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BLOCK ALGEBRAS WITH HH1 A SIMPLE LIE ALGEBRA

MARKUS LINCKELMANN AND LLEONARD RUBIO Y DEGRASSI

Abstract. The purpose of this note is to add to the evidence that the algebra structure of

a p-block of a finite group is closely related to the Lie algebra structure of its first Hochschild

cohomology group. We show that if B is a block of a finite group algebra kG over an algebraically
closed field k of prime characteristic p such that HH1(B) is a simple Lie algebra and such that

B has a unique isomorphism class of simple modules, then B is nilpotent with an elementary

abelian defect group P of order at least 3, and HH1(B) is in that case isomorphic to the Witt
algebra HH1(kP ). In particular, no other simple modular Lie algebras arise as HH1(B) of a

block B with a single isomorphism class of simple modules.

1. Introduction

Let p be a prime and k an algebraically closed field of characteristic p. For G a finite group, a
block of kG is an indecomposable direct factor of the group algebra kG. There is an abundance of
stable equivalences in block theory, but it is notoriously difficult to pin down even the most basic
numerical invariants - such as the number of isomorphism classes of simple modules - through
stable equivalences.

The main motivation for the present note is that on the one hand, the Lie algebra structure
of HH1(B) of a block B of a finite group algebra kG is invariant under stable equivalences of
Morita type (cf. [4, Theorem 10.7]), and on the other hand, there is evidence for close structural
connections between the algebra structure of B and the Lie algebra structure of HH1(B) (cf. [1]).
Understanding those connections might therefore ultimately contribute towards determining block
invariants in some cases.

We describe some of the structural connections between B and HH1(B) in two extreme cases
for blocks with a single isomorphism class of simple modules.

Theorem 1.1. Let G be a finite group and let B be a block algebra of kG having a unique isomor-
phism class of simple modules. Then HH1(B) is a simple Lie algebra if and only if B is nilpotent
with an elementary abelian defect group P of order at least 3. In that case, we have a Lie algebra
isomorphism HH1(B) ∼= HH1(kP ).

Theorem 1.1 implies in particular that none of the other simple modular Lie algebras occur as
HH1(B) of some block algebra of a finite group with the property that B has a single isomorphism
class of simple modules. See [7], [8] for details and further references on the classification of simple
Lie algebras in positive characteristic. We do not know whether the hypothesis on B to have a
single isomorphism class of simple modules is necessary in Theorem 1.1.

Theorem 1.2. Let G be a finite group and let B be a block algebra of kG having a nontrivial
defect group and a unique isomorphism class of simple modules. Then dimk(HH1(B)) ≥ 2.
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The hypothesis that B has a single isomorphism class of simple modules is necessary in Theorem
1.2. For instance, if P is cyclic of order p ≥ 3 and if E is the cyclic automorphism group of order
p− 1 of P , then HH1(k(P oE)) has dimension one. This follows immediately from the centraliser
decomposition of Hochschild cohomology; see [3, Theorem 1.4] for a more general result.

2. Quoted results

We collect in this section results needed for the proof of Theorem 1.1.

Theorem 2.1 (Okuyama and Tsushima [5]). Let G be a finite group and B a block algebra of kG.
Then B is a nilpotent block with an abelian defect group if and only if J(B) = J(Z(B))B.

Let A be a finite-dimensional (associative and unital) k-algebra. A derivation on A is a k-linear
map f : A → A satisfying f(ab) = f(a)b + af(b) for all a, b ∈ A. The set Der(A) of derivations
on A is a Lie subalgebra of Endk(A), with respect to the Lie bracket [f, g] = f ◦ g − g ◦ f , for
any f , g ∈ Endk(A). For c ∈ A, the map sending a ∈ A to the additive commutator [c, a] =
ca−ac is a derivation on A; any derivation arising this way is called an inner derivation on A. The
set IDer(A) of inner derivations is a Lie ideal in Der(A), and we have a canonical identification
HH1(A) ∼= Der(A)/IDer(A). See [9, Chapter 9] for more details on Hochschild cohomology. If A
is commutative, then HH1(A) ∼= Der(A). A k-algebra A is symmetric if A is isomorphic to its
k-dual A∗ as an A-A-bimodule; this implies that A is finite-dimensional.

Theorem 2.2 ([1, Theorem 3.1]). Let A be a symmetric k-algebra and let E be a maximal semisim-
ple subalgebra. Let f : A→ A be an E-E-bimodule homomorphism satisfying E + J(A)2 ⊆ ker(f)
and Im(f) ⊆ soc(A). Then f is a derivation on A in socZ(A)(Der(A)), and if f 6= 0, then f is an
outer derivation of A. In particular, we have∑

S

dimk(Ext1A(S, S)) ≤ dimk(socZ(A)(HH
1(A)))

where in the sum S runs over a set of representatives of the isomorphism classes of simple A-
modules.

Corollary 2.3 ([1, Corollary 3.2]). Let A be a local symmetric k-algebra. Let f : A → A be a
k-linear map satisfying k · 1 + J(A)2 ⊆ ker(f) and Im(f) ⊆ soc(A). Then f is a derivation on A
in socZ(A)(Der(A)), and if f 6= 0, then f is an outer derivation of A. In particular, we have

dimk(J(A)/J(A)2) ≤ dimk(socZ(A)(HH
1(A))) .

Theorem 2.4 (Jacobson [2, Theorem 1]). Let P be a finite elementary abelian p-group of order
at least 3. Then HH1(kP ) is a simple Lie algebra.

The converse to this theorem holds as well.

Proposition 2.5. Let P be a finite abelian p-group. If HH1(kP ) is a simple Lie algebra, then P
is elementary abelian of order at least 3.

Proof. Suppose that P is not elementary abelian; that is, its Frattini subgroup Q = Φ(P ) is
nontrivial. Since P is abelian, we have HH1(kP ) = Der(kP ). We will show that the set of
derivations with image contained in I(kQ)kP = ker(kP → kP/Q) is a nonzero Lie ideal in Der(kP ),
where I(kQ) is the augmentation ideal of kQ. Indeed, every element in Q is equal to xp for
some x ∈ P , and hence every element in I(kQ) is a linear combination of elements of the form
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(x − 1)p, where x ∈ P . Every derivation on kP annihilates all elements of this form (using the
fact that k has characteristic p), and hence every derivation on kP preserves I(kQ)kP . Thus
there is a canonical Lie algebra homomorphism Der(kP ) → Der(kP/Q). This homomorphism is
nonzero; indeed, it is an isomorphism on the components of Hochschild cohomology corresponding
to H1(P ; k) ∼= H1(P/Q; k) under the centraliser decomposition. The kernel of this canonical Lie
algebra homomorphism contains all derivations with image in soc(kP ), so this kernel is nonzero
by Corollary 2.3. Thus HH1(kP ) is not simple as a Lie algebra, whence the result. �

Remark 2.6. Theorem 1.1 implies that the hypothesis on P being abelian is not necessary in the
statement of 2.5.

3. Auxiliary results

In order to exploit the hypothesis on HH1 being simple in the statement of Theorem 1.1, we
consider Lie algebra homomorphisms into the HH1 of subalgebras and quotients.

Lemma 3.1. Let A be a finite-dimensional k-algebra and f a derivation on A. Then f sends
Z(A) to Z(A), and the map sending f to the induced derivation on Z(A) induces a Lie algebra
homomorphism HH1(A)→ HH1(Z(A)).

Proof. Let z ∈ Z(A). For any a ∈ A we have az = za, hence f(az) = f(a)z + af(z) = f(z)a +
zf(a) = f(za). Comparing the two expressions, using zf(a) = f(a)z, yields af(z) = f(z)a, and
hence f(z) ∈ Z(A). The result follows. �

Lemma 3.2. Let A be a local symmetric k-algebra such that J(Z(A))A 6= J(A). Then the canonical
Lie algebra homomorphism HH1(A)→ HH1(Z(A)) is not injective.

Proof. Since J(Z(A))A < J(A), it follows from Nakayama’s lemma that J(Z(A))A+J(A)2 < J(A).
Thus there is a nonzero linear endomorphism f of A which vanishes on J(Z(A))A + J(A)2 and
on k · 1A, with image contained in soc(A). In particular, f vanishes on Z(A) = k · 1A + J(Z(A)).
By 2.3, the map f is an outer derivation on A. Thus the class of f in HH1(A) is nonzero, and its
image in HH1(Z(A)) is zero, whence the result. �

Lemma 3.3. Let A be a local symmetric k-algebra and let f be a derivation on A such that Z(A) ⊆
ker(f). Then f(J(A)) ⊆ J(A).

Proof. Since A is local and symmetric, we have soc(A) ⊆ Z(A), and J(A) is the annihilator of
soc(A). Let x ∈ J(A) and y ∈ soc(A). Then xy = 0, hence 0 = f(xy) = f(x)y + xf(y). Since
y ∈ soc(A) ⊆ Z(A), it follows that f(y) = 0, hence f(x)y = 0. This shows that f(x) annihilates
soc(A), and hence that f(x) ∈ J(A). �

Lemma 3.4. Let A be a finite-dimensional k-algebra and J an ideal in A.

(i) Let f be a derivation on A such that f(J) ⊆ J . Then f(Jn) ⊆ Jn for any positive integer n.

(ii) Let f , g be derivations on A and let m, n be positive integers such that f(J) ⊆ Jm and g(J) ⊆
Jn. Then [f, g](J) ⊆ Jm+n−1.

Proof. In order to prove (i), we argue by induction over n. For n = 1 there is nothing to prove. If
n > 1, then f(Jn) ⊆ f(J)Jn−1 + Jf(Jn−1). Both terms are in Jn, the first by the assumptions,
and the second by the induction hypothesis f(Jn−1) ⊆ Jn−1. Let y ∈ J . Then [f, g](y) =
f(g(y)) − g(f(y)). We have g(y) ∈ Jn; that is, g(y) is a sum of products of n elements in J .
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Applying f to any such product shows that the image is in Jm+n−1. A similar argument applied
to g(f(y)) implies (ii). �

Proposition 3.5. Let A be a finite-dimensional k-algebra. For any positive integer m denote by
Der(m)(A) the k-subspace of derivations f on A satisfying f(J(A)) ⊆ J(A)m.

(i) For any two positive integers m and n we have [Der(m)(A),Der(n)(A)] ⊆ Der(m+n−1)(A).

(ii) The space Der(1)(A) is a Lie subalgebra of Der(A).

(iii) For any positive integer m, the space Der(m)(A) is an ideal in Der(1)(A).

(iv) Suppose that A is local. The space Der(2)(A) is a nilpotent Lie subalgebra of Der(A).

Proof. Statement (i) follows from 3.4 (ii). The statements (ii) and (iii) are immediate consequences
of (i). Since A is local and since 1 is annihilated by any derivation on A, statement (iii) follows
from (i) and the fact that J(A) is nilpotent. �

4. Proof of Theorems 1.1 and 1.2

Let G be a finite group and B a block of kG. Suppose that B has a single isomorphism class of
simple modules. If B is nilpotent and P a defect group of B, then by [6], B is Morita equivalent
to kP , and hence there is a Lie algebra isomorphism HH1(B) ∼= HH1(kP ). Thus if B is nilpotent
with an elementary abelian defect group P of order at least 3, then HH1(B) is a simple Lie algebra
by 2.4.

Suppose conversely that HH1(B) is a simple Lie algebra. If J(B) = J(Z(B))B, then B is
nilpotent with an abelian defect group P by 2.1. As before, we have HH1(B) ∼= HH1(kP ), and
hence 2.5 implies that P is elementary abelian of order at least 3.

Suppose that J(Z(B))B 6= J(B). Let A be a basic algebra of B. Then J(Z(A))A 6= J(A).
Moreover, A is local symmetric, since B has a single isomorphism class of simple modules. Thus
soc(A) is the unique minimal ideal of A. We have J(A)2 6= {0}. Indeed, if J(A)2 = {0}, then
soc(A) contains J(A), and hence J(A) has dimension 1, implying that A has dimension 2. In that
case B is a block with defect group of order 2. But then HH1(A) ∼= HH1(kC2) is not simple, a
contradiction. Thus J(A)2 6= {0}, and hence soc(A) ⊆ J(A)2. By 3.2, the canonical Lie algebra
homomorphism HH1(A)→ HH1(Z(A)) is not injective. Since HH1(A) is a simple Lie algebra, it
follows that this homomorphism is zero. In other words, every derivation on A has Z(A) in its
kernel. It follows from 3.3 that every derivation on A sends J(A) to J(A). Thus, by 3.4, every
derivation on A sends J(A)2 to J(A)2. This implies that the canonical surjection A → A/J(A)2

induces a Lie algebra homomorphism HH1(A)→ HH1(A/J(A)2). Note that the algebra A/J(A)2

is commutative, and hence HH1(A/J(A)2) = Der(A/J(A)2). Since J(A)2 contains soc(A), it
follows that the kernel of the canonical map HH1(A)→ HH1(A/J(A)2) contains the classes of all
derivations with image in soc(A). Since there are outer derivations with this property (cf. 2.3),
it follows from the simplicity of HH1(A) that the canonical map HH1(A) → HH1(A/J(A)2) =
Der(A/J(A)2) is zero. Thus every derivation on A has image in J(A)2. But then 3.5 implies
that Der(A) = Der(2)(A) is a nilpotent Lie algebra. Thus HH1(A) is nilpotent, contradicting the

simplicity of HH1(A). The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. Denote by A a basic algebra of B. Since B has a unique isomorphism
class of simple modules and a nontrivial defect group, it follows that A is a local symmetric
algebra of dimension at least 2. By 2.3 we have dimk(HH1(A))) ≥ dimk(J(A)/J(A)2). Thus
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dimk(HH1(A)) ≥ 1. Moreover, if dimk(HH1(A)) = 1, then dimk(J(A)/J(A)2) = 1, and hence
A is a uniserial algebra. In that case B is a block with a cyclic defect group P and a unique
isomorphism class of simple modules, and hence B is a nilpotent block. Thus A ∼= kP . We have
dimk(HH1(kP )) = |P |, a contradiction. The result follows. �

Remark 4.1. All finite-dimensional algebras in this paper are split thanks to the assumption
that k is algebraically closed. It is not hard to see that one could replace this by an assumption
requiring k to be a splitting field for the relevant algebras. The statements 3.1 and 3.4 do not
require any hypothesis on k.
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