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Tilemaps for Summarising Multivariate Geographical Variation
Aidan Slingsby∗

City, University of London

ABSTRACT

We discuss the ‘tilemap’ design space which encompasses ap-
proaches that use regular arrays of glyphs to depict geographical
variation in multivariate data. We particularly focus on the poten-
tial for tilemaps to depict geographical variation in rich summary
statistics of distributions, separating data out by category, showing
associations between variables and studying multivariate outputs
of geographically-weighted statistics. We consider the parameters
of the design space, some design considerations, examples of its
use and how it compares to other approaches. The tilemap design
space is intended to help and encourage the use of rich geographical
summaries of data where there are multiple variables, particularly
for their comparison by location.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

There are various approaches to depicting geographical variation
in multivariate data. Our contribution is to conceptualise a design
space – ‘tilemaps’ – which encompasses approaches that use regular
arrays of glyphs to depict geographical variation in multivariate data,
such as the examples in Fig. 1. We consider the parameters of this
design space, some design considerations, examples of its use, and
how it compared to other approaches.

Although we consider multivariate data in general, we are partic-
ularly interested in their use where the multivariate data summarise
distributions of data within geographical aggregations. A univariate
choropleth map indicating the percentage of people in employment
may have regions coloured by the weighed average of the employ-
ment average for each region. In a tilemap, instead of a simple
mean, a rich graphical set of local summary graphics (e.g. box plots
or violin plots) is arranged geographically to show how the distri-
butions of data vary geographically. We are also interested in the
potential of tilemaps to depict fuzzy membership (e.g. for population
categories [18]; Fig. 3) and outputs of multivariate geographically-
weighted statistics [2] .

The tilemap design space is intended to make it easier to design
richer summaries of geographically-varying data and to illustrate
and encourage its use.

2 RELATED WORK

There are many approaches to depicting geographical variation in
multivariate data.

2.1 Multivariate maps
Choropleth maps and heatmaps are usually univariate. In choropleth
maps, existing geographical regions are coloured according to rep-
resentative single variable values, whereas heatmaps use fine grid
cells. It is quite common to adapt both to make them more multi-
variate, by using combinations of visual variables including colour
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Figure 1: Tilemaps Top left: Small multiple maps (non-contiguous
tilemap) of migration destination maps, geographically ordered by
origin. Source: [14] Top right: Contiguous tilemap of traffic in Lon-
don by vehicle type, day of week and hour of day, in 1km2 grid
squares. Source: [20] (excerpt). Bottom: Small multiple barcharts
(non-contiguous tilemap) of voting results, geographically ordered by
London borough. Source: [26]

lightness, hue, bivariate colour schemes, saturation, transparency
and texture. However interference between these visual variables
limits the number that can be used simultaneously.

Maps can also have multivariate symbols including charts and
glyphs (section 2.5) at particular locations. These encode data relat-
ing to that location using various visual variables to depict multiple
data variables. A limitation of these is that where multiple locations
are too close, they may overlap, and this may limit legibility [4].
Distortion can by used, either by distorting the coordinate systems
(density-normalising cartogram algorithms can spread points more
evenly, distorting angles and distances whilst facilitating broad spa-
tial comparisons [8]; Fig. 6) or locations can be moved (e.g. by
spring-embedded layout algorithms [11]) to reduce overlap.

The most common way to depict multiple geographical variables
is to juxtapose multiple maps as small-multiple [22] maps. This is
very effective at showing geographical variation for each variable,
but it is more difficult to relate all the variables to one location. This
is something that tilemaps can facilitate.

2.2 Embedded and hierarchical approaches

Embedding smaller graphics within part of a graphical display to
provide further information about that part, is common in non-



cartography layouts. Small multiples can be considered as tables
with embedded graphics, each depicting a different variable. Pixel
barcharts encode details of the aggregated elements that make up the
bars using colour [13]. Treemaps [12] and mosiac plots [6] are hier-
archical approaches that can be effective for exploring multivariate
data when used with “false hierarchies” [17].

Geographically-arranged small multiples ordered in two-
dimensions are a good basis for geographical comparisons – e.g.
“matrix-map2” [10]. Similar geographical ordering has been used in
treemaps [27] and is the basis for grid maps (section 2.3).

In addition, graphics can be embedded in more conventional
geographical representations; for example, timeseries data can be
embedded into roads on maps to give temporal information about
vehicles that move along that stretch of road (e.g. [21]).

2.3 Gridmaps
Gridmaps (also called ‘tilemaps’ in [9]) owe much to spatially-
ordered small multiples. They are two-dimensional arrays of grid
cells laid out in partial geographical layout – where each tile rep-
resents a discrete geographical region. Each grid cell represents
a discrete geographical region and various characteristics of each
region can be visually encoded into each tile. There are many pa-
pers that focus on layout algorithms [5, 15] and the introduction
of gaps [15] can help make layouts closer to that of the original
geography.

OD maps [28] are examples of embedded grid maps (Fig. 1).

2.4 Distortion
Various types of distortions are used in cartograms to improve read-
ability and reduce clutter. In continuous distortion, coordinates are
continuously deformed away from the original geographical coordi-
nate system. This affine transformation produces an output where
adjacencies are preserved. This may be based on the data (e.g. area-
normalising cartograms that transform the size of geographic areas
according to some data value [8]) or through user-interaction such
as with a fish-eye lens [7]. Non-contiguous distortion is where the
positions of elements are independently adjusted to avoid or reduce
visual occlusion and the rectangular [23] and Dorling [3] cartograms
are examples of these, along with geographically-arranged small-
multiples and grid maps. The tilemap design space includes some
that use non-contiguous distortions of space.

2.5 Glyphs
Glyphs are complex visual encodings that use multiple marks and
visual variables to convey multivariate data [25]. Often, they refer
to specialist customised icons such as weather observation symbols,
but in fact, many statistical graphics such as box plots, sparklines
and barcharts can be considered as glyphs. One of the uses of
glyphs is to represent multivariate summaries of data. For example
a boxplot represents multiple summary statistics of a set of data and
a piechart can represent the relative proportions of categories that
exist in data. It is common to juxtapose them to compare summary
statistics, distributions and multivariate characteristics of multiple
samples of data.

3 ‘TILEMAP’ DESIGN SPACE

We describe a design space for ‘tilemaps’. This design space en-
compasses graphics where a set of tessellating ‘tiles’ represent a set
of geographical locations or regions, where each tile is of the same
shape and size (we use squares, but they could be other symmetrical
tessellating shapes). Each tile contains a glyph that represents data
relating to the geographical location or region that the tile represents.

Gridmaps and geographically-arranged small-multiples fit into
this design space. As well as these non-contiguous (partially-
geographical) layouts, the design space also includes those that
contiguously grid space where each tile represents the geographical

region indicated by the tile in the same geographical coordinate
system. Thus, the set of tiles can either be:

• Non-contiguous: The tiles represent already-defined regions
(e.g. countries) where each tile represents one region (e.g.
‘Germany’), in a partial geographical layout, which may con-
tain gaps to improve the layout [15]. Gridmaps and spatially-
ordered small-multiples, treemaps and some OD maps fall into
this category. Examples of non-contiguous tilemaps are in Fig.
1, (top left and bottom).

• Contiguous: The tiles represent a gridded set of locations that
result from the exhaustive gridding of a geographical space
based on the original map projection where each tile represents
an equally-sized and -shaped area, as indicated on the base map.
Raster maps produce the discretisation used by this category
of tilemap. Changing the size of the tiles would result in a new
gridding.

Both type of maps contain tiles that are aligned into rows and
columns. This ensures there is no occlusion between tiles and –
depending on the design of glyph (section 3.2) – this alignment will
facilitate comparison of neighbouring glyphs.

Fig. 1 (top left) is a non-contiguous tilemap based on an OD
map [28]. Each tile represents a (historical, pre-independent) Irish
county from which there is internal migration. A choropleth map
of destinations is the ‘glyph’ that shows the spatial distribution of
destinations from the original square. The darker colours around the
origin county in the glyph indicates that migration is mainly local.
The other non-contiguous is in Fig. 1 (bottom) where tiles represent
London boroughs and local election results are indicated for the
three candidates for each party in each borough. The ‘glyph’ is a
barchart which indicates the number of votes per candidate where
candidates within each party are ordered by the order they appear
on the ballot paper. There does not seem to be strong geographical
pattern here, but order on the ballot paper does seem to have an
effect on the number of votes.

Now, we consider contiguous tilemaps. Fig. 1 (top right) is
contiguous tilemap that is based on a 1km gridding of London.
The ‘glyph’ inside each tile indicates the temporal patterns of five
vehicles types in each tile. Unlike the maps above, tiles represented
equally-sized and adjacent grid squares of Central London. Fig.
2 is a contiguous tilemap which depicts variable values for the
demographic variables that relate to the population that lies within
the tiles. It shows how the mix of population demographics varies
over space. Fig. 4 shows bird occupancy as places, but does this on
a hourly and monthly basis.

Fig. 3 is another contiguous tilemap, but it shows rich statistical
summaries, not seen in the other examples. It shows the relative
(width) and absolute (height) fuzzy membership of the population
within the grid square to seven geodemographic categories (a clas-
sification of small geographical areas based on the characteristics
of the people that live there [24]) within these grid squares. The
standard way of characterising geodemographics is to use the most
likely membership, but this example shows how tilemaps can help
produce summaries that go beyond this.

We now identity and discuss the characteristics and issues that
need to be considered when working with tilemaps.

3.1 Layout
Tilemaps are designed for geographical comparison and so consider-
ation of the layout is important.

Screen size of tile. Gridmaps will only work with a finite number
of tiles, but this depends on the overall size of the graphic and the
complexity of the glyph. The tilemaps in Fig. 1 (top) have glyphs
that are really too small to be visually resolved. Possible solutions
are to increase the size of the graphics, decreasing the complexity



Figure 2: Contiguous tilemap of demographic data. Multivariate
glyphs that depict multiple demographic variables of different types
(hue) of the population that lies within the tile. Variables are shown as
deviation from the median, where a circular glyphs would indicate all
variables are their median values.

Figure 3: Contiguous tilemap of geodemographic data. Glyphs depict
the relative (width) and absolute (height) similarity of the population
contained within the tile to each of seven geodemographic categories
(Output Area Classification [24].

of the glyph and reducing the number of tiles. In the latter case for
contiguous tilemaps, this can be achieved easily and interactively. In
the non-continguous tilemap case where there are existing spatial
units to honour, this may not be possible. However, if there are
enough spatial units, it can very easily be converted to a contiguous
tilemap – this is the case for Figs. 2 and 3. This is the preferred
approach where there are hundreds or thousands of spatial units, as
is often the case for large-scale census geography.

MAUP. For contiguous tilemaps, the discretisation is usually
based on a fairly arbitrary imposition of a grid. This means that
tiles are subject to the Modifiable Areal Unit Problem (MAUP)
[16] in which tile-based summaries are dependent on the arbitrary
imposition of a grid, potentially introducing visual artifacts. One
way to explore the effects of this is to have an interactive environment
where the grid can be interactively panned and have its size changed.
Observed differences in the tile summaries as this happens will
indicate the sensitivity of the tilemap to the imposition of a grid. A
way to reduce the effect of MAUP would be to use a distance-decay
kernel that is larger than the tiles. The reducing smoothing may
reduce spatial precision, but it would likely make the tile summaries

night time in the last few 
month of the year

day time in the last few 
month of the year

flying on a winter's 
night (low occupany) 

night time in winter day time all year

night time in winter, all 
day in summer

day time with effect of increasing/decreasing 
length of day apparent

Figure 4: Contiguous tilemap where glyphs indicate the presence of
an animal by hour (x-axis) and by month (y-axis) Source: [19]

Figure 5: Interactive resizing of tiles in a contiguous tilemaps showing
the tradeoff between spatial precision and legibility of glyph.

more robust, reducing the effect of MAUP.

Scale. In addition to concerns about the impact of the size of
tile on glyph legibility, the scale at which data are discretised into
tiles has implications of the scale of variation in the data depicted.
For non-contiguous tilemaps, often the scale is fixed and there is
no desire to try re-aggregating the data at different scales. For
contiguous tilemaps, interactive techniques such as those mentioned
above help explore the geographical scale of data.

Partial geographical layout. For non-contiguous tilemaps the
difference between the original geographical layout and the tilemap
layout will affect the ease with which geographical inferences can
be made in a non-linear way. Meulemans et al. [15] have devel-
oped metrics to help quantify this and there are a variety of layout
algorithms. Although discrete regions already exist, there may be
reasons to combine and split regions to improve the layout.

Density of data variation. In many standard map projections,
much of the data variation occurs in a relatively small area. For
example, in urbanised countries, most of the population live in
densely populated cities, so much of the demographic data variation
occurs only in small parts of the map. The geographical units at
which these data are reported tend to be larger for rural area and
smaller for urban areas. In non-contiguous treemaps that use these,
there is (usually) one tile per discrete geographical unit, so each
spatial unit will have the same screen-space as each other. This often
removes the problem of much of the data variation occurring in a
small part of the map because the geographical units tend to have
similar amounts of population in them. This can be a problem for
contiguous gridmaps though. One intriguing possibility is to use a
density-normalising contiguous cartogram (e.g. Gastner cartogram)
to distort the maps [8] to normalise the density of locations (Fig. 6).



Figure 6: Left top: Geographical distribution of samples. Left bottom:
Density-normalised of above using a Gastner Cartogram algorithm.
Right: Contiguous tilemap of samples using the cartogram projection
with a distortion grid.

3.2 Glyph design
Shape and size of glyph. A wide range of glyph designs are pos-
sible. The most obvious physical design constraints are the shape
of the tiles and the size. Parallel coordinates tend to be much wider
than they are tall, so may not be appropriate for square tile. We used
a circular version in Fig. 2.

Number of variables. The number of variables that can be de-
picted depends on the glyph design and its screen size. In Fig. 3
there are 14 values for each tile. If there many more geodemographic
categories, one might consider making the tiles bigger or aggregat-
ing the geodemographic categories into a smaller set. Glyphs that
are too complex will be illegible if the screen-space of the tiles is
too small.

Easily comparable. Since glyphs can be small, it helps if they
have a consistent layout. In Fig. 1 (top right), the vehicles types
occupy the same corner of the cell in all cells. When glancing across
multiple tiles, positional memory as to which part of the glyph
corresponds to which variable will make reading the graphic easier.

Comparison in rows and columns. Tiles will usually be com-
pared across rows, columns and (perhaps even) diagonally, so it
might be worth designing symmetrical glyphs to that comparison in
all directions is effective.

3.3 Possibilities, advantages and disadvantages
As mentioned, tilemaps are suitable for depicting geographical vari-
ation on multivariate data, but we want focus on demonstrating
possibilities for the depiction of rich summaries of geographically-
varying data that might not otherwise be depicted.

Distributions. Each tile represents a summary of a geographical
region. Although set of univariate maps can depict multiple sum-
mary statistics in separate juxtaposed maps – e.g. 25th percentile,
median and 75th – box plots within tiles would allow the place the
information about the whole distribution at the same geographical
location rather than being spread across different maps. This is done
at the expense of geographical precision, because tiles need to be
large enough to accommodate the glyph.

Reporting by category. Tilemaps also open up the possibility to
separate data out by categorical variable. Using a representation such
– as that in Fig. 3 – enables geographical variations in both relative
(width) and absolute (heights) amounts of seven categories to be
shown. Again, there is a tradeoff between geographical precision and
the number of categories to be shown, where tiles can be enlarged
or categories aggregated into a small set, or even some categories
omitted altogether. The other way of achieving this is with small
multiple maps which is more appropriate in some case.

Associations between variables. Tiles can also accommodate
more complex glyphs such as scatterplots for depicting the asso-
ciation between a pair of variables and correlation matrices for
indicating the degree of pairwise correlations between a set of vari-
ables.

Geographically-weighted statistics. Geographically-weighted
versions of statistics [2] use a distance-weighted kernel to produce lo-
cal versions of statistics. Some of these statistics generate multivari-
ate data for which is helpful to compare by location. Tilemaps may
be a good means to do this. For example, in multiple geographically-
weighted regression, the coefficients of the independent variables
vary geographically. Beecham et al [1] tried to understand reasons
behind why people voted the way they did in the UK’s EU referen-
dum by considering how these coefficients varied with respect to
each other and geographically. There is potential for tilemaps to
assist with this.

Suitability. Tilemaps are not always appropriate. One of their
characteristics is that glyphs visually break up geographical conti-
nuity, so they are more suited where multivariate data need to be
gathered into one map location, such as with the summary statistics
above. This works well in Fig. 4, but in Fig. 1 (top right), the vehicle
types break up the temporal patterns. In this case, it might be more
effective to have a small multiple tilemap for each vehicle type [20].
For tasks that compare the geographical distribution of vehicles at
one time, a heatmap would be more effective than a tilemap.

4 CONCLUSION

Tilemaps can help depict how multivariate data vary geographically.
They do this by representing geographical space as a regular array
of tiles, each tile representing a geographical unit and each tiles
containing a multivariate glyph that summarises multivariate aspect
of the geographical units it represents. Tilemaps can use existing
geographical units of space in a partial geographical layout (non-
contiguous tilemaps) or they can exhaustively grid space (contiguous
tilemaps) to form the tiles. Adjusting the tile size of contiguous
tilemaps allows a tradeoff between spatial precision and tiles that
are large enough for glyphs to be legible. We particularly focus on
the potential for tilemaps for depicting geographical variation in rich
summary statistics of distributions, separating data out by category,
showing associations between variables and studying multivariate
outputs of geographically-weighted statistics. The tilemap design
space is intended to help and encourage the use of rich geographical
summaries of data where multiple variables need to be compared
with each other by location.

Tilemaps have some advantages, but are not suitable in all cases.
The main issue is that the glyphs break up the geographical conti-
nuity of variable values so if can be hard to perform tasks in which
understanding the geographical variation for one variable is im-
portant. In these cases, one would use a choropleth map or small
multiples of multiple maps or tilemaps. Depending on the glyph
design, they can also look unfamiliar or be unintuitive.

The tilemap design space is intended to help and encourage the
use of rich geographical summaries of data where multiple variables,
particularly for their comparison by location.
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