2a2 + 6a3ε+ . . . , Φ′′′(ε+ iK′) = −6A1

ε4
+ 6a3 + . . . , (3.25)

where we denoted

A1 = −n, a0 =
n∑
r=1

Z(ᾱr) + ρ+ λ, a1 =
n

3
(1 + k2)− k2

n∑
r=1

sn2(ᾱr),

a2 = −k2
n∑
r=1

sn(ᾱr)cn(ᾱr)dn(ᾱr),

a3 =
n

45
(1− 16k2 + k4) +

2

3
(1 + k2)k2

n∑
r=1

sn2(ᾱr)− k4
n∑
r=1

sn4(ᾱr). (3.26)

The same procedure applied on the potentials (3.18) leads to the series

v1(ε+ iK′) =
α1

ε2
+ α0 +

α1

3
(1 + k2) +

α1

15
(1− k2 + k4)ε2 + 0 · ε3 + ... (3.27)

v2(ε+ iK′) = −2β2

ε3
+
β1

ε2
+ β0 +

β1

3
(1 + k2) +

2β2

15
(1− k2 + k4)ε+

β1

15
(1− k2 + k4)ε2 + ...

v3(ε+ iK′) =
6γ3

ε4
− 2γ2

ε3
+
γ1

ε2
+ γ0 +

γ1

3
(1 + k2) +

2γ3

15
(1− k2 + k4) +

2γ2

15
(1− k2 + k4)ε+ . . . .
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Expansion around the poles x = −ᾱi, i = 1, ..., n

The analysis carried out for the family of poles −ᾱi yields

Φ(ε− ᾱi) =
1

ε
+ b0,i + b1,iε+ b2,iε

2 (3.28)

where we identify the ε-coefficients with

b0,i =

n∑
r 6=i=1

Z(ᾱr − ᾱi + iK′) + nZ(ᾱi) +
iπ(n− 1)

2K
+ ρ+ λ,

b1,i = −
n∑

r 6=i=1

cs2(ᾱi − ᾱr) +
1

3
(2− k2)− ndn2(ᾱi),

b2,i = −
n∑

r 6=i=1

cn(ᾱi − ᾱr)dn(ᾱi − ᾱr)
sn3(ᾱi − ᾱr)

− nk2sn(ᾱi)cn(ᾱi)dn(ᾱi). (3.29)

The potentials are regular functions.

3.4 Consistency equations

From the behaviour of Φ (3.24) and the potentials (3.18) around the singularities, it is now

possible to reconstruct the pole structure of F , since the differential operators in (3.21) trans-

late into combinations of the auxiliary function and its derivatives:

1

f

d2f

dx2
= Φ(x)2 + Φ′(x),

1

f

d3f

dx3
= Φ(x)3 + 3Φ(x)Φ′(x) + Φ′′(x),

1

f

d4f

dx4
= Φ(x)4 + 6Φ(x)2Φ′(x) + 4Φ(x)Φ′′(x) + 3Φ′(x)2 + Φ′′′(x). (3.30)

The condition of vanishing Laurent coefficients of F at x = iK′ gives constraining equations

on the numerical parameters αi, βi and γi, provided we take into account (3.25)-(3.27):

ρ = −
n∑

r=1

Z(ᾱr),

0 = n(n+ 1)(n+ 2)(n+ 3) + n(n+ 1)α1 + 2nβ2 + 6γ3,

0 = λ[4(n+ 2)(n+ 1)n+ 2(nα1 + β2)] + (nβ1 + 2γ2) , (3.31)

0 = λ2[6n(n+ 1) + α1] + λβ1 + a1[−2n(n+ 1)(2n+ 1) + α1(1− 2n)− 2β2]

+n(n+ 1)(α0 +
1

3
α1(1 + k2)) + γ1 ,

0 = 4λ3n− 2λ[a1(6n2 + α1)− n(α0 +
α1

3
(1 + k2))]− a1β1 + 2a2[2n(1 + n2) + α1(n− 1) + β2] +

+n(β0 +
β1
3

(1 + k2)) .
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In particular, the term of O(ε0) in the Laurent expansion gives the relation between the

eigenvalue parameter Λ and the spectral parameters ᾱi:

Λ = λ4 + λ2[6a1(1− 2n) + (α0 +
α1

3
(1 + k2))] + λ [ a2(4(2 + 3n(n− 1)) + 2α1) + (β0 +

β1
3

(1 + k2))] +

+a21[3(1− 2n(1− n)) + α1] + a1(1− 2n)(α0 +
α1

3
(1 + k2)) + a2β1 +

+a3[2(2n− 1)(n(1− n)− 3) + α1(3− 2n)− 2β2] +

+
1

15
(1− k2 + k4)[n(n+ 1)α1 − 2nβ2 + 2γ3] + γ0 +

γ1
3

(1 + k2) . (3.32)

Finally, imposing that the 1/ε-coefficient around the poles x = −ᾱi should vanish gives the

Bethe-ansatz equations for the spectral parameters (i = 1, ..., n)

4b30,i+2b0,i(6b1,i+α0 +α1k
2sn2(ᾱi))+8b2,i+β0 +β1k

2sn2(αi)−2β2k
2sn(ᾱi)cn(ᾱi)dn(ᾱi) = 0 ,

(3.33)

where we used (3.28). In deriving these conditions, we have assumed that αi 6= αj for any

i, j = 1, ..., n.

It is important to mention that in all the examples successfully analyzed in this paper we

have made use of the n = 1 consistency equations alone - therefore using a single factor in

the product defining (3.20) - which we report here separately for reader’s convenience.

n = 1 consistency equations

0 = 12 + α1 + β2 + 3γ3, (3.34)

0 = λ(24 + 2(α1 + β2)) + β1 + 2γ2 ,

0 = λ2(12 + α1)− a1(α1 + 12 + 2β2) + λβ1 + 2

(
α0 +

1

3
α1(1 + k2)

)
+ γ1 ,

0 = −4λ3 − 2λ

(
α0 − a1(6 + α1) +

1

3
α1(1 + k2)

)
+ a1β1 − 2a2(4 + β2)− β0 −

1

3
β1(1 + k2) ,

Λ = λ4 + λ2 [−6a1 + α0 +
1

3
α1(1 + k2) ] + λ [ 2a2(α1 + 4) + β0 +

1

3
β1(1 + k2) ] +

+ a2
1(α1 + 3)− a1(α0 +

1

3
α1(1 + k2)) + a2β1 + a3(α1 − 6− 2β2) +

+
2

15
(1− k2 + k4)(α1 − β2 + γ3) + γ0 +

1

3
γ1(1 + k2) .

For n = 1, the condition for the pole at x = −ᾱ to vanish turns out to be equivalent to the

fourth equation in (3.34) and therefore it does not give any further constraint.

Our result for the consistency equations is in partial disagreement with the study in [30].

However, the examples discussed in the next section and in Appendix A, as well as numerical

cross checks of the provided solutions, give strong evidence for the correctness of our procedure.

4 Exact bosonic one-loop partition functions for folded string

We are now ready to use the analysis performed in Section 3 for the computation of determi-

nants of the fluctuation operators discussed in Section 2.
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4.1 Exact partition function and one-loop energy for the LL folded string

The fourth order differential operator in (2.20), governing the fluctuations of the LL quantum

model defined by (2.11)-(2.19), is easily seen to be of the type (3.17) once the following

identification is performed

α0 = 2(1 + 2k2), α1 = −8, β0 = β1 = 0, β2 = −4 ,

γ0 = 1− ω2

4w2
, γ1 = γ2 = γ3 = 0 . (4.1)

Using the n = 1 consistency equations (3.34), one finds (here ᾱ = α)

λ = ±k
√

sn2(α)− 1 , (4.2)

where the relation between Ω and α is

Ω2
∓(α) = 4k2 − 4k2(1 + 2k2)sn2(α) + 8k4sn4(α)∓ 8k3sn(α)cn(α)dn(α)

√
sn2(α)− 1

= 4k2cn2(α) [ik sn(α)∓ dn(α)]2 . (4.3)

It seems advantageous to consider α ∈ C as the independent parameter and therefore Ω

as a doubly periodic function of α as in (4.3). There should exist four values of α, which

correspond to one value of Ω. To be more precise, for the physical spectrum we are looking

for all values of α, which correspond to a real Ω2. The analysis of Appendix B.1 is devoted to

this study, and is nicely summarized in Fig. 1 where in the complex α plane the lines where

Ω2(α) is real are plotted. The “physical” four linear independent solutions of the fourth order

differential operator (2.15) live on these lines, and in the fundamental domain represented in

Fig. 2 they correspond to the different colours. In the following let 0 < k < 1/
√

2. The case

1/
√

2 < k < 1 can be obtained by applying the duality transformation of Appendix B.2 on

the following results.

For a given real value of Ω2 the four independent solutions read

fi(x,Ω, k) =
H(x+ αi)

Θ(x)
e−x[Z(αi)−ikcn(αi)], i = 1, . . . , 4 , (4.4)

where the αi as function of Ω have to be chosen according to the range of Ω. For example,

for −∞ < Ω2 < 0, one has

α1(Ω, k) = u(Ω, k)− iv(Ω, k), (4.5)

α2(Ω, k) = 2K− u(Ω, k) + iv(Ω, k),

α3(Ω, k) = 2K + u(Ω, k) + iv(Ω, k),

α4(Ω, k) = 2K− u(Ω, k) + 2iK′ − iv(Ω, k),

where

u(Ω, k) = sn−1
[√

2
Ω2 (1−

√
1− Ω2), k

]
, v(Ω, k) = sn−1

[√
Ω2−2k2+2k2

√
1−Ω2

Ω2−4k2k′2 , k′
]
. (4.6)
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Figure 1: In the complex α plane one can plot the lines where Ω2(α) is real. The “physical”

four linear independent solution live on these lines. The green dots represent places where

Ω2 = 0, red for Ω2 = 4k2k′2, blue for Ω2 = 1 and black for poles. We have chosen k = 0.4.
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Figure 2: In the fundamental domain the four independent solutions of the fourth order

differential operator (2.20) are marked with colors. Walking on such a closed path, Ω2 runs

from −∞ to +∞. We have chosen k = 0.4.
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The expressions for the αi’s in the other ranges of Ω are collected in (B.25)-(B.30). The

quasi-momenta pi are obtained by fi(x+ 2K) = e2Kipifi(x) as

pi(Ω, k) = iZ(αi, k) + kcn(αi, k)− π

2K
, (4.7)

where the corresponding αi(Ω, k) have to be chosen according to the previous list. By

construction 23, only two of the quasi-momenta are independent, which we will call p1 and p2.

The exact determinant of the Landau-Lifshitz model defined by (2.11)-(2.19), using (3.16)

with 2L = 4K, reads then

detOLL = 16 sin2
(
2K p1(Ω, k)

)
sin2

(
2K p2(Ω, k)

)
. (4.8)

We can immediately recover the characteristic frequencies of the problem, found in [24]

using operator methods up to second-order perturbation theory, by simply looking at the

zeroes of the determinant (4.8), where the quasi momenta are built with the α’s in the branch

Ω2 > 0 and are Taylor-expanded around k = 0. It is enough to look to the factor in (4.8)

involving p1, whose expansion re-expressed in terms of the ω is

p1 =
√

2ω + 1− ω

2
√

2ω + 1
k2 +

(
−10ω4 − 11ω3 + 6ω + 2

)
32ω2(2ω + 1)3/2

k4

+

(
−22ω7 − 39ω6 − 19ω5 + 2ω4 + 10ω3 + 16ω2 + 10ω + 2

)
64ω4(2ω + 1)5/2

k6 +O(k8) . (4.9)

Inserting it into (4.8) and requiring the vanishing of the expression order by order in small

k2, one finds the (squared) frequencies to be

ω2 =
1

4
(n2−1)2+

1

4
(1−n2)k2+

(
3n4 − 2n2 + 15

)
64(1− n2)

k4−
(
n8 + n6 + 7n4 + 27n2 + 28

)
128 (n2 − 1)3 k6+O

(
k8
)
,

(4.10)

where we do not report higher orders, but notice that it is straightforward to calculate them.

The first three orders of the expansion above coincide with the ones of [24].

The one-loop correction to the SU(2) LL string energy can be of course obtained perturba-

tively via a regularized sum over the frequencies given above [24], or exactly in terms of the

one-loop world-sheet effective action Γ(1), and thus in terms of the corresponding partition

function ZLL, as follows

E1 =
Γ(1)

T
= − logZLL

T
, T =

∫ ∞
−∞

dτ . (4.11)

The Euclidean LL partition function is obtained from the functional determinant as

ZLL = det−1/2OLL , (4.12)

which using (4.8) can be explicitly written as 24

Γ(1) = − logZLL =
T
2

∫ ∞
−∞

dΩ

2π
log
[
16 sin2

(
2K p1(Ω, k)

)
sin2

(
2K p2(Ω, k)

)]
. (4.13)

23See discussion around (3.12)-(3.13).
24It is convenient to use as integration variable the rescaled frequency Ω, see (2.21).
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Above, the Euclidean setting requires the quasi-momenta pi to be built out of the α’s in the

branch Ω2 < 0, which are given in (4.5). The integral in (4.13) is divergent. A first meaningful

choice of regularization of the functional determinant is to refer it to the k = 0 case. Indeed

this limit, as discussed in [24], represent a nearly point-like string and the correction to the

ground-state energy should vanish. Hence, we obtain

Γ(1)
reg =

T
2

∫ ∞
−∞

dΩ

2π
log

[
sin2

(
2K p1(Ω, k)

)
sin2

(
2K p2(Ω, k)

)
sin2

(
π p1(Ω, 0)

)
sin2

(
π p2(Ω, 0)

) ]
(4.14)

where, at the denominator, the quasi-momenta pi(Ω, 0) are computed at k = 0. In order to

analytically perform the above integral over Ω, we can resort to the short string expansion

k2 ' 0. This again means to consider the small k expansion of quasi-momenta pi (which differ

from the ones considered above, as we are in a different branch for the α’s), as reported in

Appendix B.4, and then after, to integrate over Ω the corresponding expressions computed

order by order in k. Each term in the k2-series for Γ
(1)
reg must be further regularized, which is of

course expected as only certain bosonic degrees of freedom and no fermionic ones (crucial for

UV finiteness) participate to the effective LL action. In Appendix B.4 we report two different

ways of regularizing (one inspired by ζ-function regularization and one with standard cutoff)

which lead to the same result. The resulting expression for the k2-expansion of the one-loop

energy is the same as in [24]

E1 =
Γ

(1)
reg

T
=

1

4
k2 +

1

16

(
1− π2

3

)
k4 +O(k5) . (4.15)

It is interesting to notice that this result follows smoothly by our standard regularization of

the 2d LL string effective action, while in [24] it is implied by a ζ-function regularization

supplemented by a general prescription for the vacuum energy in terms of characteristic

frequencies of a mixed system of oscillators [37].

From equation (2.7), in terms of the physical parameter J2/J , the short string limit k2 → 0

reads

J2

J
=
k2

2
+
k4

16
+O(k5) , k2 =

2 J2

J
− 1

2

(
J2

J

)2

, (4.16)

and the expression for the energy becomes

E1 =
λ̃

2

(
J2

J
+

(
1

4
− π2

6

)(
J2

J

)2
)

+O

((
J2

J

)2
)
, (4.17)

where we restored the λ̃ dependence. The first three terms in the formula above are in

agreement with [24].

For completeness, we mention that the analysis for the LL folded string in the SL(2) sector

(where strings rotate in AdS3 ⊂ AdS5 with center of mass moving along a big circle of S5) is

totally analogous. Using the following analytical continuation [24,32]

ψ → −iρ , ϕ→ η , w1 → κ , w2 → w1 , (4.18)
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one can easily see that the system of coupled fluctuations is effectively described by the fourth

order differential operator in (2.20) where now k2 is negative. Its solutions are then trivially

generalised to the case k2 < 0 as basically in each formula one should substitute k →
√
−k2

and omit all imaginary constants i in the exponentials.

4.2 Folded string in full bosonic sigma-model

The fourth order differential operator in (2.39) 25 is again of the type (3.17) with the identi-

fication

α0 = 2(Ω̄2 + k2 + 1), α1 = −8, β0 = β1 = 0, β2 = −4

γ0 = [(−Ω̄2 + 1 + k2)2 − 4k2]− 4ν2Ω̄2

w̄2 − ν2
, γ1 = γ2 = γ3 = 0 , (4.19)

where Ω̄ is defined in (2.40). Using the consistency equations (3.34) one finds

λ = ±
√
k2sn2(α)− Ω̄2 , (4.20)

where the relation between Ω̄ and α is

8k4sn4(α)−4(1+k2+Ω̄2)k2sn2(α)±8k2sn(α)cn(α)dn(α)
√
k2sn2(α)− Ω̄2− 4ν2Ω̄2

w̄2−ν2 = 0 . (4.21)

The study reported in Appendix C.2 shows that the “physical” four linear independent solu-

tions of (2.39) live on the straight and ellipse-like lines in Fig. 3.

Using in fi(x+2K) = e2Kipifi(x) their explicit expressions - cf. (C.24) - the quasi-momenta

are then obtained as

pn(Ω̄) = ±i
[
Z(αn) +

k sn(αn)

(κ2 − ν2)sn2(αn) + ν2

(
κw̄ ±

√
κ2 − ν2

√
w̄2 − ν2 cn(αn)dn(αn)

)]
+
π

2K
,

(4.22)

where αn as function of Ω̄ has to be chosen from the list in (C.26)-(C.34). The functional

determinant is again given by

detOν = 16 sin2(Lp1) sin2(Lp2) , (4.23)

with 2L = 4K.

As a first check of the correctness of the procedure, one can take the long string limit

k → 1, w̄2 → κ2 (see Section C.1) and look at the zeroes of the expression above choosing the

positive-frequency range (C.32) and (C.34) for the α’s in (4.22). We obtain the characteristic

frequencies 26

ωn =

√
n2 + 2κ2 ± 2

√
κ4 + n2ν2, (4.25)

25In this section we are working in Minkowski signature, so that (4.19) are obtained from (3.17) analytically

continuing the frequencies.
26In this limit, we obtain, from (C.32) and (C.34),

sn(α1,2)→ −ν2ω/
[√

κ2 − ν2
√(

κ2 ±
√

(κ2 − ν2)2 + ν2ω2
)2
− ν4

]
, (4.24)

where we have used (2.40).
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Figure 3: The places, in the fundamental domain of the complex α plane, where the four

linear independent solutions (C.24)-(C.25) (marked with different colours) for the fourth order

differential operator (2.39) live. Here we have chosen k = 3, w = 6, ν = 2.5. See also Fig. 4.

which is the same result as found in [5] 27, see also (C.12).

Since we are missing (see Introduction and Section 2.2.2) the fermionic counterpart of

(4.23), we cannot proceed with the exact evaluation of the full (superstring) one-loop partition

function on the folded two-spin solution. However, we observe that a nice consequence of our

procedure is the possibility of making a non-trivial, analytical statement on the equivalence

of partition functions in conformal and static gauge in the single-spin (ν = 0) case. While

here the fermionic determinant can be given exactly for all values of the spin [17], it is only

the bosonic partition function in static gauge - where fluctuations are naturally decoupled -

which has been written down in an analytically exact closed form, and reads [17]

logZbos
static gauge = − T

2

∫
dω

2π
log
(

detOφ det2Oβdet5O0

)
(4.27)

where

detOφ = 4 sinh2[2K̃Z(αφ|k̃2)] , detOβ = 4 sinh2
[
2KZ(αβ|k2)

]
, detO0 = 4 sinh2(πω)(4.28)

and

sn(αφ |k̃2) =
1

k̃

√
1 +

(
πω

2K̃

)2

, sn(αβ|k2) =
1

k

√
1 + k2 +

(πω
2K

)2
, (4.29)

with k̃2 = 4k/(1 + k)2 and K̃ = K(k̃2). The analysis in Section 2.2.1 shows that, in con-

formal gauge, the spectral problem associated to the mixed-mode, 3 × 3 matrix differential

27 One can obtain this result also from (2.39), which in this limit becomes

lim
k→1
O(4) = ∂4

x + 2[ω2 − 2(κ2 − ν2)]∂2
x + (ω4 − 4ω2κ2) . (4.26)
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operator corresponding to (2.28)-(2.30) can be evaluated, see (2.38), via the product of a free

determinant times the determinant of the fourth order differential operator (2.39), and thus 28

logZbos
conformal gauge = −T

2

∫
dω

2π
log
(

detOν=0 det2Oβ det4O0

)
, (4.30)

where in the counting of massless operators we already have taken into account the two

conformal gauge massless ghosts [38], and (see Appendix C.3)

detOν=0 = 16 sinh2

[
2K
(
Z(α|k2) +

1 + cn(α|k2)dn(α|k2)

sn(α|k2)

)]
sinh2(2KΩ̄) , (4.31)

with (switching to Euclidean signature)

sn2(α|k2) =
−4Ω̄2

(1 + k2 − Ω̄2)2 − 4k2
. (4.32)

One can see that the second factor in (4.31) corresponds to the same massless boson mode of

(4.28) (recalling (2.40) and that for ν = 0 it is w̄ = 2K
π ), while for the first factor one should

use for the Jacobi Zeta function the transformation (C.35) which, writing α̃ = α/(1 + k̃′) +

iK′/(1 + k̃′), leads to the identity

2K
[
Z(α|k2) +

1 + cn(α|k2)dn(α|k2)

sn(α|k2)

]
= 2K̃Z(α̃|k̃2) + iπ . (4.33)

This establishes analytically the equivalence of static and conformal gauge bosonic determi-

nants (4.27)-(4.30) 29.

5 Outlook

In this paper we have made a first step into the analytic solution of the matrix fluctuations de-

terminant for nontrivial string configurations relevant for the study of the AdS/CFT integrable

systems, evaluating exactly the one-loop partition function for the quantum Landau-Lifshitz

model on the SU(2) folded string solution of [24]. The same procedure allows the diagonal-

ization of the bosonic sector of fluctuations of the full AdS5×S5 excitations over the two-spin

folded string solution of [16].

28While we worked at the operatorial level with the linearized (near folded string solution) form of the string

equations of motion, and did not prove the formal equivalence between the determinant of the 3 × 3 matrix

differential operator corresponding to (2.28)-(2.30) and the product detOν=0 detO0, (4.30) should be formally

correct. This is not different from the steps (2.11)-(2.19) followed in setting the LL spectral problem, with a

new ingredient here consisting in the implementation of Virasoro constraints. As thoroughly discussed in [17],

at the level of path integral the step analogous to (2.33)-(2.34) will produce an extra detO0 factor as required

for balance of degrees of freedom.
29At the operator level, it was noticed already in [17] that Oν=0 manifestly factorizes as a product of two

second-order ones

O(4)
ν=0 = O1 · O2 , O1 = (ρ′)−1

[
∂2
σ + ω2 − 2 ρ′2 − 2

κ2 w2

ρ′2

]
ρ′ , O2 = ρ′ [∂2

σ + ω2] (ρ′)−1 , (4.34)

where the operators within brackets are those, decoupled, appearing in static gauge [16].
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This result calls for the complete (i.e. including fermions) solution of the fluctuation prob-

lem for non-homogeneous configurations of elliptic type, which might require a nontrivial field

redefinition for the corresponding Lagrangian, or equivalently a modification of the ansatz for

the solution of the related differential operator. This class of solutions includes the relevant

case of open string configurations corresponding to the space-like Wilson loops of [22] (also in

other backgrounds [23]). Completing in this sense the analysis here performed should give an

answer to the caveats of the semiclassical analysis mentioned in the Introduction, enlarging

the range of applicability of the procedure and opening the way to the detailed understanding

of the relation between this quantum field-theoretical approach and the one based on the

algebraic curve [39].
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A The squared Lamé operator

As a check of the procedure described in Section 3 and of the involved algebraic manipulations

there performed, we consider the fourth order differential operator obtained by squaring the

Lamé operator

OL = −∂2
x + 2k2sn2(x|k2) + Ω2, (A.1)

which gives

O2
L = ∂4

x − 2(2k2sn2(x) + Ω2)∂2
x − 8k2sn(x)cn(x)dn(x)∂x (A.2)

−8k4sn4(x) + 4(2(1 + k2) + Ω2)k2sn2(x)− 4k2 + Ω4 .

Since the solution of the Lamé equation is well known we can immediately write down the

Floquet solutions for

O2
Lf(x) = Λf(x), (A.3)

given by

f1(x) =
H(x+ α+)

Θ(x)
e−xZ(α+), f2(x) =

H(x− α+)

Θ(x)
exZ(α+), (A.4)

f3(x) =
H(x+ α−)

Θ(x)
e−xZ(α−), f4(x) =

H(x− α−)

Θ(x)
e−xZ(α−) ,
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with

sn(α±|k2) =

√
1 + k2 ∓

√
Λ + Ω2

k2
. (A.5)

For the squared Lamé operator (A.2) we can read off the coefficients

α0 = −2Ω2, α1 = −4, β0 = 0, β1 = 0, β2 = −4 (A.6)

γ0 = −4

3
k2 + Ω4, γ1 =

8

3
(1 + k2) + 4Ω2, γ2 = 0, γ3 = −4

3
.

One can see that the first consistency condition in (3.34) is satisfied. Further one finds λ = 0,

which is also consistent with (3.33). Equation (3.32) gives now the relation between Λ and α

k4sn4(α)− 2[(1 + k2) + Ω2]k2sn2(α) + (1 + k2 + Ω2)2 = Λ, (A.7)

which can be solved as

sn(α±|k2) =

√
1 + k2 ∓

√
Λ + Ω2

k2
, (A.8)

which agrees with the result (A.5) directly obtained using the square property.

B Landau-Lifshitz SU(2) folded string analysis: details

B.1 Spectral domain

Useful properties of Ω± defined in (4.3) are

Ω±(−α, k) = −Ω∓(α, k),

Ω±(α+ 2iK′, k) = −Ω∓(α, k),

Ω±(α+ K + iK′, k) = ∓Ω∓(iα, k′),

Ω±(α+ 2K + 2iK′, k) = −Ω±(α, k) . (B.1)

It is then easy to see that Ω±(α) is a doubly periodic function

Ω±(α+ 4K, k) = Ω±(α, k), Ω±(α+ 4iK′, k) = Ω±(α, k) (B.2)

Important special values are

Ω2
+(K, k) = 0, Ω2

+(iK′, k) = 1,

Ω2
+

(
iK′ + icn−1

(
k2

k′2
, k′
)
, k

)
= Ω2

+

(
iK′ − icn−1

(
k2

k′2
, k′
))

= 4k2k′2. (B.3)

For the physical spectrum only those values of the complex parameter α = u+iv corresponding

to a real Ω2 are of interest. We decompose

Ω+(u+ iv) = Re(Ω+)(u, v) + i Im(Ω+)(u, v) (B.4)
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with

Re(Ω+)(u, v) =
2kdn(u, k)(dn(v, k′)− kcn(u, k)sn(v, k′))

(1− dn2(u, k)sn2(v, k′))2
(cn(u, k)cn2(v, k′) + ksn2(u, k)sn(v, k′)dn(v, k′)),

Im(Ω+)(u, v) =
2ksn(u, k)cn(v, k′)(dn(v, k′)− kcn(u, k)sn(v, k′))

(1− dn2(u, k)sn2(v, k′))2
(kcn(u, k)− dn2(u, k)sn(v, k′)dn(v, k′)).

In order to have Ω2
+ real, we find the cases

• v = K′, then

Ω+(u+ iK′) =
2dn(u, k)

sn2(u, k)
(1− cn(u, k)). (B.5)

Setting u = 2w gives

Ω+(2w + iK′) = dc2(w, k)− k2sn2(w, k). (B.6)

Varying w from 0 to K, then Ω2
+(2w+ iK′) covers the interval [1,∞). Therefore we can

solve for w as

sn2(w) = 1− Ω

2k2
+

1

2k2

√
Ω2 − 4k2k′2, (B.7)

with

0 < sn2(w) < 1 for 1 < Ω <∞. (B.8)

• u = 0, then

Ω+(iv) =
2k

cn2(v, k′)
(dn(v, k′)− ksn(v, k′)). (B.9)

Varying v from K′ − cn−1(k2/k′2, k′) to K′, then Ω2
+(iv) covers the interval [4k2k′2, 1].

Therefore we can solve for v as

sn2(v, k′) = 1 +
4k2

Ω2

[
−1 + 2k2 +

√
Ω2 − 4k2k′2

]
, (B.10)

with

k2

k′2
< sn2(v, k′) < 1 for 2kk′ < Ω < 1 and 0 < k2 <

1

2
. (B.11)

• kcn(u, k)− dn2(u, k)sn(v, k′)dn(v, k′) = 0

For 0 < u < K this can be solved for v = v(u, k) as

sn2(v, k′) =

1−
√

1− 4k2k′2 cd2(u,k)

dn2(u,k)

2k′2
, (B.12)

then

α(u, k) = u+ i sn−1

 1√
2k′

√√√√1−

√
1− 4k2k′2

cd2(u, k)

dn2(u, k)
, k′

 . (B.13)

After using some elliptic function identities one finds

Ω2
+(α(u, k), k) = 4k2k′2

cn2(u, k)

dn4(u, k)
, 0 < u < K . (B.14)
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Solving for u gives

sn2(u, k) =
1

k2
+

2k′2

k2

√
1− Ω2 − 1

Ω2
, (B.15)

with

0 < sn2(u, k) < 1, for 0 < Ω < 2kk′ and 0 < k2 <
1

2
. (B.16)

• cn(u, k)cn2(v, k′) + ksn2(u, k)sn(v, k′)dn(v, k′) = 0

For K < u < 2K this can be solved for v as

sn2(v, k′) =
2cn2(u, k)

2cn2(u, k) + k2sn4(u, k) + k2sn2(u)
√

4cn2(u, k) + sn4(u, k)
=

=
2cn2(u, k) + k2sn4(u, k)− k2sn2(u, k)

√
4cn2(u, k) + sn4(u, k)

2(cn2(u, k) + k2k′2sn4(u, k))
=

=
2 cn2(u,k)

sn4(u,k)
+ k2 − k2

√
1 + 4 cn2(u,k)

sn4(u,k)

2
(
k2k′2 + cn2(u,k)

sn4(u,k)

) , (B.17)

and then

α(u, k) = u+ i sn−1


√√√√√2 cn2(u,k)

sn4(u,k)
+ k2 − k2

√
1 + 4 cn2(u,k)

sn4(u,k)

2
(
k2k′2 + cn2(u,k)

sn4(u,k)

) , k′

 . (B.18)

After using some elliptic function identities one finds

Ω2
+(α(u), k) = −4cn2(u, k)

sn4(u, k)
, for K < u < 2K , (B.19)

or

Ω2
+(α(ũ+ K), k) = −4k′2

sn2(ũ, k)dn2(ũ, k)

cn4(ũ, k)
. (B.20)

Solving for u gives

sn2(u, k) =
2

Ω2
(1−

√
1− Ω2) , (B.21)

with

0 < sn2(u, k) < 1 for −∞ < Ω2 < 0 . (B.22)

The expressions of αi’s in the different branches for Ω2 read as follows:

• For −∞ < Ω2 < 0 as

α1(Ω, k) = u(Ω, k)− iv(Ω, k),

α2(Ω, k) = 2K− u(Ω, k) + iv(Ω, k),

α3(Ω, k) = 2K + u(Ω, k) + iv(Ω, k),

α4(Ω, k) = 2K− u(Ω, k) + 2iK′ − iv(Ω, k), (B.23)
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where

u(Ω, k) = sn−1

[√
2

Ω2
(1−

√
1− Ω2), k

]
, v(Ω, k) = sn−1

√Ω2 − 2k2 + 2k2
√

1− Ω2

Ω2 − 4k2k′2
, k′

 .
(B.24)

• For 0 < Ω2 < 4k2k′2 as

α1(Ω, k) = 2K− u2(Ω, k)− iv2(Ω, k),

α2(Ω, k) = u2(Ω, k) + iv2(Ω, k),

α3(Ω, k) = 2K + u2(Ω, k)− iv2(Ω, k),

α4(Ω, k) = 2K− u2(Ω, k) + 2iK′ + iv2(Ω, k), (B.25)

where

u2(Ω, k) = sn−1

1

k

√
1− 2k′2

1−
√

1− Ω2

Ω2

 , v2(Ω, k) = sn−1

[
1√
2k′

√
1−

√
1− Ω2, k′

]
.

(B.26)

• For 4k2k′2 < Ω2 <∞ as

α3(Ω, k) = 2K− iK′ + 2iα0(Ω, k′),

α4(Ω, k) = 2K + 3iK′ − 2iα0(Ω, k′) . (B.27)

• For 4k2k′2 < Ω2 < 1

α1(Ω, k) = 2K− i sn−1

[√
1− 4k2

Ω2

(
1− 2k2 −

√
Ω2 − 4k2k′2

)
, k′

]
,

α2(Ω, k) = i sn−1

[√
1− 4k2

Ω2

(
1− 2k2 −

√
Ω2 − 4k2k′2

)
, k′

]
. (B.28)

• For 1 < Ω2 <∞ as

α1(Ω, k) = 2K− iK′ − 2α0(Ω, k)

α2(Ω, k) = iK′ + 2α0(Ω, k), (B.29)

where

α0(Ω, k) = sn−1

[√
1− Ω

2k2
+

1

2k2

√
Ω2 − 4k2k′2, k

]
. (B.30)

B.2 A duality property of the LL fourth order differential operator

Defining z = ix we can rewrite (2.20) as

O(4)(z, k′)f1,2(−iz −K + iK′, α, k) = Ω2
−(α, k)f1,2(−iz −K + iK′, α, k),

O(4)(z, k′)f3,4(−iz −K + iK′, α, k) = Ω2
+(α, k)f3,4(−iz −K + iK′, α, k). (B.31)
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Interchanging the role of k and k′ and using (B.1) we get

O(4)(x, k)f3,4(−ix−K′+ iK, iα− iK+K′, k′) = Ω2
−(α, k)f3,4(−ix−K′+ iK, iα− iK+K′, k′) .

(B.32)

Using elliptic function identities one can show that

f3(−ix−K′ + iK, iα− iK + K′, k′) = c(α, k)f2(x, α, k), (B.33)

with a x-independent constant

c(α, k) = exp

[
π

4KK′
(K− α)2 − iπα

2K
+ (K′ − iK)(−iZ(α, k) + kcn(α, k))

]
. (B.34)

The duality implies that an eigenfunction for Ω2
− and 0 < k2 < 1/2 becomes an eigenfunction

for Ω2
+ and 1/2 < k2 < 1. An analogous relation holds for f1 and f4.

B.3 Finite-gap structure: a microscopical spectral curve

To uncover the finite-gap structure of the semi-classical fluctuation spectral problem governed

by the fourth order differential operator (2.20) one starts by evaluating the differential of the

quasi-momentum function (4.7), entering the eigenfunctions of the LL operator (2.20), in two

steps according to
dp

d(Ω2)
=

dp

dα

dα

d(Ω2)
. (B.35)

As an example, we choose −∞ < Ω2 < 0 and plug (B.23)-(B.24) into (4.7). Choosing the two

linearly independent quasi-momenta as in (B.41) we get

dp1

d(Ω2)
= i

−k′2 − i
2

√
4k2k′2 − Ω2 + E

K

2
√
−Ω2

√
−1 + 2k2 − i

√
4k2k′2 − Ω2

√
4k2 − 4k4 − Ω2

(B.36)

dp2

d(Ω2)
= i

k′2 − i
2

√
4k2k′2 − Ω2 − E

K

2
√
−Ω2

√
−1 + 2k2 + i

√
4k2k′2 − Ω2

√
4k2 − 4k4 − Ω2

, (B.37)

and similarly for the three branches covering the positive-frequency range (see Appendix B.1).

Focussing on the first of these formulas, we introduce a new spectral parameter

z =
1

2

√
Ω2 − 4k2(1− k2) (B.38)

which results in the following differential of the quasi-momentum p1

dp1

dz
=

z + z0√
2(z − z1)(z − z2)(z − z3)

(B.39)

with

z0 = 1− k2 − E
K
, z1 = −ikk′, z2 = ikk′, z3 = k2 − 1

2
. (B.40)

The set of points described by the elliptic curve y2 = (z − z1)(z − z2)(z − z3) on the complex

z plane defines what one could call a “microscopical” spectral curve for the LL string action,
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in the sense that it encodes the dynamics of the one-loop fluctuations above the classical,

“macroscopical” spectral curve emerging in the finite-gap picture of [40]. The differential

(B.39) clearly uncovers the one-gap structure of the corresponding spectral curve and justifies

to consider the corresponding differential equations as fourth order analogs of the second

order, finite-gap, Lamé operators of [17].

B.4 The short string expansion

In this appendix we spell out the expansion of p1 and p2 as series of k in the physical branch

Ω2 < 0. The starting point is the expression of the quasi-momentum function (4.7), evaluated

on the four functions αi given in (B.23). As recalled in Section 3, the corresponding values of

the momenta are not all linearly independent, and we choose

p1 = iZ (α2, k) + kcn (α2, k)− π

2K
,

p2 = iZ (α3, k) + kcn (α3, k)− π

2K
. (B.41)

In the following we will provide the details on the expansion of the former, since the analysis

of the latter proceeds in the same fashion, modulo some minus signs.

Using the Jacobi Zeta function the addition formula for complex argument leads to

p1 = −iZ (u, k) + Z
(
v, k′

)
− kcn (u− iv, k) +

vπ

2KK′
− π

2K
(B.42)

−ik
2sn (u, k) cn (u, k) dn (u, k) sn2 (v, k′)

1− sn2 (v, k′) dn2 (u, k)
− dn2 (u, k) cn (v, k′) sn (v, k′) dn (v, k′)

1− sn2 (v, k′) dn2 (u, k)
.

The functions u (Ω, k) and v (Ω, k), parametrizing the real and imaginary part of α2 respec-

tively, were presented in (B.24). The k ∼ 0 expansion of some terms above can be treated

expanding their derivatives with respect to
√

Ω2 and integrating back at the end. The deriva-

tive of the Jacobi Zeta function with argument 0 < x < K, the function x being u (Ω, k) or

v (Ω, k), is conveniently expressed as

∂Z (x, k)

∂
(√

Ω2
) =

1√
1− sn2 (x, k)

√
1− k2sn2 (x, k)

∂sn (x, k)

∂
(√

Ω2
) [1− k2sn2 (x, k)− E

K

]
. (B.43)

Up to fourth order, the expansion for the two independent momenta reads

p1 = −i
√
−1− i

√
Ω2 +

(
2− i

√
Ω2
)√

1 + i
√

Ω2

8Ω2
k4 +O

(
k6
)

(B.44)

p2 = +i

√
−1 + i

√
Ω2 +

(
2 + i

√
Ω2
)√

1− i
√

Ω2

8Ω2
k4 +O

(
k6
)
, (B.45)

to which corresponds the expansion in the regularized effective action (4.14). The latter can

be written as

Γ(1)
reg =

∞∑
i=0

Γ
(1)
i,regk

2i , (B.46)
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where the first term is vanishing by construction. The quasi-momenta in (4.14) are computed

in the physical region Ω2 < 0, which corresponds to an Euclidean partition function. However,

we find convenient to perform our integrals by analytically-continuing all the expressions to

Ω2 → −Ω2 30. This results in the following expressions for the first few terms

Γ
(1)
0,reg = 0 , (B.47)

Γ
(1)
1,reg

T
=
π

8

∫
dΩ

2π

 √
−1− i

√
Ω2

tanh
(
π
√
−1− i

√
Ω2
) +

√
−1 + i

√
Ω2

tanh
(
π
√
−1 + i

√
Ω2
)
 , (B.48)

Γ
(1)
2,reg

T
=

π

32

∫
dΩ

2π

−π +
π
(

1 + i
√

Ω2
)

2 tanh2
(
π
√
−1− i

√
Ω2
) +

π
(

1− i
√

Ω2
)

2 tanh2
(
π
√
−1 + i

√
Ω2
)

+

(
−16 + 8i

√
Ω2 + 17Ω2

)√
−1− i

√
Ω2

4Ω2 tanh
(
π
√
−1− i

√
Ω2
)

+

(
−16− 8i

√
Ω2 + 17Ω2

)√
−1 + i

√
Ω2

4Ω2 tanh
(
π
√
−1 + i

√
Ω2
)

 , (B.49)

where we notice that there is no obstruction to go to higher terms. The integrals above are

divergent, which is due to the absence in the LL action of fermionic and some bosonic modes

which are crucial for UV finiteness. A first form of regularization is realized embedding

our real integrals (B.48)-(B.49) in the complex plane, in order to exploit Cauchy’s residue

theorem. The integrands turn out to be meromorphic functions on C \ {0}, featuring poles

on the imaginary axis at

Ω±n ≡ ±i
∣∣n2 − 1

∣∣ , n = 2, 3, .... (B.50)

By closing the contour of integration on the anti-clockwise upper-half (clockwise lower-half)

plane, the finite part is then conventionally defined to be the ζ-regularized sum of the residues,

dropping possibly divergent contributions from the arc wrapping the poles Ω+
n (resp. Ω−n ).

This prescription brings to the finite answers

Γ
(1)
1,reg

T
= 2πi

∞∑
n=2

in2

8π
=

1

4
(B.51)

Γ
(1)
2,reg

T
= 2πi

∞∑
n=2

in2
(
35− 30n2 + 11n4

)
128π (n2 − 1)2 =

(
1

16
− π2

48

)
, (B.52)

which finally lead to the expected one-loop energy (4.15).

Alternatively, we can cut off the frequency domain ε < |Ω| < L and safely work the real

30In this way, see (B.50), the poles of the integrand are on the imaginary axis. Alternatively, one could not

perform the analytic continuation and treat the poles appearing on the real axis with an iε prescription.
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integrals out by employing the infinite sum representation for coth and coth2

cothπx =
1

πx
+

2

π

∞∑
n=1

x

n2 + x2
(B.53)

coth2 πx = 1 +
1

π2x2
− 2

π2

∞∑
n=1

n2 − x2

(n2 + x2)2 . (B.54)

The trick consists in performing the integrations first

Γ
(1)
1,reg = lim

L→∞

[
3L

4π
+
∞∑
n=2

(
−n

2

4
+

L

2π

)]
, (B.55)

Γ
(1)
2,reg = lim

L→∞
lim
ε→0

{
45L

64π
− 3

8πε
+
∞∑
n=2

[
−11n2

64
+

15L

32π
+

1

8

− 1

16 (n+ 1)2 −
1

16 (n− 1)2 +
1

2π (n2 − 1) ε

]}
, (B.56)

followed by the ζ-regularized sums. Upon ζ-regularization, the ε- and 1/L-coefficients are

finite and drop out in the limit. On the other hand, UV- and IR-divergencies happen to

cancel out and the cut-off regularization reproduces the same one-loop energy contribution

(4.15) of the residue prescription.

C Folded string in full sigma-model: details

C.1 Fluctuation Lagrangian in static gauge

A fluctuation Lagrangian derived from Pohlmeyer reduction that agrees with the Nambu

action in static gauge (in which fluctuations of t and ρ are set to zero) result is 31

L = ∂ax∂
ax− µ2

xx
2 + ∂ay∂

ay − µ2
yy

2 + 2q y∂0x , (C.1)

q =
2νw̄κ

ρ′2 + ν2
(C.2)

µ2
x = 2ρ′2 + ν2 +

κ2w̄2(2ρ′2 − ν2)

(ρ′2 + ν2)2
, µ2

y = ν2
[
− 1 +

2(w̄2 + κ2)

ρ′2 + ν2
− 3w̄2κ2

(ρ′2 + ν2)2

]
(C.3)

Here x and y are two physical fluctuations in AdS3 sector. When ν → 0 we get one massless

mode and a mode with µ2 = 2ρ′2 + 2κ2w̄2

ρ′2 as expected.

All other fluctuations have same mass as in the conformal gauge discussed in [16], e.g., βu

(u = 1, 2) – the fluctuations in AdS5 that are transverse to AdS3 – have mass µ2
β = 2ρ′2 + ν2.

The corresponding equations of motion are (x→ eiωτ x̃(σ), y → eiωτ ỹ(σ)) 32

(∂2
σ + ω2 − µ2

x)x̃− iq ω ỹ = 0 , (∂2
σ + ω2 − µ2

y)ỹ + iq ω x̃ = 0 . (C.4)

31We thank I. Iwashita, R. Roiban and A. A. Tseytlin for this information. There are other more complicated

forms of the fluctuation action that should be related by field redefinitions.
32Here we did not yet switch to Euclidean time τ → iτ , i.e. ω → iω.
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Here q, µx, µy depend on σ. Solving the first equation for ỹ and substituting into the second

equation, we get fourth order equation[
(∂2
σ + ω2 − µ2

x)[
1

q
(∂2
σ + ω2 − µ2

y)]− qω2
]
ỹ = 0 (C.5)

or explicitly [
(∂2
σ + ω2 − µ2

x)[(ρ′2 + ν2)(∂2
σ + ω2 − µ2

y)]−
4ν2κ2w̄2

ρ′2 + ν2
ω2
]
ỹ = 0 . (C.6)

Redefining

ỹ =
1√

ρ′2 + ν2
ρ̃ (C.7)

one recovers the fourth-order differential equation[
∂4
σ + 2(w̄2 + κ2 − 2ν2 + ω2 − 4ρ′2) ∂2

σ − 8ρ′ρ′′ ∂σ + κ4 + (w̄2 − ω2)2 − 2κ2(ω2 + w̄2)
]
ρ̃ = 0 ,

(C.8)

which coincides with the one (2.39) obtained in conformal gauge, once one uses the classical

equation of motion for ρ (2.26), and performs a Wick rotation Ω2 → −Ω2.

In the long string limit the operator (C.5) agrees with the results first found in [5]. This

limit (also known as large spin regime) corresponds to

ρ = µσ , w̄ = κ =
√
µ2 + ν2 , µ =

1

π
logS � 1 , (C.9)

and the mass operators (C.2)-(C.3) become

µ2
x → 4µ2 , µ2

y → 0 , q → 2ν , (C.10)

and thus (C.5) (with ∂σ → in) gives the following characteristic polynomial

(ω2 − n2 − 4µ2)(ω2 − n2)− 4ν2ω2 = 0 , (C.11)

with

ω2 = n2 + 2(µ2 + ν2)± 2
√
n2ν2 + (µ2 + ν2)2 , (C.12)

which agrees with the expression in [5] where ω and n are rescaled by κ =
√
µ2 + ν2, i.e.

(p = n
κ )

Ω̄2 = p2 + 2± 2
√
p2u2 + 1 , u ≡ ν

κ
. (C.13)

Taking into account the other masses for the remaining fluctuations in this long string limit,

that is

- two transverse fluctuations in AdS5: µ2
β = 2ρ′2 + ν2 → 2µ2 + ν2 = κ2(2− u2);

- four fluctuations in S5: µ2
sph = ν2 = κ2u2;

- eight fermionic fluctuations µ2
ψ = ρ′2 + ν2 = κ2,

the corresponding characteristic frequencies (C.12) produce the well-known one-loop expres-

sion for the energy in this scaling limit [5].
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C.2 Spectral domain and four linear independent solutions

We can repeat the analysis of the previous section B.1 for the folded string. Here calculations

are carried out in Minkowski signature. Again, from the consistency equations we obtain the

relations

λ = ±
√
k2sn2(α)− Ω̄2 ,

Ω̄2
±(α) = −(κ2 − ν2)sn2(α)

(
w̄k cn(α)± κdn(α)

(κ2 − ν2)sn2(α) + ν2

)2

. (C.14)

As before it is useful to work out duality relations for the eigenvalues, that is

Ω̄2
±(α+ 2K) = Ω̄2

∓(α) , Ω̄2
±(α+ 2iK′) = Ω̄2

±(α) , (C.15)

which allows us to work only with one kind of rescaled frequency, that is Ω̄(α) ≡ Ω̄+(α).

In order to further manipulate the expression for Ω and find the corresponding “physical”

spectral curve, it is advantageous to introduce the function

a2(α) = (κ2 − ν2)sn2(α) + ν2 , (C.16)

with the property

d

dα
a2(α) =

2√
w̄2 − ν2

√
a2(α)− ν2

√
κ2 − a2(α)

√
w̄2 − a2(α) . (C.17)

Thus, one can rewrite (C.14) as follows

Ω̄2
±(α) = − 1

w̄2 − ν2

a2(α)− ν2

a4(α)

(
w̄
√
κ2 − a2(α)± κ

√
w̄2 − a2(α)

)2
, (C.18)

and it easily follows now

∂Ω̄2

∂α
= 2Ω̄2(α)

1

(κ2 − ν2)sn2(α) + ν2

(
ν2 cn(α)dn(α)

sn(α)
+ k κ w̄ sn(α)

)
, (C.19)

λ(α) =
k sn(α)

(κ2 − ν2)sn2(α) + ν2

(
κw̄ ±

√
κ2 − ν2

√
w̄2 − ν2 cn(α)dn(α)

)
. (C.20)

We are interested in all values of the complex parameter α = u + iv that correspond to

real values of Ω̄2. The condition Im(Ω̄2)(u, v) = 0 results in the cases u = 0, iK′, v = 0, 2K
(modulo periodicity of Ω̄2(α)), which gives the straight lines in Fig 4. However, this does

not exhaust all the possibilities: There are still orbits in the α complex plane where Ω̄2 is

real, which correspond to the ellipse-like lines in Fig. 4. In order to find a parametrization

v(u) of such curves, one has to find the real root of the cubic polynomial (setting for short

x ≡ dn(v, k′))

P3(x;u) = κ cd(u)
[
k2w̄2 − κ2ns2(u)

]
x3 − w̄ k

[
κ2cs2(u)− ν2k′2

]
x2 +

+κk2cd(u)
[
w̄2ds2(u) + ν2k′2

]
x+ w̄ k3

[
w̄2ns2(u)− κ2

]
. (C.21)
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Since all the coefficients are elliptic functions with periods 4K and 2iK, the roots xi(u),

i = 1, 2, 3 will also be elliptic functions of u, with the same periods, such that the polynomial

itself P3(x(u);u) will be an elliptic function. Imposing P3(x;u) = 0 for any value of u, implies

that the poles of x(u) have to be canceled by the zeros of the coefficient functions of P3(x;u).

By studying the locus of points where the coefficient functions of P3(x(u), u) vanish, it allows

us to compute

x(u) =
k w̄

κ
dc(u, k) , v(u) = dn−1

[
k w̄

κ
dc(u, k), k′

]
. (C.22)

For completeness, we report other special values of Ω̄2 which appear in Fig. 4,

Ω̄2

(
K− sn−1

(
w̄

κ

√
κ2 − ν2

w̄2 − ν2
, k

))
= −

(
κ2

ν2
− 1

)
, Ω̄2(K) = −(κ2 − ν2)(w̄2 − κ2)

κ2(w̄2 − ν2)
,

Ω̄2(2K + iK′) =
(w̄ − κ)2

w̄2 − ν2
, Ω̄2(iK′) =

(w̄ + κ)2

w̄2 − ν2
, Ω̄2(0) = 0, Ω̄2(K + iK′) = 1− κ2

w̄2
.
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Figure 4: In the complex α plane one can plot the lines where Ω̄2(α) is real. The parameters

are chosen on the left as κ = 3, ω = 6, ν = 2.5 (k ∼ 0.1), in the middle as κ = 3, ω = 6,

ν = 2.99 (k ∼ 0.002) and on the right as κ = 5, ω = 6, ν = 2.5 (k ∼ 0.63). The special points

are marked with colors as follows Ω̄2 = −(κ
2

ν2
− 1) (orange), Ω̄2 = − (κ2−ν2)(ω2−κ2)

κ2(ω2−ν2)
(magenta),

Ω̄2 = 0 (red), Ω̄2 = (ω−κ)2

ω2−ν2 (green), Ω̄2 = 1− κ2

ω2 (pink), Ω̄2 = (ω+κ)2

ω2−ν2 (blue).

We are now ready to illustrate the various branches for Ω̄2. For convenience, we define

χ±(Ω̄) =

(
κ w̄ ±

√
(w̄2 − ν2)(κ2 − ν2 + ν2Ω̄2)

)2

− ν4. (C.23)

For a given real value of Ω̄2 the linear independent solutions of the fourth order differential

equation (2.39) are

f1,2(x, Ω̄) =
H(x± α1)

Θ(x)
e∓x[Z(α1)+λ(α1)], (C.24)

f3,4(x, Ω̄) =
H(x± α2)

Θ(x)
e∓x[Z(α2)+λ(α2)], (C.25)

where the αi’s as functions of Ω̄ have to be chosen (see Fig. 4)
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• for −∞ < Ω̄2 < −(κ
2

ν2
− 1) as

α1,2(Ω) = sn−1

[√
(κ2−ν2)+(w̄2−ν2)(1−Ω̄2)−

√
((κ2+w̄2)−(w̄2−ν2)Ω̄2)2−4κ2w̄2

2(κ2−ν2+ν2Ω̄2)
, k2

]
± (C.26)

±idn−1

[
k

κ

√
(w̄2−κ2)2−(w̄2−ν2)(κ2+w̄2)Ω̄2+(w̄2−κ2)

√
((κ2+w̄2)−(w̄2−ν2)Ω̄2)2−4κ2w̄2

−2(w̄2−ν2)Ω̄2 , k′

]
,

• for −(κ
2

ν2
− 1) < Ω̄2 < − (κ2−ν2)(w̄2−κ2)

(w̄2−ν2)κ2
as

α1(Ω̄) = K− sn−1
[√

χ−(Ω̄)+ν4Ω̄2/k2

χ−(Ω̄)+ν4Ω̄2 , k
]
, (C.27)

• for − (κ2−ν2)(w̄2−κ2)
(w̄2−ν2)κ2

< Ω̄2 < 0 as

α1(Ω̄) = 2K− sn−1
[√

−ν4Ω̄2

k2χ−(Ω̄)
, k
]
, (C.28)

• for 0 < Ω̄2 < (w̄−κ)2

w̄2−ν2 as

α1(Ω̄) = 2K + i sn−1
[√

ν4Ω̄2

k2χ−(Ω̄)+ν4Ω̄2 , k
′
]
, (C.29)

• for (w̄−κ)2

w̄2−ν2 < Ω̄2 < 1− κ2

w̄2 as

α1(Ω̄) = 2K + iK′ − sn−1

[√
χ−(Ω̄)
−ν4Ω̄2 , k

]
, (C.30)

• for 1− κ2

w̄2 < Ω̄2 < (w̄+κ)2

w̄2−ν2 as

α1(Ω̄) = K + iK′ − sn−1
[√

χ−(Ω̄)+ν4Ω̄2

k2χ−(Ω̄)+ν4Ω̄2 , k
]
, (C.31)

• for (w̄+κ)2

w̄2−ν2 < Ω̄2 <∞ as

α1(Ω̄) = i sn−1
[√

ν4Ω̄2

k2χ−(Ω̄)+ν4Ω̄2 , k
′
]
, (C.32)

• for −(κ
2

ν2
− 1) < Ω̄2 < 0 as

α2(Ω̄) = sn−1

[√
− ν4Ω̄2

k2χ+(Ω̄)
, k

]
, (C.33)

• for 0 < Ω̄2 <∞ one has

α2(Ω̄) = i sn−1
[√

ν4Ω̄2

k2χ+(Ω̄)+ν4Ω̄2 , k
′
]
. (C.34)

In the main body we have used the following identity, which does not seem to be tabulated

but can be easily checked to be true

Z(α, k) =
2

1 + k̃′
Z

(
α

1 + k̃′
+

iK′

1 + k̃′
, k̃

)
− 1 + cn(α, k)dn(α, k)

sn(α, k)
+
iπ

2K
, (C.35)

where k̃ is the Landen transformed modulus, i.e. k̃2 = 4k/(1 + k)2 .

37



C.3 The ν = 0 limit

Here we consider (C.26)-(C.34) and outline explicitly the ν → 0 limit of those α’s in the

negative-frequency range useful to obtain the determinant (4.31) as a ν → 0 limit of (4.22)-

(4.23). We keep in mind that k2 = (κ2 − ν2)/(ω2 − ν2). For the first quasi-momentum, we

notice that the ellipse segments parameterized by (C.26) shrink for ν → 0 to a point and

(C.26) becomes irrelevant. The interval corresponding to (C.27) extends to −∞ < Ω̄2 < −k′2

and (C.27) becomes

α1(Ω̄)→ K− sn−1

[√
(k′2 + Ω̄2)2

(k′2 − Ω̄2)2
, k

]
. (C.36)

The interval corresponding to (C.28) extends to −k′2 < Ω̄2 < 0 and (C.28) becomes

α1(Ω̄)→ 2K− sn−1

[√
− 4Ω̄2

(1 + k2 − Ω̄2)2 − 4k2
, k

]
. (C.37)

Considering the second quasi-momentum, the interval corresponding to (C.33) extends for

ν → 0 to −∞ < Ω̄2 < 0 and one gets

sn2(α2(Ω̄)) ∼ Ω̄2

4κ4
ν4 , cn2(α2(Ω̄)) ∼ 1− Ω̄2

4κ4
ν4 , dn2(α2(Ω̄)) ∼ 1− Ω̄2

4κ2ω2
ν4 , (C.38)

so that

p2 → i Ω̄ . (C.39)
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