
              

City, University of London Institutional Repository

Citation: Daviaud, L., Reynier, P-A. & Talbot, J-M. (2016). A Generalised Twinning 

Property for Minimisation of Cost Register Automata. In: LICS '16 Proceedings of the 31st 
Annual ACM/IEEE Symposium on Logic in Computer Science. LICS, 2016. (pp. 857-866). 
New York, NY: ACM. ISBN 978-1-4503-4391-6 doi: 10.1145/2933575.2934549 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/21298/

Link to published version: https://doi.org/10.1145/2933575.2934549

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


A Generalised Twinning Property for
Minimisation of Cost Register Automata

Laure Daviaud
LIP, CNRS, École Normale Supérieure de Lyon, INRIA,

Université Claude-Bernard Lyon 1
laure.daviaud@ens-lyon.fr

Pierre-Alain Reynier Jean-Marc Talbot
Aix Marseille Université, CNRS, LIF UMR 7279

pierre-alain.reynier@lif.univ-mrs.fr
jean-marc.talbot@lif.univ-mrs.fr

Abstract
Weighted automata (WA) extend finite-state automata by associat-
ing with transitions weights from a semiring S, defining functions
from words to S. Recently, cost register automata (CRA) have been
introduced as an alternative model to describe any function realised
by a WA by means of a deterministic machine. Unambiguous WA
over a monoid (M,⊗) can equivalently be described by cost reg-
ister automata whose registers take their values in M , and are up-
dated by operations of the form x := y⊗c, with c ∈M . This class
is denoted by CRA⊗c(M).

We introduce a twinning property and a bounded variation prop-
erty parametrised by an integer k, such that the corresponding no-
tions introduced originally by Choffrut for finite-state transducers
are obtained for k = 1. Given an unambiguous weighted automa-
ton W over an infinitary group (G,⊗) realizing some function
f , we prove that the three following properties are equivalent: i)
W satisfies the twinning property of order k, ii) f satisfies the
k-bounded variation property, and iii) f can be described by a
CRA⊗c(G) with at most k registers.

In the spirit of tranducers, we actually prove this result in a
more general setting by considering machines over the semiring
of finite sets of elements from (G,⊗): the three properties are still
equivalent for such finite-valued weighted automata, that is the ones
associating with words subsets of G of cardinality at most `, for
some natural `. Moreover, we show that if the operation ⊗ of G
is commutative and computable, then one can decide whether a
WA satisfies the twinning property of order k. As a corollary, this
allows to decide the register minimisation problem for the class
CRA⊗c(G).

Last, we prove that a similar result holds for finite-valued finite-
state transducers, and that the register minimisation problem for the
class CRA·c(B∗) is PSPACE-complete.

Keywords weighted automata, cost register automata, minimisa-
tion, twinning property

1. Introduction
Weighted automata. Finite state automata can be viewed as func-
tions from words to Booleans and, thus, describe languages. Such

[Copyright notice will appear here once ’preprint’ option is removed.]

automata have been extended to define functions from words to var-
ious structures yielding a very rich literature, with recent applica-
tions in quantitative verification (Chatterjee et al. 2010). Weighted
automata (Schützenberger 1961) (WA) is the oldest of such for-
malisms. They are defined on semirings (S,⊕,⊗) by adding
weights from S on transitions; the weight of a run is the prod-
uct of the weights of the transitions, and the weight of a word w is
the sum of the weights of the accepting runs on w.

For automata based models, a very important problem is to sim-
plify the models. For instance, deterministic machines are essential
in order to derive efficient evaluation algorithms. Similarly, reduc-
ing the size of the models allows to reduce the computation time of
most algorithms, and thus minimisation has been extensively stud-
ied. In general, not every WA can be transformed into an equivalent
deterministic one. The determinisability problem then asks, given a
WA on some semiring (S,⊕,⊗), whether there exists an equivalent
deterministic WA over (S,⊕,⊗). This problem ranges from trivial
to undecidable, depending on the considered semiring, see (Lom-
bardy and Sakarovitch 2006) for a survey. Regarding size reduc-
tion, the problem is usually to minimize the number of states of
deterministic instances. Algorithms that, given a weighted automa-
ton, minimize the number of states of an equivalent deterministic
one are given in (Mohri 2000) and (Maletti 2008).

Cost register automata. Recently, a new model of machine,
named cost register automata (CRA), has been introduced in (Alur
et al. 2013). These automata are deterministic but use registers that
aim to store along the computation computed values from a given
set S. A final output function associates with each final state a reg-
ister. Hence, a step of computation boils down to register update:
for each register a new value is computed from the stored values
and a collection of operations defined on S. Considering a semiring
S = (S,⊕,⊗), Alur et al. showed that WA over S and CRA de-
fined over S with operations⊕ and⊗c (ie the functions x 7→ x⊗c
for all c in S) compute the same functions (Alur et al. 2013). More-
over, they showed that when unambiguous WA are considered (ie
automata having at most one successful computation per input, thus
making the additive law of the semiring useless), they turn out to be
equivalent to CRA over S with ⊗c as unique operations, denoted
by CRA⊗c(S). In the particular case S = (Z,+,×), we obtain the
model called ”additive cost register automata” (ACRA) in (Alur
and Raghothaman 2013).

CRA are deterministic by definition, and the main minimisation
problem is captured by the notion of register complexity. It is de-
fined for a function f as the minimal integer ` such that f can be
defined by a CRA with ` registers. Computing the register complex-
ity is a highly challenging problem that has been addressed in a re-
cent paper for the particular case of ACRA (Alur and Raghothaman
2013), using ad-hoc techniques.

1 2016/1/19



Transducers. Transducers define rational relations over words.
They can be viewed as weighted automata on the semiring of fi-
nite sets of words (thus, built over the free monoid); product is the
set union and sum is the concatenation extended to sets. A trans-
ducer is functional (resp. finite-valued) if it associates a singleton
with each input (resp. if, for some k ∈ N, it associates at most ` out-
put words with each input). Deterministic (or sequential) transduc-
ers are those such that the underlying automaton is deterministic;
they are thus functional. Determinisability is the decision problem
asking whether for some transducer, there exists an equivalent de-
terministic one. In (Choffrut 1977), Choffrut introduced two prop-
erties: first, a property of transducers named ”twinning property”
(TP) and second, a property of string functions named ”bounded
variation”. He showed that a transducer T is determinisable iff T
satisfies the twinning property iff the function f computed by T sat-
isfies the bounded variation property. It is important to notice that
the bounded variation property is a machine independent charac-
terisation. It has been first shown in (Weber and Klemm 1995) that
the twinning property is decidable in PTIME. Recently, a so-called
weak twinning property has been introduced in (Jecker and Filiot
2015). This property characterises finite state transducers recognis-
ing finite-valued relations that can be expressed as a finite union of
deterministic transducers.

Finite-valued weighted automata. As several problems are un-
decidable for general weighted automata, it is important to identify
large subclasses with decidability results. Finite-valued transducers
enjoy good properties, such as effective transformation into finitely
ambiguous transducers (see (Sakarovitch and de Souza 2010) for
an elegant proof), and as a consequence a decidable equivalence
problem. These positive results motivated the study of WA with a
”set” semantics in order to obtain decidability results for a large
and expressive subclass. Instead of aggregating the weights of the
different runs on the same input by using the first operation of the
semi-ring, the semantics is defined as the set of these weights. A
functional (resp. `-valued) WA is such that all accepting runs on
the same input word have same weight (resp. such that, for ev-
ery input word w, the set of values computed by all the accept-
ing runs on w has cardinality at most `). It is finite valued if it is
`-valued for some `. These definitions allow to transfer several pos-
itive results from transducers to weighted automata: unambiguous
and functional WA are equivalent and the determinisability prob-
lem is decidable for functional weighted automata over infinitary
groups (Filiot et al. 2015). These results rely on the twinning prop-
erty originally introduced by Choffrut for transducers. Similarly, it
has been proven in (Filiot et al. 2014) that finite-valued weighted
automata over infinitary groups can effectively be decomposed as
finite union of functional weighted automata, using a generalisation
of the construction presented in (Sakarovitch and de Souza 2010)
for transducers.

Contributions. Our objective is to identify the register complex-
ity for cost register automata in the class CRA⊗c(S). More pre-
cisely, we study the register minimisation problem that aims, given
a CRA and an integer k, at deciding whether there exists an equiv-
alent CRA with only k registers.

We start with the framework of functional weighted automata
and cost register automata with weights taken in some group G.
Given an natural number k, we introduce a twinning property of
order k and a k-bounded variation property, such that the original
notions of Choffrut are obtained for k = 1. We then prove the fol-
lowing: let W be a functional weighted automaton on an infinitary
group realizing some partial function f from words to elements of
G, then the three following properties are equivalent: i)W satisfies
the twinning property of order k, ii) f satisfies the k-bounded vari-
ation property, and iii) f can be defined by a CRA⊗c(G) with k

registers. This constitutes a strong equivalence between three prop-
erties with different roles: i) is a property expressed by means of
a pattern on a weighted automaton, that can be used to derive effi-
cient decision procedures; ii) is a machine independent character-
isation; iii) corresponds to the class that we want to characterize,
and thus allows us to minimise the number of registers. We actually
first prove the equivalence between i) and ii), thus showing that the
twinning property is machine independent, and then use this result
together with automata constructions to prove the equivalence be-
tween i) and iii). Note also that our constructions are effective:
given a weighted automaton satisfying the twinning property of or-
der k, we effectively build an equivalent cost register automaton
with k registers, and conversely.

Our result holds actually in a more general setting, that of finite-
valued weighted automata. To prove this, we consider a general-
isation of cost register automata in which the final output func-
tion may produce a subset of the register’s values, and denote by
CRA+

⊗c(G) the resulting class. Using an adequate generalisation of
the k-bounded variation to relations instead of functions, we prove
that our equivalence still holds.

Beyond weighted automata over infinitary groups, we also
prove that our results apply also to transducers from A∗ to B∗.
It is known that streaming string transducers (i.e. CRA with a spe-
cial set of updates) are expressively equivalent to regular string
functions (Alur and Cerný 2010), and that the class CRA·c(B

∗)
coincides with the class of rational functions. In order to apply the
above results, and as the set of words equipped with concatenation
is not a group, we consider the free group over B. We prove that if
a CRA over the free group only produces as output words in B∗,
then there exists an equivalent CRA over B∗. The above results
yield: a finite-valued transducer T realizing a relation R satisfies
the twinning property of order k iff R satisfies the k-bounded vari-
ation property iffR can be expressed by a CRA+

·c(B
∗) with at most

k registers.
Regarding decidability, we show that if the group G is commu-

tative and has a computable internal operation, then the twinning
property of order k is decidable. As a particular instance of our
decision procedure, we obtain that this property can be decided in
PSPACE for G = (Z,+, 0). As a corollary, we obtain that the prob-
lem of register minimisation is PSPACE-complete for CRA+

+c(Z)
hence generalising the result of (Alur and Raghothaman 2013) for
ACRA. We also prove that the twinning property of order k is
decidable in PSPACE for finite-state transducers, and as a corol-
lary the problem of register minimisation is PSPACE-complete for
CRA+

·c(B
∗). This result entails that the register complexity of any

finite-valued rational relations, given as a cost register automata
with updates of the form x := yu with x, y some registers and u a
finite word on B, can be computed.

Organisation of the paper. We start with definitions in Section 2.
In Section 3, we introduce the generalised twinning and bounded
variation properties.We state our main result in Section 4 and
present its proof. In order to simplify the presentation, Sections 3
and 4 are presented in the setting of finitely generated groups, and
we discuss in Section 5 how to lift our results to arbitrary groups.
We turn to transducers in Section 6. Last we present our decidabil-
ity results and their application to the register minimisation prob-
lem in Section 7. Omitted proofs can be found in the Appendix.

2. Preliminaries
Prerequisites and notations. We denote byA a finite alphabet, by
A∗ the set of finite words on A, by ε the empty word and by |w|
the length of a word w.

For a set S, we denote by |S| the cardinality of S.

2 2016/1/19



A monoid M = (M,⊗,1) is a setM equipped with an associa-
tive binary operation⊗with 1 as neutral element; the product α⊗β
in M may be simply denoted by αβ. Given O,O′ ⊆ M , O ⊗ O′
(or simply OO′) is the set {αβ | α ∈ O, β ∈ O′}, Ok denotes the
set OO · · ·O︸ ︷︷ ︸

k times

, O<k = ∪06i<kO
i and O6k = O<k ∪Ok. If every

element of a monoid possesses an inverse - for all α ∈ M , there
exists β such that αβ = βα = 1 (such a β is unique and is denoted
by α−1) - then M is called a group. In this case, given O ⊆ M ,
O−1 denotes the set {α−1 | α ∈ O}. The monoid (resp. group) is
said to be commutative when · is commutative.

A semiring S is a set S equipped with two binary operations
⊕ (sum) and ⊗ (product) such that (S,⊕,0) is a commutative
monoid of neutral element 0, (S,⊗,1) is a monoid of neutral
element 1, 0 is absorbing for ⊗ (i.e. α ⊗ 0 = 0 ⊗ α = 0) and
⊗ distributes over ⊕ (i.e. α⊗ (β ⊕ γ) = (α⊗ β)⊕ (α⊗ γ) and
(α⊕ β)⊗ γ = (α⊗ γ)⊕ (β ⊗ γ)).

Given a set S, the set of the finite subsets of S is denoted by
Pfin(S). For a monoid M, the set Pfin(M) equipped with the two
operations ∪ (union of two sets) and the set extension of ⊗ is a
semiring denoted Pfin(M).

From now on, we may identify algebraic structures (monoid,
group, semiring) with the set they are defined on when the opera-
tions are clear from the context.

Delay and infinitary group. There exists a classical notion of
distance on words (i.e. on the free monoid) measuring their dif-
ference: dist is defined for any two words u, v as dist(u, v) =
|u| + |v| − 2 ∗ |lcp(u, v)| where lcp(u, v) is the longest common
prefix of u and v.

When considering groups, we use the following notion of delay:

Definition 1 (delay). Let G be a group. Given α, β ∈ G, the delay
between α and β is α−1β. It is denoted by delay(α, β).

For a finitely generated group G, with a fixed finite set of
generators Γ, one can define a distance between two elements
derived from the Cayley graph of (G,Γ). We consider here an
undirected right Cayley graph : given α ∈ G, β ∈ Γ, there is a
(non-oriented) edge between α and αβ.

Definition 2. Let G be a finitely generated group and Γ be a finite
set of generators. Given α, β ∈ G, the Cayley distance between
α and β is the length of the shortest path linking α and β in the
undirected right Cayley graph of (G,Γ). It is denoted by d(α, β).

Lemma 1. Given a group G, for all α, α′, β, β′, γ, γ′ ∈ G,

1. delay(α, β) = 1 if and only if α = β,
2. if delay(α, α′) = delay(β, β′) then delay(αγ, α′γ′) =
delay(βγ, β′γ′).

Given a finitely generated group G and a finite set of generators
Γ, for all α, β ∈ G, d(α, β) = d(1, delay(α, β)).

Definition 3. A group G is said to be infinitary if for all α, β, γ ∈
G such that αβγ 6= β, the set {αnβγn | n ∈ N} is infinite.

Classical examples of infinite groups such as (Z,+, 0), (Q,×, 1)
and the free group generated by a finite alphabet are all infinitary.
Other examples are given in (Filiot et al. 2015).

Given a finite alphabet B, we denote by F(B) the free group
overB. It is well known that it is finitely generated (withB as finite
set of generators) and that it is infinitary.

Weighted automata. Given a semiring S, weighted automata
(WA) are non-deterministic finite automata in which transitions
have for weights elements of S. WA compute functions from the
set of words to S: the weight of a run is the product of the weights

of the transitions along the run and the weight of a word w is the
sum of the weights of the accepting runs labelled by w.

We will consider, for some monoid M, weighted automata over
the semiring Pfin(M), formally defined as follows:

Definition 4. Let A be a finite alphabet, a weighted automaton W
over some monoid M is a tuple (Q,Qinit, Qfinal, t, T ) where Q is a
finite set of states, Qinit ⊆ Q is the set of initial states, Qfinal ⊆ Q
is the set of final states, t : Qfinal → M is the output function and
T ⊆ Q×A×M×Q is the finite set of transitions.

A run ρ on a word w = w1 · · ·wk ∈ A∗ where for all i,
wi ∈ A, is a sequence of transitions:

(q1, w1, α1, q2), (q2, w2, α2, q3), . . . , (qk, wk, αk, qk+1).

The output (or value) of such a run is the element of M, α =

α1α2 · · ·αk. We depict this situation as q1
w|α−−→ qk+1. A state q is

accessible (resp. co-accessible) if there exists such a run with q1 ∈
Qinit and q = qk+1 (resp. qk+1 ∈ Qfinal and q = q1). The run ρ is
said to be accepting if q1 ∈ Qinit and qk+1 ∈ Qfinal. Moreover we
say that the value of such an accepting run is αt(qk+1). W.l.o.g.,
we assume that every state of W is accessible and co-accessible.

This automaton W computes the (total) function [[W ]] : A∗ →
Pfin(M) which associates with any word w the set of the values of
the accepting runs on w (and so, ∅ if there is no such run).

Given a weighted automaton W = (Q,Qinit, Qfinal, t, T ) over
some finitely generated group G with finite set of generators Γ, we
define the constant MW as follows:

MW = max{d(1, α) | ∃(p, a, α, q) ∈ T}

Definition 5 (Valuedness / Ambiguity). For any positive integer `,
a weighted automaton W is said to be:

• `-valued if for all words w, the set [[W ]](w) contains at most `
elements,

• `-ambiguous if for all words w, there are at most ` accepting
runs labelled by w.

A weighed automaton is unambiguous if it is 1-ambiguous.

Obviously, an `-ambiguous WA is an `-valued automaton.WA`
(resp. WA`-amb) denotes the set of functions A∗ → Pfin(M)
computed by `-valued (resp. `-ambiguous) weighted automata.
A weighted automaton is said to be finitely valued (resp. finitely
ambiguous ) if it is `-valued (resp. `-ambiguous) for some natural
`.

Theorem 1 ((Filiot et al. 2014)). Let W be an `-valued weighted
automaton over some infinitary group G, then one can effectively
build an equivalent `-ambiguous weighted automaton over G.

Example 1. Let us consider A = {a, b} and (M,⊗,1) =
(Z,+, 0). The weighted automaton given in Figure 1 (above) asso-
ciates with a word wa (resp. wb) its number of occurrences of the
letter a (resp. b). It is 1-valued and 1-ambiguous.

Cost register automata. A cost register automaton (CRA) (Alur
et al. 2013) is a deterministic automaton with registers containing
values from a set S and that are updated through the transitions: for
each register, its new value is computed from the old ones and from
elements of S combined using some operations over S. The output
value is computed from the values taken by the registers at the end
of the processing of the input. Hence, a CRA defines a function
from words in A∗ to elements of S.

In this paper, we focus on a particular structure (M,⊗c) defined
over a monoid (M,⊗,1) that we denote CRA⊗c(M). In such a
structure, the only updates are unary and are of the form x := y⊗c,
where c ∈ M and x, y are registers. When M is (Z,+, 0), this

3 2016/1/19



q

p

s
0

a : 1

b : 0

a : 0

b : 1

a : 1

b :
1

q

p

s

Xa

Xb

a :

{
Xa := Xa + 1

Xb := Xb

b :

{
Xa := Xa
Xb := Xb + 1

a :

{
Xa

:=
Xa

+ 1

Xb
:=

Xb

b :

{
X
a := X

aX
b := X

b + 1

a :

{
Xa := Xa + 1

Xb := Xb
b :

{
Xa := Xa
Xb := Xb + 1

Figure 1. Examples of a weighted automaton (above) and of a cost
register automaton (below).

class of automata is called additive cost register automata (Alur
and Raghothaman 2013). When M is the free monoid (A∗, ., ε),
this class is a subclass of streaming string transducers (Alur and
Cerný 2010) and turns out to be equivalent to the class of rational
functions on words, i.e. those realized by finite-state transducers.

While cost register automata introduced in (Alur et al. 2013)
define functions from A∗ to M, we are interested in defining finite-
valued relations. To this aim, we slightly modify the definition of
CRA, allowing to produce a set of values computed from register
contents. The new class of machines denoted CRA+

⊗c(M) is defined
formally as follows:

Definition 6. A cost register automaton on the alphabetA over the
monoid (M,⊗,1) is a tuple (Q, qinit,X , δ, µ) where Q is a finite
set of states, qinit ∈ Q is the initial state and X is a finite set of
registers. The transitions are given by the function δ : Q × A →
(Q× UP(X )) where UP(X ) is the set of functions X → X ×M
that represents the updates on the registers. Finally, µ : Q →
Pfin(X ×M) is the output function.

The semantics of such an automaton is as follows: if an update
function f labels a transition and f(Y ) = (X,α), then the register
Y after the transition will take the value βα where β is the value
contained in the register X before the transition. More precisely,
a valuation ν is a mapping from X to M and let V be the set of
such valuations. The initial valuation νinit is the function associating
with each register the value 1. A configuration is an element of
Q × V . The initial configuration is (qinit, νinit). A run on a word
w = w1 · · ·wk ∈ A∗ where for all i, wi ∈ A, is a sequence of
configurations (q1, ν1)(q2, ν2) . . . (qk+1, νk+1) satisfying that for

all 1 6 i 6 k, and all registers Y , if δ(qi, wi) = (qi+1, gi) with
gi(Y ) = (X,α), then νi+1(Y ) = νi(X)α. Moreover, the run is
said to be accepting if (q1, ν1) is the initial configuration.

A cost register automaton R defines a (total) function [[R]] from
words to finite subsets of M such as for all w, [[R]](w) is equal to
the set of νk+1(X)α such that (q1, ν1)(q2, ν2) . . . (qk+1, νk+1) is
an accepting run of R on w and (X,α) ∈ µ(qk+1).

Definition 7 (Output size). The output size of a cost register au-
tomaton with output function µ is the integer:

max{|µ(q)| | q ∈ Q}.
The class of such cost register automata whose output size is at

most ` is denoted CRA`⊗c(M). Remark that CRA+
⊗c(M) is defined

as the union of CRA`⊗c(M) over ` > 1.
Let CRA`(k) (resp. CRA(k), CRA`) denote the set of func-

tions A∗ → Pfin(M) computed by cost register automata with at
most k registers and output size at most ` (resp. at most k registers,
of output size at most `).

Example 2. Consider A = {a, b} and (M,⊗,1) = (Z,+, 0).
The cost register automaton given in Figure 1 (below) computes
the same function as the one computed by the weighted automaton
from Example 1. The register Xa (resp. Xb) stores the number of
occurrences of the letter a (resp. b). It uses two registers and is of
output size 1.

3. Generalised twinning and bounded variation
properties

In this section, we present a twinning property and a bounded
variation property parameterised by an integer k, such that the
corresponding notions introduced by Choffrut in (Choffrut 1977)
are obtained for k = 1.

From now on, we consider a finitely generated infinitary group
G and we fix a finite set of generators Γ.

3.1 Generalised twinning property (TPk)
The idea behind the twinning property of order k is to consider k+1
runs labelled by the same word with k synchronized cycles. If the
twinning property of order k is satisfied then there are two runs
among these k+1 such that the values along these two runs remain
close (i.e. the Cayley distance between these values is bounded).

Definition 8. A weighted automaton on a group G satisfies the
twinning property of order k (denoted by TPk) if:

• for all states {qi,j | i, j ∈ {0, . . . , k}} with q0,j initial and qk,j
co-accessible for all j,

• for all words u1, . . . , uk, v1, . . . , vk such that there are k + 1
runs satisfying for all 0 6 j 6 k, for all 1 6 i 6 k,

qi−1,j

ui|αi,j−−−−→ qi,j and qi,j
vi|βi,j−−−−→ qi,j (see Figure 2),

there are j 6= j′ such that for all i ∈ {1, . . . , k},
delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′)

= delay(α1,j · · ·αi,jβi,j , α1,j′ · · ·αi,j′βi,j′).

Example 3. The weighted automaton given in Figure 1 does not
satisfy TP1. Indeed, consider q0,0 = q1,0 = q, q0,1 = q1,1 = p,
u1 = ε and v1 = a. Then, delay(0, 0) = 0 6= delay(1, 0) = 1.
One can however prove that it satisfies TP2.

3.2 Bounded variation property
The bounded variation property is defined on functions and is thus
a machine independent property: whenever two WA are equivalent,
either both or none of them satisfy this property.

4 2016/1/19



q0,0 q1,0 q2,0 qk,0
u1|α1,0 u2|α2,0

v1|β1,0 v2|β2,0 vk|βk,0

q0,1 q1,1 q2,1 qk,1
u1|α1,1 u2|α2,1

v1|β1,1 v2|β2,1 vk|βk,1

q0,k q1,k q2,k qk,k
u1|α1,k u2|α2,k

v1|β1,k v2|β2,k vk|βk,k

k
+

1
ru

ns

Figure 2. Twinning property of order k.

Given a partial mapping f : A∗ ⇀ B∗, the bounded vari-
ation property introduced by Choffrut in (Choffrut 1977) states
that for every n ∈ N, there exists N ∈ N such that for all
w,w′ ∈ A∗ such that f(w), f(w′) are defined, if dist(w,w′) 6 n,
then dist(f(w), f(w′)) 6 N . Intuitively, this property states that
whenever two words only differ by a small suffix, so do their im-
ages by f . This corresponds to the intuition that the function can be
expressed by means of a CRA with a single register (a behaviour
can be deduced from the other one).

When lifting this property to functions that can be expressed
using at most k registers, we consider k + 1 input words pairwise
close, and require that two of them must have close images by f .
The extension to partial mappings f : A∗ ⇀ Pfin(B∗) requires that
for all k+ 1 pairwise close input words, and all k+ 1 output words
chosen in the images of these input words, two of them should be
close.

Last, our framework is that of infinitary finitely generated
groups. Instead of dist(, ), we use the Cayley distance d(, ) to com-
pare the images.

We present now our definition that generalises the original one
of Choffrut (Choffrut 1977):

Definition 9. Let G be a finitely generated group. A function
f : A∗ → Pfin(G) satisfies the k-bounded variation property if
for all naturals n > 0, there is a natural N such that for all words
w0, . . . , wk ∈ A∗ and all α0 ∈ f(w0), . . . , αk ∈ f(wk), if for
all 0 6 i, j 6 k, dist(wi, wj) 6 n then there are 0 6 i < j 6 k
satisfying d(αi, αj) 6 N .

Example 4. We consider the weighted automaton depicted on
Figure 1. This automaton is over the group (Z,+, 0) which is
finitely generated with {1} as a set of generators. The function f
computed by the weighted automaton of Figure 1 does not satisfy
the 1-bounded variation property. Indeed, set n = 2 and let N
be a positive integer. Set w0 = aN+2 and w1 = aN+1b, then
dist(w0, w1) 6 2 but d(f(w0), f(w1)) = d(N+2, 1) = N+1 >
N . One can however prove that the function f satisfies 2-bounded
variation property.

3.3 First properties on twinning and bounded variation
properties

We can now state some properties on runs of weighted automata
depending whether they satisfy TPk or not.

In the following lemmas, G denotes some finitely generated
group that is infinitary, and a finite set of generators Γ is fixed. Let
W denote a weighted automaton on G and Q be its set of states.

Lemma 2. The automatonW satisfies TPk if and only if there is an
integer N such that for all words w, for all initial states q0, . . . , qk

and co-accessible states p0, . . . pk such that there are k + 1 runs:

qj
w|αj−−−→ pj for all j ∈ {0, . . . , k},

there are j 6= j′ such that d(αj , αj′) 6 N . In addition, if W
satisfies TPk then N can be chosen equal to 2MW |Q|k+1.

We introduce a definition expressing the fact that two runs are
always close (w.r.t. the Cayley distance):

Definition 10. Let W be a weighted automaton on G, w =
w1 . . . wr be a word and N be an integer. Let ρ1, ρ2 be two runs
on w, with:

ρj = q1,j
w1|α1,j−−−−−→ q2,j · · · qr,j

wr|αr,j−−−−−→ qr+1,j for j = 1, 2.

The runs ρ1, ρ2 are said to be N -close if for all i ≥ 1,

d(α1,1 . . . αi,1, α1,2 . . . αi,2) 6 N.

Lemma 3. Suppose that W satisfies TPk. Then, for all r, for all
words w, for all runs ρ1, . . . , ρr on w, from an initial state to a
co-accessible state, there is a subset P ⊆ {1, . . . , r} containing at
most k elements such that for all j ∈ {1, . . . , r}, there is j′ ∈ P
such that ρj , ρj′ are 2MW |Q|k+1-close.

Twinning property and finite valuedness. Based on these Lem-
mas, we exhibit now the strong relationship between the twinning
property and the finite-valuedness property for weighted automata.

Proposition 1. A weighted automaton over an infinitary finitely
generated group G satisfies TPk for some natural k if and only if it
is finitely valued.

Sketch. First, if a weighted automaton W is `-valued then it sat-
isfies TPn` where n is its number of states. We proceed by con-
tradiction. If this is not the case, then by Lemma 2, for all integer
N , there are n` + 1 runs labelled by the same word with weights
pairwise far, i.e. d(α, β) > N for every two such weights. Since
n is the number of states of W , there exists a state q of W and
`+ 1 of these n`+ 1 runs that end in state q. By completing these
runs into accepting runs, and by takingN large enough, we get that
these `+ 1 accepting runs are labelled by the same word and have
pairwise different values, which contradicts the `-valuedness ofW .

Conversely, consider a weighted automaton with n states that
satisfies TPk for some k. Consider the set of accepting runs labelled
by some word w. By Lemma 3, one can extract a subset of k
accepting runs such that any accepting run on w is 2MWn

k+1-
close to one of these k runs. It implies that w can only have a finite
number of values that depends on k,MW and n.

Equivalence between TPk and the k-bounded variation property.

Proposition 2. A weighted automatonW over an infinitary finitely
generated group G satisfies TPk if and only if [[W ]] satisfies the k-
bounded variation property.

Sketch. First, if W does not satisfy TPk then it does not satisfy the
k-bounded variation property. Indeed, by applying Lemma 2, one
can find k+ 1 runs labelled by the same word with arbitrarily large
pairwise delays. By completing these runs into accepting runs, we
obtain k + 1 runs labelled by k + 1 words that are pairwise close,
but whose weights are pairwise arbitrarily far. This proves that [[W ]]
does not satisfy the k-bounded variation property.

Conversely, if the k-bounded variation property is not satisfied,
then there exist k + 1 words that are close and that label accepting
runs whose values are pairwise arbitrarily far. By considering w
the longest common prefix of these k+ 1 words, we get k+ 1 runs
labelled by w that have weights pairwise far, yielding the result by
Lemma 2.

5 2016/1/19



4. Relating finite-valued weighted automata and
cost-register automata

4.1 Main result
We present our main result stating the equivalence between the
twinning property of order k, the k-bounded variation property, and
the register complexity at most k.

Theorem 2. Let W be an `-valued weighted automaton over the
semiring Pfin(G) where (G,⊗) is an infinitary finitely generated
group, and k be a positive integer. The following assertions are
equivalent:

1. W satisfies the twinning property of order k,
2. [[W ]] satisfies the k-bounded variation property,
3. [[W ]] is computed by a CRA`⊗c(G) with k registers, which can

be effectively computed.

We have already proved the equivalence between 1 and 2 of
Theorem 2 in the previous section (Proposition 2). The equivalence
between 1 and 3 is much more intricate. This equivalence follows
from the following proposition, and uses the equivalence between
1 and 2.

Proposition 3. Given an `-valued weighted automatonW on some
infinitary finitely generated group G satisfying the twinning prop-
erty of order k, one can effectively build an equivalent CRA`⊗c(G)
with k registers, and conversely.

Proof. (Sketch) Going from a cost register automaton to a weighted
automaton is rather simple. The construction is similar to the one
given in (Alur et al. 2013), and intuitively uses states of the form
(p,X) where p (resp. X) denotes a state (resp. a register) of the
cost register automaton. The resulting weighted automaton is triv-
ially `-valued, and one can easily verify that it satisfies the TPk.
Thanks to the equivalence of assertions 1 and 2 of Theorem 2 (the
twinning property of order k is a machine independent property),
we deduce that the weighted automaton W also satisfies the twin-
ning property of order k.

We describe now the translation of a weighted automaton into a
cost register automaton. We thus consider a weighted automaton
W on some infinitary finitely generated group G satisfying the
twinning property of order k. By Theorem 1, we can build an
equivalent weighted automaton that is `-ambiguous. Thanks to the
equivalence of assertions 1 and 2 of Theorem 2 (the twinning
property of order k is a machine independent property), we deduce
that this weighted automaton satisfies the twinning property of
order k.

Remind that Γ denotes a finite set of generators of G and that
the Cayley distance is defined in (G,Γ). Consider an `-ambiguous
weighted automaton W = (Q,Qinit, Qfinal, t, T ) satisfying TPk,
and let N = 2MW |Q|k+1 (recall that MW is the maximum of
the Cayley distances between 1 and the weights on the transitions
of W ). We build R ∈ CRA`⊗c(G) with k registers computing
the same function. We write R = (Q′, qinit,X , δ, µ) with X =
{X1, . . . , Xk}.

The idea underlying the construction is to store in the states of
R an abstraction of all the pairwise delays between the values of
the runs of W labelled by a given word. We will use the fact that
there are at most k diverging behaviours (thanks to TPk) to prove
that we can store the delays up to a finite bound (the bound N ) and
use only k registers to capture the k diverging behaviours.

Set of states ofR. Consider a wordw. For all co-accessible states
q ∈ Q, by `-ambiguity, there are at most ` runs from an initial state
to q labelled by w. Let ρq,1, ρq,2, . . . , ρq,`q denote these runs and
αq,1, αq,2, . . . , αq,`q denote their respective weights, with `q 6 `.

We constructR such that the unique run labelled by w inR ends in
a state representing all the pairwise delays between αq,j and αq′,j′
up to the bound N .

In order to simplify the notations, we let [`] = {1, . . . , `}. We
use functions with domain (Q × [`])2 and range (Γ ∪ Γ−1)6N ∪
{∞,⊥}. Formally, the function representing the delays after read-
ing word w is the following one: fw((q, j), (q′, j′)) =
delay(αq,j , αq′,j′) if j 6 `q, j

′ 6 `q′ , (ρq,j , ρq′,j′) N -close
∞ if j 6 `q, j

′ 6 `q′ , (ρq,j , ρq′,j′) not N -close
⊥ otherwise (i.e. one of the two runs is not defined)

The functions f defined this way satisfy the following natural
properties (?):

• f(x, y) = f(y, x)−1 (with the convention ∞−1 = ∞ and
⊥−1 = ⊥), since delay(α, β) = delay(β, α)−1,

• f(x, x) ∈ {1,⊥}, since either x represents an existing run (and
in this case we use the fact that delay(α, α) = 1), or not (and
in this case the value ⊥ is used).

• if f(x, x) = ⊥, then f(x, y) = f(y, x) = ⊥ (case where x
does not represent an existing run)

• if f(x, x) = f(y, y) = 1 then f(x, y) 6= ⊥ (case where both
x and y represent existing runs).

Of course, the above representation depends on the numbering
chosen for the runs of W . In order to avoid this, we introduce an
equivalence relation ≡ on such functions, based on permutations
σq of {1, . . . , `} for each state q.

Let Ω denote the set of functions from (Q × [`])2 to (Γ ∪
Γ−1)6N ∪{∞,⊥} satisfying properties (?). The set of states ofR
is the set of ≡-classes of Ω. Formally, given f ∈ Ω, we denote by
[f ] the equivalence class of f w.r.t. ≡ and we let Q′ = {[f ] | f ∈
Ω}. For every equivalence class C, we fix a representative function
gC ∈ Ω.

More precisely, the cost register automatonR is constructed us-
ing a forward exploration starting from the initial state. The initial
state is the class of the function fε ∈ Ω defined by fε(x, y) = 1
if x, y ∈ Qinit × {1} and fε(x, y) = ⊥ otherwise. As a conse-
quence, only reachable states are considered, i.e. states C such that
there exists a word w ∈ A∗ satisfying C = [fw].

As W satisfies the twinning property of order k, Lemma 3
applies. This implies the following property: for every reachable
state C of R, there exists a subset PC of Q × [`] of size at most k
such that for all x ∈ Q× [`], we have:

• either gC(x, x) = ⊥,
• or gC(x, x) = 1 and there exists y ∈ PC such that gC(x, y) ∈

(Γ ∪ Γ−1)6N .

For each reachable state C, we fix such a set PC , a surjective
mapping rC from {1, . . . , k} to PC , and a partial mapping χC :
Q× [`] ⇀ PC concretising the property stated in the second above
item. Intuitively, if the function gC is understood as a matrix, the
set PC corresponds to a subset of indices that allows to capture (at
most) k runs with diverging behaviours. The mapping rC simply
gives a numbering of these indices and the mapping χC relates
every other index toPC . Let us point out that rC is used to associate
a register of X with each of these k runs, storing its computed
value.

Transition function. Let C be a reachable state, and a ∈ A
be a letter, we define the state C′ such that δ(C, a) = (C′, h)
with h ∈ UP(X ). From the function gC , one can easily define
a function f ∈ Ω by extending the runs of W represented in gC
using the transitions of W on letter a. The state C′ is then defined
as [f ].

6 2016/1/19



We now explain how the register update h is defined and illus-
trate it using the register X1. Let (q, j) = rC′(1). By construction
of gC′ , there exists a state p, and an index i ∈ {1, . . . , `} such
that the run represented by the pair (q, j) in gC′ is of the following
form:

Qinit 3 q1
∗−→ p

a|α−−→ q

where the run ρ : q1
∗−→ p is represented by the pair (p, i) in gC .

We let m ∈ {1, . . . , k} such that rC(m) = χC(p, i), meaning
that the weight of the run ρ can be recovered from the value of
register Xm, and that register Xm corresponds in gC to the run
represented by the entry rC(m) ∈ Q×[`]. We finally define h(X1)
as follows:

h(X1) = (Xm, gC(rC(m), (p, i))α)

Output function We describe how the output function µ is de-
fined for a given reachable state C. Intuitively, we want to identify
registers corresponding to a final state of W . However, it may be
the case that two registers of X correspond to two accepting runs
computing the same value. In order to respect the constraint on the
output size of R, we let D as a maximal subset of {1, . . . , k} such
that:

• for all m ∈ D, we have rC(m) = (q, j) ∈ Qfinal × [`]
• for all m 6= m′ ∈ D, we have gC(rC(m), rC(m′)) 6= 1

The `-ambiguity ofW implies that the cardinality ofD is at most `.
We have thus selected at most ` successful runs computing pairwise
distinct values. We then define

µ(C) = {(Xm, α) | m ∈ D, rC(m) = (q, j), and α = t(q)}.
This immediately implies that the output size of R is at most `.

4.2 Hierarchy
The previous result allows to describe a hierarchy of functions as
described in Figure 3 whereWA(k) (resp.WA`(k)) denotes the
set of functions computed by a weighted automaton (resp. `-valued
weighted automaton) satisfying TPk.

1 2 · · · k

1

2

··
·

`

DET Functional

1
re

gi
st

er WA`(k)
CRA`(k)

WA`
CRA`

WA(k)

CRA(k)

Figure 3. Hierarchy.

Theorem 3. The following results hold:

1. For all naturals k, `, CRA`(k) =WA`(k).
2. For all naturals k, CRA(k) =WA(k)
3. For all naturals `, CRA` =WA`

Proof. The first item comes from Theorem 2.
As for the second item, by definition of a cost register automa-

ton and first item, we have the following sequence of inclusions:

CRA(k) = ∪`>0CRA`(k) = ∪`>0WA`(k) ⊆ WA(k). It
remains to prove that WA(k) ⊆ ∪`>0WA`(k) to conclude. It
comes from Proposition 1 since a weighted automaton satisfying
TPk for some k is finitely valued.

Finally, regarding the third item, still by definition of a cost
register automaton and first item, we have the following sequence
of inclusions: CRA` = ∪k>0CRA`(k) = ∪k>0WA`(k) ⊆
WA`. And WA` ⊆ ∪k>0WA`(k) by Proposition 1 since a
weighted automaton that is finitely valued satisfies TPk for some
k.

The hierarchy is strict Consider an alphabet over k letters A =
{a1, . . . , ak} and the function defined for all words w by:

f : wai 7→ {|w|i + 1, |w|i + 2, . . . , |w|i + `}
where |w|i represents the number of occurrences of the letter ai in
w. One can prove that this function is in the class CRA`(k), but
not in the classes CRA`′(k′) for k′ < k or `′ < `, showing that
this hierarchy is strict.

5. The case of non finitely generated groups
In this section, we explain how to state our main result (Theorem 2)
in the setting of non finitely generated groups. The twinning
property only depends on the notion of delay, it is thus well-defined
for arbitrary groups. However, we have to introduce a new notion of
k-bounded variation property, as the one introduced in Definition 9
relies on the assumption that the group G is finitely generated.

Given a weighted automaton W on some group G, the set of
weights it may produce actually belongs to a finitely generated
group, whose set of generators is the set of weights appearing on
transitions of W . However, this observation is not sufficient, as the
bounded variation property is intended to be machine-independent.
In order to deal with this issue, we have introduced a notion of gen-
erator set for the computed function. More precisely, in the bounded
variation property, in order to quantify the ”distance” between the
outputs, we introduce a notion of generator that depends on the
function under study.

Given a mapping f : A∗ → Pfin(G) computed by a weighted
automaton, we say that a subset Γ of G is an f -generator if
{delay(α, α′) | α ∈ f(w), α′ ∈ f(w′), w, w′ ∈ A∗} ⊆⋃
n>0 Γn. Note that if G is finitely generated, then any finite set of

generators of G is an f -generator.
This leads to a new definition of the bounded variation property

that is still machine-independent and well defined for non finitely
generated groups.

Definition 11. A function f : A∗ → Pfin(G) satisfies the
k-bounded variation property if for all naturals N > 0 and
all f -generators Γ there is a natural n such that for all words
w0, . . . , wk ∈ A∗ and all α0 ∈ f(w0), . . . , αk ∈ f(wk), if for all
0 6 i, j 6 k, dist(wi, wj) 6 N then there are 0 6 i < j 6 k
such that delay(αi, αj) ∈ Γ6n.

With this new definition, we can prove that Theorem 2 holds for
all infinitary groups. Let us first comment the proof of the equiv-
alence between statements 1 and 2 of Theorem 2. The direction
from 2 to 1 holds true as the new definition of bounded variation
implies the previous one, when considering the set of weights of
W as a [[W ]]-generator. Conversely, one can prove a rephrasing of
Lemma 2 that takes into account a [[W ]]-generator Γ, and replaces
the constraint on the Cayley distance d(αj , αj′) 6 N by the con-
straint delay(αj , αj′) ∈ Γ6N . This new result can be used to adapt
the proof of Proposition 2.

The equivalence between weighted automata satisfying TPk and
k-register automata follows the lines of the proof of Proposition 3
by considering the sub-group generated by the finite set of weights

7 2016/1/19



occurring on the transitions of the automaton under consideration.
This finite set plays the role of the finite set of generators and the
Cayley distance is defined with respect to it.

6. The case of transducers
A transducer is defined as a weighted automaton with weights in
the monoid B∗. It can thus be seen as a weighted automaton with
weights in the free group F(B) (see Section 2 for a presentation of
the free group). We say that a transducer T satisfies the twinning
property of order k if, viewed as a weighted automaton overF(B),
it satisfies TPk. Similarly, a function f : A∗ → Pfin(B∗) is said
to satisfy the k-bounded variation property iff it is the case when
viewing f as a mapping from A∗ to Pfin(F(B)).

Theorem 4. Let T be an `-valued transducer from A∗ to B∗, and
k be a positive integer. The following assertions are equivalent:

1. T satisfies the twinning property of order k,
2. [[T ]] satisfies the k-bounded variation property,
3. [[T ]] is computed by a CRA`⊗c(B

∗) with k registers.

The equivalence between 1 and 2 follows from Theorem 2. We
now detail the proof of the equivalence between 1 and 3.

First, the implication 3 ⇒ 1 is simple as the conversion from
cost register automata to weighted automata preserves the weights
used. We prove now the other direction.

Given a finite alphabet B, letWAB` (k) denote the set of func-
tions computed by a `-valued weighted automaton over the free
group F(B) satisfying TPk, but only using weights in B∗. Simi-
larly, we denote by CRAB` (k) the set of functions computed by a
cost register automaton over F(B) with k registers and output size
`, but only using updates involving elements of B∗. We thus have
to prove the inclusionWAB` (k) ⊆ CRAB` (k).

Let GA,B denote the set of functions A∗ → Pfin(B∗). By
Theorem 2, we have the following sequence of inclusions:

WAB` (k) ⊆ WA`(k) ∩ GA,B ⊆ CRA`(k) ∩ GA,B
Thus, by proving Proposition 4, we will obtain the expected

result.

Proposition 4. CRA`(k) ∩ GA,B ⊆ CRAB` (k)

Sketch. Consider a cost register automatonR that computes a func-
tion in GA,B . On can prove that there is a boundN ′ such that along
the runs of R, the values stored in the registers always belong to
B∗(B ∪ B−1)6N

′
. This intuitively relies on the fact that for ev-

ery run that can be completed into an accepting run, there exists a
“short” completion, and this completion should lead to a weight in
B∗. At anytime during a computation, the values stored in registers
are thus of the form α1α2 with α1 ∈ B∗ and α2 ∈ (B∪B−1)6N

′
.

For a given register X , the idea is then to associate with X the
shortest α1 satisfying these conditions, and to store the value α2

in the states of the automaton. This ensures that every continuation
of the computation will be compatible with the value α1 already
computed. We use here the fact that the weights are elements of the
free group in order to prove the existence of a “shortest” α1. This
construction preserves parameters k and `.

7. Decidability of TPk and application to register
minimisation

In this section, we prove the decidability of the twinning property
for some algebraic structures, and as a consequence, the decidabil-
ity of the register minimisation problem on these structures. We
consider the two following problems:

The TPk Problem: given a weighted automaton W on some
monoid M and a number k, does W satisfy the TPk?

The Register Minimisation Problem: givenR ∈ CRA+
⊗c(M) and

a number k, does there existR′ ∈ CRA+
⊗c(M) with k registers such

that [[R]] = [[R′]]?
We start with a preliminary result. Let us denote by TP′k the

property obtained from the TPk by requiring the property not only
for k cycles, but for m cycles, for every m > k.

Lemma 4. For all positive integer k, a weighted automaton satis-
fies TPk if and only if it satisfies TP′k.

As a consequence, a witness of the violation of the TPk can be
identified as one of the violation of the TP′k, i.e. a set of k+ 1 runs,
with m > k cycles, such that for each pair i 6= j, there exists a
cycle that induces different delays between i-th and j-th runs.

Case of commutative groups. We writeW = (Q,Qinit, Qfinal, t, T )
and let n = |W |. In order to decide the twinning property, we will
consider the k + 1-th power of W , denoted W k+1, which accepts
the set of k + 1 synchronised runs in W . We write its runs as
~ρ = (ρi)06i6k and denote by αi the weight of run ρi.

Theorem 5. Let G = (G,⊗) be a commutative group such that
the operation ⊗ and the equality check are computable. Then the
TPk problem is decidable.

Sketch. It is easy to observe that for commutative groups, the con-
straint expressed on the delay in the twinning property boils down
to checking that loops have different weights. The result follows
from the two following facts:

• first, given two vectors of states v, v′ ∈ Qk+1, checking that
there exists a path from v to v′ in W k+1 is decidable,

• second, the following problem is decidable: given a vector of
states v ∈ Qk+1 and a pair i 6= j, check that there exists a
cycle ~ρ around v in W k+1 such that delay(αi, αj) 6= 1. The
procedure non-deterministically guesses the cycle inW k+1 (its
length can be bounded by 2nk+1) and computes incrementally
the value of delay(αi, αj).

The overall procedure simply guesses a run in W k+1 with a cycle
for each pair i 6= j, and checks that this cycle induces distinct
delays between the i-th and j-th runs.

If we consider the setting of ACRA, i.e. the group (Z,+), we
can verify that the above procedure runs in PSPACE if k is given in
unary, yielding:

Theorem 6. Over the group (Z,+), the TPk problem is in
PSPACE (k given in unary).

The construction from CRA+
⊗c(S) to WA over S is polynomial.

Wlog, we suppose that k is given in unary. This is reasonable as k is
smaller than the actual number of registers of R. As a consequence
we deduce (the hardness follows from the result of (Alur and
Raghothaman 2013)):

Corollary 1. The register minimisation problem for CRA+
+c(Z) is

PSPACE-complete.

This result slightly generalises that of (Alur and Raghothaman
2013), as we allow more general output functions. In addition, it
follows from a general framework, and similar results for other in-
finitary groups (with computable operations) can be derived simi-
larly.

8 2016/1/19



Case of transducers. Let us first recall the procedure of (Weber
and Klemm 1995) to decide the twinning property in PTIME for
transducers. They prove that the TP is violated iff there exists a
pair of runs such that either the output words v1, v2 on cycles are
such that |v1| 6= |v2|, or the output words on paths leading to the
cycle, say u1, u2, have a mismatch (i.e. a position on which they
differ). Using a similar reasoning, we prove the following lemma:

Lemma 5. Let T be a transducer violating the TPk. Then there
exist:

• states {qi,j}06i6m,06j6k with k 6 m 6 k2, and q0,j initial
and qk,j co-accessible for all j,

• words u1, . . . , um, v1, . . . , vm such that there are k + 1 runs

satisfying for all 0 ≤ j ≤ k, for all 1 ≤ i ≤ m, qi−1,j

ui|αi,j−−−−→
qi,j and qi,j

vi|βi,j−−−−→ qi,j

and such that for all 0 6 j < j′ 6 k:

• either there exists 1 6 i 6 m such that |βi,j | 6= |βi,j′ |,
• or there exists 1 6 i 6 m such that |βi,j | = |βi,j′ | 6= 0, the

words α1,j . . . αi,j and α1,j′ . . . αi,j′ have a mismatch, and the
runs q0,j

u1...ui−−−−→ qi,j and q0,j′
u1...ui−−−−→ qi,j′ are nk+1-close.

This allows to derive a non-deterministic procedure running in
polynomial space (assuming k is given in unary): we first guess
the vectors of states associated with cycles, and guess, for every
0 6 j < j′ 6 k, which of the two cases holds. Using a procedure
similar to the one described for the commutative case, one can
check the existence of a cycle verifying the guessed property. Last,
we verify the existence of the mismatches. Given a pair of runs
(ρ, ρ′), we proceed as follows: one non-deterministically guesses ρ
and ρ′ and stores the difference between the lengths of the outputs
of the two runs. Non-deterministically, one can record the letter
produced by the run that is ahead (say ρ). Then one continues the
simulation until ρ′ catches up ρ, and checks that the letter produced
by ρ′ is different. This can be achieved in polynomial space using
the fact that ρ and ρ′ are close.

Theorem 7. Over (B∗, ·), the TPk problem is in PSPACE (k is
given in unary).

Corollary 2. The register minimisation problem for CRA+
·c(B

∗) is
PSPACE-complete.

8. Conclusion
We have studied so-called finite-valued weighted automata on one
side, and a class of cost register automata on the other side.

We have introduced a twinning property and a bounded-variation
property that generalise the original properties introduced by Chof-
frut for transducers and obtained an elegant generalisation of a
well-known result of Choffrut for transducers. In addition, this led
to a decision procedure of a register minimisation problem for a
large class of cost register automata.

Our setting includes both infinitary groups and transducers. It is
worth observing that important classes of quantitative languages
such as sum, discounted sum and average automata fit into the
setting of infinitary groups (see (Filiot et al. 2015)).

As a particular case, for the setting of additive cost regular
functions, we obtain a generalization of the result of (Alur and
Raghothaman 2013) on the minimisation of registers.

References
R. Alur and P. Cerný. Expressiveness of streaming string transducers. In

IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010,

Chennai, India, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010.

R. Alur and M. Raghothaman. Decision problems for additive regular func-
tions. In Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part II, volume 7966 of Lecture Notes in Computer Science, pages 37–
48. Springer, 2013.

R. Alur, L. D’Antoni, J. V. Deshmukh, M. Raghothaman, and Y. Yuan.
Regular functions and cost register automata. In 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2013, New Orleans,
LA, USA, June 25-28, 2013, pages 13–22. IEEE Computer Society, 2013.

K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. ACM
Trans. Comput. Log., 11(4), 2010. doi: 10.1145/1805950.1805953. URL
http://doi.acm.org/10.1145/1805950.1805953.

C. Choffrut. Une caracterisation des fonctions sequentielles et des fonctions
sous-sequentielles en tant que relations rationnelles. Theor. Comput.
Sci., 5(3):325–337, 1977. doi: 10.1016/0304-3975(77)90049-4. URL
http://dx.doi.org/10.1016/0304-3975(77)90049-4.

E. Filiot, R. Gentilini, and J. Raskin. Finite-valued weighted automata. In
34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2014, December 15-17,
2014, New Delhi, India, volume 29 of LIPIcs, pages 133–145. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

E. Filiot, R. Gentilini, and J.-F. Raskin. Quantitative languages defined by
functional automata. Logical Methods in Computer Science, 11(3:14):
1–32, 2015. URL http://arxiv.org/abs/0902.3958.

I. Jecker and E. Filiot. Multi-sequential word relations. In Developments in
Language Theory - 19th International Conference, DLT 2015, Liverpool,
UK, July 27-30, 2015, Proceedings., volume 9168 of Lecture Notes in
Computer Science, pages 288–299. Springer, 2015.

S. Lombardy and J. Sakarovitch. Sequential? Theor. Comput. Sci.,
356(1-2):224–244, 2006. doi: 10.1016/j.tcs.2006.01.028. URL
http://dx.doi.org/10.1016/j.tcs.2006.01.028.

A. Maletti. Minimizing deterministic weighted tree automata. In C. Martı́n-
Vide, F. Otto, and H. Fernau, editors, Language and Automata Theory
and Applications, Second International Conference, LATA 2008, Tarrag-
ona, Spain, March 13-19, 2008. Revised Papers, volume 5196 of Lecture
Notes in Computer Science, pages 357–372. Springer, 2008. ISBN 978-
3-540-88281-7.

F. Mazowiecki and C. Riveros. Maximal partition logic: Towards a logical
characterization of copyless cost register automata. In Proc. 24th EACSL
Annual Conference on Computer Science Logic, CSL 2015, volume 41
of LIPIcs, pages 144–159. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

M. Mohri. Minimization algorithms for sequential transducers. Theor.
Comput. Sci., 234(1-2):177–201, 2000.

J. Sakarovitch and R. de Souza. Lexicographic decomposition of k -valued
transducers. Theory of Computing Systems, 47(3):758–785, 2010.

M.-P. Schützenberger. On the definition of a family of automata. Informa-
tion and Control, 4, 1961.

A. Weber and R. Klemm. Economy of description
for single-valued transducers. Inf. Comput., 118(2):
327–340, 1995. doi: 10.1006/inco.1995.1071. URL
http://dx.doi.org/10.1006/inco.1995.1071.

9 2016/1/19



A. Appendix
In all the results and proofs in the Appendix, unless it is explicitly
mentioned, G denotes an infinitary finitely generated group and Γ
a fixed finite set of generators of G.

Let W = (Q,Qinit, Qfinal, t, T ) denote a weighted automa-
ton over G computing a function f and MW denote the maximum
of the Cayley distances in (G,Γ) between 1 and any element oc-
curring on the transitions of W .

Finally, let k denote a positive integer.

A.1 Delays
Lemma 1. Given a group G, for all α, α′, β, β′, γ, γ′ ∈ G,

1. delay(α, β) = 1 if and only if α = β,
2. if delay(α, α′) = delay(β, β′) then delay(αγ, α′γ′) =
delay(βγ, β′γ′).

Given a finitely generated group G and a finite set of generators
Γ, for all α, β ∈ G, d(α, β) = d(1, delay(α, β)).

Proof. 1. delay(α, β) = α−1β = 1 if and only if α = β.
2.

delay(αγ, α′γ′) = γ−1α−1α′γ′ = γ−1delay(α, α′)γ′

= γ−1delay(β, β′)γ′ = delay(βγ, β′γ′)

Consider now the property stated for finitely generated groups.
The integer d(1, delay(α, β)) is the smallest integer n such that
delay(α, β) ∈ (Γ ∪ Γ−1)n, or equivalently α−1β ∈ (Γ ∪ Γ−1)n.
Thus, d(α, β) = d(1, delay(α, β)).

A.2 Infinitary group
The following Lemma relies on the fact that G is an infinitary
group.

Lemma 6. For all α, α′, β, β′ ∈ G such that delay(α, α′) 6=
delay(αβ, α′β′), for all non negative integers m, there is N such
that for all n > N , d(αβn, α′β′n) > m.

Proof. Since delay(α, α′) 6= delay(αβ, α′β′), or equivalently
α−1α′ 6= β−1α−1α′β′ then by infinitary hypothesis the set
{delay(αβn, α′β′n) | n ∈ N} is infinite. Moreover, for all non
negative integersm, (Γ∪Γ−1)m is finite, thus there isN such that
for all n > N ,

delay(αβn, α′β′n) /∈ (Γ ∪ Γ−1)6m

or equivalently, d(αβn, α′β′n) > m.

A.3 Equivalent definition of TPk
We give here another definition of the twinning property of order k
and prove that the two definitions are equivalent.

A weighted automaton satisfies TP′k if:

• for all m > k,
• for all states {qi,j | i ∈ {0, . . . ,m}, j ∈ {0, . . . , k}} with q0,j

initial and qm,j co-accessible for all j,
• for all words u1, . . . , um, v1, . . . , vm such that there are k + 1

runs like described in the Figure 4,

then there are j 6= j′ such that for all i ∈ {1, . . . ,m}:
delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′)

=delay(α1,j · · ·αi,jβi,j , α1,j′ · · ·αi,j′βi,j′)

Lemma 4. For all positive integer k, a weighted automaton satis-
fies TPk if and only if it satisfies TP′k.

q0,0 q1,0 q2,0 qm,0
u1|α1,0 u2|α2,0

v1|β1,0 v2|β2,0 vm|βm,0

q0,1 q1,1 q2,1 qm,1
u1|α1,1 u2|α2,1

v1|β1,1 v2|β2,1 vm|βm,1

q0,k q1,k q2,k qm,k
u1|α1,k u2|α2,k

v1|β1,k v2|β2,k
vm|βm,k

k
+

1
ru

ns

Figure 4. Equivalent definition of the twinning property of order
k

Proof. By definition, TP′k implies TPk. For the converse implica-
tion, suppose that TP′k is not satisfied. Then, there are:

• an integer m > k,
• words u1, . . . um, v1, . . . , vm,
• states {qi,j | i ∈ {0, . . . ,m}, j ∈ {0, . . . , k}} with q0,j initial

and qm,j co-accessible for all j,
• k + 1 runs like described in Figure 4,

such that for all j 6= j′, there is i ∈ {1, . . . ,m} satisfying:

delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′)
=delay(α1,j · · ·αi,jβi,j , α1,j′ · · ·αi,j′βi,j′)

We prove now that we can only consider k loops and still
preserve the property. For all i ∈ {0, . . . ,m}, we construct a
partition Pi of the set {0, . . . , k}.

• P0 = {{0, . . . , k}},
• Pi+1 is a refinement ofPi such that j and j′ remains in the same

class if and only if delay(α1,j · · ·αi+1,j , α1,j′ · · ·αi+1,j′) =
delay(α1,j · · ·αi+1,jβi+1,j , α1,j′ · · ·αi+1,j′βi+1,j′).

By hypothesis, we know that Pm is the set of singleton sets. More-
over, since the partitioned set contains k + 1 elements, there are at
most k indices i ∈ {1, . . . ,m} such that Pi−1 6= Pi. Let us note
them i1 < . . . < ik. Then for all j 6= j′, consider is the smallest
index such that j and j′ are not is the same set in Pis . Then:

delay(α1,j · · ·αis,j , α1,j′ · · ·αis,j′)
6=delay(α1,j · · ·αis,jβis,j , α1,j′ · · ·αis,j′βis,j′)

that proves that TPk is not satisfied and concludes the proof.

A.4 Proofs of Section 3.3
Proof of Lemma 2. The two following lemmas give the two
reverse implications of Lemma 2.

Lemma 7. If W satisfies TPk then for all words w, for all initial
states q0, . . . , qk and co-accessible states p0, . . . pk such that there
are k + 1 runs:

qj
w|αj−−−→ pj for all j ∈ {0, . . . , k},

there are j 6= j′ such that d(αj , αj′) 6 2MW |Q|k+1.

10 2016/1/19



Proof. If W satisfies TPk then it also satisfies TP′k. Let w be a
word, q0, . . . , qk initial states and p0, . . . pk co-accessible states,
such that:

qj
w|αj−−−→ pj for all j ∈ {0, . . . , k}

We will now extract synchronised loops in these runs. If |w| 6
|Q|k+1 then for all j 6= j′, d(αj , αj′) 6 2MW |Q|k+1, otherwise
there are:

• a positive integer m > k,
• words u1, . . . , um, v1, . . . , vm such that w = u1v1 · · ·umvm

and |u1 · · ·um| 6 |Q|k+1 ,
• states qi,j for i ∈ {0, . . . ,m} and j ∈ {0, . . . , k} such that
q0,j = qj and qk,j = pj ,

• elements of G, αi,j , βi,j for i ∈ {1, . . . ,m} and j ∈
{0, . . . , k} such that αj = α1,jβ1,j · · ·αm,jβm,j ,

such that there are k + 1 runs like described in Figure 4.
By TP′k, there are j 6= j′ such that for all i ∈ {1, . . . ,m},

delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′)
= delay(α1,j · · ·αi,jβi,j , α1,j′ · · ·αi,j′βi,j′)

Thus, by using at each step the item 2 of Lemma 1,

delay(αj , αj′)

= delay(α1,jβ1,jα2,j · · ·αm,jβm,j ,
α1,j′β1,j′α2,j′ · · ·αm,j′βm,j′)

= delay(α1,jα2,jβ2,j · · ·αm,jβm,j ,
α1,j′α2,j′β2,j′ · · ·αm,j′βm,j′)

(since delay(α1,j , α1,j′) = delay(α1,jβ1,j , α1,j′β1,j′))
...

= delay(α1,jα2,j · · ·αm,j , α1,j′α2,j′ · · ·αm,j′)

Thus,

d(αj , αj′) = d(α1,j · · ·αm,j , α1,j′ · · ·αm,j′) 6 2MW |Q|k+1

since |u1 · · ·um| 6 |Q|k+1.

Lemma 8. If W does not satisfy TPk, then for all positive integers
m, there is a word w, initial states q0, . . . , qk, co-accessible states
p0, . . . , pk and k + 1 runs:

qj
w|αj−−−→ pj for all j ∈ {0, . . . , k},

such that for all j 6= j′, d(αj , αj′) > m.

Proof. Letm be a positive integer. The idea is to consider a witness
as described in the Figure 2. If TPk is not satisfied, then there are
two runs such that by repeating the loops, the two runs can be as
far as possible (with respect to the Cayley distance).

More precisely, since W does not satisfy TPk, then there are:

• states {qi,j | i, j ∈ {0, . . . , k}} with q0,j initial and qk,j co-
accessible for all j,

• words u1, . . . , uk, v1, . . . , vk such that there are k+1 runs like
described in the Figure 2,

such that for all j 6= j′, there are i ∈ {1, . . . , k} satisfying:

delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′)
6= delay(α1,j · · ·αi,jβi,j , α1,j′ · · ·αi,j′βi,j′)

We construct by induction (in decreasing order) a sequence of
positive integers tk, . . . , t1. Let us give the construction of ti. Let

L be the length of the word ui+1v
ti+1

i+1 · · ·ukv
tk
k . Consider all the

pairs (j, j′) such that:

delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′)
6= delay(α1,j · · ·αi,jβi,j , α1,j′ · · ·αi,j′βi,j′)

Thanks to Lemma 6, we can choose an integer N (the same for all
such pairs (j, j′)) such that

d(α1,j · · ·αi,j(βi,j)N , α1,j′ · · ·αi,j′(βi,j′)N ) > 2MWL+m

Set ti = N .
Then, the word w = u1v

t1
1 · · ·uiv

ti
i · · ·ukv

tk
k fulfils the con-

clusions of the Lemma: Let j 6= j′, and i the minimal index such
that:

delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′)
6= delay(α1,j · · ·αi,jβi,j , α1,j′ · · ·αi,j′βi,j′)

Let:

αj = α1,jα2,j · · ·αi−1,jαi,j(βi,j)
ti

and:

α′j = α1,j′α2,j′ · · ·αi−1,j′αi,j′(βi,j′)
ti

By using the second item of Lemma 1 at each steps before index i,
one gets:

delay(α1,j(β1,j)
t1α2,j · · ·αk,j(βk,j)tk ,

α1,j′(β1,j′)
t1α2,j′ · · ·αk,j′(βk,j′)tk )

= delay(αjαi+1,j · · ·αk,j(βk,j)tk ,
α′jαi+1,j′ · · ·αk,j′(βk,j′)tk )

= (αi+1,j(βi+1,j)
ti+1 · · ·αk,j(βk,j)tk )−1

delay(αj , α′j)αi+1,j′(βi+1,j′)
ti+1 · · ·αk,j′(βk,j′)tk

/∈ (Γ ∪ Γ−1)6m

Proof of Lemma 3. Lemma 3 is a direct consequence of the
following lemma.

Lemma 9. If W satisfies TPk then for all words w, for all runs
ρ1, . . . , ρk+1 from an initial state to a co-accessible state, labelled
by w, there are j 6= j′ such that ρj , ρj′ are 2MW |Q|k+1-close.

Proof. The ideas are similar to the ones given in Lemma 2. Con-
sider k+ 1 runs ρ1, . . . , ρk+1 labelled by w from an initial state to
a co-accessible state and suppose that for all j 6= j′, ρj , ρj′ are not
2MW |Q|k+1-close.

Then, for 1 6 j 6 k + 1, we can construct k + 1 runs:

ρ1,jρ1,jρ2,jρ2,j · · · ρn,jρn,jρn+1,j

where n = k(k − 1) such that:

• for all i, j, ρi,j is a loop (starts and ends in the same state),
• for all j, ρj = ρ1,jρ2,j · · · ρn,jρn+1,j ,
• for all j 6= j′, there is i such that

delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′)
6= delay(α1,j · · ·αi,jαi,j , α1,j′ · · ·αi,j′)

where αi,j (resp. αi,j) is the weight of the run ρi,j (resp. ρi,j).
These k + 1 runs give a counter example of TPk.

11 2016/1/19



Proof of Proposition 1. The two following lemmas correspond to
the two converse implications of Proposition 1.

Lemma 10. A `-valued weighted automaton with n states satisfies
TPn`.

Proof. Suppose that a weighted automaton W does not satisfy
TPn`, and setN = 2MWn+2r+1 where r is the maximum of the
distances between 1 and the t(q)’s for all q ∈ Q. From Lemma 2,
there is a word w, initial states q0, . . . , qn`, co-accessible states
p0, . . . , pn` and n`+ 1 runs:

qj
w|αj−−−→ pj for all j ∈ {0, . . . , n`}

such that for all j 6= j′, d(αj , αj′) > N . Among the states
p0, . . . , pn`, at least `+1 are the same one. Thus, the corresponding
runs can be completed in accepting runs using the same word (of
length less than n). The delay between the values of two such
accepting runs (labelled by the same word) is necessarily different
from 1: for all j 6= j′, d(αj , αj′) > N so by completing with a
word of length less than n in an accepting run, the Cayley distance
is necessarily at least 1 and so the delay is different from 1. Finally,
there are ` + 1 different values for the same word, that contradicts
the fact that W is `-valued.

Lemma 11. A weighted automaton satisfying TPk for some natural
k is finitely valued.

Proof. Suppose that W satisfies TPk. Consider the accepting runs
labelled by a given word w. These runs have weights α0, . . . , αm.
By Lemma 3, there exists a subset P ⊆ {0, . . . ,m} with k
elements such that for all j′ ∈ {0, . . . ,m}, there is j ∈ P such that
d(αj , αj′) 6 2MW |Q|k+1. Since αj′ = αjdelay(αj , αj′) then a
value of an accepting run labelled by w is of the form αβγ where
α can take k values, β belongs to (Γ∪ Γ−1)62MW |Q|k+1

and γ =
t(q) for some state q. So the automaton is k|(Γ ∪ Γ−1)6MW ||Q|-
valued.

Proof of Proposition 2.

Proof. Let W be a weighted automaton over an infinitary finitely
generated group G. Let Q denote its set of states, MW the maxi-
mum of the distances between 1 and the weights of the transitions
ofW and r the maximum of the distances between 1 and the t(q)’s
for all q ∈ Q. First, suppose that W does not satisfy TPk. Then, by
applying Lemma 2, for all positive integers m, there is a word w,
initial states q0, . . . , qk, co-accessible states p0, . . . , pk and k + 1
runs:

qj
w|βj−−−→ pj for all j ∈ {0, . . . , k},

such that for all j 6= j′, d(βj , βj′) > m. We can complete these
k + 1 runs into accepting runs with words u0, . . . , uk such that
for all i, |ui| 6 |Q|. Let us write wi = wui. The word wi has a
value αi such that d(αi, βi) 6 |Q|MW + r. Since for all j 6= j′,
d(βj , βj′) > m, then d(αj , αj′) > m − 2MW |Q| − 2r. Set
n = 2|Q|. Let N be a natural. Choose m > N + 2MW |Q| + 2r.
Then we obtain that [[W ]] does not satisfy the k-bounded variation
property.

Conversely, suppose that there is an integer n > 0 such that for
all positive integers N , there are w0, . . . , wk ∈ A∗, α0, . . . , αk ∈
G such that:

1. for all 0 6 i, j 6 k, dist(wi, wj) 6 n,
2. for all 0 6 i 6 k, αi ∈ f(wi),
3. and for all i 6= j, d(αi, αj) > N .

By item 2., there are k + 1 accepting runs in W labelled
respectively by w0, . . . , wk with values α0, . . . , αk. They induce
k + 1 runs labelled by w, where w denotes the longest common
prefix of the wi’s, starting in an initial state and ending in a co-
accessible state. Let β0, . . . βk denote their values.

By contradiction, suppose now that there is i 6= j such that
d(βi, βj) 6 2MW |Q|k+1. Then, by item 1. there is i 6= j such that
d(αi, αj) 6 2MW |Q|k+1 + 2MWn+ 2r. This is a contradiction
with item 3 for N = 2MW |Q|k+1 + 2MWn+ 2r.

Thus, for all i 6= j, d(βi, βj) > 2MW |Q|k+1. By Lemma 2,
this implies that W does not satisfy TPk.

A.5 Proof of Section 4
Proof of Proposition 3. Remind that G is an infinitary finitely
generated group and Γ a finite set of generators. Let k and ` be two
positive integers.

A.5.1 From cost register automata to weighted automata
Given R = (Q, qinit,X , δ, µ) a cost register automaton with k
registers and output size `, we want to construct an equivalent `-
valued weighted automaton W = (Q′, Qinit, Qfinal, t, T ) satis-
fying TPk.

The idea is that the states of W will represent couples of a state
and of a register of R. There is a run labelled by w in W from an
initial state ending in a state (p,X) if there is a run in R labelled
by w ending in p. Moreover, the current value of the run in (p,X)
will be the value stored in the register X after reading w in R.

More formally, we set:

• Q′ = (Q×X ) ∪ (Q× {1, . . . , `}),
• Qinit = {qinit} × X ,
• Qfinal = Q× {1, . . . , `},
• for all q ∈ Q, we arbitrarily choose an injective function
τq : µ(q) → {1, . . . , `} and we set t(q, τq(Y, β)) = β if it
is defined and 1 otherwise,

• The set of transitions is defined as the union of two sets T =
T1 ∪ T2 where:

T1 = {((p,X), a, α,(q, Y )) | p, q ∈ Q, X, Y ∈ X ,
δ(p, a) = (q, g) with g(Y ) = (X,α)}

and

T2 = {((p,X), a, α, (q, fq(Y, β))) | δ(p, a) = (q, g),

g(Y ) = (X,α), (Y, β) ∈ µ(q)}

The automata R and W compute the same function: Let w
be a word. Let α ∈ G an output associated to w by R. Let
(qinit, νinit), . . . , (q, ν) the accepting run inR onw. Then, there is
Y ∈ R such that α = ν(Y )β where (Y, β) ∈ µ(q). By definition,
there is a register X such that the value of Y in q depends on the
value of X in qinit. By construction, there is a run in W from
(qinit, X) to (q, νq(Y, β)) labelled by w. This run is accepting and
with output ν(Y )β = α.

Conversely, let α ∈ G an output associated to w by W . Then
there is an accepting run from (qinit, X) to (q, i) labelled by w
with output α. By construction, there is an accepting run going
from (qinit, νinit) to (q, ν) in R labelled by w, for some ν, and
a register Y , such that α = ν(Y )β where (Y, β) ∈ µ(q) and
τq(Y, β) = i. Thus, one of the output (the one associated to (Y, β))
is α.

The automaton W is `-valued: It is a direct consequence of the
fact that R and W compute the same function: R is of output size
`, thus every word has at most ` values and so W is `-valued.

12 2016/1/19



The automaton W satisfies TPk: By contradiction, if the au-
tomaton does not satisfy TPk, then by using Lemma 2, for all pos-
itive integers m, there is a word w, initial states q0, . . . , qk and
co-accessible states p0, . . . , pk and k + 1 runs:

qj
w|αj−−−→ pj for all j ∈ {0, . . . , k}

such that for all j 6= j′, d(αj , αj′) > m.
By construction, there is p ∈ Q, such that for all j, there is

Xj ∈ X or ij ∈ {1, . . . , `} such that pj = (p,Xj) or pj = (p, ij).
Since we are considering k + 1 runs, there are two different runs
such that the last transitions come from the same state (q, Y ). Thus,
there are j 6= j′ such that we are in one the two following cases:

• pj = (p,Xj), pj′ = (p, ij′) and there is α ∈ G such that
τp(Xj , α) = ij′ .

• pj = (p, ij), pj′ = (p, ij′) and there are X ∈ X and α, β ∈ G
such that τp(X,α) = ij and τp(X,β) = ij′ .

Let us denote MW (resp. M ′W ) the maximum of the Cayley
distances between 1 and the weights on the transitions of W (resp.
the elements α of G such that there are q ∈ Q and X ∈ X with
(X,α) ∈ µ(q)).

By construction, d(αj , αj′) 6 2 max(MW ,M
′
W ). Thus by

considering an m greater than 2 max(MW ,M
′
W ), we have a con-

tradiction.

A.5.2 From weighted automata to cost register automata
Consider an `-ambiguous weighted automaton

W = (Q,Qinit, Qfinal, t, T )

satisfying TPk. We will construct a cost register automaton R =
(Q′, qinit,X , δ, µ) with k registers and output size ` computing
the same function.

Let MW be the maximum of the Cayley distances between 1
and the weights on the transitions ofW and letN = 2MW |Q|k+1.

The idea behind the construction is to store in the states ofR the
delays between the values computed in the states of W reached by
runs labelled by a given word. We will use the fact that there are at
most k diverging behaviours (thanks to TPk) to prove that we can
store the delays up to a bound and use only k registers to capture
the k diverging behaviours.

Construction of the set of states Q′. Let Ω denote the set of
functions from (Q×{1, . . . , `})2 to (Γ∪Γ−1)6N ∪{∞,⊥} such
that for all x, y ∈ Q× {1, . . . , `}:
• f(x, y) = f(y, x)−1 (with the convention ∞−1 = ∞ and
⊥−1 = ⊥),

• f(x, x) ∈ {1,⊥},
• if f(x, x) = ⊥, then f(x, y) = f(y, x) = ⊥,
• if f(x, x) = f(y, y) = 1 then f(x, y) 6= ⊥.

Given f and g in Ω, we say that f is equivalent to g (denoted
by f ≡ g) if for all q ∈ Q, there is a permutation σq of {1, . . . , `}
such that for all p, q ∈ Q, 1 6 i, j 6 `,

g((q, i), (p, j)) = f((q, σq(i)), (p, σp(j)))

We denote by σ(f,g)
q this permutation if it exists. Remark that ≡ is

an equivalence relation. Let [f ] denote the equivalence class of f .
The set of states Q′ is defined as the set of the equivalence

classes of ≡.

Initial state and registers. Let finit be the function in Ω de-
fined by f(x, y) = 1 if x, y ∈ Qinit × {1} and f(x, y) = ⊥
otherwise. The initial state qinit is [finit]. The set of registers is
X = {X1, . . . , Xk}.

Transition function. Let a be a letter. We will define the transi-
tions labelled by a.

For all p ∈ Q, f ∈ Ω, set: E(f,a)
p =

{(q, i) | there exist (q, a, α, p) ∈ T and f((q, i), (q, i)) = 1}

Remark that |E(f,a)
p | = |E(g,a)

p | if f ≡ g. If |E(f,a)
p | > ` then

the transition from [f ] labelled by a is undefined.
Otherwise, suppose that |E(f,a)

p | 6 `, and consider a one-
to-one function τ

(f,a)
p : E

(f,a)
p → {1, . . . , `}. If g ≡ f ,

then we can choose τ (g,a)p and τ
(f,a)
p such that τ (g,a)p (q, i) =

τ
(f,a)
p (q, σ

(f,g)
q (i)). We fix now such functions τ (f,a)p compatible

over the equivalence classes (when there are defined).
Let fa be the function defined by:

fa((p′, i′), (q′, j′)) =

α−1f((p, i), (q, j))β if τ (f,a)p′ (p, i) = i′, τ (f,a)q′ (q, j) = j′,

(p, a, α, p′) ∈ T , (q, a, β, q′) ∈ T,
and α−1f((p, i), (q, j))β ∈ (Γ ∪ Γ−1)6N

∞ if τ (f,a)p′ (p, i) = i′, τ (f,a)q′ (q, j) = j′,

(p, a, α, p′) ∈ T , (q, a, β, q′) ∈ T,
and α−1f((p, i), (q, j))β /∈ (Γ ∪ Γ−1)6N ∪ {⊥}

⊥ otherwise

with the convention that for all x ∈ G ∪ {∞}, x∞ = ∞x = ∞,
and for all x ∈ G ∪ {∞,⊥}, x⊥ = ⊥x = ⊥.

Since f ∈ Ω, fa also belongs to Ω. Moreover, if g ≡ f then
ga ≡ fa and more precisely,

ga((p, i), (q, j)) = fa((p, σ(fa,ga)
p (i), (q, σ(fa,ga)

q (j)).

Given f ∈ Ω, we define Zf the set of functions:

rf : {1, . . . , k} → Q× {1, . . . , `}

such that:

• for all κ ∈ {1, . . . , k}, f(rf (κ), rf (κ)) 6= ⊥,
• and for all x ∈ Q × {1, . . . , `} satisfying f(x, x) 6= ⊥, there

is κ ∈ {1, . . . , k} such that f(rf (κ), x) /∈ {∞,⊥}.

If f ≡ g then Zf 6= ∅ if and only if Zg 6= ∅. Moreover, if
rf ∈ Zf then the function rg defined by rg(κ) = (p, σf,gp (i)) if
rf (κ) = (p, i) belongs to Zg . For all f ∈ Ω such that Zf 6= ∅, we
fix now a function rf ∈ Zf such that the choices are compatible
over the equivalence classes.

If Zf or Zfa are empty then we define (it will never be the case
for accessible [f ]): δ([f ], a) = ([fa], h) for an arbitrary chosen
function h.

Suppose now that Zf and Zfa are not empty. Given κ′ ∈
{1, . . . , k}, let (q′, i′) = rfa(κ′) and q, i,α such that τ (f,a)q′ (q, i) =

i′ and (q, a, α, q′) ∈ T . By property of rf , there is κ ∈ {1, . . . , k}
such that f(rf (κ), (q, i)) /∈ {∞,⊥}. We set

β
(f,a)

κ′ = f(rf (κ), (q, i))α

If g ≡ f then β(g,a)
κ = β

(f,a)
κ .

In this case, the transition is defined by:

δ([f ], a) = ([fa], h)

with for all κ′ ∈ {1, . . . , k}, h(Xκ′) = (Xκ, β
(f,a)

κ′ )

Output function. For x ∈ Qfinal × {1, . . . , `} such that
f(x, x) = 1, let κ(f)

x ∈ {1, . . . , k} such that f(rf (κ
(f)
x ), x) =

αx /∈ {∞,⊥}. Set also βx = t(q) where x = (q, i). If g ≡ f then
we can choose such that κ(g)

(q,i) = κ
(f)

(q,σ
(f,g)
q (i))

.

13 2016/1/19



Let Df be a maximal set of elements x ∈ Qfinal × {1, . . . , `}
such that f(x, x) = 1 and for all x, y ∈ Df , f(x, y) 6= 1. The
output function is defined by:

µ([f ]) = {(Xκx , αxβx) | x ∈ Df}

By construction, the automaton R uses k registers.
The correction of this construction can be deduced from Lem-

mas 12, 13, 14 and 15 that follow.
Automata W and R compute the same function. Let us note

Q = {q1, . . . , q|Q|}. We suppose that all states are co-accessible.
Given a word w, denote by ρi,1, . . . , ρi,`i the runs labelled by

w from an initial state to qi. Remark that `i 6 ` since W is `-
ambiguous. Let us note αi,1, . . . , αi,`i their respective weights.

Lemma 12. If there is i such that `i 6= 0 then there is an accepting
run inR labelled by w. Moreover, there is f such that this run ends
in [f ] such that: f((qi, κ), (qi′ , κ

′)) =
delay(αi,j , αi′,j′) if j 6 `i, j

′ 6 `i′ , ρi,j , ρi′,j′N -close
∞ if j 6 `i, j

′ 6 `i′ , ρi,j , ρi′,j′ not N -close
⊥ otherwise

Proof. Suppose that there is `i 6= 0. The proof is made by induction
on the length of the word w. If w = ε then there is an accepting
run in R on w ending in [finit] and finit satisfies the condition.

Suppose now that w = w′a for some letter a. If there is a run
from an initial state labelled by w, there is also a run from an initial
state labelled by w′. Let us denote by τi,1, . . . , τi,`′i the runs on
w′ ending in qi and by βi,1, . . . , βi,`′i their respective weights. By
induction hypothesis, there is an accepting run in R labelled by w′

ending in [f ] such that: f((qi, j), (qi′ , j
′)) =

delay(βi,j , βi′,j′) if j 6 `′i, j
′ 6 `′i′ , τi,j , τi′,j′N -close

∞ if j 6 `′i, j
′ 6 `′i′ , τi,j , τi′,j′ not N -close

⊥ otherwise

By `-ambiguity, for all p, |E(g,a)
p | 6 `. Thus, by construction,

there is an accepting run labelled by w in R ending in [fa]. More-
over, fa((qs,m), (qs′ ,m

′)) =

α−1f((qi, j), (qi′ , j
′))β

if τ (f,a)qs (qi, j) = m, τ (f,a)qs′ (qi′ , j
′) = m′,

(qi, a, α, qs) ∈ T , (qi′ , a, β, qs′) ∈ T,
α−1f((qi, j), (qi′ , j

′))β ∈ (Γ ∪ Γ−1)6N

∞
if τ (f,a)qs (qi, j) = m, τ (f,a)qs′ (qi′ , j

′) = m′,

(qi, a, α, qs) ∈ T , (qi′ , a, β, qs′) ∈ T
α−1f((qi, s), (qi′ , s

′))β /∈ (Γ ∪ Γ−1)6N ∪ {⊥}
⊥

otherwise

If j 6 `i, j′ 6 `i′ , ρi,j , ρi′,j′ N -close, then we are in the first
case and fa((qs,m), (qs′ ,m

′)) = α−1f((qi, j), (qi′ , j
′))β =

α−1delay(βi,κ, βi′,κ′)β = delay(αs,m, αs′,m′). If j 6 `i, j′ 6
`i′ , ρi,j , ρi′,j′ not N -close then we are in the second case and
fa((qs,m), (qs′ ,m

′)) = ∞. Otherwise, we are in the third case
and fa((qs,m), (qs′ ,m

′)) = ⊥.

Lemma 13. If for all i, `i = 0 then either there is no accepting run
on w in R, or the unique accepting run ends in [f ] where f maps
all the pairs to ⊥.

Proof. The proof is made by induction. If w = ε, it means that
there is no initial state inW , and thus the property is satisfied since

finit maps all the pairs to ⊥. Suppose now that w = w′a for some
letter a.

The first possibility is that there is no run in W on w′. Thus
by induction hypothesis, either there is no accepting run on w′ in
R, and then there is no accepting run on w in R, or the unique
accepting run ends in [f ] where f maps all the pairs to ⊥, and thus
if there is an accepting run in R on w, it also ends in [f ] (since
fa = f in this case).

The second possibility is that there are runs in W on w′ ending
in a set of states F , but no transition labelled by a starting in F . By
using Lemma 12, there is a run onw′ ending in [g] with g satisfying
the conditions of Lemma 12. By construction of ga, since there is
no transition from F labelled by a, then ga is the function that maps
all the pairs to ⊥.

Lemma 14. If [f ] is an accessible state in R then rf is well-
defined.

Proof. It is a direct consequence of Lemma 12 and Lemma 3.

Lemma 15. Suppose that there is an accepting run on w in R to
([f ], ν), then for all 1 6 κ 6 k, ν(Xκ) = αi,j such that rf (κ) =
(qi, j).

Proof. The proof is made by induction on the length ofw. Ifw = ε
then for all 1 6 κ 6 k, ν(Xκ) = 1 and the property is satisfied.
Otherwise, suppose that w = w′a for some letter a. Then there
is an accepting run on w′ in R to some ([g], ν) such that ga = f

and ν(Xκ′) = ν′(Xκ)β
(g,a)

κ′ = αi,j by induction hypothesis, the
construction of the transitions and Lemma 12.

Let us finally prove that W and R compute the same func-
tion. Consider an accepting run on w in W of weight α ending
in some final state q. Then by Lemma 12, there is an accept-
ing run in R to some ([f ], ν) such that there is x = (q, i) for
some i corresponding to this run. By definition of rf , there is κ
such that f(rf (κ), (q, i)) ∈ (Γ ∪ Γ−1)6N . Moreover, by Lemma
15, αt(q) = ν(Xκ)f(rf (κ), (q, i))t(q). Finally, by the construc-
tion of the output function, (Xκ, f(rf (κ), (q, i))t(q)) belongs to
µ([f ]) and thus αt(q) is associated with w by R. The converse is
similar, if R associates some value α with w, then W also asso-
ciates α with w.

R is of output size `. Consider an accessible state [f ] of R.
Pairs (q, i) such that f((q, i), (q, i)) = 1 correspond to runs
starting in an initial state and ending in q labelled by a same word.
Moreover, thanks to Lemma 12, if f((q, i), (q′, i′)) 6= 1, then the
two corresponding runs must be different. By `-ambiguity of W ,
there is at most ` accepting runs labelled by a given word. Thus,
|Df | 6 ` and R is of output size `.

A.6 Proof of Section 5
In this section, G is not necessarily finitely generated. The defini-
tion of f -generator is given in Section 5.

Proposition 5. LetW be an `-valued weighted automaton over the
semiring Pfin(G) where (G,⊗) is a infinitary, and k be a positive
integer. The two following assertions are equivalent:

• The automaton W does not satisfy TPk.
• There is an integerN > 0 and a f -generator Γ such that for all

positive integers n, there are w0, . . . , wk ∈ A∗, α0, . . . , αk ∈
G such that:

for all 0 6 i, j 6 k, dist(wi, wj) 6 N ,
for all 0 6 i 6 k, αi ∈ f(wi),
and for all i 6= j, delay(αi, αj) /∈ Γ6n.

14 2016/1/19



Proof. Let Θ denote the set of elements of G occurring on the
transitions of W and on the t(q)’s for all q ∈ Q, ∆ = Θ ∪ Θ−1.
Let r be an integer such that {t(q) | q ∈ Q} ∈ ∆6r . First, suppose
that W does not satisfy TPk. Then, by applying Lemma 2, for all
positive integers m, there is a word w, initial states q0, . . . , qk, co-
accessible states p0, . . . , pk and k + 1 runs:

qj
w|βj−−−→ pj for all j ∈ {0, . . . , k},

such that for all j 6= j′, delay(βj , βj′) /∈ ∆6m. We can complete
these k + 1 runs into accepting runs with words u0, . . . , uk such
that for all i, |ui| 6 |Q|. Let us write wi = wui and denote
by α0, . . . , αk the weights of these runs. Since for all j 6= j′,
delay(βj , βj′) /∈ ∆6m and |ui| 6 |Q|, then delay(αj , αj′) /∈
∆6m−2|Q|−2r . Take m > n + 2|Q| + 2r to obtain the expected
result with Γ = ∆ and N = 2|Q|.

Conversely, suppose that there is an integer N > 0 and
a f -generator Γ such that for all positive integers n, there are
w0, . . . , wk ∈ A∗, α0, . . . , αk ∈ S such that:

1. for all 0 6 i, j 6 k, dist(wi, wj) 6 N ,
2. for all 0 6 i 6 k, αi ∈ f(wi),
3. and for all i 6= j, delay(αi, αj) /∈ Γ6n.

Since ∆62|Q|k+1+2N|Q|+2r is finite then there is an integer n such
that (∆62|Q|k+1+2N|Q|+2r ∩

⋃
n>0 Γn) ⊆ Γ6n. By item 2., there

are k+ 1 accepting runs in W labelled respectively by w0, . . . , wk
with values α0, . . . , αk. They induce k + 1 runs labelled by w,
where w denote the longest common prefix of the wi, starting in
an initial state and ending in a co-accessible state. Let us denote by
β0, . . . βk their values. By contradiction, suppose now that there is
i 6= j such that delay(βi, βj) ∈ ∆62|Q|k+1

. Then, by item 1. there
is i 6= j such that delay(αi, αj) ∈ ∆62|Q|k+1+2|Q|N+2r . But
delay(αi, αj) ∈

⋃
m>0 Γm. Thus, delay(αi, αj) ∈ Γ6n. This is

a contradiction with item 3. Thus, for all i 6= j, delay(βi, βj) /∈
∆62|Q|k+1

. By Lemma 2, this implies that W does not satisfy
TPk.

A.7 Proofs of Section 6
Proposition 4.

CRA`(k) ∩ GA,B ⊆ CRAB` (k)

Proof. Let (Q, qinit,X , δ, µ) denote a register automaton over
G = (B ∪ B−1)∗ computing a function f ∈ GA,B . The Cay-
ley distance is defined in (G, B).

Let N = |Q|m+ s where:

• m is the maximum of the set:

{d(1, α) |δ(q, a) = (p, h),

h(Y ) = (X,α), q, p ∈ Q, a ∈ A,X, Y ∈ X}
• s is the maximum of the set:

{d(1, α) | (X,α) ∈ µ(q), X ∈ X , q ∈ Q}

We construct now an equivalent register automatonR′ overB∗.
Set G the set of functions X → (B ∪B−1)6N .

The set of states of R′ is Q′ = Q × G. The initial state
is (qinit, rinit) where rinit is the function that associates each
register to 1 and the set of registers is X .

For α ∈ B∗(B ∪B−1)6N , let us denote by α1 and α2 the two
elements such that α = α1α2 and α1 is the shortest word in B∗

such that α2 ∈ (B∪B−1)6N . Remark that α1 and α2 always exist
in this case.

The transition function δ′ is defined in the following way: given
q ∈ Q, a ∈ A, let (p, g) = δ(q, a). We set: δ′((q, r), a) =
((p, t), h) where h(Y ) = (X, (r(X)α)1), t(Y ) = (r(X)α)2
for X,Y ∈ X such that g(Y ) = (X,α), if r(X)α ∈ B∗(B ∪
B−1)6N . If r(X)α ∈ B∗(B ∪ B−1)6N (we will see that it is
never the case for accessible, co-accessible states), then we set:
δ′((q, r), a) = ((p, t), h) where h(Y ) = (X, r(X)α), t(Y ) = 1
for X,Y ∈ X such that g(Y ) = (X,α).

The output function µ′ associates a state (q, r) to the set
{(X, r(X)α) | (X,α) ∈ µ(q)}.

First, it is easy to check that R and R′ compute the same
function. It relies on the following lemma:

Lemma 16. For all words w, there is a run in R on w from
(qinit, νinit) to some (q, ν) if and only if there is a run in R′ on w
from ((qinit, rinit), νinit) to ((q, r), σ) such that for all registers
X , ν(X) = σ(X)r(X).

Proof. The proof is made by induction on the length of w. By
construction the property holds for w = ε. Suppose now that
w = w′a for some a ∈ A.

Suppose that there is a run in R on w from (qinit, νinit) to
(q, ν). Set (q′, ν′) the configuration such that there is a run in R on
w′ from (qinit, νinit) to (q′, ν′) and δ(q′, a) = (q, g). By induc-
tion hypothesis, there is a run inR′ onw′ from ((qinit, rinit), νinit)
to ((q′, r′), σ′) such that for all registersX , ν′(X) = σ′(X)r′(X).
Moreover, by construction, we are in one of the following case:

• δ′((q′, r′), a) = ((q, r), h) where h(Y ) = (X, (r′(X)α)1),
r(Y ) = (r′(X)α)2 for X,Y ∈ R such that g(Y ) = (X,α)
if r(X)α ∈ B∗(B ∪ B−1)6N . Thus there is a run in R on
w from ((qinit, rinit), νinit) to ((q, r), σ) with σ(Y )r(Y ) =
σ′(X)(r′(X)α)1(r′(X)α)2 for X,Y ∈ X such that g(Y ) =
(X,α). Thus, σ(Y )r(Y ) = ν′(X)α = ν(Y ).

• δ′((q′, r′), a) = ((p, t), h) where h(Y ) = (X, r′(X)α),
r(Y ) = 1 if r(X)α /∈ B∗(B ∪ B−1)6N . Thus there is a
run in R on w from ((qinit, rinit), νinit) to ((q, r), σ) with
σ(Y )r(Y ) = σ′(X)(r′(X)α) for X,Y ∈ X such that
g(Y ) = (X,α). Thus, σ(Y )r(Y ) = ν′(X)α = ν(Y ).

Conversely, suppose that there is a run in R′ on w from
((qinit, rinit), νinit) to ((q, r), σ). Set ((q′, r′), σ′) the configura-
tion such that there is a run in R′ on w′ from ((qinit, rinit), νinit)
to ((q′, r′), σ′) and δ′((q′, r′), a) = ((q, r), h). Then by induction
hypothesis, there is a run in R on w′ from (qinit, νinit) to (q′, ν′)
such that for all registers X , ν′(X) = σ′(X)r′(X). Moreover,
by construction, δ(q, a) = (q, g) and if g(Y ) = (X,α) then,
suppose that we are in the first case, h(Y ) = (X, (r′(X)α)1),
r(Y ) = (r′(X)α)2 for X,Y ∈ X . Thus, there is a run in
R on w from (qinit, νinit) to (q, ν) with ν(Y ) = ν′(X)α =
σ′(X)r′(X)α = σ′(X)(r′(X)α)1(r′(X)α)2 = σ(Y )r(Y ). The
second case is similar.

Thank to the previous lemma, we can now prove that [[R]](w) =
[[R′]](w). Consider a run in R on w from (qinit, νinit) to (q, ν)
and (Y, α) ∈ µ(q). Then, by Lemma 16, there is a run in R′

on w from ((qinit, rinit), νinit) to ((q, r), σ) for some σ such
that ν(Y ) = σ(Y )r(Y ). Thus, ν(Y )α = σ(Y )r(Y )α and by
construction, (Y, r(Y )α) ∈ µ′(q, r).

Conversely, suppose that there is a run in R′ on w from
((qinit, rinit), νinit) to ((q, r), σ) and a register Y such that
(Y, r(Y )α) ∈ µ′(q, r). Then by Lemma 16, there is a run in R on
w from (qinit, νinit) to (q, ν) such that ν(Y ) = σ(Y )r(Y ). Thus,
σ(Y )r(Y )α = ν(Y )α and by construction, (Y, α) ∈ µ(q).

15 2016/1/19



Thus, the cost register automaton R′ has, by construction, the
same number of registers, the same output size as R and computes
the same function. What is left is to prove that it only uses elements
in B∗.

Set E the minimal subset of Q×X such that:

• (q,X) ∈ E if there is α ∈ G such that (X,α) ∈ µ(q),
• (q,X) ∈ E if there is (p, Y ) ∈ E, a ∈ A such that δ(q, a) =

(p, h) for some h such that h(Y ) = (X,α) for some α ∈ G.

We say that a register X is alive in q if (q,X) ∈ E.

Lemma 17. For all configurations (q, ν), for all runs from
(qinit, νinit) to (q, ν), for all alive registers X in q, ν(X) belongs
to B∗(B ∪B−1)6N .

Proof. Consider a run from (qinit, νinit) to (q, ν) and an alive
register X in q such that ν(X) = c ∈ G. The run can be
completed in a run that ends in some (q′, ν′) such that there are
a register Y , α ∈ (B ∪ B−1)6|Q|m, β ∈ (B ∪ B−1)6s with
ν′(Y ) = cα, (Y, β) ∈ µ(q′) and thus cαβ ∈ B∗. Finally,
c ∈ B∗(B ∪B−1)6N .

To prove that the updates of R′ only use elements in B∗, we
need to prove that for all accessible (q, r), for all X,Y ∈ X , X
alive in q, α ∈ G such that g(Y ) = (X,α), we have r(X)α
belongs toB∗(B∪B−1)6N . We prove it by induction on the length
of the shortest run ending in (q, r). It is true for (qinit, rinit) thanks
to the definition of N .

By contradiction, if it is not true for (q, r), then r(X)α =
ua−1v with u ∈ B∗, a ∈ B, v 6= av′ for all v′ ∈ G, and
v /∈ (B ∪ B−1)<N . By induction hypothesis and completing the
run, one of the output of the function is of the form u′ua−1vv′ with
u′ ∈ B∗ and v′ ∈ (B ∪B−1)6N . This output is supposed to be in
B∗. We are in one of the two following cases:

• The word u ends with a letter of B different from a. In this
case, u′ua−1vv′ cannot be in B∗ since v 6= av′ for all v′ ∈ G,
v /∈ (B ∪ B−1)<N and v′ ∈ (B ∪ B−1)6N . That is a
contradiction.

• The word u is empty. Since v 6= av′ for all v′ ∈ G, v /∈
(B ∪ B−1)<N and v′ ∈ (B ∪ B−1)6N , then the last letter of
u′ must be an a. By definition of δ′, if this a has been used to
update the registers, it means that inR, the run corresponding to
this output has a sequence of weights: a, α1, . . . , αs, a

−1 such
that α1 · · ·αs = 1, α1 · · ·αs 6= a−1β for all β ∈ G and by
definition of δ′, α1 · · ·αs = βγ with β /∈ B∗(B ∪ B−1)6N .
Under these conditions, u′β /∈ B∗(B ∪ B−1)6N , that is in
contradiction with Lemma 17. (?)

Finally, we need to prove that the output function of R′ also
uses only elements in B∗. Thus, let us prove that for all accessible
(q, r) and (X,α) ∈ µ(q), r(X)α belongs toB∗. By contradiction,
if not, then r(X)α = ua−1v with a ∈ B, u ∈ B∗ that does not
end with a, v ∈ G, v 6= av′ for some v′ ∈ G. Let us treat the two
following cases:

• The word u ends with a letter b 6= a. In this case, by completing
the run, there is an accepting run having an output βr(X)α
with β ∈ B∗. But in this case, βr(X)α would not belong
to B∗. Thus, R would not compute a function in Ω, that is a
contradiction.

• The word u is empty. By completing the run into an accept-
ing run in R′, we get a sequence of weights of transitions
α1, . . . , αs ∈ B∗ such that one of the output is α1 · · ·αsa−1v.

Since the output is supposed to be inB∗, it means that the word
α1 · · ·αs ends with an a. And we can use a similar argument as
(?).

16 2016/1/19


