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Abstract 

The presence of current in the ocean can significantly modify the characteristics of ocean waves, and it 

is considered as an important factor responsible for the occurrence of extreme waves, e.g., rogue waves, 

which are well known as great threats to ocean engineering practices. The magnitude and direction of ocean 

current normally vary spatially and ocean waves can become very large and steep. Accurate and efficient 

phase-revolved numerical methods of fully nonlinear wave-current interactions on a large scale in three 

dimensions (3D) are required to understand their properties, but the existing phase-revolved methods are 

all based on the assumption of linear or weakly nonlinear interactions. This paper will address the issues 

and present a fully nonlinear numerical method to model the 3D interactions between waves and varying 

current on a large scale using a phase-revolved formulation. A new set of equations describing the three-

dimensional, fully nonlinear interactions between waves and horizontally shearing current is proposed. 

They are derived by making no assumption on wave steepness or the order of wave-current interaction. The 

resulting new equations correctly describe the free surface boundary conditions by representing the fully 

nonlinear wave-current interactions, removing the limitation to the small wave steepness of the existing 

formulations in literature.   

On this basis, the recently developed Enhanced Spectral Boundary Integral (short as ESBI) method is 

further enhanced to be able to model the wave-current interactions using the new equations, by developing 

the appropriate procedure for dealing with the extra terms related to nonlinear wave-current interactions. 

The new equations  are used as the prognostic equations for updating the free surface in time domain, and 

a fast converging iterative technique is employed to solve them. The robustness of the newly developed 

method is demonstrated through comparing with experimental data available in literature and good 

agreements are observed in the several different cases, including the 3D fully interaction between ocean 



  

waves and horizontally varying current.  A comparison with a Higher Order Spectrum (HOS) method based 

on weak-nonlinear formulation of wave-current interaction is also made to confirm larger error does appear 

if the wave steepness is large.   The method presented in the paper can be employed to simulate the real 

evolution of ocean waves on current in a phase-revolved way to give deep insights to the dynamics of wave-

current interactions, which may not be done correctly by the existing methods so far.  

 

 

Keywords: Wave-current interaction; Enhanced Spectral Boundary Integral method (ESBI); Random Seas; 
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1 Introduction 

 

When ocean waves encounter current, their properties, e.g., direction, speed, wave length and height, 

will be significantly modified. The current may affect the wave condition and increase the probabilities of 

the rogue wave occurrence [1], which are extreme waves of twice the significant wave height. Due to their 

abnormal dynamic features distinguished from the surrounding waves, rogue waves can impose great 

uncertainties on the safety of human’s oceanic activities. Studies have pointed out that the ship accidents 

near the Agulhas current may be associated to the wave-current interactions [2, 3]. More recently, Lavrenov 

& Porubov [4] suggested that there are at least three reasons for rogue wave occurrence due to presence of 

current, i.e., a) wave energy amplification due to wave-current interaction, b) wave height amplification 

around a caustic due to refraction, and c) non-linear wave interaction in shallow water due to intersection 

of waves moving from different directions reflected by current. Therefore, accurate modelling of wave-

current interactions is very important for the understanding of rogue wave mechanisms. In order to perform 

forecast and prevent impacts in advance in engineering practices, developing an efficient and accurate 

numerical tool to model wave-current interactions can be beneficial in practical perspective.  

In many instances, the time and length scales of current are much larger than those of the waves, hence 

it is natural to assume the current is uniform in a local area [5]. To look at the local effects, many theoretical 

studies have investigated the interactions between a regular wave train with the uniform current [5-11], and 

good reviews can be found in [5] and [12]. Efforts have also been made to extend that to study the interaction 

between arbitrary (both regular and irregular) waves with the uniform current. Numerical wave tanks 



  

(NWTs) are developed, e.g., those based on the shallow water equations [13-17], fully nonlinear Boundary 

Element Method [18-22] and Quasi-Arbitrary Lagrangian-Eulerian Finite Element Method [23], Fast 

Fourier Transform (short as FFT) based fully nonlinear Higher Order Spectrum (short as HOS) method [24] 

and Spectral Boundary Integral (short as SBI) model [25], and those based on the coupled continuity and 

Navier-Stokes equations [26-28].  

Despite the success of those models for simulating the interactions between waves and the uniform 

current, the variation of the current in space cannot be considered by using them. The spatially varying 

current is often observed in real ocean environment and plays very important role in wave propagation on 

large scale, e.g., the large-scale variation of a current can change all the parameters describing a wave train 

as indicated by Peregrine [5]. To study the effects of varying current, the linear ray theory [29] is suggested, 

which can accurately predict the changes in wave length and direction due to refraction and blocking. 

However, it cannot predict the changes in the wave amplitude because waves become essentially nonlinear 

at the blocking point and therefore the linear solution is no longer accurate [22]. Although nonlinear theories 

describing the progressive waves riding on varying current are suggested [30-33] and fruitful results have 

been reported in recent studies [34-41], they can only be applied to regular waves or modulated uniform 

wave train [41], therefore such models are insufficient to describe random ocean waves consisting of 

components covering a wide range of spectra and subjected to spatially varying current. Nevertheless, an 

effective way to model random waves on varying current is through the phase-averaged models, which can 

provide useful statistical information, such as the spectra, etc. [42]. However, the specific wave kinematics 

and dynamics cannot be provided by the phase-averaged models due to the lack of the phase information, 

which are of great importance for precisely evaluating the responses and survivability of marine structures 

in real seas. Thus, the models in a phase-resolved approach are required.  

Several phase-resolved models have been proposed.  For example, the so-called Non-Linear Schrödinger 

Equation (short as NLSE) has been employed to study the current generated by a relatively small-amplitude 

slowly-varying internal long wave [43-48]. By using that, the effects of non-uniform current on the 

probability of rogue waves are explored, and it is found that the opposing current can cause rapid instability 

[46, 47]. Nevertheless, the NLSE is derived by assuming small wave steepness and narrow bandwidth, 

otherwise it becomes less accurate when applied beyond the limitations. The suitability of the NLSE for 

modelling random waves is discussed by Wang, et al. [49], in which the error of the NLSE has been 

quantified for simulating random waves. Due to such limitations, the NLSE will not be adopted in this 

study.  

To avoid such drawbacks, the HOS method has been extended to consider the effects of slowly varying 

current in a weakly rotational media [50]. However, the formulations of this model are derived by expanding 

the parts representing the wave-current interactions in terms of the wave steepness, with neglecting the 



  

higher order nonlinear terms. Although the method overcomes the limitation of narrow bandwidth imposed 

on the NLSEs, it is essentially weakly nonlinear for modelling wave-current interactions, and becomes less 

accurate when being used to simulate large steepness waves (more details will be given in the next section).  

As restated, robust numerical modeling of wave-current interactions on large scale in two and three 

dimensions, while considering sufficient nonlinearities, can be useful to both applied science and 

engineering practices.  However, the existing numerical models lack at least one of the following features: 

(i) modelling both regular and irregular waves in presence of current; (ii) simulating the current field that 

may be uniform or varying in space; (iii) being fully nonlinear and unassuming small wave steepness or 

narrow spectral bandwidth; (iv) being computationally efficient on large scale in both two and three 

dimensions.  So far, the numerical method that can model the fully nonlinear interactions between waves 

and varying current on large scale in both two and three dimensions, possessing all the above features, has 

not been proposed to the best of the authors’ knowledge. Therefore, to accurately model the effects of 

varying current on wave propagation on large scale becomes challenging due to the lack of such a powerful 

tool. This study successfully overcomes this challenge through three breakthroughs:  

i) A new set of equations  describing the 3D interactions between waves and varying current is developed, 

which is based on the fully nonlinear potential theory.  

ii) The recently developed Enhanced Spectral Boundary Integral (short as ESBI) method [51-55], which 

has been demonstrated to be very efficient and accurate for simulating regular and irregular waves on both 

local and large scales [49, 56], is further extended for solving the new system of equations. 

iii) A comprehensive validations are provided to show the robustness of the newly proposed theory and 

method through comparing with a variety of theoretical, numerical and experimental results available in 

literature.  

In this way, the paper will describe a robust fully nonlinear numerical model to simulate interactions 

between waves and varying current. Accurate numerical simulations can be carried out by using this model  

in order to shed light on the impact of varying current on wave propagation on large scales, which can be 

beneficial to the community of applied scientists and ocean engineers  and help them gain insights of the 

wave-current interactions for practical engineering applications.  

 

2 Formulations and numerical implementations 

To model the wave-current interactions numerically, some assumptions need to be made. Since 

significant contributions have been made in the earlier theoretical and numerical studies, the following 

assumptions adopted in those studies and shown to be effective are employed in this paper, e.g., 



  

i) One assumption in the aforementioned literature is that although the superposition of waves changes 

the current due to the mass flow induced by waves, the mass transport has negligible effects on the current 

field, especially in deep water. Hence, the feedback from waves to current can be ignored, and in such a 

way, the current field may be specified in advance [5]. Nevertheless, much progress has been made on 

studying the modification of the current fields by waves. It is reported that wave-induced Stokes drift affects 

the ocean boundary layer giving rise to widespread Langmuir circulation, which plays an important role in 

the air-sea interactions [57]. Very recently, Grue and Kolaas [58] pointed out that the waves induced Stokes 

drift is significantly higher than what is commonly represented in the wave-current interaction models, 

where the contribution of the boundary layer streaming should be incorporated. 

ii) Another assumption is that the horizontal velocity of the current independent of the vertical 

coordinate [11, 43], which is based on the fact pointed out by Peregrine [5] that the characteristic time and 

length scale of the oceanic current is large compared with wind-waves.  

iii) It is also assumed that such a flow is initially irrotational and will remain irrotational, hence velocity 

potential may be introduced and the potential theory can be employed [47].  

Based on that, a set of formulations will be proposed below, which will be incorporated to the ESBI to 

model the fully nonlinear wave-current interactions. 

 

2.1 Formulations describing wave-current interactions  

All the variables used here have been non-dimensionalised, e.g., those in length are multiplied by peak 

wave number 𝑘0, those in time by peak wave frequency 𝜔0, velocity potential by  𝑘0
2/𝜔0 and velocity by 

𝑘0/𝜔0, where 𝑔 is the gravitational acceleration, and the dispersion relation is given by 𝜔0 = √𝑔𝑘0. 

The still water level is specified at 𝑍 = 0, while the free surface and velocity of the water can be split 

into two parts, i.e., 

𝜁 = �̅� + 𝜂 (1) 

�⃗� = �⃗⃗� + (∇, 𝜕𝑍)𝜙 (2) 

where ∇= (𝜕𝑋 , 𝜕𝑌) is the horizontal gradient operator, �⃗⃗� = (𝑼,𝑊) and �̅�  are the current velocity and 

current induced surface elevation in absence of waves, respectively; 𝜙 and 𝜂 are the rest of the velocity 

potential and deflection of the free surface while involving the contribution of wave-current interactions.  

As the current velocity �⃗⃗�  is irrotational and time-independent, i.e., ∇ × �⃗⃗� = 0 and 𝜕𝑇�⃗⃗� = 0. It is further 

assumed that the horizontal part of the current velocity is depth-independent in vicinity of the free surface, 

i.e.,  𝜕𝑍𝑼 = 0 within 𝑍 ∈ [−𝛿𝐿0, 𝜁], where 𝐿0 is the peak wave length, and the velocity may or may not 

vary blow the level 𝑍 = −𝛿𝐿0. If 𝛿 ≥ 1/2, it is understandable that the waves are not significantly affected 



  

by the vertical variation of 𝑼. Or in other words, the effects of the region below 𝑍 = −𝛿𝐿0 is insignificant 

to waves. Such assumption, i.e., 𝜕𝑍𝑼 = 0  within 𝑍 ∈ [−𝛿𝐿0, 𝜁]  where 𝛿 ≥ 1/2 , is reasonable 

approximation and often observed in real ocean [11, 43]. 

Hence, based on the potential theory, the governing equation and the corresponding boundary conditions 

can be given by, 

∆𝜙 = 0, in −∞ < 𝑍 ≤ 𝜁 (3) 

𝜕𝑇𝜁 + ∇𝜁 ∙ (𝑼 + ∇𝜙) − (𝑊 + 𝜕𝑍𝜙) = 0, at  𝑍 = 𝜁 (4) 

𝜕𝑇𝜙 + 𝜁 +
1

2
[(𝑼 + ∇𝜙) ∙ (𝑼 + ∇𝜙) + (𝑊 + 𝜕𝑍𝜙)

2] = 0, at  𝑍 = 𝜁 (5) 

𝜕𝑍𝜙 = 0, at 𝑍 → −∞ (6) 

where ∆ is the Laplacian operator. It should be pointed out that the horizontal velocity of the current 𝑼 can 

be obtained from the measurement in-situ or in laboratory environment, however, it is difficult to acquire 

vertical velocity 𝑊. Nevertheless, 𝑊 can be determined once 𝑼 is obtained, whereas one needs to utilize 

the boundary conditions in the current-only situation. When waves are absent, at 𝑍 = �̅�, the kinematic and 

dynamic boundary conditions can be derived as follows, 

𝑊(𝑍 = �̅�) = ∇�̅� ∙ 𝑼 (7) 

�̅� = −
1

2
(𝑼 ∙ 𝑼 +𝑊2) (8) 

In addition, since 𝑼 = 𝑼(𝑿) = 𝑼(𝑋, 𝑌) and by using the irrotational condition ∇ × �⃗⃗� = 0, one can obtain 

that  

𝑊 = ∇ ∙ (�̅�𝑼) − 𝑍∇ ∙ 𝑼 (9) 

�̅� = −
1

2
[𝑼 ∙ 𝑼 + (∇�̅� ∙ 𝑼)2] (10) 

Unlike the cases subject to vertically shearing current, e.g., in reference [37], the nonzero vertical velocity 

𝑊 in this study is induced by horizontally varying current. Substitute Eqs. (9) and (10) into Eqs. (4) and 

(5), the surface boundary conditions can be reformulated as 

𝜕𝑇𝜂 + ∇𝜁 ∙ ∇�̃� − (1 + |∇𝜁|
2)𝜈 + 𝜇 = 0 (11) 

𝜕𝑇�̃� + 𝜂 +
1

2
[∇�̃� ∙ ∇�̃� − (1 + |∇𝜁|2)𝜈2] + 𝜓 = 0 (12) 



  

where the tilde indicates the value at free surface, i.e., �̃� = 𝜙|𝑍=𝜁, 𝜈 = 𝜕𝑍𝜙|𝑍=𝜁, and the terms representing 

the current effects are given by  

(
𝜇

𝜓
) = 𝑈1 + 𝑈2 (13) 

where 

𝑈1 = (
∇𝜂 ∙ 𝑼

∇�̃� ∙ 𝑼
) (14) 

𝑈2 = (
𝜂(∇ ∙ 𝑼)

−𝜂(∇�̅� ∙ 𝑼)∇ ∙ 𝑼 +
1
2
(𝜂𝛻 ∙ 𝑼)2

) (15) 

It is emphasized that Eqs. (14) represents the effects of the uniformity of the current, whereas Eqs.(15) 

denotes the influences of the variation of the current field. If the current field is uniformly distributed, then 

𝑈2 = 0 and the system becomes the one used in the HOS [24] and the original SBI model [25]. Furthermore, 

it is pointed out that Eqs.(11) ~ (13) differ from that derived by Wu [50]. In Wu’s formulations, they 

assumed that the horizontal velocity of the current slowly varies along the vertical direction, i.e., 𝜕𝑍𝑼~𝑂(𝜀), 

where 𝜀 is the wave steepness, with 𝑼 and  𝑊 expanded in terms of wave steepness and with the higher 

order terms of wave steepness, i.e., ≥ 𝑂(𝜀2) , neglected when deriving (𝜇, 𝜓) . Therefore, their 

approximation to the wave-current interactions is not fully nonlinear but only accurate to the first order of 

wave steepness, i.e., ~𝑂(𝜀), even for the uniform current. Their neglecting terms may not be significant 

for small and moderate waves but will become pronounced when the steepness of the simulated waves is 

large. The new approach of this paper based on Eqs. (11) ~ (15) overcomes this drawback and is fully 

nonlinear without such limitation on the wave steepness, hence are more accurate for describing the effects 

of varying current on wave propagation. 

 

2.2 Implementation in ESBI 

2.2.1 The prognostic equation 

Now introducing 𝑉 = 𝜕𝑛𝜙√1 + |∇𝜁|
2, �⃗�  is the outwards unit vector normal to the surface, Eqs.(11) and 

(12) can be rewritten as 

𝜕𝑇𝜂 = 𝑉 − 𝜇 = 𝑉 − ∇𝜂 ∙ 𝑼 − 𝜂(∇ ∙ 𝑼) (16) 

𝜕𝑇�̃� + 𝜂 +
1

2
(|∇�̃�|

2
−
(𝑉 + ∇𝜁 ∙ ∇�̃�)

2

1 + |∇𝜁|2
) + 𝜓 = 0 (17) 

Eqs. (16) and (17) will be used as the prognostic equation for the ESBI method. Compared with the 

formulation in [55], there are two extra terms  𝜇 and 𝜓 in Eq. (16) and the 𝜁-term in Eq. (17) is the total 



  

free surface elevation including the part induced by the steady current.  Apply Fourier transform to Eqs.(16) 

and (17), it can be obtained as 

𝜕𝑇�⃗⃗� + 𝐴�⃗⃗� = �⃗⃗�  (18) 

where 

�⃗⃗� = (
𝐾𝐹{𝜂}

𝐾Ω𝐹{�̃�}
), 𝐴 = [

0 −Ω
Ω 0

] and �⃗⃗� = (
𝐾𝐹{𝐺1

′}

𝐾Ω𝐹{𝐺2
′}
) (19) 

𝐹{∗} = ∫∗ 𝑒−𝑖𝑲∙𝑿𝑑𝑿 is the Fourier transform and 𝐹−1{∗} denotes the inverse transform, 𝑲  is the wave 

number in Fourier space and 𝐾 = |𝑲|, the frequency 𝛺 = √𝐾, and 

𝐹{𝐺1
′} = 𝐹{𝑉} − 𝐾𝐹{�̃�} − 𝐹{𝜇} (20) 

𝐹{𝐺2
′} =

1

2
𝐹 {
(𝑉 + ∇𝜁 ∙ ∇�̃�)

2

1 + |∇𝜁|2
− |∇�̃�|

2
} − 𝐹{𝜓} (21) 

The solution to Eq.(18) can be given as 

�⃗⃗� (𝑇) = 𝑒−𝐴(𝑇−𝑇0) [∫ 𝑒𝐴(𝑇−𝑇0)�⃗⃗� 𝑑𝑇
𝑇

𝑇0

+ �⃗⃗� (𝑇0)] (22) 

where  

𝑒𝐴∆𝑇 = [
cosΩ∆𝑇 − sinΩ∆𝑇
sinΩ∆𝑇 cosΩ∆𝑇

] (23) 

The integration of Eqs.(22 ∼ 23) is so robust that any Runge-Kutta method will work well. In this study, 

they are solved by using the fifth order Runge-Kutta method with adaptive time step, which has been shown 

very effective for modelling both regular and irregular waves [52, 55]. In addition, the wave generation and 

absorption are achieved by introducing an additional source term in Eq. (22), of which the details are 

omitted here for brevity but can be found in [53, 59]. 

2.2.2 Solution to the boundary integral equation 

Meanwhile, one needs to solve the Laplace equation in order to determine 𝑉, which can be transferred 

to a boundary integral equation using the Green’s theorem, i.e., 

∬
1

𝑟
𝜕𝑛𝜙′

𝑆

𝑑𝑆′ = 2𝜋�̃� +∬ �̃�′𝜕𝑛 (
1

𝑟
)

𝑆

𝑑𝑆′ (24) 

where S is the segment of the instantaneous free surface, the variables with the prime indicate those at 

source point (𝑿′, 𝑍′), the variables without the prime are those at field point (𝑿, 𝑍), 𝑟 = √𝑅2 + (𝑍′ − 𝑍)2 

and 𝑅 = |𝑹| = |𝑿′ − 𝑿|. Introducing 𝑑𝑆′ = √1 + |∇𝜁|2𝑑𝑿′, the above integral can be written as 



  

∫
𝑉′

𝑟
𝑑𝑿′

𝑆0

= 2𝜋�̃� + ∫ �̃�′√1 + |∇′𝜁′|2𝜕𝑛 (
1

𝑟
)𝑑𝑿′

𝑆0

 (25) 

where 𝑆0 is the projection of 𝑆 on to the horizontal plane, after introducing a new variable 𝐷 = (𝜁′ − 𝜁)/𝑅, 

the above equation becomes 

∫
𝑉′

𝑅
𝑑𝑿′

𝑆0

= 2𝜋�̃� + ∫ (𝜁′ − 𝜁)∇′�̃�′ ∙ ∇′
1

𝑅
𝑑𝑿′

𝑆0

−∫ �̃�′ [
1

(1 + 𝐷2)3/2
− 1]∇′ ∙ [(𝜁′ − 𝜁)∇′

1

𝑅
]𝑑𝑿′

𝑆0

−∫
𝑉′

𝑅
(

1

√1 + 𝐷2
− 1)𝑑𝑿′

𝑆0

 

(26) 

The evaluation of 𝑉 can be achieved by using the boundary integral equation, and it can be split into 

four parts in terms of different degrees of nonlinearities, i.e., 𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4, where  

𝑉1 = 𝐹
−1 {𝐾𝐹{�̃�}} (27) 

𝑉2 = −𝐹
−1{𝐾𝐹{𝜁𝑉1}} − ∇ ∙ (𝜁∇�̃�) (28) 

𝑉3 = 𝐹
−1 {

𝐾

2𝜋
𝐹 {∫ �̃�′ [1 −

1

(1 + 𝐷2)3/2
] ∇′ ∙ [(𝜁′ − 𝜁)∇′

1

𝑅
] 𝑑𝑿′}} (29) 

𝑉4 = 𝐹
−1 {

𝐾

2𝜋
𝐹 {∫

𝑉′

𝑅
(1 −

1

√1 + 𝐷2
)𝑑𝑿′}} (30) 

It should be noted that Eqs.(24 ∼ 30) slightly differ from those derived by Clamond and Grue [51], as ζ 

here includes all the surface elevations due to current, waves and their interaction, rather than those due 

only to waves. Note that the dominant part of 𝑉4 can be further written into third order convolutions, of 

which the calculation is fast owing to the Fast Fourier Transform (FFT). Otherwise, the estimation of the 

remaining integration part of 𝑉3  and 𝑉4  are relatively slow. Later, Wang & Ma [55] suggested three 

techniques to improve the efficiency of the model, where a de-singularity method, a de-aliasing approach 

and convolutions up to 7th order for evaluating 𝑉 are introduced, i.e.,  

𝑉3 = 𝑉3
(1)
⏟

4𝑡ℎ 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑉3
(2)
⏟

6𝑡ℎ 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑉3,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 
(31) 

𝑉4 = 𝑉4
(1)
⏟

3𝑟𝑑 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑉4
(2)
⏟

5𝑡ℎ 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑉4
(3)
⏟

7𝑡ℎ 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑉4,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 
(32) 

where the formulations for 𝑉3 and 𝑉4 can be found in the appendix. The integration terms are insignificant 

thus can be neglected when the wave steepness is small, but will be included in the calculation automatically 



  

when wave steepness becomes sufficiently large. Through such a scheme, the high performance of the ESBI 

model can be guaranteed for simulating wave-current interactions both accurately and efficiently.  

Note that the formulations in this section differ from that used by the original SBI [25], which is 

proposed to model the interaction between waves and uniform current. If not considering the variation of 

the current, �̅� becomes a constant reference level and can be taken as zero, thus 𝜁 = 𝜂, �̃� = 𝜙|𝑍=𝜂, and the 

Eq.(27), (28) and (A.4) are identical to that in [25]. However, the original SBI [25] only considers the 

nonlinearities up to the third order for evaluating the vertical velocity, i.e., 𝑉 = 𝑉1 + 𝑉2 + 𝑉4
(1)

, of which 

the limitations have been discussed in [49]. Though for the applications in Grue and Jensen [25], the full 

and the cubic contribution gave the same result of the orbital velocity, the same conclusion may not be true 

in a time integration of the wave-current interactions. Nevertheless, the present model doesn’t have such 

limitations for modelling the interactions between waves and uniform current.  

 

2.2.3 Numerical technique for estimating �̅� 

It should be emphasized that the current induced free surface �̅� in Eq. (10) is implicit and its estimation 

is not straightforward. However, it can be derived numerically. It is assumed that  �̅� = �̅�0 + �̅�′, where 

�̅�0 = −
1

2
𝑼 ∙ 𝑼 (33) 

�̅�′(�̅�) = −
1

2
(∇�̅� ∙ 𝑼)2 (34) 

In the equations, �̅�0 is determined by the velocity whereas �̅�′ is a function of �̅�, and thus to determine �̅� in 

terms of 𝑼, iterations are required through the following steps: 

1) �̅�𝑖𝑡𝑒𝑟=0 = �̅�0; 

2) �̅�𝑖𝑡𝑒𝑟+1 = �̅�0 + �̅�
′(�̅�𝑖𝑡𝑒𝑟), iter = iter + 1; 

3) Estimate the error between �̅�𝑖𝑡𝑒𝑟+1  and �̅�𝑖𝑡𝑒𝑟 , and examine the error: if error is less than the 

tolerance, the iteration can be terminated, otherwise go back to step 2). 

Based on the techniques introduced in section 2.2.1-2.2.3, a flow chart illustrating the numerical 

implementation of the present model is shown in Figure 1.  
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Figure 1. Flow chart of the implementation of present model 

 

 



  

3 Validations 

In order to demonstrate the effectiveness of the improved ESBI method for modelling the wave-current 

interactions, some numerical simulations are performed in this section and the obtained results are 

compared with the data in relevant literature.  

3.1 Uniform current 

Since a regular wave train on uniform current behaves similarly to that on spatially-varying current, the 

case for it will be demonstrated in the section 3.2.  Here firstly, a focusing wave on the uniform current is 

simulated. The results are compared with the laboratory measurements in Wu & Yao [60], in which the 

focusing wave is generated by using the formula 

𝜂𝑅 = ∑𝑎𝑛 cos(𝑘𝑛𝑋 − 𝜔𝑛𝑇 + 𝜃𝑛)

𝑁

𝑛=1

 (35) 

where 𝑎𝑛, 𝑘𝑛 and 𝜔𝑛 are the amplitude, wave number and frequency of each individual component,  𝜃𝑛 =

−𝑘𝑛𝑋𝑓 +𝜔𝑛𝑇𝑓, 𝑋𝑓 and 𝑇𝑓 are specified focusing location and time respectively.  

The computational domain covers 32 peak wave lengths, and is resolved into 1024 points. A pneumatic 

wave maker is placed in the centre of the tank and the generated waves propagate towards both ends where 

they are absorbed. The information of the components, such as 𝑎𝑛, 𝑘𝑛 and 𝜔𝑛, etc., are extracted from the 

time history of the free surface in absence of the current in the literature. They are adjusted through 

iterations to minimize the error of the present model for reproducing the same focusing wave measured in 

laboratory. Next, with the calibrated components, two cases with following and opposing current are 

performed, where the velocity is ±0.1m/s. The time histories obtained by using the ESBI recorded at the 

focusing location, in comparison with the one observed in laboratory, are displayed in Figure 2. It shows 

that due to the wave-current interactions, the release of the wave packet on the following current was lagged, 

while this feature was reversed on the opposing current. Nevertheless, the results obtained by using the 

ESBI agree quite well with that recorded in the laboratory by Wu & Yao [60], where the errors of the 

maximum crest are 7% and 10% for following and opposing current, respectively, which indicates that the 

ESBI can be used to accurately model the wave interacting with the uniform current.  



  

 

 

Figure 2. Comparison of the time history of free surface: rogue wave on uniform current. ’- - -’: ESBI, 

U = 0.1m/s; ’x’: Wu and Yao [60], U = 0.1m/s; ’-’: ESBI, U = -

0.1m/s; ’                                                     ’: Wu and Yao [60], U = -0.1m/s 

 

 

3.2 Two-dimensional spatially-varying current  

In this subsection, the newly developed ESBI is employed to simulate two-dimensional uniform waves 

propagating on spatially-varying current. The obtained results are then compared with those by using HOS 

and those observed in laboratory to further validate the method.  

3.2.1 Regular waves on collinear current 

The numerical simulations by using HOS in Wu [50] are performed here by using the newly developed 

ESBI model. The domain covers 256 wave lengths and 8192 points are used. The current profile is given 

by  

𝑼(𝑋, 𝑌) =

{
 
 

 
 

0,

𝑈𝑚𝐻((96𝐿0 − 𝑋)/72𝐿0),

𝑈𝑚,

𝑈𝑚𝐻((𝑋 − 160𝐿0)/72𝐿0),

0,

   

0 ≤ 𝑋 ≤ 24𝐿0
24𝐿0 < 𝑋 ≤ 96𝐿0
96𝐿0 < 𝑋 ≤ 160𝐿0
160𝐿0 < 𝑋 ≤ 232𝐿0
232𝐿0 < 𝑋 ≤ 256𝐿0

 (36) 

and 𝐻( ) is the Hermitian polynomial, 

𝐻(𝜉) = 1 − 462𝜉6 + 1980𝜉7 − 3465𝜉8 + 3080𝜉9 − 1386𝜉10 + 252𝜉11 (37) 

Both cases of following and opposing currents are considered, i.e., 𝑈𝑚/𝑐0 = 0.5 and 𝑈𝑚/𝑐0 = −0.2, 

where 𝑐0 is the wave phase speed. The computational domain is initialized by a spatially-periodical Stokes 

wave train with steepness of 0.001 for linear waves and 0.2 for nonlinear waves, with simultaneous presence 

of current. Due to the current effects, the local wave steepness will be changed gradually with time, and it 

is found that the waves are not stabilized until 250 periods. Meanwhile, for the case of wave steepness 0.2 



  

subjected to opposing current, wave breaking is observed due to the amplification effects induced by the 

opposing current. Thus, the initial steepness is adjusted to 0.05 to avoid the wave breaking. The stabilized 

free surface at the end of the simulation, in comparison with the surface elevation extracted from [50] is 

shown in Figure 3, where good agreement is observed.  

 

(a) following current, 𝑈𝑚/𝑐0 = 0.5 

 

(b) opposing current, 𝑈𝑚/𝑐0 = −0.2 

Figure 3. Comparison of the free surface in space: regular waves of steepness 0.001 on collinear 

current. ’- - -’: Numerical results in [50]; ’-’: Results by ESBI 

 

To further demonstrate the effectiveness of the ESBI for this case, the local wave amplitude and wave 

number are estimated by using [60]  



  

𝑎𝑙 = √𝜂
2 + 𝜂𝐻

2     𝑎𝑛𝑑    𝑘𝑙 =
𝜂𝜕𝑇𝜂𝐻 − 𝜂𝐻𝜕𝑇𝜂

𝜂2 + 𝜂𝐻
2  (38) 

where 𝜂𝐻 stands for the corresponding Hilbert transform of the free surface elevation. Then the relationship 

between the local wave steepness against the current velocity, in comparison with the linear analytical 

solution and the results in Wu [50] is presented in Figure 4. 

The figure shows that when the wave steepness is small, both the numerical results obtained by using 

the ESBI and HOS agree with the linear predictions. However, the results deviate from the linear theory 

when wave steepness becomes large, which is understandable as the contribution from the nonlinearities 

becomes significant. Both HOS and ESBI overpredict the steepness in following current while 

underestimate that in opposing current. However, the maximum differences between the obtained results 

by using the ESBI and HOS are about 4.6% and 4.1% for the following and opposing current, respectively, 

and the ESBI model slightly overpredicts the wave steepness when the flow is relatively faster. As indicated 

in section 2.1, the HOS suggested by Wu [50] is only accurate for modelling current interacting with small 

steepness waves. Therefore, the difference between the results of the two approaches is due to that the HOS 

had neglected higher order nonlinear terms representing the wave-current interactions. The neglected terms 

will become pronounced when the wave steepness increases, in which cases the HOS becomes less accurate. 

Nevertheless, the good agreement between the ESBI and theoretical results is observed.  

  

(a) following current, 𝑈𝑚 = 0.5𝑐0   (b) opposing current, 𝑈𝑚 = −0.2𝑐0 

Figure 4. Local wave steepness against current velocity: regular waves on collinear current 

 

 



  

3.2.2 Wave blocking on opposing current 

Waves propagating against an opposing current may be blocked at a certain point if the current is 

sufficiently strong. To validate the ESBI for simulating such situations, three cases subject to horizontally 

shearing current studied by Ma, et al. [61] in laboratory are selected.  The cases have a variety of nonlinear 

scenarios. The configuration of the numerical wave tank is the same as that in section 3.1, however, the 

pneumatic wave maker is moved to one fourth of the tank length from the left boundary, and only the part 

on the right is effectively used for simulating the wave propagation in the cases.  

The profile of the current is obtained by interpolating the measured velocity in laboratory, as shown by 

the ‘Fitted’ data in Figure 5, which is then prescribed to be 𝑼 in the ESBI simulation. The wave conditions 

of the selected cases are given in Table 1, where the maximum wave steepness is 0.073 (Case 1). Each 

simulation lasts for 400 periods, and the last 100 periods are extracted for spectral analysis by using the 

Fourier transform. By doing so, the local frequency (𝜔𝑙) corresponding to the peak of the obtained spectra 

at all probes along the tank can be estimated and the results are shown in Figure 6.  

 

Table 1. Description of the configuration 

Case No. Period(s) Wave height(cm) Wave number (m-1) 

1 1.0 2.21 6.6 

4 1.1 2.5 5.2 

7 1.2 2.61 4.24 

 

 

Figure 5. Profile of horizontally shearing current against distance: wave blocking on opposing 

current. ’Theoretical’: calculated values based on continuity equation; ’Measurement’: values 

recorded in laboratory; ’Fitted’: values obtained by numerical interpolation. 

 



  

  

(a) Case 1                        (b) Case 4 

 

(c) Case 7 

Figure 6. Local wave frequency against distance. ‘−’: ESBI; ‘•’ Measurements by Ma, et al. [61] 

 

It can be found that in the first two cases, i.e., Case 1&4, the waves are relatively short and the phase 

celerity is not fast enough to compete with the current speed. Therefore, the waves are blocked at certain 

points. Instant frequency down-shifting is observed. For the last case, i.e., Case 7, the waves are moving 

sufficiently fast to penetrate the current field, despite of slight frequency down-shifting near the end of the 

tank. Moreover, the numerical results obtained by using the ESBI are well consistent with these measured 

in the laboratory.  In particular, the ESBI model successfully captured the frequency down-shifting due to 

the blocking effects of the opposing current observed in laboratory.  

In addition, the comparison of the free surface time history between the laboratory experimental data 

and numerical simulation results recorded at the gauges along the tank for case 1 is shown in Figure 7. It is 

understandable that the envelope represents the evolution of the wave energy along the tank, so that can be 

used to indicate the blocking effects of the current on the propagation of the waves. The figure shows that 

the free surface time histories predicted by the ESBI agree reasonably with the experimental data, though 

the measured free surface in laboratory behaves irregularly, which may be caused by the imperfection for 

reproducing steady current condition, e.g., the turbulence of the current as observed [61]. However, the 

blockage of the waves due to the opposing current is successfully captured by the ESBI model. 



  

 

Figure 7. Comparison of the time histories of the surface elevation for case 1 of wave steepness 

0.073. ‘−’: free surface by ESBI, ‘· · ·’: laboratory measurement in [61]. 

 

 

3.3 Three-dimensional Horizontally-shearing current 

In addition to the two-dimensional validation cases, three-dimensional simulations are also performed 

to demonstrate the robustness and effectiveness of the newly developed ESBI method, for modelling waves 

interacting with horizontally-shearing current. Waves propagating on an oblique current is more 

complicated.  It was firstly studied by Shyu and Tung [10] by using the ray theory. Subsequently, Lavrenov 

[3] analyzed the ray pattern of the Agulhas current and found that the rogue waves can be generated at the 

focusing point where wave energy concentrates. Later studies pointed out that wave-current interaction is 

the major mechanism of the rogue wave phenomenon in deep water [9, 62]. Hereafter, two cases are 

considered, i.e., the modulation instability induced by oblique opposing current, and the spreading seas 

entering a horizontally-shearing current field. The simulations of the selected two cases have been 

performed in a physical wave tank by Toffoli, et al. [63].  These cases will be reproduced by using the ESBI 

method and the obtained results will be compared with the laboratory data.   



  

3.3.1 Modulation instability 

The NWT covers 78m×58m in space and is resolved into 2048×512 collocation pointes, whilst the 

directional wave maker is installed at one fourth of the total length from the left boundary. Waves are 

absorbed at far ends and only the part on the right of the wave maker is effectively used. Three components 

are input to generate the wave maker signal, where the steepness of the main wave (carrier wave) is 0.1 and 

period 0.8s, including two side-bands with 1/4 the amplitude of carrier wave and bandwidth equals to 0.25.  

The current flows obliquely in an angle of  Ψ = 110𝑜 with respect to the main wave direction.  The 

configuration of the NWT is shown in Figure 8. The maximum current speed is 0.2m/s near the centre of 

the wave tank, however, exact values of the current speed is unavailable except the measurements at five 

individual current meters. To initialize the current field in the ESBI, the current profile is approximated by 

using 

|𝑼| =

{
 
 

 
 

−0.104,

−0.104 − 0.027 × 𝐻((12 − 𝑋/𝐿0)/7),

−0.131,

−0.104 − 0.027 × 𝐻((𝑋/𝐿0 − 17)/7),

−0.104,

   

𝑋/𝐿0 ≤ 5
5 < 𝑋/𝐿0 ≤ 12
12 < 𝑋/𝐿0 ≤ 17
17 < 𝑋/𝐿0 ≤ 24
𝑋/𝐿0 > 24

 (39) 

It is found the fitted results agree very well with the measurement in Toffoli, et al. [63], as shown in Figure 

9, where the maximum error is about 2.0%.  

 

Figure 8. Configuration of the NWT 



  

 

Figure 9. Fitted profile of the current speed. ’x’: Measured in Toffoli, et al.[63]; ’—’: Fitted. 

 

The three-dimensional free surface distributions in space at the end of the simulation are shown in Figure 

10 for the cases with and without the current.  It can be found in Figure 10 (a) that around 11.5 wave groups 

coexist in the computational domain when current is not present. However, as shown in Figure 10 (b), due 

to the current effects, the waves are compressed and 13 groups are observed in the NWT simultaneously. 

Meanwhile, the wave heights are found larger than those in absence of current. In addition, during the 

simulation, the data of the free surface elevation are collected at 9 wave gauges along the main wave 

direction, and the comparison of the time histories of the free surface elevation between the numerical 

results and that reported in Toffoli, et al. [63] is shown in Figure 11. It is found that without the current, 

since the wave train features a small Benjamin-Feir Index, the modulation instability cannot develop into 

extreme waves during the propagation. Whereas the waves are compressed due to the presence of opposing 

current, which increases the Benjamin-Feir Index, thus the instability is triggered and the maximum free 

surface is achieved around gauge #5 and #6. Meanwhile, the ESBI successfully captured the variation of 

the surface elevation at different locations and the results agree quite well with the laboratory experiment 

in both the cases with and without current. However, it should be noted that in the case with current, the 

time series measured in physical tank are more erratic than the ones in NWT, which is presumably related 

to the turbulence fluctuation of the current velocity [63]. Nevertheless, the evolution of the wave packet 

predicted by the numerical results is qualitatively consistent with the laboratory observations.  

 

 

(a) without current (the initial carrier wave steepness is 0.1) 



  

 

 

(b) with current 

Figure 10. The spatial distribution of modulated free surface at T/T0 = 150 (Color online)   

 

 

Figure 11. Comparison of the time histories of the surface elevation. ‘-’: free surface by ESBI, 

‘- -’: surface envelope in Toffoli, et al. [63] (Color online). 

 

To further demonstrate the robustness of the ESBI quantitively, the propagation of 5 individual wave 

groups are tracked, as shown in Figure 11 between the dash lines. Their maximum crests recorded at each 

probe are extracted, which are then normalized by the concurrent variances and shown in Figure 12. To 

remove the erratic feature of the data collected in the laboratory, the mean value is estimated by averaging 

the values indicated by the 5 curves, and is also displayed in the figure. Meanwhile, the numerical data is 

identical among each individual wave group, thus only the mean value is displayed and compared with that 

in laboratory. It is found that the maximum crest height observed in the NWT quantitatively agrees quite 



  

well with that in Toffoli, et al. [63], where the maximum error between the numerical results and the mean 

value of laboratory observation in presence of current is about 9.8% at gauge #5. The good agreement 

reveals that the present ESBI model successfully captured the dynamics of the unstable wave train.  

 

 

Figure 12. Comparison of the maximum free surface against location. ’· · ◦ · ·’: Group (1)  in 

[63]; ‘· · Δ · ·’: Group (2)  in [63]; ‘· ·  □ · ·’: Group (3)  in [63]; ‘··+··’: Group (4)  in [63]; ‘· · × · ·’: 

Group (5) in [63]; ‘- - -’: Average in [63]; ‘—’: ESBI. 

 

3.3.2 Spreading seas 

 To show that the present model is not limited to only model regular waves in three dimensions, it is 

then verified for simulating spreading seas with presence of horizontally shearing current. The 

configuration of the NWT is the same with that in section 3.3.1, and the JONSWAP spectrum is employed, 

where the peak period is 1s, significant wave height 0.08m and peak enhancement factor 6. The spreading 

function is chosen as 

𝐺(𝜃) =
Γ(𝑁/2 + 1)

√𝜋Γ[(𝑁 + 1)/2]
cos𝑁(𝜃) (40) 

where Γ() is the Gamma function and N = 24. The mean wave direction, the current velocity and direction 

are both the same with that in section 3.3.1.  

Snapshots of the free surface elevation in space at T/T0 = 150 are presented in Figure 13, in which a 

qualitative comparison between Figure 13(a) and (b) reveals that the number of extreme waves in presence 

of current are more than that without current presence. This is understandable as the opposing current can 

contribute to the probability of extreme wave events [1]. To examine the accuracy of the numerical model 

quantitively, simulated results are compared with that in Toffoli, et al. [63]. Since time history of the free 



  

surface is unavailable and direct comparison of the surface elevation cannot be made, only the kurtosis at 

different locations along the main wave direction is analyzed.  It is estimated by using the formula 

𝜅4 = 𝑚4/𝑚2
2 (41) 

where 𝑚4 and 𝑚2 are the fourth and second moment of the surface time history, respectively. In fact, the 

kurtosis reflects the probability of the extreme waves in random wave field [1], thus is sufficient to examine 

the enhancement of the nonlinearities of the wave field due to the current.  Based on the linear theory, when 

the wave steepness is small, the statistics of the random sea follows the Gaussian distribution, which makes 

kurtosis identical to 3. However, when the wave steepness increases, the nonlinearities become stronger 

and the kurtosis will exceed 3. To approximate the kurtosis while considering nonlinear effects up to the 

second order, a formula is suggested by Longuet-Higgins  [64] as below 

𝜅4
′ = 3 + 24𝜎2 (42) 

and 𝜎 is the standard deviation of the surface elevation.  

The results obtained by using the numerical simulation, together with that estimated by using Eq. (42) 

and obtained in the physical wave tank [63] are presented in Figure 14. It shows good agreement between 

the curves obtained numerically and experimentally. Moreover, it is observed that the kurtosis is subjected 

to a deceleration of its growth throughout the propagation, meanwhile, shows the tendency to preserve 

slightly higher values with current presence. At the far end from the wave maker, the kurtosis agrees very 

well with the second order prediction without the current, whereas it is significanly underestimated when 

current is involved.  In the middle part o the tank, the resutls of Eq. (42) is close to the expeimental data of 

the cases with current.  However, the difference betwwen the values of the kurtosis with and witout the 

current  is successfully captured by the numerical simulation.  These results desmonstrated that Eq. (42) 

may not correctly reflect the evolution of the kurtosis throughout the whole tank. In addition, the errors of 

the maximum kurtosis between the results obtained in the NWT and physcial wave tanks are 0.8% and 1.7% 

corresponding to the cases without and with current, respectively. These indicates that the present ESBI 

model is very accurate when employed to model the property of irregular waves in presence of current.  

 



  

 

(a) without current 

 

(b) with current 

Figure 13. The spatial distribution of spreading wave free surface at T/T0 = 150 (Color online)    

 

 

Figure 14. Kurtosis against probe location (Color online). ’- - -’: with current, 2nd order; 



  

’—◦—’: without current, Toffoli, et al.[63]; ’—•—’: with current, Toffoli, et al. [63]; ’—Δ—’: 

without current, ESBI; ’—▲—’: with current, ESBI. 

 

4 Conclusion 

This study suggests an accurate and efficient phase-resolved numerical method to model the fully 

nonlinear three-dimensional interactions between waves and horizontally varying current. To achieve this 

goal, a new system of equations describing the fully nonlinear interactions between waves and varying 

current is proposed, removing the limitation to the small wave steepness of the existing formulation in 

literature.  The Enhanced Spectral Boundary Integral (ESBI) Method is extended to solve the problems 

based on the new equations by considering the extra terms associated with wave-current interaction.  The 

newly developed method can be employed to simulate the real evolution of ocean waves on current, which 

may not be done correctly by the existing methods in literature.  

The newly developed method based on the new equations is compared with experimental data available 

in literature in the several cases, including two-dimensional focusing waves on an uniform current, two-

dimensional regular waves interacting with spatially-varying current and three-dimensional interaction of 

horizontal varying current with spreading ocean waves and modulated waves generated by superposing 

two-sideband wave components onto a carrier wave component.  It is found in two dimensions that the 

release of the focusing wave packet on the following uniform current was lagged, while it was reversed on 

the opposing uniform current. When waves were subjected to horizontally shearing current, instant 

frequency down-shifting of the wave train along the tank was observed, due to the blockage of the opposing 

current. In addition, when waves propagated opposed to oblique horizontally shearing current in three 

dimensions, modulated uniform wave train featuring small Benjamin-Feir index could develop into large 

steepness waves due to modulation instability. Apart from these, the kurtosis of the spreading random sea 

was shown to preserve slightly higher values with current presence.  It is also found that generally good 

agreement between the numerical results from the newly developed method and laboratory measurements 

is achieved in all the cases considered. This indicates that the method works well when it is employed to 

model the two or three dimensional, fully nonlinear wave-current interactions in the cases with uniform or 

horizontally sheared current. Furthermore, the phase of each individual wave is resolved, so that not only 

the statistical information, but also the kinematics and dynamics of the fully nonlinear wave-current field 

can be obtained, which are of great importance for the sake of engineering purposes. 

As demonstrated in section 3.2.1, the some differences between the results obtained with the HOS and 

the ESBI model are observed when waves becomes steep. The reasons causing the differences might be 



  

attributed to the nature of the HOS approach, i.e., the formulations suggested by Dommermuth and Yue 

[65] as those employed by Wu [50]. On one hand, the HOS model did not account for higher order nonlinear 

terms representing wave-current interactions. On the other hand, it fails to preserve the Hamiltonian 

structure of the prognostic equations[66], of which the insufficiency is reported for modeling long-time 

wave propagation [67]. Although it can be improved by employing another version of the HOS suggested 

by West, et al. [68], further investigations are required. 

Nevertheless, the limitation of the present model is that it can only be used to model non-breaking waves, 

as the methodology itself is based on the potential theory that assumes the water is inviscid and irrotational. 

In the future study, the present model will be coupled with other methods which can deal with the breaking 

waves to overcome the drawback. Moreover, the present model may be insufficient for modeling waves 

subject to strong vertically shearing current, which is important for studying waves near shore and in coastal 

areas. In the future, the present ESBI model will be extended to include this feature, based perhaps on the 

work by Fructus and Grue [69], in which variable bathymetry is considered. 
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Appendix 

The formulas for estimating 𝑉3 and 𝑉4 are presented here without further details but can be found in [55], 

where the convolution part of 𝑉3 is given by 

𝐹 {𝑉3
(1)
} = −

𝐾

6
[𝐾𝑖𝑲 ∙ 𝐹{𝜁3∇�̃�} − 3𝐹 {𝜁𝐹−1 {𝐾𝑖𝑲 ∙ 𝐹{𝜁2∇�̃�}}}

+ 3𝐹 {𝜁2𝐹−1 {𝐾𝑖𝑲 ∙ 𝐹{𝜁∇�̃�}}} + 𝐹 {𝜁3𝐹−1 {𝐾3𝐹{�̃�}}}] 

(A. 1) 



  

𝐹 {𝑉3
(2)
} = −

𝐾

120
[𝑖𝑲𝐾3 ∙ 𝐹{𝜁5∇�̃�} − 5𝐹 {𝜁𝐹−1 {𝑖𝑲𝐾3 ∙ 𝐹{𝜁4∇�̃�}}}

+ 10𝐹 {𝜁2𝐹−1 {𝑖𝑲𝐾3 ∙ 𝐹{𝜁3∇�̃�}}}

− 10𝐹 {𝜁3𝐹−1 {𝑖𝑲𝐾3 ∙ 𝐹{𝜁2∇�̃�}}}

+ 5𝐹 {𝜁4𝐹−1 {𝑖𝑲𝐾3 ∙ 𝐹{𝜁∇�̃�}}} + 𝐹 {𝜁5𝐹−1 {𝐾5𝐹{�̃�}}}] 

(A. 2) 

and the integration part  

𝐹{𝑉3,𝐼} =
𝐾

2𝜋
𝐹 {
35

16
∫ �̃�′∇′ ∙ [(𝜁′ − 𝜁)∇′

1

𝑅
]𝐷6𝑑𝑿′

+∫ �̃�′ [1 − (1 + 𝐷2)−3/2 −
3

2
𝐷2 +

15

8
𝐷4 −

35

16
𝐷6] ∇′

∙ [(𝜁′ − 𝜁)∇′
1

𝑅
]𝑑𝑿′} 

(A. 3) 

Meanwhile, the convolution part 𝑉4 is given by 

𝐹 {𝑉4
(1)
} = −

𝐾

2
[𝐾𝐹{𝜁2𝑉} − 2𝐹 {𝜁𝐹−1{𝐾𝐹{𝜁𝑉}}} + 𝐹 {𝜁2𝐹−1{𝐾𝐹{𝑉}}}] (A. 4) 

𝐹 {𝑉4
(2)
} = −

𝐾

24
[𝐾3𝐹{𝑉𝜁4} − 4𝐹 {𝜁𝐹−1{𝐾3𝐹{𝑉𝜁3}}} + 6𝐹 {𝜁2𝐹−1{𝐾3𝐹{𝑉𝜁2}}}

− 4𝐹 {𝜁3𝐹−1{𝐾3𝐹{𝑉𝜁}}} + 𝐹 {𝜁4𝐹−1{𝐾3𝐹{𝑉}}}] 

(A. 5) 

𝐹 {𝑉4
(3)
} =

−𝐾

720
[𝐾5𝐹{𝑉𝜁6} − 6𝐹 {𝜁𝐹−1 {𝐾5𝐹{𝑉𝜁5}}}

+ 15𝐹 {𝜁2𝐹−1 {𝐾5𝐹{𝑉𝜁4}}} − 20𝐹 {𝜁3𝐹−1 {𝐾5𝐹{𝑉𝜁3}}}

+ 15𝐹 {𝜁4𝐹−1 {𝐾5𝐹{𝑉𝜁2}}} − 6𝐹 {𝜁5𝐹−1 {𝐾5𝐹{𝑉𝜁}}}

+ 𝐹 {𝜁6𝐹−1 {𝐾5𝐹{𝑉}}}] 

(A. 6) 

and the integration part  

𝐹{𝑉4,𝐼} =
𝐾

2𝜋
𝐹 {∫

𝑉′

𝑅
(1 −

1

√1 + 𝐷2
−
1

2
𝐷2 +

3

8
𝐷4 −

5

16
𝐷6)𝑑𝑿′} (A. 7) 
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