
This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: http://openaccess.city.ac.uk/21498/

Link to published version: http://dx.doi.org/10.1109/JSEN.2018.2883321

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk
Studies on Temperature and Strain Sensitivities of a Few-mode Critical Wavelength Fiber Optic Sensor

Chenxu Lu, Juan Su, Xiaopeng Dong, Lihua Lu, Tong Sun and Kenneth T. V. Grattan

Abstract—This paper studied the relationship between the temperature/strain wavelength sensitivity of a fiber optic in-line Mach-Zehnder Interferometer (MZI) sensor and the wavelength separation of the measured wavelength to the critical wavelength (CWL) in a CWL-existed interference spectrum formed by interference between \(LP_{01}\) and \(LP_{02}\) modes. The in-line MZI fiber optic sensor has been constructed by splicing a section of specially designed few-mode fiber (FMF), which support \(LP_{01}\) and \(LP_{02}\) modes propagating in the fiber, between two pieces of single mode fiber. The propagation constant difference, \(\Delta \beta\), between the \(LP_{01}\) and \(LP_{02}\) modes, changes non-monotonously with wavelength and reaches a maximum at the CWL. As a result, in sensor operation, peaks on the different sides of the CWL then shift in opposite directions, and the associated temperature/strain sensitivities increase significantly when the measured wavelength points become close to the CWL, from both sides of the CWL. A theoretical analysis carried out has predicted that with this specified FMF sensor approach, the temperature/strain wavelength sensitivities are governed by the wavelength difference between the measured wavelength and the CWL. This conclusion was seen to agree well with the experimental results obtained. Combining the wavelength shifts of the peaks and the CWL in the transmission spectrum of the SFS structure, this study has shown that this approach forms the basis of effective designs of high sensitivity sensors for multi-parameter detection and offering a large measurement range to satisfy the requirements needed for better industrial measurements.

Index Terms—In-line Mach-Zehnder interferometer, few mode fiber, critical wavelength, strain sensitivity, temperature sensitivity.

I. INTRODUCTION

Fiber optic in-line Mach-Zehnder Interferometers (MZIs), which are normally formed by two modes interference between the fundamental core mode, \(LP_{01}\) and the high order core modes [1], the cladding modes [2] or another fundamental core mode \(LP_{01}\) from a different core [3] (in a fiber of such multicore design), have been widely investigated in recent years. With advantages of their high sensitivity, immunity to electromagnetic interference, compact size and durability in harsh and corrosive environments, the in-line MZIs based on two modes interference have been applied to various industrial circumstances, such as structural health monitoring, earthquake monitoring and manufacturing, for example [4-6]. For most reported in-line MZIs based on two modes interference, because the propagation constant difference between two interference modes change linearly with wavelength, the interference fringes, which have been seen in the transmission spectra, change periodically and the peaks/dips shift in the same wavelength direction under different strain or temperature variations [1-3,7]. However, in some modal interferometers based on the interference between the fundamental core mode, \(LP_{01}\), and the first circularly symmetric higher-order core mode, \(LP_{02}\), a critical wavelength (CWL) exists in the transmission spectra, and the wavelength spacing between adjacent peaks reach a maximum for the peak that closest to CWL on each side. As reported in the references [8-15], in the CWL-existed in-line MZIs constructed by single mode fiber (SMF) – GeO\(_2\)-doped graded-index multimode fiber (MMF) – single mode fiber (SMS) structure [8, 9], or SMF – few mode fiber (FMF) – SMF (SFS) structure [10-15], the peaks on the different sides (both the lower wavelength side and the higher wavelength side) of the CWL shift to opposite wavelength directions under conditions where temperature or strain variations are seen, and the temperature/strain sensitivity reaches a maximum for the peak that located closest to the CWL (one from each side). However, all the previous studies have been focused on the analysis of the CWL behavior [11-14] and only the experimental behaviors of the peaks are studied [15]. The temperature/strain sensitivities of the interference fringes and the relationship between the temperature/strain sensitivities of
the measured wavelengths and the wavelength spacing of the measured wavelengths to the CWL have not been studied in detail, either theoretically or experimentally. The work reported here forms the basis of a better understanding of the potential performance of a sensor based on exploiting this phenomenon fully.

Thus in this paper, the temperature/strain characteristics of a SFS-structured in-line MZI employing a specially designed FMF were theoretically analyzed, their performance predicted and this experimentally demonstrated. Both theoretical and experimental results show that, the temperature/strain sensitivities of the device are only governed by the wavelength spacing between the measured wavelength and the CWL. Under different temperature/strain conditions, the temperature/strain sensitivities at a series of wavelengths in the transmission spectra of the SFS structure employing a 30cm, 40cm and 50cm FMF were measured in the experiments, and the results agree well with the simulation, giving confidence in the design. The temperature/strain sensitivity study in this paper provide an approach for improving temperature and strain sensitivities of SFS structure-based sensors, by detecting peaks in the transmission spectrum. Further, by tracking the wavelength shifts of both the CWL and the peaks in the transmission spectrum when the system is perturbed, the SFS structure discussed can be applied to the development of simple and co-located multi-parameter sensors. These could be made available at low cost and which have practical applications in various industrial processes.

II. THEORETICAL ANALYSIS OF THE SFS STRUCTURE

The in-line MZI sensor that can be constructed by employing the SFS approach is formed, as shown in Fig. 1(a), by splicing a piece of FMF and placing it between two pieces of SMF. The FMF used in the experiments are provided by Yangtze Optical Fiber and Cable Joint Stock Limited Company. A scanning electron microscope (SEM) micrograph of the FMF used in the experimental verification is shown in Fig. 1(b). The geometrical structure and the relative index difference profile (at a wavelength of 670nm) of FMF used in the simulation are shown in Fig. 2. The relative refractive index difference is defined as

\[\Delta n_{rel} = \frac{n_{rel} - n_0}{n_0} \]

where the \(n_{rel} \) and \(n_0 \) are the refractive indices of the core/ith inner cladding and pure silica of the FMF, respectively. The FMF is specially designed with five layers: a core region with a positive high refractive index \(\Delta n_{co} \) (GeO2-doped ridge), a first inner cladding region with a negative refractive index \(\Delta n_{cl1} \) (F-doped trench), a second inner cladding region with a positive refractive index \(\Delta n_{cl2} \) (GeO2-doped ridge); the third inner cladding region with a positive refractive index \(\Delta n_{cl3} \) (GeO2-doped ridge, \(\Delta n_{co} > \Delta n_{cl2} > \Delta n_{cl3} \)); and a pure SiO2 outer cladding. With the multi-layer geometrical structure and W-shaped refractive index difference profile, at the operational wavelength planned, the fiber supports the fundamental core mode, LP01, and does not support the LP11 mode, but does support the first circularly symmetric high order core mode, LP02, propagating in the fiber [16]. Using the finite element analysis method [17, 18], the simulated mode field distributions of the propagating core modes (at a wavelength of 1550nm), LP01 and LP02, are shown in Fig. 1(c) and (d), respectively.

Fig. 1. (a) Diagram of the SMF-FMF-SMF (SFS) structure. (b) The SEM micrograph of the FMF. (c) The simulated mode field distribution of the propagating LP01 mode in the FMF. (d) The simulated mode field distribution of the propagating LP02 mode in the FMF. SMF – Single Mode Fiber; FMF – Few Mode Fiber.

Fig. 2. Geometrical structure and refractive index difference profile (at 670nm) of the few mode fiber (FMF). The parameters used in the simulation are: \(d_{co} = 8 \mu m, \Delta n_{co} = 1.99\% \), \(d_{cl1} = 14.3 \mu m, \Delta n_{cl1} = -0.40\% \), \(d_{cl2} = 18 \mu m, \Delta n_{cl2} = 0.48\% \), \(d_{cl3} = 30 \mu m, \Delta n_{cl3} = 0.14\% \).

Fig. 3. Calculated \(\Delta \beta \) vs. wavelength and simulated transmission spectrum of the SFS structure with unstrained FMF under temperature of 25°C (L=50cm).
In the SFS sensor structure, the LP₀₁ and LP₀₂ modes propagating in the FMF are excited by the fundamental core mode, LP₀₀₁, in the input SMF. The interference between the LP₀₁ and LP₀₂ modes is selected by using the output SMF. If the optical power ratios transferred to the LP₀₁ and LP₀₂ modes from the input SMF are \(t₁ = P₁/Pₘ \) and \(t₂ = P₂/Pₘ \), respectively, then the transmission through the FMF is simply given by [10]:

\[
T = \frac{P_{out}}{P_{in}} = t₁^2 + t₂^2 + 2t₁t₂\cos(\varphi(\lambda))
\]

(1)

where \(\varphi(\lambda) \) is the phase difference developed between the LP₀₁ and LP₀₂ mode in the FMF forming the basis of the sensor with the physical length of \(L \), which is represented by:

\[
\varphi(\lambda) = \Delta\beta(\lambda) \cdot L
\]

(2)

where \(\Delta\beta = \beta₀₁ - \beta₀₂ = \frac{2\pi\Delta n_{eff}}{\lambda} \) is the propagation constant difference between the LP₀₁ and LP₀₂ modes, and \(\beta₀₁ \) and \(\beta₀₂ \) are the propagation constants of the LP₀₁ and LP₀₂ modes in the FMF, respectively. \(\Delta n_{eff} \) is the effective index difference between the LP₀₁ and LP₀₂ modes. With the fiber parameters given in Fig. 2, using the finite element analysis method, the simulated relationship between \(\Delta\beta \) and the wavelength (at a temperature of 25°C) without axial strain, is depicted as a dashed line in Fig. 3. The calculated transmission spectrum combining Equation (1) and the simulated value of \(\Delta\beta \) is shown as a solid line in Fig. 3, where the physical length of the FMF employed is 50cm. In Fig.3, the calculated CWL for a straight FMF at a temperature of 25°C is 1556.20nm, which coincides well the experimental value of 1556.22nm. Due to the fact that at the operational wavelength, the dispersion of \(\Delta\beta \) exhibits non-linear behavior and has a maximum, corresponding to the value of the CWL in the transmission spectrum, the periods of interference fringes closest to the CWL from both sides reach a maximum. As shown in Fig. 3, numbering from the peaks that lie closest to the CWL from both sides, the peaks that are located on the higher wavelength side of CWL (i.e., within the region from CWL to 1580nm) are denoted as \(P₁₁ \), \(P₁₂ \), ..., respectively. Peaks that are located on the lower wavelength side of CWL (i.e., within the region from 1530nm to CWL) are denoted as \(P₃₁ \), \(P₃₂ \), ..., respectively.

III. Temperature Sensitivities of Peaks

Because the phase difference between the LP₀₁ and LP₀₂ modes in the sensor is a function of both the operational wavelength, \(\lambda \), and the perturbation parameter, \(\chi \) (temperature or strain), as shown in Equation (2). When the whole length of the FMF, \(L \), acts as the sensing element, the change in the phase difference can be written as [8]:

\[
\frac{\Delta \varphi}{\Delta \lambda} = \frac{\partial \varphi}{\partial \lambda} \Delta \lambda + \frac{\partial \varphi}{\partial \chi} \Delta \chi
\]

(3)

where \(\Delta \chi \) represents temperature variations, \(\Delta T \), or strain induced elongations, \(\Delta L \). For a constant phase point (\(\Delta \varphi = 0 \)), the following is given:

\[
\frac{\Delta \lambda}{\Delta \chi} = \frac{1}{L} \left(\frac{\partial \varphi}{\partial \chi} \right) \left(\frac{\partial (\Delta \beta)}{\partial \lambda} \right)^{-1}
\]

(4)

When the temperature of the FMF change by \(\Delta T \), Equation (4) can be written as:

\[
\frac{\Delta \lambda}{\Delta T} = \frac{1}{L} \left(\frac{\partial \varphi}{\partial T} \right) \left(\frac{\partial (\Delta \beta)}{\partial \lambda} \right)^{-1}
\]

(5)

where \(\frac{\partial \varphi}{\partial T} \) is the change of \(\varphi \) with respect to the per degree change of temperature. As both \(L \) and \(\Delta \beta \) change simultaneously with the variation in temperature, \(\frac{\partial \varphi}{\partial T} \) is given by [19]:

\[
\frac{\partial \varphi}{\partial T} = \frac{\partial (\Delta \beta L)}{\partial T} - \frac{\partial (\Delta \beta)}{\partial T} + \Delta \beta \left(\frac{\alpha}{L} \right) L
\]

(6)

where \(\alpha = \frac{1}{L} \frac{\partial L}{\partial T} = 5.1 \times 10^{-7} / ^\circ C \) is the thermal expansion coefficient for pure silica. To calculate Equation (6), the simulated value of \(\Delta \beta \) at temperatures of 25°C, 35°C, 45°C, 55 °C, 65°C and the values of \(\frac{\partial (\Delta \beta)}{\partial T} \) as a function of wavelength are calculated and depicted in Fig. 4.

![Fig. 4. Simulated results of \(\Delta \beta \) under different temperatures and \(\frac{\partial (\Delta \beta)}{\partial T} \) with wavelength.](image-url)

Combing Equations (5) and (6), the temperature wavelength sensitivity of the peaks, \(\Delta \lambda / \Delta T \), as a function of wavelength, is thus given by Equation (7). As shown in Equation (7), with specified fiber parameters and structures shown in Fig. 2, the remained terms, \(\frac{\partial (\Delta \beta)}{\partial T} \), \(\Delta \beta \), and \(\frac{\partial (\Delta \beta)}{\partial \lambda} \) in (7) are only related to the wavelength. The calculated \(\Delta \lambda / \Delta T \) as a function of the normalized wavelength (defined as \(\lambda / \lambda_{norm} \)) is depicted in the Fig. 9 as a solid line, together with the experimental results.

\[
\frac{\Delta \lambda}{\Delta T} = -\left(\frac{\partial \Delta \beta}{\partial T} + \Delta \beta \cdot \alpha \right) \left(\frac{\partial (\Delta \beta)}{\partial \lambda} \right)^{-1}
\]

(7)

To verify the temperature sensitivity simulation discussed above, three SFS (SMF-FMF-SMF) sensor structures with
FMF physical lengths of 30cm, 40cm, 50cm were explored in the experiments carried out. The SFS sensors are formed by splicing a piece of FMF between two sections of standard SMF (Coring SMF-28e). The transmission spectra of three free SFS structures at room temperature are shown in Fig. 5. Because peaks are easy to identify and monitor in the interference spectra, the temperature sensitivities of the proposed SFS structure are fully explored in the experiments by investigating the wavelength shifts of 18 peaks in the transmission spectra of each SFS structure: \(\text{P}_{L1}, \text{P}_{L2}, ..., \text{P}_{L9}, \) and \(\text{P}_{H1}, \text{P}_{H2}, ..., \text{P}_{H9}, \) around temperatures of 25℃ and 60℃.

Fig. 5. Transmission spectra of the SFS structures employing 30cm, 40cm, 50cm length of FMF under room temperature (T= 25℃).

The schematic diagram of the experimental setup used to measure the temperature sensitivity of the SFS sensor device is shown in Fig. 6. To study the effect of temperature, the FMF section was passed through a temperature furnace. Light was launched into the SFS structure using an Er -doped amplified spontaneous emission (ASE) broadband light source over a wavelength range of 1520nm to 1600nm, and the transmission spectra were recorded by use of an Optical Spectrum Analyzer (OSA, AQ6317B – with a wavelength accuracy of 0.02 nm). The transmission spectra of the SFS structure with 50cm length of FMF at temperatures of 58.05℃, 60.08℃, and 61.04℃ are shown in Fig. 7. The wavelength shifts of \(\text{P}_{L1}, ..., \text{P}_{L9}, \) and \(\text{P}_{H1}, ..., \text{P}_{H9}, \) around the temperature of 60℃ with the 50cm length FMF are shown in Fig. 8 (a) and (b), respectively. As shown in both Fig. 7 and Fig. 8, the peaks on each side of the CWL shift in opposite directions, and \(\text{P}_{L1} \) and \(\text{P}_{H1} \) exhibits much larger shifts than other peaks. As the wavelength spacing between peaks and the CWL becomes larger, the temperature sensitivity becomes a constant.

Fig. 7. The transmission spectra of the SFS structure under temperature of 58.05℃, 60.08℃, and 61.04℃ with the FMF physical length of 50cm.

Fig. 8. Wavelength shifts of peaks in the transmission spectra of the SFS sensor from the temperature sensing system with the FMF physical length of 50cm.

The temperature sensitivity of the measured wavelength (here are 18 peaks in the transmission spectrum) is only related to the wavelength spacing of the measured wavelength to the CWL. The physical length of the FMF used in the SFS sensor and the temperature applied to the FMF section may change the wavelength separation between the peak wavelength and the CWL, in return, affect the corresponding temperature sensitivity of the measured peak wavelength. As the peak wavelength value approaching the CWL value (\(\lambda/\lambda_{\text{CWL}} \rightarrow 1 \)),

The experimental temperature sensitivities vs the normalized wavelength of the SFS sensor device employing different lengths of FMF (30cm, 40cm, and 50cm), measured around temperature of 25℃ and 60℃, are plotted in Fig. 9, and agree well with the simulated results. As shown in Fig. 9, the temperature sensitivity of the measured wavelength is only related to the wavelength spacing of the measured wavelength to the CWL.
because the value of $\partial (\Delta \beta) / \partial \lambda$ in Equation (7) reaches zero, the temperature sensitivity increase significantly, as shown in Fig. 9, from both the theoretical and experimental points of view. However, the mathematical-derived infinitely high strain or temperature sensitivity at the CWL has no practical meaning, because $\partial (\Delta \beta) / \partial \lambda = 0$ at the CWL from the theoretical analysis, and infinite length of FMF is needed in experiments to minimize the wavelength spacing between the wavelength of P_{L1}/P_{H1} and the CWL, which is impractical in applications.

IV. STRAIN SENSITIVIES OF PEAKS

In the strain sensor formed by the SFS structure, if the FMF section is strained longitudinally at a constant temperature with a change of length, ΔL, occurring, Equation (4) can be written as:

$$\frac{\Delta \lambda}{\Delta \varepsilon} = - \frac{\partial \varphi}{\partial L} \left(\frac{\partial (\Delta \beta)}{\partial \lambda} \right)^{-1} \tag{8}$$

where $\Delta \varepsilon = \Delta L / L$ is the variation of the axial strain. $\partial \varphi / \partial L$ is the change in phase difference produced by per unit increase in the physical length of the FMF. Using the following equation given in [20]:

$$\frac{\partial \varphi}{\partial L} = \Delta \beta + \frac{k_0^2}{2 \beta_{p1} \beta_{p2}} \left\{ \gamma \left[n_0^4 \Delta \beta + \left(n_{co}^4 - n_0^4 \right) \right] + V \delta \left[\beta_{p1} \frac{\partial h_{p1}}{\partial V} - \beta_{p2} \frac{\partial h_{p2}}{\partial V} \right] \right\} \tag{9}$$

where $\gamma = \frac{p_2}{2} - \sigma (p_1 + p_2)$, $\delta = \sigma (n_{co}^4 - n_0^4) + \frac{\gamma}{2} (n_{co}^4 - n_0^4)$, p_{i1} and p_{i2} are strain-optic coefficients for fused silica (0.12 and 0.27, respectively), σ = 0.17 is the Poisson ratio. $k_0 = 2 \pi / \lambda$ is the free space wave vector. $V = k_0 (d_{co} / 2) \sqrt{n_{co}^2 - n_0^2}$ is the normalized frequency of the FMF. b_{pi} (i=1,2) is the normalized propagation constant, and is represented as:

$$\beta_{pi} = k_0^2 \left[n_0^2 + b_{pi} \left(n_{co}^2 - n_0^2 \right) \right] \tag{10}$$

Given the cross-sectional parameters and the refractive index difference profile of the FMF sensor device presented in Fig. 2, the calculated value of $\partial \varphi / \partial L$ as a function of wavelength is shown in Fig. 10. By combining Equations (8), (9), and (10), the strain sensitivity of peaks, $\Delta \lambda / \Delta \varepsilon$, can be written as a function of wavelength:

$$\frac{\Delta \lambda}{\Delta \varepsilon} = \left\{ \Delta \beta + \frac{k_0^2}{2 \beta_{p1} \beta_{p2}} \left[n_0^4 \Delta \beta + \left(n_{co}^4 - n_0^4 \right) \right] \right\} + \frac{\partial (\Delta \beta)}{\partial \lambda} \left(\frac{\partial (\Delta \beta)}{\partial \lambda} \right)^{-1} \tag{11}$$

Using the simulated value of $\Delta \beta$ in Fig. 3 and $\partial \varphi / \partial L$ in Fig. 10, the simulated strain sensitivity of peaks, $\Delta \lambda / \Delta \varepsilon$, as a function of the normalized wavelength is depicted as the solid line in Fig. 13, together with the experimental results also obtained.

![Fig. 10. The calculated relationship between $\partial \varphi / \partial L$ of the FMF with wavelength.](image-url)
![Image](image_url)

Fig. 11. Experimental setup of strain sensitivity measurement based on the SFS structure. ASE – amplified spontaneous emission source; OSA – Optical Spectrum Analyzer; SMF – Single Mode Fiber; FMF – Few Mode Fiber; FBG – Fiber Bragg Grating.

Fig. 12. Wavelength shifts of peaks in the transmission spectra of the SFS sensor from the strain sensing system with the FMF physical length of 50cm.

Fig. 13. The simulated and experimental strain sensitivity of the SFS structure vs. the normalized wavelength.

V. DISCUSSION

When the whole length of the FMF acts as a sensing element in a SFS sensor device constructed, the results, both theoretical and experimental seen in Fig. 9 and Fig. 13 show that the strain and temperature sensitivities of such a SFS structure are independent of the physical lengths of the FMF used in the sensor. Moreover, with the geometrical structure and relative refractive index difference profile of the FMF given in Fig. 1 in Section II, the strain/temperature sensitivity of a specific peak is governed by the wavelength separation between the peak wavelength and the CWL. The wavelength separation between the two interference maxima (the Free Spectral Range, FSR) can be deduced from the Equation (1) and (2), and approximated as:

\[
\Delta \lambda \approx \frac{\lambda^2}{\Delta n_{eff} L}
\]

Therefore, by increasing the physical length, \(L \), of the FMF used in the sensor structure, it can be seen from Equation (12) that the FSR will decrease, and the wavelength separation between peak wavelengths (i.e. \(P_{L1} \) and \(P_{H1} \)) get smaller, as seen in Fig. 5. In this case, as seen in Fig. 9 and Fig. 13, in the experimental application of the SFS structured temperature or strain sensors, the sensitivity performance of the sensors can be improved by increase the physical length of the FMF used in the SFS structure, especially for the sensors based on the peak wavelength detection of \(P_{L1} \) and \(P_{H1} \).

A. Temperature and strain sensors based on peak detections

Based on the temperature and strain sensitivity study shown in Section III and IV, the peaks, \(P_{L1} \) and \(P_{H1} \), in the transmission spectrum of SFS structure exhibit high temperature and strain sensitivities as their wavelengths approaching the CWL. Thus this can signal a sensitivity of -0.586 nm/℃ and 0.704 nm/℃ for temperature measurement, and a sensitivity of -0.043 nm/με and 0.041 nm/με for strain measurement (where \(L=50\text{cm} \) for FMF), respectively, or even higher sensitivites if the locations of the peaks (i.e. \(P_{L1} \) and \(P_{H1} \)) become closer to the CWL, by increasing the length of the FMF section. However, when the wavelength separations between the peaks and the CWL become large in the transmission spectrum, peaks linearly shift with temperature or strain variations. Using the linear strain and temperature sensitivities of the peaks, a simple, co-located, high-resolution sensing structure for the simultaneous discrimination of strain and temperature can be developed, as reported by Lu et al [15].

Besides, the SFS structure can also be developed into a compact strain/temperature sensor with the merits of high sensitivity, polarization-independence and low cost, when the initial peak wavelength is adjusted to be close to the CWL. The comparison between the simulated performance of the proposed SFS sensor device in this study and the reported in-line MZI-based strain/temperature sensors is shown in Table I.

TABLE I

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Interference Modes</th>
<th>Strain Sensitivity (pm/με)</th>
<th>Temperature Sensitivity (pm/℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>LP_{01} mode and another unknown high order core mode</td>
<td>18.6</td>
<td>58.5</td>
</tr>
<tr>
<td>[2]</td>
<td>LP_{01} mode and cladding mode</td>
<td>Not given</td>
<td>88</td>
</tr>
<tr>
<td>[3]</td>
<td>LP_{01} modes coming from different cores</td>
<td>0.284</td>
<td>130.6</td>
</tr>
<tr>
<td>This study</td>
<td>LP_{01} and LP_{02} modes</td>
<td>43</td>
<td>704</td>
</tr>
</tbody>
</table>

B. Large strain and temperature measurement range sensors with enhanced sensitivities based on the CWL and peak wavelength detection.

In a way similar to all in-line MZI-based sensors, the peak
wavelength detection method may suffer from a limited measurement range and confusion due to a multi-value problem because it is difficult to identify and follow one specific peak from periodically changed interference fringes. As shown in the previous studies, the CWL in the transmission spectrum of the SFS structure is exclusive, easy to identify and monotonically shift in the transmission spectrum with a strain sensitivity of 0.001 nm/µC and a temperature sensitivity of 0.042 nm/°C at the operation wavelength [11-15]. By combining both characteristics of the CWL and the peaks in the transmission spectrum of the SFS structure, strain or temperature sensor designs with large measurement range and enhanced sensitivity can be expected, which gives good monitoring prospects in many practical applications, such as health monitoring of civil structures and situations where temperature compensation is required [22].

VI. CONCLUSION

This paper has presented a comprehensive study on the strain and temperature sensitivities of the peaks in the transmission spectrum of an in-line MZI-based fiber optic sensor using the interference between the LP_{01} and LP_{02} modes. Both the theoretical analysis and the experimental results show that with the specific FMF used in the paper, the strain and temperature sensitivities of the peaks in the transmission spectrum of the sensor are governed by the wavelength spacing between the peak wavelength and the CWL. By choosing the appropriate peaks in the transmission spectrum, the basic SFS structure can be designed as several different kind of sensors, that can be configured to satisfy the range of practical applications possible.

ACKNOWLEDGMENT

The authors would like to thank Yangtze Optical Fiber and Cable Joint Stock Limited Company for providing the FMF used in the experiment. Financial support from the National Natural Science Foundation of China (Project no. 61775186); the Fujian Provincial Department of Science and Technology (Project no. 2014H6027); the Marine and Fisheries Bureau of Xiamen (Project no. 16CZB025SF03); and Bureau of Science and Technology of Quanzhou (Project no. 2015G32) are gratefully acknowledged. The support of the Royal Academy of Engineering and the George Daniels Educational Trust are greatly appreciated.

REFERENCES

