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Abstract

This paper tackles the identification and estimation of a high dimensional

factor model with unknown number of latent factors and a single break in the

number of factors and/or factor loadings occurring at unknown common date.

First, we propose a least squares estimator of the change point based on the

second moments of estimated pseudo factors and show that the estimation error

of the proposed estimator is Op(1). We also show that the proposed estimator

has some degree of robustness to misspecification of the number of pseudo fac-

tors. With the estimated change point plugged in, consistency of the estimated

number of pre and post-break factors and convergence rate of the estimated pre

and post-break factor space are then established under fairly general assump-

tions. The finite sample performance of our estimators is investigated using

Monte Carlo experiments.
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1 INTRODUCTION

Large factor models where a large number of time series are simultaneously driven by

a small number of unobserved factors, provide a powerful framework to analyze high

dimensional data. In the past fifteen years, large factor models have been success-

fully used in business cycle analysis, consumer behavior analysis, asset pricing and

economic monitoring and forecasting, see for example Bernanke, Boivin and Eliasz

(2005), Lewbel (1991), Ross (1976) and Stock and Watson (2002b), to mention a few.

Estimation theory of large factor models also experienced some breakthroughs, see

Bai and Ng (2002) and Bai (2003), to mention a few. While most applications implic-

itly assume that the number of factors and factor loadings are stable, there is broad

evidence of structural instability in macroeconomic and financial time series. Stock

and Watson (2002a, 2009) argue that given the number of factors, standard principal

component estimation of factors is still consistent if the magnitude of the factor load-

ing break is small enough. Bates, Plagborg-Møller, Stock and Watson (2013) further

argue that a suffi cient condition for consistent estimation of the factor space is that

the magnitude of the factor loading break should converge to zero asymptotically.

The condition becomes increasingly stringent if one is to ensure the same conver-

gence rate of the estimated factor space derived in Bai and Ng (2002). This plays a

crucial role in subsequent forecasting and factor augmented regression models, and in

ensuring consistent estimation of the number of factors. However, in many empirical

applications, the magnitude of factor loading break could be large and the number

of factors may also change over time. Examples include important economic events

such as the European debt crisis, or political events such as the end of the cold war,

or policy change such as the end of China’s one-child policy, to mention a few.

In the presence of a large factor loading break, estimation ignoring this instability

leads to serious consequences. First, the estimated number of factors, using any exist-

ing method, e.g., Bai and Ng (2002), Onatski (2009, 2010) and Ahn and Horenstein

(2013), is no longer consistent and tends to overestimate. This is because a factor

model with unstable factor loadings can be represented by an equivalent model with

extra pseudo factors but stable factor loadings. Moreover, the inconsistency of the
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estimated number of factors will be transmitted to the estimated factors. In such

cases, it is hard to interpret the estimated factors, and forecasting performance may

also deteriorate since adding extra factors in the forecasting equation does not always

control the true factor space1. Consequently, a series of tests are proposed to test

large factor loading break, including Breitung and Eickmeier (2011), Chen, Dolado

and Gonzalo (2014), Han and Inoue (2015) and Corradi and Swanson (2014). Once

a large factor loading break has been detected, one still has to estimate the change

point, determine the number of pre and post-break factors and estimate the factor

space.

In fact, identification and estimation of a factor model in the presence of structural

instability have inherent diffi culties. First, without knowing the change point, it is

infeasible to consistently estimate the factors and factor loadings even if the number

of pre-break and post-break factors were known. Second, existing change point esti-

mation methods require knowledge of the number of regressors and observability of

the regressors, see for example Bai (1994, 1997, 2010). Hence, to estimate the change

point along this path, even if the number of pre-break and post-break factors were

known, we still need at least a consistent estimator of the factors, which is infeasible

without knowing the change point. For example, consider the case where the number

of factors is known, constant over time and after a certain time period, the factor

loadings are all doubled. This model can be equivalently represented as the model

where factor loadings are constant over time, while factors are all doubled after that

time period. In this case, estimating the change point directly following Bai (1994,

1997) is not promising. Cheng, Liao and Schorfheide (2015) propose a shrinkage

procedure that consistently estimates the number of pre and post-break factors and

consistently detects factor loading breaks when the number of factors is constant,

without requiring knowledge of the change point. This result is a significant break-

through. However, it only leads to a consistent estimate of the change fraction and

does not lead to consistent estimates of the factors or factor loadings. In addition,

1Consider the case where all factor loadings are doubled after the change point. Also, the number
of factors is imposed a priori as in many empirical studies. In this case, the true factor space would
not be controlled for.
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Chen (2015) also proposes a consistent estimate of the change fraction.

In contrast with Cheng, Liao and Schorfheide (2015), we first propose a least

squares estimator of the change point without requiring knowledge of the number of

factors and observability of the factors. Based on the estimated change point, we

then split the sample into two subsamples and use each subsample to estimate the

number of pre and post-break factors as well as the factor space. The key observation

behind our change point estimator is that the change point of the factor loadings in

the original model is the same as the change point of the second moment matrix of

the factors in the equivalent model. Estimating the former can therefore be converted

to estimating the latter, thereby circumventing the estimation of the original model.

This observation was first utilized by Chen et al. (2014) and Han and Inoue (2015) to

test the presence of a factor loading break. Here we further exploit this observation

to estimate the change point. More specifically, we start by estimating the number

of pseudo factors and the pseudo factors themselves ignoring structural change. This

leads us to identify the equivalent model. Based on the estimated pseudo factors, we

then estimate the pre and post-break second moment matrix of the pseudo factors for

all possible sample splits. The change point is estimated by minimizing the sum of

squared residuals of this second moment matrix estimation among all possible sample

splits.

Under fairly general assumptions, we show that the distance between the estimated

and the true change point is Op(1). Although our change point estimation itself is

a two step procedure, a significant advantage is it has some degree of robustness to

misspecification of the number of pseudo factors. The underlying mechanism is that if

the number of pseudo factors were underestimated, the change point estimator would

be based on a subset of its second moment matrix, hence there is still information to

identify the change point. While if the number of pseudo factors were overestimated,

no information would be lost although extra noise would be brought in by the extra

estimated factors. The latter is similar to Moon and Weidner (2015) who show that

for panel data with interactive effects, the limiting distribution of the least squares

estimator of the regression coeffi cients is independent of the number of factors as long

as it is not underestimated. Estimating the number of pseudo factors therefore can be
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seen as a procedure selecting the model with the strongest identification strength of

the unknown change point. From this perspective, our method shares some similarity

with selecting the most relevant instrumental variables (IVs) among a large number

of IVs.

Based on the estimated change point, consistency of the estimated pre and post-

break number of factors and consistency of the estimated pre and post-break factor

space are established. Also, the convergence rate of the estimated factor space is

the same as the one in Bai and Ng (2002) for the stable model, which is crucial

for eliminating the effect of using estimated factors in factor augmented regressions.

Note that these results are based on an inconsistent change point estimator (the first

step estimator). This is different from the traditional plug-in procedure, in which

even consistency of the first step estimation does not guarantee that its effect on the

second step estimation will vanish asymptotically. In general, the effect of the first

step error on the second step estimator depends upon the magnitude of the first step

error and how the second step estimator is affected by the first step error. In the

traditional plug-in procedure, usually the first step error needs to vanish suffi ciently

fast to eliminate its effect. In the current context, while the first step error does not

vanish asymptotically, the second step becomes increasingly less sensitive to the first

step error as the time dimension T goes to infinity. That is to say, the robustness of

the second step estimators to the first step error relies on large T . Similar robustness

has also been established in Bai (1997). In fact, in Bai (1997) it is a direct corollary

that the asymptotic property of the estimated regression coeffi cients is not affected

by the inconsistency of the estimated change point. However, in the current factor

setup, it is nontrivial to establish this robustness because estimating the number of

factors and factor space is totally different from estimating the regression coeffi cients.

Our assumptions are quite general. We allow for cases with a change in the number

of factors, which can be disappearing or emerging factors. We also allow for cases with

only partial change in the factor loadings and cases in which a change in the factor

loadings do not lead to extra pseudo factors. Our Assumptions 1-7 are either from or

slight modification of Assumptions A-G in Bai (2003). These allow for cross-sectional

and temporal dependence as well as heteroskedasticity of the idiosyncratic errors. The
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main extra assumption we impose is that the Hajek-Renyi inequality is applicable to

the second moment process of the factors. As discussed in the next section, this

assumption is more general than explicitly assuming a specific factor process and can

be easily satisfied. It is also worth noting that for a regularly behaved error term, our

results do not rely on the relative speed of the number of subjects (N) and the time

series length (T ).

The rest of the paper is organized as follows. Section 2 introduces the model

setup, notation and preliminaries. Section 3 discusses the equivalent representation

and assumptions. Section 4 considers estimation of the change point. Section 5

considers estimation of the number of pre and post-break factors. Section 6 considers

estimation of the factor space. Section 7 discusses further issues relating to the

limiting distribution of the change point estimator. Section 8 reports the simulation

results, while Section 9 concludes. All the proofs are given in the Appendix.

2 NOTATION AND PRELIMINARIES

Consider the following large factor model with structural change in the factor loadings:

xit =

{
f ′0,tλ0,i + f ′1,tλ1,i + ei,t, if 1 ≤ t ≤ [τ 0T ]

f ′0,tλ0,i + f ′1,tλ2,i + ei,t, if [τ 0T ] + 1 ≤ t ≤ T
for i = 1, ..., N and t = 1, ..., T ,

(1)

where ft = (f ′0,t, f
′
1,t)
′. f1,t and f0,t are q and r − q dimensional vectors of factors

with and without structural change in their factor loadings, respectively. λ0,i is the

factor loadings of subject i corresponding to f0,t. λ1,i and λ2,i are factor loadings of

subject i corresponding to f1,t before and after the structural change, respectively. It

is easy to see that r − q = 0 and r − q > 0 correspond to the pure change case and

the partial change case respectively. ei,t is the error term allowed to have temporal

and cross-sectional dependence as well as heteroskedasticity. τ 0 ∈ (0, 1) is the change

fraction and k0 = [τ 0T ] is the change point.
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In matrix form, the model can be represented as:

X =

[
F 0

1 Λ′0 + F 1
1 Λ′1

F 0
2 Λ′0 + F 1

2 Λ′2

]
+ E, (2)

where F 0
1 = [f0,1, ..., f0,[τ0T ]]

′, F 0
2 = [f0,[τ0T ]+1, ..., f0,T ]′, F 1

1 = [f1,1, ..., f1,[τ0T ]]
′ and

F 1
2 = [f1,[τ0T ]+1, ..., f1,T ]′ are of dimensions [τ 0T ] × (r − q), [(1 − τ 0)T ] × (r − q),

[τ 0T ] × q and [(1 − τ 0)T ] × q, respectively. Λ0 = [λ0,1, ..., λ0,N ]′, Λ1 = [λ1,1, ..., λ1,N ]′

and Λ2 = [λ2,1, ..., λ2,N ]′ are of dimensions N × (r− q), N × q and N × q, respectively,
E = [e1, ..., eT ]′ is of dimension T × N . The matrices F 0

1 , F
0
2 , F

1
1 , F

1
2 , Λ0, Λ1, Λ2

and E are all unknown. In addition, Λ01 = [Λ0,Λ1] = (λ01,1, ..., λ01,N)′ and Λ02 =

[Λ0,Λ2] = (λ02,1, ..., λ02,N)′ are of dimension N × r. Note that in general not only

the factor loadings but also the number of factors may have structural change. In

our representation, structural change in the number of factors is incorporated as a

special case of structural change in factor loadings by allowing either Λ01 or Λ02 to

be degenerate. In case the number of pre-break and post-break factors are r1 and r2

respectively, with r = max{r1, r2}, ft and λi are always r dimensional vectors and
both Λ01 and Λ02 are of dimensions N × r. If r1 < r2, some columns in Λ01 are zeros

and the number of such columns is r2 − r1. In this case, Λ01 is degenerate and Λ02

is of full rank. Similarly, if r1 > r2, some columns in Λ02 are zeros and Λ01 is of

full rank. If r1 = r2, both Λ01 and Λ02 are of full rank r. In addition, we want to

point out that although cases with either disappearing factors or emerging factors

are allowed for, cases with both disappearing factors and emerging factors are not

necessarily identifiable within this mathematical setup. A model with s1 disappearing

factors and s2 emerging factors can be equivalently represented as a model with s1−s2

disappearing factors.

Throughout the paper, ‖A‖ = (trAA′)
1
2 denotes the Frobenius norm,

p→ denotes

convergence in probability, d→ denotes convergence in distribution, vec(A) denotes the

vectorization of matrix A, r(A) denotes the rank of matrix A, δNT = min{
√
N,
√
T},

(N, T )→∞ denotes N and T going to infinity jointly.
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3 EQUIVALENT REPRESENTATION AND ASSUMPTIONS

Since at least one of Λ01 and Λ02 is of full rank, for the moment, suppose that Λ01

is of full rank. Due to symmetry, all results can be established similarly in case

Λ02 is of full rank. When Λ01 is of full rank, the rank of the N × (r + q) matrix[
Λ0 Λ1 Λ2

]
is between r and r + q. Suppose

[
Λ0 Λ1 Λ2

]
is of rank r + q1,

where 0 ≤ q1 ≤ q, then Λ2 can be decomposed into Λ2 =
[

Λ21 Λ22

]
, where Λ21 is

of dimension N × q1 and contains the columns in Λ2 that are linearly independent

of Λ01. Λ22 is of dimension N × q2 and contains the columns in Λ2 that are linear

combinations of columns in
[

Λ0 Λ1 Λ21

]
such that Λ22 =

[
Λ0 Λ1 Λ21

]
Z for

some (r + q1)× q2 matrix Z. Therefore,
[

Λ0 Λ1 Λ21

]
is of full rank (r + q1) and

[
Λ0 Λ1

]
=

[
Λ0 Λ1 Λ21

]
A,[

Λ0 Λ2

]
=

[
Λ0 Λ1 Λ21

]
B,

where A =

[
Ir

0q1×r

]
and B =

 Ir−q 0(r−q)×q1

0q×(r−q) 0q×q1

0q1×(r−q) Iq1

Z

. It follows that model
(2) has the following equivalent representation with stable factor loadings:

X =

 [ F 0
1 F 1

1

] [
Λ0 Λ1

]′[
F 0

2 F 1
2

] [
Λ0 Λ2

]′
+ E

=

 [ F 0
1 F 1

1

]
(
[

Λ0 Λ1 Λ21

]
A)′[

F 0
2 F 1

2

]
(
[

Λ0 Λ1 Λ21

]
B)′

+ E

=

 [ F 0
1 F 1

1

]
A′[

F 0
2 F 1

2

]
B′

[ Λ0 Λ1 Λ21

]′
+ E. (3)
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Next, define G = (g1, ..., gT )′ =

 [ F 0
1 F 1

1

]
A′[

F 0
2 F 1

2

]
B′

 and Γ =
[

Λ0 Λ1 Λ21

]
, then

X = GΓ′ + E, (4)

gt =

{
Aft, if 1 ≤ t ≤ [τ 0T ]

Bft, if [τ 0T ] + 1 ≤ t ≤ T
, (5)

and we call r + q1 the number of pseudo factors. Equivalent representation of model

(2) was first formulated by Han and Inoue (2015). Here our representation is unified,

generalizes and complements their result. Our representation is fairly general. The

big break case discussed in Chen et al. (2014) corresponds to the case q1 = q, while

the type 1, type 2 and type 3 breaks discussed in Han and Inoue (2015) correspond

to the cases q1 = q, q1 = 0 and 0 < q1 < q respectively. The type 1 and type 2

changes discussed in Cheng et al. (2015) are also special cases of this representation.

To ensure this equivalent representation is unique up to a rotation, it remains to show

G is asymptotically full rank, i.e., 1
T

∑T
t=1 gtg

′
t

p→ ΣG for some positive definite ΣG.

Define ΣF = E(ftf
′
t), ΣG,1 = E(gtg

′
t) for t ≤ k0 and ΣG,2 = E(gtg

′
t) for t > k0, then

ΣG,1 = AΣFA
′, ΣG,2 = BΣFB

′, (6)

ΣG = τ 0AΣFA
′ + (1− τ 0)BΣFB

′. (7)

Proposition 1 If τ 0 ∈ (0, 1) and ΣF is positive definite, ΣG is positive definite.

For the case where Λ02 is of full rank, Λ1 can be decomposed as
[

Λ11 Λ12

]
,

where
[

Λ0 Λ2 Λ11

]
is of full rank and Λ12 =

[
Λ0 Λ2 Λ11

]
Z for some Z.

Define Θ =
[

Λ0 Λ2 Λ11

]
.

Our assumptions are as follows:

Assumption 1 (1) E ‖ft‖4 < M < ∞, E(ftf
′
t) = ΣF , ΣF is positive definite,

1
k0

∑k0
t=1 ftf

′
t

p→ ΣF , 1
T−k0

∑T
t=k0+1 ftf

′
t

p→ ΣF , (2) there exists d > 0 such that

‖AΣFA
′ −BΣFB

′‖ > d for all N .

Assumption 2 ‖λl,i‖ ≤ λ̄ < ∞ for l = 0, 1, 2,
∥∥ 1
N

Γ′Γ− ΣΓ

∥∥ → 0 for some positive

definite matrix ΣΓ or
∥∥ 1
N

Θ′Θ− ΣΘ

∥∥→ 0 for some positive definite matrix ΣΘ.
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Assumption 3 There exists a positive constant M <∞ such that:

1 E(eit) = 0, E |eit|8 ≤M , for all i = 1, ..., N, and t = 1, ..., T,

2 E(eitejs) = τ ij,ts for i, j = 1, ..., N, and t, s = 1, ..., T, also

1

NT

∑N

i=1

∑N

j=1

∑T

t=1

∑T

s=1
|τ ij,ts| ≤M,

3 For every (t, s = 1, ..., T ), E
∣∣∣ 1√

N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣4 ≤M .

Assumption 4 There exists a positive constant M <∞ such that:

E(
1

N

∑N

i=1

∥∥∥∥ 1√
k0

∑k0

t=1
fteit

∥∥∥∥2

) ≤ M,

E(
1

N

∑N

i=1

∥∥∥∥ 1√
T − k0

∑T

t=k0+1
fteit

∥∥∥∥2

) ≤ M.

Assumption 5 There exists an M <∞ such that:

1 E( e
′
set
N

) = γN(s, t) and
∑T

s=1 |γN(s, t)| ≤M for every t ≤ T ,

2 E(eitejt) = τ ij,t with |τ ij,t| ≤ τ ij for some τ ij and for all t = 1, ..., T , and∑N
j=1 |τ ji| ≤M for every i ≤ N .

Assumption 6 The largest eigenvalue of 1
NT
EE ′ is Op(

1
δ2NT

).

Assumption 7 The eigenvalues of ΣGΣΓ or ΣGΣΘ are distinct.

Assumption 8 Define εt = vec(ftf
′
t −ΣF ).The data generating process of factors is

such that the Hajek-Renyi inequality2 applies to the process {εt, t = 1, ..., k0}, {εt, t =

k0, ..., 1}, {εt, t = k0 + 1, ..., T} and {εt, t = T, ..., k0 + 1}.

Assumption 9 log T
N
→ 0.

Assumption 10 There exists M <∞ such that:

1 For every s = 1, ..., T , E(sup
k<k0

1
k0−k

∑k0
t=k+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

E(sup
k≤k0

1
k

∑k
t=1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

2See Appendix for an introduction of the Hajek-Renyi inequality.
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E(sup
k>k0

1
k−k0

∑k
t=k0+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

E(sup
k≥k0

1
T−k

∑T
t=k+1

∣∣∣ 1√
N

∑N
i=1[eiseit − E(eiseit)]

∣∣∣2) ≤M,

2 E(sup
k<k0

1
k0−k

∑k0
t=k+1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M,

E(sup
k≤k0

1
k

∑k
t=1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M,

E(sup
k>k0

1
k−k0

∑k
t=k0+1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M,

E(sup
k≥k0

1
T−k

∑T
t=k+1

∥∥∥ 1√
N

∑N
i=1 γieit

∥∥∥2

) ≤M.

Assumptions 1-7 are either from or slight modification of Assumptions A-G in Bai

(2003). Assumption 1(1) corresponds to Assumption A in Bai (2003) and should be

satisfied within each regime. ft can be dynamic and contain their lags. Assumption

1(2) enables the identification of the change point and is general enough to cover

all patterns of factor loading break likely in practice. It does not matter whether B

depends on N or not, as long as the distance between the pre and post-break second

moment matrix of gt is bounded away from zero as N →∞. If r(
[

Λ0 Λ1 Λ2

]
) >

r(
[

Λ0 Λ1

]
), then AΣFA

′ 6= BΣFB
′. If r(

[
Λ0 Λ1 Λ2

]
) = r(

[
Λ0 Λ1

]
), then

AΣFA
′ = ΣF and BΣFB

′ 6= ΣF except for some very unlikely case, for example,

some post-break factor loadings are −1 times their pre-break factor loadings. Note

that here to simplify analysis, the second moment matrix of the factors is assumed

to be stationary over time, since in general how to disentangle structural change in

ΣF from structural change in factor loadings is still unclear. Assumption 2 corre-

sponds to Assumption B in Bai (2003) and implies that
∥∥ 1
N

Λ′01Λ01 − ΣΛ01

∥∥→ 0 and∥∥ 1
N

Λ′02Λ02 − ΣΛ02

∥∥ → 0. Note that one of Λ01 and Λ02 is allowed to be degenerate.

This allows for cases with disappearing or emerging factors. In addition, Λ0 could

contain a small change. Let ∆λ0,i be the change of λ0,i. As discussed in Bates et al.

(2013), if ∆λ0,i = 1√
NT
κi and ‖κi‖ ≤ κ̄ < ∞ for all i, consistency of the estimated

number of factors and the factors themselves will not be affected. For simplicity, we

assume that Λ0 is stable. Assumptions 3 and 5 correspond to Assumptions C and E

in Bai (2003), which allow for the temporal and cross-sectional dependence as well

as heteroskedasticity. Assumption 4 corresponds to Assumption D in Bai (2003) and
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should be satisfied within each regime. This is implied by Assumptions 1 and 3 if

the factors and the errors are independent. Assumption 6 is the key condition for

identifying the number of factors and is implicitly assumed in Bai and Ng (2002) and

required in almost all existing methods of determining the number of factors or the

number of dynamic factors. For example, Onatski (2010) and Ahn and Horenstein

(2013) assume E = AεB, where ε is an i.i.d. T ×N matrix and A and B characterize

the temporal and cross-sectional dependence and heteroskedasticity. This is a suffi -

cient but not necessary condition for Assumption 6. In this paper, Assumption 6 can

be relaxed to "The largest eigenvalue of 1
NT
EE ′ is op(1)", yet still allows consistent

estimation of the number of factors. Assumption 7 corresponds to Assumption G in

Bai (2003).

Assumption 8 strengthens Assumption 1(1) and imposes further requirement on

the factor process. Instead of assuming a specific data generating process, here we only

require that the Hajek-Renyi inequality is applicable to the second moment process

of the factors, which incorporates i.i.d., martingale difference, martingale, mixingale

and so on as special cases and renders Assumption 8 in its most general form. As-

sumption 10 imposes further constraints on the idiosyncratic error. Assumption 3(3)

and Assumption F3 in Bai (2003) imply that the summands in Assumption 10 are

uniformly Op(1). Assumption 10 strengthens this condition such that the supremum

of the average process of these summands is Op(1). Also note that stationarity is not

assumed in Assumption 10. In rare cases, Assumption 10 is not satisfied, but we can

still proceed with Assumption 9. Compared to
√
T
N
→ 0, which is assumed in Chen

et al. (2014), Han and Inoue (2015), Assumption 9 is significantly weaker and much

easier to be satisfied since even when T is much larger than N , log T
N

could still be

very close to zero.

4 ESTIMATING THE CHANGE POINT

4.1 THE ESTIMATION PROCEDURE

In this subsection, we discuss how to estimate the change point with an unknown

number of latent factors. First, we estimate the number of factors ignoring structural
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change. Define r̃ as the estimated number of factors using the information criteria in

Bai and Ng (2002), we will have lim
(N,T )→∞

P (r̃ = r + q1) = 1, since model (2) can be

equivalently represented as model (3). Note that q1 could be zero, since structural

change does not necessarily lead to overestimating the number of factors. Using r̃,

we then estimate the factors using the principal component method. This identifies

the factors gt. As noted in (6), the second moment matrix3 of gt has a break at

the point k0. Hence, estimating change point of factor loadings can be converted

to estimating change point of the second moment matrix of gt. Although gt is not

directly observable, the principal component estimator g̃t is asymptotically close to

J ′gt for some rotation matrix J . And J
p→ J0 = Σ

1
2
ΓΦV −

1
2 as (N, T ) → ∞, where

V and Φ are the eigenvalue matrix and eigenvector matrix of Σ
1
2
ΓΣGΣ

1
2
Γ respectively.

Hence change point estimation using g̃t will be asymptotically equivalent to using

J0gt. It is easy to see that the second moment matrix of J0gt shares the same change

point as that of gt. Therefore, we proceed to estimate the pre-break and post-break

second moment matrix of gt using the estimated factors g̃t.

More specifically, following Bai (1994, 1997, 2010), for any k > 0 we split the sam-

ple into two subsamples and estimate the pre-break and post-break second moment

matrix of gt as

Σ̃1 =
1

k

∑k

t=1
g̃tg̃
′
t,

Σ̃2 =
1

T − k
∑T

t=k+1
g̃tg̃
′
t, (8)

and define the sum of squared residuals as

S̃(k) =
∑k

t=1
[vec(g̃tg̃

′
t−Σ̃1)]′[vec(g̃tg̃

′
t−Σ̃1)]+

∑T

t=k+1
[vec(g̃tg̃

′
t−Σ̃2)]′[vec(g̃tg̃

′
t−Σ̃2)].

(9)

3The first moment of gt may also help identify the change point, but it requires the true factors
ft to have nonzero mean.

12



The least squares estimator of the change point4 is

k̃ = arg min S̃(k). (10)

Here we use S̃(k) to emphasize that the sum of squared residuals is based on the

estimated factors.

Remark 1 The change point estimator also can be based on ĝt instead of g̃t, where

(ĝ1, ..., ĝT )′ = Ĝ = G̃VNT = (g̃1, ..., g̃T )′VNT and VNT is diagonal and contains the first

r + q1 largest eigenvalues of 1
NT
XX ′ in decreasing order.

4.2 ASYMPTOTIC PROPERTIES OF THE CHANGE POINT ESTI-
MATOR

In what follows, we shall establish the rate of convergence of the proposed estimator,

which allows us to identify the number of pre-break and post-break factors as well

as the factor space. Since lim
(N,T )→∞

P (r̃ = r + q1) = 1, estimation of the change point

based on r̃ and the true number of pseudo factors r+ q1 is asymptotically equivalent.

The proof is similar to footnote 5 in Bai (2003). Therefore, we can treat the number

of pseudo factors r+q1 as known in studying the asymptotic properties of our change

point estimator.

Define τ̃ = k̃/T as the estimated change fraction, we first show that τ̃ is consistent.

Proposition 2 Under Assumptions 1-8 and 9 or 10, τ̃ − τ 0 = op(1).

This proposition is important for theoretical purposes. In fact, it serves as a first

step in proving Theorem 1. Proposition 2 implies that for any ε > 0 and η > 0,

P (τ̃ ∈ D) > 1 − ε for suffi ciently large N and T , where D = {k : |k − k0| /T ≤ η}.
Using similar strategy as proving Proposition 2, we can further show that for any

ε > 0 and η > 0, there exist an M > 0 such that P (k̃ ∈ DM) < ε for suffi ciently large

N and T , where DM = {k : k ∈ D, |k − k0| > M}. Taken together, we have:
4Alternatively, one referee points out that one may consider quasi-maximum likelihood estimation

of the change point: k̃ML = arg max[−k log
∣∣∣Σ̃1∣∣∣− (T − k) log

∣∣∣Σ̃2∣∣∣].
13



Theorem 1 Under Assumptions 1-8 and 9 or 10, k̃ − k0 = Op(1).

This theorem implies that the difference between the estimated change point and

the true change point is stochastically bounded. This is quite strong since the possible

change point is narrowed to a bounded interval no matter how large T is. Although

k̃ is still inconsistent, an important observation is that k̃ − k0 = Op(1) is already

suffi cient for consistent estimation of the number of pre-break and post-break factors

and consistent estimation of the pre-break and post-break factor space, which will be

discussed further in the next three sections.

Theorem 1 differs from existing results in the change point estimation literature.

First, in the current setup N goes to infinity jointly with T , thus we should be able

to achieve consistency of k̃ as shown in Bai (2010) for the panel mean shift case,

because large N will help identify the change point when the change point is common

across individuals. Our result is different from Bai (2010) and instead similar to

the univariate case, e.g., Bai (1994, 1997), because k̃ is based on g̃tg̃
′
t which is a

fixed dimensional multivariate time series with mean shift. Second, our result is also

different from Bai (1994, 1997) because in the current setup we are using estimated

data g̃tg̃′t rather than the raw data J0gtg
′
tJ
′
0 to estimate the change point, i.e., the

data g̃tg̃′t contains measurement error g̃tg̃
′
t − J0gtg

′
tJ
′
0. Eliminating the effect of this

measurement error on estimation of change point relies on large N .

Remark 2 Proposition 2 and Theorem 1 hold with either Assumption 9 or 10, but

we do not need both. Usually Assumption 10 is satisfied. In this case, there is no

restriction on the relative speed of N and T going to infinity. Even when Assumption

10 is violated, our results only require log T
N
→ 0, which can be easily satisfied.

Remark 3 Note that Theorem 1 requires the covariance matrix of the factors to be

stationary, and thus is not robust to heteroskedasticity of the factors. This problem

is common in the literature, for example, it also appears in Chen et al. (2014), Han

and Inoue (2015) and Cheng et al. (2015). It is important to note that Chen (2015)’s

change point estimator is robust to heteroskedasticity of the factors.
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4.3 THE EFFECT OF USING ESTIMATED NUMBER OF PSEUDO

FACTORS ON ESTIMATION OF THE CHANGE POINT

Since our method for estimating the change point is a two step procedure, a natural

question is how will the model selection error in the first step affect the performance

of the second step estimation. Although consistent model selection guarantees that

asymptotically we can behave as if the true model is known a priori, the finite sample

distribution of the post model selection estimator could be dramatically different

from its asymptotic limit even when the sample size is very large. This is because

the probability of misspecifying the model in the first step may be nonignorable even

when the sample size is very large if consistency of the first step model selection is

not uniform with respect to the parameter space. The distribution of the post model

selection estimator is a weighted average of its distribution given the true model is

selected and given some misspecified model is selected, where the weight is given

by the probability of selecting that model. When the probability of misspecifying

the model is indeed nonignorable and the distributions with the true model selected

and with the misspecified model selected are very different, we can imagine that the

composite distribution could be far away from its asymptotic limit.

In the current context, the Leeb and Potscher (2005)’s criticism still applies. But,

we argue that our change point estimator still has some degree of robustness to the

first step estimation error, especially if we only care about the stochastic order of the

change point estimation error. This is because if the number of pseudo factors were

underestimated, k̃ would be based on a subset of the second moment matrix of J0gt.

Hence there is still information to identify the change point. While if the number

of pseudo factors were overestimated, no information would be lost but extra noise

would be brought in by the extra estimated factors. Therefore, estimating the number

of pseudo factors can be seen as a procedure selecting the model with the strongest

identification strength of the unknown change point. From this perspective, our

method shares some similarity with selecting the most relevant instrumental variables

(IVs) among a large number of IVs.

In case r̃ is fixed at some positive integer m < r+q1, we have the following result:
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Corollary 1 For any positive integer m < r + q1 and change point estimation based

on r̃ = m, with J0 replaced by Jm0 which is of dimension (r + q1) ×m and contains

the first m columns of J0, and ‖Jm′0 ΣG,1J
m
0 − Jm′0 ΣG,2J

m
0 ‖ > d for some d > 0 and

all N , Proposition 2 and Theorem 1 still hold.

In case r̃ is fixed at some positive integer m > r + q1, we can not prove the

robustness of Proposition 2 and Theorem 1. Nonetheless, if the change point estimator

were based on ĝt instead of g̃t, we can prove:

Corollary 2 For any positive integer m > r+ q1 and change point estimator k̂ based

on ĝt and r̃ = m, if
√
T
N
→ 0, Proposition 2 and Theorem 1 still hold.

Note that Corollary 1 also applies to k̂. Corollary 2 shows that k̂ is robust to

overestimation of the number of pseudo factors. This result is similar to Moon and

Weidner (2015) who show that for panel data with interactive effects, the limiting

distribution of the LS estimator is independent of the number of factors used in the

estimation, as long as this number is not underestimated.

Remark 4 If the condition "‖Jm′0 ΣG,1J
m
0 − Jm′0 ΣG,2J

m
0 ‖ > d for some d > 0 and all

N" is not satisfied for all m, estimation errors of the number of the pseudo factors

may affect the uniform validity of the estimation procedure. In such case, simply

fixing r̃ at the maximum number of pseudo factors may be preferred, especially when

this maximum number is small or some prior information is available.

Remark 5 As can be seen in the equivalent representation, the pseudo factors in-

duced by structural change are relatively weaker than factors with stable loadings in

the original model because a portion of their elements are zeros and the magnitude of

those nonzero elements is small if the magnitude of structural change is small. Since

underestimation is more harmful5 compared to overestimation, we recommend choos-

ing a less conservative criterion in estimating the number of pseudo factors. We will

discuss this further in the simulation section.

5As discussed above, underestimation will result in loss of useful moment conditions while over-
estimation will bring in irrelevant moment conditions. In the current setup, loosing useful moment
conditions is more harmful.
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Up to now, we have only touched upon the stochastic order of k̃ − k0. We will

postpone the discussion of the imiting distribution and instead put more emphasis

on the estimation of the pre and post-break number of factors and factor space. We

will show that k̃ − k0 = Op(1) is a suffi cient condition for the results in subsequent

estimation. Thus for the purpose of subsequent estimation, the limiting distribution

is not needed.

5 DETERMINING THE NUMBER OF FACTORS

In this section, we study how to consistently estimate the number of factors in the

presence of structural instability in the factor loadings or the number of factors them-

selves. We first relax the suffi cient condition proposed by Bates et al. (2013) for the

consistent estimation of the number of factors in the presence of structural change

using the Bai and Ng (2002) information criteria. The condition they propose is
1
N
‖∆‖2 = O( 1

δ2NT
), where ∆ is the matrix of factor loading breaks. In the current

setup, ∆ = Λ2 − Λ1. We show, in the following proposition, that their condition can

be relaxed to 1
N
‖∆‖2 = O( 1

δcNT
) for some c > 0.

Proposition 3 In the presence of a single common break in factor loadings, the

estimator of the number of factors using the Bai and Ng (2002) information criteria is

still consistent if 1
N
‖∆‖2 = O( 1

δcNT
) for some c > 0, g(N, T )→ 0 and δcNTg(N, T )→

∞, where g(N, T ) is the penalty function.

The formal proof is in the Appendix. This proposition complements Theorem 2

below. Note that c can be arbitrarily close to zero, hence our condition is much weaker

than that of Bates et al. (2013). The intuition behind our result is that change in

factor loadings can be treated as an extra error term and as long as c > 0, the first r

largest eigenvalues of XX ′ are still separated from the rest. By adjusting the speed

at which the penalty function goes to zero accordingly, the number of factors can still

be consistently determined. Some caveats are the following: When c is less than two,

the magnitude of this extra error term becomes large. To outweigh the error term,

the speed at which the penalty function g(N, T ) goes to zero has to be slower than the
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speed at which 1
N
‖∆‖2 goes to zero, so that g(N,T )

1
N
‖∆‖2 → ∞. This may be problematic

in real applications, since when c is close to zero, not all factors are necessarily strong

enough to outweigh the extra noise brought by the factor loadings breaks. And even if

factors are strong enough, we still need to pin down c, which is diffi cult. In addition,

the above result is not applicable for the case where 1
N
‖∆‖2 = O(1), nor the case

where the number of factors also change. In view of these caveats, Proposition 3 is

more of theoretical importance and demonstrates how far we can go following Bates

et al. (2013).

To estimate the number of pre and post-break factors in the presence of large

break, we propose the following procedure: split the sample into two subsamples

based on the estimated change point k̃, and then use each subsample to estimate the

number of pre and post-break factors. Let r̃1 and r̃2 be the estimated number of

pre-break and post-break factors using the method in Bai and Ng (2002). We have

the following result:

Theorem 2 Under Assumptions 1-8 and 9 or 10, lim
(N,T )→∞

P (r̃1 = r1) = 1 and

lim
(N,T )→∞

P (r̃2 = r2) = 1, where r1 and r2 are numbers of pre-break and post-break

factors, respectively.

Theorem 2 together with Theorem 1 identifies model (2) and provides the basis

for subsequent estimation and inference. Note that k̃ − k0 = Op(1) is suffi cient

for the consistency of r̃1 and r̃2, i.e., consistency of the second step estimators r̃1

and r̃2 does not require consistency of the first step estimator k̃.6 This is because

k̃ − k0 = Op(1) is the exact condition that guarantees the extra noise brought by

a change in factor loadings does not affect the speed of eigenvalue separation. In

general, the effect of the error in the first step, which could be either estimation or

model selection, on the second step estimator depends on the magnitude of the first

step error and how the second step estimator is affected by the first step error. In the

traditional plug-in procedure, usually the first step error need to vanish suffi ciently

fast to eliminate its effect. In the current context, although the first step error does

6When estimating the pre and post-break number of factors and factor space, we consider k̃ as
the first step estimator.
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not vanish asymptotically, the second step becomes increasingly less sensitive to the

first step error as T → ∞. This can be seen more easily by considering the case
in which T is very large while

∣∣∣k̃ − k0

∣∣∣ is bounded. Since the pre and post-break
number of factors and factor space are estimated using each subsample whose size is

O(T ), misspecifying the change point by a bounded value would affect their behavior

very little. In other words, while large T does not help identify the change point, it

increases the magnitude of misspecification of change point that can be tolerated.

To better demonstrate the difference between our result and traditional plug-in

procedure, we sketch the key steps in proving the consistency of r̃1. The estimator of

the number of pre-break factors r̃1 is based on the pre-break subsample t = 1, ..., k̃.

What we need to show is: for any ε > 0, P (r̃1 6= r1) < ε for large (N, T ). Based on∣∣∣k̃ − k0

∣∣∣ = Op(1), we have for any ε > 0, there exists M > 0 such that P (
∣∣∣k̃ − k0

∣∣∣ >
M) < ε for all (N, T ). Based on this M , P (r̃1 6= r1) can be decomposed as

P (r̃1 6= r1,
∣∣∣k̃ − k0

∣∣∣ > M)+P (r̃1 6= r1, k0−M ≤ k̃ ≤ k0)+P (r̃1 6= r1, k0+1 ≤ k̃ ≤ k0+M).

The first term is less than P (
∣∣∣k̃ − k0

∣∣∣ > M), hence less than ε for all (N, T ). The

second term can be further decomposed as

∑k0

k=k0−M
P (r̃1(k) 6= r1, k̃ = k),

where P (r̃1(k) 6= r1, k̃ = k) denotes the joint probability of k̃ = k and r̃1(k) 6= r1 and

r̃1(k) denotes the estimated number of pre-break factors using subsample t = 1, ..., k.

Obviously, P (r̃1(k) 6= r1, k̃ = k) ≤ P (r̃1(k) 6= r1), hence the second term is less than∑k0
k=k0−M P (r̃1(k) 6= r1). Furthermore, the factor loadings in the pre-break subsample

are stable when k < k0 and for k ∈ [k0 −M,k0], k → ∞ at the same speed as k0,

hence we have for each k ∈ [k0 −M,k0], P (r̃1(k) 6= r1) ≤ ε
M+1

for large (N, T ). The

second term is therefore less than
∑k0

k=k0−M
ε

M+1
= ε for large (N, T ). The argument

for the second term also applies to the third term, except for some modifications.

First, the third term can be decomposed similarly as

∑k0+M

k=k0+1
P (r̃1(k) 6= r1, k̃ = k) ≤

∑k0+M

k=k0+1
P (r̃1(k) 6= r1),
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hence it remains to show for each k ∈ [k0 + 1, k0 + M ], P (r̃1(k) 6= r1) ≤ ε
M
for large

(N, T ). Unlike the second term, when k ∈ [k0+1, k0+M ] the factor loadings of the pre-

break subsample t = 1, ..., k has a break at t = k0, hence results already established for

the stable model are not directly applicable. Nevertheless, the number of observations

with factor loading break, k− k0, is bounded by M . Hence in estimating the number

of factors, these observations will be dominated by the observations t = 1, ...k0, as

k0 = [τ 0T ]→∞.

6 ESTIMATING THE FACTOR SPACE

In this section, we discuss the estimation of the pre-break and post-break factor

space. As in last section, we split the sample into two subsamples based on the

change point estimator k̃, and then use each subsample to estimate the pre-break and

post-break factor space. For each possible sample split k, define X(k) = (x1, ..., xk)
′,

F1(k) = (f1, ..., fk)
′ and F2(k) = (fk+1, ..., fT )′. Let u be any prespecified num-

ber of pre-break factors, which does not necessarily equal r1. The principal compo-

nent estimator of the pre-break factors and factor loadings are obtained by solving

V (u) = min 1
Nk

∑k
t=1

∑N
i=1(xit − f ′tλi)2. Since the true factors can be identified only

up to a rotation, the normalization condition has to be imposed to uniquely determine

the solution, and based on different normalization conditions there are two solutions.

For the first one, the estimated factors, F̃ u
1 (k), equal

√
T times the eigenvectors corre-

sponding to the first u largest eigenvalues of 1
Nk
X(k)X ′(k) and Λ̃u

1(k) = 1
k
X ′(k)F̃ u

1 (k)

are the corresponding estimated factor loadings. For the second one, the estimated

factor loadings, Λ̄u
1(k), equal

√
N times the eigenvectors corresponding to the first u

largest eigenvalues of 1
Nk
X ′(k)X(k) and F̄ u

1 (k) = 1
N
X(k)Λ̄u

1(k) are the correspond-

ing estimated factors. Following Bai and Ng (2002), we define the rescaled estima-

tor F̂ u
1 (k) = F̄ u

1 (k)[ 1
k
F̄ u′

1 (k)F̄ u
1 (k)]

1
2 . The estimator of the post-break factors F̂ v

2 (k)

can be obtained similarly based on the post-break subsample, where v is the pre-

specified number of post-break factors. Next, define Hu
1 (k) =

Λ′01Λ01
N

F ′1(k)F̃u1 (k)

k
and

Hv
2 (k) =

Λ′02Λ02
N

F ′2(k)F̃ v2 (k)

T−k . Let f̂ut (k̃) and f̂ vt (k̃) be the estimated factors based on

change point estimator k̃ for t≤ k̃ and t> k̃ respectively, we have the following
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theorem:

Theorem 3 Under Assumptions 1-8 and 9 or 10,

1

k̃

∑k̃

t=1

∥∥∥f̂ut (k̃)−Hu′
1 (k̃)ft

∥∥∥2

= Op(
1

δ2
NT

),

1

T − k̃

∑T

t=k̃+1

∥∥∥f̂ vt (k̃)−Hv′
2 (k̃)ft

∥∥∥2

= Op(
1

δ2
NT

).

Theorem 3 implies that our estimator of the factor space is mean squared con-

sistent within each regime and the convergence rate is the same as that obtained by

Bai and Ng (2002) for the stable model. Consistent estimation of the factor space

has proved to be crucial in many cases, including forecasting and factor augmented

regressions. Note that the convergence rate Op(
1

δ2NT
) plays a crucial role in eliminating

the effect of using estimated factors, for which consistency is not enough. Bates et

al. (2013) show that if we ignore the structural change, consistency of the estimated

factor space requires 1
N
‖∆‖2 = o(1). In contrast, to guarantee the convergence rate

Op(
1

δ2NT
) of the estimated factor space, it requires 1

N
‖∆‖2 = O( 1

δNT
). While reason-

able for a small break, these two conditions especially the latter are not suitable for

a large break. As discussed in Banerjee, Marcellino and Masten (2008), this is the

most likely reason behind the worsening factor-based forecasts. In contrast, our result

allows for a large break, and hence improves and complements Bates et al. (2013).

Remark 6 Note that k̃ − k0 = Op(1) is both a necessary and suffi cient condition

for Theorem 3. If
∣∣∣k̃ − k0

∣∣∣ is of order larger than Op(1), the convergence speed in

Theorem 3 will be affected.

Remark 7 Theorem 3 is based on arbitrarily u and v rather than r̃1 and r̃2, the

estimated number of pre-break and post-break factors. On the other hand, r̃1 and r̃2 are

based directly on eigenvalue separation, without using consistency of the estimated pre-

break and post-break factor space. Hence, Theorem 3 and Theorem 2 are independent

of each other. Alternatively, we can choose u = r̃1 and v = r̃2. Since r̃1 and r̃2 are

consistent, this is asymptotically equivalent to the case in which r1 and r2 are known.

The same argument was used by Bai (2003) for deriving the limiting distribution of the
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estimated factors. When r1 and r2 are known and under Assumptions 1-8 and 9 or 10,

we have 1
k̃

∑k̃
t=1

∥∥∥f̂t(k̃)−H ′1(k̃)ft

∥∥∥2

= Op(
1

δ2NT
) and 1

T−k̃

∑T
t=k̃+1

∥∥∥f̂t(k̃)−H ′2(k̃)ft

∥∥∥2

=

Op(
1

δ2NT
).

7 FURTHER ISSUES

To make inference about the change point, we seek to derive its limiting distribution.

Define

yt = vec(J ′0gtg
′
tJ0 − Σ1) for t ≤ k0,

yt = vec(J ′0gtg
′
tJ0 − Σ2) for t > k0, (11)

where Σ1 = J ′0ΣG,1J0 and Σ2 = J ′0ΣG,2J0 are the pre-break and post-break means of

J ′0gtg
′
tJ0. The limiting distribution of k̃ is as follows:

Theorem 4 Under Assumptions 1-8 and 9 or 10, k̃ − k0
d→ arg minW (l), where

W (l) = −l ‖Σ2 − Σ1‖2 − 2
∑k0−1

t=k0+l
[vec(Σ2 − Σ1)]′yt for l = −1,−2, ...,

W (l) = 0 for l = 0,

W (l) = l ‖Σ2 − Σ1‖2 − 2
∑k0+l

t=k0+1
[vec(Σ2 − Σ1)]′yt for l = 1, 2, .... (12)

If yt is independent over t, then W (l) is a two-sided random walk. Note that yt is

not assumed to be stationary. By definition, if ft is stationary, then gt and hence yt

is stationary within each regime. In this case
∑k0−1

t=k0+l and
∑k0+l

t=k0+1 can be replaced

by
∑−1

t=l and
∑l

t=1. The main problem is that this limiting distribution is not free

of the underlying DGP, hence constructing a confidence interval is not feasible. In

previous change point estimation studies, the shrinking break assumption is required

to make the limiting distribution independent of the underlying DGP. However, in

the current setup, the break magnitude ‖Σ2 − Σ1‖ is fixed and it is unreasonable to
assume ‖Σ2 − Σ1‖ → 0 as T →∞. In fact, feasible inference procedure without the
shrinking break assumption is an open question. We conjecture that bootstrap is one

possible solution and leave this for future research.
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Remark 8 Bai (2010) also considers a fixed magnitude for the break. The differ-

ence between our result and Bai (2010) is that our random walk is not necessarily

Gaussian. This is because the dimension of yt, (r + q1)2, is fixed and yjt and ykt are

not independent for j 6= k. In contrast, in Bai (2010), the dimension of et, N , goes

to infinity and ejt and ekt are independent for j 6= k so that the CLT applies to the

weighted sum of eit.

Remark 9 In some special cases, the limiting distribution of k̃ − k0 is one-sided,

concentrating on l ≥ 0. For example, if Λ0, Λ1 and Λ2 − Λ1 are orthogonal to each

other and the factors are also orthogonal with each other, then [vec(Σ2 − Σ1)]′yt = 0

for all t < k0. It follows that W (l) > W (0) for all l < 0, hence arg minW (l) ≥ 0.

Remark 10 As in Proposition 2 and Theorem 1, Theorem 4 holds with either As-

sumption 9 or 10.

Remark 11 As in Remark 1, when change point estimation is based on r̃ = m <

r + q1, Theorem 4 holds with J0 replaced by Jm0 .

8 SIMULATIONS

In this section, we perform simulations to confirm our theoretical results and examine

various elements that may affect the finite sample performance of our estimators.

8.1 DESIGN

Our design roughly follows that of Bates et al. (2013), with the focus switching from

small change to large change and from forecasting to estimating the whole model, i.e.,

estimating the change point, the number of pre-break and post-break factors and the

pre-break and post-break factor spaces.

The data is generated as follows:

xit =

{
f ′0,tλ0,i + f ′1,tλ1,i +

√
θ1ei,t, if 1 ≤ t ≤ [τ 0T ]

f ′0,tλ0,i + f ′1,tλ2,i +
√
θ2ei,t, if [τ 0T ] + 1 ≤ t ≤ T

for i = 1, ..., N and t = 1, ..., T.

23



As discussed in Section 2, in case the number of pre-break and post-break factors

is r1 and r2 respectively, with r = max{r1, r2}, ft and λi are always r dimensional
vectors. If r1 < r2, the last r2 − r1 elements of λ1,i are zeros while if r1 > r2, the last

r1 − r2 elements of λ2,i are zeros. θ1 and θ2 control the magnitude of noise and here

we take θ1 = r1, θ2 = r2.

The factors are generated as follows:

ft,p = ρft−1,p + ut,p for t = 2, ..., T and p = 1, ..., r,

where ut,p is i.i.d. N(0, 1) for t = 2, ..., T and p = 1, ..., r. For t = 1, f1,p is i.i.d.

N(0, 1
1−ρ2 ) for p = 1, ..., r so that factors have stationary distributions. The scalar ρ

captures the serial correlation of factors.

The idiosyncratic errors are generated as follows:

ei,t = αei,t−1 + vi,t for i = 1, ..., N and t = 2, ..., T .

The processes {ut,p} and {vi,t} are mutually independent with vt = (v1,t, ..., vN,t)
′

being i.i.d. N(0,Ω) for t = 2, ..., T . For t = 1, e·,1 = (e1,1, ..., eN,1)′ is N(0, 1
1−α2Ω) so

that the idiosyncratic errors have stationary distributions. The scalar α captures the

serial correlation of the idiosyncratic errors. As in Bates et al. (2013), Ωij = β|i−j|

captures the cross-sectional dependence of the idiosyncratic errors.

We consider three different ways of generating factor loadings corresponding to

three different representative setups. The first setup allows both change in the number

of factors and partial change in the factor loadings, with (r1, r2) = (3, 5) and one

factor having stable loadings. In this case, λ0,i is independent N(0, xi(R
2
i )) across

i. Both λ1,i and λ2,i are four dimensional vectors. The first two elements of λ1,i are

independent N(0, xi(R
2
i )I2) across i and the last two elements of λ1,i are zeros. Also,

λ2,i is independent N(0, xi(R
2
i )I4) across i. Hence the number of pseudo factors in the

equivalent representation is r1 + r 2 − 1 = 7. The scalar xi(R2
i ) is determined so that

the regression R2 of series i is equal to R2
i .
7 The second setup allows only change in

7xi(R
2
i ) = 1−ρ2

1−α2
R2
i

1−R2
i
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the number of factors, with (r1, r2) = (3, 5) and three factors having stable loadings.

In this case, λ0,i is independent N(0, xi(R
2
i )I3) across i. Both λ1,i and λ2,i are two

dimensional vectors, λ1,i are zeros while λ2,i is independent N(0, xi(R
2
i )I2) across i.

Hence the number of pseudo factors is 5. The third setup allows only partial change in

the factor loadings, with (r1, r2) = (3, 3) and one factor having stable loadings. In this

case, λ0,i is independent N(0, xi(R
2
i )) across i. Both λ1,i and λ2,i are two dimensional

vectors, λ1,i is independentN(0, xi(R
2
i )I2) across i while λ2,i = (1−a)λ1,i+

√
2a− a2di,

where a ∈ [0, 1] and di is independent N(0, xi(R
2
i )I2) across i. Hence the number of

pseudo factors is 5 except for a = 0. The scalar a captures the magnitude of factor

loading changes, with the the ratio of mean squared changes in the factor loadings

to the pre-break factor loadings being equal to 4a
3
. We consider a = 0.2, 0.6 and 1,

which correspond to small, medium and large changes, respectively. Finally, all factor

loadings are independent of the factors and the idiosyncratic errors.

For each setup, we consider the benchmark DGP with (ρ, α, β) = (0, 0, 0) and ho-

mogeneous R2 and the more empirically relevant DGP with (ρ, α, β) = (0.5, 0.2, 0.2)

and heterogeneous R2. For homogeneous R2, R2
i = 0.5 for all i, which is also consid-

ered in Bai and Ng (2002), Ahn and Horenstein (2013) (to name a few) as a benchmark

case in evaluating estimators of the number of factors. For heterogeneous R2, R2
i is

drawn from U(0.2, 0.8) independently. For each DGP, we consider four configurations

of data with T = 100, 200, 400 and N = 100, 200. To see how the position of the

structural change affects the performance of our estimators, we consider τ 0 = 0.25

and 0.5.

8.2 ESTIMATORS AND RESULTS

The number of pseudo factors in the equivalent model is estimated using ICp1 in Bai

and Ng (2002) for Setups 1 and 2. For Setup 3, it is estimated using ICp1 in case a = 1

and ICp3 in case a = 0.2 and 0.6. The maximum number of factors is rmax = 12.

Estimating the number of pseudo factors is the first step of our estimation procedure,

and the performance of r̃ will affect the performance of k̃, which in turn affect the

performance of r̃1, r̃ 2 and the estimated pre-break and post-break factor spaces.

Therefore, it is worth discussing the choice of criterion in estimating the number of

25



pseudo factors. As can be seen in the equivalent representation, the pseudo factors

induced by structural change are not as strong as factors with stable loadings in

the original model8 because a portion of their elements are zeros and the magnitude

of those nonzero elements is small if the magnitude of structural change is small.

Consequently, estimators of the number of factors which perform well in the normal

case tend to underestimate the number of pseudo factors, while estimators which tend

to overestimate in the normal case, perform well in estimating the number of pseudo

factors. Moreover, the magnitudes of pseudo factors induced by structural change are

not only absolutely smaller, but also relatively smaller, especially when the change

point is not close to the middle of the sample. This decreases the applicability of the

ER and GR estimators in Ahn and Horenstein (2013), whose performance rely on the

factors being of similar magnitude. In our current setup, we found that among ICp1,

ICp2 in Bai and Ng (2002) and ER, GR in Ahn and Horenstein (2013), on the whole

ICp1 performs best. Compared to ICp3, ICp1 is more robust to serial correlation

and heteroskedasticity of the errors, but ICp3 has an advantage in case the change

point is far from middle or the magnitude of change is medium or small9. Since ICp1

and ICp3 are relatively less conservative, these findings are consistent with the above

observations. In addition, we also found that underestimation of the number of pseudo

factors deteriorates the performance of k̃ significantly more than overestimation. This

is because k̃ is based on the second moment matrix of the estimated pseudo factors,

hence underestimation will result in loss of information while overestimation will bring

in extra noise. As long as the overestimation is not severe, these extra noise have

very limited effect on the performance of k̃. In view of these results, we recommend

choosing a less conservative criterion in estimating the number of pseudo factors.

The change point is estimated as in equation (10). We restrict k̃ to be in [r1, T−r2]

to avoid the singular matrix in subsequent estimation of the number of pre-break and

post-break factors. This will not significantly affect the distribution of k̃ since the

8All factors in the equivalent model are called pseudo factors, but not all pseudo factors are
induced by structural change. Factors with stable loadings in the original model are still present in
the equivalent model.

9Our comparison here is limited by the experiments performed. A more comprehensive compari-
son in case the change point is far from middle or the magnitude of structural change is medium or
small is left for a future study.
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probability that k̃ falls out of [r1, T − r2] is extremely small. To save space, we only

display the distributions of k̃ for (N, T ) = (100, 100). Of course, the performance

of k̃ improves as (N, T ) increases. Figure 1 is the histogram of k̃ of Setup 1 for

(N, T ) = (100, 100). Figures 2 and 3 are histograms of k̃ of Setup 3 for (N, T ) =

(100, 100) with a = 1 and 0.2, respectively. Each figure contains four subfigures

corresponding to τ 0 = 0.25 and 0.5 for (ρ, α, β) = (0, 0, 0) with homogeneous R2

and (ρ, α, β) = (0.5, 0.2, 0.2) with heterogeneous R2. Under each subfigure, we also

report the average and standard deviation of r̃ used in obtaining k̃. The number of

replications is 1,000.

It is easy to see that in each subfigure the mass is concentrated in a small neigh-

borhood of k0. In most cases, the frequency that k̃ falls into (k0− 5, k0 + 5) is around

90%. This confirms our theoretical result, k̃ − k0 = Op(1). In Setup 3, even when

a decreases from 1 to 0.2, the performance deteriorates very little. Comparing the

left column with the right column of each figure, we can see that the performance

of k̃ deteriorates as τ 0 moves from 0.5 to 0.25. This is because when τ 0 is close to

the boundary, some pseudo factors in the equivalent model are weak and hence the

PC estimator of these factors is noisy. In Setup 3, based on Theorem 4 and the fact

that all factors and loadings are generated independently, it is not diffi cult to see

that these weak factors are in W (l) for l = −1,−2, ..., hence k̃ − k0 is likely to be

negative. This explains the asymmetry of Figures 2 and 3. Comparing the first row

with the second row of each figure, we can see that the performance of k̃ deteriorates

for (ρ, α, β) = (0.5, 0.2, 0.2) with heterogeneous R2. This is consistent with Theorem

4, since yt is serial correlated when factors are serial correlated and serial correlation

increases the variance of
∑k0−1

t=k0+l[vec(Σ2 − Σ1)]′yt and
∑k0+l

t=k0+1[vec(Σ2 − Σ1)]′yt for

each l.

Based on k̃, we then split the sample and estimate the number of pre-break and

post-break factors using ICp2 in Bai and Ng (2002) and GR in Ahn and Horenstein

(2013), with maxima rmax1 = 10 and rmax2 = 10. The performance of ER is

similar and will not be reported. Based on k̃, r̃1 and r̃ 2, we then estimate the pre-

break and post-break factors using the principal component method. To evaluate the

performance, we calculate the R2 of the multivariate regression of F̂ r̃1
1 (k̃) on F1(k̃)

27



and F̂ r̃2
2 (k̃) on F2(k̃), R2

F̂ ,F
=

∥∥∥PF1(k̃)F̂ r̃11 (k̃)
∥∥∥2+

∥∥∥PF2(k̃)F̂ r̃22 (k̃)
∥∥∥2

‖F̂ r̃11 (k̃)‖2+‖F̂ r̃22 (k̃)‖2
. Theorem 3 states that R2

F̂ ,F

should be close to one if N and T are large.

Tables 1-3 report the percentage of underestimation and overestimation of r̃1,

r̃ 2 and averages of R2
F̂ ,F

over 1,000 replications. x/y denotes that the frequency

of underestimation and overestimation is x% and y% respectively. On the whole,

the performance of ICp2 and GR are similar. If we choose the better one in each

case, the performance of r̃1 and r̃ 2 behave quite well and in most cases close to

the their correspondents based on the true change point k0. For Setups 1 and 3,

(N, T ) = (100, 200) is large enough to guarantee good performance in all cases. For

the case τ 0 = 0.5, (N, T ) = (100, 100) is large enough. Note that for Setup 3, even

with a small magnitude of change a = 0.2, r̃1 and r̃ 2 still perform well. For Setup 2,

(N, T ) = (100, 200) is large enough in all cases, except for the case with ρ = 0.5. The

performance of R2
F̃ ,F

is good for all cases.

Comparing the results of τ 0 = 0.5 with τ 0 = 0.25 and ρ = 0 with ρ = 0.5 in each

table, we can see that the deterioration pattern is in accord with that of k̃. This is

not surprising since in the current setup, the estimation error in k̃ is the main cause

of misestimating r̃1 and r̃ 2. For r̃1, underestimation of k0 decreases the size of the

pre-break subsample while overestimation increases the tendency of overestimating r1.

Comparing Tables 2 and 3, we can see that underestimation is less harmful. Finally, it

is worth noting that there is still room for improvement of finite sample performance

of r̃1, r̃ 2, either through improving the performance of k̃ or through choosing an

estimator more robust to misspecification of change point among all estimators of the

number of factors in the literature.

9 CONCLUSIONS

This paper studied the identification and estimation of a large dimensional factor

model with a single large structural change. Both factor loadings and number of

factors are allowed to be unstable. We proposed a least squares estimator of the

change point and showed that the distance between this estimator and the true change
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Figure 1: Histogram of k̃ for (N, T ) = (100, 100), (r1, r2, r + q1) = (3, 5, 7)

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.25, ave(r̃) = 5.68, sd(r̃) = 0.60

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.5, ave(r̃) = 6.85, sd(r̃) = 0.38

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.25, ave(r̃) = 5.75, sd(r̃) = 0.58

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.5, ave(r̃) = 6.74, sd(r̃) = 0.48

Notes: ρ, α and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term

cross-sectional correlation respectively. ave(r̃) and sd(r̃) denote average and standard deviation
of estimated number of pseudo factors that are used to estimate the change point respectively.
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Figure 2: Histogram of k̃ for (N, T ) = (100, 100), (r1, r2, r + q1) = (3, 3, 5), a = 1

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.25, ave(r̃) = 4.51, sd(r̃) = 0.56

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.5, ave(r̃) = 5.00, sd(r̃) = 0

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.25, ave(r̃) = 4.86, sd(r̃) = 0.35

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.5, ave(r̃) = 5.00, sd(r̃) = 0

Notes: ρ, α and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term

cross-sectional correlation respectively. ave(r̃) and sd(r̃) denote average and standard deviation
of estimated number of pseudo factors that are used to estimate the change point respectively.
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Figure 3: Histogram of k̃ for (N, T ) = (100, 100), (r1, r2, r + q1) = (3, 3, 5), a = 0.2

(ρ, α, β) = (0, 0, 0), homogeneous R2,
τ 0 = 0.25, ave(r̃) = 4.27, sd(r̃) = 0.60

τ 0 = 0.5, (ρ, α, β) = (0, 0, 0), homogeneous
R2, ave(r̃) = 4.85, sd(r̃) = 0.36

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.25, ave(r̃) = 5.60, sd(r̃) = 1.17

(ρ, α, β) = (0.5, 0.2, 0.2), heterogeneous
R2, τ 0 = 0.5, ave(r̃) = 5.94, sd(r̃) = 1.08

Notes: ρ, α and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error term

cross-sectional correlation respectively. ave(r̃) and sd(r̃) denote average and standard deviation
of estimated number of pseudo factors that are used to estimate the change point respectively.
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Table 1: Estimated number of pre-break and post-break factors and estimated factor
space for setup 1 with r1 = 3, r2 = 5, r + q1 = 7

N T τ 0 = 0.25 τ 0 = 0.5
ICp2 GR ICp2 GR

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

ρ = 0, α = 0, β = 0, homogeneous R2

100 100 4/8 2/2 11/7 5/1 0.94 0/0 13/0 0/1 2/0 0.96
100 200 0/0 0/0 0/0 0/0 0.95 0/0 0/0 0/0 0/0 0.96
200 200 0/0 0/0 0/0 0/0 0.98 0/0 0/0 0/0 0/0 0.98
200 400 0/0 0/0 0/0 0/0 0.98 0/0 0/0 0/0 0/0 0.98

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2

100 100 3/13 2/3 23/4 5/2 0.95 0/4 8/1 1/2 10/0 0.97
100 200 0/2 0/0 2/0 0/1 0.96 0/0 0/0 0/0 0/0 0.97
200 200 0/1 0/3 2/0 0/1 0.98 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 0/0 0/0 0.98 0/0 0/0 0/0 0/0 0.99

Notes: Number of factors in each regime is estimated using ICp2 in Bai and Ng (2002) and GR
in Ahn and Horenstein (2013). x/y denotes the frequency of underestimation and overestimation is

x% and y%. ρ, α and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error

term cross-sectional correlation respectively.
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Table 2: Estimated number of pre-break and post-break factors and estimated factor
space for setup 2 with r1 = 3, r2 = 5, r + q1 = 5

N T τ 0 = 0.25 τ 0 = 0.5
ICp2 GR ICp2 GR

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

ρ = 0, α = 0, β = 0, homogeneous R2

100 100 3/41 15/6 9/39 29/0 0.91 0/10 18/2 0/9 12/0 0.96
100 200 0/6 2/1 0/6 5/0 0.95 0/2 1/0 0/1 1/0 0.96
200 200 0/6 2/0 0/5 4/0 0.97 0/1 0/0 0/1 0/0 0.98
200 400 0/1 1/0 0/1 1/0 0.98 0/0 0/0 0/0 0/0 0.98

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2

100 100 1/68 20/14 10/59 46/0 0.89 0/26 13/6 1/20 30/0 0.96
100 200 0/27 5/4 2/22 13/0 0.94 0/6 1/2 0/5 4/0 0.97
200 200 0/31 4/5 1/24 14/0 0.95 0/7 1/1 0/6 5/0 0.98
200 400 0/7 1/1 0/5 4/0 0.98 0/2 0/0 0/1 1/0 0.99

ρ = 0, α = 0.2, β = 0.2, heterogeneous R2

100 100 1/43 11/7 9/38 28/0 0.91 0/11 9/2 0/9 12/0 0.96
100 200 0/6 1/1 0/6 4/0 0.96 0/2 0/0 0/1 1/0 0.97
200 200 0/9 1/0 0/5 4/0 0.98 0/1 0/0 0/0 0/0 0.98
200 400 0/1 0/0 0/1 1/0 0.98 0/0 0/0 0/0 0/0 0.98

Notes: Number of factors in each regime is estimated using ICp2 in Bai and Ng (2002) and GR
in Ahn and Horenstein (2013). x/y denotes the frequency of underestimation and overestimation is

x% and y%. ρ, α and β denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error

term cross-sectional correlation respectively.
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Table 3: Estimated number of pre-break and post-break factors and estimated factor
space for setup 3 with r1 = 3, r2 = 3, r + q1 = 5

N T τ 0 = 0.25 τ 0 = 0.5
ICp2 GR ICp2 GR

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

r̃1 r̃ 2 r̃1 r̃ 2 R2
F̃ ,F

ρ = 0, α = 0, β = 0, homogeneous R2, a = 1
100 100 5/4 0/1 14/0 0/1 0.97 0/0 0/0 0/0 0/0 0.97
100 200 0/0 0/0 1/0 0/0 0.97 0/0 0/0 0/0 0/0 0.97
200 200 0/0 0/0 0/0 0/0 0.98 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 0/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2, a = 1
100 100 3/9 0/8 27/0 0/4 0.97 1/4 0/4 2/1 1/2 0.97
100 200 0/2 0/4 4/0 0/2 0.98 0/1 0/0 0/0 0/0 0.98
200 200 0/1 0/3 2/0 0/2 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/1 1/0 0/1 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0, α = 0, β = 0, homogeneous R2, a = 0.6
100 100 4/3 0/1 12/0 0/0 0.97 0/0 0/0 0/0 0/0 0.97
100 200 0/0 0/0 1/0 0/0 0.97 0/0 0/0 0/0 0/0 0.97
200 200 0/0 0/0 0/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 0/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2, a = 0.6
100 100 3/9 0/6 26/0 0/3 0.98 1/2 0/3 2/2 2/2 0.98
100 200 0/2 0/3 3/0 0/1 0.98 0/1 0/1 0/0 0/0 0.98
200 200 0/1 0/3 2/0 0/1 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/1 1/0 0/1 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0, α = 0, β = 0, homogeneous R2, a = 0.2
100 100 5/8 0/1 18/0 2/0 0.97 0/0 0/0 0/0 1/0 0.97
100 200 2/5 3/7 10/0 16/0 0.97 0/1 1/0 2/0 1/0 0.97
200 200 0/0 0/0 1/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 0/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99

ρ = 0.5, α = 0.2, β = 0.2, heterogeneous R2, a = 0.2
100 100 5/13 0/0 33/0 0/0 0.98 1/2 1/2 3/0 2/0 0.98
100 200 1/3 0/0 7/0 4/0 0.98 0/0 0/0 0/0 1/0 0.98
200 200 0/2 0/0 3/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99
200 400 0/0 0/0 1/0 0/0 0.99 0/0 0/0 0/0 0/0 0.99

Notes: Number of factors in each regime is estimated using ICp2 in Bai and Ng (2002) and GR
in Ahn and Horenstein (2013). x/y denotes the frequency of underestimation and overestimation is

x% and y%. ρ, α, β and a denote factor AR(1) coeffi cient, error term AR(1) coeffi cient and error

term cross-sectional correlation and break magnitude respectively.
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point is Op(1). The main appeal of this estimator is that it does not require prior

information of the number of factors and observability of the factors and it allows

for a change in the number of factors. Based on this change point estimator, we are

able to dissect the model into two separate stable models and establish consistency

of the estimated pre and post-break number of factors and convergence rate of the

estimated pre and post-break factor space. These results provide the foundation for

subsequent analysis and applications.

A natural step is to derive the limiting distribution of the estimated factors, factor

loadings and common components as in Bai (2003). It will also be rewarding to further

improve the finite sample performance of our change point estimator. In addition,

following the methods in Bai and Perron (1998), it will be straightforward to extend

our results to the case with multiple changes. Many other issues are also on the

agenda. For example, what are the asymptotic properties of the estimated change

point, estimated number of factors and estimated factors when the factor process is

I(1)?
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