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Abstract

In this thesis, We review the history behind brane tilings and quiver gauge theories as
well as recent developments within this field. The aim of this work is to present a concise
introduction towards this field as well as recent new developments on their classifications.
In the chapter 3, we present a classification of brane tilings purely from a geometric point of
view, i.e given a toric diagram of certain area, we find a host of quiver gauge theories that
have their vacuum moduli space (VMS) given by the toric geometry.

Brane tilings are bipartite periodic graphs on a torus and they are a graphic representation
of 4𝑑 𝒩 = 1 supersymmetric gauge theories originating from D3-braning probing a Calabi-
Yau 3-fold singularity. The combinatoric properties of toric diagrams brane tilings/dimer
models make themselves the largest and richest set of supersymmetric gauge theories know so
far. However, the classification of these theories still remain on the physical side and another
classification based on the toric diagram of VMS is developed in this work. In particular,
we classified all toric CY 3-folds with toric diagrams up to area 8 and constructed a brane
tiling for each of them. To do so, we developed implementations of dimer model techniques
specifically tailored for partial resolution. We also created computational modules for a wide
range of manipulations and computations involving brane tilings.
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Chapter 1

Introduction

Modern theoretic physics has two central pillars: general relativity and quantum mechanics.

General relativity affords us the theoretic framework for understanding the large scale of

universe. It is understood as perturbative correction to the prediction of Newtonian gravity

for the motions of planets and curving of light. It is essentially a geometric view on the

universe, where the curvature tells the masses how to move and the masses back-reacts to

tell the space how to curve. It changes our fundamental view about space and time: they

are dynamical. On the other hand, quantum mechanics is for the microscopic side, where

atoms and particles are in the center of the scene. Importantly, evidences continue to show

that quantum mechanics is part of the property of the Nature.

The reconciliation and union of general relativity and quantum mechanics are now at

the center of modern theoretic physics research due to the common perception that our

understanding of the fundamental laws of Nature is only complete when we can derive the

two theories from a unified one. However, these two fields have differing concepts, types of

calculation and even the definition of observables and they developed almost in parallel until

about 1980’s. Just to enumerate some of the common issues arise in relativistic quantum

mechanics (QFT), one usually has to require two fields defined at two different spacetime

points with space-like separation commute. However, gravity dictates that one can only

know about the nature of the separation when the metric of the space is defined, which itself

is dynamic problem. More importantly, the metric itself is a dynamic object, whose quanta

is the famous graviton.

15



One usually tries to combine quantum mechanics and general relativity within a per-

turbative regime of quantum field theory. This method runs into the famous ultraviolet

divergences at higher order correction. This can be seen from dimensional analysis with

knowing the fact that the coupling constant for gravity i.e., Newton’s constant in 4𝐷 is pro-

portional to (length)2 and this gives extra powers of momenta when doing the loop integral

and this renders the conventional renormalization methods in QFT unfavourable. However,

string theory becomes popular when it purports to provide a consistent quantum theory of

gravity.

In next section we review some historical aspects of string theory as well as some basic

elements that are relevant to the main focus of this thesis.

1.1 Historical Aspects of String Theory

String theory was first developed to understand the strong nuclear force in 1960’s, which

is the force holding constituent parts of a nucleus, such as protons, neutrons and quarks.

This theory has its basic building block as a string rather than normal particles. Particles

inside strong nuclear interaction are represented by different oscillation of strings. In early

1970’s, another theory called quantum chromodynamics was developed to solve problems

in string theory such as existence of spin-2 particle. However, string theory turned out to

be a more ambitious project to unify quantum mechanics with general relativity due to its

natural inclusion of the spin-two particle that can be interpreted as graviton. It is important

for us to quickly review some well understood salient features of the theory.

Gravity The first is that it naturally includes gravity for the theory to be consistent. Even

though the theory has corrections at higher energy, the lower energies the theory gives us

Einstein gravity. In contrast, QFT does not allow gravity to exist due to some reasons listed

in the previous section.

Yang-Mills Gauge Theory In addition to gravity, present elementary particle physics

standard model requires Yang-Mills theory with product gauge group 𝑆𝑈(3)×𝑆𝑈(2)×𝑈(1)

to account for large amount of experimental data. String theory naturally includes gauge

16



groups of this kind from models such as heterotic string theory and D-brane world volume

gauge theories.

Supersymmetry String theory also requires supersymmetry for consistency. Supersym-

metry is a symmetry that relates bosons with fermions and it is to be experimentally con-

firmed. The lack of data for supersymmetry indicates that our probing energy scale is prob-

ably below that of supersymmetry breaking and lower than the supersymmetric partners of

known particles. One of the major predictions can be made by supersymmetry is spacetime

supersymmetry and some argue that the energy scale for supersymmetry breaking is around

electroweak scale, i.e., from 100 GeV to a few TeV. The hope is that some superpartners

should be observable at Large Hadron Collider.

Extra Dimensions of Spacetime String theory has consistency requirements to predict

the dimension of the spacetime it lives in. Specifically, superstring theory is only consistent in

a 10 dimensional spacetime. These extra dimensions need to be compactified to make contact

with the 4 dimensional world we live in. Therefore, the compactified 6 dimensional space is

assumed to be an internal manifold and is small enough to be insensitive to experimental

detection. Here we briefly review the initial idea on compact dimension. The original idea

was first introduced by Kaluza and Klein in the 1920s. This was developed to unify gravity

with electromagnetism in 4 dimension by reducing 5 dimension gravity on a circle. This can

be illustrated more clearly in Fig. 1-1, where we can see the top cylinder has its surface being

2 dimensional. Now if we take the radius of the cylinder to extremely small, it effectively

becomes 1 dimensional as shown in the bottom of the figure. So one now replaces the long

dimension of the cylinder by our ordinary 4 dimensional and the short dimension by a 6

dimensional compact manifold. At large distance or lower energy, the compact internal

dimensions “escape” detection and the description becomes a four-dimensional low energy

effective theory of the full ten-dimensional one. However, the topological properties of this

invisible internal space determine the particle contents and structure of the four-dimensional

theory. Calabi-Yau mainfolds were first considered for compactification and they have rather

attractive phenomenological implications even though it suffers from the problems such as
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𝑀 × 𝐶

𝑀

Compactification

Figure 1-1: An illustration of compactification, where the base manifold is 𝑀 , where the 2D
cylinder looks effectively 1D from a far distance or in low energy limit

moduli space or the string theory landscape.

1.2 Some Elements of String Theory

Before we start discussing brane-tilings and its relation to toric geometry as well as their

recent development, it is worthwhile to develop some background from string theory. A more

detailed review on bosonic and superstring theories is presented in appendix A.1.

String theory is a theory of quantised, relativistic strings which are controlled by only

one free parameter - the string tension 𝑇 which is related to the Regge slope 𝛼′ through

𝑇 = (2𝜋𝛼′)−1. This greatly contrasts with the roughly twenty parameters in Standard Model

(coupling constants, fine structure constants, Weinberg angles etc.). Within the theory, there

are two topologically different strings, open string with two end points and closed strings

which is topologically a circle. The Nambu-Goto action for bosonic string is presented in

eq. (A.2). The world-sheet Σ swept out by the string is parametrised by (𝜎, 𝜏), which are the

spatial and time coordinates on Σ. The integral simply gives the invariant area measured by

the induced metric𝐺𝛼𝛽 = 𝜕𝛼𝑋
𝜇𝜕𝛽𝑋

𝜈𝜂𝜇𝜈 . The spacetime coordinate𝑋𝜇 is simply a map from

world-sheet Σ to the spacetime with Minkowski metric 𝜂𝜇𝜈 . The equation of motion after

fixing the gauge is simply a plane wave equation 𝜕𝛼𝜕
𝛼𝑋𝜇 = 0, whose solution in light cone

coordinates splits into left- and right-moving sectors. Quantisation of the mode expansions

of the solutions gives a spectrum that needs to be identified with particles in particle physics.
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Schematically, the spectrum is of the form 𝛼′𝑚2 = 𝑛 for 𝑛 ∈ Z+. Importantly, the spectrum

of the closed string always contains a spin two massless mode that can be identified with

the graviton. The scattering amplitude of these gravitons up to certain levels are shown

to be finite and in such perspective string theory is said to be a potential candidate for

quantum gravity. On the other hand, we can imposed either Dirichelet or Neumann boundary

condition for each end of the open string. Specifically, the Dirichelet boundary condition

fixes the end points of an open string, resulting the momentum of the open string not

being conserved. However, the Poincaré invariance implies the conservation space-time total

momentum, which in turn defines some the hyper-surfaces exchanging momentum with open

strings. They are called ‘D-branes’. Since the two ends of open strings are special positions

on the string, they can carry charges of fundamental representation of some gauge groups

(𝑆𝑂(32)) through Chan-Paton factors[12], such that the corresponding gauge group can be

thought to reside on the D-branes.

In the bosonic theory, tachyons with imaginary mass are present and their existence

within the spectrum indicates instability of the vacuum. Their elimination requires super-

symmetry, which is discussed in appendix A.1.2 in more detail. The inclusion of world-sheet

fermions 𝜓𝜇± allows different boundary conditions to be imposed on them i.e. Ramond

(periodic) or Neveu-Schwarz (anti-periodic) boundary conditions. Since closed string has

independent left- and right-movers, there are four different sectors with NS-NS, R-R sec-

tors generating spacetime bosons and NS-R, R-NS leading to spacetime fermions. On the

other hand, open strings have fixed ends on D-branes and therefore the modes are stand-

ing waves giving only R sector for fermions and NS sector for bosons. The quantisation

of this theory requires the superconformal symmetry to decouple the unphysical longitudial

(negative-norm) states, which requires the critical dimension of the theory to be 𝐷 = 10. On

top of this, the NS side of the spectrum still contains tachyons and the spectrum must be

truncated by Gliozzi-Scherk-Olive projection operator (see appendix A.1.2). Note that the

GSO projection is not just an ad-hoc construction to make the spectrum free of tachyon and

supersymmetric, it is also a requirement from one or two loop modular invariance of string

partition function.

With the previously described features of both open and closed superstrings, we sum-
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marise the five consistent string theories as follows. A more detailed construction of these

theories is reviewed in appendices A.1.2 to A.1.2. The type I theory has one set of supersym-

metry since it can be derived from world-sheet parity projection from type IIB. Therefore,

it is a 𝒩 = 1 theory of both open and closed strings with 16 supercharges. The ends

of the open strings are assgined gauge charges by Chan-Paton method [12]. In addition,

anomaly cancellation requires the gauge group to be 𝑆𝑂(32). If the theory only contains

closed strings, they are divided into type II and heterotic theory. The theory with opposite

chirality for the R-R ground state is called IIA and the one with same chirality is called IIB.

Note here the IIA theory is non-chiral and the IIB theory is chiral. Both theories have 32

supercharges since the Majorana-Weyl fermion in ten dimensions have 16 real components

and left- and right-moving sector are independent. The heterotic string theory is also a

theory of closed string only and it has 16 supercharges. This theory has its left- and right-

moving modes decoupled and the right-moving modes are the same as those in type II, the

left-moving modes are used to accommodating gauge symmetry through suitable current

algebra. Anomaly canacellation dictates the gauge theory to be 𝑆𝑂(32) or 𝐸8 × 𝐸8.

The five string theories are not completely independent and in fact they are related by a

web of dualities [13]. For example, T-duality shows that two different geometry are physically

equivalent under the transformation of radius 𝑅 → 𝑙2𝑠/𝑅, with 𝑙𝑠 =
√
𝛼′. T-duality relates

the two type II theories to each other and the two heteroritc theories to each other. This

duality is a manifestation of the extended nature of the one dimensional string. The S-duality

𝑔𝑠 → 1/𝑔𝑠 relates the weak coupling regime of one theory to the strong coupling regime of

another. This related type I theory to the 𝑆𝑂(32) heterotic theory and type IIB to itself.

The rest of the two theories, type IIA and heterotic 𝐸8 ×𝐸8 grow an eleventh dimension of

size 𝑔𝑠𝑙𝑠 when 𝑔𝑠 becomes large. This is the 11-dimensional M-theory [5].

However, for string theory to make contact with the nature, we need to build a 4-

dimensional out of the 5 10𝐷 critical superstring theories. The idea of string compacti-

fication was then borne out to solve this dimensional discrepancy. Six dimensions 𝐾 are

‘compactified’ in a sense they are ‘internal’ and far below current limits of experimental

probes, as compared to the current observed macroscopic four dimensions 𝑀4. Therefore,

the 10-dimensional spacetime is a product of geometries of the form 𝑀4 × 𝐾. For string
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theory to be a theory of gravity, the metric on this 10-dimensional product space has to obey

the 10𝐷 Einstein equation. For the correct amount of supersymmetry, 𝐾 has to afford a

Ricci-flat metric to be a Calabi-Yau (CY) manifold [14]. Calabi-Yau manifolds offer another

equivalent definition as a Kähler manifold with vanishing first Chern class. There are various

ways of constructing CY manifolds, yet the largest class of non-compact CY manifolds are

constructed over toric varieties [15]. These varieties are in the form of weighted projective

spaces represented by reflexive polygons in certain lattices. The CY manifolds of such type

are the central objects within this thesis and we will develop a more detailed survey later in

this chapter.

As strings playing a fundamental role in string theory, D-branes on the other hand serves

as a deep connection between algebra and geometry. Since D-branes carry gauge theories in

its world-volume, they are a natural starting point for building phenomenological models.

Following this route, D-branes are placed on a singularity of type C2/Γ (where Γ is a subgroup

of 𝑆𝑈(2)) [16], to produce gauge theories that are captured by affine Dynkin diagrams. The

fractional branes are mapped to nodes in the diagrams while strings stretching between frac-

tional branes mapped to lines in the diagram. This relation between affine Dynkin diagrams

from Lie algebras and geometry of ALE spaces are known as McKay correspondence[19].

In addition, McKay correspondence can also be realised in Hanany-Witten setup [65]. The

NS5-branes in this setting have D-branes stretching between them. The NS5-branes are

mapped to lines and D-branes to nodes. The lines and nodes are collected into a graph

called quiver graph. For such objects, nodes are the gauge groups and the oriented arrows

are bifundamental chiral multiplets transforming between the two gauge groups represented

by the connected nodes. The gauge invariant operators (terms in the superpotential) from

this gauge theory is therefore represented by the closed cycles in the quiver. Phenomeno-

logically, the presence of D-branes breaks supersymmetries as they impose certain boundary

conditions to relate left- and right-moving modes. In such sense, the supercharges are re-

duced from 32 to 8 in this case and we then have a 𝒩 = 2 four-dimensional theory. Pursuing

this path, many have made attempts to generalise this idea to three complex-dimensional

spaces [20, 21, 22, 23]. One of methods is to place the D-branes at the singularity of a

three-dimensional (complex) Calabi-Yau manifold, e.g. conifold and its quotient space by a
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finite abelian subgroup of 𝑆𝑈(3). They amount of supersymmetry is further reduced by a

half to 4 (𝒩 = 1 in four dimensions). This construction is the main theme of this article

and we shall also cover some more detailed backgrounds and its relation to brane tiling.

Therefore, we pause to present a short summary before we plunge into the next part of

this article. Having whetted our appetite with some brief comments on string theory, we

understand that this is the much pursued goal for theoretical physics/string theory commu-

nity to reconcile high-energy, supersymmetric and extra-dimensional theories to low-energy

four-dimensional gauge dynamics. The reason for one to study supersymmetric gauge the-

ories is that many of their properties can be analysed non-perturbatively. This is then a

fertile testing ground for dynamics of gauge theories [66, 67, 65] and a plethora of phenom-

ena such as gauge theory phases and dualities [66, 68, 69, 70, 71, 72]. Thus we would like to

construct interesting gauge theories from string theory to study the aforementioned aspects.

A powerful way of constructing them is through probing Calabi-Yau singularities with D-

branes [27, 28, 29]. Under this particular construction, a deep connection between geometry

and physics becomes manifest as different singularities give rise to different conformal field

theories. The use of D3-branes is particularly interesting since this engenders unitary gauge

group, bifundamental/adjoint matter and superpotentials. The gauge group, matter content

and superpotential of a theory of such type can be neatly recorded in a graph known as a

quiver. This type of gauge theories are referred to as quiver gauge theory [24]. The quiver

along with its superpotential are enough to reconstruct the Lagrangian of a 4𝐷 𝒩 = 1

supersymmetric gauge theory [34, 36, 37]. The interplay between geometry and physics in

quiver gauge theory is grounded on the geometric structure of moduli space of the gauge

theory. The space of solutions of field equations or the moduli space carries intricate struc-

tures and they are of great interest to mathematical field such as algebraic geometry. The

study of moduli space structure of a supersymmetric quiver gauge theory is deepened with

the inclusion of Hilbert series [76, 77, 78, 79, 80]. It is the generating function of holomorphic

gauge invariant operators under certain gauge charges and they are closely related to the

vacuum of the theory. This function not only carries the information about the spectrum of

the theory, it also has criterion on whether the moduli space is Calabi-Yau and its degree

and dimension.
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The AdS/CFT correspondence [113, 114, 115] has been a powerful toolkit for recent

advances in theoretic physics. This correspondence relates weak and strong coupling theories

such that the weak (strong) coupling sectors of gravity on anti-de Sitter (AdS) spaces are

translated to the strong (weak) limit of a conformal field theory (CFT) living on its boundary

of AdS. This duality is absolutely non-trivial since it opens a window to learn about the strong

coupling regime by just looking at the weak coupling limit of another theory. Under this

correspondence, the 4𝐷 𝒩 = 1 worldvolume gauge theories living on D3-branes probing a

Calabi-Yau threefold singularity is dual to IIB string theory living on a geometry of 𝐴𝑑𝑆5×𝑋5

with 𝑋5 being a Sasaki-Einstein 5-fold [28, 34, 116]. The gauge theories in this duality are

superconformal and can be drawn on a 2-torus as a bipartite graph. This graph is called

brane tiling [49, 51], which is utilised to make classification [169, 55, 56] of supersymmetric

gauge theories with toric Calabi-Yau moduli spaces.

The recent advances in brane tilings are based on the introduction of dimer models into

the scene and this is another example of interplay between mathematics and physics. With

brane tiling encoding the matter content and superpotential of supersymmetric gauge theory,

dimer gives a bipartite graph representation of brane tiling. The nomenclature “brane tiling”

actually comes from the early endeavours in brane construction of 4𝐷 𝒩 = 1 superconformal

gauge theory [49, 51, 64, 62, 63]. On the other hand, dimer is a term from mathematical

community that this bipartitde graph has great resemblance of chemical compound with

two molecular components. Examples of studies on dimer in mathematical literatures are

[62, 63].

The previous paragraphs presented an bird’s-eye view on the main topics of this article:

brane tiling and dimer model. It is satisfying to end this lightning introduction with a short

summary of brane tiling related topics in string theory/high energy physics:

∙ Moduli spaces of supersymmetric gauge theories [49, 81, 80, 51, 82, 83, 85, 84]

∙ Seiberg duality and toric duality [71, 69, 70]

∙ MSSM and String phenomenology [86]

∙ Wall-crossing and crystal melting [89, 88, 90]
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∙ Integral systems [91, 92, 93]

∙ 𝒩 = 4 Super-Yang-Mills scattering amplitude [94, 95]

The dimers on the other hand, have been used extensively in the following fields of mathe-

matics

∙ Mirror symmetry [96]

∙ Graph theory and combinatorics [62, 63]

∙ Tropical geometry [97]

∙ Calabi-Yau algebras [98, 99, 100]

∙ Grothendieck’s dessin d’enfant [107, 108, 106]

Lastly, before we plunge into the a more detailed exposition of brane tiling, it is expedient

to present the structure of this article:

∙ Chapter 2 reviews the intricate connections between quiver gauge theory and brane

tilings. This includes the foundation of quiver gauge theory from a physical point of

view as well as its original motivation [24]. The essential contents of brane tilings are

also reviewed with emphasis on the physical interpretation of brane tilings as brane

systems. By passing from the physical view point, we then move onto the contents of

toric geometry.

∙ Chapter 3 develops the main contents of this article, which offers a new classification of

brane tilings according to the area of the toric diagrams which underpins the geometry

of the VMS of associated gauge theories. The technique used in this thesis is based

on the old desire of [71], which initiated the Inverse Algorithm to extract the quiver

gauge theory as well as superpotential via partial resolution of the orbifold of conifold

to desired toric diagram.

24



Chapter 2

Brane Tiling and Quiver Gauge Theory

In this chapter, we present a short pedagogical introduction to toric quiver gauge theories

which live on the world-volume of a stack of coincident D3-branes placed at the singular

tip of a toric Calabi-Yau cone. These theories provide us with an infinite class of 4𝐷 𝒩 =

1 superconformal gauge theories which may then be studied in the context of AdS/CFT

correspondence. It is now understood that these theories are completely determined by a

two-dimensional bipartite graph drawn on a torus i.e. the brane tilings and the combinatoric

information of the dimer model along with the graph. Therefore, it is useful to review aspects

of quiver gauge theory. Along with quiver gauge theory, brane tilings and toric geometry are

the related subjects which we shall also review to give a coherent picture.

2.1 A List of Geometries

Before we move onto the main content of this chapter, it is instructive to include a short

summary of geometries that will appear in later text for the convenience of the reader as

well as the flow of the text. All of these geometries afford a toric description such that they

have corresponding toric diagrams, whose definition are presented in section 2.3.2.

Conifold The (singular) conifold is a cone over a five dimensional base and it is a Calabi-

Yau threefold. There are two related cases to such singular manifold: one is called a “resolved

conifold”, with a blown-up 𝑆2 at the tip of the cone; the other is the “deformed conifold”
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whose tip of the cone is blown into an 𝑆3. All three cases look asymptotically the same as

a cone over 𝑆2 × 𝑆3. Their metric takes the form

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝑠2base .

It was shown by Candelas and dela Ossa [170] that all of these three manifolds possess a

Ricci flat Kähler metric and one can continuously pass from one geometry to another. This

transition is called a conifold transition1. Here we briefly review the geometric properties for

all these three manifolds.

∙ The singular conifold. Just as a two-dimensional cone can be embedded in real

three dimensional space by 𝑥2 + 𝑦2 − 𝑧2 = 0, a real six dimensional conifold can be

expressed in terms of three complex coordinates and thus can be embedded in C4 as

4∑︁
𝑖=1

𝑧2𝑖 = 0 . (2.1)

This gives us a surface that is smooth apart from singularity at 𝑧𝑖 = 0. This surface

has 𝑆𝑂(4) ≃ 𝑆𝑈(2) × 𝑆𝑈(2) symmetry where 𝑧𝑖 are rotated into each other and a

𝑈(1) symmetry that rotates 𝑧𝑖 by the same phase. There is also a scaling symmetry

𝑧𝑖 → 𝑡𝑧𝑖, 𝑡 ∈ C*. Let us choose 𝑧𝑖 = 𝑥𝑖 + 𝑖𝑦𝑖 such that

4∑︁
𝑖=1

𝑥𝑖𝑦𝑖 = 0 ,
4∑︁
𝑖=1

(𝑥2𝑖 − 𝑦2𝑖 ) = 0 . (2.2)

Thus 𝑥𝑖 describe a three-sphere for any 𝑦𝑖 with vanishing radius at 𝑦𝑖 = 0. The

coordinates 𝑦𝑖 are thus orthogonally fibred to 𝑥𝑖. The total space is thus the cotangent

bundle 𝑇 *𝑆3. To find the base of the conifold, we take the intersection with a three-

sphere of radius 𝑟:
4∑︁
𝑖=1

|𝑧𝑖|2 =
4∑︁
𝑖=1

(𝑥2𝑖 + 𝑦2𝑖 ) = 𝑟2 , (2.3)

1Note that these manifolds are topologically distinct as it can be seen from the Euler characteristics
𝜒(𝑆3) = 0, 𝜒(point) = 1 and 𝜒(𝑆2) = 2
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which removes the scaling symmetry 𝑧𝑖 → 𝑡𝑧𝑖. Together with eq. (2.2), we see that 𝑥𝑖

in eq. (2.3) describe a three-sphere of radius 𝑟/
√
2 and 𝑦𝑖 give a two-sphere fibred over

𝑆3. Since fibrations are trivial, the topology of the base 𝑇 1,1 is 𝑆2 × 𝑆3. In addition,

we also see that 𝑇 1,1 affords a coset description as (𝑆𝑈(2)×𝑆𝑈(2))/𝑈(1). To see this,

we first define

𝑊 =
1√
2

∑︁
𝑛

𝜎𝑛𝑧𝑛 , (2.4)

where 𝜎𝑛 are the Pauli matrices. So we have

𝑊 =
1√
2

⎛⎝ 𝑧3 + 𝑖𝑧4 𝑧1 − 𝑖𝑧2

𝑧1 + 𝑖𝑧2 −𝑧3 + 𝑖𝑧4

⎞⎠ (2.5)

In such setting, the defining equations for conifold can thus be written as

det𝑊 = 0

Tr𝑊 †𝑊 = 𝑟2 . (2.6)

If we make a rescaling 𝑍 = 𝑊/𝑟, we the have

det𝑍 = 0

Tr𝑍†𝑍 = 1 , (2.7)

We see that if we start with a particular solution such as 𝑍0 = (𝜎1 + 𝑖𝜎2)/2, a general

solution 𝑍 = 𝐿𝑍0𝑅
† can be reached for

𝐿 =

⎛⎝𝑎 −�̄�

𝑏 �̄�

⎞⎠ , 𝑅 =

⎛⎝𝑘 −�̄�

𝑙 𝑘

⎞⎠ , (2.8)

where 𝐿,𝑅 ∈ 𝑆𝑈(2). Thus we have shown that the group 𝑆𝑈(2)× 𝑆𝑈(2) acts transi-

tively on the base. When (𝐿,𝑅) = (Θ,Θ†) with

Θ =

⎛⎝𝑒𝑖𝜃 0

0 𝑒−𝑖𝜃

⎞⎠ , (2.9)
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𝑍0 is left-fixed. Thus we can identify (𝐿,𝑅) and (𝐿Θ, 𝑅Θ†), showing that the base is

the coset space (𝑆𝑈(2) × 𝑆𝑈(2))/𝑈(1) = (𝑆3 × 𝑆3)/𝑈(1) with topology 𝑆2 × 𝑆3 and

symmetry group 𝑆𝑈(2)× 𝑆𝑈(2)× 𝑈(1).

∙ The deformed conifold The conifold can have its singularity resovled by deformation

near 𝑟 = 0
4∑︁
𝑖=1

𝑧2𝑖 = 𝜇2 . (2.10)

To find the base, we again intersect it with three sphere to find that, 2𝑥2𝑖 = 𝜇2 + 𝑟2,

which is a finite 𝑆3 at 𝑟 = 0. This is the deformed conifold. The 𝑈(1) symmetry of the

singular conifold 𝑧𝑖 → 𝑒𝑖𝛼𝑧𝑖 is broken to a Z2 that sends 𝑧𝑖 → −𝑧𝑖. In terms of matrix

defined in eq. (2.5), the deformed conifold is

det𝑊 = −𝜇2/2; . (2.11)

A radius coordinate can be also defined as 𝑟2 = Tr(𝑊 †𝑊 ). If we split 𝑧𝑖 into real and

imaginary parts, we see that

𝑟2 =
4∑︁
𝑖=1

(𝑥2𝑖 + 𝑦2𝑖 ), 𝜇2 =
4∑︁
𝑖=1

(𝑥2𝑖 − 𝑦2𝑖 ) , (2.12)

which implies that 𝑟 takes value from 𝜇 to infinity. It is also clear that the deformed

conifold is still a cotangent bundle of 𝑆3 but with the 𝑆3 having a minimal size pre-

scribed by 𝜇. Similarly, we can find a particular solution as

𝑊𝜇 =

⎛⎝𝜇
2

√︀
𝑟2 − 𝜇2

0 −𝜇
2

⎞⎠ , (2.13)

where a general solution is obtained by 𝑊 = 𝐿𝑊𝜇𝑅
† for 𝐿,𝑅† ∈ 𝑆𝑈(2). For 𝑟 ̸= 𝜇,

the stability group is 𝑈(1) and for each 𝑟 = constant, the surfaces are given by 𝑆2×𝑆3.

For 𝑟 = 𝜇, the 𝑊 matrix is proportional to 𝜎3 and is invariant under the entire 𝑆𝑈(2).

Thus the “origin” of coordinates 𝑟 = 𝜇 is 𝑆𝑈(2) ≃ 𝑆3.
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∙ The resolved conifold The alternative to fix the singularity is to blow it up to a

two-sphere. If we define a new set of variables by

𝑥 = 𝑧1 + 𝑖𝑧2, 𝑦 = 𝑧2 + 𝑖𝑧1, 𝑢 = 𝑧3 − 𝑖𝑧4, 𝑣 = 𝑧4 − 𝑖𝑧3 (2.14)

the conifold equation in 2.1 is rephrased as

𝑥𝑦 − 𝑢𝑣 = 0 , (2.15)

which is equivalent to requiring non-trivial solution of matrix equation⎛⎝𝑥 𝑢

𝑣 𝑦

⎞⎠⎛⎝𝜉1
𝜉2

⎞⎠ = 0 , (2.16)

where 𝜉1 and 𝜉2 are not both zero. So for points away from the tip (𝑥, 𝑦, 𝑢, 𝑣) ̸= 0, this

describes a conifold as usual. But at the tip (𝑥, 𝑦, 𝑢, 𝑣) = 0, this equation is solved by

(𝜉1, 𝜉2), which admits an overall scaling (𝜉1, 𝜉2) ∼ (𝜆𝜉1, 𝜆𝜉2). Therefore, we mod out

this equivalence and see that (𝜉1, 𝜉2) actually describes a two-sphere CP1 ∼ 𝑆2 at the

tip of the cone.

Suspended pinch point (SPP) This geometry was first introduced by [28] in the context

of compactifying M-theory on three complex-dimensional canonical Gorenstein singularities.

Such singularities have a classification based on the behaviour of contraction of a single

extremal ray (i.e. those which can be resolved by a single blow-up). The SPP geometry

is within in the class of a surface “contracting” to a curve. More explicitly, it affords the

following definition

Definition 2.1.1. A rational ruled surface whose ruling has 𝑛 ≥ 0 degenerate fibres is

contracted to a curve.

We also note that since the singularities are not isolated in this case and there are only

two isomorphisms of local singularities, corresponding to

∙ Contraction at a non-singular fibre of the ruling on the surface (the generic case). This
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is a quotient singularity of the form C3/Z2, where the quotient only acts on two of the

three complex coordinates, which is locally described by 𝑥𝑦 = 𝑧2. This has a horizon

of 𝑆5/Z2.

∙ Contraction at a singular fibre (the special case). This is the suspended pinch point

with local equation 𝑥𝑦 = 𝑧2𝑡. The horizon of SPP is a circle bundle over weighted

projective spaces2 WCP1,2 ×WCP1,2.

Del Pezzo surfaces Del Pezzo surfaces also falls in to the classification of three complex-

dimensional canonical Gorenstein singularities as described in our discussion on SPP in the

last paragraph. Generically, these singularities are formed by contracting a surface to a

point. More specifically, the surfaces have the following definition.

Definition 2.1.2. A (complex) del Pezzo surface is a smooth projective complex surface with

ample anticanonical line bundle. These surfaces have a degree defined as the self-intersection

of the canonical divisor. The possible degree takes value between 𝑑 = 1 and 𝑑 = 9.

Remark. Topologically, del Pezzo surfaces are determined by their degrees except for the

case of 𝑑 = 8. If 𝑑 ̸= 8, a del Pezzo surface of degree 𝑑 is a generic blow-up of projective

plane CP2 at 9 − 𝑑 points. If 𝑑 = 8, then there are two choices: CP2 blown up at one

point and CP1 × CP1. All of these surfaces admit metrics of positive scalar curvature and

a complex cone over these surfaces gives potential candidates for non-compact Calabi-Yau

varieties. For surfaces formed by blowing up 9− 𝑑 points, no three may be collinear, no six

lie on a conic, and no eight of them lie on a cubic having a node at one of them. Conversely

any blowup of the plane in points satisfying these conditions is a del Pezzo surface.

Having briefly summarised the details on the geometries that will appear as examples

in the later text, we present their toric diagrams in fig. 2-1 for the completeness of this

discussion.

2The definition of weighted projective space is presented in section 2.3.2
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Conifold SPP

𝑑𝑃1 𝑑𝑃2 𝑑𝑃3

non-generic, toric𝑃𝑑𝑃4 non-generic, toric𝑃𝑑𝑃5

Figure 2-1: The toric diagrams for the classification of Gorenstein singularities of three complex-
dimensions by the behaviour of contraction of a single extremal ray. The higher del Pezzo surfaces
𝑑𝑃4,...8 are not listed since they are non-toric. However, there are the so-called pseudo del Pezzo
for 𝑑𝑃4 and 𝑑𝑃5 are studied in [140], which are not generic, smooth 𝑑𝑃4 and 𝑑𝑃5 but degenerate
cases with isolated singularities.

2.2 Quiver Gauge Theory

In this section, we present a quick review of 𝒩 = 1 superconformal quiver gauge theories

as well as their string theory realisation in terms of D3-branes and Calabi-Yau manifolds.

For more comprehensive review addressed to physicist, see [41, 42] and that addressed to

mathematician [43].
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The name ‘quiver’ was first introduced into the scene by [40]3. In physics, we take quiver

to represent a collection of vertices (nodes) and oriented edges (arrows). Examples of quivers

are shown in fig. 2-2. In some cases, we can have arrows starting and ending on the same

(a) The quiver diagram for toric Calabi-Yau cone
C3/Z3.

(b) The quiver diagram for 𝐾P1×P1 .

Figure 2-2: Two examples for quiver diagrams.

node, which simply means we have an adjoint field represented by that arrow. To represent

a gauge theory, the quiver diagrams need to have their constituents endowed with physical

meaning. We briefly summarise its physical data as follows:

Definition 2.2.1. A quiver 𝒬 = (𝒬0,𝒬1,𝑊 ) is a finite directed graph with a set of nodes

𝒬0 and arrows 𝒬1, whose cardinalities are 𝑁0 and 𝑁1 respectively. The following points need

to be taken into consideration with this definition:

∙ 𝒬 engenders a representation such that we attach a vector space 𝑉𝑖 ∼ C𝑛𝑖 to node 𝑖

with some positive integer 𝑛𝑖, where each arrow (𝑋𝑖𝑗 ∈ 𝒬1) ∈ Hom(𝑉𝑖, 𝑉𝑗) is then an

𝑛𝑖 × 𝑛𝑗 matrix. Self-adjoing arrows are also allowed 𝜑𝑖 = 𝑋𝑖𝑖, as well as cycles that

are formed from closed loops of arrows 𝑋𝑖1𝑖2𝑋𝑖2𝑖3 · · ·𝑋𝑖𝑘𝑖1.

∙ 𝒬 is constrained by relations derived from superpotential 𝑊 which is a polynomial in

fields 𝑋𝑖𝑗 (arrows) as formal matrix variables:

𝑊 =

𝑁2∑︁
𝑘=1

𝑐𝑘Tr(
∏︁

𝑋𝑖𝑗) · · ·Tr(
∏︁

𝑋𝑖′𝑗′) , (2.17)

where the sum runs over nodes inside possible cycles with coefficients 𝑐𝑘 ∈ C. The

3The German word of quiver, ‘Köcher’ was used in this literature. Quiver has a lexicographical meaning
of ‘portable case for holding arrows’.
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relation that restricts the superpotential is derived from the vanishing of the Jacobian

𝜕𝑋𝑖𝑗
𝑊 .

Remark. The following remarks should be added to the previous definition:

∙ The closed loops in the quiver complicate the representation theory but it is a necessary

requirement from physics as the vacuum moduli space of the gauge theory from the

quiver is exactly carved out by these relations.

∙ The number of nodes 𝑁0, number of arrows 𝑁1 and number of monomial terms in

superpotential 𝑊 will have a combinatoric relation i.e. the Euler characteristic for a

torus, that arises from the dimer representation of quiver on a drawn on a torus.

∙ The above data is associated to a four-dimensional supersymmetric gauge theory with

product group 𝒢 =
∏︀𝑁0

𝑖=1 𝑈(𝑛𝑖). The translation between the above data and the gauge

theory is recorded in table 2.1

Node 𝑖 Gauge factor 𝑈(𝑛𝑖)

Arrow 𝑖→ 𝑗 Bi-fundamental field 𝑋𝑖𝑗 transforming as (�, �̄) of 𝑈(𝑛𝑖)× 𝑈(𝑛𝑗)

loop 𝑖→ 𝑖 Adjoint field 𝜑𝑖 = 𝑋𝑖𝑖 of group 𝑈(𝑛𝑖)

Cycle 𝑖1 → 𝑖2 → · · · 𝑖𝑘 → 𝑖1 Gauge invariant operator (GIO) Tr(𝑋𝑖1𝑖2𝑋𝑖2𝑖3 · · ·𝑋𝑖𝑘𝑖1)

Tr(
∏︀
𝑋𝑖𝑗) Single-trace GIO

Tr(
∏︀
𝑋𝑖𝑗) · · ·Tr(

∏︀
𝑋𝑖′𝑗′) Multi-trace GIO

2-Cycle 𝑋𝑖𝑗𝑋𝑗𝑘 Mass term
Superpotential in eq. (2.17) Superpotential in Lagrangian with coupling 𝑐𝑖

{𝜕𝑋𝑖𝑗
𝑊} F-term relations

Table 2.1: Dictionary for translating between the graph representation of a quiver and the
supersymmetric gauge theory that underlies it.

∙ The vector �⃗� = (𝑛1, 𝑛2, . . . , 𝑛𝑁0) has its components as the ranks of the factors of

the product gauge group, meaning we have the arrows being complex numbers when

𝑛𝑖 = 1.
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∙ The incidence matrix of a quiver is 𝑑𝑖𝛼, with 𝑖 = 1, . . . , 𝑁0 labelling the nodes and

𝛼 = 1, ..., 𝑁1 referring to the arrows, such that an arrow from node 𝑖 to node 𝑗 gives a

column in 𝑑𝑖𝛼 with −1 at row 𝑖 and +1 at row 𝑗, and 0 otherwise. This can be seen as a

bifundamental field 𝑋𝑖𝑗 give −1 for 𝑈(𝑛𝑖) and +1 for 𝑈(𝑛𝑗). An example for incidence

matrix for phase b of the Hrizebruch 𝐹0 model [49, 51, 74, 73] shown in fig. 2-3 is given

by eq. (2.18).

1

2

3

4

Figure 2-3: The quiver diagram for the phase b of the Hirzebruch 𝐹0 model.

𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋1
14 𝑋2

14 𝑋1
21 𝑋2

21 𝑋1
23 𝑋2

23 𝑋1
34 𝑋2

34 𝑋1
42 𝑋2

42 𝑋3
42 𝑋4

42

𝑈(𝑛1) −1 −1 1 1 0 0 0 0 0 0 0 0

𝑈(𝑛2) 0 0 −1 −1 −1 −1 0 0 1 1 1 1

𝑈(𝑛3) 0 0 0 0 1 1 −1 −1 0 0 0 0

𝑈(𝑛4) 1 1 0 0 0 0 1 1 −1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.18)

Note here the columns in the matrix are not linearly independent due to the fact that

all the entries in each row sum up to 0 since each node has equal amounts of incoming

and outgoing arrows. This is from the anomaly cancellation condition since incoming

and outgoing arrows contribute to the anomaly with opposite sign, whereby requiring

the number of fundamental and anti-fundamental chiral fields to be equal. Note that

this equality is only for the case when ranks on all the nodes are equal. Other cases

will be discussed in next section. Thus the incidence matrix in in fact a matrix of the

form 𝑑(𝑁0−1)×𝑁1 .

∙ Since we have a chiral gauge theory for each quiver, it is important to have anomaly
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cancelled. The anomaly cancellation [44] can be written as follows

∑︁
𝑎=(𝑖,𝑗)

𝑑𝑖𝛼 𝑛𝑗 = 0 (2.19)

where the sum goes over all arrows labelled by 𝑎 = (𝑖, 𝑗) that are between node 𝑖 and

𝑗. 𝑛𝑗 is the rank of group 𝑈(𝑛𝑗) as 𝑗-th node in the quiver. We will expand more

on this in section 2.2.1. The D-terms are then give by
∑︀

𝛼 𝑑𝑗𝛼|𝑋𝑖𝑗|2 − 𝜁𝑖 with 𝜁𝑖 ∈ C

being the Fayet-Iliopolous (FI) parameter.4 Here the D-terms are non-holomorphic as

opposed to the F-terms.

2.2.1 Anomaly Cancellation in Quivers

As we have eluded in the previous section, the structure of a quiver for 𝒩 = 1 superconformal

gauge theory is constrained by the anomaly cancellation condition. It is therefore satisfactory

to expand on it for a bit more detail for completeness.

In general, quiver gauge theories are chiral and anomaly cancellation is essential for

consistency of such theories. In order to elucidate eq. (2.19), we define the incidence matrix

𝜎𝑖𝛼 as follows

𝜎𝛼𝑖 =

⎧⎨⎩+1 arrow 𝛼 ends at node 𝑖 ,

−1 arrow 𝛼 starts at node 𝑖 ,
(2.20)

where 𝛼 = 1, . . . , 𝑁0 and 𝑖 = 1, . . . , 𝑁1. Suppose we have node 𝑖 and want to check anomaly

cancellation at this node, then we have

∑︁
𝛼𝑖𝑗

𝜎𝛼𝑖𝑛𝑗 = 0 (2.21)

where we sum over all arrows which start from node 𝑖 and end on node 𝑗. The rank of the

gauge group at node 𝑗 is denoted by 𝑛𝑗 5 . We have to make a note here that the ranks of

4Generically, one usually assigns a charge 𝑞𝛼 to the fields and sum over 𝑞𝛼|𝑋𝑖𝛼|2. Since FI parameters
only exist for 𝑈(1) groups and we only talk about 𝑈(1)𝑁0 in our case here, the charge is set to 1 for every
field.

5In general, the ranks opf the 𝑈(𝑛𝑖) gauge groups are 𝑛𝑖 ≥ 1. For most of the examples discussed in this
article, we consider all gauge groups to be equal. If not explicitly stated otherwise, the quiver is considered
to be Abelian where for all 𝑖, 𝑛𝑖 = 1, as we want to work in the regime of toric quiver gauge theories, whose
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the gauge groups residing on the nodes of the quiver diagram can not be captured by the

incidence matrix defined here. This is essentially the same as eq. (2.19). Let us rewrite this

in another form by

𝜎𝑖𝑗 = 𝜎𝛼𝑖 , (2.22)

where arrow 𝛼 starts on node 𝑖 and ends on node 𝑗. With this equation, we can write

eq. (2.21) as ∑︁
𝑗∈𝑖

𝜎𝑖𝑗𝑛𝑗 = 0, (2.23)

where node 𝑗 is connected to 𝑖 by arrows. Therefore, the summation over edges connecting

nodes 𝑖 and 𝑗 is implicitly built in it.

Schematically, an arrow staring at node 𝑖 and ending at node 𝑗 is a bifundamental field

transforming in (�̄�𝑖, 𝑛𝑗) under group 𝑈(𝑛𝑖)×𝑈(𝑛𝑗). Viewing from 𝑈(𝑛𝑖), this bifundamental

is a set of 𝑛𝑗 anti-fundamental fields, which contribute to the gauge anomaly by −𝑛𝑗 = 𝜎𝛼𝑖𝑛𝑗.

An arrow in opposite direction then contributes with opposite sign by 𝜎𝛼𝑖𝑛𝑗. The vanishing

of anomaly is then given by eq. (2.21). Let us consider the case where all gauge groups have

the same rank. The anomaly cancellation condition then requires that each node 𝑖 to have

the same number of incoming and outgoing arrows. This condition is met in quiver fig. 2-3.

We will see that this condition is satisfied for all quiver gauge theories built out of brane

tilings by the very definition of toric condition and combinatoric properties of dimer models

reviewed in section 2.3.1.

2.2.2 Toric Quiver Gauge Theories

Before moving onto the discussion of brane tiling, we present a few remarks on toric quiver

gauge theory, which is a special class of gauge theories in contrast to the general definition

of quiver gauge theory in definition 2.2.1. 𝒩 = 1 quiver gauge theories were first studied by

Douglas and Moore [24] and later clarified by Douglas, Greene and Morrison [27]. The toric

structure of the moduli space of the constructed quiver theories was studied by a change of

variable to parametrise it as the moduli space of an Abelian linear sigma model. Ensuing

gauge group essentially descend from the algebraic toric action by C*. In other words, the toric description
is only possible iff all nodes are of rank one, i.e 𝑈(1).
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works were then dedicated to study more general toric singularities and the corresponding

linear sigma models.

In addition to the definition 2.2.1, we supplement it with other properties that the quiver

holds.

∙ The quiver graph also specifies the D-terms of the gauge theory since we have 𝑈(1)

factors coming from 𝑈(𝑛𝑎). The Abelian factors thus give give rise to the D-term

constraints on the vacuum moduli space as

∑︁
𝑖

𝑄𝑎
𝑖 |𝑋𝑖|2 = 𝜁𝑎 , (2.24)

where the sum is over all quiver fields 𝑋𝑖 and 𝑄𝑎
𝑖 is the charge for field 𝑋𝑖 (note this is

exactly the incidence matrix we defined in section 2.2) under 𝑎-th gauge group 𝑈(1) ⊂

𝑈(𝑛𝑎). In this charge matrix, the fields in fundamental representation (incoming arrow)

of 𝑈(𝑛𝑎) have charge +1, those in the anti-fundamental (outgoing arrow) has charge

−1 and those in adjoint or which are uncharged under this gauge group have charge 0

thus not seen by the D-term condition. The FI parameter 𝜁𝑎 is real whose vanishing

is required by supersymmetric vacuum as
∑︀
𝜁𝑎 = 0.

∙ As first described in [34], the quiver gauge theory becomes meaningful when we start

considering non-trivial conformal fixed points thereof. Such conformal IR fixed points

give us the corresponding CFT that are strongly coupled. Thus the exact NSVZ beta

function [75] for gauge coupling 𝑔𝑎 of gauge factor labelled by 𝑎 is

𝛽(𝑔𝑎) =
𝑑

𝑑 ln𝜇

1

𝑔2𝑎
=

𝑁

1− 𝑔2𝑎𝑁
8𝜋2

(︃
3− 1

2

∑︁
𝑖∈𝑎

(1− 𝛾𝑖)

)︃
, (2.25)

where the sum is over all fields transform under gauge group 𝑎 and 𝛾𝑖 is the anomalous

dimension of the field 𝑋𝑖. Thus we have the conformal dimension to be

∆(𝑋𝑖) = 1 +
1

2
𝛾𝑖 =

3

2
𝑅(𝑋𝑖) , (2.26)

where 𝑅(𝑋𝑖) is the R-charge of field 𝑋𝑖. The conformal invariance thus requires van-
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ishing beta function

∑︁
𝑖∈𝑎

(1− 𝛾𝑖) = 6 =⇒
∑︁
𝑖∈𝑎

(1−𝑅(𝑋𝑖)) = 2 . (2.27)

The points to note here is that, in the context of AdS/CFT correspondence, the dual CFT

is obtained as the IR fixed point of the D-brane world-volume gauge theory. The 𝑈(1)

gauge group factors couple to charged matter (bifundamentals in quiver) and they are IR

free. Thus in the IR fixed point the 𝑈(1) gauge couplings are zero and the gauged 𝑈(1)

factors become global symmetries of the CFT. The second is that the some of the 𝑈(1) of

the classical Lagrangian are anomalous, these anomalous 𝑈(1) are cancelled in string theory

and the 𝑈(1) fields become massive. The non-anomalous 𝑈(1) symmetries survive the RG

flow and become global symmetries in the IR. In such scenario, we will refer to the D3-brane

world-volume gauge theory (D3-branes probing the toric CY cone) with gauged 𝑈(1) factors

as the “UV” theory. The IR limit is obtained by going to the near horizon limit of the D3-

branes to produce 𝐴𝑑𝑆5×𝑋5 geometry with 𝑋5 being the SE manifold. The type IIB theory

on this near horizon geometry is equivalent to the CFT sitting at the IR fixed point, which is

an 𝑆𝑈(𝑁) quiver gauge theory. This is essentially the picture in AdS-CFT correspondence.

The quiver theories living on the stack of D3-branes at singularities of the CY cone

have additional structures that highly constrain both the quiver and the superpotential

thereof. Each bifundamental field of the quiver theory appears linearly in superpotential 𝑊 ,

and precisely in two terms of opposite sign. This structure of superpotential directly follows

from that of 𝒩 = 4 Yang-Mill superpotential 𝑊 = Tr[[𝑋,𝑌 ], 𝑍]. This property is also

inherited in the Abelian orbifold of type C3/(Z𝑛 × Z𝑚); and is also preserved by partial

resolution/Higgsing of the singularity, which we use to obtain any toric theory for suitable

𝑚 and 𝑛. Upon Higgsing, the vacuum expectation values play the roles of couplings in the

superpotential. With such toric structure, the F-term condition, namely

𝜕𝑊

𝜕𝑋
= 0 (2.28)

has the form of monomial = monomial. As we know that 𝒩 = 1 SCFT has a global 𝑈(1)
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R-symmetry that is dual to a 𝑈(1) isometry of the SE manifold 𝑋5. However, the toric

cases actually have larger isometry group (at least 𝑈(1)2) that corresponds to a product

of R-symmetry and global flavour symmetries. On top of this, there are additional global

“baryonic” symmetries in the CFT which are gauged on the CFT. They descend from the

reduction of R-R 4-form on 3-cycles of 𝑋5 thereby producing gauge fields on the AdS. Most

importantly, these symmetries will give rise to the dimer models.

2.2.3 Quiver Gauge Theories from D-brane Systems

After reviewing the basic setup for (toric) quivers, we now move onto a concrete example.

One of the most crucial point is that quiver gauge theories find their abundant appearances

in string theory compactification, which essentially, paves the way for high energy, extra-

dimensional 10𝐷 string theory to make contact with 4𝐷 gauge dynamics in our everyday

experiences. The celebrated work of Douglas and Moore [24] in 1994 showed that we can

obtain 𝒩 = 2 superconformal quiver gauge theories on world-volume of D-branes which

probe the ALE spaces. In particular, let Γ be a discrete subgroup of 𝑆𝑈(2). We consider

the orbifold space of C2/Γ which is singular and whose resolution gives the Asymptotically

Locally Euclidean spaces (ALE). The natural question to ask is that what gauge theories

do we have on the D-branes? The solution to this question is given by [24, 25, 26] that the

theories are quiver gauge theories. The diagrams are constructed as follows.

Consider discrete subgroup Γ of 𝑆𝑈(2) and the set of all irreducible representations {𝑅𝑖}.

The tensor products of such representations with defining representation 2 then decompose

as:

2⊗𝑅𝑖 = ⊕𝑗𝑎
2
𝑖𝑗𝑅𝑗 (2.29)

Now we take the matrix 𝑎2𝑖𝑗 as the adjacency matrix6 for a finite directed graph i.e., a quiver

labelled by the dimensions of the irreps. Each node represents an irreducible representation

𝑅𝑖. Then Mckay’s theorem states that the 𝑎2𝑖𝑗 of the finite group is precisely the Dynkin

diagrams of the affine ADE Lie algebra and they correspond to the comarks7 of the algebra.

6The adjancency matrix 𝑎𝑖𝑗 is a matrix with 𝑖𝑗-th entry being the number of arrows going from node 𝑖
to node 𝑗.

7The comarks 𝑎∨𝑖 are the expansion coefficients of the highest root 𝜃 into simple coroots 𝛼∨
𝑖 := 2𝛼𝑖/|𝛼𝑖|2

39



𝐴𝑛 : 𝑥𝑦 + 𝑧𝑛 = 0
𝐷𝑛 : 𝑥2 + 𝑦2𝑧 + 𝑧𝑛−1 = 0
𝐸6 : 𝑥2 + 𝑦3 + 𝑧4 = 0
𝐸7 : 𝑥2 + 𝑦3 + 𝑦𝑧3 = 0
𝐸8 : 𝑥2 + 𝑦3 + 𝑧5 .

Table 2.2: Algebraic singularities describing C2/Γ in affine coordinates.

The diagrams are presented in fig. A-4. This is the remarkable observation made by McKay

in [19], which is then dubbed as McKay Correspondence. Thus the supersymmetric quiver

gauge theories specified by quivers in fig. A-4 are precisely the ones living on the D-branes

probing singular C2/Γ. Lastly, we note that only the A-type quiver among all the ADE

quivers affords toric description since only the 𝐴𝑛 ≃ Z𝑛+1 is Abelian. Other ADE quiver are

constructed from quotient of C2 by non-Abelian group, thus giving non-toric VMS for the

corresponding quiver gauge theories.

Before we move onto other aspects of quiver gauge theories, we should mention the con-

nection between the ADE classification of discrete subgroups of 𝑆𝑈(2) and that of semisimple

simply-laced Lie algebras. We refer a more detailed exposition to appendix A.3 on this sur-

prising connection between classifications of finite groups and that of Lie algebras. With

such hindsight, it is therefore natural for us to name the groups in table A.1 with such ADE

structure. After this discovery, people considered the crepant resolution of C2/Γ, which gives

the K3 surface that are the only Calabi-Yau two-fold other than the trivial 𝑇 4. In terms of

affine coordinates, the orbifold are described by algebriac singularities in table 2.2. In the

work by Gonźalez-Springberg and Verdier [121], the crepant resolution of these singularities

gives the −2 exceptional curves, i.e. the P1 blow-ups, with intersection matrices. These

matrices correspond exactly to the McKay’s adjacency matrix 𝑎2𝑖𝑗 in eq. (2.29). We include

some details of this construction in appendix A.5.2 for completeness of this article.

Now we move onto the prototypical example of quiver gauge theory first initialised by

Douglas and Moore [24]. Here we review an example8 of type II string propagating on the

with 𝛼𝑖 being simple roots.

𝜃 =

𝑟∑︁
𝑖

𝑎∨𝑖 𝛼
∨
𝑖 ,

where 𝑟 is the rank of the algebra or simply the number of nodes in Dynkin diagram.
8For the details of this example, see appendix A.4.
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smooth ALE background from resolving singular R6×𝑇 4/Z2. Two D1-branes are introduced

in this orbifold in order to keep in line the action of orbifold, which in turn produces spectrum

that includes both twisted and untwisted sectors. The additional twisted sector is unique

to theories on orbifold and this additional part of the spectrum with the untwisted case

contain just the enough information to specify the smoothed version of the R6 × 𝑇 4/Z2,

the K3 manifold. K3 manifold can always be tuned to resemble ALE spaces locally by

shrinking some of the two-cycles of K3. More importantly, the gauge theory on the pair of

the D1-branes is 𝑈(1) × 𝑈(1) and the moduli space of this theory has the metric of ALE

space.

Since this section focuses on the emergence of quiver gauge theories from D-brane system.

The earliest example for such setup is through the T-dualisation of C2/Z2, the example we

referred to in the preceding paragraph. This dualisation gives 𝑛 NS5-branes placed in a ring;

the world-volume theory of D4-branes stretched between these branes, the so-called elliptic

model, is the 𝒩 = 2 A-type orbifold theory above. Such equivalence is actually between the

D-brane probe picture and the Hanany-Witten setup [65]. We briefly recount some of the

contents of this equivalence here.

The final part of discussion on quiver gauge theory will be about its connection to its

construction using D-brane system. First, up to a change of variables in the supergravity

background in eq. (A.119), y can be taken to be a vector y = (𝑥7, 𝑥8, 𝑥9) with 𝑥6 being the

periodic coordinate 𝑧. It is easier to visualise if we draw a table 2.3 to keep a note on the

coordinate arrangement.

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

D2 − − × × × × − × × ×
NS5 − − − − − − × × × ×

Table 2.3: The coordinate arrangement for dual D2-branes and NS5-branes.

Since we have a compact direction in 𝑥6, we can perform a 𝑇 dualisation and arrive at
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another background with the metric

𝑑𝑠2 = −𝑑𝑡2 +
5∑︁

𝑚=1

𝑑𝑥𝑚𝑑𝑥𝑚 + 𝑉 (𝑦)(𝑑𝑥6𝑑𝑥6 + 𝑑y · 𝑑y)

𝑒2Φ = 𝑉 (y) =
𝑁−1∑︁
𝑖=0

√
𝛼′

|y − y𝑖|
, (2.30)

which is a 10𝐷 solution if we take the non-trivial background fields [48] 𝐻𝑚𝑛𝑠 = 𝜖 𝑟
𝑚𝑛𝑠 𝜕𝑟Φ,

which defines the potential 𝐵6𝑖 (𝑖 = 7, 8, 9) as a vector 𝐴𝑖 satisfying ∇𝑉 = ∇×A. The non-

zero 𝐵6𝑖 is because the T-dual theory has non-zero 𝐺6𝑖 as T-duality relates these two-forms.

This solution is actually independent of direction 𝑥6. However, a full solution should have

structures in 𝑥6 since translation invariance is broken in this direction. This is due to the

fact that the 𝑥6-circle of the ALE space has fixed-points due the orbifold action, i.e. circle

shrinks away at those points. Therefore, we expect the winding modes to behave differently

at those points as well as the T-dual momentum states. Localised solutions in the directions

𝑥6, 𝑥7, 𝑥8, 𝑥9 can be thought of being harmonic at those points. In such setting, we take

x = (𝑥6,y) to denote the coordinates in the R4 and replace 𝑉 (y) by

𝑉 (x) = 1 +
𝑁−1∑︁
𝑖=0

𝛼′

(x− xi)2
. (2.31)

By adding 1 to the solution, we add the solution an asymptotically flat region while keeping

𝑉 (x) harmonic in R4. This solution comprises of a chain of 𝑁 objects that are point-like in

𝑥6, 𝑥7, 𝑥8, 𝑥9 and are magnetic sources of the 𝐵𝜇𝜈 NS-NS potential. These are actually the

NS5-brane arranged in the 𝑥6-circle.

Keeping up with such spirit, we would like to realise our quiver gauge theories in this

dual picture. From appendix A.4, we have D1-brane along the 𝑥1 direction probing ALE

space. If we T-dualise on this D1-brane, it becomes a D2-brane with an extra leg extended

along the compact 𝑥6 direction. Therefore, the D2-brane intersects with the two NS5-brane

as it winds around 𝑥6. The point at which it passes through an NS5-brane is characterised

by four numbers x𝑖 for the 𝑖-th brane. The intersection point can be located anywhere inside

the NS5-brane’s worldvolume in the directions 𝑥2, 𝑥3, 𝑥4, 𝑥5. If we start with 32 supercharges
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in IIA supersymmetry, the presence of NS5-brane breaks half of the SUSY and the D2-brane

breaks another half, thus leaving eight supercharges in total. The infinite part of the probe,

as an effective one-brane, has a 𝑈(1) on its worldvolume. Then tension is given by 2𝜋𝑙𝜇2 with

𝜇2 being the charge of D2-brane, with length of 𝑙 unspecified for the compact direction 𝑥6.

The size of the compact direction can take on different values thus giving different densities

of branes in the dual picture.

For our case, we focus on the case of 𝑁 = 2. If we take the two NS5-branes to have the

same y = 𝑥7,8,9, then the D2-brane is broken into two segments in the 𝑥6 direction giving

a 𝑈(1) × 𝑈(1) on the effective 1-brane in the infinite 𝑥1 direction. The two segments can

move independently within the NS5-brane worldvolume and preserve supersymmetry. This

is precisely the Coulomb branch we encountered in the D1-brane probing ALE space. The

hypermultiplets come from the fundamental strings stretching between the NS5-branes in

the 𝑥6 direction. The differences of the other three coordinates in the R4 are the T-dual

of the NS-NS parameters controlling the size and orientation of the CP1 blow-up. The 𝑥6

separation between the two NS5-branes is thus dual to the flux 2𝜋𝑙Φ𝐵
9.

Now if we change the relative position of the two NS5-branes, and say, make them

coincident in 𝑥6 direction. One of the fundamental strings stretching between them becomes

tensionless, we obtain an 𝐴1 enhancement of the gauge symmetry carried by the two-form

potential living on the type IIA NS5-brane. If we have IIB NS5-branes with D1-branes

stretching btween them instead, we obtain massless particles with enhanced 𝑆𝑈(2) gauge

symmetry. There is also an interesting duality between the quiver diagram we obtained in

fig. A-5 and the brane configuration we just arrived. It is shown in fig. 2-4.

If the NS5-branes become separated in 𝑥6 and are at different positions in y = 𝑥7,8,9

directions, the D1-brane segments must become tilted to remain stretched between two

NS5-branes. The segments thus have to be oriented differently from each other and su-

persymmetry is then broken. This corresponds to the ‘lifting’ of the Coulomb branch. To

recover the supersymmetric vacua when NS5-branes are at different positions in y = 𝑥7,8,9,

the brane segments need to be rejoined to give a single D-brane. In such setting, the single

9Φ𝐵 is proportional to the charge induces by 𝐵𝜇𝜈 on the one-brane inside the NS5-brane worldvolume
i.e. Φ𝐵 ∼

∫︀
Σ
𝐵.
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1 1 1 1
𝑇 -dual

Figure 2-4: The duality between the quiver of 𝐴1 theory and the brane system of D-branes
stretching between NS5-branes. They are essentially graph dual of each other viz. the nodes in
one are arrows in another and vice versa. The node label in the 𝐴1 quiver becomes the number
of D-branes represented by the arrow in the other diagram.

D-brane does not need to move with the NS5-brane and supersymmetry is preserved. This

signifies turning on the FI parameter and moving from the Coulomb branch to the Higgs

branch of the vacuua. The y position and 𝑥6 Wilson line correspond to the Higgs branch

parameters.

The fractional branes and their T-duals streched brane segments are less mobile than

a complete D-brane as they are ‘anchored’ between the NS5 branes and can not move in

certain directions. For such properties, they are used extensively in the study of gauge

theories on branes with reduced supersymmetries – the Hanany-Witten setup [65]. As we

shall see that this serves the foundation of our next topic Brane Tiling, which uses certain

brane construction to obtain 4𝐷 𝒩 = 1 superconformal quiver gauge theories in the similar

spirit we have just recounted.

44



2.3 Brane Tiling

Since the advent of AdS/CFT correspondence, efforts are devoted to investigate theories with

fewer supersymmetries than the paragon 𝐴𝑑𝑆5×𝑆5 𝒩 = 4 theory first studied by Maldacena

[113]. One important approach to obtain such set of theories is to break supersymmeties

by changing the topology of the string theory background, thereby replacing the 𝐴𝑑𝑆5 × 𝑆5

by a different manifold 𝐴𝑑𝑆5 ×𝑋5. To preserve the 𝒩 = 1 supersymmetry in the resulting

four-dimensional theory, the 𝑋5 has to be a Sasaki-Einstein (SE) manifold. The reason for

choosing such manifold is that the metric cone over 𝑋5

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝑋2
5 (2.32)

is Ricci flat. Thus the metric cone is a Calabi-Yau three-fold with 𝑆𝑈(3) honolomy. For

generic 𝒩 = 1 case, 𝑈(1) R-symmetry is thus dual to the isometry of SE manifold 𝑋5 [28].

One important class of such manifold is the toric SE manifolds: both SE manifold and

its Calabi-Yau cone have 𝑈(1)3 isometries. These toric geometries produce infinitely many

such SE manifolds, which themselves may have complicated topology and offer a window to

study such a plethora of 𝒩 = 1 supersymmetric gauge theories in the context of AdS/CFT

correspondence. In the past decade, there are new tools developed called brane tiling and

dimer model to study the structure of 4𝐷 superconformal gauge theory whose moduli

spaces are given by certain toric varieties/SE spaces. These CFTs are quiver gauge theory in

type, with 𝑈(1)𝑅×𝑈(1)2𝐹 global symmetry i.e. a subgroup of R-symmetry group times a non-

baryonic flavour symmetry group. In such framework, the prime example are the familiar

Abelian orbifolds 𝑆5/Γ, Γ ∼ Z𝑛 or Z𝑛 × Z𝑚, which are conifolds and its orbifolds. The

next ones are the 𝑌 𝑝,𝑞 and 𝐿𝑎,𝑏,𝑐 [60, 58]. These SE manifolds have their metrics explicitly

constructed and offer direct computation for checking AdS/CFT correspondence, such as

correlation functions. Generic SE manifolds do not have known metric and such direct

computation is not possible. However, CFTs built out of toric manifolds are completely

defined without referring to the knowledge of metrics by relying on brane tiling reformulation

of the gauge theory data and the associated dimer models.

For a particular toric Calabi-Yau threefold constructed as the metric cone over SE toric
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base, one would like to know the gauge theories that live in the worldvolume of D3-branes

at the tip of the cone 10. However, such IR theories are not in one to one correspondence

with the vacuum geometry as gauge theories are related by Seiberg duality [68, 69, 70]. Such

gauge theories are of quiver type and flow to a non-trivial conformal fixed point. In the string

dual picture, this means the D3-branes taking near-horizon limit to replace R3,1 × CY3 by

𝐴𝑑𝑆5 ×𝑋5. Thus the problem of identifying quiver gauge theories with a given Calabi-Yau

cone was first discussed in [69] using D3-brane linear sigma model in [27]. The idea behind

this is that we can always obtain the desired singularity by embedding it inside a “lager”

singularity and then perform a stepwise partial resolution of the parent singularity until we

reach the embedded one. This partial resolution on the quiver gauge theory corresponds

to turning on the FI parameters to Higgs certain fields. This algorithm is well-defined

but it requires exponential running-time as the number of generators of the Calab-Yau

cone increases. Therefore it is relatively restricted to simple singularities. However, this

algorithm is significantly enhanced with the tools from brane tiling and dimer models as

this article tries to expand the classification of the quiver gauge theories according to some

combinatoric properties of the moduli spaces which are captured inside planar diagrams

called toric diagrams. This deeper combinatoric structure underlying the toric gauge theories

was first noted in [49]. The dimer models were used to compute the charges and field content

of the D3-brane linear sigma models for arbitrary toric Calabi-Yau spaces. The relation

between quiver gauge theory and this dimer model was then clarified and made precise in

[51].

In this section, we review how the data of toric quiver gauge theory maybe more elegantly

rephrased by another construction called brane tiling, which is a bipartite tiling of a torus.

The brane tiling is also shown to encode the global 𝑈(1) of the CFT inside the combinatoric

data of the dimer on the edges of the brane tiling. Some tools from mathematical physics

will also be used to solve the underlying combinatoric problems and show how they are

relevant to the classification of properties of gauge theories. We also review how dimer

model provides a simple realisation of moduli space of the D3-brane worldvolume theory

10D3-branes at non-singular point only see a local geometry of C3 and this gives rises to 𝒩 = 4 supery-
Yang-Mills in the IR where all the curvature corrections can be neglected
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and an efficient reconstruction of D3-brane linear sigma model in [27] as compared to the

algorithm presented in [69].

2.3.1 Brane Tilings and Dimer Models

In this subsection, we start to look into the additional structures inside toric quiver gauge

theories by first combining the quiver and its associating superpotential inside a bipartite

tiling of a 2-torus by polygons – brane tiling. Secondly, we then relate the set of 𝑈(1)

symmetries of the quiver theories to the combinatorics of the dimer model on the brane

tiling. We also give a justification of the nomenclature “brane tiling” by showing that all the

physical data inside these graphs arise from certain D-brane constructions in string theory.

More specifically, we make ourselves an example of D-brane construction to engineer the

quiver gauge theories in string theory. In addtion, these models have their worldvolumes

wrapping a 𝑇 2 and reproduce the brane tiling dictionary. With the data from toric quiver

gauge theory and its superpotential, we can immediately write down the corresponding

brane tiling. The inverse direction, that is to construct the quiver gauge theories and its

superpotential from a given singularity, becomes tractable with the aid of dimer model. An

extension of this inverse direction to expand the classification of quiver gauge theories based

on the singular geometry they probe will be the main result of this article.

If a toric quiver gauge theory and its superpotential is known, the brane tiling that they

represent becomes immediately clear. We shall discuss this in more detail now.

Planer Quivers and Brane Tilings: a pair of graph duals. The key observation to

combine matter contents and superpotential of a quiver theory into a single object is to

define the individual terms in the superpotential by plaquettes i.e. representing boundaries

of polygons. When a bifundamental field appears twice in the superpotential, the plaquettes

containing that field are glued together on that edge. In general, quivers and superpotentials

combined this way do not give interesting structure. However, it is the toric condition that

makes this construction obvious since this gives a planar structure for toric cases. In addition,

the toric condition forces the planar structure a periodic polygonal tiling of a Riemann surface.

This is the object called planar quiver and we use it to obtain brane tiling.

47



Recall that we have ± signs in front of each term in the superpotential. This can be im-

plemented by demanding neighbouring plaquettes have opposite orientation signalled by the

directions of the bounding arrows. This shows that the Riemann surface also has orientation.

Furthermore, the genus of the Riemann surface can be uncovered from the superconformality

condition of the gauge theory. Recall that the vanishing of NSVZ beta function requires

∑︁
𝑒∈𝑉𝑖

(1−𝑅𝑒) = 2 , (2.33)

where the sum is over the edges connected to the gauge node 𝑖. The requirement of super-

potential having charge 2 can be written as

∑︁
𝑒∈𝐹𝑖

𝑅𝑒 = 2 , (2.34)

where the sum is over all edges surrounding a plaquette. Now we can sum over all nodes

and plaquettes

∑︁
𝑉𝑖∈𝑉

∑︁
𝑒∈𝑉𝑖

(1−𝑅𝑒) = 2𝑁𝑉

∑︁
𝐹𝑖∈𝐹

∑︁
𝑒∈𝐹𝑖

𝑅𝑒 = 2𝑁𝐹 , (2.35)

where 𝑁𝐹 , 𝑁𝑉 are the number of nodes and faces in the planar quiver. This is because each

edge connects 2 nodes and is shared by 2 faces. We also have

2
∑︁
𝑒

(1−𝑅𝑒) = 2𝑁𝐸 − 2
∑︁
𝑒

𝑅𝑒 = 2𝑁𝑉

2
∑︁
𝑒

𝑅𝑒 = 2𝑁𝐹 , (2.36)

where the sum is over all edges. We then have the relation for Euler characteristic 𝑁𝐹 −

𝑁𝐸 +𝑁𝑉 = 0 for planar diagram. This is also equivalent to 2− 2𝑔 with 𝑔 being the number

of handles, or genus. So we have the Riemann surface of genus one, or simply topologically

a 𝑇 2. Therefore, we have combined the quiver and superpotential into an embedding of the
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quiver into a torus 𝑇 2 with the aid of R-symmetry and conformal symmetry. The faces in the

planar quiver can have labels from the coupling constant in front the term in superpotential,

but with alternating sign due to the toric condition. The alternating signs can be better

presented by passing to the dual diagram for the planar quiver: each face is replaced by a

node; two faces adjacent along an edge are replaced by two nodes connected by the dual edge

(perpendicular to the original one); nodes are replaced by the new faces and are enclosed

by new edges. The dual graph is also embedded in 𝑇 2. The alternating sign of the nodes

actually turn the dual graph into a bipartite graph where each node is only connected to

nodes that have opposite sign, or “colour”. Our convention is to refer the nodes with positive

sign as “black” and negative ones as “white”. Now we summarise the dictionary between plan

quiver and brane tiling in table 2.4.

Gauge Theory Planar Quiver Brane Tiling
𝑆𝑈(𝑁) or 𝑈(𝑁) Node Polygonal face
Chiral multiplet Edge/Arrow Edge/Arrow
Superpotential term Polygonal face Node

Table 2.4: The dictionary translating between data in planar quiver and that in brane tiling.

Now it is probably a good place to introduce an example to illustrate the web of con-

nections. We take the del Pezzo 1 singularity [69]. We have the quiver of 𝑑𝑃1 given by

fig. 2-5

𝑈(𝑁1) 𝑈(𝑁2)

𝑈(𝑁3)𝑈(𝑁4)

𝑋12

𝑋
(1,2)
23

𝑋
(1,2,3)
34

𝑋
(1,2)
41

𝑋1
42

𝑋2
42

𝑋13

Figure 2-5: The quiver for D3-branes probing singular metric cone over del Pezzo 1 surface.
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The superpotential for this quiver theory is given by

𝑊 = Tr𝑋13𝑋
2
34𝑋

2
41 − Tr𝑋13𝑋

1
34𝑋

1
41 + Tr𝑋12𝑋

2
23𝑋

3
34𝑋

1
41 (2.37)

− Tr𝑋12𝑋
1
23𝑋

3
34𝑋

2
41 + Tr𝑋1

23𝑋
1
34𝑋42 − Tr𝑋2

23𝑋
2
34𝑋42 , (2.38)

where the trace is over the gauge group indices since the superpotential is made up by gauge

invariant operators. With the explicit superpotential written down, we can draw the planar

quiver as shown in fig. 2-6. Using the dictionary in table 2.4, the brane tiling is drawn in

2

1

4

3

𝑋12

𝑋1
23

𝑋2
41

𝑋3
34

𝑋1
34

𝑋13
𝑋2

34

𝑋42

𝑋2
23

𝑋42

𝑋1
41

Figure 2-6: The planar quiver for D3-branes probing singular metric cone over del Pezzo 1 surface.

fig. 2-7.

We can see that the region bounded by the dashed lines has exactly 6 nodes representing

the 6 terms in superpotential. Each term in the superpotential is obtained by tracing clock-

wise around black nodes and anti-clockwise around white nodes and collecting edges that

are connected to the node in consideration.

Dimer Models and Classical 𝑈(1) Symmetries of Toric Quiver. Now we look at

the set of 𝑈(1) symmetries on the bifundamental fields 𝑋𝑘
𝑖𝑗 under which the superpotential

transforms homogeneously. The D-terms and kinetic terms are automatically invariant since

they are quadratic in fields i.e. they combine holomorphic fields and its complex conjugate

together. Once the superpotential transforms homogeneously under 𝑈(1), we can find 𝑈(1)

symmetries of the Lagrangian by taking quotients of two such 𝑈(1) with certain weights
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1

2

3

4

3

1

2

𝑋13

𝑋2
41

𝑋3
34

𝑋2
34

𝑋1
41

𝑋2
23𝑋1

23

𝑋42

𝑋12

𝑋1
34

Figure 2-7: The brane tiling/dimer model for D3-branes probing singular metric cone over del
Pezzo 1 surface.

such that the superpotential is invariant. This question has a natural combinatoric solution

within the structure of dimer model, which we shall describe now.

For bipartite graph, a dimer is a marked edge and a dimer configuration or perfect match-

ing is a collection of dimers/marked edges such that every node of the graph has connectivity

one, or is covered exactly by one dimer. The bipartite graph with its set of dimer configura-

tion is call a dimer model. Now we turn to our dictionary between physics and brane tiling

and see that the nodes in the dimer are the terms of superpotential for the gauge theory

represented by the quiver. A dimer configuration in this sense is a choice of exactly one field

in every term of the superpotential. Thus action of 𝑈(1) on this set of fields is homogeneous

on the superpotential 𝑊 . We have transformed the problem of finding homogeneous 𝑈(1)

action on the superpotential into one that enumerating possible dimer configuration/perfect

matching of the bipartite graph. This enumerative problem is exactly the contents of Kaste-

leyn matrix [63]. We will use the notation for Kasteleyn matrix that is a modified version

of [57].

For a bipartite graph Γ, the weighted adjacency matrix 𝐴, whose rows and columns
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label the black and white nodes, has entries 𝐾𝑖𝑗

𝐴𝑖𝑗 =

⎧⎪⎨⎪⎩
∑︀

𝑘 𝑎
𝑘
𝑖𝑗 for each edge 𝑘 connecting black node 𝑖 to white node 𝑗

0 otherwise

(2.39)

where 𝑎𝑘𝑖𝑗 ∈ R* are edge weights, formal variables labelling the edges. The matrix 𝐴 only

specifies the connectivity of the graph and contains no information about the embedding

on the torus. We know define another matrix called Kasteleyn matrix to encode the

information of embedding Γ ∈ 𝑇 2. To define such matrix, we choose two primitive winding

cycles for the torus 𝛾𝑤 and 𝛾𝑧, which can be seen as carving our the fundamental domain of

the periodic tiling of the 𝑇 2. The Kasteleyn matrix 𝐾(𝑤, 𝑧) is then defined by

𝐾𝑖𝑗 =
∑︁
𝑘

𝑎𝑘𝑖𝑗𝑧
⟨𝑎𝑘𝑖𝑗 ,𝛾𝑧⟩𝑤⟨𝑎𝑘𝑖𝑗 ,𝛾𝑤⟩ , (2.40)

where ⟨𝑎𝑘𝑖𝑗, 𝛾⟩ is the signed intersection number of the edge 𝑎𝑘𝑖𝑗 and the boundary of the

fundamental domain, which is an oriented contour 𝛾 in our case. In this chapter, we will

take the 𝑎𝑘𝑖𝑗 to be 1 to enumerate all possible perfect matchings with certain rules of assigning

± to the entries of 𝐾 [63, 57] to aviod any accidental cancellation. However, in next chapter,

we will take the entries explicitly to be the fields when we consider the Inverse Algorithm.

Since edges can only cross the contour once, the intersection number can only be ±1, 0

meaning if the edge crosses 𝛾 with positive orientation or negative orientation or does not

cross at all. The Kasteleyn matrix is the basic tool we will need to recover the D3-brane

linear sigma modes, which give the classical and semiclassical (anomaly-free) moduli space

of the quiver gauge theory. If we take the determinant of the Kasteleyn matrix, we see

that it enumerates all possible perfect matchings by construction: the rows and columns

are labelled by black and white nodes, the cofactor expansion of determinant takes only one

edge for all possible choices of row and column. We include the fugacities 𝑧 and 𝑤 in the

determinant to give a bi-grading 𝑧𝑎𝑤𝑏 to make connection with toric geometry as we shall

explain in next paragraph.

Before we move on to review toric geometry, we take a look at the Kasteleyn matrix for
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del Pezzo 1.

𝐾(𝑤, 𝑧) =

⎛⎜⎜⎜⎝
𝑎13 𝑎141 𝑧 𝑎134𝑤

−1

𝑎241 𝑎334 + 𝑎12 𝑧 𝑎123

𝑎234𝑤 𝑎223 𝑎42 𝑧
−1

⎞⎟⎟⎟⎠ (2.41)

Its determinant is

det𝐾(𝑤, 𝑧) = −𝑎13𝑎123𝑎223 − 𝑎134𝑎
2
34𝑎

3
34 + 𝑎12𝑎13𝑎42 − 𝑎141𝑎

2
41𝑎42

+ 𝑎223𝑎
1
34𝑎

2
41𝑤

−1 + 𝑎13𝑎
3
34𝑎42𝑧

−1 − 𝑎12𝑎
1
34𝑎

2
34𝑧 + 𝑎123𝑎

2
34𝑎

1
41𝑤𝑧 (2.42)

This corresponds to the 8 perfect matchings as shown in fig. 2-8.

Other examples between dimer models and toric geometry can be found in [49, 51]. In

next subsection, we take a small detour to cover some background in toric geometry as all

of the model we refer to are based on this vast class of geometry.

2.3.2 A Short Review on Toric Geometry

For a standard introduction to toric geometry, the reader can refer to the mathematical

textbook [129], as well as physical introductions [130, 131, 132].

A toric variety is defined by an integer lattice 𝑁 ≃ Z𝑛, and a fan of strongly convex

rational polyhedra cones generated by 𝑁 . These cones are defined by having apex at the

origin and are generated by elements of 𝑁 as a vector space over R. Toric varieties are

special as they provide an elementary entry into understanding many abstract concepts of

algebraic geometry. Due to its simplicity, many non-trivial results in string theory can be

computed that are otherwise impossible.

Toric varieties can be accessed in different approaches. The definition using fans and cones

is one of them. There are others such as homogeneous coordinates, symplectic manifold or

physically, the Higgs branch of the space of supersymmetric vaccua of some gauged linear

sigma model. They can even be associated to convex polytopes in integral lattices. The

simplest of all would be through the route of homogeneous coordinate, which we shall describe

now. In fact, toric varieties look similar to our usual complex (weighted) projectives space

when using homogeneous coordinates. With such point of view, we can see toric varieties as
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𝛾𝑧

𝛾𝑤

𝑚1 : (−1, 0) 𝑚2 : (0,−1)

𝑚3 : (1, 1) 𝑚4 : (0, 1)

𝑚5 : (0, 0) 𝑚6 : (0, 0)

𝑚8 : (0, 0)𝑚7 : (0, 0)

Figure 2-8: The 8 perfect matchings for D3-branes probing singular metric cone over del Pezzo 1
surface. The weights (ℎ𝑤, ℎ𝑧) denotes the intersection of the perfect matching with the boundary
of the fundamental region.
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an alegebraic generalisation of (weighted) complex projective spaces.

Homogeneous Coordinates Recall that the projective space CP2 has definition as a

quotient space in C3

CP2 = (C3∖{0})/C* , (2.43)

where the quotient is through modding out the equivalence relation

(𝑥, 𝑦, 𝑧) ∼ 𝜆(𝑥, 𝑦, 𝑧) with 𝜆 ∈ C* . (2.44)

This can be generalised into weighted case by assigning weights for modding of individual

coordinate. For example, the weighted projective space CP(2,3,1) is given by

CP2 = (C3∖{0})/C* ,

(𝑥, 𝑦, 𝑧) ∼ (𝜆2𝑥, 𝜆3𝑦, 𝜆𝑧) with 𝜆 ∈ C* . (2.45)

The toric varieties can be seen as a further generalisation of the weighted case, where we

quotient by more than one C* action. Consider C𝑚 and an action by an algebraic torus

(C*)𝑝, 𝑝 < 𝑚. First we subtract a subset 𝑈 that is fixed by the action of the continuous

subgroup of (C*)𝑝, which is the generalisation of taking out the origin in previous two exam-

ples. This essentially removes any fix points that become singular after the quotient action.

A toric variety ℳ is then defined by

ℳ = (C𝑚∖𝑈)/(C*)𝑝 . (2.46)

The reasoning behind such a nomenclature is based on the fact that it still has an algebraic

torus action by the group (C*)𝑚−𝑝 descending from the natural action of (C*)𝑚 on C𝑚.

Cones and Fans Toric variety also affords definition by combinatoric lattices. This entails

the definition of cones and fans from integral lattices. Now let 𝑀 and 𝑁 be a dual pair of

lattices, taken as subsets of vector spaces 𝑀R = 𝑀 ⊗Z R and 𝑁R = 𝑁 ⊗Z R. The pairing

(𝑢, 𝑣) → ⟨𝑢, 𝑣⟩ is equivalent to the mapping 𝑀 ×𝑁 → Z and 𝑀R ×𝑁R → R.
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Definition 2.3.1. A strongly convex rational polyhedral cone 𝜎 ∈ 𝑁R is a set

𝑠 = {𝑎1𝑣1 + 𝑎2𝑣2 + · · ·+ 𝑎𝑘𝑣𝑘|𝑎𝑖 ≥ 0} , (2.47)

generated by a finite set of vecetors 𝑣1, . . . , 𝑣𝑘 in 𝑁 such that 𝜎 ∩ (−𝜎) = {0}.

Let us clarify this definition. If the lattice 𝑁 is 𝑛-dimensional i.e. 𝑁 ≃ Z𝑛, a rational

polyhedral cone is a cone of dimension not greater than 𝑛, with its apex sitting at the origin

(𝜎∩(−𝜎) = {0}) such that it is bounded by finitely many hyperplanes (‘polyhedra’), its edges

spanned by lattice vectors (‘rational’) and it contains no complete line (‘strongly convex’).

A face of a cone 𝜎 is either 𝜎 itself or the intersection of the cone with one of the hyperplanes

bounding 𝜎.

Definition 2.3.2. A collection Σ of cones in 𝑁R is called a fan if each face of a cone in Σ

is also a cone in Σ and the intersection of two cones in Σ is a face of each.

There are two examples shown in fig. 2-9. Now we can move the definition of toric

𝑣1

𝑣2

𝑣3

𝑣1

𝑣2

𝑣3

CP2 CP(2,3,1)

Figure 2-9: The two fans for CP2 and CP(2,3,1). Both of them includes three two-dimensional
cones spanned by 𝑣1 − 𝑣2, 𝑣2 − 𝑣3 and 𝑣1 − 𝑣3 and three one-dimensional cones 𝑣1 𝑣2 and 𝑣3 and
the origin.

varieties using fans and cones. In particular, we are interested in three-dimensional toric

varieties i.e. 𝑀,𝑁 ∈ Z3.

Let Σ be a fan in 𝑁 and Σ(1) be the set of one-dimensional cones in Σ with cardinality

𝑘. We associate each vector 𝑣𝑖 in Σ(1) with a homogeneous coordinate 𝑤𝑖 ∈ C. Then remove
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the set from the resulting C𝑘

𝑍Σ =
⋃︁
𝐼

{(𝑤1, . . . , 𝑤𝑘) : 𝑤𝑖 = 0 ∀𝑖 ∈ 𝐼} , (2.48)

where the union is taken for all sets 𝐼 ⊆ 1, . . . , 𝑘 for which {𝑤𝑖 : 𝑖 ∈ 𝐼} does not belong

to a cone in Σ. This means several 𝑤𝑖’s are allowed to vanish simultaneously only the

corresponding 𝑣𝑖’s all belong to the same cone in Σ.

The toric variety is thus defined by

ℳΣ =
C𝑘∖𝑍(Σ)

𝐺
, (2.49)

where 𝐺 is a product group of (C*)𝑘−3 and a finite abelian group. The finite group is trivial

for our cases here. See [132] for more discussion on this group. The quotient is implemented

as the following equivalence relation among the homogeneous coordinates 𝑤𝑖

(𝑤1, . . . , 𝑤𝑘) ∼ (𝜆𝑄
1
𝑎𝑤1, . . . , 𝜆

𝑄𝑘
𝑎𝑤𝑘) , (2.50)

where 𝜆 ∈ C* and
∑︀𝑘

𝑖=1𝑄
𝑖
𝑎𝑣𝑖 = 0. Note that this sum essentially parametrises the linear

relations between the 𝑘 one-dimensional cones and among these, 𝑘 − 3 are independent.

Let us take the example of CP2, whose fan is given by the first diagram in fig. 2-9. The

three one-dimensional cones are 𝑣1 = (1, 0), 𝑣2 = (0, 1) and 𝑣3 = (−1,−1), which represent

three homogeneous coordinates 𝑤1, 𝑤2 and 𝑤3 in C3. The set 𝑍Σ = 0 is simply the origin.

The toric variety is then give by

ℳΣ =
(C3∖{0})
(C*)

. (2.51)

The linear relation between the generators are 1× (1, 0) + 1× (0, 1) + 1× (−1,−1) = (0, 0).

Therefore, the equivalence relation is given by (𝑤1, 𝑤2, 𝑤3) ∼ 𝜆(𝑤1, 𝑤2, 𝑤3).

In addition, let us consider a less trivial example of CP(2,3,1), whose fan is given by the
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second diagram in fig. 2-9. This again has 𝑍Σ to be {0}. The toric variety is given by

𝑀Σ =
(C3∖{0})
(C*)

. (2.52)

The linear relation between generators is now 2× (1, 0) + 3× (0, 1) + 1× (−2,−3) = (0, 0).

Thus the equivalence relation is (𝑤1, 𝑤2, 𝑤3) ∼ (𝜆2𝑤1, 𝜆
3𝑤2, 𝜆𝑤3).

Here are few properties of toric varieties that are easy to visualise in the diagram.

Proposition 1. A toric variety ℳΣ is compact if and only if its fan Σ fills 𝑁R.

For a formal proof of this, see [129]. This gives a straight visualisation of the compactness

of toric varieties – both examples in fig. 2-9. In addition, it is also easy to check whether

a toric manifold is singular or not. We need some auxiliary definitions for this criterion of

smoothness. An 𝑟-dimensional cone is called simplicial if it is generated by 𝑟 one-dimensional

vectors. A fan is simplicial if all of its constituting cones are simplicial. Give a simplicial fan

Σ, it can be shown that the corresponding toric variety can have at most orbifold singularties.

In addition, if every 𝑛-dimensional cones are generated by the vectors generating the whole

lattice 𝑁 , then the variety ℳΣ is smooth.

Let us check these propositions against the examples in fig. 2-9. We see that both varieties

CP2 and CP(2,3,1) are compact since all of their fans fill up the 𝑁R. However, we also see that

for CP(2,3,1), two of its cones are not generated by the vectors generating 𝑁 and it indeed

has orbifold singularities which locally are C2/Z2 and C2/Z2 and C2/Z3 [132]. To resolve

the singularities, we keep adding one-dimensional cones to the fan until all two-dimensional

cones are generated by vectors generating 𝑁 . For example, we can resolve the Z2 and Z3

singularities as shown in fig. 2-10.

Before we implement the condition for toric Calabi-Yau three-fold, it is expedient to

introduce the definition of a toric divisor.

Definition 2.3.3. Let ℳΣ be a toric variety defined by the fan Σ and Σ(1) be the set of

one-dimensional cones. We associate each vector 𝑣𝑖 in Σ(1) with a homogeneous coordinate

𝑤𝑖. The toric divisor 𝐷𝑖 is defined by the hypersurfaces 𝑤𝑖 = 0 in ℳΣ.
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𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Figure 2-10: The resolved toric variety for CP(2,3,1). The added vectors 𝑣4, 𝑣5 and 𝑣6, actually
correspond to the blown-up exceptional divisors.

In can also be shown [129] that the canonical bundle of ℳΣ is given by

𝐾ℳΣ
= 𝒪(−

∑︁
𝑖

𝐷𝑖) . (2.53)

This result is crucial in checking whether a toric variety is Calabi-Yau or not. Specifically,

these toric divisors play an important role in AdS/CFT correspondence for our non-compact

toric CY3 cases. As we have mentioned in preceding sections that the singular CY3 is a

real metric cone over a Sasaki-Einstein 5-fold. However, when CY3 is toric, the SE manifold

is itself a 𝑈(1) bundle over a toric base admitting a 𝑈(1)3 isometry. In this case, the

non-compact four-dimensional (real) toric divisors restrict to compact 3-cycles in SE 5-fold.

These 3-cycles correspond to toric divisors (holomorphic curves) of the toric base with 𝑈(1)

fibre over them.

Toric Calabi-Yau Threefolds

As we know that we can associated a line bundle with meromorphic section to a divisor

𝐷 =
∑︀

𝑖 𝑎𝑖𝑁𝑖, such that the meromorphic section has a pole of order −𝑎𝑖 along 𝑁𝑖 when
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𝑎𝑖 < 0 and a zero of order 𝑎𝑖 along 𝑁𝑖 if 𝑎𝑖 > 0. 𝑁𝑖 are irreducible hypersurfaces for the

base of the bundle. Now for our toric case, the divisors are defined by 𝑤𝑖 = 0 which are also

irreducible. Therefore, a toric divisor 𝐷𝑖 is associated to a line bundle with a section 𝑠 which

has a zero of order one along 𝐷𝑖. The section is simply 𝑤𝑖. We see that each homogeneous

coordinate 𝑤𝑖 corresponds to a section of a line bundle associated to a toric divisor 𝐷𝑖.

Now let us consider the monomial 𝑤𝑎11 · · ·𝑤𝑎𝑘𝑘 . we see that from previous discussion that

this monomial has zero of order 𝑎𝑖 along 𝐷𝑖 if 𝑎𝑖 > 0 and pole of order −𝑎𝑖 if 𝑎𝑖 < 0 along

𝐷𝑖. Thus it is a section of line bundle 𝒪(
∑︀

𝑖𝐷𝑖). Now let us take ⟨𝑣𝑖,𝑚⟩ = 𝑎𝑖, 𝑖 = 1, ..., 𝑘

for 𝑚 ∈ 𝑀 with 𝑀 being the dual lattice of 𝑁 . The equivalence under which toric variety

is defined now becomes

(𝜆𝑄
1
𝑎𝑤1)

⟨𝑣1,𝑚⟩ · · · (𝜆𝑄𝑘
𝑎𝑤𝑘)

⟨𝑣𝑘,𝑚⟩ = 𝜆⟨
∑︀𝑘

𝑖=1𝑄
𝑖
𝑎𝑣𝑖,𝑚⟩𝑤

⟨𝑣1,𝑚⟩
1 · · ·𝑤⟨𝑣𝑘,𝑚⟩

𝑘 . (2.54)

But we have the definition of toric variety:
∑︀𝑘

𝑖=1𝑄
𝑖
𝑎𝑣𝑖 = 0, which means this monomial

is invariant under the equivalence relation. Thus we have a globally defined meromorphic

function of our toric variety, which must be a section of the trivial line bundle

𝑘∑︁
𝑖=1

⟨𝑣𝑖,𝑚⟩𝐷𝑖 ∼ 0 for any 𝑚 ∈𝑀 . (2.55)

If
∑︀𝑘

𝑖=1 𝑎𝑖𝐷𝑖 ∼ 0, then there exists an 𝑚 ∈ 𝑀 such that 𝑎𝑖 = ⟨𝑣𝑖,𝑚⟩ for all 𝑖. Recall

that the canonical line bundle of a toric variety is given by 𝐾ℳΣ
≃ 𝒪(−

∑︀𝑘
𝑖=1𝐷𝑖) and a

Kähler manifold is Calabi-Yau if and only if its canonical line bundle is trivial. Thus for the

canonical line bundle to be trivial, we need to have
∑︀

𝑖𝐷𝑖 ∼ 0. Then there exists an 𝑚 ∈𝑀

such that 𝑎𝑖 = ⟨𝑣𝑖,𝑚⟩ = 1 for all 𝑖. So we have to following condition for a toric variety to

be Calabi-Yau

Definition 2.3.4. Let ℳΣ be a toric variety defined by a fan Σ. ℳΣ is Calabi-Yau if and

only if all the vectors generating the fan lie in the same affine hyperplane in the fan Σ.

So there are some immediate consequences as follows:

Proposition 1. A toric Calabi-Yau manifold is non-compact.
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As all the vectors 𝑣𝑖 lie in the same hyperplane, they can not fill 𝑁R. Thus by proposi-

tion 1, the variety is not compact. There is another form of CY condition for toric variety

that we will refer to more often. As we have the toric variety to satisfy
∑︀

𝑖𝑄
𝑖
𝑎𝑣𝑖 = 0 for

the charges 𝑄𝑖
𝑎. It is obvious that

∑︀
𝑖𝑄

𝑖
𝑎 ⟨𝑣𝑖,𝑚⟩ for any 𝑚 ∈ 𝑀 and particularly, there is

a choice of 𝑚 such that ⟨𝑣𝑖,𝑚⟩ = 1 if and only if
∑︀𝑘

𝑖=1𝑄
𝑖
𝑎 = 0 for all 𝑎. So we have the

following for CY condition on toric variety

Proposition 2. A toric manifold is Calabi-Yau if and only if the charges 𝑄𝑖
𝑎 satisfy the

condition
∑︀𝑘

𝑖=1𝑄
𝑖
𝑎 = 0 for all 𝑎.

The CY threefolds in toric case are especially easy to visualise if we define the so called

“toric diagram”. These are the diagrams dual to the two-dimensional hypersurface in which

all of the one-dimensional cones reside. Therefore, if we intersect the fan Σ representing

the toric CY threefold with the plane 𝑃 in which all the vectors 𝑣𝑖 lie, we obtain the two-

dimensional diagram Γ̃. The dual diagram Γ of Γ̃ is drawn such that every edge in Γ is the

normal of the edge in Γ̃ and vice versa. The diagram Γ is called the toric diagram of the

toric Calabi-Yau threefold ℳΣ. An example is shown fig. 2-11.

(0, 1)

(1, 0)

(−1,−1)

Figure 2-11: The fan for CP2 is shown as before as well as the coordinates for the corresponding
𝑣𝑖 for 𝑖 = 1, 2, 3. The toric diagram is drawn in thick black lines and it is indeed the dual diagram
of the fan.

Toric CY3 as Symplectic Quotients and Fibrations Before we move back to discus-

sion on brane tilings, we describe the construction of toric varieties as symplectic quotients

and see the connection between toric varieties and gauged sigma linear models.
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Now let 𝑧1, . . . , 𝑧𝑘 be coordinates on C𝑘 and 𝜇𝑎 : C𝑘 → C, 𝑎 = 1, . . . , 𝑘 − 3 be 𝑘 − 3

moment maps defined by
𝑘∑︁
𝑖=1

𝑄𝑖
𝑎|𝑧𝑖|2 = Re(𝑡𝑎) , (2.56)

where 𝑡𝑎 are some complex numbers and are called the ‘level’ for the 𝑎-th moment map. The

charges 𝑄𝑖
𝑎 are the same as before and they satisfy

∑︀𝑘
𝑖=1𝑄

𝑖
𝑎 = 0 for all 𝑎. Also consider the

group action 𝐺 = 𝑈(1)𝑘−3 on the coordinates governed by

𝑧𝑗 → exp(𝑖𝑄𝑗
𝑎𝛼𝑎)𝑧𝑗, 𝑎 = 1, . . . , 𝑘 − 3 , (2.57)

it can be shown that the quotient

ℳ =

⋂︀𝑘−3
𝑎=1 𝜇

−1(Re(𝑡𝑎))

𝐺
, (2.58)

is also a toric Calabi-Yau threefold. The 𝑘−3 𝑡𝑎 parameters are the complex Kähler param-

eters of the Calabi-Yau. We note that this construction also arises in gauged linear sigma

models. This model is a two dimensional gauge theory with 𝑈(1)𝑘−3 gauge group. There are

𝑘 chiral superfields Φ𝑖 with scalar components denoted by complex variables 𝑧𝑖. The charges

of the superfields under gauge group 𝑈(1)𝑘−3 are denoted by 𝑄𝑖
𝑎, 𝑎 = 1, . . . , 𝑘 − 3. This

justifies the nomenclature “charge” for matrix 𝑄𝑖
𝑎. Since we have abelian gauge factors here,

the supersymmetric vacua are thus constrained by the D-terms equation, which are precisely

the moment maps defined in eq. (2.56). Here we see that these toric Calabi-Yau threefolds

can be interpreted physically as the Higgs branch of the supersymmetric vacua of a gauge

linear sigma model.

As the title suggests, there is another more geometric interpretation of toric CY3 as

𝑈(1)3 ≃ 𝑇 3 bundle over a real linear subspace (parametrised by the |𝑧𝑖|2 variables) formed

by the intersection of hyperplanes in eq. (2.56) with (R+)𝑑. More specifically, we intro-

duce coordinates on the toric manifolds as those 𝑧𝑖 in eq. (2.56) for a threefold. These

coordinates are not all independent, there are 𝑘 − 3 relations imposed by the moment

maps. We can rewrite the coordinates as |𝑧𝑗|𝑒𝑖𝜃𝑗 and introduce a new set of coordinates

{(𝑝1, 𝜃1), (𝑝2, 𝜃2), . . . , (𝑝𝑘, 𝜃𝑘)} with 𝑝𝑖 = |𝑧𝑖|2, 𝑖 = 1, ..., 𝑘. Thus the base is the parametrised

62



by the 𝑝𝑖 ∈ R+ and the fibres by the phases 𝜃𝑖.

Since the coordinates 𝑝𝑖 are non-negative, thus the boundaries of the base are place

where some of the 𝑝𝑖 vanish. However, when 𝑝𝑗 = 0, the circle |𝑧𝑗|𝑒𝑖𝜃𝑗 degenerates to a point.

Therefore, the boundary of the base denotes the degeneration of the fiber 𝜃𝑗. Geometrically,

the fiber degenerates in the direction normal to the boundary. Thus the toric diagram can be

drawn as follows. First, express 𝑝𝑗, 𝑗 = 4, ..., 𝑘 in terms of 𝑝1, 𝑝2, 𝑝3 and Kähler parameters

using the moment map in eq. (2.56). Each boundary is a plane in the space generated by

𝑝1, 𝑝2 and 𝑝3. Intersections of these boundary planes give the edges of the toric diagram.

On the other hand, there is a relation between the toric diagram and the so called (𝑝, 𝑞)-

web in physics literature [38]. In the dual picture, the edges of this web correspond to

5-branes carrying (𝑝, 𝑞) D5- and NS5-brane charges. This web diagram is graph dual to the

triangulation of the toric diagram as shown in fig. 2-12.

1

2

34

5, 6, 7, 8
𝑚1 = 0

𝑚2 = 0

𝑚3 = 0
𝑚4 = 0

Figure 2-12: The diagram on the left is the toric diagram ∆ for del Pezzo 1 surface with labels
for perfect matchings. The details of the relation between coordinates of the toric diagram and
perfect matchings with possible multiplicities are presented in section 2.3.3. The diagram on the
right is the complete triangulation of the toric diagram on the left which gives the resolution to
the singular metric cone over the del Pezzo 1 surface and the (𝑝, 𝑞)-web is given by the thick
black lines in it.

In this picture, the toric diagram is visualised as the boundary of the three-dimension

base parametrised by 𝑝1, 𝑝2 and 𝑝3. There is a 𝑇 3 fibre over a generic point of the base with

degeneration specified by the direction normal to the boundary. For generic choices of 𝑡𝑎 the

resulting space is smooth. When all 𝑡𝑎 = 0, the origin (𝑧1, ..., 𝑧𝑘) = 0 is a solution of eq. (2.56)

and the Calabi-Yau space is a complex cone over a toric surface, with a Gorenstein canonical

singularity at the origin. Other values of the Kähler parameter 𝑡𝑎 give partial resolution of

this singularity. An example of this 𝑇 3 fiber construction can be seen for 𝒪(−3) → CP2.
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This toric variety is defined by the moment map 𝑝1 + 𝑝2 + 𝑝3 − 3𝑝4 = 𝑡, which gives 𝑝4 as

𝑝4 = (𝑝1 + 𝑝2 + 𝑝3 − 𝑡)/3. The boundary planes are give by 𝑝1 = 0, 𝑝2 = 0, 𝑝3 = 0 and

𝑝1 + 𝑝2 + 𝑝3 = 𝑡. We see that the intersection of these planes give the toric diagram of CP2

as shown in fig. 2-13. Note here the Kähler parameter 𝑡 controls the size of CP2.

𝑝1

𝑝2

𝑝3

Figure 2-13: The toric diagram of CP2 with normals to edges of the shaded triangle giving the
degeneration direction of 𝑇 3 fibre.

There is also another construction of toric diagram as the degeneration locus of 𝑇 2 × R

fibration over R3 base manifold. It is covered in topological vertex formalism developed in

[133] for toric CY3. The basic idea behind this formalism is that we can build a toric CY3

by gluing together local C3 patches. First, we take C3 as a fibration 𝑇 2 × R and describe

its degeneration locus in a two dimensional diagram Γ, which is a trivalent vertex. Then we

glue different patches of C3/trivalent vertices specified by the moment map in eq. (2.56). On

the other hand, if we are given a toric CY3, we can group the coordinates in triplets which

is the same as splitting the CY3 into patches of C3. The moment map in eq. (2.56) then

specifies how trivalent vertices of each C3 patch is glued together to form the toric diagram

of the CY3.
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2.3.3 Dimer Models and Toric Geometry

As we shall see in this section: there is a direct translation between the Newton polygon

obtained from the Kastelyn matrix of a dimer model and the associated toric diagram. This

in fact allows us to construct a series of quiver gauge theories with certain prescribed toric

moduli space.

The determinant of the Kasteleyn matrix has the expansion

det𝐾(𝑤, 𝑧) =
∑︁

(𝑎,𝑏)∈Δ

𝑓𝑎𝑏(𝑎
𝑘
𝑖𝑗)𝑤

𝑎𝑧𝑏 , (2.59)

where ∆ is the set for all possible exponents (𝑎, 𝑏) and 𝑓𝑎𝑏(𝑎𝑘𝑖𝑗) is a function of edge weights

𝑎𝑘𝑖𝑗, which is linear when written in terms of matchings. If we define the matching variables

𝑚𝑖, we have

𝑓𝑎𝑏(𝑎
𝑘
𝑖𝑗) =

∑︁
𝑙∈𝑀𝑎𝑏

𝑚𝑙 , (2.60)

where the sum runs over a subset of matchings 𝑀𝑎𝑏 ∈ 𝑀 . The assignment of matchings is

dictated by their intersection with the contours 𝛾𝑤 and 𝛾𝑧 in eq. (2.40). See fig. 2-12 for the

Newton polygon for the cone over 𝑑𝑃1 surface. Each lattice point has perfect matchings 𝑚𝑖

residing on it. The coordinates of the lattice points (𝑎, 𝑏) are precisely the exponents of the

𝑤𝑎𝑧𝑏 and perfect matchings are their coefficients in the expansion of det𝐾(𝑤, 𝑧).

To expand the previous paragraph in more details, we form the Newton polygon ∆ of

det𝐾(𝑤, 𝑧) by taking the convex hull of the exponents (𝑎, 𝑏) ∈ ∆. The lattice points in

Z2 correspond to the individual exponents (𝑎, 𝑏). In [49], it was observed that this lattice

polygon is closely related to the toric CY3 which the D3-branes probe. If we append the

lattice points with an additional coordinate

(𝑎, 𝑏) ↦→ (1, 𝑎, 𝑏) , (2.61)

we see that these are exactly the complete set of one-dimensional cone of the fan that

represents the resolved toric Calabi-Yau. Therefore, ∆ is simply the toric diagram of the

Calabi-Yau.
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However, there are some redundancies in the presentation of the toric diagram since dif-

ferent choices of 𝛾𝑤 and 𝛾𝑧 act as 𝑆𝐿(3,Z) on the set of lattice vectors. Translated onto the

toric diagram, it acts by 𝑆𝐿(2,Z) (shear and rotation) and an integer shift. This transfor-

mation is then a change of basis in the charge matrix 𝑄. We see that these redundancies

clearly do not change the geometry that the toric diagram represents.

The connection between dimer model and toric Calabi-Yau geometry is based on the

simple idea that the D3-branes are probes on the CY geometry and they are free to explore

the cone geometry and their moduli space reflects the fact that the D3-branes can explore

the neighbourhood of the singularity. The dimer model connects to the geometry by giving a

natural parametrisation of the moduli space of toric structure. One aspect of the dimer model

is that the lattice points (1, 𝑎, 𝑏) of the toric diagram usually have multiplicities greater than

one. This comes from the fact that there are usually several summands in the coefficients of

𝑧𝑎𝑤𝑏 in expansion of det𝐾(𝑤, 𝑧). This seems like an overkill for representation of the CY

geometry, however, it is these multiplicities that give rise to a class of quiver gauge theories

of the same moduli space, as we will see in the next chapter.

Bases of Perfect Matching

Recall that a perfect matching in a dimer model correspond to a set of fields that makes the

superpotential transform homogeneously under 𝑈(1). Therefore, any pairwise difference of

perfect matchings generates 𝑈(1) symmetries of the theory. The differences of matching also

give closed, oriented path on the dimer graph. We shall classify these symmetries according

to the homology of these paths and find some distinguished bases for these symmetries. We

can treat the 𝑈(1) symmetries more precisely by recast them into one-forms [53]. A one-form

𝜖 is a function defined on the edges of the graph

𝜖 =

𝑁𝐸∑︁
𝑖=1

= 𝜖𝑖𝛿(𝑖) , (2.62)

where 𝛿(𝑖) is a delta-function on 𝑖-th edge with canonical orientation from black node to

white node. This one-form is anti-symmetric under exchange of orientation of the edge and
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it is defined up to a gauge transformation

𝜖 ∼ 𝜖+ 𝑑𝑓 , (2.63)

with

𝑑 𝑓(𝑒) = 𝑓(𝐹𝐿)− 𝑓(𝐹𝑅) . (2.64)

This means each edge gets a contribution from the difference of an integer-valued function

evaluated on the faces on the left and on the right of the edge with respect to a canonical

orientation from black to white. Now we can assign 𝑈(1) charges to the fields which translates

to putting these one-forms on the edges. The superpotential has charge zero under these

𝑈(1) symmetries apart from the 𝑈(1)𝑅. The invariance of superpotential then demands the

closure of the one-form 𝑑𝜖 = 0. This shows that the 𝑈(1) symmetries are classified by the

cohomology 𝐻1(Γ,Z).

With such definitions, we proceed to characterise the baryonic and mesonic 𝑈(1) symme-

tries. A mesonic operator 𝑀 is a closed path 𝛾𝑀 on 𝑇 2, comprised of a set of edges. Thus

the charge is a sum of charges over all fields in the path

𝑄𝜖(𝑀) =

∮︁
𝛾𝑀

𝜖 . (2.65)

By definition, the baryonic 𝑈(1) symmetries are those under which all mesons are uncharged.

Therefore the one-form 𝜖 is exact such that 𝜖 = 𝑑𝜂, with 𝜂 ∈ 𝐻0(Γ,Z). A basis for 𝐻0(Γ,Z)

can be taken as delta functions 𝛿(𝐹𝑖) with support on 𝑖-th face. This delta function then

assigns charges to the edges through the one-form 𝑑 𝛿(𝐹𝑖), where the exterior derivative is

given by the eq. (2.64). This assignment of charges alternates between ±1 since the canonical

orientation of the edges alternates. But the charge is 0 when two adjacent faces are identified

due to the periodic tiling on the 𝑇 2. This assignment of charges are precisely the incidence

matrix in section 2.2 and it can be interpreted as the “baryonic” 𝑈(1) symmetry of the fields

in the CFT limit. This is because all mesonic operators are formed by taking traces of the

gauge indices, thus all fields in the operators should enter a gauge node as many times as

they leave the node. With such configuration, all mesonic operators are uncharged under
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this 𝑈(1) symmetry. But if an operator is comprised of unequal number of incoming and out

going fields of a gauge node, it is then charged under this 𝑈(1) and hence justifies the name

“baryonic”. This is also call the face symmetry, signifying that they come from the contour

surround faces.

The “mesonic” symmetry on the other hand, are generated by the two non-trivial gen-

erators of one-forms corresponding to paths winding the two non-trivial cycles of the torus.

These are the mesonic flavour symmetries under which the mesons are charged. It is known

that that the mesonic “flavour” symmetry corresponds to the 𝑈(1)2 isometries of the toric

surface at the base of toric Calabi-Yau cone.

As we saw earlier, the perfect matchings parametrise the set of 𝑈(1) symmetries under

which the superpotential transforms homogeneously. It is therefore worthwhile to construct

the “perfect matching matrix” as

𝑃𝑖𝛼 =

⎧⎪⎨⎪⎩1 if 𝑖-th edge is contained in 𝛼-th perfect matching

0 otherwise

(2.66)

Therefore, the differences of the columns of this matrix generate the 𝑈(1) symmetries of the

𝑊 . It can be seen that the charge assignments differences of columns of 𝑃 agree the previous

one-form parametrisation. There is a preferred basis of matchings that generate contours

surrounding the faces of the dimer. Also note that this basis is over-complete as the perfect

matchings are not all independent.

Zig-Zag symmetries There is another set of one-forms that will be useful for accounting

non-anomalous 𝑈(1) symmetries of the quiver gauge theory. These are the one-forms gen-

erated by the perfect matchings residing on the boundary points of the toric diagram. For

convention, we may take the points in anti-clockwise orientation on the boundary and take

successive differences 𝑚𝑖 −𝑚𝑖+1 [50]. The path is such that it makes precisely one maximal

clockwise turn around a white note and then a maximal anti-clockwise turn around the next

black node before reaching the next edge and node in the sequence. A fundamental cell of

a brane tiling has always a finite number of zig-zag paths. They correspond to the closed
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curves wrapped by the NS5-branes and the 46 torus cycles along which the NS5-branes in-

tersect the D5-branes, which we will give a description in next section [56, 42]. We see that

these paths have non-trivial winding (𝑝, 𝑞) and are subject to some linear constraint among

the vectors (𝑝, 𝑞). These are therefore some linear combination of the above baryonic and

mesonic symmetries. In fact, these paths have a direct relation to the (p,q)-web diagram

which we referred to briefly in the previous section. Every zig-zag path has a winding num-

ber in relation to a reference fundamental cell of the brane tiling. The winding numbers of

the zig-zag paths of a brane tiling can be drawn as rays from the origin of a Z2 lattice. The

resulting fan is called reduced (𝑝, 𝑞)-web diagram, whose origin is 𝑁 -valent with 𝑁 being the

total number of zig-zag paths in the fundamental cell. The reduced (𝑝, 𝑞)-web diagram can

be refined by decomposing the N-valent origin into 3-valent vertices. [38, 39]. The dual of

the resulting extended (𝑝, 𝑞)-web diagram is precisely the toric diagram of the non-compact

Calabi-Yau 3-fold. The different ways of decomposing the N-valent origin of the reduced di-

agram correspond precisely to the different ways of triangulating the convex toric diagram.

The example for the 𝑑𝑃1 surface is shown in fig. 2-14. Note here the 𝑑𝑃1 toric diagram only

𝑍3 : (0, 1)

𝑍2 : (2,−1)

𝑍1 : (−1,−1)

𝑍4 : (−1, 1)

Figure 2-14: The reduced (𝑝, 𝑞)-web diagram and the extended (𝑝, 𝑞)-web diagram for 𝑑𝑃1.

has one unique triangulation and thus there is only one dual extended (𝑝, 𝑞)-web diagram.

The coordinates for the perfect matchings in the first diagram correspond to exactly the

winding (𝑝, 𝑞) with respect to the fundamental domain.

There is the associated notion of consistency related to brane tiling and zig-zag paths

[50]. A consistent brane tiling is expected to flow to a superconformal fixed point in the

IR with a preferred 𝑈(1) R-symmetry, which becomes a part of the superconformal algebra

and determines the scaling dimension of BPS operators. If the brane tiling is not consistent,
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one normally expect 0 superconformal R-charges to be assigned to the bifundamental fields

under a-maximisation [134, 135, 136]. With such assignment, some dibaryon operators would

violate the unitarity bound on the scaling dimension. Graphically, this condition on a brane

tiling is

∙ No self-intersection zig-zag paths.

∙ No edges are multi-bonded, meaning no faces are two-sided.

∙ No extremal (corner) correspond to more than one perfect matching on the toric dia-

gram.

In terms of toric diagram, a brane tiling is inconsistent when

∙ The area of the toric diagram as measured by the number of fundamental triangles is

NOT the number of gauge groups in the brane tiling. This condition is important when

we start collecting consistent brane tilings generated from certain singular geometry.

Example: 𝑑𝑃1 Now let us take the example of del Pezzo surface 1. The perfect matching
matrix is give by the determinant of Kasteleyn matrix

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8

𝑋12 0 0 0 1 0 0 0 1

𝑋1
23 0 0 1 0 0 0 1 0

𝑋2
23 1 0 0 0 0 0 1 0

𝑋1
34 1 0 0 1 0 1 0 0

𝑋2
34 0 0 1 1 0 1 0 0

𝑋3
34 0 1 0 0 0 1 0 0

𝑋42 0 1 0 0 1 0 0 1

𝑋13 0 1 0 0 0 0 1 1

𝑋1
41 0 0 1 0 1 0 0 0

𝑋2
41 1 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.67)

Note that we have split the perfect matchings into external (𝑚1, ...,𝑚4) and internal
(𝑚5, ...,𝑚8) in toric diagram ∆. The baryonic face symmmetries are given by the linear
combination as

𝑄D =

⎛⎜⎜⎜⎜⎜⎝
𝐹1 0 0 0 0 −1 0 0 1 𝜁1

𝐹2 0 0 0 0 0 0 1 −1 𝜁2

𝐹3 0 0 0 0 0 1 −1 0 𝜁3

𝐹4 0 0 0 0 1 −1 0 0 𝜁4

⎞⎟⎟⎟⎟⎟⎠ (2.68)

Note here we included the FI parameter 𝜁𝑎 accounting the 𝑈(1) factor for each face/gauge

node. Note that not all face symmetries are independent and we see that this essentially

comes from the linear relations among perfect matchings themselves. We can demand an

extra relation between the FI parameters to signify this dependence by
∑︀

𝑎 𝜁
𝑎 = 0.
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The zig-zag symmetries are

𝑄Z =

⎛⎜⎜⎜⎜⎜⎝
𝑍1 1 −1 0 0 0 0 0 0

𝑍2 0 1 −1 0 0 0 0 0

𝑍3 0 0 1 −1 0 0 0 0

𝑍4 −1 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ . (2.69)

These basis can be used to construct anomaly-free baryonic symmetries (c.f. §3.8 [41]).
Lastly, the redundancies are given by the kernel of perfect matching matrix 𝑀

𝑄F = Ker(𝑀) =

⎛⎝ 0 1 0 1 0 −1 0 −1 0

1 1 1 0 −1 −1 −1 0 0

⎞⎠ (2.70)

Note that the last column has all entries as 0. This is due to the fact that these choice of

perfect matchings do not correspond to physical symmetries hence do not have corresponding

FI parameter.

Anomalous 𝑈(1) Symmetries 𝑈(1) symmetries that become anomalous in the IR limit

of the CFT should be singled out. Im general, there are two such symmetries. The anomalies

in string theory are cancelled by a generalised version of Green-Schwarz mechanism [24, 137].

The 𝑈(1) gauge fields of D3-brane worldvolume theory couple to the closed string fields and

become massive to decouple from the IR gauge dynamics. As in [138], The anomalous 𝑈(1)

D-term should not be considered when computing the vacuum. The anomaly-free baryonic

𝑈(1) symmetries remain gauged in the AdS model and the gauge fields come from reduction

of R-R four-form on the 3-cycles of Sasaki-Einsetin 5-fold. These gauge fields couple to the

global 𝑈(1) currents on the boundary of the AdS. The corresponding dibaryons in the CFT

are dual to the wrapped D3-brane, which are charged under these 𝑈(1). The 3-cycles in the

Sasaki-Einstein 5-fold are from the toric divisors of the Calabi-Yau cone. This gives us a

direct way to get the non-anomalous 𝑈(1) symmetries from the dimer alone.

The external matchings on the dimer correspond to points on the boundaries of the

Newton polygon. We used pariwise difference between perfect matchings to define the zig-

zag 𝑈(1) symmetries of the CFT. These symmetries can be shown [53, 135] to be exactly

the 𝑈(1) anomaly-free baryonic symmetries. The number of symmetries is 𝑁𝑑 − 1 with 𝑁𝑑

being the integer length of the boundary of the toric diagram. The two primitive winding

cycles are dual to mesonic symmetries, so the baryonic combination of symmetries should

71



have zero winding number. This imposes another two constrains, making total of 𝑁𝑑 − 3

baryonic combinations of zig-zag paths.

From fig. 2-14, we read off the winding numbers of zig-zag paths for 𝑑𝑃1:

(−1,−1), (2,−1), (0, 1), (−1, 1).

Only three of them are independent as they have a relation 𝑎(−1, 1−) + 𝑏(2,−1) + 𝑐(0, 1) =

(0, 0) for integers 𝑎 = 2, 𝑏 = 1 and 𝑐 = 3. This choice of corresponds to the linea combination

of charges

2𝑍1 + 𝑍2 + 3𝑍3 = (2, 1, 2, 3, 0, 0, 0, 0|𝜁) ,

where the new FI parameter will be determined by expressing this symmetry as the classical

symmetries recorded in eq. (2.68):

(2, 1, 2, 3, 0, 0, 0, 0) = (−2, 1,−1,−3, 2) ·𝑄𝑡 . (2.71)

Thus 𝜁new = −2𝜁1 + 𝜁2 + −𝜁3. This 𝑈(1) symmetry is the only non-anomalous one of

𝑑𝑃1 theory. In such sense, the anomalous 𝜁𝑎 should not be treated as fixed number thus

constraining the allow values of |𝑚𝑖|2, but rather defined to be equal to the linear combination

of |𝑚𝑖|2. However, the two redundant 𝜁4 and 𝜁5 still constrain the VEVs of the fields and

thus give relations

|𝑚8|2 = |𝑚2|2 + |𝑚4|2 − |𝑚6|2

|𝑚7|2 = |𝑚1|2 + |𝑚2|2 + |𝑚3|2 − |𝑚5|2 − |𝑚6|2 . (2.72)

We then use the remaining three 𝜁𝑎’s to define the relation

𝜁1 = |𝑚8|2− |𝑚5|2 = |𝑚2|2 + |𝑚4|2 − |𝑚5|2 − |𝑚6|2

𝜁2 = |𝑚7|2 − |𝑚8|2 = |𝑚1|2 + |𝑚3|2 − |𝑚4|2|𝑚5|2

𝜁3 = |𝑚6|2 − |𝑚7|2 = −|𝑚1|2 − |𝑚2|2 − |𝑚3|2 + |𝑚5|2 + 2|𝑚6|2 (2.73)
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The non-anomalous combination is then −2𝜁1 + 𝜁2𝜁3 = 2|𝑚1|2 − |𝑚2|2 + 2|𝑚3|2 − 3|𝑚4|2.

Thus the non-anomalous baryonic symmetries correspond to the sigma model defined only

by the external matchings only, with charges 𝑄 = (2 − 1 2 − 3|𝜁) and 𝜁 = −2𝜁1 + 𝜁2𝜁3.

When 𝜁 = 0, the moduli space is the singular cone over 𝑑𝑃1. For the case when 𝜁 ̸= 0

The singularity is (partially) resolved. There are two partial resolutions of the singularity

corresponding to the two possible triangulation of the toric diagram as shown in fig. 2-15.

1

2

34

a).

1

2

34

b).
𝑚1 = 0

𝑚2 = 0

𝑚3 = 0

𝑚4 = 0

𝑚1 = 0

𝑚2 = 0

𝑚3 = 0

𝑚4 = 0

Figure 2-15: The two possible partial resolutions of the cone over 𝑑𝑃1 that are realised as linear
sigma model with a non-anomalous baryonic 𝑈(1): a). 𝜁 > 0 case, representing toric divisors
𝑚2 = 0 and 𝑚4, which can not simultaneously vanish, separated by a blow-up CP1. b). 𝜁 < 0
case, toric divisors 𝑚1 = 0 and 𝑚3 = 0 are separated by a blow-up CP1.

In both resolutions, |𝜁| is the Kähler parameter of the blow-up CP1. When 𝜁 > 0, there

is a C2/Z2 singularity at every point on the CP1, and when 𝜁 < 0, there is a point on the

CP1 with an isolated singularity of the form C3/Z3.

2.4 Forward and Inverse Alogrithms

2.4.1 Forward Algorithm

In previous sections, we consider the UV theory of gauge group 𝑈(𝑁) and D-terms in the

classical limit. The solutions to the F-flatness in eq. (2.28) give an affine toric cone and
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D-flatness in eq. (2.24) gives a non-compact toric variety. The intersection of these two

spaces can then be constructed as a symplectic quotient or a gauge linear sigma model. This

construction was first studied in [27] runs into practical difficulties due to the exponential

running time of computing certain dual cone. With the combinatoric tools developed in

preceding sections, we review an alternative construction that utilises dimer configurations

as natural variables. This construction in fact trivialises the problem [139, 49, 67, 51, 73,

140, 141]. Within this construction, a new basis of fields can be defined from the set of

quiver fields. The motivation of this new basis is to put the F-terms and D-terms relation

on the same footing. The news fields are the gauged linear sigma model fields and they are

precisely the perfect matchings in the brane tiling.

Here we take a pragmatic approach into constructing the sigma model from brane tiling.

For the equivalence between dimer model and the formulation in [27], we refer to [141]. This

approach has the advantage of dramatically simplifying the computation of moduli space.

In section 2.3.3, we see that the dimer configurations can be used to implement the D-term

relations through closed contours enclosing faces in the dimer. In fact, these configurations

can also be used to implement the F-term conditions as follows.

Assign each quiver field the product perfect matchings

𝑋𝑖 =
𝑚∏︁
𝛼=1

𝑚𝑃𝑖𝛼
𝛼 , (2.74)

where the product is over all perfect matchings and 𝑃𝑖𝛼 are the entries of the matching

matrix. This simply multiplies together all perfect matchings 𝑚𝛼 that contains quiver field

𝑋𝑖. The F-flatness condition in eq. (2.28) is

∏︁
𝑖∈𝑉𝑖

𝑋𝑖 =
∏︁
𝑗∈𝑉𝑗

𝑋𝑗 , (2.75)

where the product is over the edges of adjacent nodes and the product omits the edge

connecting 𝑖-th and 𝑗-th node since the partial derivative w.r.t field𝑋𝑖𝑗 in F-flatness condition

gets rid of it (note this is only true in toric case). This equation is simply the F-flatness

constraint associated to this field. By the definition in eq. (2.74), a field that appears on the
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LHS must also be on the RHS since a perfect matching has to cover all nodes in the dimer.

Therefore, the F-flatness condition is trivially satisfied by eq. (2.74). Also note that not all

perfect matchings are linear independent and the relation among them is recorded in the

charge matrix 𝑄𝐹 as in the example eq. (2.70). We can then concatenate the matrices as

𝑄𝑡 =

⎛⎝𝑄𝐹

𝑄𝐷

⎞⎠ (2.76)

and regard 𝑄𝑡 as the charge matrix for the corresponding gauged linear sigma model. The

toric variety corresponding moduli space for this model is then obtained by finding the kernel

of the matrix 𝑄𝑡, whos columns gives the lattice vectors for the toric diagram.

Example: 𝑑𝑃1 By concatenating the F-term and D-term matrix for 𝑑𝑃1, we have the
charge matrix to be

𝑄t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 0 1 𝜁1

0 0 0 0 0 0 1 −1 𝜁2

0 0 0 0 0 1 −1 0 𝜁3

0 1 0 1 0 −1 0 −1 0

1 1 1 0 −1 −1 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.77)

Here the eight GLSM fields (perfect matchings) are charged under five gauge groups. The

D-term constrains then give a 3-dimensional vacuum space

8∑︁
𝑖=1

𝑄𝑎
𝑖 |𝑚𝑖|2 = 𝜁𝑎 , (2.78)

where 𝑎 = 1, ..., 5 labels the 5 gauge groups. Then we obtain the kernel of 𝑄𝑡 to be

ker𝑄t = 𝐺 =

⎛⎜⎜⎜⎜⎜⎝
𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8

1 1 1 1 1 1 1 1

−1 0 1 0 0 0 0 0

0 −1 1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ (2.79)

The columns are the coordinates for the toric diagram of the moduli space. We see that the

multiplicities are not always one directly from this matrix.

To make comparison with the algorithm we just described, we briefly summarise the ‘old’

algorithm first developed in [27] and used in literatures such as [24, 29, 33], in a flow-chart

shown in fig. 2-16.
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Quiver Incidence
Matrix 𝑑 ∆

F-terms 𝐾 𝑉

𝑇 = Dual(𝐾) 𝑈 𝑉 𝑈

𝑄 = [Ker(𝑡)]𝑡 𝑄𝑡 =

(︂
𝑄
𝑉 𝑈

)︂ 𝐺 =

[Ker(𝑄𝑡)]
𝑡

𝑉 ·𝐾𝑡 = ∆

𝑈 · 𝑇 𝑡 = Id

Figure 2-16: The flow-chart for the ‘old’ forward algorithm that relies on finding the dual cone
of 𝐾 defined by 𝑇 = Dual(𝐾). This algorithm is slow as the process of find dual cone has
exponential running time.
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2.4.2 Inverse Algorithm

As we see from the last section, the gauge theory on the D-brane probing the singularities

such such Abelian orbifolds, conifolds, etc., can be systematically encoded into the matrix

𝑄𝑡, which essentially encapsulates the information from F-term and D-term. The kernel of

this matrix then is a list of vectors that records the information of the coordinates of the

corresponding toric diagram of the corresponding singularity. Thus it is a natural question

to ask: whether given an arbitrary singularity which affords a toric description, we could

obtain the gauge theory living on the D-brane probing the singularity. This is the Inverse

Problem we wish to solve as the foundation of our classification in next chapter.

The solution to this problem must be two-fold: the quiver and its associating superpoten-

tial, which correspond to D-term that gives the matter content and gauge group, the F-term

that gives the superpotential when integrated back. The general methodology is thus

1. Read the column vectors describing the coordinates of the points in the toric diagram,

repeat the appropriate columns when needed and then set 𝑄𝑡 = Coker(𝐺𝑡).

2. Separate the D-term (𝑉 · 𝑈) and F-term 𝑄𝑡 contributions from 𝑄𝑡.

3. Obtain 𝑇 = Ker(𝑄) from 𝑄.

4. The theorem due to Farka [129] guarantees that the dual cone of a convex polytope

is still convex. Thus we have 𝐾 = Dual(𝑇 𝑡). In addition, the duality theorem gives

Dual(Dual(𝐾)) = 𝐾 thus engenders the inverse procedure.

5. Since 𝑈 · 𝑇 𝑡 = Id and 𝑉 ·𝐾𝑡 = ∆ =⇒ (𝑉 ·𝑈) · (𝑇 𝑡 ·𝐾𝑡) = ∆. Once we can obtain 𝑄𝑡

from the toric diagram, the relations

𝐾 = Dual(𝑇 𝑡) ∆ = (𝑉 · 𝑈) · (𝑇 𝑡 ·𝐾𝑡) , (2.80)

gives our desired 𝐾 and ∆ representing F-terms and D-terms constraints.

However, there are immediate indeterminacies in arriving at a unique 𝑄𝑡 from the given

toric diagram.
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∙ In step (1) above, we do not know a priori which column vector to repeat when writing

the coordinates of the toric diagram into matrix 𝑄𝑡.

∙ In step (2), we do not know which vectors constitute 𝑄 and which constitute 𝑉 · 𝑄

within 𝑄𝑡.

On top of these ambiguities, we are faces with one more difficulty: tracing back the arrows in

fig. 2-16 does not guarantee us a gauge theory living on the D-branes probing the singularity

we started with. Therefore, we need to find a canonical method to avoid the described

difficulties, thus giving us consistent gauge theories with only bifundamentals etc. This

is where we resort to the method of partial resolution. The physical interpretation of

partial resolution is simple: starting with abelian orbifolds which are toric, we tune the FI

parameters of the theory while staying in the cone partition of these parameters to avoid

flop-transition, to obtain a physical resulting theory [29]. In other words, we carefully tune

the FI parameters in the allowed region for the parent orbifold theory to reach subsector

theories that still live on the D-brane and is well-behaved.

Partial Resolution

The orbifold singularities of the form C𝑘/Γ(𝑘, 𝑛) for Γ(𝑘, 𝑛) = Z𝑛 × Z𝑛 × · · ·Z𝑛 ((𝑘 − 1)-th

product) have been well studied. The complete information as well as the charge matrix 𝑄𝑡

for Γ(𝑘, 𝑛) is known: 𝑘 = 2 is the elliptic model, 𝑘 = 3 the brane-box model etc. [30, 31, 32]

and 𝑘 = 3, 𝑛 = 3 in [29].

Now if we have any toric diagram of dimension 𝑘, we can embed it into such a Γ(𝑘, 𝑛)-

orbifold toric diagram for sufficiently large 𝑛, for which we choose the smallest case that

suffices. This embedding is always possible as the Γ(𝑘, 𝑛)-orbifold is a 𝑘-complex of length

𝑛 and any toric diagrams can be obtained by deletion of a subset of lattice points. This

procedure of node deletion is called partial resolution of Γ(𝑘, 𝑛)-orbifold. This essentially

gives us a method to turn on the FI parameters thus enabling us to determine the 𝑄𝑡 from

the orbifold singularity.

We turn the the classical example of partial resolution of Γ(3, 2) = Z2 × Z2 to obtain

conifold and SPP [32]. The SPP defined by 𝑥𝑦 = 𝑧𝑤2 can be obtained from Γ(3, 2) defined
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by 𝑥𝑦𝑧 = 𝑤2 via a single CP1 blow-up. This is demonstrated in fig. 2-17.

Resolving 6,7,9

1, 3 25

4, 6 8, 9

7

5 1, 3 2

4 8

Figure 2-17: The toric diagram showing the resolution of the C3/(Z2 × Z2) singularity on the
left to the suspended pinch point (SPP) on the right. The numbers i at the nodes refer to the
𝑖-th column of the matrix 𝐺𝑡 and physically correspond to the fields 𝑚𝑖 in the linear 𝜎-model.

We present the steps as follows:

1. Embedding into Z2 × Z2: Given the toric diagram 𝐷 of SPP, we see that it can be
minimally embedded into the diagram 𝐷′ of Z2 × Z2. The information is obtained in
[32]:

𝑄
′
t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9

0 0 0 1 −1 1 −1 0 0 0

0 1 0 0 0 0 1 −1 −1 0

1 −1 1 0 −1 0 0 0 0 0

1 −1 0 −1 0 0 0 0 1 𝜁1

−1 1 0 1 0 0 0 −1 0 𝜁2

−1 0 0 0 0 1 −1 1 0 𝜁3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

𝐺
′
t = coker(𝑄

′
t) =

⎛⎜⎜⎜⎜⎜⎝
𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9

0 1 0 0 −1 0 1 1 1

1 1 1 0 1 0 −1 0 0

1 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠ ,

which gives the toric diagram of C3/(Z2 ×Z2). We see that the last row having all of

its entry as 1, ensures the toric variety is Calabi-Yau. The first three rows of 𝑄′
𝑡 are the

F-terms and the last three are the D-terms. The columns in 𝑄′
𝑡 are the corresponding

fields in linear 𝜎-model.

2. Determine the Fields to Resolve: At first sight, we may eliminate the node cor-

responding to 𝑚7 thus resolving to the toric diagram 𝐷′. However, there are some

subtleties related to the node deletion here: there can be more than one quiver field

on each node and eliminating 𝑚7 may accidentally remove adjacent nodes. Therefore,

we need to solve for 𝑚1,...,9 such that as least 𝑚7 acquires non-zero vev. Recalling
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that D-term conditions are linear systems in modulus-squared of quiver fields, we can

make the definition 𝑥𝑖 = |𝑚𝑖|2. Then solving all GLSM fields in terms of 𝑥7 is done

through Gaussian row reduction: �⃗� = {𝑥1, 𝑥2, 𝑥1 + 𝜁2 + 𝜁3,
2𝑥1−𝑥2+𝑥7−𝜁1+𝜁2

2
, 2𝑥1 − 𝑥2 +

𝜁2+𝜁3,
2𝑥1−𝑥2+𝑥7+𝜁1+𝜁2+2𝜁3

2
, 𝑥7,

𝑥2+𝑥7−𝜁1−𝜁2
2

, 𝑥2+𝑥7+𝜁1+𝜁2
2

}. We see from this reduction that

the nodes away from 𝑚7 are unaffected by the resolution, thus fields residing on those

nodes continue to have zero vev. Now we can set the ones unaffected by resolution

to zero giving �⃗� = {0, 0, 0, 𝑥7−𝜁1−𝜁3
2

, 0, 𝑥7+𝜁1+𝜁3
2

, 𝑥7,
𝑥7−𝜁1+𝜁3

2
, 𝑥7+𝜁1−𝜁3

2
}. Now we have an

arbitrary choice to make 𝑚4 and 𝑚8 have zero vev by choosing 𝜁3 = 0 and 𝑥7 = 𝜁1.

Thus 𝑥6,7,9 have vev equal to 𝜁1 as shown in fig. 2-17.

3. Solving for 𝐺𝑡: Now we see that by deleting column 𝑚7, we must also resolve 𝑚6 and
𝑚9. So we have

𝑄t = Coker(𝑄t) =

⎛⎜⎜⎜⎜⎜⎝
𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚8

0 1 0 0 −1 1

1 1 1 0 1 0

1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠ , (2.81)

where we see here these are the coordinates of toric diagram 𝐷 on the right of fig. 2-17.

4. Solving for 𝑄𝑡: Now we need to make linear combinations of columns of 𝑄′
𝑡 to obtain

𝑄𝑡 as to force columns 6, 7, 9 zero. Note that 𝐺𝑡 has 6 columns and 3 rows and it is
in the nullspace of 𝑄𝑡, which must have 9 − 3 = 6 columns and we then must have
6− 3 = 3 rows for 𝑄𝑡. In addition, row containing 𝜁1 must be eliminated since it is the
resolved and needs to be removed from D-terms constraints. Now we define variables
{𝑎𝑖=1,...6} such that

∑︀
𝑖 𝑎𝑖row𝑖(𝑄

′
𝑡) us a row of 𝑄𝑡. Firstly, (a) the 6, 7, 9-th columns of

𝑦 must be set to 0 since these are the 𝑚𝑖 GLSM fields that obtain vev. Secondly, (b)
after removing these columns, 𝑦 must be in the nullspace spanned by the rows of 𝐺𝑡.
Since by definition, 𝑄′

𝑡 is in the nullspace of 𝐺′
𝑡 and the row-combination operator is

closed in the nullspace, and columns to be set to 0 in 𝑄𝑡 to give 𝑄𝑡 are precisely those
removed in 𝐺′

𝑡 to give 𝐺𝑡. Then (a) implies (b). Condition (a) gives the equations
{𝑎1 + 𝑎6 = 0,−𝑎1 + 𝑎2 − 𝑎6 = 0,−𝑎2 + 𝑎4 = 0} which afford the solution 𝑎1 = −𝑎6;
𝑎2 = 𝑎4 = 0. 𝑎4 = 0 eliminates the row containing 𝜁1. We choose 𝑎1 = 1 and 𝑎5 = 1 as
𝜁5 is unresolved. This gives the tree rows for D-term relations: row1, row5 and row6.
The remaining must be the F-term relations: 𝑎3 = 1. Therefore, we have the matrix

𝑄t =

⎛⎜⎜⎜⎜⎜⎝
𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚8

1 −1 1 0 −1 0 0

−1 1 0 1 0 −1 𝜁2

−1 0 0 −1 1 1 𝜁3

⎞⎟⎟⎟⎟⎟⎠ (2.82)

5. ∆ and 𝐾 Matrices: From 𝑄𝑡, we have 𝑄 = (1,−1, 1, 0,−1, 0), giving

𝑇jα := Ker(𝑄) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1

1 0 0 0 1 0

0 0 0 1 0 0

−1 0 1 0 0 0

1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝐾

t
:= Dual(𝑇

t
) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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We then obtain

𝑇
t · 𝐾t

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1

0 0 0 1 0 1

0 0 1 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From 𝑄𝑡, we also have
𝑉 · 𝑈 =

⎛⎝−1 1 0 1 0 −1

−1 0 0 −1 1 1

⎞⎠ . (2.83)

Using eq. (2.80), we obtain at last

Δ =

⎛⎝−1 1 0 1 −1 0

1 −1 1 0 0 −1

⎞⎠ =⇒ 𝑑 =

⎛⎜⎜⎜⎜⎜⎝
𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑈(1)A −1 1 0 1 −1 0

𝑈(1)B 1 −1 1 0 0 −1

𝑈(1)C 0 0 −1 −1 1 1

⎞⎟⎟⎟⎟⎟⎠ , (2.84)

which is precisely the incidence matrix obtained from the quiver of SPP that encodes

the gauge groups and matter content.

6. Superpotential To obtain the superpotential, the natural place to start is the 𝐾

matrix we previously arrived – it should integrates back to a single function: the

superpotential. However, there are subtleties in finding the correct candidate in all

possible linear combinations. Note that 𝐾 is a matrix of dimension 𝑚× (𝑟 − 2) with

𝑚 fields that appear in the final superpotential and (𝑟 + 2) linear combinations of the

said 𝑚 fields, as well as 𝑚 ≥ 𝑟 + 2. Thus we have (𝑟 + 2) vectors in Z𝑚 with generic

𝑚−𝑟−2 linear relations among them. For example, if we have row1+row3 = row7, we

can write down 𝑋1𝑋3 = 𝑋7 as a potential F-terms condition. In general,
∑︀

𝑖 𝑎𝑖𝐾𝑖𝑗 = 0

with 𝑎𝑖 ∈ Z gives a F-term as
∏︀

𝑖𝑋
𝑎𝑖
𝑖 = 1 for 𝑋𝑖 =

∏︀
𝑗 𝑣

𝐾𝑖𝑗

𝑗 , where 𝑣𝑖 are the 𝑟 + 2

parameters used to solve the system of F-term relations. Thus we need to find all linear

relations by finding the Z-nullspace of 𝐾𝑡 of dimension 𝑚− 𝑟 − 2.

However, this procedure has some ambiguities as any new linear combination will

result in some new terms in the F-term relations. So there are some guess work

involved to find the most convenient set of linear combinations to integrate back to the

superpotential. We first wish to have this back-integration gives no fields other than

the 𝑚 fields contained in the 𝐾 matrix. But sometimes this is not possible as we shall

see that some new fields need to be included and the moduli space of such theory is

larger than that encoded in our toric data: the new fields parametrise the new branch
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of the moduli space.

We take our SPP example and recall that the 𝐾 matrix is give by

𝐾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑋1 1 0 0 0 0

𝑋2 0 0 1 0 0

𝑋3 0 1 0 1 0

𝑋4 0 0 0 1 1

𝑋5 0 1 0 0 0

𝑋6 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where we see that the relation 𝑋3𝑋6 = 𝑋4𝑋5 is immediate. Since 𝑚 − 𝑟 − 2 = 1,
we see that is only one such linear relation. Now we check the gauge charge that this
term carries to make sure it is gauge invariant. Since the charges of the fields under
the gauge groups are give by incidence matrix 𝑑:

𝑑 =

⎛⎜⎜⎜⎜⎜⎝
𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑈(1)A −1 1 0 1 −1 0

𝑈(1)B 1 −1 1 0 0 −1

𝑈(1)C 0 0 −1 −1 1 1

⎞⎟⎟⎟⎟⎟⎠ ,

we have the charge of 𝑋3𝑋6 to be (𝑞𝐴, 𝑞𝐵, 𝑞𝐶) = (0+0, 1+(−1), (−1)+1) = (0, 0, 0) as

expected. And by construction, 𝑋4𝑋5 has the same charge. To integrate this F-term

back, we now are presented with two choice:

∙ Write the superpotential using only 𝑋𝑖 for 𝑖 = 1, ..., 6. For such case, we can

try ansatz 𝑊 = 𝑋1𝑋2(𝑋3𝑋6 −𝑋4𝑋5), which gives back the F-term when taking

partial derivative w.r.t 𝑋1 or 𝑋2. This gives us a new F-term 𝑋1𝑋2𝑋3 upon the

action of 𝜕/𝜕𝑋6 . This term is inconsistent since the corresponding rows do not

add up to zero. So we move the another option.

∙ We introduce another field 𝜑 that is invariant under all the gauge group to the

superpotential. We have 𝑊 = 𝜑(𝑋3𝑋6 − 𝑋4𝑋5). When 𝜑 = 0, we have our

original moduli space and matter content. When 𝜑 ̸= 0, we must have 𝑋3 =

𝑋4 = 𝑋5 = 𝑋6 = 0 and the D-term relations read |𝑋1|2 − |𝑋2|2 = −𝜁1 = 𝜁2,

giving us the moduli space {𝜑 ∈ C, 𝑋1 ∈ C} with constraint 𝜁1 + 𝜁2 = 0. Hence,

we obtain a new moduli space.
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We can take on a less trivial example from 𝑑𝑃1:

𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10

𝑈(1)A −1 0 0 −1 0 0 0 1 0 1

𝑈(1)B 1 −1 0 0 0 −1 0 0 1 0

𝑈(1)C 0 0 1 0 1 0 1 −1 −1 −1

𝑈(1)D 0 1 −1 1 −1 1 −1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10

𝑣1 1 0 1 0 0 0 1 0 0 0

𝑣2 0 1 1 0 0 0 0 1 0 0

𝑣3 1 0 0 1 0 0 0 0 1 0

𝑣4 0 1 0 1 0 1 0 0 0 0

𝑣5 0 0 1 0 1 0 1 0 0 0

𝑣6 0 0 0 0 0 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.85)

The nullspace of 𝐾 is 10− 6 = 4 dimensional and one relation can be obtain straight

away 𝑋2𝑋7 = 𝑋3𝑋6. The charge is (𝑞𝐴, 𝑞𝐵, 𝑞𝐶 , 𝑞𝐷) = (0+ 0,−1+ 0, 0+ 1, 1+ (−1)) =

(0,−1, 1, 0), which precisely cancels that of 𝑋9. Therefore, the term 𝑋9(𝑋2𝑋7−𝑋3𝑋6)

can be a term of 𝑊 . Now acting with 𝜕/𝜕𝑋2 , we have 𝑋7𝑋9, which is equal to 𝑋1𝑋5𝑋10

as seen from 𝐾. Thus we can add −𝑋1𝑋2𝑋5𝑋10 to 𝑊 . Thus we can repeat this

procedure and add in new fields if necessary and we finally arrive at 𝑊 = 𝑋2𝑋7𝑋9 −

𝑋3𝑋6𝑋9 −𝑋4𝑋8𝑋7 −𝑋1𝑋2𝑋5𝑋10 +𝑋3𝑋4𝑋10 +𝑋1𝑋5𝑋6𝑋8.

Before ending this section, we make a few general remarks on obtaining the super-

potential. Since we are within the toric regime, each field appears exactly twice with

opposite signs in different terms in the superpotential. Thus the F-terms can be written

as ∏︁
𝑖

𝑋𝑎𝑖
𝑖 =

∏︁
𝑗

𝑋
𝑏𝑗
𝑗 , (2.86)

with 𝑎𝑖, 𝑏𝑗 ∈ Z+. If we were to have another field 𝑋𝑘 that 𝑘 /∈ {𝑖}, {𝑗}, then the

term 𝑋𝑘(
∏︀

𝑖𝑋
𝑎𝑖
𝑖 −

∏︀
𝑗 𝑋

𝑏𝑗
𝑗 ) must appear in 𝑊 only this once for it to be additive

in 𝑊 . Sometimes, this field 𝑋𝑘 may not be possible to find and new fields need to

be introduced, thus giving a moduli space that is larger than that described by the

toric data. On top of this, we need to make sure each term in 𝑊 to be invariant

under the product gauge groups. This means we must have 𝑄𝑠(𝑋𝑘) +
∑︀

𝑖𝑄
𝑠(𝑋𝑖) = 0

for 𝑠 = 1, ..., 𝑟 labelling the gauge groups. If we can not find such 𝑋𝑘, we have to

introduce new fields with appropriate charge. Therefore, for each relation we read

from matrix 𝐾, we proceed in such manner until we reach the final superpotential.
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From previous points, we note that we need to have educated guesses to decide if we need

to include new fields when integrating back the F-terms. It seems rather cumbersome if we

want to find the gauge theories living on the D-brane probing toric Calabi-Yau singularities.

However, we shall see in the last chapter that the dimer and brane tiling interpretation

of combining quiver and its associated superpotential, make the aforementioned Inverse

Algorithm a streamlining procedure. The partial resolution as stated above corresponds

to edge deletion in the brane tiling/dimer, which physically means giving vevs (higgsing) to

certain fields thereby deleting perfect matchings that contain these fields. The superpotential

of the resulting theory is therefore automatic from the construction of dimer. We shall see

more of this technique in action in Chapter 3.

2.5 Brane Tiling from Brane Construction

In the last section, we focused on the interpretation of brane tiling as a combinatoric object

that encodes the corresponding physical contents. It is important for us to make reference

to the five-brane construction of brane tiling and see how the combinatoric properties of

bipartite graph embedded on 𝑇 2 arise from such construction. In particular, we shall use the

NS5-D5 brane system for string theory realisation of 𝒩 = 1 superconformal quiver gauge

theory.

First, let us consider type IIB theory with a stack of 𝑁 D5-branes. Then as the D-

branes are hyperplanes on which the open strings terminate, we have 𝑈(𝑁) gauge theory

living on the worldvolume of D5-branes. Our goal is to construct four-dimensional theory,

therefore two of the D5-directions are redundant. We thus choose two of its directions 𝑥5

and 𝑥7 to be compactified on 𝑇 2 with radius 𝑅. Now we have 𝑁 D5-branes wrapping 𝑇 2

cycles whence Kaluza-Klein modes must decouple when radius 𝑅 is small. We thus have

four-dimensional 𝒩 = 4 supersymmetric Yang-Mills theory as the introduction of D5-brane

breaks half of the supersymmetry. The need to have 𝒩 = 1 theory, we further introduce

NS5-branes to break the supersymmetry. The five-brane system is shown in table 2.5. With

such brane configuration, we see that the D5-branes are divided into chambers in the 𝑥5

and 𝑥7 directions by the presence of NS5-branes. The gauge groups are then separated into
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𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

D5 − − − − − −
NS5 − − − − − −
NS5′ − − − − − −

Table 2.5: The 5-brane configuration of the NS5-D5 system. We see that the D5 branes break a
half of the supercharges and NS5 branes in two directions break the supersymmetry to a quarter
resulting 4 supercharges, thus 𝒩 = 1 in four-dimension.

factor gauge group where each chamber represents a single factor. As we can see here, the

D5-branes and NS5-branes have junction in this configuration and it was pointed out in [53]

that gauge anomaly cancellation implies the conservation of NS5-charge, which then restricts

the structure of NS5-D5 junction. This separates the 𝑇 2 into different regions differentiated

by the relative orientations of NS5- and D5-branes at the junction. Such a separation of the

𝑇 2 is called the fivebrane diagram [54]. In addition to the structure we described above, we

can put the NS5-branes to be parallel to the D5-branes as it is allowed by the conservation of

NS5-charges as shown in fig. 2-18. These different NS5-branes can now join to form a single

D5

(𝑁, 0) (𝑁, 0) (𝑁, 0) (𝑁, 1) (𝑁,−1)(𝑁, 0)

NS5

Figure 2-18: The first diagram is prohibited by the conservation of NS5-charges; The second
and the last diagrams represent bound states of 𝑁 D5-branes and 1 NS5-brane, called the
(𝑁, 1)-system. Similarly the third is called (𝑁,−1)-system due to the reversal of orientation of
NS5-brane.

NS5-brane. Note in fig. 2-18 that the NS5-branes seem to bend at 90 degrees at the junction

due to fact it is at the strong coupling limit. The shape of NS5-brane is in fact smooth at

string general coupling constant. Since we have a single NS5-brane, the worldvolume of it is

therefore a product R3,1 × Σ, where Σ intersects with the 𝑇 2 with one-cycle: one of its two

directions is in the compact 5, 7-direction and the other in the non-compact 4, 6-direction.

The brane configuration is therefore more generalised as shown in table 2.6.
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𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

D5 − − − − − −
NS5 − − − − Σ

Table 2.6: The brane configuration of a general brane tiling from NS5-D5 brane system. The
5, 7-th directions are compactified and Σ is a holomorphic curve in 4, 5, 6, 7-directions. All the
NS5-branes in table 2.5 are merged into a single NS5-brane wrapping holomorphic curve.

2.5.1 Relation to D3-Brane Setup

As shown in table 2.5, the compact 5, 7-directions give us the choice to T-dualise. This

turns the D5-branes into D3-brane and the NS5-branes into a Calabi-Yau manifold. This

is because one of the compact 5, 7-directions is orthogonal to the NS5-brane and taking T-

duality along the direction perpendicular to NS5-brane turns it into CY3. Note that the

T-duality exchanges momentum and winding modes, which in the case of NS5-brane, it

also has to exchange corresponding gauge fields: metric and B-field. After T-duality, we

have a non-trivial B-field that becomes the source of NS5-brane. The details of this are the

content of Busher’s rule [142]. The brane configuration is shown in table 2.7. At this point,

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

D3 − − − −
CY3 − − − − − −

Table 2.7: The brane configuration after taking T-dualisation in the compactified 5, 7-th direc-
tions in the 5-brane system shown in table 2.5. The D5-brane is T-dual to D3-brane and the
NS5-brane is dual to the toric Calabi-Yau cone.

it becomes clear why we started with D5-branes with two directions compactified. From

the D3-brane picture, the 𝑇 2 of 5, 7-th directions form a sub-torus of the 𝑈(1)3 isometry of

the toric Calabi-Yau cone and we have T-dualised along the sub-𝑇 2 to reach from Calabi-

Yau to NS5-brane. As another generic example, consider C × C2/Z2, the T-duality maps

it into two parallel NS5-branes. Note that this construction of NS5-D5 system is a natural

generalisation of brane interval [65] and brane box model [64]. To summarise, we present

this web of connections in fig. 2-19.
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Stack of D3-branes

CY3 cone

5,7

4,5

6,7

NS5-brane

NS5’-brane

𝑇 2

D5-brane

Sasaki-Einstein 5-fold

Zig-zag paths

Brane tiling/Dimer

T-duality

Figure 2-19: The web of connection of brane realisation of D3-brane probing toric Calabi-Yau
singular cone over base of SPP. We see that the physical information is fully included in the brane
tiling/dimer and the brane construction gives precisely this bipartite tiling on a 𝑇 2, which are the
direction we choose to implement the T-dualisation.
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Chapter 3

A Survey of Brane Tilings

Having reviewed the essential backgrounds in quiver gauge theories and brane tilings as well

as their relations to each other and their connections to toric geometry, we see that An

infinite class of 4𝑑 𝒩 = 1 gauge theories can be engineered on the worldvolume of D3-branes

probing toric Calabi-Yau 3-folds. This kind of setup has multiple applications, ranging from

the gauge/gravity correspondence to local model building in string phenomenology. Brane

tilings fully encode the gauge theories on the D3-branes and have substantially simplified

their connection to the probed geometries. The purpose of this chapter is to push the

boundaries of computation and to produce as comprehensive a database of brane tilings as

possible. We develop efficient implementations of brane tiling tools particularly suited for

this search. We present the first complete classification of toric Calabi-Yau 3-folds with toric

diagrams up to area 8 and the corresponding brane tilings. This classification is of interest

to both physicists and mathematicians alike.

3.1 Introduction

A powerful approach for engineering 4𝑑 𝒩 = 1 gauge theories in string theory consists of

realizing them on the worldvolume of D3-branes probing singular Calabi-Yau (CY) 3-folds.

The case in which the CY 3-fold is toric is extremely rich, yet particularly tractable.

More than a decade has passed since the first systematic treatment of the question “what

is the gauge theory given an arbitrary toric CY3?” [69]. A first approach for addressing
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this problem was the Inverse Algorithm (the details are review in section 2.4.2), which

generates the quiver and superpotential for a given toric singularity via partial resolution of

an appropriate C3/(Z𝑁 × Z𝑀) orbifold. In practice, a chief bottleneck of this method was

the exponential running time necessary for finding dual cones needed for partial resolution.

Later, the connection between toric geometry and gauge theory was tremendously simplified

with the advent of brane tilings [49, 51, 52], which have become the standard tools in this

field. Brane tilings are Type IIB configurations of branes related to D3-branes at toric

singularities by T-duality , see section 2.5 for more details of this string theory realisation

of brane tiling. Throughout this paper, we will equivalently refer to brane tilings as dimer

models.

obing toric CY 3-folds have found a myriad of applications. In physics, they include: the

understanding that toric duality is Seiberg duality [71, 70], one of the most fertile grounds for

testing the AdS/CFT correspondence [117, 52, 118, 119], connections to mirror symmetry and

tropical geometry [96, 97], local string phenomenology [86, 87], and bipartite field theories

[143, 144, 145, 146, 147, 148, 149].

In parallel, in mathematics, the dialogue between gauge theory and the geometry and

combinatorics of toric CY 3-folds also engendered numerous developments, including: new

directions in Calabi-Yau algebras and quiver representations [104, 105, 101, 99, 100, 98,

102, 103], non-commutative crepant resolutions of toric singularities [150, 151, 152, 153],’

connections with Grothendieck’s dessins d’enfants and certain isogenies of elliptic curves

[109, 110, 111, 112, 106, 107, 108] and a geometric perspective on cluster algebras [154, 155,

156, 157].

The purpose of this chapter is to push the boundaries of computation and to produce as

comprehensive a database of brane tilings as possible. We will develop efficient implemen-

tations of dimer model tools particularly suited for this search and develop a catalogue of

explicit brane tilings for a large class of toric geometries. We will also generate new compu-

tational tools, in the form of Mathematica modules, which we will make publicly available

[158]. We expect a wide range of researchers will find this novel toolkit useful. A short

summary of the logic of the codes is presented in appendix A.6.

Until now, a large database of explicit brane tilings was lacking and we envision many

90



applications for such a catalogue in both physics and mathematics. In our case, we plan

to use these theories in the near future as starting points for a systematic and large scale

investigation of phenomenological local models in string theory, following [86, 87].

The organization of this chapter is as follows. section 3.2 reviews brane tilings and

outlines how to construct new ones by means of partial resolution. We will see that how this

technique is easier computational-wise as the exponential running-time step of finding dual

cone is not necessary and this allows us to expand the search of quiver gauge theories from

more complex toric geometries. section 3.3 summarises the existing classifications of brane

tilings. section 3.4 classifies all independent toric diagrams up to area 8. section 3.5 presents

brane tilings for all toric CY 3-folds with toric diagrams of area 6, 7 and 8. 1 We collect

our conclusions and directions for future research in chapter 4. appendix A.6 explains the

Mathematica modules we created for manipulating brane tilings.

3.2 Brane Tiling Technology

In this section we present a lighting review of brane tiling technology. In order to set up the

stage for our computations, we also review the basics of the connection between brane tilings

and geometry and the implementation of partial resolution in terms of them. We refer the

interested reader to [51, 52, 41, 42] and references therein for further details.

3.2.1 D3-Branes Probing Toric CY 3-Folds and Brane Tilings

The 4𝑑 𝒩 = 1 gauge theories living on the worldvolume of D3-branes probing affine toric CY

3-folds are described by bipartite graphs on 𝑇 2 called brane tilings.A more detailed review

is in section 2.3 [49, 51, 52]. In fact a brane tiling is a physical brane configuration, related

to the D3-branes at a toric singularity by T-duality, consisting of an NS5-brane wrapping a

holomorphic surface from which D5-branes are suspended (see section 2.5 for more details).

The geometry of a non-compact toric CY 3-fold is captured by a toric diagram, which is

1All the brane tilings for lower toric diagram areas can be found in [51, 52]. The few missing cases can
be immediately determined from gauge theory information presented in [74].
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convex lattice polygon. 2 The probed CY3 arises as the vacuum moduli space of the gauge

theory on the D3-branes, which is defined by the vanishing of 𝐷- and 𝐹 -terms.

The dictionary between 4𝑑 𝒩 = 1 quiver gauge theory and brane tiling is presented in

table 2.4. For the convenience of the reader, we reiterate them here as follows:

1. Every face (say labeled by 𝑖) corresponds to a 𝑈(𝑁𝑖) gauge group factor in a product

gauge group structure.

2. Every edge between faces 𝑖 and 𝑗 corresponds to a bifundamental chiral field 𝑋𝑖𝑗 of

𝑈(𝑁𝑖)×𝑈(𝑁𝑗). If 𝑖 is equal to 𝑗, then 𝑋𝑖𝑖 is an adjoint field of 𝑈(𝑁𝑖). The orientation

of fields is a convention, e.g. clockwise and counterclockwise around black and white

nodes of the tiling, respectively.

3. Every node corresponds to a monomial term in the superpotential, obtained by multi-

plying all the edges adjacent to the node. Like the orientation of chiral fields, the sign

of the monomial is controlled by the color of the node.

In order to illustrate these ideas, below we present an explicit example that corresponds to

the complex cone over 𝐹0.3 The red dashed lines indicate the boundary of the unit cell.

Toric Diagram Brane Tiling Gauge Theory

1 2 

3 4 4 

1 

3 4 4 4 3 

1 2 

W = ✏ab✏cdX
a
12X

c
23X

b
34X

d
41 (2.1)

Xa
12 Xa

23 Xa
34 Xa

41 (2.2)

Tiling Quiver Toric Diagram

We see that there are 4 gauge group factors and for convenience we take all Ni = 1,

we have an U(1)4 theory. There are 8 edges, denoting the 8 fields Xa
i,i+1 for a = 1, 2

and i = 1, 2, 3, 4 modulo 4. Finally, expanding out the Levi-Civita symbols, there are

4 monomial terms in the superpotential.

2.2 Geometry and Perfect Matchings

Perfect matchings are combinatorial objects that play a central role in the study of

bipartite graphs. A perfect matching p is defined as a collection of edges in the brane

tiling such that every node is the endpoint of exactly one edge in p.

Perfect matching substantially simplify the connection between brane tilings and

geometry. Let us consider the following map between chiral fields in the quiver Xi,

equivalently edges in the brane tiling, and perfect matchings pµ

Xi =
cY

µ=1

pPiµ
µ , (2.3)

with c is the total number of perfect matchings [12]. The P -matrix summarize the edge

content of perfect matchings and is defined as follows

Piµ =

⇢
1 if Xi 2 pµ
0 if Xi /2 pµ

(2.4)
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(2.4)

– 4 –

2An affine toric variety of complex dimension 𝑛 is usually described by a convex polyhedral cone in R𝑛

but the Calabi-Yau condition imposes the extra condition that the endpoints of the vector generators of the
cone are co-hyperplanar. Thus for 3-folds, the toric diagram can be taken to be a convex lattice polygon in
2𝑑.

3In fact there are two toric phases, i.e. two theories described by brane tilings, for this geometry. They
are related by Seiberg duality [71].
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3.2.2 Geometry and Perfect Matchings

In this section, we reiterate some of the definition made in section 2.3.3 and make small

changes to the Kasteleyn matrix defined in eq. (2.40) to suit the purpose of our later clas-

sification procedure. Perfect matchings are combinatorial objects that play a central role in

the study of bipartite graphs. A perfect matching 𝑝 is defined as a collection of edges in the

brane tiling such that every node is the endpoint of exactly one edge in 𝑝.

Perfect matching substantially simplify the connection between brane tilings and geom-

etry. Let us consider the following map between chiral fields in the quiver 𝑋𝛼, equivalently

edges in the brane tiling, and perfect matchings 𝑝𝜇

𝑋𝛼 =
𝑐∏︁

𝜇=1

𝑝𝑃𝛼𝜇
𝜇 , (3.1)

where 𝑐 is the total number of perfect matchings. The 𝑃 -matrix summarizes the edge content

of perfect matchings and is defined as follows

𝑃𝛼𝜇 =

⎧⎨⎩ 1 if 𝑋𝛼 ∈ 𝑝𝜇

0 if 𝑋𝛼 /∈ 𝑝𝜇
(3.2)

A remarkable feature of the map in (3.1) is that when chiral fields are expressed in terms

of perfect matching variables in this way, all 𝐹 -terms automatically vanish as we saw in

section 2.4.1. Perfect matchings are thus in one-to-one correspondence with fields in the

GLSM description of the toric CY 3-fold, namely points in its toric diagram [51].

Perfect matchings and the toric diagram can be efficiently determined using the Kasteleyn

matrix 𝐾. We define 𝐾 as the adjacency matrix of the graph in which rows are indexed by

black nodes and columns are indexed by white nodes, i.e. for every edge 𝑋𝛼 in the bipartite

graph between nodes b𝜇 and w𝜈 , we introduce a contribution 𝑋𝛼 to the 𝐾𝜇𝜈 entry. In

addition, whenever an edge crosses the boundary of the unit cell in the 𝑥 and/or 𝑦 directions,

we multiply the contribution by 𝑥±1 and 𝑦±1 weights, respectively. The exponents are positive

or negative depending on whether the crossing occurs in the positive or negative direction,

which is determined by conventionally orienting edges from white to black nodes. Note here
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we defined a slight different version of K-matrix than that in eq. (2.40) by explicitly writing

out the field variables. This seems rather like a redundancy as we expect the determinant

of 𝐾 matrix det𝐾 to be the generating function for perfect matchings labelled by their

winding number relative to the fundamental domain, in fact we shall see that this explicit

inclusion of field variables makes the partial resolution/higgsing procedure manifest and it

allows us to choose precisely which choice of fields to participate in the higgsing process.

This explicit choice therefore gives us the ability to find all possible quiver gauge theories

filtered by consistency conditions from a given singularity.

Let us consider a concrete example. fig. 3-1 shows the quiver diagram for the suspended

pinch point (SPP). The corresponding superpotential is

𝑊 = 𝑋12𝑋21𝑋22 −𝑋22𝑋23𝑋32 +𝑋13𝑋23𝑋31𝑋32 −𝑋12𝑋13𝑋21𝑋31 . (3.3)

1 3 

2 

Figure 3-1: Quiver diagram for SPP. Nodes represent gauge groups. The arrow from 𝑖 → 𝑗
corresponds to the chiral field 𝑋𝑖𝑗.

All this information is encoded in the brane tiling shown in fig. 3-2.

The superpotential has four terms, which are represented in the brane tiling by two white

and two black nodes. We have labeled the nodes in blue to facilitate the construction of the

Kasteleyn matrix, which is given by

𝐾 =

⎛⎜⎜⎜⎝
𝑤[1] 𝑤[2]

𝑏[1] 𝑋22 𝑥 𝑋23 +𝑋32 𝑥

𝑏[2] 𝑋12 +𝑋21 𝑥 𝑋31 𝑦 +𝑋13 𝑥𝑦

⎞⎟⎟⎟⎠ . (3.4)
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w[1] 

w[2] 
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b[1] 
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y 

Figure 3-2: Brane tiling for SPP.

The determinant of the Kasteleyn matrix generates the perfect matchings. In this case, we

get

det𝐾 = −𝑋12𝑋23 − (𝑋21𝑋23 +𝑋12𝑋32)𝑥−𝑋21𝑋32 𝑥
2 +𝑋22𝑋31 𝑥𝑦 +𝑋13𝑋22 𝑥

2𝑦 . (3.5)

Every monomial in this expression corresponds to a perfect matching. Furthermore, the

powers of 𝑥 and 𝑦 indicate their position in the toric diagram, as shown in fig. 3-3. The

perfect matching can be summarized in the 𝑃 -matrix as follows

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

𝑋22 0 0 0 0 1 1

𝑋12 1 0 1 0 0 0

𝑋21 0 1 0 1 0 0

𝑋23 1 1 0 0 0 0

𝑋32 0 0 1 1 0 0

𝑋31 0 0 0 0 1 0

𝑋13 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)
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p1 p2 , p3 p4  

p5  p6  

Figure 3-3: Toric diagram for SPP. We indicate the perfect matching associated to each
point.

3.2.3 Partial Resolution and Brane Tilings

Brane tilings completely solved the problem of finding the gauge theory associated to a

generic toric CY 3-fold and vice versa. There are well established procedures for going

from brane tilings to geometry and in the opposite direction: the fast forward [51] and fast

inverse algorithms [50, 96], respectively. One of the main goals to this paper is to develop

a practical approach to determine the brane tiling associated to a general toric diagram.

While the fast inverse algorithm provides an answer to this question, its automation remains

challenging. We thus opt for an alternative approach, which admits a rather simple computer

implementation.

Our strategy will be to perform partial resolution, which translates to higgsing in the

gauge theory. In terms of brane tilings, it corresponds to removing the edges associated to

the fields acquiring non-zero vacuum expectation values (vevs). We will exploit the map

between perfect matchings and fields in the gauge theory to systematically identify the vevs

that are turned on when certain points in the toric diagram are deleted.

Any geometry for which the brane tiling is known can be used as the starting point for

partial resolution. There are two canonical classes of initial theories that have been broadly

used in the literature for this purpose. The first one is C3/(Z𝑚×Z𝑛) orbifolds, with the two

generators of the orbifold group acting on C3 as: (𝑋,𝑌, 𝑍) ↦→ (𝑒𝑖2𝜋/𝑁𝑋, 𝑒−𝑖2𝜋/𝑁𝑌, 𝑍) and

(𝑋,𝑌, 𝑍) ↦→ (𝑋, 𝑒𝑖2𝜋/𝑀𝑌, 𝑒−𝑖2𝜋/𝑀𝑍). The resulting toric diagram is shown in fig. 3-4.a, and

the corresponding brane tiling is an hexagonal lattice with an 𝑁 ×𝑀 unit cell. The second

standard class of starting points are Z𝑚 × Z𝑛 orbifolds of the conifold 𝒞. As we know that
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the conifold is a three dimensional hypersurface singularity defined in C4 by

𝒞 : 𝑥𝑦 − 𝑢𝑣 = 0 .

It can also be realised as a holomorphic quotient of C4 by C* action given by

(𝐴1, 𝐴2, 𝐵1, 𝐵2) → (𝜆𝐴1, 𝜆𝐴2, 𝜆
−1𝐵1, 𝜆

−1𝐵2) for 𝜆 ∈ C* .

The charge matrix is the transpose of 𝑄′ = (1, 1,−1,−1) and ∆ = 𝜎 is a convex polyhedral

cone in N′
R = R3 generated by vectors 𝑣1, 𝑣2, 𝑣3, 𝑣4 ∈ N′ = Z3 with

𝑣1 = (1, 0, 0), 𝑣2 = (0, 1, 0), 𝑣3 = (0, 0, 1), 𝑣4 = (1, 1,−1) .

The correspondence between the two representation of 𝒞 is given by

𝑥 = 𝐴1𝐵1, 𝑦 = 𝐴2𝐵2, 𝑢 = 𝐴1𝐵2, 𝑣 = 𝐴2𝐵1 .

Now we can take quotient of the conifold 𝒞 by product group of the form Z𝑚×Z𝑛. The Z𝑚
acts on 𝐴𝑖 and 𝐵𝑗 through

(𝐴1, 𝐴2, 𝐵1, 𝐵2) →
(︀
𝑒−2𝜋𝑖/𝑚𝐴1, 𝐴2, 𝑒

2𝜋𝑖/𝑚𝐵1, 𝐵2

)︀
, (3.7)

and Z𝑛 acts through

(𝐴1, 𝐴2, 𝐵1, 𝐵2) →
(︀
𝑒−2𝜋𝑖/𝑛𝐴1, 𝐴2, 𝐵1, 𝑒

2𝜋𝑖/𝑛𝐵2

)︀
. (3.8)

Therefore, the action of these groups on conifold 𝒞 is then given by

(𝑥, 𝑦, 𝑢, 𝑣) →
(︀
𝑥, 𝑦, 𝑒−2𝜋𝑖/𝑚𝑢, 𝑒2𝜋𝑖/𝑚𝑣

)︀
(3.9)

and

(𝑥, 𝑦, 𝑢, 𝑣) →
(︀
𝑒−2𝜋𝑖/𝑛𝑥, 𝑒2𝜋𝑖/𝑛𝑦, 𝑢, 𝑣

)︀
. (3.10)
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Now we define the orbifold of conifold to be 𝒞/(Z𝑚 × Z𝑛). There are still only four vectors

inherited from 𝒞 to define the orbifold. There is only a single relation among these vectors,

and thus it has a single Kähler class which is not enough to smooth out 𝒞/(Z𝑚 × Z𝑛). So if

we consider a finer lattice N = N′ + 1
𝑚
(𝑣3 − 𝑣1) +

1
𝑛
(𝑣4 − 𝑣1), we see that the lattice points

𝜎 ∩N of 𝜎 in N are generated by (𝑚+ 1)(𝑛+ 1) lattice points as a semigroup. We that the

toric diagram of 𝒞/(Z𝑚 × Z𝑛) is shown in fig. 3-4.

n 

m 

(a) 

n 

m 

(b) 

Figure 3-4: Toric diagrams for: a) C3/(Z𝑚×Z𝑛) and b) 𝒞/(Z𝑚×Z𝑛). We will use the second
class of geometries as the starting points for partial resolution.

With such construction of 𝒞/(Z𝑚×Z𝑛) at our disposal, we can obtain any toric diagram

with sufficiently large 𝑚 and 𝑛. However, we have to determine the minimal size of numbers

𝑚 and 𝑛 such that it contains the desired toric diagram as a subset. To find the correct

𝑚 and 𝑛, we first find the longest span of the diagram across the two directions (1, 0) and

(0, 1). Then 𝑚 and 𝑛 can be found easily.

For example, diagram 3 in the area 8 list has its lengths along (1, 0) and (0, 1) directions

to be 3 and 5. Then we have 𝑚 = 5 − 1 and 𝑛 = 3 − 1 as shown in previous paragraph.

Similarly, diagram 1 in the same list has length 4 across both directions, resulting 𝑚 = 𝑛 = 3.

We now illustrate the dimer implementation of partial resolution with an explicit example.

Let us derive the brane tiling for the SPP from a 𝒞/(Z𝑚 × Z𝑛) orbifold. Considering the

toric diagrams, it is clear that it would be sufficient to start from 𝒞/Z2. However, in order

to demonstrate the methods in a more involved partial resolution, let us use 𝒞/(Z2 ×Z2) as

the initial theory. The brane tiling for 𝒞/(Z2 × Z2) is shown in fig. 3-5.4

4There are other brane tilings for 𝒞/(Z2×Z2), which correspond to additional toric phases obtained from
this one by Seiberg duality.
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Figure 3-5: Brane tiling for 𝒞/(Z2 × Z2).

The Kasteleyn matrix is given by

𝐾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑤[1] 𝑤[2] 𝑤[3] 𝑤[4]

𝑏[1] 𝑋13 𝑋32 𝑋41 𝑋24

𝑏[2] 𝑋51 𝑦 𝑋25 𝑋16 𝑦 𝑋62

𝑏[3] 𝑋37 𝑥 𝑋83 𝑥 𝑋74 𝑋48

𝑏[4] 𝑋75 𝑥𝑦 𝑋58 𝑥 𝑋67 𝑦 𝑋86

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.11)

We obtain the perfect matchings by computing the determinant of the Kasteleyn matrix.
They are summarized in the following 𝑃 -matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0, 0) (1, 0) (2, 0) (1, 1) (2, 1) (2, 2) (0, 2) (1, 2) (2, 2)

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22 𝑝23 𝑝24

𝑋13 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

𝑋16 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1

𝑋24 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1

𝑋25 1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

𝑋32 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0

𝑋37 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0

𝑋41 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0

𝑋48 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

𝑋51 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0

𝑋58 0 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

𝑋62 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0

𝑋67 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0

𝑋74 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

𝑋75 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1

𝑋83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1

𝑋86 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.12)
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where in the top row we have indicated the corresponding point in the toric diagram, which

is shown in fig. 3-6. The significance of the rows that are highlighted in blue will be discussed

soon.

p1 p2 , p3 p4 

p5 , p6 p19 , p20 
p7 ,…, p18 

p21 p22 , p23 p24 

Figure 3-6: Toric diagram for 𝒞/(Z2 × Z2) We indicate the perfect matching associated to
each point and a possible embedding of the SPP toric diagram (in red).

Figure 3-6 shows a possible way of embedding the toric diagram of SPP, shown in red,

into the one for 𝒞/(Z2×Z2). According to eq. (3.2), we should regard chiral fields as products

of perfect matchings. The vev of a chiral field results from the product of the vevs of its

perfect matching constituents. Then, a chiral field gets a vev and is removed from the brane

tiling only when all the perfect matchings that contain it are deleted. Even after picking an

embedding of the final toric diagram into the parent one there are, in general, multiple ways

of achieving the desired partial resolution. For the embedding in Figure 3-6, one possibility

is to turn on vevs for {𝑋16, 𝑋24, 𝑋32, 𝑋48, 𝑋51}. The corresponding rows in the 𝑃 -matrix are

highlighted in blue in eq. (3.12). It is straightforward to verify that this set of vevs achieves

the desired resolution. Some perfect matchings can be removed from the surviving points in

the toric diagram. For example, all but 𝑝15 are deleted in the point that originally contains

𝑝7, . . . , 𝑝18. Similarly, 𝑝19 is removed while leaving 𝑝20 for that point. fig. 3-7 shows the final

toric diagram.

Having established the vevs that implement the desired partial resolution to the SPP,

the associated brane tiling is obtained by deleting the corresponding edges in Figure 3-5.

When doing so, a pair of 2-valent nodes is generated. Such nodes correspond to mass terms
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p1 p2 , p3 p4  

p15  p20  

Figure 3-7: Toric diagram for SPP obtained by partial resolution of 𝒞/(Z2 × Z2).

in the superpotential. Massive fields are easily integrated out in terms of brane tilings [51].

The final result is precisely the brane tiling in Figure 3-2, which corresponds to the quiver

in fig. 3-1 and the superpotential eq. (3.3).

Therefore, we briefly summarize a general procedure of the above said partial resolution.

This is exactly the content of the function RemovePoints2PNew[] inside the Mathematica

package of the algorithmic implementation. The flow of the general process is as follows:

1. Function takes in the Kasteleyn matrix of the 𝒞/(Z𝑚×Z𝑛) and the coordinates of the

points to be removed from the parent toric diagram.

2. The perfect matchings and the set of all fields from the 𝒞/(Z𝑚×Z𝑛) are obtained from

the Kasteleyn matrix.

3. For a given set of toric points to be removed, all the perfect matchings residing on such

points should be removed. For the set of perfect matchings to be removed 𝒫 , we can

easily find the set ℱ of constituent fields for 𝒫 . Since each field in ℱ can be in multiple

perfect matchings, we have to start building the set of correct fields to be removed by

adding candidates to an empty set one at a time.

4. Since deleting a field can result in deleting multiple perfect matching, therefore leading

to the removal of the wrong toric point. Hence, for adding any new fields into the set

of fields to be integrated out, the resulting toric points are checked each time to make

sure no unwanted deletion of points takes place.
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3.2.4 Brane Tiling Consistency

Not every bipartite graph on a 2-torus corresponds to a consistent brane tiling and hence

defines a well-behaved 4𝑑 𝒩 = 1 gauge theory (cf. see section 2.3.3). In fact, higgsing of

consistent brane tilings can lead to inconsistent ones. This It thus becomes imperative to

check the consistency of the brane tilings generated via partial resolution. Inconsistent brane

tilings may naively seem to correspond to toric CY3’s, but fail more subtly. The problems

of inconsistent tilings manifest at all levels: the gauge theory, the D-brane configuration

and its algebraic description. By now, this subject has been studied in depth and is well

understood. We refer the interested readers to [50, 56, 98, 159, 160, 161, 162] and references

therein for detailed discussions.

Consistency can be determined using multiple diagnostics, all of which are closely related.

They range from physical considerations regarding the positivity of 𝑅-charges to graph-

theoretic tests based on intersection properties of zig-zag paths. The latter condition is

closely related to the concept of reducibility of brane tilings. A brane tiling is reducible, or

equivalently inconsistent, if the number of faces can be decreased by deleting edges while

preserving the toric diagram. On the other hand, the number of gauge groups should be

equal to the area of the toric diagram, measured in terms of elementary triangles. These

two points lead to a simple criterion for consistency of brane tilings, which is particularly

well-suited for partial resolution. A brane tiling is inconsistent whenever the number of faces

is larger than the area of the toric diagram. When this occurs, the brane tiling can be cured

and turned into a consistent one by removing certain edges, i.e. by turning on vevs, without

modifying the toric diagram.

This clarifies how inconsistent brane tilings can arise when partial resolution is not prop-

erly implemented. Sometimes, given an initial toric diagram and its corresponding brane

tiling, a target toric diagram may be obtained by turning on an incomplete collection of

vevs.5 To avoid inconsistent tilings we should make sure that the set of vevs not only gives

rise to the desired toric diagram but that it is also maximal. Algorithmically, it is most easily

implemented by checking the number of gauge groups against the number of fundamental

triangles after triangulation. Therefore, a brane tiling is inconsistent whenever its number of
5This was not a possibility in the example discussed in the previous section.
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faces is larger than the area of toric diagram. Once an inconsistent brane tiling is detected,

it can be repaired by deleting certain edges while maintaining the toric diagram.

This is best illustrated by looking at the diagram 5 in area 6 list. This toric diagram can

be reached from 𝒞/Z3 × Z2. The parent toric diagram has toric points:

{(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1), (0, 2), (1, 2), (2, 2), (3, 2)} ,

wherein the set {(0, 1), (0, 2), (1, 2), (3, 2), (3, 1)} needs to be removed. In addition, we have

Kasteleyn matrix for the parent theory to be

𝐾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋1,3 0 𝑋3,2 𝑋4,1 0 𝑋2,4

𝑋6,1 𝑋5,6 0 𝑋1,7 𝑋7,5 0

0 𝑦𝑋8,5 𝑋2,8 0 𝑦𝑋5,9 𝑋9,2

𝑥𝑋3,10 0 𝑥𝑋11,3 𝑋10,4 0 𝑋4,11

𝑥𝑋10,6 𝑥𝑋6,12 0 𝑋7,10 𝑋12,7 0

0 𝑥𝑦𝑋12,8 𝑥𝑋8,11 0 𝑦𝑋9,12 𝑋11,9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.13)

where we can see that the deletion of fields {𝑋1,7, 𝑋3,2, 𝑋4,11, 𝑋9,12, 𝑋10,6} gives us the correct

toric diagram, as one can check this easily by computing the determinant of Kasteleyn matrix

and find the Newton polygon. However, the presence of 7 gauge group in the quiver signals

that this choice of deletion of fields gives inconsistent brane tiling. This can be remedied by

deleting one more fields 𝑋8,5. The inconsistent brane tiling is shown in fig. 3-8. After deleting

𝑋8,5, the brane tiling is thus the same as the one in diagram 6 of the list of section 3.5.1.

Lastly, we would like to expand on how this new algorithm is much less complex to

implement algorithmically comparing to the previous versions. We see that the old inverse

algorithm is also based on partial resolution. It has exactly the same procedure that requires

finding the dual cone of a given cone: 𝑇 = Dual(𝐾) such that 𝐾 · 𝑇 ≥ 0 for all entries. For

the completeness of discussion about the complexity of the old algorithm, we present the

standard algorithm of finding dual cone here.

Let us begin with a convex polytope 𝐶, with edges given by the matrix 𝑀 whose columns

are the vectors corresponding to these edges. We need to find the dual cone 𝐶 of 𝐶, or

103



Figure 3-8: An inconsistent brane tiling for digram 5 in the area 6 list. We see that the number
of faces is 7, which is greater that the area of the toric diagram.

alternatively matrix 𝑁 such that

𝑁 𝑡 ·𝑀 ≥ 0 for all entries.

This algorithm is standard and presented in [129]. Let 𝑀 be 𝑛 × 𝑝 i.e., there are 𝑝 𝑛-

dimensional vectors spanning 𝐶. Note here 𝑝 ≥ 𝑛 is required for convex polytope. Now we

choose 𝑛− 1 vectors out of the 𝑝 candidates. We have a matrix of 𝑛× (𝑛− 1) of co-rank 1,

whence we extract a 1-dimensional null space described by a single vector 𝑢.

Next we check the dot product with the remaining 𝑝− (𝑛−1) vectors. If all dot products

are positive, we keep vector 𝑢, and if all products are negative, we keep −𝑢, we discard it if

otherwise.

We then choose another 𝑛 − 1 vectors and repeat above until all combinations are ex-

hausted. The set of vectors that are kept, either 𝑢’s or −𝑢’s should form the columns of 𝑁

and span the dual cone 𝐶. Thus the complexity of the algorithm depends on the choice⎛⎝ 𝑝

𝑛− 1

⎞⎠ ,
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which has exponential growth as a function of 𝑛 and 𝑝. This can be seen by the following

bounds on binomial coefficients

𝑝𝑛−1

(𝑛− 1)𝑛−1
≤

⎛⎝ 𝑝

𝑛− 1

⎞⎠ ≤ 𝑝𝑛−1

(𝑛− 1)!
<

(︂
𝑝 · 𝑒
𝑛− 1

)︂𝑛−1

,

where we see that it is exponential because 𝑝/(𝑛− 1) > 1 and we have (𝑝/(𝑛− 1))𝑛−1. This

clearly has exponential growth. Since both the old forward and inverse algorithm require

the computation of a dual cone of certain input, this inevitably prohibits the algorithm to

work with any larger toric diagrams or quiver gauge theories.

The procedure involving brane tiling and refined Kasteleyn matrix has much better per-

formance since the dual cone calculation is circumvented and is embedded inside the calcu-

lation of perfect matching matrix. For the old inverse algorithm described in [69], a lot of

arbitrary choices are involved to determine the correct fields to be resolved by turning on FI

parameters. On top of this, the 𝐾 matrix, encoding the F-term equations is not enough to

integrate back to superpotential. Extra guesses in the linear relations among column vectors

in the 𝐾 matrix are sometimes required. In addition, the back-integration procedure might

involve extraneous fields that are not easy to implement algorithmically.

The other partial resolution using dimers in [49] also suffers some drawbacks as we shall

describe now. In this method, bipartite graphs are obtained given certain toric singularity.

This method is also computationally expensive since it was unknown how to identify the

desired Higgsing on the quiver side. But with the correspondence between quiver with

superpotential and brane tiling elucidated as in table 2.4, we can easily identify the edge of

brane tiling to be removed that corresponds to the Higgsing of any given field in the quiver.

Lastly, with the dimer in the calculation, we do not need to calculate any dual cone as the

determinant of the Kasteleyn matrix has its Newton polygon giving the toric diagram.

3.3 Existing Classifications

A plethora of explicit brane tilings have been constructed in the literature. Below we summa-

rize the existing systematic classifications of classes of models. Several additional scattered
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examples exist.

∙ Del Pezzo surfaces [51]. The brane tilings for all toric phases for cones over toric del

Pezzo surfaces 𝑑𝑃𝑛, 𝑛 = 0, . . . 3, have been classified. Even before the development of

brane tilings, the corresponding gauge theories were determined in [29, 69, 73, 71, 70].

∙ Abelian orbifolds of C3 [163, 164, 165, 166, 167]. It is straightforward to construct the

brane tilings for abelian orbifolds of arbitrary geometries by appropriately enlarging

the unit cell. The geometric action of the orbifold group is encoded in the period-

icity conditions. However, a systematic classification of the orbifold possibilities of

geometries beyond C3 does not currently exist.

∙ The 𝑌 𝑝,𝑞 [117] and 𝐿𝑎,𝑏,𝑐 [52, 118, 119] infinite families. In fact the 𝑌 𝑝,𝑞 theories are

fully contained within the 𝐿𝑎,𝑏,𝑐 class. The toric diagrams for these geometries have

four external edges. Explicit metrics for the 𝑌 𝑝,𝑞 and 𝐿𝑎,𝑏,𝑐 Sasaki-Einstein manifolds

were introduced in [59, 58, 60, 61]. The construction of the gauge theories for these

geometries had a substantial impact on the AdS5/CFT4 correspondence with 𝒩 = 1

supersymmetry. It allowed refined tests of the correspondence for the infinite classes

of dual pairs.

∙ The 𝑋𝑝,𝑞 family [168]. The toric diagrams for these geometries have five external

edges. While this classification was not performed in the language of brane tilings, it

is straightforward to translate it.

∙ [169] classified all brane tilings up to six superpotential terms. These theories are

substantially simpler than the ones studied in this paper.

∙ We also briefly tabulate which diagrams among the results are known geometries inside

𝐿𝑎,𝑏,𝑐, 𝑌 𝑝,𝑞 and 𝑋𝑝,𝑞 in table 3.1. For obvious reasons, geometries such as orbifold of

C3 and conifolds, del Pezzo surfaces are not tabulated. The toric diagrams are labelled

according to tables 3.2 to 3.7.

∙ Lastly, we present the GLSM data or the charge matrices 𝑄𝑡 for area 6, 7, 8 diagrams

from the classification in section 3.4 in this link. The file is called GLSMData.nb and
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it requires Mathematica to open. The reason that these matrices are not presented

here is because some of matrices are rather large and the space here is rather limited.

This should complete the description on the geometry side of the story here. The

GLSM data is mainly centred on the charge matrix 𝑄𝑡, which acts as the central

connection between the symplectic quotient construction of a toric variety and Higgs

branch of supersymmetric vacua of certain GLSM. We see that the torus action for

a toric diagram is given by the eq. (2.57) and the charge matrix 𝑄𝑡 records how the

torus action is performed on each coordinate.

Area 4 Area 5 Area 6 Area 7 Area 8

Geometry 6 : 𝐿2,2,2

7 : 𝐿1,3,2 4 : 𝐿1,4,2

9 : 𝐿2,4,3

10 : 𝑌 3,0

12 : 𝐿1,5,3

13 : 𝐿1,5,2

7 : 𝑋3,1

8 : 𝑋3,2

1 : 𝐿1,7,3

3 : 𝑌 4,0

4 : 𝐿1,7,2

5 : 𝐿2,6,4

7 : 𝐿1,7,4

8 : 𝐿3,5,4

14 : 𝐿2,6,3

16 : 𝐿4,4,4

Table 3.1: The known geometries inside the classification in section 3.4.
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3.4 The Geometries

A primary goal of this paper is to construct brane tilings for all toric CY 3-folds with toric

diagrams up to area 8. The relative simple cases of area 1 to 5 have been extensively studied

and brane tilings are known for all of them. We will thus concentrate on areas 6 to 8. As

mentioned earlier, part of our motivation for focusing on these geometries has to do with

applications to local string phenomenology along the lines of [86, 87].

1 1 2

1 2 3

Table 3.2: Toric diagrams of areas 1, 2 and 3.

1 2 3

4 5 6 7

Table 3.3: Toric diagrams of area 4.
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1 2

3 4 5 6

Table 3.4: Toric diagrams of area 5.

1 2

3 4 5

6 7 8 9

10 11 12 13

Table 3.5: Toric diagrams of area 6.
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1 2

3 4

5 6 7

8 9 10 11

Table 3.6: Toric diagrams of area 7.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23

24 25

26 27

Table 3.7: Toric diagrams of area 8.
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3.5 Results

We now present the classification of brane tilings obtained when implementing the ideas

outlined in section 3.2 to the geometries presented in section 3.4. We provide one brane

tiling per geometry for toric diagrams with areas 6 to 8. Below, the order of toric diagrams

is as given in Tables 4, 5 and 6. While some of these theories have previously appeared in

the literature, ours is the first exhaustive classification. Generically, there can be multiple

brane tilings for a given CY3. It is straightforward to generate all of them by systematically

acting with Seiberg duality on the brane tilings that we present.

The geometries associated to toric diagrams without internal points give rise to non-chiral

gauge theories, which are not so interesting from a model building point of view. For areas

6 to 8, they correspond to cones over 𝐿𝑎,𝑏,𝑎 manifolds [52].
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3.5.1 Area 6

Toric Diagram Brane Tiling Quiver

5 

6 

5 

6 6 

3 

1 

2 

3 

1 

2 2 

6 6 6 

4 4 4 

1 1 

2

3

45

6

1

𝑊 = −𝑋11𝑋12𝑋21 − 𝑋22𝑋23𝑋32 − 𝑋33𝑋34𝑋43 − 𝑋44𝑋45𝑋54 − 𝑋55𝑋56𝑋65 − 𝑋66𝑋61𝑋16

+𝑋11𝑋16𝑋61 + 𝑋22𝑋21𝑋12 + 𝑋33𝑋32𝑋23 + 𝑋44𝑋43𝑋34 + 𝑋55𝑋54𝑋45 + 𝑋66𝑋65𝑋56

2

4

3

5

6

2

4

12

44

4

5

33

6

55

5

66

6

4

12

4

1

4

21

1

3

44

4

33

3

55

1

66

4

21

1

4

4

12

44

4

5

33

6

55

5

66

6

4

12

4

1

4

3

5

6

1

56

2 4

31

𝑊 = −𝑋34𝑋44𝑋43 − 𝑋16𝑋66𝑋61 − 𝑋12𝑋24𝑋42𝑋21 − 𝑋33𝑋35𝑋53 − 𝑋55𝑋56𝑋65

+𝑋33𝑋34𝑋43 + 𝑋35𝑋53𝑋55 + 𝑋56𝑋66𝑋65 + 𝑋12𝑋21𝑋16𝑋61 + 𝑋24𝑋44𝑋42
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Toric Diagram Brane Tiling Quiver

6

4

3

5

6

2

4

66

2

44

4

1

33

2

55

1

4

66

2

4

66

3

44

33

3

55

66

2

4

66

2

44

4

1

33

2

55

1

4

66

2

4

6

4

3

5

6

3 1

5

26

4

𝑊 = −𝑋34𝑋44𝑋43 − 𝑋13𝑋33𝑋31 − 𝑋15𝑋52𝑋25𝑋51 − 𝑋26𝑋64𝑋46𝑋62

+𝑋33𝑋34𝑋43 + 𝑋13𝑋31𝑋15𝑋51 + 𝑋25𝑋52𝑋26𝑋62 + 𝑋44𝑋46𝑋64

6

5

4

6

3

2

66

3

1

55

2

3

44

1

2

66

3

2

66

55

44

66

3

2

66

3

1

55

2

3

44

1

2

66

3

2

6

5

4

6
2 5

1

43

6

𝑊 = −𝑋15𝑋52𝑋25𝑋51 − 𝑋14𝑋43𝑋34𝑋41 − 𝑋26𝑋63𝑋36𝑋62

+𝑋14𝑋41𝑋15𝑋51 + 𝑋34𝑋43𝑋36𝑋63 + 𝑋25𝑋52𝑋26𝑋62

4

2

5

4

6

3

64

6

5

32

3

6

15

5

3

64

6

3

4

2

46

4

1

23

2

4

51

1

2

46

4

2

6

3

64

6

5

32

3

6

15

5

3

64

6

3

6

3

1

6

3

2

5

6

4

1

𝑊 = −𝑋12𝑋23𝑋31 − 𝑋14𝑋45𝑋51 − 𝑋24𝑋46𝑋62 − 𝑋25𝑋53𝑋32 − 𝑋15𝑋56𝑋61 − 𝑋36𝑋64𝑋43

+𝑋12𝑋25𝑋51 + 𝑋45𝑋56𝑋64 + 𝑋24𝑋43𝑋32 + 𝑋15𝑋53𝑋31 + 𝑋14𝑋46𝑋61 + 𝑋23𝑋36𝑋62
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Toric Diagram Brane Tiling Quiver

6

4

2

6

6

4

36

6

1

24

4

6

62

1

4

36

6

4

5

3

63

5

2

42

3

5

26

2

3

63

5

3

6

4

36

6

1

24

4

6

62

1

4

36

6

4

3

2

6

3

4

1
2

6

3

5

𝑊 = −𝑋24𝑋43𝑋32 − 𝑋26𝑋65𝑋52 − 𝑋36𝑋65𝑋53 − 𝑋12𝑋24𝑋41 − 𝑋12𝑋26𝑋61 − 𝑋36𝑋64𝑋43

+𝑋12𝑋24𝑋41 + 𝑋26𝑋65𝑋52 + 𝑋36𝑋64𝑋43 + 𝑋12𝑋26𝑋61 + 𝑋36𝑋65𝑋53 + 𝑋24𝑋43𝑋32

6

3

6

6

2

36

6

4

43

2

6

4

2

36

6

2

5

3

63

5

1

34

3

5

1

3

63

5

3

6

2

36

6

4

43

2

6

4

2

36

6

2

3

4

3

2

3

4

6

1

5

𝑊 = −𝑋13𝑋34𝑋41 − 𝑋16𝑋65𝑋54𝑋41 − 𝑋36𝑋65𝑋53 − 𝑋23𝑋34𝑋42 − 𝑋23𝑋36𝑋62

+𝑋13𝑋34𝑋41 + 𝑋16𝑋65𝑋54𝑋41 + 𝑋23𝑋36𝑋62 + 𝑋36𝑋65𝑋53 + 𝑋23𝑋34𝑋42

6

3

5

6

5

6

46

5

3

23

6

5

15

3

6

46

5

6

4

2

64

4

1

32

2

4

51

1

2

64

4

2

5

6

46

5

3

23

6

5

15

3

6

46

5

6

4

2

1

4 6

3

5

2 1

4

𝑊 = −𝑋13𝑋32𝑋21 − 𝑋14𝑋45𝑋51 − 𝑋26𝑋64𝑋42 − 𝑋26𝑋63𝑋32 − 𝑋13𝑋35𝑋51 − 𝑋45𝑋56𝑋64

+𝑋13𝑋35𝑋51 + 𝑋45𝑋56𝑋64 + 𝑋26𝑋63𝑋32 + 𝑋13𝑋32𝑋21 + 𝑋14𝑋45𝑋51 + 𝑋26𝑋64𝑋42
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Toric Diagram Brane Tiling Quiver

1

6

1

1

2

41

1

1

6

2

2

41

1

2

3

4

54

3

4

4

54

4

5

6

15

5

5

6

6

6

15

5

6

1

2

41

1

1
3

6

2

2

41

1

2

4

4

3

4

5

6

1

2

𝑊 = −𝑋34𝑋45𝑋53 − 𝑋45𝑋56𝑋64 − 𝑋15𝑋56𝑋61 − 𝑋13𝑋32𝑋26𝑋61 − 𝑋12𝑋24𝑋41

+𝑋24𝑋45𝑋53𝑋32 + 𝑋45𝑋56𝑋64 + 𝑋15𝑋56𝑋61 + 𝑋12𝑋26𝑋61 + 𝑋13𝑋34𝑋41

4

3

5

6

4

3

24

5

43

3

1

5

5

16

1

3

24

3

4

42

3

34

4

5

3

6
1

4

42

4

3

24

5

3

3

1

5

5

1

1

3

24

3

2

1

2

5

1
6

4

3

2

𝑊 = −𝑋16𝑋65𝑋51 − 𝑋25𝑋54𝑋43𝑋32 − 𝑋12𝑋25𝑋51 − 𝑋16𝑋64𝑋41 − 𝑋36𝑋64𝑋43

+𝑋12𝑋25𝑋51 + 𝑋16𝑋65𝑋51 + 𝑋36𝑋64𝑋43 + 𝑋25𝑋54𝑋43𝑋32 + 𝑋16𝑋64𝑋41
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3.5.2 Area 7

Toric Diagram Brane Tiling Quiver

6 

6 

5 

5 

2 

2 

1 

1 

4 

4 

3 

3 

1 

1 

7 

7 
1

2

3

45

6

7

𝑊 = −𝑋11𝑋12𝑋21 − 𝑋22𝑋23𝑋32 − 𝑋33𝑋34𝑋43 − 𝑋44𝑋45𝑋54

−𝑋55𝑋56𝑋65 − 𝑋66𝑋67𝑋76 − 𝑋77𝑋71𝑋17

+𝑋11𝑋17𝑋71 + 𝑋22𝑋21𝑋12 + 𝑋33𝑋32𝑋23 + 𝑋44𝑋43𝑋34

+𝑋55𝑋54𝑋45 + 𝑋66𝑋65𝑋56 + 𝑋77𝑋76𝑋67

6 

6 
5 

5 

2 

2 

1 

1 

4 

4 

3 

3 

1 

1 
7 

7 1

2

3

45

6

7

𝑊 = −𝑋11𝑋12𝑋21 − 𝑋22𝑋23𝑋32 − 𝑋33𝑋34𝑋43 − 𝑋44𝑋45𝑋54 − 𝑋55𝑋56𝑋65 − 𝑋67𝑋71𝑋17𝑋76

+𝑋11𝑋17𝑋71 + 𝑋22𝑋21𝑋12 + 𝑋33𝑋32𝑋23 + 𝑋44𝑋43𝑋34 + 𝑋55𝑋54𝑋45 + 𝑋67𝑋76𝑋65𝑋56
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Toric Diagram Brane Tiling Quiver
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1 
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1

2

3

45

6

7

𝑊 = −𝑋11𝑋12𝑋21 − 𝑋22𝑋23𝑋32 − 𝑋33𝑋34𝑋43 − 𝑋45𝑋56𝑋65𝑋54 − 𝑋67𝑋71𝑋17𝑋76

+𝑋11𝑋17𝑋71 + 𝑋22𝑋21𝑋12 + 𝑋33𝑋32𝑋23 + 𝑋34𝑋45𝑋54𝑋43 + 𝑋56𝑋67𝑋76𝑋65
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45

6

7

𝑊 = −𝑋11𝑋12𝑋21 − 𝑋23𝑋34𝑋43𝑋32 − 𝑋45𝑋56𝑋65𝑋54 − 𝑋67𝑋71𝑋17𝑋76

+𝑋11𝑋17𝑋71 + 𝑋12𝑋23𝑋32𝑋21 + 𝑋34𝑋45𝑋54𝑋43 + 𝑋56𝑋67𝑋76𝑋65
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Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋23𝑋34𝑋42 − 𝑋14𝑋43𝑋31 − 𝑋25𝑋56𝑋62 − 𝑋16𝑋67𝑋72𝑋21 − 𝑋35𝑋57𝑋73 − 𝑋47𝑋75𝑋54

+𝑋14𝑋42𝑋21 + 𝑋35𝑋54𝑋43 + 𝑋16𝑋62𝑋23𝑋31 + 𝑋25𝑋57𝑋72 + 𝑋34𝑋47𝑋73 + 𝑋56𝑋67𝑋75
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𝑊 = −𝑋36𝑋67𝑋75𝑋53 − 𝑋16𝑋62𝑋25𝑋51 − 𝑋37𝑋74𝑋43 − 𝑋13𝑋32𝑋24𝑋41

+𝑋25𝑋53𝑋32 + 𝑋13𝑋37𝑋75𝑋51 + 𝑋16𝑋67𝑋74𝑋41 + 𝑋24𝑋43𝑋36𝑋62
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𝑊 = −𝑋24𝑋43𝑋32 − 𝑋25𝑋56𝑋62 − 𝑋35𝑋57𝑋73 − 𝑋27𝑋74𝑋46𝑋62 − 𝑋15𝑋56𝑋61 − 𝑋15𝑋57𝑋71

+𝑋24𝑋46𝑋62 + 𝑋15𝑋56𝑋61 + 𝑋35𝑋57𝑋74𝑋43 + 𝑋25𝑋56𝑋62 + 𝑋15𝑋57𝑋71 + 𝑋27𝑋73𝑋32

119



Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋24𝑋43𝑋32 − 𝑋25𝑋56𝑋62 − 𝑋16𝑋63𝑋37𝑋75𝑋51 − 𝑋12𝑋24𝑋41 − 𝑋37𝑋74𝑋43

+𝑋16𝑋62𝑋24𝑋41 + 𝑋37𝑋75𝑋56𝑋63 + 𝑋37𝑋74𝑋43 + 𝑋12𝑋25𝑋51 + 𝑋24𝑋43𝑋32

7

6

7

6

6

6

47

7

7

6

6

7

1

2
5

6

1

1

34

2

2
5

6

1

2

33

3

73

3

6

7

6

6

6

47

7

7

6

6

7

6

4

6

1

6

2

4 5

3

7

𝑊 = −𝑋13𝑋32𝑋24𝑋41 − 𝑋16𝑋62𝑋25𝑋51 − 𝑋37𝑋75𝑋53 − 𝑋47𝑋76𝑋64 − 𝑋37𝑋76𝑋63

+𝑋13𝑋37𝑋75𝑋51 + 𝑋25𝑋53𝑋32 + 𝑋37𝑋76𝑋63 + 𝑋16𝑋64𝑋41 + 𝑋24𝑋47𝑋76𝑋62
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61
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2

𝑊 = −𝑋13𝑋32𝑋21 − 𝑋14𝑋45𝑋51 − 𝑋46𝑋67𝑋74 − 𝑋26𝑋67𝑋72 − 𝑋26𝑋63𝑋32 − 𝑋13𝑋35𝑋51 − 𝑋45𝑋57𝑋74

+𝑋13𝑋35𝑋51 + 𝑋45𝑋57𝑋74 + 𝑋26𝑋67𝑋72 + 𝑋26𝑋63𝑋32 + 𝑋13𝑋32𝑋21 + 𝑋14𝑋45𝑋51 + 𝑋46𝑋67𝑋74
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Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋23𝑋34𝑋42 − 𝑋25𝑋56𝑋62 − 𝑋35𝑋57𝑋73 − 𝑋13𝑋36𝑋61 − 𝑋14𝑋45𝑋51 − 𝑋17𝑋72𝑋21 − 𝑋47𝑋76𝑋64

+𝑋23𝑋36𝑋62 + 𝑋45𝑋56𝑋64 + 𝑋13𝑋35𝑋51 + 𝑋17𝑋76𝑋61 + 𝑋14𝑋42𝑋21 + 𝑋25𝑋57𝑋72 + 𝑋34𝑋47𝑋73
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3.5.3 Area 8

Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋35𝑋54𝑋43 − 𝑋37𝑋76𝑋63 − 𝑋46𝑋68𝑋84 − 𝑋15𝑋58𝑋87𝑋71 − 𝑋25𝑋56𝑋62 − 𝑋12𝑋24𝑋41 − 𝑋23𝑋38𝑋82

+𝑋35𝑋56𝑋63 + 𝑋24𝑋46𝑋62 + 𝑋15𝑋54𝑋41 + 𝑋25𝑋58𝑋82 + 𝑋12𝑋23𝑋37𝑋71 + 𝑋68𝑋87𝑋76 + 𝑋38𝑋84𝑋43
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3

𝑊 = −𝑋26𝑋67𝑋72 − 𝑋58𝑋86𝑋65 − 𝑋18𝑋82𝑋21 − 𝑋17𝑋73𝑋31 − 𝑋47𝑋78𝑋84 − 𝑋15𝑋54𝑋41 − 𝑋25𝑋53𝑋32 − 𝑋34𝑋46𝑋63

+𝑋17𝑋72𝑋21 + 𝑋67𝑋78𝑋86 + 𝑋25𝑋58𝑋82 + 𝑋15𝑋53𝑋31 + 𝑋34𝑋47𝑋73 + 𝑋18𝑋84𝑋41 + 𝑋26𝑋63𝑋32 + 𝑋46𝑋65𝑋54
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Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋35𝑋54𝑋43 − 𝑋36𝑋64𝑋43 − 𝑋15𝑋57𝑋78𝑋81 − 𝑋35𝑋57𝑋73 − 𝑋16𝑋62𝑋28𝑋81 − 𝑋23𝑋36𝑋62

+𝑋35𝑋57𝑋73 + 𝑋35𝑋54𝑋43 + 𝑋15𝑋57𝑋78𝑋81 + 𝑋16𝑋62𝑋28𝑋81 + 𝑋23𝑋36𝑋62 + 𝑋36𝑋64𝑋43
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𝑊 = −𝑋45𝑋56𝑋64 − 𝑋56𝑋68𝑋87𝑋75 − 𝑋16𝑋67𝑋71 − 𝑋12𝑋28𝑋81 − 𝑋12𝑋23𝑋31 − 𝑋23𝑋34𝑋42 − 𝑋34𝑋45𝑋53

+𝑋45𝑋56𝑋64 + 𝑋56𝑋67𝑋75 + 𝑋16𝑋68𝑋81 + 𝑋12𝑋28𝑋87𝑋71 + 𝑋12𝑋23𝑋31 + 𝑋23𝑋34𝑋42 + 𝑋34𝑋45𝑋53
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2

2
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3
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6
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46

1

𝑊 = −𝑋15𝑋54𝑋46𝑋61 − 𝑋15𝑋57𝑋71 − 𝑋57𝑋78𝑋85 − 𝑋27𝑋78𝑋82 − 𝑋23𝑋38𝑋82 − 𝑋23𝑋34𝑋46𝑋62

+𝑋15𝑋57𝑋71 + 𝑋57𝑋78𝑋85 + 𝑋27𝑋78𝑋82 + 𝑋23𝑋38𝑋82 + 𝑋23𝑋34𝑋46𝑋62 + 𝑋15𝑋54𝑋46𝑋61

Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋24𝑋43𝑋32 − 𝑋25𝑋56𝑋62 − 𝑋57𝑋78𝑋85 − 𝑋17𝑋73𝑋31 − 𝑋14𝑋43𝑋31 − 𝑋24𝑋46𝑋62 − 𝑋56𝑋68𝑋85 − 𝑋17𝑋78𝑋81

+𝑋24𝑋46𝑋62 + 𝑋56𝑋68𝑋85 + 𝑋17𝑋78𝑋81 + 𝑋14𝑋43𝑋31 + 𝑋24𝑋43𝑋32 + 𝑋25𝑋56𝑋62 + 𝑋57𝑋78𝑋85 + 𝑋17𝑋73𝑋31
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Toric Diagram Brane Tiling Quiver

4

3

6

8

4

8

4

74

8

4

6

16

8

58

6

4

74

8

4

7

2

47

7

1

2

5

61

1

7

85

5

2

47

7

2

8

4

74

8

3

4

6

16

8

58

6

4

74

8

4

7

1

5

7

3

6

8

4

1

5

7

2

𝑊 = −𝑋13𝑋32𝑋24𝑋41 − 𝑋15𝑋56𝑋61 − 𝑋57𝑋78𝑋85 − 𝑋24𝑋47𝑋72 − 𝑋13𝑋36𝑋61 − 𝑋56𝑋68𝑋85 − 𝑋47𝑋78𝑋84

+𝑋13𝑋36𝑋61 + 𝑋56𝑋68𝑋85 + 𝑋47𝑋78𝑋84 + 𝑋13𝑋32𝑋24𝑋41 + 𝑋15𝑋56𝑋61 + 𝑋57𝑋78𝑋85 + 𝑋24𝑋47𝑋72
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𝑊 = −𝑋14𝑋43𝑋31 − 𝑋17𝑋75𝑋56𝑋61 − 𝑋58𝑋87𝑋75 − 𝑋38𝑋84𝑋43 − 𝑋14𝑋46𝑋61 − 𝑋28𝑋87𝑋72 − 𝑋28𝑋84𝑋42

+𝑋14𝑋46𝑋61 + 𝑋17𝑋75𝑋56𝑋61 + 𝑋28𝑋87𝑋72 + 𝑋38𝑋84𝑋43 + 𝑋58𝑋87𝑋75 + 𝑋28𝑋84𝑋42 + 𝑋14𝑋43𝑋31

Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋24𝑋43𝑋32 − 𝑋26𝑋65𝑋52 − 𝑋37𝑋75𝑋58𝑋83 − 𝑋14𝑋45𝑋52𝑋21 − 𝑋18𝑋86𝑋67𝑋71

+𝑋24𝑋45𝑋52 + 𝑋26𝑋67𝑋75𝑋52 + 𝑋14𝑋43𝑋37𝑋71 + 𝑋58𝑋86𝑋65 + 𝑋18𝑋83𝑋32𝑋21
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Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋34𝑋45𝑋53 − 𝑋37𝑋74𝑋46𝑋63 − 𝑋38𝑋86𝑋63 − 𝑋18𝑋86𝑋61 − 𝑋18𝑋82𝑋25𝑋51 − 𝑋17𝑋72𝑋21

+𝑋38𝑋86𝑋63 + 𝑋34𝑋46𝑋63 + 𝑋18𝑋82𝑋21 + 𝑋18𝑋86𝑋61 + 𝑋25𝑋53𝑋37𝑋72 + 𝑋17𝑋74𝑋45𝑋51
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𝑊 = −𝑋35𝑋54𝑋43 − 𝑋36𝑋67𝑋73 − 𝑋48𝑋86𝑋64 − 𝑋15𝑋54𝑋41 − 𝑋23𝑋35𝑋57𝑋72 − 𝑋16𝑋62𝑋28𝑋81

+𝑋35𝑋57𝑋73 + 𝑋28𝑋86𝑋67𝑋72 + 𝑋15𝑋54𝑋48𝑋81 + 𝑋35𝑋54𝑋43 + 𝑋23𝑋36𝑋62 + 𝑋16𝑋64𝑋41
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𝑊 = −𝑋35𝑋54𝑋43 − 𝑋37𝑋74𝑋46𝑋63 − 𝑋56𝑋68𝑋85 − 𝑋16𝑋68𝑋81 − 𝑋13𝑋32𝑋28𝑋81 − 𝑋12𝑋27𝑋71

+𝑋35𝑋56𝑋63 + 𝑋46𝑋68𝑋85𝑋54 + 𝑋16𝑋68𝑋81 + 𝑋12𝑋28𝑋81 + 𝑋13𝑋37𝑋71 + 𝑋27𝑋74𝑋43𝑋32
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𝑊 = −𝑋24𝑋43𝑋35𝑋52 − 𝑋26𝑋63𝑋32 − 𝑋14𝑋47𝑋78𝑋86𝑋61 − 𝑋24𝑋47𝑋72 − 𝑋15𝑋58𝑋81

+𝑋24𝑋47𝑋72 + 𝑋24𝑋43𝑋32 + 𝑋14𝑋47𝑋78𝑋81 + 𝑋15𝑋52𝑋26𝑋61 + 𝑋35𝑋58𝑋86𝑋63
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Toric Diagram Brane Tiling Quiver
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𝑊 = −𝑋12𝑋23𝑋31 − 𝑋16𝑋64𝑋45𝑋51 − 𝑋27𝑋74𝑋48𝑋82 − 𝑋13𝑋37𝑋71 − 𝑋35𝑋56𝑋63 − 𝑋57𝑋78𝑋85

+𝑋13𝑋35𝑋51 + 𝑋45𝑋57𝑋74 + 𝑋12𝑋27𝑋71 + 𝑋16𝑋63𝑋31 + 𝑋48𝑋85𝑋56𝑋64 + 𝑋23𝑋37𝑋78𝑋82
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𝑊 = −𝑋46𝑋65𝑋54 − 𝑋45𝑋57𝑋74 − 𝑋68𝑋87𝑋76 − 𝑋16𝑋67𝑋71 − 𝑋25𝑋53𝑋38𝑋82 − 𝑋13𝑋34𝑋42𝑋21

+𝑋46𝑋67𝑋74 + 𝑋57𝑋76𝑋65 + 𝑋16𝑋68𝑋82𝑋21 + 𝑋13𝑋38𝑋87𝑋71 + 𝑋25𝑋54𝑋42 + 𝑋34𝑋45𝑋53
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+𝑋28𝑋83𝑋35𝑋52 + 𝑋17𝑋74𝑋45𝑋51 + 𝑋26𝑋63𝑋37𝑋72 + 𝑋16𝑋64𝑋48𝑋81
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𝑊 = −𝑋34𝑋45𝑋53 − 𝑋36𝑋67𝑋73 − 𝑋18𝑋86𝑋61 − 𝑋24𝑋48𝑋82 − 𝑋47𝑋75𝑋54 − 𝑋13𝑋37𝑋71 − 𝑋16𝑋62𝑋21 − 𝑋28𝑋85𝑋52

+𝑋34𝑋47𝑋73 + 𝑋16𝑋67𝑋71 + 𝑋28𝑋86𝑋62 + 𝑋48𝑋85𝑋54 + 𝑋37𝑋75𝑋53 + 𝑋13𝑋36𝑋61 + 𝑋18𝑋82𝑋21 + 𝑋24𝑋45𝑋52

127



Toric Diagram Brane Tiling Quiver

5

3

5

7

8

65

7

7

43

8

8

65

7

8

1

2

56

1

1

34

2

2

56

1

2

7

8

65

7

7

43

8

8

65

7

8

6

4

6

7

5 8

3

6

14

2

𝑊 = −𝑋13𝑋32𝑋24𝑋41 − 𝑋16𝑋62𝑋25𝑋51 − 𝑋37𝑋74𝑋48𝑋83 − 𝑋58𝑋86𝑋67𝑋75

+𝑋13𝑋37𝑋75𝑋51 + 𝑋25𝑋58𝑋83𝑋32 + 𝑋16𝑋67𝑋74𝑋41 + 𝑋24𝑋48𝑋86𝑋62

1

8

1

2

3

51

2

2

48

3

3

51

2

3

4

5

75

4

4

64

5

5

75

4

5

6

7

17

6

6

86

7

7

17

6

7

2

3

51

2

2

48

3

3

51

2

3

5

4

5

4

5 7

6

1

2

8

3

𝑊 = −𝑋46𝑋65𝑋54 − 𝑋45𝑋57𝑋74 − 𝑋68𝑋87𝑋76 − 𝑋16𝑋67𝑋71 − 𝑋24𝑋43𝑋38𝑋82 − 𝑋13𝑋35𝑋52𝑋21

+𝑋46𝑋67𝑋74 + 𝑋57𝑋76𝑋65 + 𝑋16𝑋68𝑋82𝑋21 + 𝑋13𝑋38𝑋87𝑋71 + 𝑋24𝑋45𝑋52 + 𝑋35𝑋54𝑋43

2

4

7

6

2

2

5

82

2

7

54

5

1

37

7

2

16

1

5

82

2

5

8

4

28

8

3

45

4

6

73

3

8

61

6

4

28

8

4

2

5

82

2

7

54

5

1

37

7

2

16

1

5

82

2

5

8

5

3

1

8

7

1

6

2
5

4

3 8

𝑊 = −𝑋34𝑋45𝑋53 − 𝑋36𝑋67𝑋73 − 𝑋18𝑋86𝑋61 − 𝑋28𝑋84𝑋42 − 𝑋47𝑋75𝑋54 − 𝑋13𝑋37𝑋71 − 𝑋16𝑋62𝑋21 − 𝑋25𝑋58𝑋82

+𝑋34𝑋47𝑋73 + 𝑋16𝑋67𝑋71 + 𝑋28𝑋86𝑋62 + 𝑋25𝑋54𝑋42 + 𝑋37𝑋75𝑋53 + 𝑋13𝑋36𝑋61 + 𝑋18𝑋82𝑋21 + 𝑋45𝑋58𝑋84
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+𝑋11𝑋18𝑋81 + 𝑋22𝑋21𝑋12 + 𝑋33𝑋32𝑋23 + 𝑋44𝑋43𝑋34 + 𝑋45𝑋56𝑋65𝑋54 + 𝑋67𝑋78𝑋87𝑋76
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−𝑋55𝑋56𝑋65 − 𝑋66𝑋67𝑋76 − 𝑋77𝑋78𝑋87 − 𝑋88𝑋81𝑋18

+𝑋11𝑋18𝑋81 + 𝑋22𝑋21𝑋12 + 𝑋33𝑋32𝑋23 + 𝑋44𝑋43𝑋34
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3.5.4 Examples: GLSM data for Area 6, 7, 8

In this section, we take some examples from results in section 3.5 to elucidate the relation

between toric geometry and GLSM. This relation is entirely based on the central object:

charge matrix 𝑄𝑡. Specifically, we would like to look at diagram 5, 10, 11 in area 6 list,

diagram 7, 8 in area 7 list and diagram 1, 3 in area 8 list from tables 3.5, 3.5 and 3.7.

Before we proceed, it is worthwhile to present some background materials on this interesting

relation. The desire to implement both F-terms and D-terms conditions of supersymmetric

gauge theory on the same footing as it is done in GLSM has led literatures [69, 139, 140]

to develop the Forward Algorithm. Within these procedures, a new set of basis of fields are

chosen from the set of quiver fields and these new fields are exactly the perfect matchings of

a brane tiling [49, 50, 52]. These fields have the following properties:

∙ As described in section 3.2.2, a perfect matching 𝑝𝛼 is a set of bifundamental fields

which connects to all node precisely once inside a brane tiling. More importantly, they

are collected inside the perfect matching matrix 𝑃𝐸×𝑐 with 𝐸 being the number of

matter fields and 𝑐 the number of perfect matching.

∙ F-term constraints are encapsulated in the perfect matching matrix 𝑃𝐸×𝑐 with the

charges under F-terms given by the kernel,

𝑄𝐹 (𝑐−𝐺−2)×𝑐 = ker(𝑃𝐸×𝑐) . (3.14)

∙ D-terms [35] are given

𝐷𝑖 = −𝑒2
(︃∑︁

𝑎

𝑑𝑖𝑎|𝑋𝑎|2 − 𝜁𝑖

)︃
, (3.15)

where 𝑋𝑎 is a bifundamental matter field represented by th3 𝑎-th column of the inci-

dence matrix 𝑑𝐺×𝐸 as defined in section 2.2, 𝑖 is the label for quiver gauge groups, 𝑒 is

the gauge coupling and 𝜁𝑖 is the Fayet-Ilopoulos parameter. Specifically, D-terms are
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related to the perfect matchings as follows

∆(𝐺−1)×𝐸 = 𝑄𝐷(𝐺−1)×𝑐 · 𝑃 𝑡
𝑐×𝐸 , (3.16)

where ∆(𝐺−1)×𝐸 is the reduced incidence matrix of the quiver since each column of

𝑑𝐺×𝐸 sums up to zero identically and 𝑄𝐷(𝐺−1)×𝑐 is the charge matrix under D-terms

constraints.

With such two matrices at our disposal, we can concatenate them to form a (𝑐−3)×𝑐 matrix

𝑄𝑡 =

⎛⎝ 𝑄𝐹

𝑄𝐷

⎞⎠ . (3.17)

Here we see that the charge matrix 𝑄𝑡 gives information on how the GLSM fields are charged

under various 𝑈(1) factors. Furthermore, the transpose of the kernel of charge matrix

𝐺𝑡 = [ker(𝑄𝑡)]
𝑡 , (3.18)

provides the coordinates of the toric diagram points with its columns.

We can see that the charge matrix 𝑄𝑡 is of dimension (𝑐 − 3) × 𝑐 and it is exactly the

same matrix defined in section 2.3.2. The columns of the matrix gives perfect matchings i.e.,

GLSM chiral fields, whereas the rows show how these fields are charged under the 𝑈(1)𝑐−3

gauge factors. Now we turn to some specific examples to elucidate this relation.
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Area 6 Examples

We take diagrams 5, 10, 11, 12 from the area 6 list with the point in mind that toric diagrams

with no internal points are associated with non-chiral gauge theories. Hence only diagrams

with internal points shall be taken as examples for calculating its charge matrix 𝑄𝑡. Further-

more, since triangulation of the toric diagram is of area 6, the total number of 𝑈(1) gauge

nodes of the resulting quiver gauge theory should also be 6.

Diagram 5 This toric diagram is not inside any known catalogue of geometries such as

𝐿𝑎,𝑏,𝑐, 𝑌 𝑝,𝑞, 𝑋𝑝,𝑞 due to the presence of only 3 external edges. It is also obvious that it is not

inside the classes of del Pezzo surfaces and orbifolds. Its superpotential is comprised of 12

degree 3 monomial terms, which are themselves functions of 18 bifundamental fields.
The perfect matching for this particular brane-tiling is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17
𝑋1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0
𝑋2 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0
𝑋3 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0
𝑋4 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0
𝑋5 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0
𝑋6 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0
𝑋7 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1
𝑋8 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0
𝑋9 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0
𝑋10 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1
𝑋11 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0
𝑋12 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0
𝑋13 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1
𝑋14 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0
𝑋15 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1
𝑋16 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0
𝑋17 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1
𝑋18 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.19)

The F-term charge matrix 𝑄𝐹 = ker(𝑃 ) is

𝑄F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17
2 −3 2 2 0 −1 −1 −1 0 0 0 −1 0 0 0 0 1
1 −2 2 2 0 −1 −1 −1 0 0 0 −1 0 0 0 1 0
1 −1 1 0 0 0 −1 0 0 0 0 −1 0 0 1 0 0
1 −2 1 1 0 −1 0 0 0 0 0 −1 0 1 0 0 0
0 −1 1 1 0 −1 0 0 0 0 0 −1 1 0 0 0 0
1 −2 1 1 0 0 −1 −1 0 0 1 0 0 0 0 0 0
1 −1 0 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0
0 −1 1 1 0 0 −1 −1 1 0 0 0 0 0 0 0 0
0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.20)

The D-term charge matrix is given by

𝑄D =

⎛⎜⎜⎜⎜⎝
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 1 −1
0 0 0 0 0 0 0 −1 0 1 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 −1 0 1

⎞⎟⎟⎟⎟⎠ (3.21)

The total charge matrix 𝑄𝑡 is of dimension 14× 17, which is indeed of the form (𝑐− 3)× 𝑐

with 𝑐 being the number of perfect matchings or the GLSM fields. The charge matrix 𝑄𝑡 has

its rows summing up to 0 as it is the condition for the variety to be Calabi-Yau as shown in
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proposition 2.

Diagram 10 This diagram encodes precisely the geometry of 𝐿3,3,3. We briefly remind the

reader that the 𝐿𝑎,𝑏,𝑐 family of geometry has the following conditions on its toric diagram:

∙ 𝑎 + 𝑏 = 𝑐 + 𝑑 where (𝑎, 𝑏, 𝑐, 𝑑) are the GLSM charges and they satisfy the constraint

𝑎 ≤ 𝑐 ≤ 𝑏. The charges 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z+ are pairwise coprime: gcd(𝑎, 𝑐) = 1, gcd(𝑎, 𝑑) =

1, gcd(𝑏, 𝑐) = 1 and gcd(𝑏, 𝑑) = 1.

∙ The 4 corner points of the toric diagram are specified by the vector (0, 0), (1, 0), (𝑃, 𝑑)

and (𝐹, 𝑏)

∙ The coordinates of four corners obey the relation

𝑑𝐹 − 𝑏𝑃 + 𝑐 = 0 .

The perfect matching for this particular brane tiling is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18
𝑋1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0
𝑋2 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
𝑋3 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0
𝑋4 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
𝑋5 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0
𝑋6 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0
𝑋7 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1
𝑋8 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
𝑋9 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1
𝑋10 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
𝑋11 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
𝑋12 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1
𝑋13 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
𝑋14 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
𝑋15 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
𝑋16 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.22)

The charge matrix for F-terms is

𝑄F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18
2 −1 0 0 −1 0 1 −1 0 0 0 −1 0 0 0 0 0 1
1 0 0 0 −1 0 1 −1 0 0 0 −1 0 0 0 0 1 0
1 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0
1 0 −1 0 0 0 1 −1 0 0 0 −1 0 0 1 0 0 0
1 −1 0 0 0 0 1 −1 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 −1 1 0 0 0 0 0
1 0 −1 1 −1 0 −1 0 0 0 1 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.23)

The charge matrix for D-terms is

𝑄D =

⎛⎜⎜⎜⎜⎝
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎠ . (3.24)
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The total charge matrix 𝑄𝑡 therefore specifies how the 18 GLSM fields are charged under

𝑈(1)15.

Diagram 11 This diagram contains three external edges, which excludes itself from being

included in any of the classes of 𝐿𝑎,𝑏,𝑐, 𝑌 𝑝,𝑞, 𝑋𝑝,𝑞. It is also obvious that it is not any of the

del Pezzo surfaces of abelian orbifolds. Therefore, this diagram is of new type of geometry

that does not afford any known description. On the other hand, the perfect matching matrix

for this particular brane tiling is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20
𝑋1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0
𝑋2 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0
𝑋3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
𝑋4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0
𝑋5 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1
𝑋6 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0
𝑋7 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0
𝑋8 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
𝑋9 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0
𝑋10 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0
𝑋11 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1
𝑋12 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
𝑋13 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0
𝑋14 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1
𝑋15 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0
𝑋16 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
𝑋17 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
𝑋18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.25)

The charge matrix for F-terms is

𝑄F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20
4 −1 −1 −1 0 −1 0 0 −1 0 0 0 1 0 −1 0 0 0 0 1
2 0 −1 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0
1 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0
2 −1 0 −1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.26)

The charge matrix for D-terms is

𝑄D =

⎛⎜⎜⎜⎝
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 −1 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0

⎞⎟⎟⎟⎠ . (3.27)

We can easily see that each row of the charge matrix 𝑄𝑡 sums up to zero, which indeed

checks out to be a toric Calabi-Yau threefold. The 20 GLSM fields are thus charged under

𝑈(1)17.
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Area 7 Examples

We shall also present some examples from area 7 diagrams with their charge matrices in this

section. The principle for selection of candidate is also the same as that in area 6: diagrams

with no internal points are not chosen since they give non-chiral gauge theories.

Diagram 7 This diagram corresponds to the geometry prescribed by 𝑋3,1, which has the

required 5 external edges. The perfect matching matrix is given by

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22 𝑝23 𝑝24
𝑋1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
𝑋2 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0
𝑋3 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0
𝑋4 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0
𝑋5 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
𝑋6 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1
𝑋7 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0
𝑋8 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0
𝑋9 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1
𝑋10 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
𝑋11 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0
𝑋12 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1
𝑋13 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
𝑋14 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0
𝑋15 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
𝑋16 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1
𝑋17 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
𝑋18 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1
𝑋19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.28)

Taking the kernel of matrix 𝑃 , we have the charge matrix for F-terms

𝑄F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22 𝑝23 𝑝24
2 1 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 1
1 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 1 0
1 1 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0
1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
1 1 −1 0 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 −1 1 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 −1 1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.29)

The charge matrix for D-terms is then

𝑄D =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22 𝑝23 𝑝24
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.30)

As we can see from above, the total charge matrix 𝑄𝑡 has its rows summing up to zero.

This is within the description of a toric Calabi-Yau threefold. The 24 GLSM fields are then

charged under 𝑈(1)21 according to the charge matrix 𝑄𝑡.
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Diagram 8 This diagram corresponds to 𝑋3,2 as we can see that it has 5 external edges.

The perfect matching matrix is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22
𝑋1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0
𝑋2 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
𝑋3 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
𝑋4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0
𝑋5 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
𝑋6 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0
𝑋7 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0
𝑋8 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1
𝑋9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0
𝑋10 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑋11 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1
𝑋12 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0
𝑋13 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1
𝑋14 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
𝑋15 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
𝑋16 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
𝑋17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.31)

The kernel of 𝑃 then gives us the charge matrix for F-terms

𝑄F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22
2 1 −1 −1 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1
0 1 0 0 0 0 −1 0 1 −1 0 0 0 0 −1 0 0 0 0 0 1 0
0 1 0 0 −1 0 0 0 1 −1 0 0 0 0 −1 0 0 0 0 1 0 0
1 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 1 0 −1 0 0 0 0 1 −1 0 0 0 0 −1 0 0 1 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0
−1 1 0 0 0 0 0 0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0
2 0 −1 0 −1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.32)

Correspondingly, we obtain the charge matrix for D-terms

𝑄D =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.33)

Assuringly, this example also gives us the charge matrix of a toric Calabi-Yau threefold.

The corresponding 22 GLSM fields are therefore charged under 𝑈(1)19 with charges specified

by 𝑄𝑡.
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Area 8 Examples

In this section, we take a few examples from area 8 list for calculation of their charge matrices.

Diagram 1 This diagram gives the geometry of 𝐿1,7,3 and its triangulation area indeed

matches the number of gauge groups of the corresponding gauge theory. The perfect match-

ing matrix is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22 𝑝23 𝑝24 𝑝25 𝑝26 𝑝27 𝑝28 𝑝29 𝑝30
𝑋1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
𝑋2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0
𝑋3 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0
𝑋4 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0
𝑋5 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1
𝑋6 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1
𝑋7 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1
𝑋8 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0
𝑋9 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
𝑋10 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0
𝑋11 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
𝑋12 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0
𝑋13 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
𝑋14 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
𝑋15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1
𝑋16 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0
𝑋17 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑋18 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
𝑋19 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
𝑋20 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1
𝑋21 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
𝑋22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.34)

The charge matrix for F-term is

𝑄F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22 𝑝23 𝑝24 𝑝25 𝑝26 𝑝27 𝑝28 𝑝29 𝑝30
1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 1 1 −2 1 0 −1 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0
0 1 0 −1 1 0 −1 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0
0 0 1 −1 1 0 −1 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0
0 0 1 −1 1 −1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
2 −1 −1 1 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 1 −1 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 1 −1 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 −1 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.35)

The D-term charge matrix is.

𝑄D =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22 𝑝23 𝑝24 𝑝25 𝑝26 𝑝27 𝑝28 𝑝29 𝑝30
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.36)

We see that the total charge matrix 𝑄𝑡 is of dimension 27 × 30 and has rows summing up

to zero. Therefore, this indeed gives us a toric Calabi-Yau threefold. The GLSM fields are
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charged under 𝑈(1)27 accordingly.

Diagram 3 This diagram encodes the geometry of 𝐿4,4,4. Its perfect matching matrix is

given as follows

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6𝑝7𝑝8𝑝9𝑝10𝑝11𝑝12𝑝13𝑝14𝑝15𝑝16𝑝17𝑝18𝑝19𝑝20𝑝21𝑝22𝑝23𝑝24𝑝25𝑝26𝑝27𝑝28𝑝29𝑝30𝑝31𝑝32𝑝33𝑝34𝑝35𝑝36𝑝37𝑝38𝑝39𝑝40𝑝41
𝑋1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑋2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
𝑋3 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑋4 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
𝑋5 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0
𝑋6 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0
𝑋7 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
𝑋8 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
𝑋9 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0
𝑋10 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0
𝑋11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
𝑋12 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
𝑋13 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0
𝑋14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1
𝑋15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0
𝑋16 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑋17 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0
𝑋18 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
𝑋19 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑋20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.37)

The charge matrix for F-terms is

𝑄F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7𝑝8 𝑝9 𝑝10𝑝11𝑝12𝑝13𝑝14𝑝15𝑝16𝑝17𝑝18𝑝19𝑝20𝑝21𝑝22𝑝23𝑝24𝑝25𝑝26𝑝27𝑝28𝑝29𝑝30𝑝31𝑝32𝑝33𝑝34𝑝35𝑝36𝑝37𝑝38𝑝39𝑝40𝑝41
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1
0 2 0 −1 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0
0 2 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0
0 2 0 −1 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 2 −1 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 −1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0
0 1 −1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 2 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 1 0 0 0 −1 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 1 0 0 0 −1 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 1 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 1 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.38)

The charge matrix for D-terms is then

𝑄D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6𝑝7𝑝8𝑝9𝑝10𝑝11𝑝12𝑝13𝑝14𝑝15𝑝16𝑝17𝑝18𝑝19𝑝20𝑝21𝑝22𝑝23𝑝24𝑝25𝑝26𝑝27𝑝28𝑝29𝑝30𝑝31𝑝32𝑝33𝑝34𝑝35𝑝36𝑝37𝑝38𝑝39𝑝40𝑝41
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.39)

We see that the total charge matrix specifies how the torus action 𝑈(1)38 represented

by the toric diagram acts on the 41 homogeneous coordinates. In GLSM languages, here
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we have to full information on how the 𝑈(1) gauge groups acts on the GLSM fields. The

resulting variety is a toric Calabi-Yau threefold as shown by the fact that the charge matrix

has its rows adding up to 0.
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Chapter 4

Conclusions

In chapter 2, we have reviewed the foundations of string theory and saw that the need to make

contact with low-energy four-dimensional gauge dynamics from string theory is natural and

it led us to consider the construction of 𝒩 = 1 gauge theories using D-branes probing back-

ground singular geometry. Since the initialisation of quiver gauge theory in [24], efforts are

devoted to construction of 𝒩 = 1 superconformal quiver gauge theories living on D3-branes

probing singular Calabi-Yau. This has led to a series of unifying application of concepts such

as Hyper-Kähler quotients, McKay correspondence finite group representations. However,

after the introduction of brane tilings, the connection between gauge theories on D3-branes

and toric CY 3-folds they probe is greatly simplified. While given an arbitrary toric singular-

ity there are well-defined methods for obtaining the corresponding brane tiling, it is of great

interest to work out catalogues of explicit examples. Such databases are useful, for example,

for uncovering general properties of these theories and for identifying the best models for

specific applications.

In chapter 3, we classified all toric CY 3-folds with toric diagrams up to area 8 and

constructed a brane tiling for each of them. To do so, we developed implementations of dimer

model techniques specifically tailored for partial resolution. We also created computational

modules for a wide range of manipulations and computations involving brane tilings. They

can be accessed at [158].

There are various directions for future investigation. First, additional information can

be added to our catalogue. We found one brane tiling for every toric CY3 but, generically,
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each geometry is associated to more than one brane tiling. These so-called toric phases are

related to each other by Seiberg duality and it would be interesting to provide a complete

classification of them for the geometries in our list. Ideally, we would also like to determine

extra data such as 𝑅-charges, 𝑗-invariants for the dessins, etc.

In future work, we plan to use our classification of brane tilings as the starting point for

local model building of Standard Model (SM)-like theories with realistic spectra, hierarchies

of masses, flavor mixings, etc. The main idea of this kind of construction is to consider a

singularity that gives rise to a reasonable spectrum, such as the cone over 𝑑𝑃0 and embed it

into a slightly larger one, such as the cone over 𝑑𝑃3. This particular example was studied in

great detail in [86, 87], with encouraging results. The finite size of the resolved cycles map

to non-vanishing vevs for the scalar components of some bifundamental chiral multiplets.

By construction, the resulting low energy theory is the desired SM quiver, but with the vevs

appearing as new parameters that can be tuned to control the flavor structure. These vevs

appear in very specific ways in the superpotential, leading to a constrained and predictive

scenario. We will undertake a systematic large scale investigation of local model building

using the entire set of area 6 to 8 toric CY 3-folds as parent geometries. We will identify

those that are phenomenologically promising and work out the detailed features of the low

energy theories.
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Appendix A

A.1 Quick Review on String Theory

A.1.1 The Bosonic String

In this section, let us reiterate some basic elements of string theory[1, 3, 4] . As with point

particle physics, the evolution of point particle is recorded in world line and we analyse the

system using Feynman diagram that captures possible configuration of world lines as well

as junction of world lines to represent the interactions. In string theory, the counterpart of

world line is world sheet of a string and the perturbation expansions collect world sheets

of different topologies. These topologies have important consequences to differentiate string

theory from QFT. The interaction structure is uniquely determined by free theory and the

interactions do not come from singularities in joining world sheets, which protects it from

UV divergences. For the world sheet of the string under discussion, we can construct the

string sigma-model as in eq. (A.1) which reduces to the Nambu-Goto action in ?? using

classical equation of motion,

𝑆𝜎 = −𝑇
2

∫︁ √
−ℎℎ𝛼𝛽𝜂𝜇𝜈𝜕𝛼𝑋𝜇𝜕𝛽𝑋

𝜈𝑑𝜎𝑑𝜏 , (A.1)

𝑆NG = −𝑇
∫︁
𝑑𝜎𝑑𝜏

√︁
(�̇� ·𝑋 ′)2 − �̇�2𝑋 ′2 = −𝑇

∫︁
𝑑𝜎𝑑𝜏

√︀
|det 𝐺(𝑋)| , (A.2)

where ℎ𝛼𝛽(𝜎, 𝜏) is the auxiliary world-sheet metric, ℎ = det(ℎ𝛼𝛽), ℎ𝛼𝛽 is the inverse and

𝐺𝛼𝛽 = 𝜕𝛼𝑋
𝜇𝜕𝛽𝑋

𝜈𝜂𝜇𝜈 is the pull-back metric on world sheet. The spacetime coordinates

𝑋𝜇(𝜎, 𝜏) are the embeddings of world-sheet inside spacetime. To quantize this classical
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action, one needs to use Feynman path integral with gauge fixing and local symmetries.

Most importantly, when one keeps conformal symmetry in quantum level, the space-time

dimension is required to be𝐷 = 26 and analogous analysis shows that𝐷 = 10 for superstring.

The parameter 𝜏 is the world-sheet time and 𝜎 parametrises the string at a given time. For

closed string, the periodicity is chosen to be 𝜋 and on then identifies the both ends of the

string 𝑋𝜇(𝜎, 𝜏) = 𝑋𝜇(𝜎+𝜋, 𝜏). For open strings, we have Neumann and Dirichlet boundary

conditions. The Dirichlet boundary condition then chooses us a spacetime hypersurface on

which open strings can end. These physical objects are called D-branes which will be the

main object under discussion in our first chapter.

The action in eq. (A.1) consists the following symmetries that can be used to bring the

metric ℎ𝛼𝛽 into a simpler form:

∙ Poincaré transformations. These are global symmetries from the view of world-sheet

𝛿𝑋𝜇 = 𝑎𝜇𝜈𝑋
𝜈 + 𝑏𝜇 , (A.3)

where the constants 𝑎𝜇𝜈 represent infinitesimal Lorentz transformations and they are

anti-symmetric. The parameters 𝑏𝜇 are from spacetime translation.

∙ Reparametrisations. The world-sheet is described by two coordinates 𝜏 and 𝜎 and the

change in the parametrisation should leave the action invariant. Specifically, they are

diffeomorphisms :

𝜎𝛼 → 𝑓𝛼(𝜎) = 𝜎′𝛼 , ℎ𝛼𝛽(𝜎) =
𝜕𝑓𝛾

𝜕𝜎𝛼
𝜕𝑓 𝛿

𝜕𝜎𝛽
ℎ𝛾𝛿(𝜎

′) . (A.4)

∙ Weyl transformations. The action is also invariant under local rescaling

ℎ𝛼𝛽 → 𝑒𝜑(𝜎,𝜏)ℎ𝛼𝛽 . (A.5)

The reparametrisation and Weyl rescaling then can be used to fix the gauge to bring the
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metric into

ℎ𝛼𝛽 = 𝜂𝛼𝛽 =

⎛⎝−1 0

0 1

⎞⎠ . (A.6)

After this choice of gauge fixing, the action has a simple form

𝑆 =
𝑇

2

∫︁
𝑑2𝜎(�̇�2 −𝑋 ′2) , (A.7)

from which we can drive the equation of motion for field 𝑋 with the assumption that there

are no topological obstruction to the choice of flat metric 𝜂𝛼𝛽. The EoM is then

𝜕𝛼𝜕
𝛼𝑋𝜇 = 0 or

(︂
𝜕2

𝜕𝜎2
− 𝜕2

𝜕𝜏 2

)︂
𝑋𝜇 = 0 .

Now we can solve for its solutions with constraints from imposing 𝑇𝛼𝛽 = 0. Since the EoM

is a wave equation, therefore we can switch to light-cone coordinates 𝜎± = 𝜏 ± 𝜎 that will

give us solutions in terms of independent left-mover and right-mover

𝑋𝜇(𝜏, 𝜎) = 𝑋𝜇
𝑅(𝜏 − 𝜎) +𝑋𝜇

𝐿(𝜏 + 𝜎) , (A.8)

with constraints 𝑇𝛼𝛽 = 0 becoming

𝑇++ = 𝜕+𝑋
𝜇𝜕+𝑋𝜇 = 0 ,

𝑇−− = 𝜕−𝑋
𝜇𝜕−𝑋𝜇 = 0 ,

(A.9)

and vanishing of trace goes to 𝑇+− = 𝑇−+ = 0. Following the route of canonical quantisation,

one needs to find the classical Poisson brackets from the action in terms of field 𝑋𝜇 and its

momentum, then substitute mode expansions for left and right movers to obtain the Poisson

bracket in terms of modes for left and right mover 𝛼𝜇𝑚 and �̃�𝜇𝑚. After this, one gets

[𝛼𝜇𝑚, 𝛼
𝜇
𝑛]P.B. = [�̃�𝜇𝑚, �̃�

𝜇
𝑛]P.B. = 𝑖𝑚𝜂𝜇𝜈𝛿𝑚+𝑛,0 ,

[𝛼𝜇𝑚, �̃�
𝜇
𝑛]P.B. = 0 .

(A.10)
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Replacing the Poisson brackets by commutators, we have

[𝛼𝜇𝑚, 𝛼
𝜇
𝑛] = [�̃�𝜇𝑚, �̃�

𝜇
𝑛] = 𝑚𝜂𝜇𝜈𝛿𝑚+𝑛,0 , (A.11)

which becomes the following after rescaling 𝑎𝜇𝑚 = 1√
𝑚
𝛼𝜇𝑚 and 𝑎𝜇†𝑚 = 1√

𝑚
𝛼𝜇−𝑚 for 𝑚 > 0,

[𝑎𝜇𝑚, 𝑎
𝜇
𝑛] = [�̃�𝜇𝑚, �̃�

𝜇
𝑛] = 𝜂𝜇𝜈𝛿𝑚,𝑛 for 𝑚,𝑛 > 0 . (A.12)

The higher vibrational states are then obtained by applying the ground state |0⟩ the raising

operators 𝑎𝜇†𝑚 , Note here we get the negative norm state by observing that
[︀
𝑎0𝑚, 𝑎

0†
𝑚

]︀
= −1.

There states indicates instability of the vacuum, therefore they need to be removed. We will

shortly review how this is done and the introduction of supersymmetry on the world-sheet

and space-time thus becomes necessary.

The above analysis seems to have exhausted the symmetries within the theory by choosing

the gauge to fix the metric. However, there is one more residual symmetry from varying

metric reparametrisation simultaneously:

𝜕𝛼𝜉𝛽 + 𝜕𝛽𝜉𝛼 = Λ𝜂𝛼𝛽 , (A.13)

where Λ is the infinitesimal parameter for Weyl rescaling and 𝜉𝛼 is that for reparametrisation.

In other words, these are reparametrisations that can be compensated by Weyl rescalings.

More importantly, the generators for these symmetries satisfy the Virasoro algebra classically:

[𝐿𝑚, 𝐿𝑛]P.B. = 𝑖(𝑚− 𝑛)𝐿𝑚+𝑛 ,

where 𝐿𝑚 and �̃�𝑚 comes from the Fourier expansions of 𝑇−− and 𝑇++:

𝐿𝑚 =
1

2

+∞∑︁
𝑛=−∞

𝛼𝑚−𝑛 · 𝛼𝑛 and �̃�𝑚 =
1

2

+∞∑︁
𝑛=−∞

�̃�𝑚−𝑛 · �̃�𝑛 . (A.14)
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On the other hand, the quantum version of this algebra is

[𝐿𝑚, 𝐿𝑛] = (𝑚− 𝑛)𝐿𝑚+𝑛 +
𝑐

12
𝑚(𝑚2 − 1)𝛿𝑚+𝑛,0, (A.15)

where 𝑐 is the dimension of spacetime as we shall see later. This addition of 𝑐-number to

the classical Virasoro algebra essentially comes from the fact that we need normal order

when 𝑚+ 𝑛 = 0 when quantising the theory. Thus any quantum corrections to the classical

algebra should only give a term of the form 𝐴(𝑚)𝛿𝑚+𝑛,0, where 𝐴(𝑚) is an 𝑚-dependent

𝑐-number. This algebra is called the central extension of the classical one and the 𝑐-number

is called the anomaly term in the algebra. The determination of the specific form of 𝐴(𝑚)1

can be found in [1] Quantum mechanically, we need to fix the normal ordering ambiguity.

Specifically, by observing eq. (A.12) and eq. (A.14) carefully, we see that we only need to

consider 𝐿0 and �̃�0 whose correction needs a constant 𝑎. If we impose the condition that the

zero mode of energy momentum tensor to vanish as in the classical counter-part, we need

the following condition

(𝐿0 − 𝑎) |𝜑⟩ = 0 and (�̃�0 − 𝑎) |𝜑⟩ = 0 , (A.16)

where |𝜑⟩ can be any physical on-shell state. Before we move onto the definition of spurious

state and the determination of constant 𝑎 and dimension 𝐷, let us motivate the reason we

study the so called spurious states and the importance of them in eliminating negative norm

states.

First, let us denote the open-string ground state of momentum 𝑘𝜇 as |0; 𝑘⟩. The mass-

shell condition eq. (A.16) implies that 𝛼′𝑘2 = 𝑎. Now consider the first excited state 𝜁 ·

𝛼−1 |0; 𝑘⟩, where 𝜁𝜇(𝑘) is the polarisation vector with 𝐷 independent components before

applying gauge constraints. The mass-shell condition now becomes 𝛼′𝑘2 = 𝑎 − 1 and the

condition 𝐿1(𝜁 · 𝛼−1) |0; 𝑘⟩ = 0 implies 𝜁 · 𝑘 = 0 using Virasoro algebra. The norm of these

states is given by 𝜁 · 𝜁 and each state has 𝐷 − 1 allowed polarisations. Now we have the

1In short, we can find some recursion relation of 𝐴(𝑚) using Jacobi identity of 𝐿𝑚 whose solution is
𝐴(𝑚) = 𝑐3𝑚

3 + 𝑐1𝑚. Then we can inspect the commutators ⟨0|[𝐿1, 𝐿−1]|0⟩ and ⟨0|[𝐿2, 𝐿−2]|0⟩ to determine
the 𝐴(𝑚).
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liberty of choosing 𝑘 to lie within the plane (0, 1) and 𝜁 normal to 𝑘 have positive norm

since they are now space-like. On the other hand, if we choose 𝑎 such that 𝑘2 > 0 meaning

first excited state being a tachyon, 𝑘 can be chosen to have no time component. Then 𝜁

becomes time like and has negative norm. If 𝑎 is chosen to make 𝑘2 < 0, 𝑘 can be chosen to

only have time component and 𝜁 has positive norm. Finally, if 𝑘2 = 0, 𝜁 also has zero norm.

Therefore, we can see that the choice of constant 𝑎 has a direct impact in elimination of zero

norm states.

Together with the conditions for a physical state |𝜑⟩

(𝐿𝑚 − 𝑎𝛿𝑚,0) |𝜑⟩ = 0 𝑚 ≥ 0, (A.17)

and the definition of spurious states |𝜓⟩2

(𝐿0 − 𝑎) |𝜓⟩ = 0 and ⟨𝜑|𝜓⟩ = 0, (A.18)

one can obtain the value of 𝑎 = 1.[3, 1, 4] Following this route, we can find that the spacetime

dimension3 𝐷 = 26. This choice of 𝐷 = 26 and 𝑎 = 1 essentially gives the boundary between

(1) regions containing negative norm states and (2) regions where the negative norm states

are absent. The theory with extra set of zero-norm states is the most interesting one to

study. This is because the zero-norm states must decouple from 𝑆 matrix describing physical

processes by some underlying principle analogous to gauge invariance in the field theory. So

the occurrence of extra zero-norm states indicates an enhanced gauge invariance in this

theory.

It is also worthwhile to do a short review on the spectrum of bosonic string with the

choice of values 𝑎 = 1 and 𝐷 = 26. Let us concentrate on the closed string. We know that

2One such example can be |𝜓⟩ =
∑︀∞

𝑛=1 𝐿−𝑛 |𝜒𝑛⟩ with (𝐿0−𝑎+𝑛) |𝜒𝑛⟩ and any such state can be written
as |𝜓⟩ = 𝐿−1 |𝜒1⟩+ 𝐿−2 |𝜒2⟩ as a result of Virasoro algebra. One can check that states of such form indeed
has zero norm and is orthogonal to any physical states.

3Here we consider some zero-norm spurious states of the form |𝜓⟩ = (𝐿−2 + 𝛾𝐿2
−1) |�̃�⟩, with the require-

ments (𝐿0 + 1) |�̃�⟩ and 𝐿𝑚 |�̃�⟩ = 0 for 𝑚 > 0 to ensure the mass-shell condition (𝐿0 − 1) |𝜓⟩ = 0. The
constants 𝛾 and 𝐷 are determined to be 3/2 and 26 by imposing the conditions 𝐿1 |𝜓⟩ = 0 and 𝐿2 |𝜓⟩ = 0
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the mass of states are given by

𝛼′𝑀2 = 4(𝑁 − 1) = 4(�̃� − 1), (A.19)

with 𝑁 and �̃� being number operators for left and right movers. The first few excited states

are as follows:

∙ The ground state |0; 𝑘⟩ is a tachyon with 𝛼′𝑀2 = −4.

∙ At the level of 𝑁 = 1, there are 242 = 576 states of the form

|Ω𝑖𝑗⟩ = 𝛼𝑖−1�̃�
𝑗
−1 |0; 𝑘⟩ ,

which is a tensor product of two massless vectors from left and right mover respectively.

The important observation is that the symmetric traceless part of this tensor product

transforms under 𝑆𝑂(24) as a massless spin-two particle which we identify with the

graviton. The trace is then a massless scalar, which we recognise as the dilaton. The

anti-symmetric part is then a second-rank tensor under 𝑆𝑂(24).

A.1.2 Strings with World-Sheet Supersymmetry

In previous section, we briefly sketched some elementary aspects of bosonic string theory.

This theory is unsatisfactory in two respects. Firstly, the closed-string spectrum contains

a tachyon which has an imaginary mass. If one decides to include open string, then we

have an additional open string tachyons. Tachyons are unphysical since they indicate in

unstable vacuum. However, the fate of open-string tachyons is understood as the decay of

D-branes into closed string radiation.[7]. The counter-part for closed-string has not yet been

offered clear interpretation. Lastly, the bosonic string theory does not contain fermions in

its spectrum for which we need to make contact with Standard Model. It turns out that the

inclusion of fermions in the spectrum of string theory require supersymmetry, a symmetry

that relates fermions and bosons. The extended theory is called superstring theory.

There are two formalisms present to infuse supersymmetry into bosonic string theory
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∙ The Ramond-Neveu-Schwarz (RNS) formalism introduces supersymmetry on the world-

sheet.

∙ The Green-Schwarz (GS) formalism is supersymmetric in 10D Minkwoski spacetime

and this can be generalised into other background geometries.

In this section, we shortly review the RNS formalism, which is equivalent to GS formalism

in 10D Minkowski spacetime.

The starting point of this approach is to pair each bosonic field 𝑋𝜇(𝜎, 𝜏) with a fermionic

super-partner 𝜓𝜇(𝜎, 𝜏). This new field is a 2-component spinor on the world-sheet and a

vector under Lorentz transformation in the target spacetime. To incorporate fermions on

the 2D world-sheet, we supplement the action in eq. (A.7) with a 2D Dirac action

𝑆 = − 1

2𝜋

∫︁
𝑑2𝜎(𝜕𝛼𝑋𝜇𝜕

𝛼𝑋𝜇 + 𝜓𝜇𝜌𝛼𝜕𝛼𝜓𝜇) , (A.20)

where we set 𝛼′ = 1/2 or 𝑇 = 1/𝜋. The 2D Dirac matrices obey the Dirac algebra

{𝜌𝛼, 𝜌𝛽} = 2𝜂𝛼𝛽 , (A.21)

and the fermionic fields obey normal anti-commutation relations.

The action in eq. (A.20) can also be written in terms of light-cone coordinates

𝑆 =
1

𝜋

∫︁
𝑑2𝜎(2𝜕+𝑋𝜕−𝑋 + 𝑖𝜓−𝜕+𝜓− + 𝑖𝜓+𝜕−𝜓+) , (A.22)

using the fermionic field 𝜓𝜇 =

⎛⎝𝜓𝜇−
𝜓 𝑢
+

⎞⎠ and Dirac conjugation for a spinor being 𝜓 = 𝜓†𝛽

and 𝛽 = 𝑖𝜌0 with appropriate choice of basis for Dirac matrices. Such arrangement of action

gives the equation of motion for spinors to be

𝜕+𝜓− = 0 and 𝜕−𝜓+ = 0 , (A.23)

which simply describes left and right moving waves. With these EoM, we can derive the

mode expansion of the spinor fields and use canonical quantisation to find the spectrum of
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the theory as in the bosonic string case. However, the negative-norm states also appear.

The decoupling of negative norm states in the bosonic string theory requires the Virasoso

constraints in eq. (A.16) and eq. (A.17) which in turn require special values for 𝑎 = 1 and

spacetime dimension 𝐷 = 26. Following the similar strategy, we can use the superconformal

symmetry to eliminate these negative norm states. The constrains used here are the super-

Virasoro constraints which upon quantising requires the spacetime dimension to be 𝐷 = 10.

To construct the super-Virasoro conditions, we need to find the conserved currents as-

sociated to global symmetries. In this case, they are the energy momentum tensor from

translation symmetry and the supercurrent from supersymmetry. The energy momentum

tensor is

𝑇𝛼𝛽 = 𝜕𝛼𝑋
𝜇𝜕𝛽𝑋𝜇 +

1

4
𝜓𝜇𝜌𝛼𝜕𝛽𝜓𝜇 +

1

4
𝜓𝜇𝜌𝛽𝜕𝛼𝜓𝜇 − (trace) . (A.24)

On the other hand, the supercurrent can be found using Nöether method by taking the

supersymmetry parameter 𝜖 to be non-constant. We have the current to take the specific

form

𝐽𝛼𝐴 = −1

2
(𝜌𝛽𝜌𝛼𝜓𝜇)𝐴𝜕𝛽𝑋

𝜇 . (A.25)

These currents can be written in terms of light-cone coordinates can used to eliminate nega-

tive norm states with the conditions from superconformal symmetry. In such spirit, we have

the conditions to be

𝐽+ = 𝐽− = 𝑇++ = 𝑇−− = 0 . (A.26)

Before we discuss the actual quantisation and elimination of negative norm states of the

theory, we need to know that there are different boundary conditions for world-sheet spinors

that lead to different sectors in the final theory. These are the periodic and anti-periodic

boundary conditions from the spinors. The boundary term from variation of the action

shows how this arises

𝛿𝑆 ∼
∫︁
𝑑𝜏 [(𝜓+𝛿𝜓+ − 𝜓−𝛿𝜓−)|𝜎=𝜋 − (𝜓+𝛿𝜓+ − 𝜓−𝛿𝜓−)|𝜎=0] . (A.27)

Therefore, we have 2 ways for the above term to vanish 𝜓𝜇+ = ±𝜓𝜇−.

∙ Ramond boundary condition: In this case, we have 𝜓𝜇+|𝜎=𝜋 = 𝜓𝜇−|𝜎=𝜋. They give rise

151



to target spacetime fermions and the mode expansion is as follows

𝜓𝜇−(𝜎, 𝜏) =
1√
2

∑︁
𝑛∈Z

𝑑𝜇𝑛𝑒
−𝑖𝑛(𝜏−𝜎) ,

𝜓𝜇+(𝜎, 𝜏) =
1√
2

∑︁
𝑛∈Z

𝑑𝜇𝑛𝑒
−𝑖𝑛(𝜏+𝜎) ,

(A.28)

where the Majorana condition requires 𝑑𝜇−𝑛 = 𝑑𝜇†𝑛 .

∙ Neveu-Schwarz boundary condition: This has a relative minus sign between components

of the spinor: 𝜓𝜇+|𝜎=𝜋 = −𝜓𝜇−|𝜎=𝜋. This boundary condition gives rise to spacetime

boson. The mode expansion is then

𝜓𝜇−(𝜎, 𝜏) =
1√
2

∑︁
𝑟∈Z+1/2

𝑏𝜇𝑟 𝑒
−𝑖𝑛(𝜏−𝜎) ,

𝜓𝜇+(𝜎, 𝜏) =
1√
2

∑︁
𝑟∈Z+1/2

𝑏𝜇𝑟 𝑒
−𝑖𝑛(𝜏+𝜎) .

(A.29)

On the other hand, the closed string has left and right movers. We have periodic and

anti-periodic for both movers, therefore we have four different sectors. States in NS-NS and

R-R sectors are spacetime bosons and states in the NS-R and R-NS sectors are spacetime

fermions. To see how spacetime boson and fermions correspond to different sectors, we first

need the anti-commutation relations for the Fourier coefficients

{𝑏𝜇𝑟 , 𝑏𝜈𝑠} = 𝜂𝜇𝜈𝛿𝑟+𝑠,0 and {𝑑𝜇𝑚, 𝑑𝜈𝑛} = 𝜂𝜇𝜈𝛿𝑚+𝑛,0 . (A.30)

Because 𝑟 and 𝑠 are half-integers, we can find a unique ground state without degeneracies and

identify it with spin zero state. The integer 𝑚 and 𝑛 prevent us finding a non-degenerate

ground state due to the fact that 𝑑𝜇0 obey algebra {𝑑𝜇0 , 𝑑𝜈0} = 𝜂𝜇𝜈 and commute with the

number operator 𝑁 . As a result, the set of ground states in R sector must furnish an

irreducible representation of this algebra, which is just Dirac algebra {Γ𝜇,Γ𝜈} = −2𝜂𝜇𝜈 in

disguise, with a normalisation Γ𝜇 = 𝑖
√
2𝑑𝜇0 .

On top of this, we can proceed to obtain the super-Virasoro generators, which are simply

the modes for energy-momentum tensor 𝑇𝛼𝛽 and the supercurrent 𝐽𝛼𝐴. For the open string,
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we have the modes for 𝑇𝛼𝛽 given by

𝐿𝑚 =
1

𝜋

∫︁ 𝜋

−𝜋
𝑑𝜎𝑒𝑖𝑚𝜎𝑇++ = 𝐿(b)

𝑚 + 𝐿(f)
𝑚 , (A.31)

with contribution from

∙ bosonic modes

𝐿(b)
𝑚 =

1

2

∑︁
𝑛∈Z

: 𝛼−𝑛 · 𝛼𝑚+𝑛 : 𝑚 ∈ Z , (A.32)

∙ fermionic modes in the NS sector

𝐿(f)
𝑚 =

1

2

∑︁
𝑟∈Z+1/2

(︁
𝑟 +

𝑚

2

)︁
: 𝑏−𝑟 · 𝑏𝑚+𝑟 : 𝑚 ∈ Z , (A.33)

∙ fermionic modes in the R sector

𝐿(f)
𝑚 =

1

2

∑︁
𝑛∈Z

(︁
𝑛+

𝑚

2

)︁
: 𝑑−𝑛 · 𝑑𝑚+𝑛 : 𝑚 ∈ Z . (A.34)

On the other hand, we also have the modes for supercurrent in different sectors:

∙ In the NS sector, it is given by

𝐺𝑟 =

√
2

𝜋

∫︁ 𝜋

−𝜋
𝑑𝜎𝑒𝑖𝑟𝜎𝐽+ =

∑︁
𝑛∈Z

𝛼−𝑛 · 𝑏𝑟+𝑛 𝑟 ∈ Z+
1

2
. (A.35)

∙ In the R sector, it is given by

𝐹𝑚 =

√
2

𝜋

∫︁ 𝜋

−𝜋
𝑑𝜎𝑒𝑖𝑚𝜎𝐽+ =

∑︁
𝑛∈Z

𝛼−𝑛 · 𝑑𝑚+𝑛 𝑚 ∈ Z . (A.36)

With the above definitions, one can then calculate the super-Virasoro algebra in different

sectors to be:
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∙ In R sector

[𝐿𝑚, 𝐿𝑛] = (𝑚− 𝑛)𝐿𝑚+𝑛 +
𝐷

8
𝑚3𝛿𝑚+𝑛,0 ,

[𝐿𝑚, 𝐹𝑛] =
(︁𝑚
2
− 𝑛

)︁
𝐹𝑚+𝑛 ,

{𝐹𝑚, 𝐹𝑛} = 2𝐿𝑚+𝑛 +
𝐷

2
𝑚2𝛿𝑚+𝑛,0 .

(A.37)

∙ In NS sector

[𝐿𝑚, 𝐿𝑛] = (𝑚− 𝑛)𝐿𝑚+𝑛 +
𝐷

8
𝑚(𝑚2 − 1)𝛿𝑚+𝑛,0 ,

[𝐿𝑚, 𝐺𝑟] =
(︁𝑚
2
− 𝑟
)︁
𝐺𝑚+𝑟 ,

{𝐺𝑟, 𝐺𝑠} = 2𝐿𝑟+𝑠 +
𝐷

2
(𝑟2 − 1

4
)𝛿𝑟+𝑠,0 .

(A.38)

In terms of quantisation of RNS string, we need to require all positive modes of the Virasoro

generators annihilate the physical state. In different sectors, they respectively are:

∙ NS sector

𝐺𝑟 |𝜑⟩ = 0 𝑟 > 0 ,

𝐿𝑚 |𝜑⟩ = 0 𝑚 > 0 ,

(𝐿0 − 𝑎NS) |𝜑⟩ = 0 .

(A.39)

∙ R sector

𝐹𝑛 |𝜑⟩ = 0 𝑛 ≥ 0 ,

𝐿𝑚 |𝜑⟩ = 0 𝑚 > 0 ,

(𝐿0 − 𝑎R) |𝜑⟩ = 0 .

(A.40)

The constants 𝑎NS and 𝑎R above are from the normal ordering ambiguity and need to be

determined later. Using the relation 𝐿0 = 𝐹 2
0 and 𝐹0 |𝜑⟩ = 0, one can immediately obtain

that 𝑎𝑅 = 0.

To find the critical values of 𝑎NS, we first consider the ground state |0; 𝑝⟩ whose on-
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shell condition gives 𝑝20 = 𝑎NS. When acted with 𝐺−1/2, it gives 𝑝2 = 𝑎 − 1/2. If we take

𝑎NS = 1/2, this state is a physical state with 𝐺1/2 |𝜑⟩ = 0 for which it is also a zero norm state

⟨𝜑|𝜑⟩ = ⟨0; 𝑝|𝐺1/2𝐺−1/2|0; 𝑝⟩ = 0. It has negative norm if 𝑎NS > 1/2. Therefore, 𝑎NS = 1/2

is a preferred value, similar to 𝑎 = 1 in bosonic case. However, this also gives rise to the

problem of ground state being tachyon and first excited state 𝑏𝜇−1/2 being massless vector.

Lastly, we would like to find the critical value of dimension 𝐷. Let us consider a family of

zero-norm states of the form

|𝜑⟩ = (𝐺−3/2 + 𝜆𝐺−1/2𝐿−1) |𝜑⟩ , (A.41)

where

𝐺1/2 |𝜑⟩ = 𝐺3/2 |𝜑⟩ = (𝐿0 + 1) |𝜑⟩ . (A.42)

For |𝜑⟩ to be a physical state, both 𝐺1/2 |𝜑⟩ and 𝐺3/2 |𝜑⟩ have to vanish as

𝐺1/2 |𝜑⟩ = (2− 𝜆)𝐿−1 |𝜑⟩ ,

𝐺3/2 |𝜑⟩ = (𝐷 − 2− 4𝜆)𝐿−1 |𝜑⟩ .
(A.43)

This give 𝜆 = 2 and 𝐷 = 10.

On the other hand, we can confirm the value of 𝐷 = 10 in the R sector using a new set

of zero norm spurious states.

|𝜓⟩ = 𝐹0𝐹−1 |𝜒⟩ , (A.44)

with 𝐹1 |𝜒⟩ = (𝐿0 + 1) |𝜒⟩ = 0. Using (anti-)commutations for R sector, we can verify that

𝐹0 |𝜓⟩ = 0. If this is also annihilated by 𝐿1, it is then a physical state with zero-norm. This

can be seen as follows

𝐿1 |𝜓⟩ = (
1

2
𝐹1 + 𝐹0𝐿1)𝐹−1 |𝜒⟩ =

1

4
(𝐷 − 10) |𝜒⟩ . (A.45)

This again confirms the critical dimension of superstring theory is 𝐷 = 10.
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Analysis of the Spectrum

Before we move to the classification of different types of superstring, it is important that

there is no tachyon present in the spectrum. Take the open string as an example in light-cone

gauge 𝑋+(𝜎, 𝜏) = 𝑥+ + 𝑝+𝜏 .

∙ The NS-sector with 𝑎NS = 1/2 has the mass formula as

𝛼′𝑀2 =
∞∑︁
𝑛=1

𝛼𝑖𝑛𝛼
𝑖
−𝑛 +

∞∑︁
𝑟=1/2

𝑟𝑏𝑖𝑟𝑏
𝑖
−𝑟 −

1

2
. (A.46)

The ground state of this sector |0; 𝑘⟩NS has the following properties

𝛼𝑖𝑛 |0; 𝑘⟩NS = 𝑏𝑖𝑟 |0; 𝑘⟩NS = 0 for 𝑛, 𝑟 > 0 , (A.47)

𝛼𝜇0 |0; 𝑘⟩NS =
√
2𝛼′𝑘𝜇 |0; 𝑘⟩NS . (A.48)

From eq. (A.46), we can see that the ground state has mass 𝛼′𝑀2 = −1/2. This again

confirms our previous assertion that the ground state has tachyon present in its NS-

sector spectrum. The first excited state is then obtained by acting the ground state

with the smallest frequency creation operator.

𝑏𝑖−1/2 |0; 𝑘⟩NS , (A.49)

with 𝑖 labelling the 𝐷 − 2 = 8 spacetime dimensions since we are in the light-cone

gauge. We can see that the operator 𝑏𝑖−1/2 raise the mass 𝛼′𝑀2 by 1/2. Similarly, the

operator 𝑏𝑖𝑚 raises the mass by a positive 𝑚 unit. In general, the mass of the first

excited state is given by 𝛼′𝑀2 = 1/2− 𝑎NS. Note that the ground state is bosonic and

acting on it with 𝑏𝑖𝑚 gives a spacetime vector of 𝑆𝑂(8).

∙ The Ramond sector in light-cone gauge has its mass described by

𝛼′𝑀2 =
∞∑︁
𝑛=1

𝛼𝑖−𝑛𝛼
𝑖
𝑛 +

∞∑︁
𝑛=1

𝑛𝑑𝑖−𝑛𝑑
𝑖
𝑛 . (A.50)

The ground state |0; 𝑘⟩R is defined by 𝛼𝑖𝑛 |0; 𝑘⟩R = 𝑑𝑖𝑛 |0; 𝑘⟩R = 0 for 𝑛 > 0. It is also a
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solution to the massless Dirac equation. This solution is not unique as described earlier

since the zero modes satisfy the 10𝐷 Dirac algebra. The solution is thus a 𝑆𝑝𝑖𝑛(9, 1)

spinor. Therefore, the ground state of the R-sector is a 32-component spinor. Taking

into account of the Majorana, Weyl and Dirac equation constraints, the spinor in

𝑆𝑝𝑖𝑛(9, 1) is turned into one in 𝑆𝑝𝑖𝑛(8).

The spectrum discussed above has several problems. Firstly, the NS-sector contains

tachyonic ground state. Secondly, the spectrum is not supersymmetric in target spacetime.

For example, there is not fermion with the same mass as the tachyon. Spacetime super-

symmetry is required for a consistent interacting theory, which in this case the quantum of

local supersymmetry, gravitino is present in the spectrum. Therefore, we need to truncate

(project) the spectrum in a specific way to make it supersymmetric. This is the content of

GSO (Gliozzi, Scherk, Olive) projection [11], which we briefly review in next paragraph.

GSO Projection

Before we perform this project, we to define an operator called G-parity. It has different

forms depending on which sector is it in.

∙ In the NS-sector, it is defined as

𝐺 = (−1)𝐹+1 = (−1)
∑︀∞

𝑟=1(𝑏
𝑖
−𝑟𝑏

𝑖
𝑟+1) , (A.51)

where 𝐹 is the number operator for 𝑏-oscillator excitations, which gives world-sheet

fermion number.

∙ In the R sector, it is defined

𝐺 = Γ11(−1)
∑︀∞

𝑛=1 𝑑
𝑖
−𝑛𝑑

𝑖
𝑛 , (A.52)

with Γ11 = Γ0Γ1 · · ·Γ9, Γ2
11 = 1 and {Γ11,Γ

𝜇} = 0 for 𝜇 = 0, . . . , 9. With such Dirac
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matrices, we can then define chirality according to

Γ11𝜓 = ±𝜓 , (A.53)

𝑃± =
1

2
(1± Γ11) . (A.54)

where positive sign means a spinor 𝜓 has positive chirality as stated in appendix A.1.2

The GSO projection by definition, only keeps the states with a positive 𝐺-parity in the

NS sector, i.e.

(−1)𝐹NS = −1 .

This means we only keep excitations states with odd number of 𝑏-oscillator. In the R sector,

we can make any projection depending on the chirality of the spinor ground state. Now, let

us look at the ground state of the NS sector

𝐺 |0; 𝑘⟩NS = − |0; 𝑘⟩NS , (A.55)

where we can see that it has negative 𝐺-parity. Hence the tachyonic ground state in NS

sector is eliminated. The ground state of NS sector now consists of a massless vector boson,

which matches with the ground state in the R sector with a massless spinor occupying its

ground state. The GSO projection now may seems rather ad hoc, but this can actually be

seen in one-loop or two-loop modular invariance. We quickly sketch its contents below.

Modular invairance In the RNS model, without GSO projection or similar one that

eliminates the massless spin 3/2 particle or engenders spacetime supersymmetry, lacks mod-

ular invariance at one-loop level.

Firstly, we take the right-moving fermions for a closed string with 0 ≤ 𝜎 ≤ 𝜋 in the RNS

model, where the fermions may obey either periodic and anti-periodic conditions. They are

referred as + for periodic (even) and − for anti-periodic (odd) and remember that they give

rise to fermions and bosons in the target spacetime, respectively. If one performs a path

integral on a torus, they boundary conditions are shown in fig. A-1. If we parametrise the

torus by 𝜈 = 𝜎1+𝜎2𝜏 such that the two fundamental periods are 𝜎1 → 𝜎1+1. The boundary
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±

𝜎2

𝜎1

±

Figure A-1: Path integral on a torus where the fermions may obey + or − boundary conditions
in the 𝜎1 and 𝜎2 directions respectively.

conditions in each of the two directions 𝜎1 and 𝜎2 can have two choices separately. There

are 4 choices in total (+,+), (+,−), (−,+) and (−,−). The first entry is for the choice in

𝜎1 direction and the second for 𝜎2. These four choices are referred to as spin structure.

Secondly, we consider loop amplitudes with a factor of the form

Tr𝑒−𝑦𝐻 , (A.56)

with 𝜏 = (𝑥 + 𝑖𝑦)/2𝜋. This specifies the propagation through imaginary time 𝑦. It is

also important to recall that the partition function for a fermion in quantum statistical

mechanics requires anti-periodic boundary condition in 𝜎2 direction4. Therefore, the trace

in the amplitude is naturally endowed with (−) in 𝜎2 direction. On the other hand, if we

wish to calculate the following

Tr(−1)𝐹 𝑒−𝑦𝐻 , (A.57)

with (−1)𝐹 defined in eq. (A.51), we have to use + in the 𝜎2 direction. Therefore, in

the absence of GSO projection, the NS sector contributes to the loop amplitude with (−,−)

boundary condition and R sector contributes similarly with boundary condition (+,−). Now

if we take the combination of partition functions from the two sectors, i.e. (−,−) and (+,−),

we see that it is not modular invariant. Since 𝑆 transformation in modular group has its

4In the path integral approach to quantum statistical mechanics, the Euclidean dime direction is taken
to lie on a circle with circumference proportional to the inverse of the temperature of the system. It is
shown that free fermions must take anti-periodic boundary condition around time direction to reproduce
Fermi-Dirac distribution.
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action as (𝜎1, 𝜎2) → (𝜎2,−𝜎1) and it turns (+,−) into (−,+). To have a modular invariant

RNS model, one must supplement it with (−,+). (−,+) is the partition function for NS

states with (−1)𝐹 inserted in the path integral. Therefore, the NS-sector has its modular

invariant partition function

Tr(1 + (−1)𝐹 )𝑟−𝑦𝐻 ; , (A.58)

where we can see that it is exactly the GSO projection operator eq. (A.51) inserted in the

trace. We can see from the above that the modular invariance at 1-loop level only requires

NS sector to be considered, which means one does not need to make GSO projection in

the R sector. This shows that at 1-loop level, GSO projection is made for bosons. GSO

projection for fermions will require the addition of (+,+) boundary condition, which is

modular invariant by itself. It can be shown at 2-loop level, GSO projection is required for

both fermions and bosons.

Checking degrees of freedom The requirement of modular invariance of partition

function on a torus requires the GSO projection has its geometric interpretation of summing

over spin structures. On top of this, we can see the necessity of this projection by counting

physical degrees of freedom at the ground state from both sectors.

∙ The ground state in the NS sector is a massless vector. After GSO projection, it is

𝑏𝜇−1/2 |0; 𝑘⟩, which has 8 transverse propagating degrees of freedom.

∙ The ground state in the R sector is a spinor. In ten dimensions, it has 210/2 = 32

complex components. In ten dimensions, the Majorana and Weyl conditions are com-

patible, therefore, Majorana condition leaves 32 real components. Weyl condition splits

the spinor into definite chirality, thus this leaves 16 real components. Finally, the Dirac

equation further reduces the degrees of freedom by half to give 8 real components trans-

forming as a spinor in 𝑆𝑝𝑖𝑛(8).

Even though this counting does not guarantee a spacetime supersymmetry, it still serves

as a strong evidence as the equal number of bosonic and fermionic is a prerequisite for
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supersymmetry. However, the Green-Schwarz formalism is developed to make the spacetime

supersymmetry manifest.

The massless spectrum for type II superstring

Since the closed string has left and right movers, there are four different sectors we have to

analyse separately: R-R, R-NS, NS-R and NS-NS. As described in the previous section, we

can eliminate NS sector tachyons by projecting the states onto a positive 𝐺-parity spectrum.

The R sector on the other hand, can be projected onto either parity depending on the

chirality of the ground state on which excitations are built. Therefore, two different theories

can be obtained depending on the relative chirality between two movers.

In type IIB superstring theory, the left- and right- moving R-sector ground states have

the same positive chirality. This means the two R sectors have the same 𝐺-parity, denoted

by |+⟩R. In such setting, the massless spectrum of type IIB is

|+⟩R ⊗ |+⟩R , (A.59)

�̃�𝑖−1/2 |0⟩NS ⊗ 𝑏𝑗−1/2 |0⟩NS , (A.60)

�̃�𝑖−1/2 |0⟩NS ⊗ |+⟩R , (A.61)

|+⟩R ⊗ 𝑏𝑗−1/2 |0⟩NS . (A.62)

All of these four sectors contain 8× 8 = 64 physical degrees of freedom.

Type IIA theory has its left- and right- moving R-sector ground state in opposing chirality.

Its spectrum is

|−⟩R ⊗ |+⟩R , (A.63)

�̃�𝑖−1/2 |0⟩NS ⊗ 𝑏𝑗−1/2 |0⟩NS , (A.64)

�̃�𝑖−1/2 |0⟩NS ⊗ |+⟩R , (A.65)

|−⟩R ⊗ 𝑏𝑗−1/2 |0⟩NS . (A.66)

The massless spectrum each of the type II theory contains two gravitinos to form 𝒩 = 2
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supergravity multiplets. Let us now list all 64 states in each of the 4 massless sectors.

∙ NS-NS sector: This sector is the same for both type IIB theory. The spectrum contains

a scalar called the dilaton (the trace from the symmetric tensor), an anti-symmetric

two-form gauge field (8× 7/2 = 28 states) and a symmetric traceless rank 2 tensor,i.e.

the graviton (8× 9/2− 1 = 35 states).

∙ NS-R or R-NS sector: All of the type II theories have two spin 3/2 gravitinos (Γ-

traceless anti-symmetric part) with 56 states and a spin 1/2 fermion (Γ-trace), dilatino

with 8 states. In the IIB case, the two gravitinos have same chiraility and IIA case has

opposite chirality.

∙ R-R sector: There states are bosons built by pairing two Majorana-Weyl spinors.5 In

the IIA case, the two Majorana-Weyl spinors have opposite chirality. We obtain a

1-form gauge field (8 states), and an antisymmetric 3-form (56 states). In the IIB case,

the two spinors have same chirality. We obtain a 0-form, which is simply a scalar, a

2-form (28 states) and 4-form with a self-dual field strength (35 states).

To summarise our discussion of type II string theory, we note the following features of it:

∙ Type II string theory consists of two parts: (1) type IIA with two conserved super-

charges of opposite chirality, thus it is non-chiral (i.e. left-right symmetric), (2) type

IIB of oriented closed strings with same chirality on the ground state of R sector for

both left- and right-mover.

∙ The difference in chirality of the R-sector ground states from left- and right-movers re-

sults in a different field strength in R-R sector thus leads to different allowed dimension

of D-branes.
5To build anti-symmetric 𝑛-forms from two spinors, we need spinors bilinears in different sectors as follows:

IIA : 𝐹𝜇1···𝜇d+1 = 𝜓𝐿
−𝛾

𝜇1···𝜇d+1𝜓𝑅
+ , IIB : 𝐹𝜇1···𝜇d+1 = 𝜓𝐿

+𝛾
𝜇1···𝜇d+1𝜓𝑅

+ , (A.67)

where 𝜓𝐿
± is from the left movers and 𝜓𝑅

± is from the right movers. We also have

𝛾𝜇1···𝜇d+1 = 𝛾[𝜇1...𝛾𝜇d+1] , (A.68)

being antisymmetric product of (𝑑+ 1) gamma matrices.
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Type I superstring

Having briefly reviewed the basics in type II superstring theory, we move on to the type I

superstring, which consists of both open and closed strings. It can be understood as a result

of a projection from type IIB superstring theory. The world-sheet parity transformation

Ω : 𝜎 → −𝜎 (A.69)

is a symmetry of IIB theory since the left- and right-moving fermions have the same space-

time chirality. When we gauge this symmetry we have the resulting type I theory. Consider

the projection operator

𝑃 =
1

2
(1 + Ω) , (A.70)

the type I spectrum is then obtain by keeping states that are even under parity transforma-

tion. Therefore, let us iterate the spectrum in each sector separately

∙ NS-NS sector: Only the states that are symmetric in the two vectors survive this pro-

jection. They are the dilaton and graviton with the antisymmetric 𝐵2 being projected

out.

∙ NS-R or R-NS sector: The 2 gravitinos in the type IIB, Ψ𝜇
1 and Ψ𝜇

2 , are exchanged

upon the parity transformation. Therefore, only the sum Ψ𝜇
1 + Ψ𝜇

2 in invariant under

this projection.Using similar argument, the one of the two dilatinos survives projec-

tion. Therefore, the total massless fermionic degrees of freedom becomes 56 + 8 = 64.

With only on gravitino after projection, we see that type I theory has half amount of

supersymmetry as type IIB theory (16 supercharges as opposed to 32).

∙ R-R sector: Since type I theory has to be supersymmetric, the bosonic degrees of

freedom from R-R sector have to match with those from fermionic side. The only

way to achieve this is to project out 𝐶4 and 𝐶0 while keeping 𝐶2. The bosonic fields

are then graviton and dilaton from NS-NS sector and 𝐶2 from R-R sector. The total

bosonic degrees of freedom are thus 35 + 1 + 28 = 64. All the fields described above

then together form the 𝒩 = 1 supergravity multiplet.
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To construct gauge theory in type I theory, Chan-Paton method is used to give rise to gauge

group. Quantum mechanically, the cancellation of anomaly as reviewed in appendix A.2

requires the gauge group to be 𝑆𝑂(32).

Heterotic superstring

Herterotic superstring theory is also a theory of closed strings only, with the exception

that left- and right- moving modes are decoupled. It is therefore legitimate to envisage a

closed-string theory in which the left-moving modes are of one type, and the right-moving

modes are of another type altogether. To accommodate space-time supersymmetry, we take

the right-moving modes to be superstring modes and the left-moving modes to incorporate

gauge degrees of freedom with suitable current algebra. The following action is an example

of of such construction:

𝑆 = − 1

2𝜋

∫︁
𝑑2𝜎

(︃
9∑︁

𝜇=0

(𝜕𝛼𝑋
𝜇𝜕𝛼𝑋𝜇 − 2𝜓𝜇+𝜕−𝜓𝜇+)− 2

𝑛∑︁
𝐴=1

𝜆𝐴−𝜕+𝜆
𝐴
−

)︃
, (A.71)

where 𝜓𝜇, 𝜇 = 0, . . . , 9 are Lorentz vectors; 𝜆𝐴, 𝐴 = 1, . . . , 𝑛 are Lorentz singlets but the

indices 𝐴 are for some internal quantum numbers. Both 𝜓𝜇 and 𝜆𝐴 are Majorana-Weyl

fermions.

The right-moving modes are 𝜓𝜇+ and the right moving part of 𝑋𝜇. They are the same in

the other type II theories, which means the critical dimension in the right-moving sector is

𝐷 = 10 and this is why we set 𝜇 to 0, . . . , 9 in eq. (A.71). The left-moving modes are from the

left-moving parts of 𝑋𝜇 and 𝜆𝐴. As there is no supersymmetry in left-moving sector, the only

left-moving ghosts are from reparametrisation, which are enough to cancel the contribution

of 26 bosons. But we only have ten 𝑋𝜇 in eq. (A.71), the rest of Virasoro anomaly must be

cancelled by the 𝜆𝐴. From bosonisation of fermions we know that two Majorana fermions

or one Dirac ferimon make up the Virasoro anomaly of a boson, therefore we need 32 𝜆𝐴 in

the action. If all fermions obey the same boundary condition, they carry 𝑆𝑂(32), which is

in fact a gauge symmetry since massless gauge meson of 𝑆𝑂(32) occurs as well as anomaly

cancellation also requires such group. On the other hand, if not all fermions obey the same

boundary conditions, one get 𝐸8 × 𝐸8.
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The 𝑆𝑂(32) theory In this setting for the heterotic string theory, we set all the 32 𝜆𝐴

to have the same boundary condition, i.e. periodic or anti-periodic. Recall from previous

discussion that the decoupling of negative norm states requires the normal-ordering constant

𝑎 to be zero as the same in the Ramond sector due to inclusion of world-sheet supersymmetry.

As for �̃�, the contribution to normal-ordering constant from a bosonic coordinate is 1/24 while

that from a half-integrally moded fermionic coordinate is 1/48, and that from an integrally

moded fermionic sector is −1/24. 6. Therefore, we can combine these values to obtain the

value of �̃� for two sectors:

�̃�𝐴 =
8

24
+

32

48
= 1

�̃�𝑃 =
8

24
+

32

24
= −1 .

(A.72)

Thus the Virasoro constraints

(𝐿0 − 𝑎) |Ω⟩ = (�̃�0 − �̃�) |Ω⟩ = 0

combine to give
1

4
(mass)2 = 𝑁 + �̃� − �̃�,

where 𝐿0 = 𝑝2/8 +𝑁 and similarly for �̃� .

As 𝑎 = 0, we have 𝑁 = 0 since 𝑝2 = −8𝑁 . Therefore, we have 𝑁 = 0 and �̃� = 1 in

anti-periodic sector for massless states. On the other hand, similar arguments give �̃� = −1,

which is in contradiction with �̃� being non-negative as it is the number operator. This

shows there are no massless states in periodic sector. The massless spectrum is then made of

tensor products of the right-moving modes of 𝑁 = 0 with the left-moving modes of �̃� = 1 in

anti-periodic sector. Finally, the gauge symmetry is in fact 𝑆𝑝𝑖𝑛(32)/Z2 rather than 𝑆𝑂(32)

described above for the following reasons. Firstly, the representations of 𝑆𝑝𝑖𝑛(2𝑛) falls into

four conjugacy classes. The anti-periodic sector consists of entirely tensor representation of

even rank because there are always an even number of 𝜆 excitations. All such representations

belong to the same conjugacy class as the adjoint representation. Secondly, the periodic left-

6These particular values can be derived by looking at the Hamiltonian after bosonisation of fermions with
different boundary conditions.(c.f. §3.2.4 [1])
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moving sector only contains one of the two fundamental spinor representations. All other

excitations can be obtained from this state by acting with even number of 𝜆 excitations. This

means higher mass states at in the same conjugacy class as the fundamental representation.

Therefore, the complete spectrum falls into two conjugacy class, hence, the group symmetry

is now 𝑆𝑝𝑖𝑛(32)/Z2.

The 𝐸8 × 𝐸8 theory For the 𝑆𝑝𝑖𝑛(32)/Z2 theory, we demanded all the 32 𝜆𝐴 to have

the same boundary condition: periodic or anti-periodic, in order to not break the symmetry

group. However, we can arrive at a far more interesting symmetry group of 𝐸8×𝐸8 by split-

ting the fermions into two groups that belong to the representation of 𝑆𝑝𝑖𝑛(𝑛)×𝑆𝑝𝑖𝑛(32−𝑛).

This means the 32 fermions are divided into a group of 𝑛 and another of group of 32 − 𝑛.

This allows us to assign 𝑃 and 𝐴 boundary conditions separately to the two sets of fermions.

There are four such possibilities: 𝐴𝐴, 𝐴𝑃 , 𝑃𝐴 and 𝑃𝑃 , where the first label denotes the

boundary condition for the 𝑛 fermions and the second denotes that for the 32− 𝑛 fermions.

The normal ordering constants for these different choices are �̃�𝐴𝐴 = 1, �̃�𝐴𝑃 = (𝑛 − 16)/16,

𝑃𝐴 = (16− 𝑛)/16 and �̃�𝑃𝑃 = −1. From the relation for massless spectrum 𝑁 = �̃� − �̃�, we

see that for values of 𝑛 not divisible by 8, there are no physical states in 𝐴𝑃 and 𝑃𝐴 sector.

Discarding all these sectors, we are back to the 𝑆𝑝𝑖𝑛(32)/Z2 case. For 𝑛 divisible by 8, there

are 3 possibilities: (i) 𝑛 = 32 or 0, (ii) 𝑛 = 16, (iii) 𝑛 = 24 or 8. Case (i) is in the 𝑆𝑝𝑖𝑛(32)/Z2

scenario. Case (ii) gives 𝑆𝑝𝑖𝑛(16) × 𝑆𝑝𝑖𝑛(16) and case (iii) give 𝑆𝑝𝑖𝑛(24) × 𝑆𝑝𝑖𝑛(8) which

gives one-loop anomalies and will not be discussed here.

Let us consider the case of 𝑆𝑝𝑖𝑛(16)×𝑆𝑝𝑖𝑛(16). For the 𝐴𝐴 sector, we have �̃� = 1 which

translates to �̃� = 1 for massless left-moving states. Therefore, when acted by two 𝜆𝑖−1/2,

each contributing +1/2 to the eigenvalue of �̃� , we have �̃� = 1. The resulting states are in

the form

𝜆𝑖−1/2𝜆
𝑗
−1/2 |Ω⟩ ,
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which transform under 𝑆𝑝𝑖𝑛(16)× 𝑆𝑝𝑖𝑛(16) as

(120,1) if 𝑖, 𝑗 = 1, . . . , 16 ,

(1,120) if 𝑖, 𝑗 = 17, . . . , 32 ,

(16,16) if 𝑖 = 1, . . . , 16, 𝑗 = 17, . . . , 32 .

The 16 and 120 are the vector and adjoint representation of 𝑆𝑂(32) respectively. In ad-

dition, since the normal ordering constant �̃� = 0 for 𝐴𝑃 and 𝑃𝐴 sectors, there are extra

massless states than the above ones. These are the states of �̃� = 0 with fermion zero modes

transforming as spinors of 𝑆𝑝𝑖𝑛(16) (c.f. ground states for Ramond sector). So if we denote

the two spinor representations of 𝑆𝑝𝑖𝑛(16) as 128 and 128′, the massless left-moving states

in 𝑃𝐴 and 𝐴𝑃 sectors are

𝑃𝐴 : (128,1)⊕ (128′,1) ,

𝐴𝑃 : (1,128)⊕ (1,128′) .

The combined massless states described by 120 ⊕ 128 of 𝑆𝑝𝑖𝑛(16) from left- and right-

moving sectors actually form the 𝐸8 algebra. Hence, we have 𝐸8 × 𝐸8 as the gauge group

for heterotic theory.
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A.2 Notes on Anomalies in Superstring Theory

A.2.1 Chiral Anomaly

In this section, we review anomalies in string theory with a pedagogical perspective.

Symmetries of classical field theories can be broken by quantum effects are known as

anomalies. The origin of these effects can be traced back to ill-behaved Feynman diagrams

that have classically conserved currents attached that do not admit a regulator compatible

with simultaneous conservation of all attached currents. Global conservation laws with

anomalies are acceptable since the physical content of the theory is in intact. Anomalies in

local conservation laws such as gauge invariance or general covariance cause the theory to

be inconsistent. In particular, gauge invariance is crucial in decoupling longitudinal states

in physical processes if the theory is to be unitary.

Firstly, let us consider the global chiral anomaly to illustrate the essential contents on

how anomaly can arise in QFT in 4D. Take the example from the theory of a single massless

fermion with lagrangian ℒ = 𝜓𝑖𝛾𝜇𝜕𝜇𝜓. The transformations 𝜓 → 𝑒𝑖𝜃𝜓 and 𝜓 → 𝑒𝑖𝜃𝛾
5
𝜓

corresponding to conserved currents 𝐽𝜇 = 𝜓𝛾𝜇𝜓 and 𝐽𝜇5 = 𝜓𝛾𝜇𝛾5𝜓 are symmetries of the

theory. Now consider the amplitude give by

⟨0|𝑇𝐽𝜆5 (0)𝐽𝜇(𝑥1)𝐽𝜈(𝑥2)|0⟩ ,

whose Feynman diagrams are given by the two “triangle” diagrams: where we see that these

𝑝− 𝑘1

𝑝− 𝑞 𝑝

𝛾𝜇𝛾𝜈

𝛾𝜆𝛾5

(a)

𝑝− 𝑘2

𝑝− 𝑞 𝑝

𝛾𝜈𝛾𝜇

𝛾𝜆𝛾5

(b)

Figure A-2: The two triangle diagrams to illustrate chiral anomaly. Note that these two diagrams
are required by bose statistics and 𝑞 = 𝑘1 + 𝑘2.
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two diagrams are required by Bose statistics. This amplitude is given by the integral as

∆𝜆𝜇𝜈(𝑘1, 𝑘2) = (−1)𝑖3
∫︁

𝑑34

(2𝜋)4
tr

(︂
𝛾𝜆𝛾5

1

/𝑝− /𝑞
𝛾𝜈

1

/𝑝− /𝑘1
𝛾𝜇

1

/𝑝
+ 𝛾𝜆𝛾5

1

/𝑝− /𝑞
𝛾𝜇

1

/𝑝− /𝑘2
𝛾𝜈

1

/𝑝

)︂
,

(A.73)

where the overall -1 comes from the fermion loop. Classically, the conservation of vector

and axial currents implies 𝜕𝜇𝐽𝜇 and 𝜕𝜇𝐽𝜇5 . Quantum mechanically, if we demand the vector

symmetry to be anomaly free, we require 𝑘1𝜇∆𝜆𝜇𝜈 = 0 and 𝑘2𝜇∆
𝜆𝜇𝜈 = 0. Similarly, for

axial symmetry we have 𝑞𝜆∆𝜆𝜇𝜈 = 0. Before we proceed, it is essential to understand the

physical significance of the two currents not being conserved quantum mechanically. The

charge 𝑄 =
∫︀
𝑑3𝑥𝐽0 counts the number of fermions and the non-conservation of this means

fermion number being not conserved. In addition, we need 𝜕𝜇𝐽𝜇 to prove why photons have

only two transverse degrees of freedom. Also if we couple the vertex labelled by 𝜇 with a

photon with propagator proportional to (𝑖/𝑘21)[𝜉(𝑘1𝜇𝑘2𝜌/𝑘
2
1) − 𝑔𝜇𝜌]. The gauge dependent

term 𝜉(𝑘1𝜇𝑘2𝜌/𝑘
2
1) can only disappear if the vector current is conserved to ensure photon has

two degrees of freedom. Now let us see how 𝑘1𝜇∆
𝜆𝜇𝜈 and 𝑘2𝜇∆𝜆𝜇𝜈 behave when we hit them

with 𝑘1𝜇 and 𝑘2𝜇. Replacing /𝑘1 with /𝑝 − (/𝑝 − /𝑘1) in the first term of eq. (A.73) and with

(/𝑝− /𝑘2)− (/𝑝− /𝑞) in the second term, we have

𝑘1𝜇∆
𝜆𝜇𝜈(𝑘1, 𝑘2) = 𝑖

∫︁
𝑑4𝑝

(2𝜋)4
tr

(︂
𝛾𝜆𝛾5

1

/𝑝− /𝑞
𝛾𝜈

1

/𝑝− /𝑘1
− 𝛾𝜆𝛾5

1

/𝑝− /𝑘2
𝛾𝜈

1

/𝑝

)︂
. (A.74)

The integrand actually vanishes when shift the variable 𝑝 → 𝑝 − 𝑘1. However, this shift of

variables will result in the following difference in the integral. Consider a generic Feynman

integral in 𝑑-dimension, we see that it is

∫︁
𝑑𝑑𝐸𝑝[𝑓(𝑝+ 𝑎)− 𝑓(𝑝)] =

∫︁
𝑑𝑑𝐸𝑝[𝑎

𝜇𝜕𝜇𝑓(𝑝) + · · · ]; ,

which by is given by a surface integral over an infinitely large sphere enclosing all of spacetime

lim𝑃→∞ 𝑎𝜇
(︂
𝑃𝜇
𝑃

)︂
𝑓(𝑃 )𝑆𝑑−1(𝑃 ) ,

where 𝑆𝑑−1(𝑃 ) is the area of a (𝑑 − 1)-dimensional sphere. Rotating back to Minkowski
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spacetime, we have

∫︁
𝑑4𝑝[𝑓(𝑝+ 𝑎)− 𝑓(𝑝)] = lim𝑃→∞ 𝑖𝑎𝜇

(︂
𝑃𝜇
𝑃

)︂
(2𝜋2𝑃 3); . (A.75)

Using this for 𝑓(𝑝) given by the integrand in our example

𝑓(𝑝) = tr

(︂
𝛾𝜆𝛾5

1

/𝑝− /𝑘2
𝛾𝜈

1

/𝑝

)︂
=

tr[𝛾5(/𝑝− /𝑘2)𝛾
𝜈/𝑝𝛾𝜆]

(𝑝− 𝑘2)2𝑝2
=

4𝑖𝜖𝜏𝜈𝜎𝜆𝑘2𝜏𝑝𝜎
(𝑝− 𝑘2)2𝑝2

,

with identity tr(𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎𝛾5) = 4𝜖𝜇𝜈𝜌𝜎, we have

𝑘1𝜇∆
𝜆𝜇𝜈 =

𝑖

(2𝜋)4
lim𝑃→∞ 𝑖(−𝑘1)𝜇

𝑃𝜇
𝑃

4𝑖𝜖𝜏𝜈𝜎𝜆𝑘2𝜏𝑃𝜎
𝑃 4

2𝜋2𝑃 3 =
𝑖

8𝜋2
𝜖𝜆𝜈𝜏𝜎𝑘1𝜏𝑘2𝜎 . (A.76)

However, the previous calculation does not take into account of the fact that the integral is

linearly divergent and thus not well defined for an infinitely large sphere. In addition, if we

consider ∆𝜆𝜇𝜈 with another linear shift in momentum 𝑝 by a vector 𝑎

∆𝜆𝜇𝜈(𝑎, 𝑘1, 𝑘2) = (−1)𝑖3
∫︁

𝑑34

(2𝜋)4
tr

(︂
𝛾𝜆𝛾5

1

/𝑝+ /𝑎− /𝑞
𝛾𝜈

1

/𝑝+ /𝑎− /𝑘1
𝛾𝜇

1

/𝑝+ /𝑎
+ {𝜇, 𝑘1 → 𝜈, 𝑘2}

)︂
,

this choice of vector enables us to make 𝑘1𝜇∆𝜆𝜇𝜈(𝑎, 𝑘1, 𝑘2) and 𝑘2𝜈∆𝜆𝜇𝜈(𝑎, 𝑘1, 𝑘2) vanish. Now

we can apply eq. (A.75) to 𝑓(𝑝) = tr(𝛾𝜆𝛾5 1
/𝑝−/𝑞𝛾

𝜈 1
/𝑝− /𝑘1

𝛾𝜇 1
/𝑝
)

𝑓(𝑃 ) = lim𝑃→∞
tr(𝛾𝜆𝛾5 /𝑃𝛾𝜈 /𝑃𝛾𝜇 /𝑃 )

𝑃 6

=
2𝑃 𝜇 tr(𝛾𝜆𝛾5 /𝑃𝛾𝜈 /𝑃 )− 𝑃 2 tr(𝛾𝜆𝛾5 /𝑃𝛾𝜈𝛾𝜇)

𝑃 6

=
4𝑖𝑃 2𝑃𝜎𝜖

𝜎𝜈𝜇𝜆

𝑃 6
,

(A.77)

where 𝑞 and 𝑘1 are ignored since we take the limit of 𝑃 → ∞. Using eq. (A.75) we have

∆𝜆𝜇𝜈(𝑎, 𝑘1, 𝑘2)−∆𝜆𝜇𝜈(𝑘1, 𝑘2) =
4𝑖

8𝜋2
lim𝑃→∞ 𝑎𝜔

𝑃𝜔𝑃𝜎
𝑃 2

𝜖𝜎𝜈𝜇𝜆 + {𝜇, 𝑘1 → 𝑘𝜈, 𝑘2}

=
𝑖

8𝜋2
𝜖𝜎𝜈𝜇𝜆𝑎𝜎 + {𝜇, 𝑘1 → 𝜈, 𝑘2} .

Note here we have two independent momenta 𝑘1 and 𝑘2, so we can take 𝑎 = 𝛼(𝑘1 + 𝑘2) +
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𝛽(𝑘1 − 𝑘2) to obtain

∆𝜆𝜇𝜈(𝑎, 𝑘1, 𝑘2) = ∆𝜆𝜇𝜈(𝑘1, 𝑘2) +
𝑖𝛽

4𝜋2
𝜖𝜆𝜇𝜈𝜎(𝑘1 − 𝑘2)𝜎 , (A.78)

where we note that 𝛼 drops out due to the antisymmetric tensor 𝜖𝜆𝜇𝜈𝜎. Since we want

𝑘1𝜇∆
𝜆𝜇𝜈(𝑎, 𝑘1, 𝑘2) = 0, we can set 𝛽 = −1/2 with the result in eq. (A.76) to achieve this

result. Therefore, the vector current is conserved with a particular choice of shift in internal

momenta.

To check the conservation of axial current, we simply have to compute the following

𝑞𝜆∆
𝜆𝜇𝜈(𝑎, 𝑘1, 𝑘2) = 𝑞𝜆∆

𝜆𝜇𝜈(𝑘1, 𝑘2) +
𝑖

4𝜋2
𝜖𝜇𝜈𝜆𝜎𝑘1𝜆𝑘2𝜎 , (A.79)

where we used both eq. (A.78) and 𝑞 = 𝑘1 + 𝑘2. So replacing /𝑞 → /𝑝− (/𝑝− /𝑞), we obtain

𝑞𝜆∆𝜆𝜇𝜈(𝑘1, 𝑘2) = 𝑖

∫︁
𝑑4𝑝

(2𝜋)4
tr

(︂
𝛾5

1

/𝑝− /𝑞
𝛾𝜈

1

/𝑝− /𝑘1
𝛾𝜇 − 𝛾5

1

/𝑝− /𝑘2
𝛾𝜈

1

/𝑝
𝛾𝜇
)︂
+ {𝜇, 𝑘1 → 𝜈, 𝑘2}

=
𝑖

4𝜋2
𝜖𝜇𝜈𝜆𝜎𝑘1𝜆𝑘2𝜎 .

(A.80)

Plugging this back into eq. (A.79), we obtain the anomaly as

𝑞𝜆∆
𝜆𝜇𝜈(𝑎, 𝑘1, 𝑘2) =

𝑖

2𝜋2
𝜖𝜇𝜈𝜆𝜎𝑘1𝜆𝑘2𝜎 . (A.81)

This result can actually be expressed in terms of field strength 𝐹𝜇𝜈 for a simple QED theory

with Langrangian ℒ = 𝜓𝑖𝛾𝜇(𝜕𝜇− 𝑖𝑒𝐴𝜇)𝜓, where the two vertices labelled by 𝜇 and 𝜈 can be

thought as two photon lines coming out

𝜕𝜇𝐽
𝜇
5 =

𝑒2

(4𝜋)2
𝜖𝜇𝜈𝜆𝜎𝐹𝜇𝜈𝐹𝜆𝜎 .

In addition, the anomaly can also be derived by looking at the Jacobian for transformation

𝜓(𝑥) → 𝑒𝑖𝛼(𝑥)𝛾5𝜓(𝑥) (c.f. [6]). Furthermore, if we have a mass term for the Lagrangian

ℒ = 𝜓(𝑖𝛾𝜇𝜕𝜇−𝑚)𝜓, the classical axial current conservation is already not conserved 𝜕𝜇𝐽𝜇5 =
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2𝑚𝜓𝑖𝛾5𝜓. For theory ℒ = 𝜓[(𝑖𝛾𝜇(𝜕𝜇 − 𝑖𝑒𝐴𝜇) − 𝑚)]𝜓, quantum fluctuations correct the

conservation of axial current by an additional anomaly term

𝜕𝜇𝐽
𝜇
5 = 2𝑚𝜓𝑖𝛾5𝜓 +

𝑒2

(4𝜋)2
𝜖𝜇𝜈𝜆𝜎𝐹𝜇𝜈𝐹𝜆𝜎 .

On top of the simple fermion Lagrangian, we can couple the fermions to scalar field by

adding 𝑓𝜑𝜓𝜓 to the Lagrangian. If we want to calculate higher order diagram to the tree

loop diagram in fig. A-2, we would expect eq. (A.76) to be multiplied by some correction

term 1 + ℎ(𝑓, 𝑒, · · · ) with ℎ being some unknown function of all couplings in the theory.

However, Adler and Bardeen proved that ℎ = 0 to all orders and this is known as the

nonrenormalisation of the anomaly. Particularly, this allowed the decay amplitude for 𝜋0 →

𝛾 + 𝛾 to be calculated with great accuracy. This amplitude originally required an infinite

number of diagrams, but the nonrenormalisation of the anomaly shows that only the tree

amplitude contributes and it does not depend on the details of the strong interaction. It

actually came out a factor of 3 too small, which means quarks come in 3 copies.

A.2.2 Anomalies in Gauge Theory

Before we move on to the full picture on anomalies in superstring theory, it is illustrative to

consider the anomaly from field theory perspective. The Yang-Mills gauge anomaly in𝐷 = 10

is interesting to us since it is a part of a low-energy approximation to the superstring theories

in our discussion. First, let us consider the loop amplitude illustrated in the Fig. fig. A-3.

The vector bosons and Majorana-Weyl fermions are both in the adjoint representation of

the gauge group. For the case when fermions being massless, the formal expression for the

amplitude is given by

𝐴𝑀 ∼ 𝑇

∫︁
𝑑10𝑝 tr

[︂
Γ · 𝑝1
𝑝21

Γ · 𝜁1
Γ · 𝑝2
𝑝22

· · ·Γ · 𝜁𝑀
(︂
1 + Γ11

2

)︂]︂
. (A.82)

The factor 𝑇 = tr(𝑡𝑎1𝑡𝑎2 · · · 𝑡𝑎𝑀 ) comes from the summing over gauge group indices and 𝑎𝑖

labels the charge of the 𝑖-th boson and the 𝑡’s are in the adjoint representation of the gauge

group. The vector 𝜁𝜇𝑖 (𝑘𝑖) is from the polarisation of the 𝑖-th boson, which is required to

172



𝑝4

𝑥4 𝑝3

𝑥3

𝑝2
𝑥2

𝑝1
𝑥1𝑝6

𝑥6

𝑝5

𝑥5
𝑘5

𝑘4 𝑘3

𝑘2

𝑘1𝑘6

Figure A-3: The Feynman diagram for hexagonal loop amplitude.

be on-shell and physical, i.e. 𝑘𝑖 · 𝜁𝑖 = 𝑘𝑖 · 𝑘𝑖 = 0. The internal fermions have momenta

constrained by 𝑝𝑖 = 𝑝 −
∑︀𝑖−1

𝑗=1 𝑘𝑗. The projection operator (1 + Γ11)/2 is used to fix the

chirality of the internal fermions. There will be a totally anti-symmetric tensor 𝜖 coming

our from summing over all the gamma matrices as from eq. (A.76) and the final result must

be a contraction between the 𝜖 tensor and 10 of the momenta and polarisation vectors.

But the constraint
∑︀
𝑘𝑖 = 0 reduces the number of independent momenta 𝑘𝑖 into 𝑀 − 1.

Therefore, the simplest diagram for potential anomaly is when 𝑀 = 6, which is the reason

why we analyse the hexagonal diagram. The anomaly can be calculated using Pauli-Villars

regulator by subtracting an identical equation as eq. (A.82) with massless propagator Γ ·𝑝/𝑝2

replaced by massive ones (Γ · 𝑝)/(𝑝2 +𝑚2). The final anomaly is found be setting one of the

polarisation vector to be longitudinal 𝜁𝜇6 = 𝑘𝜇6 and letting regulator mass 𝑚→ ∞. We then

have

𝐴5 ∼ 𝑇𝜖𝜇1...𝜇5𝜈1...𝜈5𝜁
𝜇1
1 · · · 𝜁𝜇55 𝑘𝜈11 · · · 𝑘𝜈55 .

We note here the factor 𝑇 can only identically vanish when the gauge group is abelian. In

addition, 𝑇 has a total symmetry in the five external vector bosons and this implies that

there is a permutation symmetry in the five external lines. This in total, signifies that

only totally symmetric trace can contribute to the amplitude. For 𝐴6, only symmetrised

trace contribute to Tr(𝑡6). Finally, before we move onto anomalies of superstring theory, we

note some relation between matrices in fundamental and adjoint representations for classical

groups. For 𝑡 in adjoint representation of 𝑆𝑂(𝑛) and 𝜆𝑎 in its fundamental representation,
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we have the following relation

𝑡𝑎𝑏,𝑐𝑑 =
1

2
(𝜆𝑎𝑐𝛿𝑏𝑑 − 𝜆𝑏𝑐𝛿𝑎𝑑 − 𝜆𝑎𝑑𝛿𝑏𝑐 + 𝜆𝑏𝑑𝛿𝑎𝑐) ,

taking traces (‘Tr’ stands for trace in adjoint representation and ‘tr’ for that in fundamental

representation), we have

Tr 𝑡6 = (𝑛− 32)tr𝜆6 + 15tr𝜆4 tr𝜆2 . (A.83)

Similarly we have Tr 𝑡6 = (𝑛 + 32)tr𝜆6 + 15tr𝜆4 tr𝜆2 for 𝑈𝑆𝑝(𝑛) and Tr 𝑡6 = 𝑛tr𝜆6 +

15tr𝜆4 tr𝜆2 for 𝑈(𝑛). We see here the tr(𝜆6) term can be eliminated only in 𝑆𝑂(32). But

Super-Yang-Mills in such case is still anomalous since the term tr𝜆4 tr𝜆2 is still present. We

shall see later in this section that superstring offers new effects to cancel contributions from

such terms in type I theory.

Now we take a two-dimensional example in which gauge fields couple to left- and right-

moving currents with same current algebra g. The action is then written as

𝑆int =

∫︁
𝑑2𝑧(𝑗𝑎𝑧𝐴

𝑎
𝑧 + 𝑗𝑎𝑧𝐴

𝑎
𝑧) , (A.84)

where the coefficients of the Schwinger terms is given by 𝑘𝐿,𝑅𝛿𝑎𝑏. Since the operator product

expansion (OPE) determines the expectation value of 𝑗𝑗, the path integral to second order

is therefore

𝑍[𝐴] =
1

2

∫︁
𝑑2𝑧1𝑑

2𝑧2

[︃
𝑘𝐿
𝑧212

𝐴𝑎𝑧(𝑧1, 𝑧1)𝐴
𝑎
𝑧(𝑧2, 𝑧2) +

𝑘𝑅
𝑧212

𝐴𝑎𝑧(𝑧1, 𝑧1)𝐴
𝑎
𝑧(𝑧2, 𝑧2)

]︃
. (A.85)

If we make a gauge transformation with leading order being 𝛿𝐴𝑎1 = 𝑑𝜆𝑎 and integrate by

parts, we have the following

𝛿𝑍[𝐴] = 2𝜋

∫︁
𝑑2𝑧𝜆𝑎(𝑧, 𝑧)[𝑘𝐿𝜕𝑧𝐴

𝑎
𝑧(𝑧, 𝑧) + 𝑘𝑅𝜕𝑧𝐴

𝑎
𝑧(𝑧, 𝑧)] . (A.86)

Now consider the case that 𝑘𝐿 = 𝑘𝑅 = 𝑘 with 𝛿𝑍[𝐴] = −2𝜋𝑘 𝛿
∫︀
𝑑2𝑧𝐴𝑎𝑧(𝑧, 𝑧)𝐴

𝑎
𝑧(𝑧, 𝑧). We
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have the gauge invariant path integral

𝑍 ′[𝐴] = 𝑍[𝐴] + 2𝜋𝑘

∫︁
𝑑2𝑧𝐴

𝑎
𝑧(𝑧, 𝑧)𝐴

𝑎
𝑧(𝑧, 𝑧)

=
𝑘

2

∫︁
𝑑2𝑧1𝑑

2𝑧2 ln|𝑧212|𝐹 𝑎
𝑧𝑧(𝑧1, 𝑧1)𝐹

𝑎
𝑧𝑧(𝑧2, 𝑧2) .

(A.87)

Here we start with a non-local path integral and its local gauge variation. Note that this

local variation is not necessarily for a local operator, when this is the case as in 𝑘𝐿 = 𝑘𝑅,

one can subtract this local operator to restore gauge invariance. The OPE above is for

non-zero separation only, therefore it is not sensitive to local terms. The final form of gauge

invariant path integral contains field strength and the full path integral for abelian theory

is just the exponential of this. The non-abelian case still requires 𝑘𝐿 = 𝑘𝑅 to preserve the

gauge symmetry. For parity-symmetric theories, one can define the path integral invariantly

using a Pauli-Villars regulator. The anomalies are also unaffected if additional massive

degrees of freedom are added. These degrees of freedom give contributions to 𝑍[𝐴] which

look local from long distance. Any such gauge variations can thus be written as variations

of local operator and removed by local counterterms. From such reasoning, the anomalies in

superstring theory are determined by massless spectrum that is independent of short distance

stringy effects.

Now consider a single fermion of charge 𝑞 coupling to a 𝑈(1) gauge field. It contributes

𝑞2 to the above 𝑗𝑗 OPE. The anomaly cancellation conditions for this free fermion is then

gauge anomaly :
∑︁
𝐿

𝑞2 −
∑︁
𝑅

𝑞2 = 0 , (A.88)

gravitational anomaly :
∑︁
𝐿

1−
∑︁
𝑅

1 = 0 , (A.89)

mixed anomaly :
∑︁
𝐿

𝑞 −
∑︁
𝑅

𝑞 = 0 . (A.90)

In four dimensional theories, the potential anomalous amplitudes have three currents as

in appendix A.2.1 and the anomaly is quadratic in field strength and curvature tensors.

The particle and anti-particle then have charges 𝑞 and −𝑞 respectively. Therefore, the two

terms in anomaly are equal for odd power of 𝑞 and opposite for even powers. The anomaly
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cancellation condition is then

gauge anomaly :
∑︁
𝐿

𝑞3 = 0 , (A.91)

mixed anomaly :
∑︁
𝐿

𝑞 = 0 . (A.92)

The IIA theory is parity-symmetric and thus anomaly-free. In ten dimensions the

anomaly amplitude comes from the hexagon diagram which has six currents and it is of

fifth order in the field strength and curvatures. This calculation can be found in litera-

tures with greater details. The anomaly can be written in terms of an anomaly polynomial

which is a formal (𝑑 + 2)-form 𝐼𝑑+1(𝑅2, 𝐹2). The anomalous variation including gauge and

gravitational transformations is give by

𝛿ln𝑍 =
−𝑖

(2𝜋)5

∫︁
𝐼𝑑(𝐹2, 𝑅2) ,

where 𝐼𝑑 is connected to anomaly polynomial through 𝐼𝑑+2 = 𝑑𝐼𝑑+1 and 𝛿𝐼𝑑+1 = 𝑑𝐼𝑑. This

simply says that the polynomial equation is an exterior derivative of a (𝑑 + 1)-form whose

variation is the exterior derivative of a 𝑑-form. In addition, the 𝑅2 is the Reimann tensor and

𝐹2 is the gauge field strength. The anomaly cancellation condition is that the total anomaly

polynomial vanishes.

The 10𝐷 supergravity has three kinds of chiral fields that we need to take into considera-

tion: spinors 8 and 8′, gravitinos 56 and 56′ and self-dual 5-form field strength [5]+ and [5]−

from the IIB theory. Parity reversal interchanges two two in each pair, they therefore make

opposite contribution to the anomaly. There anomalies have been calculated in literatures.

For Majorana-Weyl 8,

𝐼8(𝐹2, 𝑅2) = −Tr(𝐹 6
2 )

1440
+

Tr(𝐹 4
2 )tr(𝑅

2
2)

2304
− Tr(𝐹 2

2 )tr(𝑅
4
2)

23040
− Tr(𝐹 2

2 )[tr(𝑅
2
2)]

2

18432

+
𝑛 tr(𝑅6

2)

725760
+
𝑛 tr(𝑅4

2)tr(𝑅
2
2)

552960
+
𝑛[tr(𝑅2

2)]
3

1327104
.

(A.93)
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For Majorana-Weyl 56

𝐼56(𝐹2, 𝑅2) = −495
tr(𝑅6

2)

725760
+ 225

tr(𝑅4
2)tr(𝑅

2
2)

552960
− 63

[tr(𝑅2
2)]

3

1327104
. (A.94)

The self–dual 5 form,

𝐼𝑆𝐷(𝑅2) = 992
tr(𝑅6

2)

725760
− 448

tr(𝑅4
2)tr(𝑅

2
2)

552960
+ 128

[tr(𝑅2
2)]

3

1327104
. (A.95)

The ‘tr’ is over the Riemann curvature indices, i.e. over the tangent space indices of a local

coordinate patch. The products within the traces are explicitly exterior wedge products ∧.

The ‘Tr’ is over the field strength indices for the representation carried by the fermions.

Type IIB anomalies There are two 8′s, two 56s and one [5]+. The total anomaly poly-

nomial is then given by

𝐼IIB(𝑅2) = −2𝐼8(𝑅2) + 2𝐼56(𝑅2) + 𝐼SD(𝑅2) = 0 .

There are no gauge fields so only gravitational anomalies enter and the coefficients conspire

to give a cancellation of anomaly. This existence of chiral theory is one of the reasons that

string theory becomes the main candidate for unifying theory which connects with Standard

Model. This anomaly free low energy effective theory can be viewed as a manifestation of

internal consistency of string theory.

Type I and hererotic anomalies Since type I and heterotic string have the same low

energy limits, so they are put together under discussion. One immediate problem arises

since there is only one charge chiral field 8, which implies that there is no apparent can-

cellation of mixed and gauge anomalies. This problem led Green and Schwarz to study the

structure of the string amplitude and found a previous unknown mechanism of anomaly

cancellation. Previously, we only checked counterterms built from gauge field and metric. It
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is also important to look at Chern-Simons interaction

𝑆 ′ =

∫︁
𝐵2Tr(𝐹

4
2 ) . (A.96)

The variation of this action under gauge transformation of vector potential is

𝛿𝑆 ′ ∼
∫︁

Tr(𝜆𝑑𝐴1)Tr(𝐹
4
2 ) . (A.97)

Therefore, we can convert this variation to (𝑛 + 2)-form for anomaly polynomial through

descendent equations.

𝐼 ∼ Tr(𝜆𝑑𝐴1)Tr(𝐹
4
2 ) ,

𝐼𝑑+1 ∼ Tr(𝐴1𝐹2)Tr(𝐹
4
2 ) ,

𝐼𝑑+2 ∼ Tr(𝐹 2
2 )Tr(𝐹

4
2 ) .

(A.98)

Therefore, the inclusion of this Chern-Simons term can cancel anomaly of this particular

form. Similarly, the variation of action

𝑆 ′′ =

∫︁
𝐵2[Tr(𝐹

2
2 )]

2

can cancel anomaly polynomial of the form [Tr(𝐹 2
2 )]

3. Now since fermions in supergravity

theory are always in the adjoint representation, we want to convert the traces in adjoint

representation into vector representation. Some useful relations in addition to eq. (A.83) are

Tr𝑎(𝑡
2) = (𝑛− 2)Tr𝑉 𝑡

2 ,

Tr𝑎(𝑡
4) = (𝑛− 8)Tr𝑉 𝑡

4 + 3Tr𝑉 (𝑡
2)Tr𝑉 (𝑡

2) ,

Tr𝑎(𝑡
6) = (𝑛− 32)Tr𝑉 𝑡

6 + 15Tr𝑉 (𝑡
2)Tr𝑉 (𝑡

4) .

(A.99)

The last identity shows that for 𝑆𝑂(32) the gauge anomaly Tr𝑎(𝐹
6
2 ) is equal to traces of

lower power and it can be cancelled by the variation of 𝑆 ′ and 𝑆 ′′. This is the famous

Green-Schwarz mechanism.
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For the group 𝐸8, the sxith order traces reduce to

Tr𝑎(𝑡
4) =

1

100
[Tr𝑎(𝑡

2)]2 , Tr𝑎(𝑡
6) =

1

7200
[Tr𝑎(𝑡

2)]3 . (A.100)

Now we can consider the full anomaly by including gravitational contribution. Generalising

𝑆 ′ and 𝑆 ′′ to ∫︁
𝐵2𝑋8(𝐹2, 𝑅2) , (A.101)

makes it possible to cancel anomaly of the form Tr(𝐹 2
2 )𝑋8(𝐹2, 𝑅2) for arbitrary 8-form

𝑋8(𝐹2, 𝑅2). Therefore, the variation of this action cancels anomaly of the form

[𝑐Tr(𝐹 2
2 ) + 𝑐′ Tr(𝑅2

2)]𝑋8(𝐹2, 𝑅2) .

The total anomaly for 𝒩 = 1 supergravity with gauge group 𝐺 for chiral fields: gravitino

56, fermion 8’ and gaugino 8 in the adjoint representation, is the following

𝐼I = 𝐼56(𝑅2)− 𝐼8(𝑅2) + 𝐼(𝐹2, 𝑅2)

=
1

1440

{︂
−Tr(𝐹 6

2 ) +
1

48
Tr𝑎(𝐹

2
2 )Tr𝑎(𝐹

4
2 )−

[Tr𝑎(𝐹
2
2 )]

3

1440

}︂
+ (𝑛− 496)

{︂
tr(𝑅6

2)

725760
+

tr(𝑅4
2)tr(𝑅

2
2)

552960
+

[tr(𝑅2)]
3

1327104

}︂
+
𝑌4𝑋8

768
,

(A.102)

with

𝑌4 = tr(𝑅2
2)−

1

30
Tr𝑎(𝐹

2
2 ) ,

𝑋8 = tr(𝑅4
2) +

[tr(𝑅2)]
2

4
− Tr𝑎(𝐹

2
2 )tr(𝑅

2
2)

30
+

Tr𝑎(𝐹
4
2 )

3
− [Tr𝑎(𝐹

2
2 )]

2

900
.

(A.103)

Then anomaly is separated into three terms. The first one has to vanish for adjoint represen-

tation of the gauge group 𝐺. The second term can only vanish for the number of generator

of gauge group being 496. These two requirements are both satisfied by groups 𝑆𝑂(32) and

𝐸8 × 𝐸8. The remaining anomaly is then

𝑌4𝑋8

768
.
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This can be cancelled through Green-Schwarz mechanism by variation of action of the form

eq. (A.101).

A.3 McKay Correspondence

In this appendix, we quickly review some rudiments of classification of discrete subgroups

of finte group and its connection with that of affine Lie algebra for the completeness of this

article.

A large class of Gorenstein canonical singularities are quotients of flat spaces by discrete

groups. More importantly, when the groups are discrete subgroups of 𝑆𝑈(𝑁), i.e. the

holonomy groups of Calabi-Yau manifolds and when resolution of singularities are possible,

these quotient spaces are singular limits of CY’s and serve as local models of CY’s. Such

quotients of flat spaces by discrete finite subgroups are called orbifolds. As these orbifolds

provide local CY’s, we should give a closer look at these orbifolds and in particular, the

orbifold of the type C3/Γ ≃ C × C2/(Γ ⊂ 𝑆𝑈(2)). In 1884, F. Klein made classification

of discrete subgroups of 𝑆𝑈(2) as a part of finding transcendental solutions to the quintic

problem [120]. Note that 𝑆𝑈(2) is a double cover of 𝑆𝑂(3), which is simply the rotational

group in R3 and they are the symmetries of perfectly regular shapes in R3 viz. the Platonic

Solids. This group also affords an ADE classfication: two infinite series of regular polygons

and three exceptionals associated with give regular polyhedra: the tetrahedron, the cube (and

its dual octahedral) and the icosahedron (and its dual dodecahedron). This classification

is recorded in table A.1. Nearly a century later until 1980s, McKay [19] found another

Group Name Order
𝐴𝑛 ≃ Z𝑛+1 Cyclic 𝑛+ 1

𝐷𝑛 Binary Dihedral 2𝑛
𝐸6 Binary Tetrahedral 24
𝐸7 Binary Octahedral (Cubic) 48
𝐸8 Binary Icosahedral (Dodecahedral) 120

Table A.1: The classification of discrete subgroups of 𝑆𝑈(2). As we can see that this has an
ADE pattern. Note the ‘binary’ essentially comes from the fact that 𝑆𝑈(2) is a double cover of
𝑆𝑂(3)

remarkable correspondence between these groups and the Lie algebras. His observation goes
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as follows. Take the Clesbsh-Gorden decomposition for ℛ, the fundamental 2 of Γ ⊂ 𝑆𝑈(2)

and irreps {ℛ𝑖}. In another word, we take

2⊗ℛ𝑖 =
⨁︁
𝑗

𝑎2𝑖𝑗ℛ𝑗 , (A.104)

and 𝑎2𝑖𝑗 is taken as the adjacency matrix for some finite graph. These graphs are precisely

the Dynkin diagrams of the affine simply-laced Lie algebra (the central extension of Lie

algebras). The diagrams are presented in fig. A-4. The McKay correpondence shows that

...

𝐴𝑛

...

�̃�𝑛

1 1 1 1 1

1

1

2 2 2

1

1

1 2 3 2 1

2

1

�̃�6

2

2 3 4 3 2 11

�̃�7

2 3 4 5 6 41 2

3

�̃�8

1

Figure A-4: The dynkin diagrams for affine simply-laced Lie algebras. The nodes are labelled by
comarks of each simple roots. These diagrams have an extra affine node (marked with crosses)
due to the central extension.

the node labels for affine Lie algebras correspond to the dimensions of the irreps of discrete

finite subgroups of 𝑆𝑈(2). The matrices 𝑎2𝑖𝑗 are precisely the Cartan matrices of associated

algebra.
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A.4 D-branes as Probes of ALE Spaces

Before we discuss D-branes as a probe to recover the short-distance details of the background

geometry, or the metric geometry of the resolved singluar orbifold spaces, we shortly review

an example of the string propagating on a smooth hyper-Kähler K3 manifold by ‘blowing-up’

16 fixed points of the 𝑇 4/Z2 orbifold compactification.

Let us take a type II closed string theory compactified on a four torus 𝑇 4, with the

simplest setting where the torus is a product of four circles 𝑆1 with radius 𝑅. Say we choose

the four directions 𝑥6, 𝑥7, 𝑥8, 𝑥9 to be periodic with period 2𝜋𝑅. The resulting 6𝐷 theory

has 𝒩 = 4 supersymmetry since torus does not break any supersymmetry. Now we start

orbifolding the theory with a Z2 symmetry

R : 𝑥6, 𝑥7, 𝑥8, 𝑥9 → −𝑥6,−𝑥7,−𝑥8,−𝑥9 . (A.105)

Since the isometry of R4 of the compactified directions is 𝑆𝑂(4) ∼ 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅, we

have the liberty to put R inside 𝑆𝑈(2)𝐿. This leaves the 𝑆𝑈(2)𝑅 intact and it descends to

a global R-symmetry of the remaining 6𝐷 𝒩 = 2.

A.4.1 The Orbifold Spectrum

We construct the resulting 6𝐷 spectrum in this section first by obtaining the left-moving

spectrum under R and then tensor it with another copy from the right to get the closed

string spectrum. First, we set some notations. The Roman indices 𝑚 = 6, 7, 8, 9 are for the

orbifolding directions and Greek indices are then for the remaining 𝜇 = 0, ..., 5. In addition,

the 10𝐷 Lorentz group also factors as 𝑆𝑂(1, 9) ⊃ 𝑆𝑂(1, 5)× 𝑆𝑂(4). The massless states in

the theory shall be labelled under the 𝑆𝑈(2))𝐿×𝑆𝑈(2)𝑅 = 𝑆𝑂(4) little group. In particular

the vector representation decomposes into 4 = (2,2) and spinor representation on the other

hand decomposes into 2 = (2,1) and 2′ = (1,2). So we choose a labelling of the states in

the Ramond sector according to rotations in the planes (𝑥0, 𝑥1), (𝑥2, 𝑥3), . . . as eigenstates

𝑠0, 𝑠1, . . . , 𝑠4 of the operators 𝑆01, 𝑆23,etc.7 We can therefore see which states survive GSO

7These operators are defined to find possible Weyl condition for Dirac matrices in certain dimension 𝑑.
See §B.1 in [5] for more technical details.
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projection in table A.2. On top of this untwisted sector, we also need to include the twisted

Sector State R 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅

NS
𝜓𝜇−1/2 |0; 𝑘⟩
𝜓𝑚−1/2 |0; 𝑘⟩

+
−

(2,2)
4× (1,1)

R |𝑠1, 𝑠2, 𝑠3, 𝑠4⟩ ; 𝑠1 = +𝑠2, 𝑠3 = −𝑠4
|𝑠1, 𝑠2, 𝑠3, 𝑠4⟩ ; 𝑠1 = −𝑠2, 𝑠3 = +𝑠4

+
−

2× (2,1)
2× (1,2)

Table A.2: Transformation properties of massless states in the untwisted sector.

sector to make the resulting theory modular invariant. In this twisted sector, the moding for

the fields in the 𝑥𝑚 directions is changed and the bosons are now half-integer moded. We

recall that integer moded sectors will give us degenerate vacua, therefore, we only have states

|𝑠1𝑠2⟩ from the R-sector (they are half-integer moded in the 𝑥𝑚 directions due to orbifolding)

and the NS sector, which is integer moded in the 𝑥𝑚 directions, has states |𝑠3𝑠4⟩. Therefore,

the spectrum from the twisted sector after GSO projection is in table A.3 In addition, the

Sector State R 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅
NS |0, 0, 𝑠3𝑠4⟩ ; 𝑠3 = −𝑠4 + 2× (1,1)
R |𝑠1, 𝑠2, 0, 0⟩ ; 𝑠1 = −𝑠2 − (1,2)

Table A.3: Transformation properties of massless states in the untwisted sector.

zero point energy for each sector is as follows

NS sector: 4(− 1
24
) + 4(− 1

48
) + 4( 1

48
) + 4( 1

24
) = 0

R sector: 4(− 1
24
) + 4( 1

24
) + 4( 1

48
) + 4(− 1

48
) = 0 .

(A.106)

In the NS sector, the bosons from the twisted sector has zero point energy (z.p.e) 1/48 (since

it is half-integrally moded) and the 4 in front signifies that there are four orbifold directions.

The un-twisted bosons as usual have −1/24 z.p.e. In the 4 directions that are not orbifolded,

the z.p.e is as usual, therefore this gives the total zero in eq. (A.106). The fermions give

−1/48 and 1/24 respectively and they add up to zero when combined with contribution from

bosons. The similar argument is applied to R sector to achieve 0 z.p.e.

With the previous results for the left-moving sector, we can tensor up an identical copy

to get the spectrum Since we have 2 twisted sectors for each orbifold 𝑆1, we thus have 16
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Sector Untwisted
𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅

Twisted
𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅

NS-NS (3,3) + (1,3) + (3,1) + (1,1)
10× (1,1) + 6× (1,1)

3× (1,1) + (1,1)

R-R (IIB) 3× (3,1) + 4× (1,1)
3× (1,3) + 4× (1,1)

(1,3) + (1,1)

R-R (IIA) 4× (2,2)
4× (2,2)

(2,2)

Table A.4: The bosonic spectrum for the untwisted and twisted sectors.

twisted sectors for 𝑇 4/Z2. So we need to take 16 copies of the above twisted sector to make

the complete spectrum. Let us make the identification with different pieces in the spectrum.

∙ Gravity multiplet 𝐺𝜇𝜈 +𝐵𝜇𝜈 +Ψ is the first line in out NS-NS untwisted sector as we

expected. The 𝐵𝜇𝜈 field is decomposed into self-dual and anti-self-dual parts, 𝐵+
𝜇𝜈 and

𝐵−
𝜇𝜈 , transforming as (1,3) and (3,1). There are 16 other scalar fields in the un-twisted

NS-NS sector The twisted sector has 4× 16 = 64 scalars. Including dilaton, there are

80 scalars from the NS-NS sector alone.

∙ The R-R sector in IIA has 8 one-forms (vectors in 𝑆𝑂(4)) from untwisted sector and

16 from twisted sector. This gives a total of 24 vectors that give a generic 𝑈(1)24.

∙ The R-R sector in IIB has 3 self-dual and 3 anti-self-dual tensors in the untwisted

sector with additional 16 self-dual tensors (1,3) coming from twisted sector. There are

8 scalars from untwisted sector and 16 from twist sector. Including dilaton, we have

105 scalars for IIB case.

An important note to include here is that this IIB theory is chiral and we should check if it

is anomaly free. A more detailed analysis can be found in S7.6.2 in [8]. It is a miraculous

fact these anomaly do cancel.

A.4.2 Spectrum on K3 Manifold

With the spectrum presented in the previous subsection, we can proceed to find the emer-

gence of K3 manifold through these data. K3 manifold is complex two dimensional (four

real dimensions) manifold containing 22 independent two-cycles, which are topologically two
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spheres 𝑆2 as complex surface CP1. The corresponding two-forms that can be integrated

on these two cycles form a 22 dimensional space. This space can have a basis built out

of the data we just encountered: 19 of them are self-dual and 3 of them are anti-self-dual.

The space of metric on K3 is in fact parametrised by 58 numbers. By compactifying type

II theories on K3, the ten dimensional gravity multiplets and other R-R fields give rise to

six dimensional fields through dimensional reduction with components of fields in K3 giving

other fields. The six dimensional gravity multiplets are from reduction of NS-NS sector. The

58 scalars arise from ways the internal parts of the metric 𝐺𝑚𝑛 can choose to parametrise

the space of K3 metrics. Similarly, the existence of 22 scalars is from the 19 + 3 ways to

place the internal components of anti-symmetric tensor 𝐵𝑚𝑛 on the manifold.

The R-R sector on the other hand of IIB on the other had had one scalar in ten dimension

reduces to a scalar in six dimension. There is a two-form to give 22 scalars in a similar fashion

as NS-NS two-form. The self-dual four-form can be integrated over the 22 two cycles to give

22 two-forms in six dimensions. 19 of them are self-dual and 3 of them anti-self-dual. The

last scalar comes from wrapping the four form entirely on the K3. This is the exactly the

spectrum in table A.4.

For type IIA, the NS-NS sector is the same as that from IIB. There are one-form, three-

form and five-form distinct for type IIA. The one-form directly descends to six dimensions as

one-form. The three-form gives 22 one forms by integrating over K3 in six dimensions, while

the five-form produces a single one-form. Therefore, we have 24 one-forms in six dimensions.

As we can see again, this spectrum is the same as we obtained from 𝑇 4/Z2 orbifold.

A.4.3 Singular Limit of K3 Manifold

The connection between K3 manifold and our orbifold 𝑇 4/Z2 can be found through singular

resolution of the orbifold [123, 124, 125, 126, 127]. The K3 manifold can reach its singular

limit by choosing appropriate vacuum expectation values of various scalar field. For the

orbifold 𝑇 4/Z2, we have 16 fixed points which are locally R4/Z2 with infinite curvature. The

58 parameters of K3 can be seen as follows. 10 of them are from symmetric 𝐺𝑚𝑛 constant

components in the internal directions. There are enough to specify the four-torus since the

hypercube in R4 is specified by ten angles between its unit vectors. In addition, each of the
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16 fixed-points has three scalars associated to its metric.

These three metric scalars can be tuned to resolve or ‘blow-up’ the fixed point to smooth

it to CP1. These correspond to the 16 two-cycles of the K3. The other six come from the

six Z2 invariant forms 𝑑𝑋𝑚 ∧ 𝑑𝑋𝑛 on the 𝑇 4. This resolved space has the Eguchi-Hanson

metric [128] which is locally asymptotically to R4/Z2. The explicit metric is

𝑑𝑠2 =

(︂
1−

(︁𝑎
𝑟

)︁4)︂−1

𝑑𝑟2 + 𝑟2
(︂
1−

(︁𝑎
𝑟

)︁4)︂
𝜎2
3 + 𝑟2(𝜎2

1 + 𝜎2
2) , (A.107)

where 𝜎𝑖 are defined in terms of the 𝑆3 Euler angles (𝜃, 𝜑, 𝜓) with 4(𝜎2
1+𝜎

2
2) = 𝑑𝜃2+sin2𝜃 𝑑𝜑2.

The point where 𝑟 = 𝑎 is called the ‘bolt’ singularity. The space has a topology of R2
𝑟𝜓×𝑆2

𝜃𝜑

with the radius of 𝑆2 being 𝑎/2. This is actually a coordinate singularity if 𝜓 has period of

2𝜋. However, 𝜓 has period of 4𝜋, the space at infinity is 𝑆3/Z2. For small 𝑎, the Eguchi-

Hanson space can be put onto the space after we take out the neighbourhood of the fixed

point. The ‘bolt’ is in fact CP1 and the parameter 𝑎 controls the size of the bolt with other

two parameters correspond to how R2 is oriented in R4.

The Eguchi-Hanson space is the simplest example of ‘Asmptotically Locally Euclidean’

(ALE) space which K3 can be tuned to resemble locally. These ALE spaces are classified

according to their identification at infinity by the discrete finite subgroups Γ of 𝑆𝑈(2),

which acts on 𝑆3 at infinity to give 𝑆3/Γ. These subgroups have an ADE pattern due to

the observation by McKay [19]. The A-series correspond to Gibbons-Hawking metrics and

Eguchi-Hanson is the simplest of such series corresponding to 𝐴1.

A.5 D-brane Probes

After the construction of type II string, we see that by resolving singular orbifold 𝑇 2/Z2,

one can reconstruct the same spectrum for strings compactified on the smooth hyper-Kähler

manifold K3. But to be strict, we only recovered the spectrum or the algebraic data of the

K3 manifold but the full geometric data is still not fully present. In this subsection, we

review a power and central technique to this article to recover the geometric details. This is

done by using D-brane as a probe to singular background geometry.
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To illustrate the central idea behind the original idea [24], we focus on a single orb-

ifolded point and type IIB theory. The full theory is propagating in the space of R6 ×

(R4/Z2) which has the same reflection R as that in appendix A.4.1: R : (𝑥6, 𝑥7, 𝑥8, 𝑥9) →

(−𝑥6,−𝑥7,−𝑥8,−𝑥9). The D1-brane is placed in this plane at 𝑥2, ..., 𝑥9 = 0. For this setup,

we have the table A.5. The D1-brane needs to include an image if it is to move off the fixed

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

D1 − −
ALE − − − − − −

Table A.5: The coordinate arrangement for D1-brane probing ALE.

point of the action R to respect the Z2 symmetry. This requires us to include two Chan-

Paton indices for the D1-brane and its image. This gets us to start with a 𝑈(2) symmetry for

D-brane system living at the fixed point. Since the R action exchanges the two D-branes,

it can be seen as acting on the open string states as the exchange represented by matrix

𝛾 = 𝜎1, where 𝜎𝑖 are the Pauli matrices since we are considering 𝑈(2). The representation

of the action of R can therefore be written as

R |𝜓, 𝑖𝑗⟩ = 𝜎𝑖𝑖′ |R𝜓, 𝑖′𝑗′⟩𝜎−1
𝑗′𝑗 . (A.108)

It acts on the oscillator as usually but also switches the Chan-Paton indices of the D1-branes.

We therefore must make sure that the orbifold action also acts on the Chan-Paton indices

when D-branes are present [45].

Now we can look at the spectrum. In the NS sector, the massless R-invariant states are

(in terms of vertex operator)

𝜕𝑡𝑋
𝜇𝜎0,1, 𝜇 = 0, 1

𝜕𝑛𝑋
𝑖𝜎0,1, 𝑖 = 2, 3, 4, 5

𝜕𝑛𝑋
𝑚𝜎2,3, 𝑖 = 6, 7, 8, 9 .

(A.109)

Note here the Pauli matrices essentially signify the structure of the Chan-Paton indices.

Since the first row has its spacetime indices of the D1-brane, it is therefore a gauge field for

the 𝑈(1) × 𝑈(1) world-volume gauge group. The next row are four scalars in the adjoint
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representation of the gauge group, describing the position of D1-brane inside R6. The last

row is the four scalars in the bifundamental charges (±1,∓1) of the gauge group. They can

also be interpreted as transverse position of the D1-brane in 𝑥6, 𝑥7, 𝑥8, 𝑥9. These D-string

fields are denoted by 𝐴𝜇, 𝑋 𝑖, 𝑋𝑚, which are all 2×2 matrices. The gauge group and matter

content are all recorded in the ‘quiver diagram’ drawn in fig. A-5.

𝑈(1) 𝑈(1)

Figure A-5: The quiver diagram for the 𝑈(1)× 𝑈(1) gauge theory on D1-brane.

Quiver diagrams of such type has nodes representing the gauge group 𝑈(𝑛𝑖) and the

arrows representing bifundamental fields which are usually matrix valued as our 𝑈(1)×𝑈(1)

gives fields in 2× 2 matrices. Note that this diagram is simply the affine Dynkin diagram of

𝐴1, with one node being the trivial representation which physically represents the centre of

mass of the D-brane system.

The bosonic action for these fields is the 𝐷 = 10 𝑈(2) Yang-Mills action with a dimen-

sional reduction and Z2 projection.

Kinetic term : − 1

4𝑔2𝑌𝑀

(︃
𝐹𝜇𝜈𝐹

𝜇𝜈 +
∑︁
𝑖

𝒟𝜇𝑋
𝑖𝒟𝜇𝑋 𝑖 +

∑︁
𝑚

𝒟𝜇𝑋
𝑚𝒟𝜇𝑋𝑚

)︃

Potential term : − 1

4𝑔2𝑌𝑀

(︃
2
∑︁
𝑖,𝑚

Tr[𝑋 𝑖, 𝑋𝑚]2 +
∑︁
𝑚,𝑛

Tr[𝑋𝑚, 𝑋𝑛]2

)︃
,

(A.110)

where 𝑔2𝑌𝑀 = (2𝜋)−1𝛼′−1/2𝑔𝑠. The resulting theory has 𝒩 = (4, 4) supersymmetry in 𝐷 = 2

with a 𝑆𝑈(2) R-symmetry which can be interpreted as the remnant 𝑆𝑈(2)𝑅 from parent

𝑆𝑂(4) by including the orbifold action Z2 inside 𝑆𝑈(2)𝐿.

Now we want to find the moduli space, the family of vacuua, of this dimensionally reduced

theory. There are two different ‘branches’ in the moduli space.

∙ The ‘Coulomb branch’ is defined by𝑋𝑚 = 0 and𝑋 𝑖 = 𝑢𝑖𝜎0+𝑣𝑖𝜎1. This has a geometric

meaning of two D1-branes moving independently inside the R6 with positions 𝑢𝑖 ± 𝑣𝑖
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but staying at the fixed point in R4/Z2. In this branch, the gauge symmetry stays

intact giving independent 𝑈(1) group on each D-brane.

∙ THe ‘Higgs branch’ on the other hand, is defined by non-zero 𝑋𝑚 and 𝑋 𝑖 = 𝑢𝑖𝜎0, the

𝜎1 gauge invariance is broken and we can choose a gauge in which 𝑋𝑚 = 𝑤𝑚𝜎3. This

corresponds to the D1-brane moving off the fixed plane with string and its image being

at (𝑢𝑖,±𝑤𝑚). This branch has the R6 × R4/Z2 we started with.

∙ The orbifold requires the twisted sector to make the theory modular invariant as we

covered in table A.4. These twisted sectors are essential to resolve the orbifold singu-

larity. Now let us define a complex variable 𝑞𝑚 by 𝑋𝑚 = 𝜎3Re(𝑞𝑚) + 𝜎2Im(𝑞𝑚) and

two doublets of the remaining 𝑆𝑈(2)𝑅 made out of them

Φ0 =

⎛⎝ 𝑞6 + 𝑖𝑞7

𝑞8 + 𝑖𝑞9

⎞⎠ Φ1 =

⎛⎝ 𝑞6 + 𝑖𝑞7

𝑞8 + 𝑖𝑞9

⎞⎠ . (A.111)

These doublets have charges ±1 respectively under the 𝜎1 of 𝑈(1). The three NS-NS moduli

can thus be written as a vector 𝜉 of the 𝑆𝑈(2)𝑅, and the potential is proportional to

(𝜉 − 𝜇)2 ≡ (Φ†
0𝜏Φ0 − Φ†

1𝜏Φ1 + 𝜉)2 , (A.112)

where the Pauli matrices are collected into a vector 𝜏 = (𝜏 1, 𝜏 2, 𝜏 3) to emphasise that they

now act on a different space. the vector 𝜇 is what mathematician call a ‘momemtum map’

which we shall come to a bit more detail in next section. The form of this potential comes

from the supersymmetric construction of the ‘D-term’. The vanishing of this is called the

‘D-flat’ condition and the vector 𝜉 is the ‘Fayet–Iliopoulos’ parameter in the D-term, and

the presence of this parameter comes from the existence ofabelian 𝑈(1) factors in the gauge

group. Also the 𝑆𝑈(2)𝑅 requires that the FI term and the D-term to come in as a vector.

One can check that this form reduces to the second term in the potential of eq. (A.110) when

𝜉 = 0. A further discussion on this can be found in literature [9, 10]. For the case when

𝜉 ̸= 0, the moduli space of the gauge theory is the set of possible locations of the D1-brane

probe, which is the blown-up smooth ALE space. The 𝑋𝑚 contain eight scalar fields. Three
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of them are removed by the ‘D-flatness’ condition that the superpotential should vanish.

With the fourth one being a gauge degree of freedom, we have four moduli in total. Thus

the theory has the amount of supersymmetry equivalent to 𝐷 = 6 𝒩 = 1.

A.5.1 ALE Space as the Moduli Space

The metric for this moduli space should have the metric of the smooth ALE space as its

metric [46]. Since there are eight supercharges, the space should be a hyper-Káhler manifold

[47]. The three coordinates on the moduli space afford the definition (normalisation absorbs

the dimensionful constants)

y = Φ†
0𝜏Φ0 , (A.113)

and the fourth coordinate 𝑧 is defined as 𝑧 = 2arg(Φ0,1Φ1,1). The D-flatness condition gives

Φ†
1𝜏Φ1 = y + 𝜉 , (A.114)

where we can determine Φ0 and Φ1 in terms of y and 𝑧.

The original metric of the space of hypermultipet VEVs is the flat metric

𝑑𝑠2 = 𝑑Φ†
0𝑑Φ0 + 𝑑Φ†

1𝑑Φ1 . (A.115)

We have to project this metric onto the space orthogonal to the 𝑈(1) gauge action. We

have to project this onto the space orthogonal to the 𝑈(1) gauge transformation. This can

be done via coupling Φ0 and Φ1 to two dimensional gauge field and integrate out the gauge

fields. Thus we have

𝑑𝑠2 = 𝑑Φ†
0𝑑Φ0 + 𝑑Φ†

1𝑑Φ1 −
(𝜔0 + 𝜔1)

2

4(Φ†
0Φ0 + Φ†

1Φ1)
, (A.116)

with 𝜔𝑖 = 𝑖(Φ†
𝑖𝑑Φ𝑖 − 𝑑Φ†

𝑖Φ𝑖). To rewrite the metric in terms of y and 𝑡 for arbitrary 𝑆𝑈(2)
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doublets 𝛼, 𝛽, 𝛾, 𝛿, 8 we find the metric is the 𝒩 = 2 Gibbons-hawking metric

𝑑𝑠2 = 𝑉 −1(𝑑𝑧 − · 𝑑y)2 + 𝑉 𝑑y · 𝑑y

𝑉 =
𝑁−1∑︁
𝑖=0

1

|y − y𝑖|
, ∇𝑉 = ∇×A . (A.119)

Up to an overall normalisation, we have 𝑦0 = 0, 𝑦1 = 𝜉 and the vector potential is

A(y) · 𝑑y = |y|−1𝜔0 + |y + 𝜉|−1𝜔1 + 𝑑𝑧 . (A.120)

The field strength is thus obtained by taking exterior derivative. With a change of variable

[17], this metric for 𝒩 = 2 thus becomes the Eguchi-Hanson metric. The three parameters

in vector 𝑦1 = 𝜉 are the NS-NS fields characterising the size and orientation of the CP1

blow-up.

A.5.2 Hyper-Kähler Quotient Construction of ALE Spaces

The construction we just described is the hyper-Kähler quoteint [18], which was used in [16] to

construct the full family of ALE metrics. Hyper-Kähler spaces are complex 4𝑘-dimensional

manifolds with three complex structures that transform under an 𝑆𝑈(2) symmetry, which

in physical language, often becomes the 𝑆𝑈(2) R-symmetry for a system with eight super-

charges. These complex structures are in fact, quaternionic in nature. In this subsection,

we draw out attention to quickly review this quotient construction of ALE spaces as a small

detour.

A Riemannian manifold𝑋 with three covariantly constant complex structures 𝑖 := 𝐼, 𝐽,𝐾

satisfying the quaternionic algebra is call Hyper-Kähler. We can thus construct closed

8The identity to use here is

(𝛼†𝜏𝑎𝛽)(𝛾†𝜏𝑎𝛿) = 2(𝛼†𝛿)(𝛾†𝛽)− (𝛼†𝛽)(𝛾†𝛿) . (A.117)

Thus we have

Φ†
0Φ0 = |y|, Φ†

1Φ1 = |y + 𝜉|,

𝑑y · 𝑑y = |y|𝑑Φ†
0𝑑Φ0 − 𝜔2

0 = |y + 𝜉|𝑑Φ†
1𝑑Φ1 − 𝜔2

1 .
(A.118)

191



Käher 2-forms:

𝜔𝑖(𝑉,𝑊 ) := 𝑔(𝑉, 𝑖𝑊 ) for 𝑖 = 𝐼, 𝐽,𝐾 , (A.121)

mapping tangent vectors 𝑉,𝑊 ∈ 𝑇 (𝑋) to R with 𝑔 being the metric tensor.

On such a manifold with Killing vectors 𝑉 (ℒ𝑉 𝑔 = 0), we can impose the triholo-

morphicity condition as: ℒ𝑉 𝜔𝑖 = 𝑉 𝜈(𝑑𝜔𝑖)𝜈 + 𝑑(𝑉 𝜈(𝜔𝑖)𝜈) = 0. This condition joined with

the closedness of Käher form 𝑑𝜔𝑖 = 0 implies the existence of potentials 𝜇𝑖, such that

𝑑𝜇𝑖 = 𝑉 𝜇(𝜔𝑖)𝜈 . As the dual of the Lie algebra g of the group of symmetries 𝐺 generated by

the Killing vectors 𝑉 is identifiable with left-invariant forms, we have the following induced

map of such potentials

𝜇𝑖 : 𝑋 → 𝜇𝑎𝑖 ∈ R3 ⊗ g* 𝑖 = 1, 2, 3; 𝑎 = 1, ..., dim(𝐺) . (A.122)

These maps are the (hyper-Kähler) moment maps and usually groups as 𝜇R = 𝜇3 and

𝜇C = 𝜇1+ 𝑖𝜇2. Therefore, any hyper-Kähler manifold Ξ of dimension 4𝑛 with 𝑘 freely acting

triholomorphic symmetries can be used to construct another, 𝑋𝜁 , of dimension 4𝑛 − 4𝑘 by

the following steps

1. For 3𝑘 moment maps, we can define level set of dimension 4𝑛− 3𝑘:

𝑃𝜁 := {𝜉 ∈ Ξ|𝜇𝑎𝑖 (𝜉) = 𝜁𝑎𝑖 } (A.123)

2. When 𝜁 ∈ R3⊗Centre(g*), 𝑃𝜁 is a principal G-bundle over a new hyper-Kähler manifold

𝑋𝜁 := 𝑃𝜁/𝐺 ≃ {𝜉 ∈ Ξ|𝜇𝑎𝑖 (𝜉) = 𝜁𝑎C} . (A.124)

This quotient construct is the celebrated Hyper-Kähler quotient construction [122, 16].

Now we can review this construction for ALE spaces in Kronheimer’s work. Recall that

an ALE space is the orbifold C2/(Γ ∈ 𝑆𝑈(2)). Before we apply this to ALE spaces, we

clarify some notations

∙ Γ ∈ 𝑆𝑈(2): discrete finite subgroups of 𝑆𝑈(2) with ADE pattern.
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∙ 𝑄 := The defining C2 representation.

∙ 𝑅 :=The regular |Γ|-dimensional complex representation. 𝑅𝑖=0,...,𝑟 := Irreps(Γ) of

dimension 𝑛𝑖 with 0 being the trivial affine node (trivial representation).

∙ ( )Γ := the Γ-invariant part, 𝑎𝑖𝑗 The adjacency matrix McKay quiver for Γ. They

have a relation defined as 𝑄⊗𝑅𝑖 = ⊕𝑗𝑎𝑖𝑗𝑅𝑗.

∙ 𝑇 := {𝑥0 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘|𝑥𝑖 ∈ R}: A one-dimensional quaternion vector space;

Λ+𝑇 * = Span{hyper-Kähler two-forms 𝜔𝑖=𝐼,𝐽,𝐾}: The self-dual part of the second

exterior power of the dual space.

∙ [𝑦 ∧ 𝑦] := (𝑇 * ∧ 𝑇 *) ⊗ [End(𝑉 ),End(𝑉 )], for 𝑦 ∈ 𝑇 * ⊗ End(𝑉 ); Endkew(𝑅):= The

anti-Hermitian endomorphism of 𝑅; 𝑍 := Traceless part of the Centre(EndskewΓ(𝑅)).

∙ 𝐺 :=
∏︀𝑟

𝑖=1 𝑈(𝑛𝑖) = The group of unitary automorphisms of 𝑅 commuting with the

action of Γ, modded out by 𝑈(1) scaling. This will correspond to the nodes (fractional

branes) in our quiver diagram as we have seen.

∙ 𝑋𝜁 := {𝑦 ∈ (𝑇 * ⊗R Endskew(𝑅))Γ|[𝑦 ∧ 𝑦]+ = 𝜁}/𝐺 for generic 𝜁 ∈ Λ+𝑇 * ⊗ 𝑍.

∙ ℛ:= 𝑌𝜁 ×𝐺 𝑅 with 𝑌𝜁 := {𝑦|[𝑦 ∧ 𝑦]+ = 𝜁}: The natural bundle over 𝑋𝜁 .

∙ 𝜉:= A tautological vector-bundle endomorphism as an element in 𝑇 * ⊗R Endskew(ℛ).

Now we can apply hyper-Kähler quotient construction to the ALE manifold

Ξ := (𝑄⊗ End(𝑅))Γ = {𝜉 =

⎛⎝𝛼
𝛽

⎞⎠}

= ⊕𝑖𝑗𝑎𝑖𝑗Hom(C𝑛𝑖 ,C𝑛𝑗)

≃ (𝑇 * ×R Endskew(𝑅))Γ =

⎧⎨⎩𝜉 =
⎛⎝𝛼 −𝛽†

𝛽 𝛼†

⎞⎠⎫⎬⎭ , (A.125)
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where 𝛼 and 𝛽 are |Γ| × |Γ| matrices satisfying

⎛⎝𝑅𝛾𝛼𝑅𝛾−1

𝑅𝛾𝛽𝑅𝛾−1

⎞⎠ = 𝑄𝛾

⎛⎝𝛼
𝛽

⎞⎠ ,

for 𝛾 ∈ Γ. This is simply the Γ-invariance condition or in terms of physical language, the

projection of matter content by the action of orbifold. In the second line, we have used the

definition of McKay quiver matrices for 𝑎𝑖𝑗. The third line is the canonical isomorphism

between C4 and the quaternions. The hyper-Kähler two-forms are 𝜔R = Tr(𝑑𝛼 ∧ 𝑑𝛼†) +

Tr(𝑑𝛽∧𝑑𝛽†) and 𝜔C = Tr(𝑑𝛼∧𝑑𝛽). The moment map is 𝜇R = [𝛼, 𝛼†]+[𝛽, 𝛽†] and 𝜇C = [𝛼, 𝛽].

The group of trihomorlophic isometries is 𝐺 =
∏︀𝑟

𝑖=1 𝑈(𝑛𝑖) with trivial 𝑈(𝑛0) = 𝑈(1) modded

out. Then we have the theorem due to Kroheimer

Theorem. The space

𝑋𝜁 := {𝜉 ∈ Ξ|𝜇𝑎𝑖 (𝜉) = 𝜁𝑎𝑖 }/𝐺 (A.126)

is a smooth hyper-Kähler manifold of dimension four diffeomorphic to the resolution of the

ALE orbifold C2/Γ. And all ALE hyper-Kähler four-folds are obtained through such resolu-

tion.

Remark. In the metric, 𝜁C is the complex deformation while 𝜁R = 0 corresponds to the

singular limit C2/Γ.
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A.6 Computational Modules

We created various Mathematica modules that implement the ideas presented in this paper.

Their applicability goes well beyond the classification of brane tilings we presented and should

be useful for a wide community. They are publicly available at [158]. Here we summarize

some of the basic commands.

So far the package is for a standard Unix environment, where the default directory for

storing the intermediate output is the user’s home directory $HOME.

The 𝑚 × 𝑛 rectangular brane tilings for 𝒞/Z𝑚 × Z𝑛 play a central role in our studies,

since we use them as simple starting points for partial resolution. For this reason, we created

a module called RecDimerModels[𝑚,𝑛], which generates the brane tiling for 𝒞/(Z𝑚 × Z𝑛)

with all its elements properly labeled and generates its Kasteleyn matrix. The intermediate

data is stored in the file $HOME.dimer.model.tmp.txt.

Next, the ToricInfo[𝐾𝑀] module takes a Kasteleyn matrix as input and produces the

corresponding perfect matchings and toric diagram.

For triangulating toric diagrams, we provide TriangDimer[𝑇𝑜𝑟𝑖𝑐𝑃 𝑡𝑠], which is a modi-

fied version of the DelaunayMesh[] command in Mathematica.

The module RemovePoints[𝐾𝑀,𝑃𝑡𝑠𝑟𝑒𝑚𝑜𝑣𝑒] generates all possible collections of vevs,

or equivalently edges to be removed, that give rise to a desired partial resolution defined by

a starting toric diagram and the points we want to delete from it (Ptsremove). The data is

loaded in $HOME.dimer.model.tmp.txt. This is the most computationally intensive module,

even though we use parallel computing and an optimized algorithm to enumerate all collec-

tions of removed edges. The output is in the form of a list containing all the possible higgsings

(PossibleHiggsings). With this information, it is straightforward to determine the brane tiling

resulting from any of these higgsings using HiggsingDimerSU[𝐾𝑚𝑎𝑡𝑟𝑖𝑥,𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒ℎ𝑖𝑔𝑔𝑠𝑖𝑛𝑔].

This module also produces the quiver and superpotential for the brane tiling.

Algorithm 1 provides a brief summary of how these modules were exploited for the

classification of brane tilings carried out in this paper.
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Algorithm 1 Classification of dimer models for all toric diagrams with a given area
Initialise 𝑀𝑜𝑑𝑒𝑙𝑠 as empty set. ◁ used as storing physical models.

Load 𝑃𝑆𝑒𝑡𝑠 as all the inequivalent toric diagrams with a given area.

for 𝑡𝑜𝑟𝑖𝑐 in 𝑃𝑆𝑒𝑡𝑠 do

Define 𝐾𝑚𝑎𝑡𝑟𝑖𝑥 by using RecDimerModels[𝑚,𝑛]. The integers 𝑚 and 𝑛 must define

a rectangular toric diagram in which 𝑡𝑜𝑟𝑖𝑐 can be embedded.

Define 𝑝𝑡𝑠𝑟𝑒𝑚𝑜𝑣𝑒 as the set containing points to be removed from the rectangular toric

diagram.

Determine 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐻𝑖𝑔𝑔𝑠𝑖𝑛𝑔𝑠, the collections of vevs that produce a given partial

resolution, using RemovePoints[𝐾𝑚𝑎𝑡𝑟𝑖𝑥,𝑝𝑡𝑠𝑟𝑒𝑚𝑜𝑣𝑒].

for 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒ℎ𝑖𝑔𝑔𝑠𝑖𝑛𝑔 in 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐻𝑖𝑔𝑔𝑠𝑖𝑛𝑔𝑠 do

Use HiggsingDimer[𝐾𝑚𝑎𝑡𝑟𝑖𝑥,ℎ𝑖𝑔𝑔𝑠𝑎𝑛𝑡𝑧] to compute the brane tiling, quiver and

superpotential for every 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒ℎ𝑖𝑔𝑔𝑠𝑖𝑛𝑔.

Save this information into 𝑀𝑜𝑑𝑒𝑙𝑠.

end for

end for
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