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Quark-antiquark potential in AdS at one loop
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Abstract

We derive an exact analytical expression for the one-loop partition function of a string

in AdS5 × S5 background with world-surface ending on two anti-parallel lines. All quantum

fluctuations are shown to be governed by integrable, single-gap Lamé operators. The first

strong coupling correction to the quark-antiquark potential, as defined in N = 4 SYM, is

derived as the sum of known mathematical constants and a one-dimensional integral rep-

resentation. Its full numerical value can be given with arbitrary precision and confirms a

previous result.

1 Overview

The chance of studying weakly-coupled string theory to gain insight into strongly-coupled gauge

theory, provided by the AdS/CFT correspondence, has a seminal example in the string realiza-

tion of the quark-antiquark Wilson loop [1, 2], with heavy quarks modeled by W-bosons. The

expectation value of the rectangular loop with length T and width L, which in the limit T ≫ L

can be seen as a pair of anti-parallel lines (the “quark” trajectories) at distance L, is given by the

effective energy of a string on AdS5×S5 whose ends, restricted to the four-dimensional boundary

of AdS5, are at a distance L apart. In this context, the potential exhibits a Coulomb-like law

Vqq̄ (λ,L) = −c(λ)
L

, (1.1)

where c(λ) is a function of the string tension (or ’t Hooft coupling) that behaves as

c(λ) =











λ
4π

[

1− λ
2π2

(

ln 2π
λ − γE + 1

)

+O(λ2)
]

λ≪ 1 ,
√
λπ

4K2

[

1 + a1√
λ
+O

(

1
(
√
λ)2

)]

λ≫ 1 .
(1.2)
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Above, the weak-coupling expansion is the field-theoretical calculation of [3, 4], and K = K(12)

is the complete elliptic integral of the first kind with modulus k = 1√
2

2. The problem of finding

the first quantum string correction a1 to the classical result of [1][2], initiated in [5, 6, 7], has

been first addressed in [8, 9], resulting in a formal expression for the one-loop contribution to

the effective action as a ratio of determinants of two-dimensional generalized Laplace operators.

A numerical prediction for a1 has been presented in [10]. Our main motivation here is to address

the issue of exploiting exact analytical methods for computing the determinants in the partition

function of [8, 9] and thus the analytically exact value of the constant a1 in the sub-leading

correction to the potential.

The evaluation of quantum corrections to the energies of classical string solutions in AdS5 ×
S5 [11], crucial device for checking the detailed structure as well as the integrability of the

AdS/CFT system [12, 13], is in general a hard mathematical problem. The task is simplified

considering scaling limits of some “semiclassical parameters”, as in the case of fluctuations

over the open string solution dual to the cusp Wilson loop [14, 15, 16], or the closed string

solutions of [17, 18, 19, 20]. In these limits the solutions become linear in the world-sheet

coordinates (τ, σ), thus making constant the coefficients in the fluctuation Lagrangian. In the

case of the Wilson loop of a pair of anti-parallel lines, which has no other parameters than the

distance between the lines, the complicated σ-dependence of the lagrangean coefficients makes

non-trivial the evaluation of the operator spectra. The same is true for the straight line and

circular Wilson loops [8, 9, 21], for which a first explicit computation of fluctuation determinants

has been carried out in [22]. There, based on the effective one-dimensionality of the spectral

problem, it was possible to trade the explicit evaluation of the eigenvalue spectrum for the

relevant operator with the resolution of the associated differential equation, an approach known

as Gelfand-Yaglom method [23, 24]. In an analogous fashion the case of the anti-parallel lines

has been studied in [10], where each functional determinant has been formally expressed in terms

of the associated initial value problem with Dirichlet boundary conditions (the appropriate ones

in this framework [25]). While the possibility of a completely analytical treatment of such

initial value problem was not recognized in [10], the coefficient a1 in (1.2) was worked out by the

authors with great numerical precision. A step forward in the exact analytical treatment of string

quantum corrections has been made in [26] for the case of the folded string solution [27, 17], and

recently in [28] for the case of pulsating strings. It has been there realized that fluctuations on

this basic class of elliptic solutions can be put into the standard (single-gap) Lamé form, which

allows an exact treatment of the fluctuation problem. This is useful to extract information in

2See Appendix B for notation. We adopt here the Abramowitz-Mathematica notation for the modulus of the

elliptic functions.
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the meaningful semiclassical limits of large [29, 30] and short values of the conserved charges

typical of the problem [31, 32, 33].

We revisit here the evaluation of the one-loop partition function that defines the first sub-

leading correction to the quark-antiquark AdS potential, showing that also in this case the

fluctuations are governed by Lamé operators. This allows us to present some analytically exact

results, as the expressions for the fluctuation determinants (2.10)-(2.12) with (2.7), (2.13)-(2.14)

and the resulting formula for the one-loop partition function (3.2)-(3.3) with (3.4)-(3.8), see

also the equivalent expressions collected in Appendix D. Finally, we find for a1 the following

representation

a1 =
5π

12
− 3 ln 2 +

2K

π

(

K−
√
2 (π + ln 2) + Inum

)

(1.3)

= −1.33459530528060077364 . . . ,

where the contribution Inum, whose one-dimensional integral representation is displayed in

(D.10), can be evaluated with arbitrary precision. The numerical value of a1 confirms the

result obtained in [10].

The connection of the fluctuation problem to the integrable Lamé differential equation is

not surprising, since the minimal surface corresponding to the Wilson loop of anti-parallel lines

belongs, as the folded and pulsating string cases, to the important class of classical string

solutions expressed in terms of elliptic functions (see Appendix A). It is however interesting to

see on this non-trivial example how the integrability of the σ-model on AdS5 ×S5 [34][35, 36] is

extended from the classical to the one-loop level via this special, integrable, type of potential.

It is also interesting to recall that the chance of exploiting the integrability of the underlying

sigma-model to calculate Wilson loops within the AdS/CFT correspondence [37] has been made

recently concrete, via the connection of Wilson loops to N = 4 SYM scattering amplitudes, with

the proposal of Thermodynamic Bethe Ansatz equations for the latter [38]. Although the Wilson

loops appearing in amplitude computations consist of light-like segments that are not obviously

related to the configuration of space-like anti-parallel lines of interest here, it is fascinating to

think about the possibility (on the lines of the approximation in [39]) of using a description

similar to the one in [38] also in this case.

It would be also interesting to exploit similar analytical methods in the case of the one-loop

partition function for the anti-parallel lines configuration in a Schwarzschild-AdS5 background [6,

40], whose formal expression has been worked out in [41].

The main body of this article contains the analytical study of the fluctuations and the evalua-

tion of the one-loop contribution to the quark-antiquark potential. Appendices A, B and C recall

basic facts on the world-sheet set-up, elliptic integrals and functions and on the Gelfand-Yaglom
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method. Alternative expressions for the relevant integrals are displayed in Appendix D.

2 Fluctuation operators and their analytical determinants

Given the invariance of the anti-parallel lines configuration under time-translation, both the

bosonic and the fermionic fluctuation lagrangeans depend non-trivially only on the σ-coordinate,

and the original two-dimensional spectral problem is reduced to the evaluation of one-dimensional

functional determinants. After suitable world-sheet reparametrization and fermion diagonaliza-

tion [9, 10] reviewed in Appendix A, the resulting effective action for a string in AdS5 × S5

background with world-surface ending on two anti-parallel lines [8, 9] can be written as follows

upon Fourier transformation of the time variable (∂τ = −i ω)

Γ|| = −T
∫

dω

2π
ln

det2O+ det2O−

detO1 det
1/2O2 det

5/2O0

, (2.1)

where T =
∫

dτ is the τ -period. Above, O0 = −∂2σ + ω2 is the free operator and

Oi = −∂2σ + Vi(σ) + ω2 i = 1, 2,± , (2.2)

V1 =
1

cn2σ
, V2 =

1

cn2σ
− cn2σ, V± =

1±
√
2 snσ dnσ

2 cn2σ
. (2.3)

The Jacobi elliptic functions appearing in (2.3) and defined in Appendix B have fixed modulus

k = 1√
2
and −K < σ < K. The operators Oi are also defined in (A.10)-(A.14).

The partition function (2.1) suffers in general from linear infrared divergencies, that can be

cured subtracting a reference solution (as in [22] for the example of the circular Wilson loop).

The one-loop correction to the quark-antiquark potential can be thus obtained subtracting twice

the infinite, self-energy contribution of each of the parallel lines (quarks) [10], and dividing over

the infinite time period T =
∫

dt

V
(1)
qq̄ = lim

T→∞
1

T

[

Γ|| − 2Γ|
]

, T =
KL

π
T → ∞ , (2.4)

where the relation between T and T follows from (A.5) and (A.8) 3.

Exploiting elementary transformations of Jacobian elliptic functions [42], it is easy to check

that each non-trivial fluctuation operator is a single-gap Lamé operator with the following eigen-

value problem

[

− ∂2x + sn2x+Ω2
]

fΛ(x) = Λ fΛ(x) , (2.5)

3The world-sheet of the straight line can be parametrized with the same time variable as the one for the

anti-parallel lines [10], see (A.8).
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where, with respect to (2.2), x and Ω are a shifted (and rescaled) σ variable and euclidean

frequency respectively. Explicitly,

(a) for the first bosonic operator V1: x = σ + (1 + i)K and Ω2 = ω2 − 1;

(b) for the second bosonic operator V2: x = (1 + i)σ +K and Ω2 = ω2

2i − 1;

(c) for the fermionic operators V∓: x =







σ
2 (−1 + i) + K

2 (1 + i), for V−

σ
2 (−1 + i) + K

2 (3− i), for V+

, and Ω2 = 2 i ω2−1 .

The Lamé spectral problem (2.5) can be solved exactly, and hence the corresponding determinant

can be computed analytically, relying on the knowledge of the solutions to (2.5) and the use of

the Gelfand-Yaglom method (see, for example, [24] and [26][28]). While the general procedure

is briefly reviewed in Appendix C, let us see explicitly the evaluation of the determinant for the

bosonic fluctuation governed by the first potential V1.

Readapting the solutions (C.5) to the case (a) above, two independent solutions of the relevant

differential equation are

y±(σ) =
H(σ +K(1 + i)± α1)

Θ(σ +K(1 + i))
e∓Z(α1) (σ+K(1+i)) ≡ θ3

(π(σ±α1)
2K

)

θ2
(

π σ
2K

) e∓Z(α1) (σ+K(1+i)) , (2.6)

where the Jacobi H, Θ and Z functions are defined in (B.8) in terms of the Jacobi θ-functions

and

α1 = sn−1

√

k2 + ω2

k2
≡ sn−1

√

1 + 2ω2 . (2.7)

The solutions (2.6) diverge at the extrema σ = −K and σ = +K of the interval, which is a direct

way to see the standard need [25] of an infrared regulator ǫ. The Gelfand-Yaglom theorem will

be therefore applied solving the initial value problem in the interval −K+ ǫ < σ < K− ǫ where

ǫ is arbitrary small. The linear combination

u(x) =
y+(−K+ ǫ) y−(x)− y−(−K+ ǫ) y+(x)

W (−K+ ǫ)
, (2.8)

with wronskian W (x), see (C.7), evaluated at the regularized initial point, is a solution of the

homogeneous equation with boundary conditions

u(−K+ ǫ) = 0, u′(−K+ ǫ) = 1 . (2.9)

As follows from the discussion in Appendix C, the determinant of the bosonic operator V1 with

Dirichlet boundary conditions in the interval [−K+ ǫ,K+ ǫ] will be then given by u(K− ǫ). One
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finds

detO1 =
2ns2ǫ− sn2α1

snα1 cnα1 dnα1
sinh[ 2Z(α1) (K − ǫ) + Σ1 ], Σ1 = ln

θ4
(π (α1+ǫ)

2K

)

θ4
(π (α1−ǫ)

2K

)

. (2.10)

In a similar fashion one can work out the regularized determinants for the potential V2 and

V±, obtaining

detO2 =
1

(1 + i)

2 ns2[(1 + i) ǫ]− sn2α2

snα2 cnα2 dnα2
sinh

[

2Z(α2) (1 + i)(K − ǫ) +
i π α2

K
+Σ2

]

, (2.11)

detOf = (1 + i)
2 dn2αf − nd2

[

ǫ
(1+i)

]

snαf cnαf dnαf

θ3
(

π
2K

ǫ
1+i

)

θ1
(

π
2K

ǫ
1+i

) sinh
[

2Z(αf )
(K− ǫ)

1 + i
− i π αf

2K
+Σf

]

,(2.12)

where

α2 = sn−1
√

1− i ω2 , αf = sn−1
√

1 + 4i ω2 , (2.13)

and

Σ2 = ln
θ4
(π (α2+(1+i)ǫ)

2K

)

θ4
(π (α2−(1+i)ǫ)

2K

)

, Σf = ln
θ4
(

π
2K

(

αf +
ǫ

1+i)
)

θ2
(

π
2K

(

αf − ǫ
1+i)

)) . (2.14)

Notice that in the fermionic case detO+= detO−≡ detOf . This can be understood by noticing,

in (2.3), that V+(−σ) = V−(σ). Namely, it holds that O+ = P−1 O− P, with P the unitary parity

operator with respect to σ, implying detO+≡ detO− 4.

The contribution of the massless bosons can be easily obtained via the same method

detO0 =
sinh[2ω(K − ǫ)]

ω
. (2.15)

Expanding in ǫ ∼ 0 and retaining the divergent contributions, one gets

detOǫ
1

∼= − 2

ǫ2 ω2

√

ω2

4ω4 − 1
sinh[ 2KZ(α1) ] , (2.16)

detOǫ
2

∼= − 1

ǫ2 ω2

√

ω2

ω4 + 1
sinh

[

2 (1 + i)KZ(α2) +
i π α2

K

]

, (2.17)

detOǫ
f

∼= 4

ǫ

1√
16ω4 + 1

sin
[

(1 + i)KZ(αf ) +
π αf
2K

]

, (2.18)

detOǫ
0

∼= sinh[ 2Kω ]

ω
. (2.19)

4In this case, in which the evaluation of determinants is done via the Gelfand-Yaglom theorem, the equivalence

of the determinants can be easily checked exploiting this parity feature as inherited in the solutions via which the

determinant is defined, see (2.8) and (C.7).
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As usual, the divergence ∼ 1/ǫ in the resulting ratio of determinants as they appear in (2.1)

is cured subtracting twice the contribution of the straight line, which can be evaluated and

regularized by the same means [22][10]

Γǫ| = −T
2

∫ ∞

−∞

dω

2π
ln

[

1 +
1

ω ǫ

]

. (2.20)

3 One-loop correction to the quark-antiquark potential

The one-loop correction to the quark-antiquark potential is formally defined by (2.4), in which Γ||

is given in terms of the determinants (2.16)-(2.19), Γ| is substituted by the regularized expression

(2.20) and the regulator ǫ is sent to zero. Namely, it is

V
(1)
qq̄ = −1

2

π

KL
lim
ǫ→0

∫ +∞

−∞

dω

2π

[

ln
[ det8Oǫ

f

(detOǫ
1)

2 detOǫ
2 det

5Oǫ
0

]

− 2 ln
[

1 +
1

ω ǫ

]

]

. (3.1)

Making (3.1) explicit in terms of the determinants (2.16)-(2.19), the following exact analytical

expression is obtained for the one-loop correction to the quark-antiquark AdS potential

V
(1)
qq̄ = − 1

2KL

∫ +∞

0
dω ln

[1282ω10
(

1− 4ω4
)√

1 + ω4

(16ω4 + 1)4

]

+ (3.2)

− 1

2KL

∫ +∞

0
dω ln





sin8
[

(1 + i)KZ(αf ) +
παf

2K

]

sinh2[2KZ(α1)] sinh
[

2(1 + i)KZ(α2) +
iπα2

K

]

sinh5[2Kω]





=
π√
2KL

− 1

2KL
I . (3.3)

Above, α1, α2, αf are implicitly defined in (2.7), (2.13) and in the last equivalence we have

reported the result for the integral in the first line. The second non trivial integral I can be

partially given in terms of known mathematical constants. One can proceed rewriting it as 5

I =

∫ k

0
dω ln

[ cosh8 xf

cos2 x1zero sinhx2 sinh5[2Kω]

]

+

∫ ∞

k
dω ln

[ cosh8 xf

sinh2 x1inf sinhx2 sinh5[2Kω]

]

(3.4)

where

xf = K

(

1
2F

[

cos−1(1−4ω2

1+4ω2 )
]

− E
[

cos−1(1−4ω2

1+4ω2 )
]

+ 2ω
√
16ω4+1

1+4ω2

)

+ π
4KF

[

cos−1(1−4ω2

1+4ω2 )
]

, (3.5)

x1zero = K

(

F
[

cos−1(
√
2ω)

]

− 2E
[

cos−1(
√
2ω)

]

)

+ π
2KF

[

cos−1(
√
1−2ω2√
1+2ω2

)
]

, (3.6)

x1inf = K

(

F
[

sec−1(
√
2ω)

]

− 2E
[

sec−1(
√
2ω)

]

+
√
4ω4−1
ω

)

+ π
2 − π

2KF
[

sec−1(
√
2ω2+1√
2ω2−1

)
]

, (3.7)

x2 = K

(

F
[

cos−1(1−ω
2

1+ω2

)

− 2E
[

cos−1(1−ω
2

1+ω2 )
]

+ 2ω
√
1+ω4

ω2+1

)

+ π
2KF

[

cos−1(1−ω
2

1+ω2 )
]

, (3.8)

5A quick way to obtain this expression consists in taking the derivative of the arguments of the hyperbolic

functions in (3.3) and integrating back using standard tables of integrals.
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and E[x] ≡ E[x, 12 ] and F [x] ≡ F [x, 12 ] are the incomplete elliptic integrals of the first kind

defined in (B.1). The need of two separate intervals of integration, ω ∈ (0, k) and ω ∈ (k,∞),

is due to the bosonic fluctuations described by O1 and is clear, for example, by looking at the

square root in (2.16).

Rewriting now

ln sinhx = ln 1
2 + x+ ln[1− e−2x], (3.9)

its analogue for the cosh, and disregarding the constant contribution which will vanish due to the

balance of the world-sheet degrees of freedom, one can consider the part ∼ x in (3.9) and work

out some analytical finite contribution (the logarithmical and power-like divergencies will cancel

in the ratio). The numerical integration for the remaining contribution ∼ ln[1− e−2x] converges

quickly to a steady value, and can be obtained via standard packages like Mathematica with an

arbitrary precision. This way the contribution of each fluctuation can be evaluated separately.

For example, in the case of the fermions the indefinite integration will give

8

∫ ω

0
dω′ xf = 8ω2

K− 2π

K
lnω + 2K− π

K
(2 + 3 ln 2) +O

( 1

ω4

)

. (3.10)

In an analogous way one can evaluate the analytical contributions for all the fluctuations, check

the cancellation of the divergent pieces and get for the finite ones

Ian
ferm = 2K − π

K
(2 + 3 ln 2) , Ifree =

5π2

24K
, (3.11)

Ian
1 =

π

K
(1 + ln 2)−

√
2 ln 2 , Ian

2 =
π

K
(1 +

ln 2

2
)−K , (3.12)

where Ifree amounts for the total contribution of the free fluctuations to I.
The remaining contributions can be evaluated numerically with arbitrary precision 6

Inum
ferm = 8

∫ ∞

0
dω ln[1 + e−2xf ] = 1.41586 , (3.13)

Inum
1 = −2

∫ k

0
dω ln[cos x1zero]− 2

∫ ∞

k
dω ln[1− exp(−2x1inf)] = 1.18174 , (3.14)

Inum
2 = −

∫ ∞

0
dω ln[1− e−2x2 ] = 0.43859 . (3.15)

Adding together the analytical and numerical contributions

Ian =
π

K

(5π

24
− 3

2
ln 2

)

+K−
√
2 ln 2, Inum = 3.09111 , (3.16)

6Notice that the first term in Inum
1 automatically includes the type of constant contribution, ln 1

2
, which should

cancel in the balance of degrees of freedom. Such contribution, amounting to 2
∫ k

0
dω ln 1

2
= −

√
2 ln 2, has then

to be subtracted and is in fact included in Ian
1 .
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it follows for the one-loop correction in (3.3) the expression

V
(1)
qq̄ = − 1

2KL

[ π

K

(5π

24
− 3

2
ln 2

)

+K−
√
2(π + ln 2) + Inum

]

=
0.30492

L
. (3.17)

A compact way to define Inum, which is equivalent to the sum of the contributions in (3.13)-

(3.15), is given in (D.10) and evaluated there with high precision. The AdS quark-antiquark

potential is therefore given by

Vqq̄(
√
λ,L) = −

√
λπ

4K2 L

[

1 +
a1√
λ
+O

( 1

(
√
λ)2

)]

, λ≫ 1, (3.18)

where the one-loop correction a1 is given in (1.3), and confirms the result obtained in [10]. As

observed there, it is interesting to notice that, when compared to the strong coupling prediction

via summation of ladder diagrams of [3]

V ESZ
qq̄ (

√
λ,L) = −

√
λ

π L

[

1− π√
λ
+O

( 1

(
√
λ)2

)]

, λ≫ 1, (3.19)

a1 has the same sign and smaller absolute value.

To summarize, rephrasing the fluctuations over the minimal surface related to Wilson loop

with anti-parallel lines in terms of the Lamé spectral problem (2.5), we were able to present useful

analytical formulas for the fluctuation determinants (2.10)-(2.12), for the partition function

(3.2)-(3.3), and finally the representation (1.3) for the first subleading correction to the quark-

antiquark potential.
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Appendix A: World-sheet set-up

At the classical level, the quark-antiquark potential in AdS5 × S5 described by the metric

ds2 = y2 (dxn)2 +
dy2

y2
+ dΩ2

5 , (A.1)
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is evaluated considering two anti-parallel lines extended in the x0 direction and located at x1 =

±L
2 . In (A.1), we set to 1 the radius of both AdS5 and S5, n = 0, 1, 2, 3 and the index 4 labels

the coordinate y, ranging from its minimal value in the bulk to an infinite value on the boundary.

The world-sheet in the bulk can be parametrized by (τ, σ) = (x0, x1), −T /2 < τ < T /2. Given

the invariance of the problem under x0-translation, the surface stretched between the lines is a

function y = y(x1) of the x1 coordinate only, and the induced metric reads

ds2 = y2 dt2 +
1

y2
(y4 + y′2) dσ2. (A.2)

Given the Nambu-Goto action

S =

√
λT

2π

∫

dσ
√

y′2 + y4 , (A.3)

its equation of motion y y′′ = 4y′2 + 2y4 has a first integral of motion

y′2 =
y8

y40
− y4, (A.4)

which can be can be integrated in terms of elliptic functions. Above, y0 is an integration constant

corresponding to the minimal value of the coordinate y in the bulk and is related to the distance

L between the lines via

y0 =
π√
2KL

. (A.5)

One then proceeds evaluating the action (A.3) on the solution (A.4)

S =

√
λT

2π y20

∫ L/2

−L/2
dσ y4 −→ S = −

√
λπ

4K2

T

L
, (A.6)

where, following [9], one notices that (y−3y′)′ is a total derivative and replaces y4 by −y40, thus
assuming that the infinite boundary contribution can be dropped. Such a prescription coincides

with normalizing the partition function to the straight line case [25]. The classical contribution

to the quark-antiquark potential is obtained dividing the action by the infinite time period

T → ∞, thus obtaining Vqq̄(L) = −
√
λπ

4K2 L as in the leading part of (3.18).

The one-loop correction to the result (A.6) is obtained by considering fluctuations over the

classical solution, a problem addressed in [8, 9]. Bosonic fluctuations are obtained via a standard

background field method, while a σ-dependent rotation in the target space and the standard κ-

symmetry gauge fixing θ1 = θ2 for the two Green-Schwarz spinors are used to put the quadratic

fermionic term in the Green-Schwarz action into the standard kinetic term for a set of 2-d

Majorana fermions. In static gauge 7 the resulting one-loop partition function is

Γ|| =
det8/2(−i γα∇α + τ3)

det2/2(−∇2 + 2) det1/2(−∇2 + 1
4R

(2) + 4) det5/2(−∇2)
, (A.7)

7The infinite contribution of the ghost determinant is regularized changing the normalization of the non-trivial

(longitudinal) bosonic fluctuation, as seen in details in [9].
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where R(2) is the scalar curvature, γ0 = τ2, γ
1 = τ1 and γ0γ1 = −i τ3 are the Pauli matri-

ces. As suggested in [9], it is useful to deal with a conformally flat induced metric, obtained

reparametrizing the world-sheet via Jacobi elliptic functions of fixed modulus k = 1√
2
[10]

y =
y0
cnσ

, t =
τ√
2 y0

, (A.8)

where now −K < σ < K and −T
2 < τ < T

2 .

The induced metric and the scalar curvature read then

ds2ind =
1

2 cn2σ
(dτ2 + dσ2), R(2) = −2(1 + cn4σ) . (A.9)

The explicit expressions for the bosonic differential operators appearing in (A.7) are then [10]

−∇2 = −2cn2σ (∂2τ + ∂2σ) ≡ 2 cn2σO0 (A.10)

−∇2 + 2 = −2cn2σ (∂2τ + ∂2σ) + 2 ≡ 2 cn2σO1 (A.11)

−∇2 + 4 +R(2) = −2cn2σ (∂2τ + ∂2σ) + 2(1 − cn4σ) ≡ 2 cn2σO2 (A.12)

where the operators O0, O1 and O2 are defined in (2.2)-(2.3) upon Fourier transform of the time

variable (∂τ = −i ω). As suggested in [10], the fermionic differential operator

−i γα∇α + τ3 =
√
2 cnσ

[

− i
(

∂σ +
snσ cnσ

2 cnσ

)

τ1 − ω τ2 +
1√
2 cnσ

τ3

]

≡
√
2 cnσOψ (A.13)

can be further diagonalized after squaring it. Using for example M = 1√
2

(

1 i
i 1

)

, one has

O2
ψ =

√
cnσM diag{O+, O−}M † 1√

cnσ
, (A.14)

where O+ and O+ are defined in (2.2) and (2.3). Therefore, it is det8/2O2
ψ ≡ det2O+ det2O−.

Each “flat-space” operator O above is rescaled with respect to the original differential operator

appearing in (A.7) via the measure 1√
g = 2cn2σ. The finite contribution of such measure to

the logarithm of the original determinant (related to the Seeley coefficient which determines the

conformal anomaly 8) can be explicitly shown to cancel in the ratio (A.7) of determinants [10].

This justifies the final expression (2.1) of the effective action.

Appendix B: Relevant elliptic functions and identities

The incomplete elliptic integrals of the first and second kind are defined via

F [x, k2] =

∫ x

0
dθ (1− k2 sin2 θ)−1/2, E[x, k2] =

∫ x

0
dθ (1− k2 sin2 θ)1/2 (B.1)

8See discussion in Appendix A of [9].
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where k2 is their modulus. The corresponding complete elliptic integrals are given by

K(k2) = K = F [π2 , k
2] , E(k2) = E = E[π2 , k

2] . (B.2)

Defining the Jacobi amplitude as

ϕ = am(u | k2), where u =

∫ ϕ

0
dθ (1− k′2 sin2 θ)−1/2 (B.3)

the Jacobi elliptic functions sn, cn,dn are defined by

sn(u | k2) = sinϕ, cn(u | k2) = cosϕ, dn(u | k2) = (1− k2 sin2 ϕ)1/2 (B.4)

and, for example, ns(u | k2) = 1/sn(u | k2).
Useful relations between the squares of the functions are

−dn2(u | k2) + k′2 = −k2 cn2(u | k2) = k2 sn2(u | k2)− k2 (B.5)

−k′2 nd(u | k2) + k′2 = −k2 k′2 sd2(u | k2) = k2 cd(u | k2)− k2. (B.6)

A useful identity is

sn−1(z, 12) = F (sin−1 z, 12) . (B.7)

The Jacobi H, Θ and Z functions are defined as follows in terms of the Jacobi θ functions

H(u | k2) = θ1

(π u

2K
, q
)

, Θ(u | k2) = θ4

(π u

2K
, q
)

, Z(u | k2) = π

2K

θ′4(
π u
2K , q)

θ4(
π u
2K , q)

(B.8)

where q = q(k2) = exp(−πK
′

K
). A useful identity is

Z(x | k2) = E(x | k2)− E

K
F (x | k2) . (B.9)

Appendix C: Lamé problem and determinant via Gelfand-Yaglom

method

Following [24], consider a Schroedinger operator on the interval x ∈ [0, L] with Dirichlet bound-

ary conditions

[

− ∂2x + V (x)
]

ψ(x) = λψ(x), ψ(0) = 0, ψ′(0) = 0 . (C.1)

Then to compute the determinant one has to solve the associated homogeneous initial value

problem

[

− ∂2x + V (x)
]

φ(x) = λφ(x), φ(0) = 0, φ′(0) = 1 (C.2)
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and

det
[

− ∂2x + V (x)
]

= φ(L) . (C.3)

For the single-gap Lamé problem

[

− ∂2x + 2k2 sn2(x | k2)
]

f(x) = Λ f(x) (C.4)

two independent solutions are [43]

f±(x) =
H(x± α)

Θ(x)
e∓ xZ(α) , sn(α | k2) =

√

1 + k2 − Λ

k2
. (C.5)

In terms of them, a solution satisfying the conditions in (C.2) is

u(x; Λ) =
1

W (x̄)

[

f+(x̄) f−(x)− f−(x̄) f+(x)
]

(C.6)

where W is the wronskian at a generic initial point x̄

W (x̄) = f+(x̄) f
′
−(x̄)− f ′+(x̄) f−(x̄). (C.7)

Exploiting f±(−x) = −f∓(−x) and some properties of the Jacobi elliptic functions it is then

easy to check that, in the interval [−K,K], the expression for the determinant (C.3) yields 9

DetDir = u(K; Λ) = − cnα

snα dnα
sinh[2KZ(α)] = −

√
1− Λ√

k2 − Λ
√
1 + k2 − Λ

sinh[2KZ(α)] . (C.8)

The determinants (2.10)-(2.12) evaluated in Section 2 are generalizations of the expression (C.8).

Their slightly more involved form is simply due to the presence of the infrared regulator ǫ, which

alters the boundary conditions of the problem.

Appendix D: Equivalent form of the integral I in (3.3)

Basic manipulation of the special functions in (3.3) with identities such as (B.7) and (B.9) leads

to the following expression

I =

∫ k

0
dω ln

[ cosh8 x̃f

sin2 x̃1zero sinh x̃2 sinh5[2Kω]

]

+

∫ ∞

k
dω ln

[ cosh8 x̃f

sinh2 x̃1inf sinh x̃2 sinh5[2Kω]

]

,(D.1)

9In the square roots at the second equivalence the known eigenvalues of the Lamé equation appear, see for

example [26].

13



where

x̃f = π ω
K 2F1

[

1
2 ,

1
4 ,

5
4 ;−16ω4

]

+ 8ω3
K

3 2F1

[

1
2 ,

3
4 ,

7
4 ;−16ω4

]

, (D.2)

x̃1zero = −2ωK+ 4ω E 2F1

[

1
2 ,

1
4 ,

5
4 ; 4ω

4
]

+ 4Kω3

3 2F1

[

1
2 ,

3
4 ,

7
4 ; 4ω

4
]

+

− 8 21/4 Kω5

5 (1+
√
1−4ω4)5/4 2F1

[

3
4 ,

5
4 ,

9
4 ;

1
2(1−

√
1− 4ω4)

]

, (D.3)

x̃1inf = K

ω (1 +
√
4ω4 − 1)− 2E

ω 2F1

[

1
4 ,

1
2 ,

5
4 ;

1
4ω4

]

+ K

6ω3 2F1

[

1
2 ,

3
4 ,

7
4 ;

1
4ω4

]

+

+ K (2ω2+
√
4ω4−1)3/4

5
√
2ω5/2 (8ω4−1+4

√
4ω4−1ω2) 2F1

[

3
4 ,

5
4 ,

9
4 ;

1
2 −

√
4ω4−1
4ω2

]

, (D.4)

x̃2 = π ω
K 2F1

[

1
2 ,

1
4 ,

5
4 ;−ω4

]

+ 2ω3
K

3 2F1

[

1
2 ,

3
4 ,

7
4 ;−ω4

]

. (D.5)

A compact way to write the numerical contribution Inum in (3.16) is obtained as follows.

Each of the (3.5)-(3.8) can be put in a simpler form with the change of variables ω = 1
2 tan

α
2 in

(3.5), ω = 1√
2
cos α2 in (3.6), ω = 1√

2
sec α2 in (3.7) and ω = tan α

2 in (3.8). One obtains

x̄f =
1

2

( π

2K
+K

)

F [α]−KE[α] +
K

2
sinα

√

1 + tan4
α

2
(D.6)

x̄1zero =
( π

2K
−K

)

F [α2 ] + 2KE[α2 ] (D.7)

x̄1inf =
( π

2K
+K

)

F [α2 ]− 2KE[α2 ] +K tan α
2

√
3 + cosα (D.8)

x̄2 =
( π

2K
+K

)

F [α]− 2KE[α] +K sinα

√

1 + tan4
α

2
. (D.9)

which makes explicit x2 = 2xf . In terms of the variables above, the contributions (3.13)-(3.15)

are summed as 10

Inum=

∫ π

0

dα

2 cos2 α2

[

ln
(1 + e−2x̄f )3

1− e−2 x̄f
−

√
2 sin α

2

(

ln(1− e−2x1inf ) + cos2 α2 ln sinx1zero

)]

= 3.09111054729005989778296487945453992761532660548813 . (D.10)
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