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ABSTRACT  24 

The paper presents the behavior of six tests of Planar Prestressed Concrete Frame under the 25 
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 2

loss of a middle column. The six tests consist of two non-prestressed reinforced concrete 1 

(RC) specimens and four prestressed concrete (PC) specimens with bonded post-tensioning 2 

tendons (BPT). The structural response of the specimens with different flexural reinforcement 3 

ratio, span/depth ratio, and effective prestress level has been reported. In addition, the impact 4 

of parabolic BPT on the behavior of RC frames to resist progressive collapse is also 5 

evaluated. Experimental results indicated that the BPT can not only increase the initial 6 

stiffness and yielding load of the RC counterparts, but also increase the ultimate load capacity 7 

in the catenary action stage. Moreover, it will impact the load resisting mechanisms and the 8 

failure modes. Contrary to the commonly accepted sequential mobilization of compressive 9 

arch action and catenary action to resist progressive collapse of RC frames, no effective 10 

compressive arch action is developed in PC frames to mitigate progressive collapse risk. 11 

Based on experimental observations, it is found that higher effective prestress in BPT results 12 

in enhanced initial stiffness and yielding load but less deformation capacity and ultimate load 13 

capacity. It is also found that higher non-prestressed flexural tensile reinforcement ratio could 14 

improve the behavior of PC specimens to resist progressive collapse.  15 

16 

Keywords: progressive collapse; prestressed concrete; compressive arch action; catenary 17 

action; mechanism; bonded; post-tensioning tendon.    18 

19 

20 

INTRODUCTION 21 

Progressive collapse is defined as “the spread of an initial local failure from element to 22 

element, which eventually results in the collapse of an entire structure or a disproportionately 23 

large part of it”1. As the accidents or terrorist attacks are unpredictable, conventional civil 24 

structures cannot be risk-free. Thus, one of the most popular topics in structural engineering 25 
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 3

in the last decade is evaluating the behavior and load resisting mechanism of different types 1 

of building structures to mitigate progressive collapse risk. Currently, the commonly used 2 

method to evaluate the progressive collapse resistance of structures is based on the remaining 3 

structures following initial local failure such as the loss of a load bearing column or partial of 4 

walls2-4.  Alternate load path method is popular used for progressive collapse design5-9. Based 5 

on alternate load path method, a number of tests2-11 had been carried out. All foregoing test 6 

results2-11 demonstrated that considerable compressive arch action could enhance the yielding 7 

load capacity of reinforced concrete (RC) beams in relatively small deformation stage while 8 

catenary action could develop in beam longitudinal reinforcements in large deformation 9 

stage. These tests are focused on RC frames and thus, their conclusions may not be able to 10 

refer for designing of prestressed concrete (PC) frames to mitigate progressive collapse 11 

effectively. As well known, nowadays, PC technique is frequently used in commercial 12 

buildings with long spans. Parabolic tendons with drape are commonly installed in the 13 

continuous beams to apply pre-compression force in the expected tensile zone, as shown in 14 

Fig. 1a. However, the bending moment reversal will occur in the beams after removal of the 15 

middle column: such as the initial hogging moment in the beam end at the location of  the 16 

middle column changes to sagging moment after removal of the column, as shown in Fig. 1b. 17 

If a middle column is removed accidentally, the profile of tendons will differ with the 18 

bending moment distribution along the beams. It is well known that the PC frames are 19 

shallower in depth than their RC counterparts with the same span and loading conditions. 20 

Thus, the PC frames may have higher possibility to trigger progressive collapse when the 21 

profile of prestressing tendons deviate its design purpose after accidentally removal of the 22 

columns. Therefore, it is imperative to carry out the investigations to capture the behavior of 23 

PC frames under the removal of a middle column. However, limited studies, especially 24 

experimental tests, have had been conducted on the capacity of PC frames to mitigate 25 
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 4

progressive collapse.  1 

The behaviour of PC frame with unbonded post-tensioning (UPT) tendons was investigated 2 

by Qian et al.12. It is well known, for unbonded tendons transfer the force to the concrete via 3 

the end anchors and the profile of tendons. However, the force of bonded tendons can be 4 

transferred to the concrete through the bond between the tendons and concrete. Thus, the PC 5 

frames with bonded tendons may behave quite differently to unbonded tendons13. Therefore, 6 

the previous work of Qian et al.12 has been extended to carry out a programme of tests on PC 7 

beam-column subassemblages with bonded post-tensioning tendons (BPT), which will be 8 

presented in this paper.  9 

10 

RESEARCH SIGNIFICANCE 11 

The stress profile of tendons may differ with the bending moment distribution after removal 12 

of a middle column, which may result in possible collapse of PC frame. To quantify the 13 

possible load resisting mechanisms of PC frames subjected to a middle column missing 14 

scenario, a series of four PC beam-column subassemblages with BPT are tested in this study. 15 

By comparing to conventional RC subassemblages and PC subassemblages with UPT, the 16 

effects on BPT could be evaluated quantitatively. Due to no special provisions in existing 17 

guidelines (GSA14 and DoD15) for mitigating the progressive collapse risk of PC frame, the 18 

test results may provide necessary research outcome to fill the gap. Moreover, this research 19 

extends the availability of benchmarking data for the development of reliable analytical or 20 

numerical models as limited test data are available in literature.  21 

EXPERIMENTAL PROGRAM 22 

Test Specimen  23 

Six specimens are designed and constructed to investigate the performance of PC beam-24 

column sub-assemblages with BPT to resist progressive collapse caused by the loss of a 25 
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 5

middle column due to blast or vehicular impact. These six specimens include four PC beam-1 

column subassemblages (PCSL-0.6, PCSL-0.75, PCSH-0.6, and PCLL-0.6) and two non-2 

prestressed RC counterparts (RCSL and RCLL). For example, the designation of PCSL-0.6 3 

represents PC specimen with short span (span/depth ratio of 12), low amount of non-4 

prestressed reinforcement, and the effective prestress (fpe) of 0.6fpu. where fpu is the ultimate 5 

strength of the tendon. Similarly, the designation of RCSL represents non-prestressed RC 6 

specimen with short span and low longitudinal reinforcement ratio. Table 1 gives the 7 

designation and characteristics of each specimen. The specimens are one-half scaled due to 8 

facility capacity in laboratory. The prototype frame of the specimens is located at the middle 9 

of a perimeter frame of a six story office building, which has 4.2 m and 3.3 m high in the first 10 

and upper story, respectively. The design span is 6 m and 7 m for prototype frame with short 11 

and long span, respectively. The RC detail of the specimens are following the seismic design 12 

requirement  in accordance with ACI 318-1416 and assumed to be located on a D class site 13 

(stiff soil profile) where the design spectral response acceleration parameters, SDS and SD1, 14 

are 0.45 and 0.30, respectively.  The live load (LL) is assumed to be 2.0 kPa while the dead 15 

load (DL) including the self-weight is assumed to be 3.75 kPa. As shown in Fig. 2, each 16 

specimen comprises of two side columns, one middle column, and two beams. All specimens 17 

are half-scaled due to capacity limits of the test facilities. The cross-section of beam and 18 

middle column are 150 mm×250 mm (2.9 in.×9.8 in.) and 250 mm×250 mm (9.8 in.×9.8 in.), 19 

respectively. However, the size of side column is enlarged to 400 mm×400 mm (15.7 in.×15.7 20 

in.) for applying fixed boundary conditions well. For Specimen PCSL-0.6, the beam non-21 

prestressed reinforcements of 3T10 are installed in both top and bottom layer, which 22 

corresponds to reinforcement ratio of 0.7%. The reinforcements are placed in the beam 23 

continuously. T10 and R6 herein represent deformed reinforcement with diameter of 10 mm 24 

(0.4 in.) and plain reinforcement with diameter of 6 mm (0.2 in.), respectively. As shown in 25 
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 6
 

the figure, a plastic duct with internal diameter of 32 mm (1.3 in.) is installed with parabolic 1 

profile before casting. After erected the specimen in the setup, a tendon with nominal 2 

diameter of 12.7 mm (0.5 in.) is threaded through the duct and jacked it to target effective 3 

prestress 0.6fpu. Following that, grouting is conducted immediately. To ensure effective 4 

bonding between BPT and concrete, each specimen is tested after grouting over least three 5 

days. The true effective prestress of BPT deducting the prestress loss are measured and 6 

tabulated in Table 1. The tendon is twisted by seven high-strength wires with nominal area of 7 

98 mm2 (0.2 in2.). The parabolic profile of the tendon is following Eqs. 1 and 2.   8 

2
1 10.12y x                                                            (1) 9 

2
2 20.28y x                                                            (2) 10 

where y1 is the vertical coordinate of the tendon from the origin in the middle of the beam, x1 11 

is the horizontal coordinate of the tendon from the origin in the middle of the beam, y2 is the 12 

vertical coordinate of the tendon from the origin in the middle of the center column, and x2 is 13 

the horizontal coordinate of the tendon from the origin in the middle of the center column.  14 

         PCSL-0.75 has identical dimensions and reinforcement details as PCSL-0.6 but higher 15 

designated effective prestress 0.75fpu. Comparing to PCSL-0.6, PCSH-0.6 has higher non-16 

prestressed reinforcement ratio. In PCSH-0.6, the top and bottom beam longitudinal 17 

reinforcement are 3T12 in accordance with reinforcement ratio of 1.0 %. For PCLL-0.6, it 18 

has similar cross-section and reinforcement details as PCSL-0.6. However, it has longer 19 

design span of 3500 mm (137.8 in.) and larger span/depth ratio of 14, as shown in Fig. 2c. 20 

For comparison easily, two non-prestressed RC specimens (RCSL and RCLL) without BPT 21 

are also cast and tested. Specimens RCSL and RCLL have similar dimensions and 22 

reinforcement details as the corresponding PC Specimens PCSL-0.6 and PCLL-0.6, 23 

respectively.  24 

        Based on compressive cylindrical tests, the measured concrete compressive strength of 25 
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 7

RCSL, RCLL, PCSL-0.6, PCSL-0.75, PCSH-0.6, and PCLL-0.6 are 44 MPa (6 kip), 44 MPa 1 

(6 kip), 45 MPa (6 kip), 44 MPa (6 kip), 45 MPa (7 kip), and 43 MPa (6 kip), respectively. 2 

Furthermore, based on tensile splitting tests, the tensile strength of the concrete of RCSL, 3 

RCLL, PCSL-0.6, PCSL-0.75, PCSH-0.6, and PCLL-0.6 are 3.1 MPa (0.4 kip), 3.3 MPa (0.5 4 

kip), 3.0 MPa (0.4 kip), 3.5 MPa (0.5 kip), 3.1 MPa (0.4 kip), and 3.4 MPa (0.5 kip), 5 

respectively. The properties of reinforcements and strands are tabulated in Table 2. 6 

Test setup and instrumentation 7 

Similar to previous tests2-5, as shown in Fig. 3, the side column is substituted with fixed 8 

boundary conditions by two horizontal constraints and a pin support. To eliminate the 9 

redundant horizontal constraints from the pin support, a series of steel rollers are mounted 10 

below it. A hydraulic jack (lower jack) is installed below the middle column stub to release of 11 

the axial force manually. The stroke of the jack is initially protruded out to touch the bottom 12 

of the middle column stub for simulation of the ground middle column intact. Then, six steel 13 

weight assemblages with weight of 5000 kg (11.0 klb) are hung below the beams to simulate 14 

the design service load (DL+LL). Once the weights are hung completely and the 15 

instrumentations are ready to record data, the stroke of the lower jack is retracted gradually to 16 

release its axial force slowly. If the specimen could stabilize after the stroke of the lower jack 17 

detaches from the bottom of the middle column stub completely, the stroke of upper jack 18 

begins to protrude out to apply additional concentrated force on the middle column until 19 

collapse. To eliminate the out-of-plane failure of the two-dimensional (2D) beam-column 20 

sub-assemblages, a special designed steel assembly is installed underneath the upper jack. 21 

The steel assembly is consisted of a steel box and several steel pins to only allow vertical 22 

movement of the middle column but constraints its rotation and horizontal movements. A 23 

series of displacement transducers and load cells are installed to monitor the behavior of the 24 

specimens. As shown in Fig. 3b, load cell #3 is utilized to measure the axial force in the 25 
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 8
 

lower jack. Load cells #1 and #2 are used to measure the applied additional concentrated 1 

force from upper jack. Moreover, the vertical load redistribution is measured by the load cells 2 

#4 and #5. To monitor the variation of prestressing force in the tendon, load cell #6 is 3 

installed at the jacking end. Tension/compression load cells are installed in the horizontal 4 

constraints to measure the horizontal reaction applied on the side columns. Displacement 5 

transducers D1 to D7 are installed to measure the variation of the deformation shape of the 6 

beam. Before casting, strain gauges are installed in the non-prestressed reinforcement and 7 

tendons to monitor the local behavior of the specimens.  8 

TEST RESULTS  9 

Global behavior 10 

RC Specimens- for RCSL, as previously mentioned, firstly, the lower jack protruded 11 

out to simulate the middle column intact. Then, six steel assemblies with total weights of 12 

5000 kg (11.0 klb) are hung below the beams symmetrically. Thus, the vertical reaction force 13 

of -25 kN (-5.6 kip) is measured by the load cell #3 after the weights are hung completely. As 14 

shown in Fig. 4a, the stage O’A’ represents the phase of axial force releasing in the lower 15 

jack. It can be seen that the frame structure is still within elastic range when point A’ is 16 

reached, which is corresponding to a vertical displacement of 34 mm (1.3 in.). Due to 17 

bending moment reversal, the cracks in the beam end vicinity of the middle column (BEVM) 18 

are formed in the lower part of the section. After that, additional load is applied gradually 19 

from the upper jack until the specimen collapse. To facilitate the comparison of the 20 

performance, the load-displacement curves are shifted from [0,-25 kN (-5.6 kip)] to origin (0, 21 

0). Take Specimen RCSL as an example, the stage O’A’ is shifted to OA. The load-22 

displacement relationship of remaining specimens shown in the figure is after shifting. The 23 

critical values described below and listed in Table 3 are also picked from the shifted curves. 24 

From the shifted curve, when the vertical displacement reached 40 mm (1.6 in.), plastic 25 
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hinges are formed in the beam. Further increasing the vertical displacement, the load 1 

resistance keeps increasing. This is attributed to compressive arch action developed in the 2 

beams, as shown in Fig. 5a. When the beam ends have sufficient horizontal constraints, the 3 

developed compressive struts could distribute partial of the vertical load to the side column 4 

directly. The first peak load of the specimen is measured to 44 kN (9.9 kip) at a vertical 5 

displacement of 67 mm (2.6 in.). The load resisting capacity began to decrease after this 6 

loading stage and severe concrete crushing occurred in the compressive zone. The re-7 

ascending of the load-displacement curve is observed when the vertical displacement is 8 

beyond 172 mm (6.8 in.). The re-ascending is attributed into catenary action developed in 9 

beam longitudinal reinforcements (refer to Fig. 6a), although the concrete crushing and 10 

flexural cracks are very severe in this stage. Even though rebar fracture subsequently 11 

occurred in the beam ends, the load resistance continues increasing until the vertical 12 

displacement reached 598 mm (23.5 in.). At this stage, the ultimate load capacity of 68 kN 13 

(15.3 in.) is measured and the load resistance is suddenly dropped due to rebar fracture 14 

occurred in both beam ends near to the side column (BENS). The failure mode of the 15 

specimen is illustrated in Fig. 7a. As shown in the figure, rebar fracture is only occurred in 16 

the BENS. The two-span beam is deformed as parabolic curve and thus, curved catenary 17 

action is developed. 18 

For Specimen RCLL, as it has much larger span/depth ratio, heavier steel weights of 19 

6000 kg (13.2 klb) are designed. Thus, it results in larger initial axial force of -30 kN (6.7 20 

kip) in the lower jack. As shown in the shifted curve, plastic hinges are formed in the beam 21 

when the vertical load reached 25 kN (5.6 kip), which means that the yielding load of this 22 

specimen is less than the initial axial force. If no other load resisting mechanisms could be 23 

employed to resist the vertical load, the specimen would have collapsed during the phase of 24 

axial force releasing. Fortunately, the first peak load of 36 kN (8.1 kip) is achieved in this 25 

Page 9 of 38 ACI Journal Manuscript Submission

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 10
 

specimen due to compressive arch action developed in beams, which is greater than its initial 1 

axial force (30 kN or 6.7 kip). After that, the load resistance begins to decrease due to 2 

concrete crushing. When the vertical displacement reached 120 mm (4.7 in.), the 3 

displacement suddenly increased to 273 mm (10.7 in.) caused by the compressive arch action 4 

vanished, which result in the load resisting capacity less than the force transferred from the 5 

hung steel weights. However, the collapse is prevented at a vertical displacement of 273 mm 6 

(10.7 in.) due to the additional load resistance from the catenary action. Thus, the response of 7 

this specimen demonstrated that the compressive arch action is the frontier of the defense 8 

while the catenary action is the second one. The failure mode of this specimen is shown in 9 

Fig. 7b. Similar to RCSL, rebar fracture is only observed in BENS and the beams are 10 

deformed curved.  11 

PC Specimens-for PCSL-0.6, it has BPT with designed and true effective prestress of 12 

0.6fpu and 0.53fpu, respectively. Similar to RCSL, the initial axial force in the lower jack is 13 

about -25 kN (-5.6 kip) after the weight of 5000 kg (11.0 klb) is fully hung. Different with 14 

RCSL, no cracks are observed in the beams when the weights are applied. As shown in Fig. 15 

4b, the yielding load of 42 kN (9.4 kip), which is 131% of RCSL, is obtained at a vertical 16 

displacement of 41 mm (1.6 in.). At this stage, the flexural cracks at the BEVM are wider 17 

than that at the BENS, which is quite different with that in RCSL. Additionally, as the load 18 

resistance keeps increasing with further increase of the vertical displacement, the value of 19 

first peak load is hard to mark. The discussion of the load resisting mechanism in following 20 

section will reveal that less compressive arch action is developed in PC beams but the 21 

stretching of the tendon will provide additional resistance. When the displacement reached 22 

480 mm (18.9 in.), rebar fracture first occurred in the left BEVM. With the further increase of 23 

the displacement to 560 mm (22.0 in.) and 621 mm (24.4 in.), rebar fractures are also 24 

observed in the BENS. The ultimate load capacity in catenary action stage is measured to 127 25 
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kN (28.5 kip), which is 187% of that of RCSL. Thus, BPT could increase the ultimate load 1 

capacity significantly. The test stopped at a vertical displacement of 679 mm (26.7 in.) due to 2 

anchor slip occurred in the jacking end. The failure mode of this specimen is shown in Fig. 8. 3 

Different to RCSL, the PC beams with BPT deformed straightly and the widest crack is 4 

formed in the BEVM. Moreover, comparing to RCSL, the crack width in the BENS is much 5 

thinner.    6 

Similar to RCLL, PCLL-0.6 has span/depth ratio of 14 and thus, the initial axial force 7 

is -30 kN (6.7 kip). The true effective prestress of the tendon is 0.55fpu due to prestress loss. 8 

The measured vertical displacement is 33 mm (1.3 in.) when the axial force fully released. 9 

The yielding load of this specimen is 37 kN (8.5 kip), which is 148% of that of RCLL, at a 10 

vertical displacement of 45 mm (1.8 in.). Thus, comparing to PCSL-0.6, BPT is more 11 

effective for upgrading the yielding load of RCLL. Similar to PCSL-0.6, hard to mark first 12 

peak load in the curve as the load-displacement curve also keeps increasing with increase of 13 

the vertical displacement. Rebar fracture is firstly observed in the BEVM at a vertical 14 

displacement of 452 mm (17.8 in.). When the vertical displacement reached 550 mm (21.7 15 

in.), rebar fracture is also occurred in the left BENS. The failure mode of this specimen is 16 

illustrated in Fig. 9. Similar to PCSL-0.6, the beams are deformed straightly. Different to 17 

RCLL, more severe damage is occurred in the BEVM than that in BENS. 18 

Comparing to PCSL-0.6, PCSH-0.6 has higher beam longitudinal reinforcement ratio 19 

of 1.0%. The vertical displacement is 14 mm (0.6 in.) when the initial axial force in the lower 20 

jack is released completely. The yielding load of 55 kN (12.3 kip) is achieved at a vertical 21 

displacement of 43 mm (1.7 in.). Thus, comparing to PCSL-0.6, PCSH-0.6 achieved much 22 

higher initial stiffness and yielding load. Similar to foregoing PC specimens, the load 23 

resistance increases with further increasing the displacement, although concrete crushing and 24 

wide cracks are accompanied. The load resistance first drops when the vertical displacement 25 
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reached 445 mm (17.5 in.) due to rebar fracture occurring in the right BEVM. Rebar fracture 1 

is also observed in the left BENS at a displacement of 613 mm (24.1 in.). The measured 2 

ultimate load capacity is 145 kN (32.6 kip), which is about 114% of that in PCSL-0.6.  3 

Comparing to PCSL-0.6, PCSL-0.75 has larger designed effective prestress of 0.75fpu 4 

and the true effective prestress of 0.71fpu. Comparing to other PC specimens, the camber of 3 5 

mm (0.1 in.) in the middle-span of the beam is measured before applying the weights. The 6 

vertical displacement is measured to be 19 mm (0.7 in.) after completely releasing of the 7 

axial force in the lower jack. Moreover, the yielding load of 46 kN (10.3 kip) is measured at a 8 

vertical displacement of 40 mm (1.6 in.). Thus, higher initial effective prestress will increase 9 

the initial stiffness slightly. The rebar fracture is first occurred in the right BENM at a vertical 10 

displacement of 361 mm (14.2 in.), which is much earlier than that in PCSL-0.6. 11 

Subsequently, it occurred in the both BENS at the displacements of 490 mm (19.3 in.) and 12 

524 mm (20.6 in.), respectively. The specimen is stopped at a vertical displacement of 575 13 

mm (22.6 in.) due to anchor slipped occurred in the jacking point, similar to PCSL-0.6. The 14 

failure mode of PCSH-0.6 and PCSL-0.75 are shown in Figs. 10 and 11, respectively.   15 

Horizontal reaction  16 

As shown in Fig. 12, for RCSL, considerable compressive force is measured at the lower 17 

roller initially. It begins to decrease after vertical displacement reached 100.6 mm (4.0 in.) 18 

due to concrete crushing. Tensile force is measured in the lower roller when the vertical 19 

displacement reached 487.5 mm (19.2 in.). However, the upper roller consistently measured 20 

tensile force during test. Thus, the total compressive force in relatively small displacement 21 

stage is mainly attributed to the lower roller while the total tensile force in large displacement 22 

stage is attributed to both rollers. However, for PCSL-0.6, much larger tensile force is 23 

measured in the upper roller from the beginning of the test due to substantial tensile force 24 

from BPT. Moreover, although compressive force is also measured in the lower roller, the 25 
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maximum compressive force is -65.6 kN (-14.7 kip), which is much less than that of RCSL.    1 

If we look at the total reaction force, similar to previous RC tests3-11, for RC specimens, 2 

significant compressive reaction force is initially measured in the horizontal constraints. As 3 

shown in Fig. 13, the maximum compressive reaction force of -136 kN (-30.6 kip) and -142 4 

kN (-32.0 kip) are measured in RCSL and RCLL, respectively. The compressive reaction 5 

force began to decrease when the displacement beyond 80 mm or 3.1 in. (0.03ln) and 100 mm 6 

or 3.9 in. (0.03ln) for RCSL and RCLL, respectively. ln represents the clear span of the single 7 

beam. In accordance with their load resisting behavior, the decrease of the horizontal reaction 8 

force related to the compressive arch action vanishing and concrete crushing. When the 9 

vertical displacement beyond 220 mm (8.7 in.) [0.08ln for RCSL and 0.07ln for RCLL], 10 

tensile force is measured. The maximum horizontal tensile force in RCSL and RCLL are 153 11 

kN (34.3 kip) and 135 kN (30.3 kip), respectively. However, different with RCSL and RCLL 12 

and previously tested RC specimens3-11, for PC Specimens PCSL-0.6, PCLL-0.6, PCSH-0.6, 13 

and PCSL-0.75, no compressive reaction force is observed during the test, which further 14 

confirmed less compressive arch action is developed in PC beams. As explained in Fig. 5b, 15 

the post-tensioning tendon will aggravate the compressive stress at the BEVM but relieve the 16 

compressive stress at the BENS. Thus, no effective compressive strut is able to develop in the 17 

beams for load redistribution. However, the tensile reaction force remains constant when the 18 

vertical displacement reached 70-80 mm (2.8-3.1 in.). The re-ascending of the tensile reaction 19 

force is observed in PC specimens with short and long span at the displacements of 170 mm 20 

(6.7 in.) and 190 mm (7.5 in.), respectively. With increasing the vertical displacement, the 21 

horizontal tensile force keeps increasing. The maximum tensile reaction force measured in 22 

PCSL-0.6, PCSH-0.6, PCSL-0.75, and PCLL-0.6 is 291 kN (65.4 kip), 321 kN (72.1 kip), 23 

265 kN (59.6 kip), and 280 kN (62.9 kip), respectively. The lower reaction force measured in 24 

PCSL-0.75 is due to anchor slipped occurred in the jacking end at the relatively early vertical 25 
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displacement of 575 mm (22.6 in.). 1 

Prestressing force in BPT 2 

Fig. 14 presents the response of prestress force in the tendon versus the vertical displacement. 3 

As shown in the figure, the initial prestress force deducting prestress loss is 97 kN (21.8 kip), 4 

100 kN (22.5 kip), 130 kN (29.2 kip), and 101 kN (22.7 kip) in PCSL-0.6, PCSH-0.6, PCSL-5 

0.75, and PCLL-0.6, respectively. It is found that the prestress force increased slowly before 6 

the vertical displacements reached 100 mm (3.9 in.) and 150 mm (5.9 in.) for PC specimen 7 

with short and long span, respectively. Comparing the response of horizontal reaction force 8 

with prestress force in PC specimens, it is hard to explain the increase of tensile reaction 9 

force in the initial stage. It is suggested that since bonded tendon is used in this study, the 10 

prestress force measured in the jacking end could not represent the variation of the prestress 11 

force of the tendon in other places well. When the vertical displacements exceeds  100 mm 12 

and 150 mm (5.9 in.) for PC specimen with short and long span respectively, the increase of 13 

the prestress force is linear until yielding. Based on the test results, the maximum tensile 14 

force in the tendon of PCSL-0.6, PCSH-0.6, PCSL-0.75, and PCLL-0.6 are 192 kN (43.1 15 

kip), 186 kN (41.8 kip), 187 kN (42.0 kip), and 182 kN (40.9 kip), respectively. They are 16 

related to prestress stress of 1.05 fpu, 1.02 fpu, 1.03 fpu, and 1.0 fpu, respectively.  17 

Deformation shape of beams 18 

Fig. 15 gives the beam deformation shape of typical RC and PC specimen in accordance with 19 

critical stages: the axial force just released, yield load, first peak load, 100 mm (3.9 in.), 20 

200mm (7.9 in.), 300mm (11.8 in.), and ultimate load. As shown in Fig. 15a, for RCSL, the 21 

deformation shape of beam is curved. In the ultimate load stage, the chord rotation, which is 22 

defined as the ratio of displacement in the middle column to the clear span of the beam15, will 23 

slightly over-estimate the rotation of the BESC but significantly under-estimate the rotation 24 

in BEVM. This is quite different with that observed in previous tests2,4,5,6 as the initial service 25 
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load is well simulated in this study. For PCSL-0.6, as shown in Fig. 15b, the beam is 1 

deformed straightly when the displacement is beyond 100 mm (3.9 in.) and severe flexural 2 

cracks are formed in the BEVM. In the ultimate load stage, the chord rotation agrees the 3 

deformation shape of the beam well, although it is originally defined for non-prestressed RC 4 

specimen in existing design guideline15.  5 

Strain gauge reading 6 

Figs. 16a and b show the variation of strain results along beam top and bottom longitudinal 7 

reinforcements of PCSL-0.6, respectively. As shown in the figures, similar to non-prestressed 8 

RC specimens4, bending moment reversal is observed at the BEVM after releasing of the 9 

initial axial force in the lower jack. Yielding is first occurred in the top reinforcement at the 10 

BENS, rather than the bottom reinforcement at the BEVM, which is quite different to the 11 

previous non-prestressed RC specimens4. Moreover, the compressive strain in the beam 12 

longitudinal reinforcements begins to decrease when the vertical displacement is beyond 400 13 

mm (15.7 in.). When the vertical displacement reached 600 mm (23.6 in.), the bottom 14 

reinforcement is in tension across the whole span. Fig. 16c gives the results of strain gauges 15 

attached on the post-tensioning tendons. Due to unknown reason, partial of the strain gauges 16 

are faulty before tests. As shown in the figure, initially, all strain gauge read similar value 17 

ranged from 4400 με to 4600 με. When the vertical displacement increased, P2 and P3, which 18 

are near to the side column, increased their strain dramatically with high slope. However, the 19 

increase of remaining strain gauges is relatively very slow. It can be seen that P11 and P12, 20 

which nearby the BEVM, suddenly increased abruptly when the vertical displacement is 21 

beyond 400 mm (15.7 in.). Actually, as shown in Fig. 6b, the tendon at the BEVM will 22 

become a straight line when the vertical displacement reached 400 mm (15.7 in.).  23 

ANALYTICAL ANALYSIS AND DISCUSSIONS  24 
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 Dynamic performance of tested specimens 1 

The scenario of column missing caused by terrorist attacks is considered in this study. 2 

The most realistic setup should be designed by removal of the column suddenly. Although 3 

quasi-static pushdown test is most commonly used for evaluation of the performance of 4 

beam-column substructures mitigating progressive collapse, it is still necessary to assess the 5 

dynamic behavior of beam-column substructures. Capacity curve method, which is first 6 

proposed by Izzuddin et al.17, is frequently used to predict the dynamic capacity of the 7 

substructures based on the measured load-displacement curves (Tsai and Lin18, and Qian and 8 

Li19).  The capacity curve method is mathematically expressed as: 9 

duuP
u

uP
du

NS
d

dCC )(
1

)(
0
                                          (3) 10 

where )(uPCC  and )(uPNS  represent the capacity function and the nonlinear static loading 11 

estimated at the displacement demand u, respectively. 12 

Fig. 17 shows the dynamic behavior of test specimens. It is found that the dynamic 13 

ultimate capacity of RCSL, RCLL, PCSL-0.6, PCSL-0.75, PCSH-0.6, and PCLL-0.6 are 46.7 14 

kN (10.5 kip), 33.2 kN (7.5 kip), 88.0 kN (19.8 kip), 90.8 kN (20.4 kip), 103.8 kN (23.3 kip), 15 

and 69.2 kN (10.5 kip), respectively.  16 

De-composite the resistance contribution of axial force and bending moment 17 

For the process of releasing of axial force in the middle column, based on equilibrium and 18 

refer to Fig. 18, the bending moment ( M
LM ), axial force ( M

LN ), and shear force ( M
LV ) at 19 

Section A-A are determined as: 20 

2
7 6 5

1
( 0.35) ( 0.35) 2.0625 1.375 0.6875

2
M L L
L L L t bM V L H H G G G q L                 (4) 21 

7 6 5[( ) tan ]cosM M M
L L L L LN V G G G H     

                                              
(5) 22 

7 6 5[( ) sin )] / cosM M M M
L L L L LV V G G G N      

                                          
(6) 23 
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where LV is the vertical reaction force measured by load cell #5 in Fig. 3b; L
tH and L

bH1 

are the horizontal reaction force from upper and lower roller, respectively; G1~G7are the 2 

gravitational load of single weight assembly (8.2 kN and 1.8 kip); q is assumed to 3 

0.001kN/mm (0.006kip/in.) for consideration of the self-weights of the beam; 4 

4 5arctan
0.6875

M
L

D D    
 

 is based on chord rotation of the segment.  5 

Similarly, the bending moment ( M
RM ), axial force ( M

RN ), and shear force ( M
RV ) in the 6 

symmetric section of right beam is determined as: 7 

2
1 2 3

1
( 0.35) ( 0.35) 2.0625 1.375 0.6875  

2
M R R
R R R t bM V L H H G G G q L               (7) 8 

1 2 3[( ) tan ]cosM M M
R R R R RN V G G G H     

                                          
(8)

 
9 

1 2 3[( ) sin ] / cosM M M M
R R R R RV V G G G N      

                                        
(9)

 
10 

where RV is the vertical reaction force measured by load cell #4 in Fig. 3b; R
tH and R

bH11 

respectively are assumed equal to L
tH and L

bH , as no load cells are installed for measuring;
 

12 

4 3arctan
0.6875

M
R

D D    
 

 is based on chord rotation of the segment. 
 

13 

After that, based on the vertical force equilibrium at the middle joint, it is determined that: 14 

( sin cos ) ( sin cos )M M M M M M M M
L L L L R R R RP N V N V      

             

(10) 15 

 After re-arrangement, it becomes: 16 

, ,

( sin sin ) ( cos cos )

  sin cos
L R L R

M M
r r

r r

M M M M M M M M
L L R R L L R R

M M
r rN V

P N N V V   

 

   

 
             

(11) 17 

where 
,

sin
L R

M
r

r

M
rN   and 

,

cos
L R

M
r

r

M
rV  represent the resistance contribution from axial 18 

force and shear force, respectively. As the shear force could be determined by the bending 19 

moment acting on the beams, 
,

cos
L R

M
r

r

M
rV  can also be taken as the contribution from the 20 
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bending moment. For the process of applying extra axial force on the middle column, the sign 1 

of the applied load and shear force will reverse. However, the equations for determination of 2 

the internal force are identical. For the sake of brevity, RCSL, PCSL-0.6, and PCSH-0.6 are 3 

selected to show the decomposition of vertical resistance.  4 

      As shown in Fig. 19a, the contribution of shear force begins to decrease after crushing 5 

occurred in the beam sections. The re-ascending of the load resisting capacity in catenary 6 

action stage is mainly due to the contribution of axial force changing from compression to 7 

tension. However, as observed in the figure, before fracture of beam longitudinal 8 

reinforcements, shear force (or flexural bending moment) could also provide considerable 9 

contribution in the stage of catenary action. Therefore, it is unrealistic to assume the load 10 

resisting capacity of the substructures in catenary action stage purely attributed into the 11 

tension of beam longitudinal reinforcements, which is commonly accepted by previous 12 

studies20. 13 

     As shown in Fig. 19b, for PCSL-0.6, the varying of the contribution of shear force is 14 

similar to RCSL. However, the contribution of axial force is quite different as the strands 15 

could provide considerable tension at the beginning of the test. If we further de-composite the 16 

axial force contribution, it is found that compression actually is also observed at the axial 17 

force component from RC beam. Moreover, the maximum compression force of 7.5 kN (1.7 18 

kip) is measured in the axial force component from RC beam, which is similar to RCSL. As 19 

similar results are observed in PCSH-0.6, no further discussion is given for it.   20 

Effects of span/depth ratio  21 

As shown in Fig. 4 and Table 3, comparing with RCLL, RCSL achieved greater yielding, 22 

first peak, and ultimate load by 28%, 22%, and 51%, respectively. However, for PC 23 

specimens, the yielding and ultimate load capacity of PCSL-0.6 is about 114% and 122% of 24 

that of PCLL-0.6. Thus, the span/depth ratio has greater effects for RC specimens than PC 25 
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specimens, especially for ultimate load capacity in catenary action stage. As shown in Figs. 7, 1 

8, and 9, for both RC and PC specimens, the span/depth ratio has little effects on their failure 2 

modes (widest flexural cracks are occurred at the beam end nearby the columns) as the 3 

span/depth ratio is 12 and 14 for specimens with short and long design span, respectively. 4 

Both span/depth ratios are large enough for flexural dominated failure in beams. Another 5 

reason is the prototype frames are seismic designed and detailed, which have high transverse 6 

reinforcement ratio in the beam ends nearby the columns and prevented the possible shear 7 

failure at the beam end due to smaller span/depth ratio.   8 

 Effects of the amount of non-prestressed reinforcements 9 

Comparison of the behavior of PCSL-0.6 and PCSH-0.6, it is found that higher non-prestress 10 

reinforcement ratio (1.0%) could increase the yielding load and ultimate load capacity by 11 

31% and 14%, respectively. As listed in Table 3, the initial stiffness of PCSL-0.6 and PCSH-12 

0.6 are 0.93 kN/mm (5.3 kip/in.) and 1.23 kN/mm (7.0 kip/in.), respectively. Thus, PCSH-0.6 13 

increased the initial stiffness by 32%. As shown in Figs. 8 and 10, the amount of non-14 

prestressed reinforcement ratio has little effects on the failure mode and load resisting 15 

mechanism of PC frames to resist progressive collapse. This could be explained as the non-16 

prestressed reinforcement ratio is 0.7% or 1.0% for PC specimens with light or heavy non-17 

prestressed reinforcement, respectively. Similar as above explanation, the relatively heavy 18 

transverse reinforcement ratio installed in the beam end nearby the column prevents the 19 

possible shear failure even relatively heavy non-prestressed reinforcement ratio is designed.  20 

Effects of the initial effective prestress 21 

Comparing to PCSL-0.6, PCSL-0.75 achieved 10% increase of yielding load. However, 22 

PCSL-0.75 exhibited lower ultimate load capacity. This is due to anchor slip occurred in the 23 

jacking end at the displacement of 575 mm (22.6 in.), which prevent the tendon to further 24 

develop catenary action. As shown in Figs. 8 and 11, initial effective prestress has little 25 
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effects on the failure mode of the specimen.  1 

Effects of the bonded post-tensioning tendons 2 

By comparing the behavior of PCSL-0.6 with RCSL, it is found that BPT could increase the 3 

yielding and ultimate load capacity by 31% and 87%, respectively. For PCLL-0.6, the BPT 4 

increased the yielding and ultimate load capacity of RCLL by 48% and 131%, respectively. 5 

Thus, BPT has greater impacts on behavior of specimens with larger span/depth ratio. As 6 

shown in Fig. 13, considerable compressive reaction force is developed in RC beams in the 7 

compressive arch action stage, but not PC specimens. This is because little compressive arch 8 

action can be developed in PC beams to resist progressive collapse. Comparing the failure 9 

mode of PC specimens with corresponding RC specimens, it is found that the BPT will 10 

aggravate the damage in the BEVM and relief the damage in the BENS. In PC specimens, 11 

rebar fracture is first observed in the BEVM while no rebar fracture is observed in RC 12 

specimens, as shown in Figs. 7, 8, and 9. As shown in Fig. 6, straight catenary action and 13 

curved catenary action are developed in PC and RC specimens, respectively. Fig. 20 14 

illustrates the comparison of the load-displacement curves from PC specimens with bonded 15 

strands and counterparts with unbonded strands (PCUSL-0.6 and PCUSH-0.6). The results of 16 

PCUSL-0.6 and PCUSH-0.6 had been discussed in authors’ previous paper12. As shown in 17 

Fig. 20, PCUSL-0.6 and PCUSH-0.6 achieve relatively less initial stiffness and yield load 18 

comparing to PCSL-0.6 and PCSH-0.6, respectively. However, in catenary actions stage, the 19 

ultimate load capacity of PCUSL-0.6 and PCUSH-0.6 are 140 kN (31.5 kip) and 170 kN 20 

(38.2 kip), respectively. Thus, PC specimens with unbonded strands are able to mobilize 21 

larger catenary action as the stress in unbonded strands are more uniform, which prevents 22 

premature fracture of the strands in catenary action stage. Due to spacing limiting, the effects 23 

on bonding of strands on horizontal reaction force and failure modes are not discussed herein.  24 
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CONCLUSIONS 1 

Based on the results of this experimental investigation, the following conclusions are drawn: 2 

1. Different to conventional RC frames, post-tensioning concrete (PC) frames has little 3 

benefits from compressive arch action to prevent progressive collapse. However, the 4 

stretching of bonded post-tensioning tendons (BPT) could provide additional vertical 5 

load resistance from the beginning of the test. However, the BPT will not detriment 6 

the deformation capacity of the frames and thus, the catenary action attributed to both 7 

non-prestressed reinforcements and BPT, which could provide reliable second defense 8 

line for progressive collapse prevention.  BPT could increase the yield load and 9 

ultimate capacity of corresponding RC counterpart up by 48% and 131%, 10 

respectively.  11 

2. Test results indicated that higher initial effective prestress in the BPT will increase the 12 

yield load capacity of the PC frame slightly, but not the ultimate load capacity. 13 

Analytical analysis and test results revealed that the ultimate load capacity of the PC 14 

frame is dependent on the amount of BPT and non-prestressed reinforcement ratio, 15 

rather than the initial effective prestress in the BPT. Inversely, the potential of earlier 16 

fracture of BPT raised by high initial effective prestress in the tendon should be taken 17 

enough attentions.   18 

3. Based on the test results, it is found that the RCLL with larger span/depth ratio of 14 19 

will reduce the yield load and ultimate load capacity by 22% and 34%, respectively. 20 

However, PCLL-0.6 with larger span/depth ratio 14 only decreases the yield load and 21 

ultimate load capacity of PC frames only by 12% and 18%, respectively. Thus, the 22 

span/depth ratio has less effect on PC frames than RC frames. 23 

4. The amount of non-prestressed reinforcement could improve the capacity of PC 24 

frames to resist progressive collapse, including yielding and ultimate load capacities. 25 
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Further studies should be conducted to capture the optimal ratio of prestressed 1 

reinforcement to non-prestressed reinforcements for optimal resilience performance.  2 

FUTURE RESEARCH  3 

As the loss of column is instantaneous due to blast or vehicular impact, further research 4 

studies are needed on dynamic performance of prestressed concrete frames subjected to 5 

sudden column removal scenario. Moreover, more studies should be carried out by including 6 

the impact effects of disaster such as fire and blast impact or pressure.  7 
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 9 
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 11 

 12 

 13 

 14 

Table 1-Specimen properties 15 

Test ID 
Beam 
Clear Span 
mm (in.) 

Diameter of 
Post-
tensioning 
Strands mm 
(in.) 

Effective 
Prestress 

Effective 
Prestress 
after Loss 

Top 
(Bottom) 
Beam 
Long. 
Rebar Ratio 
ρ 

Axial 
Force in 
the Center 
Column 
kN (kip) 

RCSL 2750 
(108.3) 

N/A N/A N/A 0.7% 
(0.7%) 

-25 (-5.6) 

RCLL 3300 
(129.9) 

N/A N/A N/A 0.7% 
(0.7%) 

-30 (-6.7) 

PCSL-0.6 2750 
(108.3) 

12.7 (0.5) 0.6 fpu 0.53 fpu 0.7% 
(0.7%)  

-25 (-5.6) 

PCSL-0.75 2750 
(108.3) 

12.7 (0.5)  0.75 fpu 0.71 fpu 0.7% 
(0.7%) 

-25 (-5.6) 

PCSH-0.6 2750 
(108.3) 

12.7 (0.5) 0.6 fpu 0.54 fpu 1.0% 
(1.0%) 

-25 (-5.6) 

PCLL-0.6 3300 
(129.9) 

12.7 (0.5) 0.6 fpu 0.55 fpu 0.7% 
(0.7%) 

-30 (-6.7) 

Note: reinforcement ratio were determined using equation ρ = As/bd0, in which b and d0 represent the width and 16 
the effective depth of beam cross sections; fpu is the ultimate strength of the strands. 17 

 18 

 19 

 20 

 21 
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 1 

Table 2-Material properties of reinforcement and unbonded post-tensioning strands 2 

Items 
Nominal 
Diameter 
mm (in.) 

Yield 
Strength 
MPa (ksi) 

Ultimate 
Strength 
MPa (ksi) 

Elongation 
(%) 

Transverse 
Reinforcement 

R6 
6 (0.24) 372 (54) 510 (74) 19.5 

Longitudinal 
Reinforcements 

T10 10 (0.39) 455 (66) 635 (92) 22.8 

Post-tensioning Strands 
12.7 (0.5) 1650 (239) 1860 

(270) 
6.1 

Notes: R6 represents plain bar of with diameter of 6 mm (0.24 in.); T10 represents deformed rebar with 3 
diameter of 10 mm (0.39 in.), respectively. 4 

 5 

 6 

 7 

 8 

Table 3-Test results 9 

Specimen 
ID 

Critical Displacements, mm (in.) Critical Loads, kN 
(kip) 

MHTF 
kN (kip) 

MPF 
kN 
(kip) RAF YL FPL UL YL FPL UL 

RCSL 34 (1.3) 40 
(1.6) 

67 
(2.6)

598 
(23.5) 

32 
(7.2) 

44 
(9.9)

68 
(15.3) 

153 
(34.3) 

N/A 

RCLL 59 (2.3) 46 
(1.8) 

80 
(3.1)

413 
(16.3) 

25 
(5.6) 

36 
(8.1)

45 
(10.1) 

135 
(30.3) 

N/A 

PCSL-0.6 20 (0.8) 41 
(1.6) 

N/A 621 
(24.4) 

42 
(9.4) 

N/A 127 
(28.5) 

291 
(65.4) 

192 
(43.1) 

PCSH-0.6 14 (0.6) 43 
(1.7) 

N/A 613 
(24.1) 

55 
(12.3)

N/A 145 
(32.6) 

321 
(72.1) 

186 
(41.8) 

PCSL-0.75 19 (0.7) 40 
(1.6) 

N/A 575 
(22.6) 

46 
(10.3)

N/A 117 
(26.3) 

265 
(59.6) 

187 
(42.0) 

PCLL-0.6 33 (1.3) 45 
(1.9) 

N/A 625 
(24.6) 

37 
(8.5) 

N/A 104 
(23.4) 

280 
(62.9) 

182 
(40.9) 

Note: RAF represents releasing axial force completely; YL means yielding load capacity; FPL represents first 10 
peak load; UL represents ultimate load capacity; MHTF means maximum horizontal tensile force; and MPF 11 
represents maximum prestressing force. 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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 1 

(a) 2 

 3 

(b) 4 

Fig. 1–Bending moment of the PC sub-frame: (a) before removal of the middle column; and 5 

(b) after removal of the middle column 6 
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 1 

(c) 2 

Fig. 2–Dimensions and reinforcement details: (a) Specimen PCSL-06; (b) cross sections; and 3 

(c) Specimen PCLL-0.6 4 

 5 

(a) 6 

 7 

(b) 8 

Fig. 3– Test setup and instrumentation layout of the tests: (a) Setup; (b) Instrumentation 9 
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 1 

 2 

 3 

(a) 4 

 5 

(b) 6 

Fig. 4– Load-displacement history: (a) RC specimens; (b) PC specimens 7 
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1 

2 

(a) 3 

4 

(b) 5 

Fig. 5– Schematic of the compressive arch action: (a) RC specimen; (b) PC specimen 6 

7 

8 

9 

(a) 10 

11 

(b) 12 

Fig. 6– Schematic of the catenary action: (a) RC specimen; (b) PC specimen 13 
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 1 

 2 

(a) 3 

 4 

(b) 5 

Fig. 7– Failure mode of controlled RC specimens: (a) RCSL; (b) RCLL 6 

 7 

 8 

Fig. 8– Failure mode of PC specimen PCSL-0.6 9 
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 1 

Fig. 9– Failure mode of PC specimen PCLL-0.6 2 

 3 

Fig. 10– Failure mode of PC specimen PCSH-0.6 4 

 5 

Fig. 11– Failure mode of PC specimen PCSL-0.75 6 
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 1 

 2 

Fig. 12–Horizontal reaction force of lower and upper roller 3 

 4 

Fig. 13– Comparison of the horizontal reaction force-displacement history 5 
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1 

Fig. 14– Prestressed force in the tendon of all specimens 2 

3 

(a) 4 

5 

(b) 6 

Fig. 15– Deformation shape of test specimens: (a) RCSL; (b) PCSL-0.6 7 
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 1 

(a)                                                                            (b) 2 

 3 

(c) 4 

Fig. 16– Strain gauge results of PCSL-0.6: (a) top non-prestressed rebar; (b) bottom non-5 

prestressed rebar; (c) prestressed tendon 6 

 7 

 8 
Fig. 17– Dynamic performance of the specimens 9 
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Fig. 18– The relationship of internal forces and the load resistance 12 
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Fig. 19– Resistance contributions from axial and shear force (a) RCSL, (b) PCSL-0.6, (c) 5 

PCSH-0.6 6 

7 
Fig. 20– Bonding effects on load-displacement curves 8 
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