City Research Online

Shock wave boundary layer interaction controlled by surface arc plasma actuators

Gan, T., Wu, Y., Sun, Z. ORCID: 0000-0002-3862-7939, Jin, D., Song, H. and Jia, M. (2018). Shock wave boundary layer interaction controlled by surface arc plasma actuators. Physics of Fluids, 30(5), 055107.. doi: 10.1063/1.5013166

Abstract

An array of 16 surface arc plasma actuators (SAPAs) is employed to control the shock wave boundary layer interaction (SWBLI) at a 26° compression ramp in a Mach 2.0 flow. A new electrical circuit is used to actuate all 16 SAPAs. The electrical measurement reveals significant augmentation in peak current (200 A) and an energy deposition of 1.05 J, which are the nominal characteristics of the setup. The SAPA array is later applied for SWBLI control. The actuator array is placed upstream of the SWBLI and operates at four different frequencies, namely, 500 Hz, 1 kHz, 2 kHz, and 5 kHz. In the wind tunnel experiment, high-speed schlieren at 25 000 frames per second is used for flow visualization. The shock wave system is modified significantly by the controlling gas blobs (CGBs) or controlling gas bulbs (CGBUs) generated by SAPAs. The foot portion of the separation shock wave disappears, and the oblique shock wave bifurcates when the CGBs pass through the interaction region. The shock weakening effect is further verified through the rms of the schlieren intensity of the same phase.

Publication Type: Article
Additional Information: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Physics of Fluids 30, 055107 (2018) and may be found at https://doi.org/10.1063/1.5013166.
Subjects: T Technology > TJ Mechanical engineering and machinery
Departments: School of Mathematics, Computer Science & Engineering > Engineering > Mechanical Engineering & Aeronautics
URI: http://openaccess.city.ac.uk/id/eprint/20337
[img]
Preview
Text - Accepted Version
Download (1MB) | Preview

Export

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login